
Methodology for Estimating Working Time
Effort of the Software Project

Jakub Štolfa, Svatopluk Štolfa, Ondřej Koběrský, Martin Kopka, Jan
Kožuszńık, and Václav Snášel

Department of Computer Science
VŠB – Technical University of Ostrava, Faculty of Electrical Engineering and

Computer Science
17.listopadu 15, Ostrava-Poruba, Czech Republic

{jakub.stolfa, svatopluk.stolfa, ondrej.kobersky, jan.kozusznik,

vaclav.snasel}@vsb.cz, martin.kopka@c4u.cz

Methodology for Estimating Working Time Effort of

the Software Project

Jakub Štolfa, Svatopluk Štolfa, Ondřej Koběrský, Martin Kopka,

Jan Kožuszník, and Václav Snášel

Department of Computer Science

VŠB - Technical University of Ostrava, Faculty of Electrical Engineering

and Computer Science

17.listopadu 15, Ostrava - Poruba, Czech Republic

{jakub.stolfa, svatopluk.stolfa, ondrej.kobersky, jan.kozusznik,

vaclav.snasel}@vsb.cz, martin.kopka@c4u.cz

Abstract. The precise estimation of the time effort of the project is one

of the key limits of its success. One of the ways how to achieve a correct valua-

tion of the project is developing of a detailed analysis, which output is a struc-

tured solution that uses use cases. This paper focuses on developing a method-

ology for estimating working time effort of the project for one particular com-

pany. An important part of the methodology is to build up and maintain com-

parative database of valued use cases and time progress of realized projects.

The aim of the methodology is to deliver data for evaluating a new project.

1 Introduction

The proper estimation of the project is a goal which wants to achieve almost every

project manager. It is not easy quest and it is not essential. It is hard task which takes

a lot of effort to do it right. And the question is how to do it right. There are several

ways how to fulfill this task. Which one is the best is depending on the concrete com-

pany, concrete types of the projects etc.

However, one thing is clear, if we know supposed project progress (supposed pro-

ject progress of its activities), we can find out in which phase the project is. Thereby

we can figure out if the project plan is in time, late or ahead. So, we can determine the

effort and plan resources of the project. For example, since some point of time we

know that project will not need analyst activities anymore, so we can move analysts

(they do analyst activities) out of the project, to the another project.

1.1 State-of-the-art of estimation project approach

Many formal methods were published in the area of effort estimation for software

development projects. Heemstra wrote down the basic ideas why, when and how to

estimate projects in paper “Software cost estimation .In Information and Software

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 25–37, ISBN 978-80-7378-171-2.

26 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

Technology” [12] in early 90s. This paper speaks about importance of estimation of

the project. One of the mentionable information is that lot of companies do not make

an estimation. And even if they make estimation, it is mainly not corresponding with

a reality. Since our method is based on the use cases, we will mention only some

methods utilizing the use case approach here (referenced also as parametric models).

The COCOMO methodology [1] computes the effort of the software projects as a

function of program size and a set of cost drivers on separate project phases. It is the

Constructive Cost Model, which has been originally developed by Dr. Barry Boehm

and Publisher in 1981 [13]. He found out a formula computing the classification of

separate cost drivers.

Similar access as COCOMO basic is used in [2] where author estimates that size of

a project is a function of the size of definition that was written into the use cases defi-

nition. Function points are popular method to estimate size of proposed application.

The ISO/EIR organization [6] created functional size metric standard which supports

that method.

Methodology introduced by [3] computes the project estimation using complexity

of use cases and its transactions applying the set of adjustment factors. Building the

database from really measured projects with several technologies is important ap-

proach.

J. Smith in 1999 speaks about use cases and their complexity [4]. It thinks about

how big should a use case be and about the complexity of the big or small use cases

and how much effort particular use case takes. It brings us an idea that we used for

categorizing standardized use cases in our assessed company.

