
 

 

 
Abstract 

This paper presents a novel approach to feature extraction for 
face recognition. This approach extends a previously 
developed method that incorporated the feature extraction 
techniques of GEFEML (Genetic and Evolutionary Feature 
Extraction – Machine Learning) and Darwinian Feature 
Extraction). The feature extractors evolved by GEFEML are 

superior to traditional feature extraction methods in terms of 
recognition accuracy as well as feature reduction. From the 
set of feature extractors created by GEFEML, Darwinian 
feature extractors are created based on the most consistent 
pixels processed by the set of feature extractors. Pixels 
selected during the DFE process are then clustered in an 
attempt to improve recognition accuracy.  Our new approach 
moves clusters towards large groups of selected pixels using 

techniques such as k-means clustering and Kohonen 
clustering. Our results show that DFE clustering (DFEC) has 
statistically better recognition accuracy than DFE without 
clustering. 

Introduction  

This paper presents an improvement on a novel approach 

to identifying areas of facial images for use by the LBP 

(Local Binary Pattern) feature extraction technique. The 

traditional LBP technique computes the frequency of 
different pixel patterns within an entire image.  While 

traditional LBP deterministically computes a binary pattern 

from every pixel of the image (Ahonen, Hadid and 

Pietikinen 2006), our approach identifies highly 

discriminatory sets of isolated pixels and can provide better 

discrimination while using only some of the image data. 

Our previous work on Genetic and Evolutionary Feature 
Extraction-Machine Learning (GEFEML) (Shelton et al. 

2012a) applied Genetic Algorithms (GAs) (Goldberg 1989; 

Davis 1991) to discover patches of the image for creating 

LBP feature vectors. Unlike traditional LBP, which divides 

an image into a grid of patches, we experimentally 

determined other sets of image patches we call feature 

extractors. A feature extractor consists of possibly 
overlapping rectangles of varying size and position. Our 

feature extractors have been shown to perform better than 

the traditional grid in the LBP algorithm for discriminating 

between faces. GEFEML also uses cross validation 

techniques (Mitchell 1997) to ensure that our feature 

extractors generalize well to unseen datasets. 

In (Shelton et al. 2012b), a technique was developed that 
identified pixel locations in feature extractors that seem the 

most discriminatory. The feature extractors are used to 

create a hyper feature extractor.  From the hyper feature 

extractor, a pixel frequency matrix is created.  A pixel 

frequency matrix is a two dimensional matrix containing the 

number of times each pixel was processed by a set of feature 

extractors.  The pixel frequency matrix is used to determine 

which pixels will be selected for clustering.  Pixel locations 

are chosen via tournament selection where the most 

consistently used pixels are chosen without replacement.   
After the pixel locations are selected, the locations are 

grouped for feature extraction.  This grouping process is 

performed by randomly placing centers and assigning each 

pixel location to its nearest center. Clustering the pixels 

identifies the regions of the image that will form the new 

patches for the new feature extractors.  This technique is 

referred to as Darwinian Feature Extraction (DFE). 

In this paper, we improve upon the DFE technique by 
performing clustering (Dubes and Jain 1988) on the 

randomly selected pixels. Our results show that clustering 

techniques improve the recognition accuracy over traditional 

DFE. We call this technique DFEC (Darwinian Feature 

Extraction using Clustering). 
The remainder of this paper is as follows: Section 2 

provides an overview of the LBP algorithm, Genetic and 

Evolutionary Computations (GECs), Genetic and 

Evolutionary Feature Extractors with Machine Learning 

(GEFEML), and Darwinian Feature Extraction (DFE).  

Section 3 gives a description of Darwinian-based Feature 

Extraction using Clustering (DFEC), Sections 4 describes our 

experiments and Section 5 provides our results. Our 

conclusions and future work are presented in Section 6.  

Background  

   This section provides an overview of necessary concepts 
related to this research. We explain the LBP algorithm; we 

also explain the GECs used to evolve feature extractors in 

the hyper feature extractor, specifically an Estimation of 

Distribution Algorithm (EDA), and we explain GEFEML.  

Finally, we describe the process of DFE. 
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Local Binary Patterns  

   The Local Binary Pattern (LBP) of a pixel is a binary 

number computed by comparing the difference between the 

intensity of a pixel, cp, and its surrounding t pixels.  Equation 
1 shows how to calculate the binary pattern, where nt is the 

intensity of the surrounding pixel and cp is the intensity of 

the center pixel. 
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Once the binary pattern for a pixel has been determined, it 

is then checked for uniformity.  We define uniform patterns 

as binary patters that have fewer than three intensity changes.  

