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Abstract. Conceptual modeling can be viewed as a way of expressing human understanding
of a body of knowledge. This view can be viewed as distinct from standard notions of data
modeling and ontology, which seek to directly describe data and reality. We define our
notion of conceptual interoperability, give use cases and requirements for it, and introduce
the Conceptual Model Ontology (CMO), which satisfies the discussed use cases and
requirements. We show how, using a common vocabulary, conceptual models can be used to
tie together data at the level of conceptual interoperability. Finally, we introduce an
implementation of CMO in the semantic web Biomedical Informatics Grid (swBIG), a linked
data proxy for cancer Biomedical Informatics Grid (caBIG) models, semantic metadata, and

data.

1 Introduction

The relationship between entities, the idea of
the entities, and their information
representation has come to the forefront of
ontology and information modeling because
conceptual models [1] have become critical in
encoding human understanding of information
[2]. To support this, layered representations of
information models, such as the conceptual,
logical, and physical model layers, [3] [4] have
become common practice in many modeling
disciplines. We seek a meta-modeling ontology
that can easily express human understanding
of entities and their data in terms of
independent, reusable vocabularies that can be
annotated onto conventional ontologies in a
way that does not computationally disturb the
annotated ontology (does not produce any
undesired inferences) and does not require
modification of the ontology or the data it
represents. Our goal is to provide a way to use
these sorts of annotations to satisfy certain use
cases for conceptual interoperability [5].

2 Background

Biomedical ontologies have, for more than ten
years, worked towards interoperability of data
through use of verified categories, as has been
the case in the Gene Ontology [6] and other
OBO Foundry ontologies [7], reference models,
as has been the case in Health Level 7 (HL7)
Reference Information Model [8] and openEHR
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[9], and common vocabularies, such as
SNOMED-CT, LOINC, and NCI Thesaurus.
However, integration across these ontologies
has identified a number of challenges
surrounding the strategies that were used to
produce the ontology.

Ontologies are often created using one of
two primary influences: linguistic or realist.
Linguistic influences on ontologies stem from
how people talk about and understand entities,
whereas realist influences on ontologies stem
from a focus on scoping by including only
things that have scientific evidence of
existence in the real world [10]. We refer to
HL7-RIM as being linguistically influenced
because it is primarily concerned with
communication of human-generated records
between entities. Ontologies with realist
influence attempt to model reality as it is, and
only model things for which there is scientific
evidence [11]. The Basic Formal Ontology
(BFO) [12] is possibly the most rigorous
example of an ontology with realist influences.
A realist strategy can provide a framework for
relating other strategies, including conceptual
models. Smith et al. [2] have developed a
three-layer system for things in the world, our
ideas of them, and representations of those
ideas. Specifically, they define the following

levels of entities that are involved in
ontologies:
Level 1: the objects, processes, qualities,

states, etc. in reality (for example on
the side of the patient);
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Level 2: cognitive representations of this
reality (for example, on the part of
researchers and others);

Level 3: concretizations of these cognitive
representations in representational
artifacts (for example, textual or

graphical).

In a conceptual model, we consider Level 1
entities to be realist classes and properties.
Level 2 entities can be classes and properties or
concepts. Level 3 entities are terms, which are
expressed as lexicographical labels for classes
or concepts. We define a conceptual model as a
set of Level 2 entities where each “represents” a
Level 1 or Level 2 class or property [1]. Classes
and properties that are also concepts can
therefore represent themselves. We define
logical models to be collections of classes and
properties from either Level 1 or 2. Level 2
entities that are both classes or properties and
concepts therefore exist both in the conceptual
model (those assertions that treat them as
concepts) and in the logical model (those
assertions that treat them as classes or
properties).

We seek to use conceptual models to achieve
conceptual interoperability of data. Conceptual
interoperability is the use of models of human
understanding, or conceptual models, to provide
interoperability commensurate with the level of
alignment between conceptual models [13, 5,
14]. Two goals that we seek for conceptual
interoperability are:

— Make similar but distinct data resources
available for search, conversion, and
inter-mapping in a way that mirrors
human understanding of the data being
searched.

— Make data resources that use cross-cutting
models, such as HL7 v. 3 RIM! and
provenance models (such as PML [15]),
interoperable with domain-specific models
without explicit mappings between them.

Resources such as the Gene Expression
Omnibus (GEO) [16], ArrayExpress [17], and
caArray [18] all contain separate logical models,

1 Health Level 7 Version 3 Reference Information
Model [8]
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but rely on related conceptual models, MAGE
for ArrayExpress and caArray [19] and MIAME
for GEO [20]. By encoding this model over each
resource with a common vocabulary, it could
then become possible to search across all
resources using a single query, or easily convert
data from one resource to another. Similarly,
conceptual interoperability could enable the
ability to search for patient history across
domain-specific databases using queries that
only talk about patient history, as we show in
our Translational Research Provenance Vision
[21] for biomedical experiments.