Almost all methods, which use estimation based on use case points, are based on

method of Gustav Karner. He first described use case points. [2] Use case point is

described like function of the following:

 the number and complexity of the use cases in the system,

 the number and complexity of the actors on the system,

 various non-functional requirements (such as portability, performance,

maintainability) that are not written as use cases,

 the environment in which the project will be developed (such as the lan-

guage, the team’s motivation, and so on).

Like Gustav Karner says, the basic formula for converting these parameters into

single measure, which is mentioned use case point, there is that it is necessary to

weight the complexity of the use cases and actors and then to adjust their combined

weight to reflect the influence of the nonfunctional and environmental factors.

The case studies, which are based even on use case points, are described in the pa-

per of Bente Anda [11].

We can say that our methodology is even based on the use case point, but it looks

more precisely on the use case realization, that means text of the use case. It evaluates

rows, words and paragraphs of the standardized use case realization. How it works,

there is described later in our paper.

Our paper is organized as follows: Section 2 introduces the problem of the project

estimation in the particular company; Section 3 describes the concept of our method-

ology: filling of the database by the data from finished projects, categorization of the

Methodology for Estimating Working Time Effort of the Software Project 27

use cases and example that describes new project effort estimation. Concluding Sec-

tion 4 provides a summary and discusses the planned future research.

2 Definition of the problem

Our goal was to set up an estimation working time effort of projects in the particu-

lar company. Even that the company has 130 workers and lot of finished projects,

people in that company were not used to estimate a new project by some methodolo-

gy. The common issue was to estimate a new project working time effort by theirs

own decisions. That decisions are based on experiences obtained by solving past pro-

jects. The problem of that solution of the estimation of the project’s working time

effort is that it is so much human dependable. For example it means that an estimation

can be wrong because the particular worker had not enough experience to do that, or

he simply don’t know how to make the particular estimation. The solution to this

problem is the supporting tool for estimating time effort of new projects based on our

methodology. This can help workers to estimate a new project by showing them aver-

age project progress of similar projects. Thanks to that methodology, worker simply

knows the progress of projects with similar working time effort and can easily esti-

mate a new one.

It is important to mention that out methodology is based on particular company and

their software developing standards. The methodology was supposed to use only in

that particular company at the beginning. It means we do not declare that this is gen-

eral approach which can essentially work in other companies. On the other hand the

aim of this paper is to provide also the guidance for other companies, which develop

software in same way like our one. They can apply our methodology to their process-

es as well as we did it in that particular company.

2.1 Initial state

Initial state of the estimation in the company was described before. Thorough it is

important to mention how the company makes analysis and how is a progress of the

project captured.

The analysis in the company is made by use cases. These use cases are standard-

ized. That means, if the use case deals with same repeatable issue, then it is almost

similar to other use cases that are dealing with the same issue. It gives us the possibil-

ity to use these standardized use cases for the projects comparisons.

The capturing of the project progress is made by CRM system. In the CRM system

you can see how much time was spent on each activity. More information about cap-

tured activities is written in next sections.

28 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

3 Proposal of the methodology

The following chapter is focusing on the logical principles of the methodology.

Methodology consists of two main processes. Rectangle is an activity; oval is input or

output data to the activity.

Database

Method for

finding progress

Method for

determining the

dificulty of a Use

case

Data of former

projects

Fig. 1. Filling of the database.

The first process is named “Filling of the database” (Fig. 1). It is a process where

data about a recent project are filled into the database. It starts with data of recent

projects in particular company. These data are separately executed in two main meth-

ods. First one is the “Method for finding progress” and second one is the “Method for

determining the difficulty of a Use case”.

New project

Method for

determining the

dificulty of a Use

case

Database

Comparing with

former projects in

the database

Estimation of a

working time effort

of the new project

Fig. 2. Estimation of the new project

In case, that database is filed by the first process, the second process can be run.

The Name of that process is “Estimation of the new project”. The input of that pro-

cess is a new project. The exact input is the finished analysis of that new project. It

means that we have all required use cases. These use cases are elaborated in the activ-

ity “Method for determining the difficulty of a Use case”. It is the same method like

in the process named “Filling of the database”. After that, process continues with the

method named “Comparing with former projects in the database. The method com-

pares former project in the filled database with data of the new project, finds similar

project and estimate working time effort based on the similar projects progress. When

the project is finished, the database could be extended by the new finished project.

