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Abstract. Sensor observations are usually offered in relation to a spe-
cific purpose, e.g., for reporting fine dust emissions, following strict pro-
cedures, and spatio-temporal scales. Consequently, the huge amount of
data gathered by today’s public and private sensor networks is most often
not reused outside of its initial creation context. Fostering the reusability
of observations and derived applications calls for (i) spatial, temporal,
and thematic aggregation of measured values, and (ii) easy integration
mechanisms with external data sources. In this paper, we investigate
how work on sensor observation aggregation can be incorporated into a
Linked Data framework focusing on external linkage as well as prove-
nance information. We show that Linked Data adds new aspects to the
aggregation problem, e.g., whether external links from one of the original
observations can be preserved for the aggregate. The Stimulus-Sensor-
Observation (SSO) ontology design pattern is extended by classes and
relations necessary to model the aggregation of sensor observations.
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1 Introduction

Sensor observations are collected with a specific purpose in mind and, therefore,
measuring follows strict procedures and spatio-temporal scales [1]. While the
same device, e.g., a thermometer, can be used to measure soil and air tempera-
ture, both follow different procedures and their results cannot be combined. Sim-
ilar issues hold for fine dust (PM10)6 measurements, where data coming from
rural monitoring stations has to be distinguished from data produced by sensors
located in urban areas, particularly at major roads [2]. Consequently, the rich
observation data gathered by today’s public and private sensor networks is diffi-
cult to reuse aside of the initially intended context. We hope to boost the use of
observation results and the number of innovative observation-based applications
by providing mechanisms for (i) spatial, temporal, and thematic aggregation of
measured values, and (ii) easy integration mechanisms with other data sources.

6 The notation PM10 is used to describe fine dust particles of 10 micrometers or less.



Building up on our previous work on exposing standardized observation data
as Linked Data [3], this paper introduces the next steps towards opening up
sensor observations to new usage scenarios: the aggregation of observations and
exposing them as Linked Sensor Data. Having temporal aggregates (e.g., yearly
averaged fine dust measures), spatial aggregates (e.g., fine dust concentration in
the Münsterland region in Germany), thematically aggregated observations (e.g.,
blizzards, landslides, or forest fires), and their combinations available, makes
linking more attractive and opens environmental information to new user com-
munities. On the one hand, observations may be connected to particular features
of interest in the Linked Data cloud. On the other hand, hubs such as DBpedia
may directly refer to aggregated observations, e.g., an entry about the German
city of Münster and its surrounding areas by referring to recent and average
weather conditions, or air quality measures.

The main contributions of this paper are threefold. We (i) present a Linked
Data model for aggregated sensor data, (ii) discuss the effects of aggregation
on links from and to observations, and (iii) outline the role of provenance in
this setting. The implementation of the extensions discussed in this paper are
ongoing and the 52◦North semantics community7 plans to release an updated
prototype in fall 2011.

The remainder of this paper is structured as follows. In section 2.1, we intro-
duce the concept of aggregated observations and provide background information
about Linked Sensor Data and provenance information in observations. Section 3
discusses the implication of aggregation on Linked Sensor Data. Here, we present
the required extensions to our Linked Data model for observations. Additional
investigations address the effects of aggregation on external linking, and issues
on data provenance. In section 4, we set our work in relation to current efforts
to provide observations as Linked Data and to provide provenance information
in observation data. The paper concludes with a summary and an outline of the
remaining steps for implementing aggregated observations as Linked Data; see
section 5.

2 Background

In this section, we provide a brief overview on related work. At first, we intro-
duce definitions and related work about aggregation of observations. Second, we
introduce the concepts of Linked Data. Finally, we describe related work about
provenance of sensor data.

2.1 Aggregation of Observations

Aggregation of observations in space and time is essential to derive information
that is useful for a certain application purpose and to integrate observation data
with differing spatio-temporal resolutions. Yet, spatio-temporal aggregation of

7 Implementations and documentations can be found at http://52north.org.
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observations in the Linked Data context has not yet been addressed. However, in
other communities, e.g., the database community or in environmental sciences,
spatio-temporal aggregation has been a research topic for years and is sometimes
also referred to as scaling of observations and environmental models. Vega and
Lopez [4] give a comprehensive survey on spatio-temporal aggregation methods
for databases. Besides simple aggregation, complex statistical models might also
be applied as described for the domain of soil sciences by Bierkens et al. [5].
Spatio-temporal aggregation processes for observation data are not yet available
on the Web and, therefore, recent approaches demonstrate how to tackle this
challenge. A spatio-temporal aggregation service that can be used to provide
such aggregation functionality on the Sensor Web has been introduced in our
previous work [6].