2.1 Relevant Ontologies and Frameworks

We leverage properties and classes from the
BFO [10] and Information Artifact Ontology
(TAO), [22] which are implementations of the
scientific realist perspective on developing
ontologies. We also leverage SKOS [23] as a
basis for simple common vocabularies and
associating conceptual models with those
vocabularies. This work was based on practical
issues surrounding mapping semantics from
the cancer Biomedical Informatics Grid
(caBIG) [24] into the semantic web. We have in
the past worked on converting caBIG’s layered
semantics into OWL [25, 26] with success;
however, the representation is limited to
caBIG applications. Additionally, the mapping
could not produce a one-to-one mapping
between UML attributes and OWL properties,
resulting in complex, unintuitive models.

3 Conceptual Interoperability
Use Cases and Requirements

We divide the possible use cases of conceptual
interoperability into three groups: search (or
query), conversion, and direct mapping. Each
of these use cases can be tailored to specific
applications and additional requirements
based on the level of interoperability needed.
These use cases are necessarily abstract, and
represent decompositions of uses cases such as
testable hypothesis generation into component
tasks.

Search: A user would like to perform queries
with no knowledge of the underlying model.
For example, “List the Education Level of all
Persons in a dataset.” or “Find me all Tissue
Specimens from Persons with an Adverse
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Event while taking Drug x.” That “Drug x” is
actually a class of drugs should not have to be a
concern to the user.

Conversion: A user would like to convert
instance 2 data from one logical model to
another with a certain level of fidelity. This can
be between domain models, or between a
domain model and a cross-cutting model, such
as a provenance model. For example, when
events of Clinical Service occur with a given
Date, dynamically create a record of Vital
Status of Alive on that Date. These data are
critical for tools like Kaplan-Meier survival
curves [27], but availability of encounter data
can be scattered across multiple organizations
and systems that use different internal models.

Mapping: A user would like to create an
automated mapping between two logical
models. For example, take existing caBIG
data models and align them with the BRIDG
(Biomedical Research Integrated Domain
Group) model [28]. This would occur when it is
desirable for the Annotation and Image
Markup [29] class Person to be automatically
mapped as subclass of bridg:Person3 because
of their mutual relationship with ncit:Persont.

We have identified a number of require-
ments for tools that would support these use
cases:

Common Vocabulary: Conceptual models
must use a common vocabulary that is distinct
from any particular conceptual model. This is
to allow portability of vocabularies between
models, and prevent the reliance on one par-
ticular representation that might favor one
logical model over another.

Distinction from Logical Models: A
conceptual model and its vocabulary must not
be represented in the same metamodel as a
logical model. Doing so in metamodels that
support reasoning may allow for direct
inferences between conceptual and logical
layers. This can have unintended consequences,
for example, in cases where the logical and

2 Instances here and in the rest of the paper
informally refer to OWL Individuals, in
particular, Type 1 individuals in reality.

3 BRIDG: Biomedical Research Integrated Domain
Group. http://bridgmodel.org

4 ncit: NCI Thesaurus. http://ncit.nci.nih.gov

conceptual models are both expressed in OWL.
If the logical model has classes that are
subsumed by conceptual model classes, then it
no longer becomes clear whether the instance
is referring to an instance of a thing, or an
instance of an idea of a thing.

Natural, Idiomatic Expression: A conceptual
modeling framework must support natural,
idiomatic expression of the actual data in its
natural form. This means that there must never
be any need to modify a logical model or its data
in order to allow annotation of a conceptual
model onto it.

Types, Properties, and Relations: A
conceptual modeling framework must provide
a way to express relationships between types,
properties, and relations.

Additional Relationships: Most concepts
have inter-relationships that can assist in
improving conceptual interoperability. Any
framework must provide a way of expressing
these additional relationships.

These requirements come from previous
experience with modeling layered semantics
using OWL [25] where relating models with
reference terminologies expressed in the same
language (OWL 1) proved problematic.

4 The Conceptual Model
Ontology

The Conceptual Model Ontology (CMO)5is a
metamodel for representing conceptual models
and their inter-relationships to logical models
and vocabularies. Core to the CMO are these
three classes:

cmo:Type. An abstract or general idea inferred
or derived from specific in stances, representing
a set of those instances.

cmo:Quality. The conceptual representation
of anything that is a property (a thing that is
inherent in an entity, like eye color) or an
attribute (a thing that has been assigned, or
attributed, to an entity, like name or
identification number). cmo:Quality is the
union of those two sets, so issues relating to
determining if a quality is an attribute or
property are not relevant here.

5 http://purl.org/twc/ontologies/cmo.owl
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cmo:Relation. A concept representing the
relationship between two independent entities.