Next sections of this paper introduce particular steps of both processes.

Methodology for Estimating Working Time Effort of the Software Project 29

3.1 Method of finding Progress

The supposed project progress, it means how much effort and time particular

tracked activities should consume, is discovered by the comparison to the data of

finished projects in the company. According to these data, we can find out if the com-

pany is following project methodology. If it is true, than all projects have the same or

almost same progress of tracked activities.

Our method tracks progress of five main activities of the project.

 Consultation (in the system(CRM) like PORA)

 Analysis (ANAL)

 Programming (PROG)

 Testing (TEST)

 Implementation (IMPL)

Steps of the method finding progress.

1) Input project data. We need to know number of worked hours in each day

for particular activities, when that activity was practiced (see the table be-

low).

2) Setting number of segments to which we will split timeline of the project.

Methodology set default number of segments to 10, but we can set even an-

other number (5, 20, 100, etc.). The reason why to split timeline to the same

segments is that, we need to normalize timelines of projects. So that we can

compare projects whit each other. For example, one project last 10 months a

second one last 1 month. If it is slip up only to the weeks, then first project

is split to the 40 segments and second one to the 4 segments. Comparing the-

se two projects is impossible in this way. If we split up these two projects to

the same number of segments, we can compare them. First project has a 10

segments and one segments contains data of 28 days (project last 40 weeks =

280 days, we split up to 10 segments = 28 to each segment). Second project

contains in one segment 2,8 days.

This example shows that the last segment is not same as the others every

time. It depends on the technique in the methodology, if we round up (de-

fault) or down. If we round up, one segment contains 3 days (2,8 days > 3

days). A it means that last segment contains only 1 day (28 - 28/3 = 1). It

was proved by the experiments that this is not significantly important for the

comparison of the projects. It is only good to have in on your mind for later

refinement of the method.

3) Choosing the technique of the evaluation. Our methodology has two types

of evaluation of the project duration, which is later split up to the, before

mentioned, segments.

30 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

a. Counting all days. It means that we count all days – from the first

day to the last day, when some of tracked activities were performed.

Then the duration of the project (number of days) is counted. Num-

ber of days is divided by number of segments (default 10). So that

we know how many days the segment contains. After that calcula-

tion we add to first date number of days in segment. That date is

border line. Then we add number of day in the segment to that bor-

der line and establish second border line. We have second segment.

That technique we have to do same way to the penult segment. To

the last segment we put remaining days of the project. For example

first date is 1.7.2010 and one segment has 14 days. First segment

contains data of dates from 1.7.2010 to 14.7.2010. Second segment

from 15.7.2010 to 28.7.2010, etc.

b. Counting only days, where there was some work done. It means

that, we count on only days, when some of the tracked activities

were performed. We do not count empty days. Days where there

was not done any work on tracked activities. We count all effort

hour and divide them by number of segments. Then, there is a dif-

ference from the first technique, we count only days, where there

was some work. So segment of size 11 hours may contain for ex-

ample 1.7.2011 5 hours of analysis, 13.7.2011 6 hour of program-

ming.

This technique has one week aspect. When we reach the end of the

segment, actual summary of hours in that segment is 9 and next date

contains for example 3 hours, so we close segment with actual

summary 9 hours. Because we do not want to past out the limit of

the segment (limit is 11, 9+3=12, 12>11). It has an effect that seg-

ments could contain various numbers of hours. This might be a

problem if we count projects with low number of total hours. The

affection is minimal to the projects with big number of total hours.

4) Calculation. Inputs are fulfilled segments (day o hour method). Then we

need to count number of hours spent on particular activity in each segment.

5) Saving a result to the database. Saving the result of the methodology is

made by vectors. We can group these vectors and so that we can find out

similar projects. Vectors are easily transferable to the graph.

a. Structure of the vector (5 segments):

First is a name of the project. Then three numbers of particular dif-

ficultly of use cases. And then are worked hours of the activity in

particular segment. First is consultation, then analysis, program-

ming, testing and last implementation. Each activity has 5 numbers

divided by semicolon. It shows how much hours was worked in

each segment.