An intensity change occurs if, when reading the pattern from 

left to right, a 0 precedes a 1 or a 1 precedes a 0.  For 

example, 00111111 contains one intensity change and 

01111000 contains two intensity changes.  When t = 7, there 

are exactly 58 unique uniform binary patterns.  A histogram 

of 59 elements is created to store the frequency of different 

binary patterns.  The first 58 elements correspond to unique 
uniform patterns while the last element corresponds to all 

non-unique patterns. 

The traditional way to construct feature vectors from local 

binary patterns is to first subdivide the image into subregions 

called patches.  Once the image is divided, a histogram is 

computed for each of the patches.  These histograms are then 

concatenated together to form a feature vector for the whole 

image. The feature vectors of two images can be compared 

using any convenient distance metric. 

Genetic and Evolutionary Computations 

   Genetic and evolutionary computations (GECs) are 

optimization algorithms that simulate the evolutionary 

processes found in nature (Eiben and Smith, 2003).  The 

GEC used in this study is an Estimation of Distribution 

algorithm (EDA).  This technique (Larranaga and Lozano 

2002) generates new generations of candidate solutions from 

the previous generation. In our research, a candidate solution 

is a feature extractor.  The EDA technique creates a 

population distribution function from the feature extractors 

in one generation.  The next generation of feature extractors 

is created by sampling this distribution. A certain number of 
the top-performing feature extractors, known as elites, are 

copied into the new generation. This process, as it applies in 

this study, is described in more detail in Section 2.4 below. 

GEFEML 

In GEFEML, a feature extractor is represented by a set of 

patches.  Each patch is comprised of four components.  The 

first component is the patch’s location (x, y).  The second 

component is the patch’s size (height x width).  The third 

component is a masking bit which is used to determine if the 

patch will contribute to the resulting biometric template and 

the fourth component is a fitness value representing the 

quality of that feature extractor.   
The fitness, fi, is calculated using the percentage of the 

image being processed and the number of incorrect matches 

that occur when evaluating a training dataset, D. To calculate 

the number of errors within the training dataset, D is 

subdivided into a probe and gallery set.  The probe set 

consists of one image per subject and the gallery set consists 

of two images per subject.  Feature extraction is then 

performed on each image resulting in a set of probe 

templates and gallery templates.  A simulation of the 

biometric system is then performed by comparing each 

probe template to each gallery template using a user defined 

distance metric.  The smallest distance between a probe and 
all gallery elements is considered a match.  An error occurs 

when the template of an individual in the probe set is 

incorrectly matched with the template of a different 

individual in the gallery set.  The fitness, shown in Equation 

3, is the number of errors multiplied by 10 plus the 

percentage of image being processed. 
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Cross-validation is used to prevent overfitting the training 

data.  This cross-validation process works by keeping track 
of the feature extractors that generalize well to a dataset of 

unseen subjects. While offspring in the evolutionary process 

are being applied to the training dataset, they are also applied 

to a mutually exclusive validation dataset which does not 

affect the fitness value. The offspring that perform best on 

the validation dataset are recorded even if they do not 

perform well on the training set. 

Darwinian-based Feature Extraction 

Creating Darwinian feature extractors is a two stage 
process:  (a) creating hyper feature extractors and (b) 

creating and sampling the pixel frequency matrix. 

 

Hyper Feature Extractors 

We can determine the most discriminatory pixels of an 

image based on which regions are extracted by feature 

extractors. Examples of feature extractors evolved by 

GEFEML are shown in Figure 1. We take a set of feature 

extractors from GEFEML and determine the frequency in 

which each pixel was processed. We do this by overlaying 

all feature extractors in the set to create what we refer to as a 
hyper feature extractor. The hyper feature extractor is used 

to create a pixel frequency matrix.  A pixel frequency matrix 

is a two dimensional matrix containing a count of the 

number of time a particular pixel location has been 

processed by each feature extractor from GEFEML. If a 



 

 

pixel’s location falls within a patch of a feature extractor, it 

is said to have been processed. If patches overlap, then the 

pixels in the overlap were considered to be processed for the 

number of times that overlap occurs.  Once the pixel 

frequency matrix is created, it is sampled to form the 

Darwinian feature extractor. 
 