In this paper, we largely follow the definition of aggregation8 by Jeong et. al.
[7]. During an aggregation process, the observations are grouped by a grouping
predicate, e.g., by a spatial predicate which is defined by the polygon representing
the area of a city, or by a temporal predicate defined by the time period of a
month. After grouping, an aggregation function is applied that computes a single
value, an aggregate, for the result values of an observation group. The aggregation
function might be linear (e.g., MEAN), but also non-linear (e.g., MEDIAN, or
areal fraction of spatial blocks where the concentration of a pollutant exceeds
a critical level) [8]. The grouping predicate does not necessarily have to be the
target spatial or temporal extent of an aggregated observation. Considering the
example of a block kriging method [9], for every aggregate of a spatial block, all
measurements are taken into account and not just the ones laying in the extent
of the block. Similarly, for temporal aggregation, moving windows might be used
to aggregate values to time periods that also include the values before and after
a certain period.

Besides spatio-temporal aggregation as introduced above, extracting high
level events from observations is also done by aggregating observations. Treating
the high level events as observations again enables an easy integration into ex-
isting infrastructures and tools. Considering the blizzard example as described
in [10], the event of a blizzard can also be modeled as an observation. The bliz-
zard is an aggregate of several observations indicating heavy snowfall, very low
temperatures, and high wind speed. This example demonstrates that the group-
ing predicate is not merely spatial or temporal, but also contains predicates on
the result values of the observations (e.g., heavy snowfall). We thus refer to this
kind of aggregation as thematic aggregation of observations. However, the obser-
vations are still aggregated spatially or temporally as the blizzard is observed at
a region in space and for a period in time.

8 Aggregation might be also referred to as complex entity with parts. In case of ob-
servations, this might be a collection of observations where the non-aggregated ob-
servations are parts of the aggregated observation collection. However, in our work
we consider aggregation as described in this paragraph and commonly used in envi-
ronmental sciences.



2.2 Linked Data

For aggregation of observations a mechanism that helps to retrace the original
observations and sensors from the aggregated observations is important. Linked
Data [11] provides a promising paradigm to provide such a mechanism, as the
original observations and the aggregates can be easily linked with clear seman-
tics. Linked Data proposes unique identifiers for data in the Web, links between
them, and relies on the Resource Description Framework (RDF) [12]. The most
common query language for RDF is SPARQL [13]. SPARQL has similar capabil-
ities as query languages for relational databases, but works by matching graph
patterns and is optimized for RDF triple stores, such as Sesame or Virtuoso.
Within the last years, Linked Data has become the most promising vision for
the Future Internet and has been widely adopted by academia and industry.

Several approaches for Linked Sensor Data in the Web are already available
[14,15,16]. They describe, how to identify sensor resources using URIs, how to
link them with clear semantics and how to expose the sensor data in the Web.
However, the issue of spatio-temporal aggregation, e.g. how aggregation affects
the links from and to observations, is not yet addressed. In our previous work
[3], we developed a standards-based approach to expose sensor metadata and
observations stored in a Sensor Observation Service (SOS) [17] to the Semantic
Web by following Linked Data principles and providing dereference-able HTTP
URIs for sensors, observed properties, features of interest, and observations, link
them (to external sources), and expose their semantics using the SSO ontology
[18]. In this work, we extend our previous work on Linked Sensor Data to support
aggregated observations.

2.3 Provenance in Observation Data

There are several approaches available for providing provenance information in
the Web. The W3C’s Provenance Incubator Group9, predecessor of the new
Provenance Working Group10, compiled a list of requirements to support prove-
nance in RDF, which includes for example that every observation should have an
URI identifier [19]. Based on these requirements, the Provenance Vocabulary has
been defined11 that can be used in the Web to provide provenance information for
Linked Data [20]. Similar to the Provenance Vocabulary, the Open Provenance
Model12 (OPM) defines nodes and edges to create provenance graphs that allow
to retrace the creation of an item back to its origin. The nodes can be artifacts,
processes and agents whereas the edges between nodes can be defined as the
causal relationships used, wasGeneratedBy, wasControlledBy, wasTriggeredBy,
and wasDerivedFrom. The graphs can be serialized in different data formats like
XML.