Methodology for Estimating Working Time Effort of the Software Project 31

Name of the

project

Difficulty of Use

cases

Hours of consultation per each

segment

Hours of analysis per each

segment

Project H M E 13,75 0 18,25 255,75 237,25 0 0 0 122,5 116,5

Hours of programming per each

segment

Hours of testing per each

segment

Hours of implementation per each

segment

0 0 0 138 2704 0 0 0 0 1071 4 0 11,75 8,5 171,25

Table 1. Structure of the vector. Table shows structure of the vector. It is one log

table, but for that paper was divided to two.

3.2 Method for determining the difficulty of a Use case

Following chapter describes how we evaluate particular use case.

Basic complexity according to the number of rows.

Complexity of a project is given by the difficulty of UC realizations. The difficulty

of UC is hard to determine, there is no easy benchmark for their comparison. Simplest

way is determining the complexity based on number of rows in every UC. We have

set 3 levels of difficulty based on number of rows:

 E (easy) – number of rows < 70

 M (medium) – number of rows ԑ <70;110>

 H (hard) – number of rows > 110

We can obtain number of hard, medium and easy use cases for one project with

this type of evaluation.

Extended complexity.

In terms of our method objectivity we decided to extend complexity with number

of paragraphs and number of words in each UC. The overall difficulty of UC is then

derived from the individual complexities.

Difficulty according the number of words.

 E (easy) – number of words < 200

 M (medium) – number of words ԑ <200;500>

 H (hard) – number of words > 500

Difficulty according the number of paragraphs.

 E (easy) – number of paragraphs <= number of paragraphs + X -> easy

 M (medium) - number of paragraphs > number of paragraphs + X AND

number of rows < number of paragraphs + Y -> medium

 H (hard) – number of paragraphs => number of paragraphs + Y -> hard

 Where X=10, Y=25

32 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

The overall difficulty.

Overall difficulty of UC can be determined as follows. Difficulty of words has the

highest weight, then difficulty of rows and difficulty of paragraphs. First of all we

compare difficulty of words with difficulty of rows, If they are in the same level, then

the overall difficulty is in this level. If not, we compare the difficulty of words with

difficulty of paragraphs, if they are on same level, then the overall difficulty is in this

level. If any of them differs then we compare the difficulty of rows with paragraphs in

the same way. If the comparison does not help us, overall difficulty is difficulty of

words, because we consider it the most important aspect. The difficulty types and

levels were checked by the correlation matrix. The result was that the actual depend-

ency setting varies between 60-100 %. Most of the difficulty types and levels more

than 2/3) are more than 95% dependable.

3.3 Comparing to former projects in the database

Input of this activity is evaluated by use cases of a new project. This overall diffi-

cultness of project use cases was determined in the activity Method for determining

the difficulty of a Use case.

After that we find recent project are in the database which have almost similar dif-

ficultness of a use cases. The similarity is determined by next proclamation. We pro-

claim that two projects are similar if their particular difficulties differ by +/- 2. This

simple differ was set up by several experiments made on real data in the company.

3.4 Example

This section describes an example of using a described methodology. Inputs are

analysis of four projects (Project1, Project2, Project3, Project4). It is only the example

so that’s why, we show only four representative projects. We cannot publish the

names of the project, and that is the reason why we call them like that. Important is

that all of these projects are development projects. That means they include all steps

of the life cycle of the project (consultation, analysis, programming, testing, imple-

mentation).

We fulfill the database by data (vectors) of these projects. After that we take a new

project, evaluate its use cases (by difficultness of UC) and find out estimated progress

and difficulty.

1) Determination of difficultness of UC of particular projects:

Difficulty according to the number of rows

T S L

Project1 6 8 57

Project2 1 1 12

Project3 4 0 17

Project4 0 2 4

Methodology for Estimating Working Time Effort of the Software Project 33

Table 2. Difficulty according to the number of rows.