Sampling the Pixel Frequency Matrix 

To create the Darwinian feature extractor, a user specified 

number of clusters and a total number of pixels to be selected 

for extraction is decided. In addition, a tournament selection 

pressure, which determines how many pixels are selected to 

compete for extraction, is also chosen. The pixels that will be 

chosen to be extracted are based on a k-tournament selection 

technique. The user specified number of pixels are chosen to 

compete, and the pixel that has been processed the most gets 

chosen to be extracted. Once a pixel has been selected via 

tournament selection, it will not be selected again as a 
winner.  

In (Shelton et al. 2012b), after all pixels have been 

selected using tournament selection, centroid positions are 

randomly assigned and the closest pixels to each centroid are 

assigned to it. This process is referred to as random 

clustering.  After clusters have been created, the pixels 

within each cluster will be processed using the LBP feature 

extraction technique and used to form a histogram. After all 

selected pixels have been processed; histograms are 

concatenated to form a feature vector. 

 
 

 
Figure 1: Set of feature extractors. 

 

Techniques for Grouping Pixels to Form Better 

Feature Extractors 

DFEC (Darwinian Feature Extraction – Clustering) is the 

process of grouping the pixels selected by DFE.  The first 

step in DFEC is to form the pixel frequency matrix from the 
results of GEFEML.  A hyper feature extractor is then created 

from the pixel frequency matrix.  A user specified number of 

centers are randomly placed in the hyper feature extractor 

and each pixel is assigned to its nearest center.  The pixels of 

the hyper feature extractor are then clustered using one, or a 

combination, of the following clustering methods. 

K-Means Clustering 

The process of k-means clustering (Kanungo et al. 2002) 

the pixels of a Darwinian feature extractor is as follows.  

Each pixel is assigned to its nearest center.   Once this 

enrollment process is complete, the average location for each 

enrolled pixel (for a single center) is computed.  This 

average location becomes the new location for that specific 

center.  This process is repeated for each of the user specified 

centers. Once each of the centers have been relocated, the 

distance between their old location and their new location is 

computed.  Once the centers no longer move or a maximum 

of 1,000 iterations have completed, k-means clustering is 
considered completed. 

Kohonen Clustering 

The process of clustering the pixels of a Darwinian feature 

extractor using the Kohonen method (Kohonen 1990) is as 

follows.  Given a user specified learning rate, the Kohonen 

clustering method iterates though each of the pixels in the 

Darwinian feature extractor.  At each pixel, the nearest 

center is pulled towards that pixel.  The distance which the 

center is moved is based on the user specified learning rate.  
With a learning rate of 0.25, the magnitude which the center 

is moved would be 25% of the distance between the current 

pixel and the nearest center. 

After iterating through all of the pixels, the distance 

between each centers starting position and ending position is 

calculated.  Kohonen clustering is stopped once the centers 

no longer move or if one thousand iterations have been 

completed.  

Experiments  

To build the hyper feature extractor, we use the 30 best 

feature extractors created from GEFEML in previous 
experiments.  Once the hyper feature extractor is created, we 

use an EDA to evolve the feature extractors based on 

research (Shelton et al. 2012a) suggesting that EDA is a 

superior GEC to use. Once we have all of the feature 

extractors, we built a hyper feature extractor by counting the 

number of times pixels on an image were processed by each 

feature extractor. A feature extractor could create up to 24 

patches, and we took overlap into account, meaning one 

feature extractor could process a pixel up to 24 times. We 

then build a pixel frequency matrix from the hyper feature 

extractor and sample the pixel frequency matrix to create the 
new feature extractor.   

To evaluate these feature extractors, we apply them to 309 

subjects, 3 images per subject, from the Facial Recognition 

Grand Challenge (FRGC) dataset (Phillips et al. 2005).  To 

test how well each feature extractor generalizes, we divide 



 

 

the FRGC dataset into three subsets. The first subset, 

FRGC-100trn, is used as our training set and consists of 100 

subjects.  The second subset, FRGC-109, consists of 109 

subjects and is used as our validation set. The remaining 100 

subjects are used to form our test set, FRGC-100tst. The 

recognition accuracy of each feature extractor was 
determined using the same method to detect errors in Section 

2.3, one-to-many matching with cross validation.   