9 http://www.w3.org/2005/Incubator/prov/charter
10 http://www.w3.org/2011/01/prov-wg-charter
11 http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Provenance_

Vocabulary
12 http://openprovenance.org/
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Besides general approaches for provenance information in the Web, provid-
ing provenance information in Linked Sensor Data has recently gained attention.
Provenance of sensor data can be defined as information about the source of the
sensor data as well as information about transformations applied to the original
data [21]. Patni et al. [10] propose an approach for provenance in Linked Sensor
Data and define the capabilities of the sensor, the spatio-temporal parameters
of the observation, and the measurement value as relevant sensor provenance
information. Liu et al. [22] introduce a provenance aware virtual sensor system
based upon the OPM. Using the OPM for their virtual sensors enables the de-
scription of (i) fetching processes for sensor data streams; (ii) workflow execution
like data transformation of raw measurements; and (iii) user interaction with a
web application that allows to manage the virtual sensors. In another approach,
Park and Heidemann [21] defined their own provenance model that (for sensor
data) is more comprehensive than the OPM. Among other things, this alter-
native model allows the definition of access control for sources. Similar to the
approach of Liu and colleagues, the sensor data is annotated with additional
provenance metadata. Our approach will show how most of relevant provenance
information is already provided in our Linked Sensor Data and how the links
can be mapped to provenance relationships as defined in the OPM.

3 Aggregation of Observations in the Linked Data Cloud

In this section we introduce an approach to enable the aggregation of observa-
tions in the Linked Data cloud. First, we present an extension of the Stimulus-
Sensor-Observation (SSO) ontology design pattern [18]. Next, we illustrate how
the change of observation properties during aggregation affects the links from
and to observations in the cloud. Finally, we describe how provenance informa-
tion pointing back to the original observations can be provided.

3.1 Extension of the SSO Design Pattern

Following our previous work [3], we use an intermediate Linked Data model for
exposing sensor observations. It was derived from an ontology developed by the
W3C SSN-XG [23], namely the Stimulus-Sensor-Observation (SSO) ontology de-
sign pattern [18]. The SSO pattern forms a generic and adaptable starting point
for the development of sensor ontologies as well as Linked Data vocabularies.

Figure 1 shows the classes and relations from the pattern extended by the
Linked Data model for sensor data, and the new elements that have been added
in order to account for aggregation. In a nutshell, we reuse the following defini-
tions:

– FeatureOfInterest : entity that comprises observable properties.
– ObservedProperty : property that inheres in a feature of interest.
– ObservationCollection: set of observations, grouped by a distinct criteria.
– Observation: (social) construct that connects observed properties with sen-

sors, sensing results, and sampling times.



– SamplingTime: time instant or interval at which an observation was made.

– Result : symbol representing an observed value.

– Sensor : entity that performs observations.

– Procedure: description that specifies how observations have to be carried out

Fig. 1. Partial concept map with the classes and relations of the Linked Data model
for aggregated observations, extensions highlighted in grey. The prefix sso indicates
elements taken from the SSO pattern, DUL indicates elements of DOLCE Ultra Light,
ssn those of the W3C Semantic Sensor Network ontology (in pale blue), and ldm
elements of the Linked Sensor Data model.

In order to account for aggregated observations as Linked Data, we extend
the SSO pattern with the following elements:

– isAggregateOf : a relation that allows one observation to be aggregated out of
others; e.g., an observation of daily PM10 concentration being an aggregate
over hourly measures, or an observation of PM10 in Münster, Germany
being an aggregate over various Point of Interest (POI) measures.

– SensingDevice13: a sensor, which is a physical measuring device; e.g., a par-
ticular air sampler including a special filter PM10.

– AggregationProcess: a sensor, which implements a concrete aggregation pro-
cedure (see below), for example the process that calculates regional PM10
concentrations based on several PM10 concentration observations and ad-
ditional calibration parameters.

13 The concept of a SensingDevice is also captured as part of the W3C SSN-XG on-
tology. However, it is not part of the SSO pattern, which is applied in our work. We
decided to introduce the SensingDevice in particular opposed to the notion of the
AggregationProcess in order to stress the difference between a single physical mea-
surement instrument and the aggregation process that combines multiple sensory
inputs to a new observation.