Difficulty according to the number of paragraphs

T S L

Project1 12 17 42

Project2 1 11 2

Project3 3 5 13

Project4 0 4 2

Table 3. Difficulty according to the number of paragraphs.

Difficulty according to the number of words

T S L

Project1 16 11 44

Project2 3 7 4

Project3 5 3 13

Project4 2 2 2

Table 4. Difficulty according to the number of words.

Total difficultness

 T S L

Project1 12 15 44

Project2 1 9 4

Project3 3 4 14

Project4 0 4 2

Table 5. Total difficultness.

At the table 5 we can see the total difficultness of particular projects. This

view is most important for further processing. The section 3.2 describes how

the particular difficultness was set up.

2) Compilation of vectors and graphical representation of these vectors for

the projects progress

This section shows the vector for the project progress of the particular pro-

ject. Structure of these vectors was described in the table 1 above.

- Pro-

ject1;12;15;44;284,75;28;48;36,75;29;60,5;27,55;2,5;0;122,5;0,75;8,25;19;27,5;27,25;22,2;2;4,

5;0;52,5;444,75;332,75;317,5;341;320,5;256,75;275,25;259;0;0;10,5;93,25;109,5;91,25;7;9,5;1

60;188,75 ;185,5;0;24,25;3;9,25;1,75;0;0,5;27,25;16;37;0

- Pro-

ject2;1;9;4;23,75;20;12;30;15;40,25;20;10,5;1;130,50;20;10;18;25,5;20,25;10,25;1;3;2;2;20,25;

130,75;256;432;203;150,75;25,25;259;30;0;14,5;23,25;19,75;19,75;10;17;163;129,75;174,25;2;

12,25;6;10,25;4,75;0;3,5;20,25;13;20;35

34 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

- Pro-

ject3;3;4;14;5,25;13;18,25;5;12,75;7,5;8,5;11,25;8,25;5;2;10,75;1,5;0;10;6;5,5;0,5;0;5,5;3,75;1,

5;2;0;0;1;0;6;9;8,25;5,75;9,75;10,25;0;3,25;0,5;3;0;0;1,75;0;0;1,5;1;0;0;0;0;0;0;0;0;0;0;0,5

- Pro-

ject4;0;4;2;12;8;6;14;12,25;31,25;5;2;1;10,50;3;7,75;20,50;9,75;15;13,50;5;7,75;3,25;5;10,75;3

0,50;26;42;20;10,25;2,75;29;18;2;5,5;2,25;9,75;4,75;1;8;16;29,25;4,25;1;6,75;6,50;2,25;3;1;0,0;

0;25;13,50;18,25

3) Estimation of a new project – Project5

- Input is the new project – Project5

- Determination of difficultness of UC of the Project5:

o Hard; Medium; Easy = 4;6;13

- Finding similar projects in database:

o 4+-2; 6+-2; 13+-2 – we find out project with difficultness of

UC +-2 according a new project. From these specified projects we

make average of their progress. And that is set as estimation of the

new project.

o In our example it is only Project3, so we do not need to do average.

o Estimated progress of the Project5 is:

Fig. 3. Progress of the consultation activity. It shows estimation of working hours of

current activity in particular segments of the project.

Fig. 4. Progress of the analysis activity. It shows estimation of working hours of cur-

rent activity in particular segments of the project.

Methodology for Estimating Working Time Effort of the Software Project 35

Fig. 5. Progress of the programming activity. It shows estimation of working hours of

current activity in particular segments of the project.

Fig. 6. Progress of the testing activity. It shows estimation of working hours of cur-

rent activity in particular segments of the project.

Fig. 7. Progress of the implementation activity. It shows estimation of working hours

of current activity in particular segments of the project.

These figures show progress of particular activities of the Project5. We can see esti-

mation of working hours of particular activity in particular segments of the Project5.

We can have a look for example on activities consultation and programming. It is

interesting to note that estimation of working hours of consultation activity is almost

stable for every segment. On the other hand estimation of working hours of program-

ming activity is divided to the two parts. At the beginning of the project are hour

spend on programming activity minimal, but at the end are major. It is essential be-

cause at the begging is not too much programming work.