Each of these classes are subclasses of
skos:Concept, which is in turn is asserted in
CMO to be a subclass of iao:information
content entity [22]. These concepts are
considered Level 2 entities from Smith et al.
[2]. Concepts are tied to logical model entities
through the cmo:represents property, a
subproperty of iao:is about. Entities in logical
models can either be concepts or Universals
(Type 1 entities). cmo:Universal is a subclass of
bfo:independent_continuent and cmo:Fiat
Entity is a subclass of bfo:generically_depend-
ent_continuent. Both cmo:Universal and
cmo:FiatEntity have requisite classes, qualities,
and relations, and are intended to be types
that are punned on to OWL classes and
properties in the OWL 2 metamodeling pattern
[30]. The class hierarchy is displayed in Figure
1. Classes that are not universals are usually
considered to be themselves concepts, and are
metamodeled as skos:Concepts. These classes,
since they are themselves concepts, in a very
real sense represent themselves. However, it is
impossible for a universal to represent itself,
since universals are not considered to be
concepts.

Subproperties of skos:broadMatch are
provided to provide relationships between CMO
concepts and common vocabularies. We provide
cmo:hasPrimaryConcept and cmo:has Qualifier
to allow for more nuanced composition, for
example allowing “Tissue Specimen” to have a
primary concept of “Specimen” and a qualifier of
“Tissue”.

We use SKOS as a basis for CMO because
of its following properties. SKOS concepts
unambiguously align to the definitions of
concepts that we are using (as Level 2 entities),
while OWL is ambiguous in its definitions of
“class”, it could either be considered a set or a
concept. This is important, because we seek to
draw a distinction between concepts as they
exist in conceptual models, and the sets of
things that they represent. Alternatively,
remaining in OWL DL means that to use OWL
classes as a common vocabulary would mean
either creating instances of that class or
punning that class to an instance. Punning the
class means that the instance no longer has
any semantics associated with it, and would
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need to either be given the type of the OWL
class to regain semantics, or be given
secondary semantics using an alternative
structure. Here we do exactly that by giving
the instance semantics using SKOS. Giving
the class as a type of the instance in the
conceptual model is also problematic, because
it conflates being a thing of a type and being
the idea of a type. The idea of a cat is not a cat,
and when creating a conceptual metamodel
that integrates with instance data, it 1is
important to maintain that distinction.
cmo:Type relates to cmo:Quality through
the use of cmo:hasQuality and its inverse,
cmo:qualityOf. Qualities can have cmo:values
CanBe assertions which provide the set of
possible values for that quality. cmo:Relation
has source (cmo:-hasSourceRole) and target
(cmo:-hasTargetRole) types which help describe
how those entities are related. Taken together,
these qualities and relations form the
structure of a conceptual model. The relations
of CMO are outlined in Figure 2. By tying into
existing common vocabularies, CMO-based
concept models can be easily aligned along
those vocabularies, as we will show below.

5 Implementation

The Conceptual Model Ontology is currently
used as a backbone for “semantic web for the
Biomedical Informatics Grid” (swBIG). This tool
is currently available as a prototype RESTful
service [31] that converts requests for resources
from linked data URIs to caGrid service calls to
requisite grid endpoints. This service uses a
representation of NCI Thesaurus [32] converted
to a SKOS representation using OWLtoSKOS.
This representation addresses some, but not all
of the concerns of Shulz et al. [33], and provides
the ability to reason over concepts as instances
in property value sets as well as in conceptual
models. The retrieval operations are very
simple and are documented on the swBIG web
site. The source UML models are very closely
mapped to preserve generalizations, attributes,
and associations. Class and value typing on
attributes and associations (using domain and
range) and cardinality are preserved. When
permissible values are listed for an attribute as
part of the Common Data Element (CDE) [35]
[36], an OWL ObjectProperty is created with a
range of an enumeration class of the permitted
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concepts (not strings). The concepts for classes, query associations and convert values to
attributes, and properties as represented in concepts when a permissible value mapping is
CDEs are modeled using CMO. Instance data is used.

generated using the model to determine and

bfo2:Entity

are

snap:Continuant

are

[ snap: IndependemContmuantJ

e ATE
[snap:Genencally)ndependentContInuant]

are are
\(cmo:UnlversaIRelation )
[lao:'lnformatbn content entity' ]
f cmo:UniversalClass
are
w cmo:UniversalQuality
e
cmo:Relation ]
cmo:Quality

Figure 1. CMO Classes and their relationships with BFO, IAO, and SKOS. All diagrams
are generated using CMap COE (http://coe.ihmc.us), and follow its labeling conventions.
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Figure 2. CMO properties and how they integrate with SKOS and IAO.
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PREFIX cmo: <http://purl.org/twc/ontologies/cmo.owl#>
PREFIX skos: <http://www.w3.0rqg/2004/02/skos/core#> PREFIX ncit:
<http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>

select count (distinct ?person)

where {
?person a
?person ?prop

[cmo:representedBy

as ?count ?value

[skos:broader ncit:Person]].
[rdfs:label ?value].