– AggregationProcedure: the specific procedure used for aggregating several
observations into one; e.g., calculating the MEAN of 24 hourly observations
of PM10 concentration, or a Kriging interpolation method

The relations between the classes presented in Figure 1 act as links in our
model and define the multiple navigation paths and external references; see also
[3]. The above mentioned extensions allow for the generation of aggregated obser-
vations together with an explicit mentioning of the applied aggregation method,
such as MIN, MEAN, or MAX calculations over a temporal series. This also
allows for linking aggregated observations back to finer grained observations
(discussed in Section 3.3). This new model can be used as URI scheme and
query filter to enable the Restful Linked Data SOS to serve aggregated data as
well.

3.2 Effects on Links from and to Observations

Aggregating linked observations affects the links from and to the observations.
Questions like ’Are the links to a feature of interest still valid, if observations
taken at specific points are spatially aggregated to an area?’ or ’Which new links
can be established after aggregation of an observation?’ need to be answered.
First of all, the links which are defined in our observation ontology need to be
checked for consistency and changed, if necessary14. Table 1 shows examples
of objects (i.e., link targets) of the links from observations before and after
aggregation of point observations to an area in space and a period in time.

Independent of the concrete example, for each aggregation the target of the
ldm:hasSamplingTime link changes from an instant in time (original observa-
tions) to a period in time (aggregated observations), if the observations are ag-
gregated temporally. Also, the DUL:includesObject link will always point from
the aggregated observation to an instance of an AggregationProcess instead of
pointing to a specific SensingDevice from the original observations. In environ-
mental applications, the ObservedProperty is usually a continuous phenomenon,
which is sampled at certain locations in space or time, e.g., PM10 concentration.
If only spatial and/or temporal aggregations are applied, the ldm:aboutProperty
remains the same. In case of a thematic aggregation (see Section 2.1), the Ob-
servedProperty changes. An example is the blizzard as a combination of high
wind-speed, heavy snowfall, and low temperatures: the ObservedProperty of the
blizzard observation is the phenomenon of the blizzard, whereas the original
observations point to the phenomena wind-speed, snowfall and surface temper-
ature. Similar examples could be constructed for landslides or forest fires.

Though the ObservedProperty might be unchanged during an aggregation
process, the sso:isPropertyOf link changes, if the observations are aggregated in

14 Here, changing links means that triples of the original observations might be removed
and replaced by other triples in the aggregated observations for the same relationship.
For example, the hasSamplingTime relationship usually links to a point in time in
the original observations, but to a time period in the aggregated observations, if the
observations are aggregated temporally.



Link in Ontology Object Before Aggregation Object After Aggregation

ldm:hasSamplingTime TimeInstant
(08/05/2011; 23:15 CEST)

TimePeriod
(one day)

DUL:includesObject SensingDevice
(air sampler)

AggregationProcess
(block kriging of PM10 mea-
sures)

ldm:aboutProperty ObservedProperty
(PM10)

ObservedProperty
(PM10)

sso:isPropertyOf SamplingPoint
(N 51 57.466 E 007.37.433)

GeospatialRegion
(area of Münster)

sso:involves MeasurementValue
(110)

Aggregate derived from mul-
tiple Measurement Values
(70)

Table 1. Object of links from observations before and after an aggregation of point
measurements to an area in space and period in time; examples are given in parenthesis.

space. For example, aggregating the point measurements to an area causes the
FeatureOfInterest to change from a sampling point to an upper level feature like
the area of the city of Münster. Finally, the sso:involves link points to an aggre-
gate computed during the aggregation process. Originally, the sso:involves link
has pointed to the measurement values from the source observations. Besides
changing the original links, additional links might be added pointing to the ag-
gregated observation. As introduced in our model, the isAggregateOf link points
from an aggregated observation to the original observations. Furthermore, other
observation collections might contain the aggregated observation resulting in new
ldm:hasObservation links to the aggregated observation. Also, other higher level
features like cities, administrative areas, etc. might be linked to the aggregated
observations.

Formalizing the changes of links during aggregation is challenging and often
domain specific. However, we consider the identification and formalization of
such changes as crucial to provide a (semi-)automated aggregation of observa-
tions in the Linked Data cloud in future and are currently working on such a
formalization.