36 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

4 Conclusion and Future Work

Our methodology was tested on the 20 past projects made by the company. Fifteen

projects were taken to the process of filling the database. Five projects were pro-

claimed as new projects. The result of our methodology – supposed project progress

(effort of each activity) was compared to the historical data of these projects. The

difference between the predicted progress and the actual data for the tested projects

was approximately 30%. The 30% inaccuracy seems not to be a good, but the previ-

ous ad-hoc human based estimation had inaccuracy 40%. We found out these data by

comparing their original estimations on the beginning of the projects with result of

these projects at their end. In 40 percent there was huge deflection of estimation and

the real execution. Therefore our methodology brings approximately 10% improve-

ment, which is a good result of the methodology. But we know that 30% is still huge

number of inaccuracy, so that there is place to improve our methodology in future.

In the future, we plan to improve our methodology by neuron nets as tools which

find out groups of similar projects. Otherwise, we plan to elaborate parameters de-

scribing the influence of the customer to every single project. Then we have to elabo-

rate if is better to use more parameters to describe particular use cases for an execu-

tion of the methodology. At least but not last we have to have on our mind that we

estimate project after first steps of analysis. Especially, after the use cases are fin-

ished. That’s important to mention, because we have to include that work to the esti-

mation of the project.

I any case the topic of estimation project’s effort is huge place for research and im-

provements. The methodology that works for one company does not have to work for

others. Our goal is to overcome that gap by trying to develop methods and that will be

used in more companies than one and the results will be more accurate.

5 References

1. Boehm, B., Abts, Ch., Brown, W., Chulani, S., Clark, B., Horowitz, E., Madachy, R.,

Reifer, D., Steece, B.: Software Cost Estimation with COCOMO II. Englewood Cliffs,

NJ:Prentice-Hall, 2000. ISBN 0-13-026692-2

2. Cohn, M.: Estimating With Use Case Points, Methods and Tools, Fall 2005 (Volume 13,

number 3), ISSN 1661-402X.

3. Ochodek, M., Nawrocki, J., and Kwarciak, K.: Simplifying effort estimation based on Use

Case Points. Information and Software Technology, 53(3):200–213, 2011.

4. Smith, J.: The Estimation of Effort Based on Use Cases, Rational Software white paper,

1999

5. Ruhe, M., Jeffery, R., Wieczorek, I.: Using web objects for estimating software develop-

ment effort for Web applications. In: Proceedings of the ninth international software met-

rics symposium, Sydney, Australia 3–5 September 2003, p 30

6. ISO/IEC 14143-1:1998 (1998) Functional size measurement.www.iso.org

7. Ribu, K.: Estimating Object-Oriented Software Projects with Use Cases. 2001. Master of

Science Thesis, 2001, University of Oslo, Department of Informatics.

8. Ochodek, M., Nawrocki, J.: Enhancing use-case-based effort estimation with transaction

types. Foun- dations of Computing and Decision Sciences, 35(2):91–106, 2010.

Methodology for Estimating Working Time Effort of the Software Project 37

9. Kemerer, Ch.: An empirical validation of software cost estimation models, Communica-

tions of the ACM, Volume 30, Issue 5, New York 1987.

10. Anda, B.: Comparing Effort Estimates Based on Use Case Points with Expert Estimates,

Empirical Assessment in Software Engineering (EASE), Staffordshire 2002.

11. Bente A, Hege D., Dag I. K. Sjoberg, and Magne Jorgensen. 2001. Estimating Software

Development Effort Based on Use Cases-Experiences from Industry. In Proceedings of the

4th International Conference on The Unified Modeling Language, Modeling Languages,

Concepts, and Tools (UML'01). Springer-Verlag, London, 2001.

12. F. J. Heemstra. Software cost estimation. In Information and Software Technology, Vol.

34, No 10, October 1992, Elsevier.

13. Boehm B.: Software Engineering Economics, Prentice Hall, 1981.