For this experiment, we use 12 clusters, 90% of the total 

number of pixels processed in the pixel frequency matrix, 

and used a 10% selection pressure, meaning 10% of 504 

pixels were selected for tournament selection. We use a 

constant of 504 due to this being the average number of 

pixels in a patch within the set of feature extractors. We use 

this set-up because this was the best performing setup in 

(Shelton et al 2012b). After each of the feature extractors 

have been created, we perform four different clustering 

methods.  The first method, DFEkm, uses k-means clustering 
only.  The second method, DFEk, uses Kohonen clustering 

only.  The third method, DFEkm+k, first uses K-means 

clustering.  The result of K-means clustering is then 

clustered using Kohonen clustering.  The last method, 

DFEk+km, uses Kohonen clustering first.  K-means clustering 

is then used to cluster the results of Kohonen clustering.  

Each of these DFEc methods are then applied to FRGC-100tst 

to evaluate their performance.   

Results  

  The results of DFEc are not deterministic. Each method was 
tested 30 times; each test utilized 100 different images from 

FRGC-100tst as described in section 4. Table 1 show our 

results, including comparison with the best DFE Random 

Cluster result (Shelton et al., 2012b).  

 Column 1 shows the method used. 

 The best DFE Random Cluster used 12 

clusters, sampling 0.9 of the pixels, with 0.1 

selection pressure (Shelton et al., 2012b).  

 DFEkm uses k-means only 

 DFEk uses Kohonen only 

 DFEkm+k uses k-means first, then uses these 

clusters as the starting point for Kohonen 
 DFEk+km uses Kohonen first, then uses these 

clusters as the starting point for k-means 

 Column 2 shows the mean accuracy: the average of 

the 30 trials of measured accuracies. 

 Column 3 shows the standard deviation of the 30 

accuracies. 

  The results of the DFEc instances, when compared to DFE 

using random clustering, vary in terms of performance. 

DFEkm and DFEk+km have average accuracies that are similar 

to random clustering.  Both DFEk and DFEkm+k perform, on 

average, worse than random clustering. Based on these 
results, DFEkm and DFEk+km seem to be equivalent to DFE.  

To test this, we performed statistical analysis using a t-test 

with a 95% confidence interval. 

A 2-sample t-test (assuming similar standard deviations) 

shows that the results of DFEk+km is statistically significant 

to each of the others (p < 0.05), including the 

best-performing DFE random-clustering method. DFEkm is 

not distinguishable from the random clustering.  DFEk and 

DFEkm+k are significantly worse than random clustering. 
Given these results, it appears that using Kohonen 

clustering either as the only technique or using it last in a 

hybrid clustering technique results in poor performance. 

However, the hybrid clustering technique proved to be the 

best, meaning that the order of clustering techniques is 

relevant. 

  

Conclusion and Future Work  

As you can see from the results, DFEk+km provided a 

higher average accuracy than any of the other methods 

including DFE without clustering. These results are 

statistically significant meaning DFEk+km is a better feature 

extraction method. 

None of the other methods were able to achieve an average 
accuracy greater than or equal to DFE.  This gives an 

indication that the way pixels are grouped together in the 

feature extraction process significantly affects the accuracy 

of the biometric system.  

The result of Kohonen clustering from a random starting 

point is fairly stable. Although it theoretically can converge 

to different solutions from different starting points, as a 

practical matter different random starting points often 

converge to the same answer. Thus there is no reason to 

believe that starting the Kohonen algorithm from the output 

of k-means would give a better result than the usual random 

start. Our data bears this out: it seems there was no 
difference between DFEk and DFEkm+k. 

The results also show that the two methods (DFEkm & 

DFEk+km) where k-means computes the final clusters have a) 

the lowest standard deviations and b) the best results. This is 

consistent with k-means being fairly stable---usually finding 

same or similar clusters in the same data. It also seems to 

show that picking a good set of starting clusters, in this case 

by using Kohonen first, does indeed improve average 

K-means performance. 

Our future work will include creating a hybrid of genetic 

and k-means clustering.  Future work will also consist of 
using a lower percentage of top pixels from the hyper feature 

TABLE 1: RESULTS OF DFEC 

 

Method Mean Accuracy 

n=30 trials 

Standard Deviation 

<12,0.9,0.1>  99.34% 0.8840866 

DFEkm 
DFEk 
DFEkm+k 

DFEk+km 

99.43% 0.6260623 

92.23% 3.1588227 

92.23% 3.1588227 

99.77% 0.4301831 

 



 

 

extractor to see how much the computational complexity can 

be reduced before the recognition accuracy is affected. 
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