3.3 Provenance in Aggregated Linked Observation Data

In a Linked Data context where different communities might have interest in
interlinking their datasets, it is important to publish trust-able datasets. Prove-
nance information favors trustworthiness of data because users are able to ana-
lyze the historic changes and reproduce them [24]. Especially when aggregating
observations in Linked Data, it is important to be able to retrieve information
about the original observations as well as the aggregation process that has been
applied. Figure 2 shows a provenance graph that illustrates how provenance in-
formation about the aggregation process and original observations is provided



in our Linked Data model and how this can be mapped to the concepts of the
OPM and the Provenance Vocabulary. The reason to extend our model instead
of re-using an existing solution lies in the fact that most of the provenance infor-
mation needed for sensors and observations is already available, thus we avoid
redundancy.

Fig. 2. Provenance graph illustrating how provenance information about the aggre-
gation sensor and original observations is provided in our Linked Data model. The
corresponding entries of the OPM vocabulary (with prefix opmv) and of the Prove-
nance Vocabulary (with prefix prv) are shown in brackets. In case the concepts can
not directly mapped but the provenance information can be retrieved following other
links in the model, we use dotted lines.

First of all, the isAggregateOf allows to trace the aggregated observa-
tions back to the original observations. Hence it can be mapped to the
opmv:wasDerivedFrom relationship in the OPM. Though the isAggregateOf re-
lationship cannot be directly mapped to a relationship in the Provenance Vocab-
ulary, it provides basically the information that is provided by the prv:usedData
link from a prv:DataCreator to a prv:DataItem. Information about the aggre-
gation process that has created an aggregated observation is provided by the
DUL:includesObject link from the aggregated observation to the Aggregation-
Process. This link can be mapped to the opmv:wasGeneratedBy relationship in
the OPM and to the prv:createdBy relationship of the Provenance Vocabulary.
The ldm:hasSamplingTime attribute provides a link to the time at which the
value represents a physical phenomenon in the world. In case of observations
taken by a physical sensor this corresponds to the time when the observation
has been taken. However, if the observations gathered by physical sensors are
aggregated by an AggregationProcess, the SamplingTime is a time period repre-
senting the value for which the aggregate is valid. This is no longer the time when
the observation has been produced (time of aggregation). Thus, for aggregated
observations, an additional time link might be added providing this information.
Similarly, additional links might be provided for the opmv:wasControlledBy and
the opmv:used relationships of the OPM, which we did not yet include, as we
focus on retracing the observations and not on the users which are aggregating
or using the observations.



4 Discussion

The presented research is in line with the theoretical challenges in Sensor Web
research, which have been identified during an expert meeting in 2010 [25], ad-
dressing the challenges of interoperability and integration of sensor based system
and model based systems. Our extension of the SSO design pattern as described
in Section 3.1 allows to expose aggregated observations as Linked Sensor Data.
This goes beyond the approaches available for providing Linked Sensor Data
[14,15,16] which are focusing on providing non-aggregated observations. In our
approach, we follow an observation-centric viewpoint that an aggregated ob-
servations is still an observation about a quality in the world and thus can be
modeled as such. However, further discussion is needed whether the aggregation
process can still be modeled as a sensor or has to be distinguished from the
concept of sensors.

Our model also allows to retrace the aggregated observations back to the
original observations and to retrieve information about the aggregation process
applied, thus providing provenance information about the aggregated observa-
tions (see Section 3.3). Instead of providing additional metadata as in other
approaches described in Section 2.3, we show how the provenance information
can be directly retrieved by using the links established in our Linked Data model
for (aggregated) observations. For example, Patni et. al. [10] present an approach
for provenance in Linked Sensor Data where a separate provenance ontology has
been defined. In contrast, we aim to avoid duplication of, for example, informa-
tion about which sensor has created an observation at what time. This infor-
mation is already contained in the existing sensor and observation ontologies.
We rather show how the relationships of the observation ontologies providing
this information can be mapped to relationships of well-established provenance
models like the OPM or the Provenance Vocabulary. In order to enable the inte-
gration of observations in tools relying on this common provenance models, the
observations can either easily be translated to such models or additional triples
can be added in the observation set. However, in both approaches, this causes
redundant information which might cause problems dealing with large datasets
which is common in environmental sciences. Opposed to the general approach
for providing provenance information, e.g., about triples in the Linked Data
cloud [20], we do not yet consider provenance information about the instances
of objects and links according to our Linked Data model, e.g. Who has created
an observation triple in the Linked Sensor Data at which time. To provide such
information, we think that the general approaches for data provenance in the
Web can be utilized.