?prop cmo:representedBy [skos:broader ncit:Education Level].

}

Figure3. Query 1: “Return the distribution of education level of all persons in the HINTS 2005 grid service.”
This query is performed by only using terms from a common vocabulary, NCI Thesaurus.

6 Evaluation

The Conceptual Model Ontology addresses all of
the conceptual interoperability use cases and
requirements. For example, the Query use case
is satisfied with queries such as the one in
Figure 3, which queries for the number of
survey participants with a given level of
education. The results of this query are
displayed in Figure 4.

Conversion of data can be handled using
rules such as the one in Figure 5. This example
illustrates how CMO can be modified depending
on the requirements of the task. The built-in
semantics of CMO are kept minimal so that
rules based on it can be tailored to the needs of
the task. Some applications may require very
strict conceptual alignment, while other
applications may require a looser coupling in
order to meet requirements. Models can also be
mapped directly onto each other as shown in
Figure 6.

CMO also satisfies conceptual interopera-
bility requirements. Common vocabularies are
distinct from the conceptual and logical models.
Existing ontologies in OWL can be annotated
without modification or change to existing
semantics. While CMO is used to express
semantics from caBIG, it is not limited to caBIG
models. CMO provides a simple way to express
relationships between types, properties, and
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relations. Finally, because it uses SKOS-based
common vocabularies, CMO allows additional
relationships to be asserted between those
concepts. For example, it is possible to assert
that birds can fly at the conceptual level with
direct assertions that have no automatic
inference. Performing this using concepts means
that this can be compared against instances
without triggering consistency exceptions, such
as the case with flightless or injured birds.

7 Future Work

We are currently investigating the use of CMO
models to provide automated mappings of caBIG
data elements into the BRIDG clinical model.
This effort has seen some initial success, and
work continues. Additionally, we will explore the
use of CMO to represent domain-specific models
in relation to a common model of provenance as
envisioned in McCusker and McGuinness [21]
including conceptual representations of
biomedical experiments. We also are exploring
the use of a common vocabulary to provide a
unified view of existing provenance models and
domain models in terms of provenance. We hope
to do this with the Translational Medicine
Ontology [37]. We plan to provide satisfaction of
additional use cases as well.
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Distribution of Educational Level in HINTS 2005 Survey

Professional Doctorate Degree Completion [
Master's Degree Completion [N
Bachelor's Degree Completion I
Associate Academic Degree Completion |
Some College Completion [N
Vocational Program Completion [l
High School Completion [
8th Grade Completion Il
5th Grade Completion [l

Education Level

0 50 100 150 200 250 300
# of People

Figure 4. Distribution of educational level in the HINTS 2005 survey.
These data were gathered using the query in Figure 3.

isa isa

ZotherClass ?otherClass

cmo:representedByType cmotrepresentedByType == cmo:representedByType cmo:representedByType

[?otherTvpeConcept) ?typeConcept [ 2otherTy peConcepl] ?typeConcept

cmo:hasPrimaryConcept cmo:hasPrimaryConcept

Figure 5. Mapping data from one logical model to another. By identifying that a “parent” class hangs directly
off of a broader term of a “child” class, an instance of the “child” class can be given the type of the “parent”.

?domainClass ?bridgClass —are — | 2bridgClass
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. ’

?domainConcept ?bridgConcept —_ ?bridgConcept

skos:broaderTransitive cmao:hasPrimaryConcept

skos:broaderTransitive cmo:hasPrimaryConcept
\A / \\ /

Figure 6. Mapping logical models directly on to each other can be accomplished by discovering relative relationships of the classes
within the common vocabulary. The left hand side of the figure shows the precondition for mapping one class to another. The right
side is the final state, where the added “are” arc represents the assertion that ?7domainClass is now a subclass of ?bridgClass.
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Finally, CMO does not yet provide a way to map
between different levels of granularity. One
model may represent a relationship as a direct
link, while another may provide an intervening
class which provides more information. It would
be useful for CMO to include a property for how
these levels relate.

8 Conclusion

Conceptual models can play a significant role in
automated semantic interoperability, because
they can allow the integration of data from
across logical models without the need for direct
integration of logical models. The Conceptual
Model Ontology can support important uses
cases in conceptual interoperability and is being
used to represent existing semantics from a
large software development program (caBIG).
CMO 1is currently available for use with
instance data using the swBIG linked data
proxy. Finally, CMO is not limited to caBIG
models, but can be applied to any logical model
expressed in OWL.
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