Both, sensor observations and aggregates provide estimations for physical
phenomena occurring in the world. As it is not possible to observe all relevant
aspects in reality, observations can only represent reality to a certain degree
and thus are uncertain about reality. In studies dealing and using observations,
it is crucial to account for the uncertainty. This is usually referred to as un-
certainty propagation [26]. Aggregation is one mean to adjust the uncertainty
in estimations. The more the data is aggregated, the less uncertainty is in the



data. At the moment, we do not yet explicitly account for uncertainty in the
presented work. Investigations how uncertainty can be propagated in observa-
tion processing workflows in the Web are currently ongoing within the European
research project UncertWeb15 [27]. We plan to adopt their approaches and add
the uncertainty to our Linked Data model.

While we are providing the model for exposing aggregated observations as
Linked Data and we discuss the effects on links from and to observations during
aggregation (Section 3.2), we have not yet addressed the technological aspect of
executing aggregation processes on Linked Sensor Data. However, we are cur-
rently working on extending our Spatio-Temporal Aggregation Service to also
deal with Linked Data serialized as RDF. This also leads to the question to what
degree observations should be aggregated before exposing them as Linked Data
in order to reduce the amount of triples or whether observations can/should be
provided at different aggregation levels as Linked Sensor Data. For example, pro-
viding high resolution sensor data as Linked Data might lead to a huge amount
of triples which might cause performance problems. Thus, it might be better to
aggregate the observations before and then expose them as Linked Data.

5 Conclusions and Outlook

In this paper, we identify the need for spatial, temporal, and thematic aggrega-
tions of sensor observations and their propagation as Linked Data for an easy
integration with other data sources. Aggregates of sensor observations (e.g., the
monthly average fine dust concentration in a city) can be much easier utilized
in applications. Facilitating the integration of such aggregated observations by
providing them as Linked Data enables their utilization among different ap-
plications. We achieve this by: (1) extending the SSO ontology design pattern
to accommodate aggregation information and including concepts such as Ag-
gregationProcedure or AggregationSensor ; (2) describing how links from point
observations change after aggregation (e.g., feature of interest may change from
a sampling point to a city area); (3) supporting the provenance information in
the model through enabling retraceability to original observations and introduce
relations such as isAggregationOf.

Our future work will follow these lines. Aside from our ongoing implemen-
tation work, we plan to exploit the combination of the proposed approach with
event detection mechanisms and stream processing. Therefore, we are planning
to combine the extension of the SSO ontology pattern presented in this paper
with our previous work on sensor plug & play [28]. In that work, we designed
a framework that enables the on-the-fly integration of sensors and Sensor Web
services by determining the semantic matching between sensor characteristics
and service requirements. This framework can also be put to use in on-stream
processing for the dynamic fusion of incoming data streams of multiple sensors
to produce aggregated observations. This is similar to approaches such as [29],

15 http://www.uncertweb.org
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but also allows the creation of new, combined phenomena. A basic example
is the combination of temperature and conductivity data streams measured by
underwater sensors to derive a stream of salinity observations.

Furthermore, we are planning to extend our approach developed with repre-
sentations for uncertainty as described in the Uncertainty Markup Language [30].
Our provenance information currently provides information about the aggrega-
tion procedure applied, its implementation, and about the original observations
that have been used to derive the aggregated observation. In future, it has to
be explored how to add additional provenance information about providers and
users of the (aggregated) observations.

Our approach of aggregation in Linked Data also allows to utilize the seman-
tics of the links and the objects. First of all, the changes to links as described
in Section 3.2 can be translated into rules to check whether adding or removing
links is allowed or not. In a next step, the process of adding and removing links
during aggregation of observations might be automatized. Furthermore, the se-
mantic reasoning can be used to decide, whether a certain aggregation procedure
can be applied to a certain set of observations. Considering, e.g., a set of water
level measurements along rivers in Germany, these should not be interpolated to
Germany and the semantics can be used to recommend appropriate or disallow
inappropriate aggregation processes. However, in order to realize such a system,
an ontology of aggregation processes is needed which we consider to be work
done in a longer time frame. We hope that our approach as presented in this
paper will contribute towards such a semantically-enabled aggregation system.
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