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Abstract 

A review of some popular fuzzy cluster validity indices is 

given. An index that is based on the generalization of 

silhouettes to fuzzy partitions is compared with the 

reviewed indices in conjunction with fuzzy c-means 

clustering. 

 

Introduction 

Prevalent in many applications, (Jain, Murty, & Flynn 

1999), the problem of clustering involves design decisions 

about representation (i.e. set of features), similarity 

measure, criterion and mechanism of a clustering 

algorithm. The clustering literature is very rich in various 

schemes that address these ingredients (Jain, Murty, & 

Flynn 1999; Xu & Wunsch 2005). However, the problem 

itself is centered on the intuitive and easily stated goal of 

partitioning a set of objects into groups such that objects 

within one group are similar to each other and dissimilar 

to objects in other groups, which has become a common 

description of clustering (Jain, Murty, & Flynn 1999; 

Berkhin 2002; Kleinberg 2002; Xu & Wunsch 2005). As 

opposed to classification, only few of the existing 

clustering algorithms are widely used. Indeed, clustering is 

less appreciated among practitioners of data analysis due 

to the lack of class labels. Labels are used in the evaluation 

of loss functions, formal assessments of the goal. This has 

encouraged researchers to treat clustering in a semi-

supervised manner by incorporating as much information 

as available such as in must-link and cannot-link 

constraints (Blienko, Basu, & Mooney 2004) in order to 

achieve satisfactory results. Usually, there is an end-goal 

to clustering of a dataset or an end-use of the final 

clustering. For example, clustering of documents by topic, 

clustering of images by common content and clustering of 

proteins by function have as respective end goal a better 

understanding of a corpus of documents, or of one or more 

proteins. This suggests that a better treatment for clustering 

should be in the context of end-use rather than in an 

application-independent mathematical manner (Guyon, 

von Luxburg, & Williamson 2009). Accordingly, the 

unknown desired clustering is the only ground truth 

assumed about the problem. The properties of the 

similarity measure sufficient to cluster well, that is, to 

achieve low error with respect to the ground-truth 

clustering, are given in (Balcan, Blum, & Vempala 2008). 

The features, the measure and the algorithm all should be 

chosen in the context of the end-use. For example, it would 

be unwise to employ a measure that pairs two images 

because they show the same person while a clustering by 

facial expression is desired. This applies to the set of 

features as well; the features should accommodate for the 

different possible expressions. In the absence of end-use, 

clustering becomes an exploratory approach to data 

analysis, looking for the right ingredients to get the best 

structure. 

 The c-means, alternatively k-means (MacQueen 1967), is 

one popular clustering algorithm that partitions a set of data 

points   {           } into disjoint subsets   
{          }. The exclusive cluster assignment 

characterizes hard clustering and hence it is also referred 

by hard c-means (HCM). Fuzzy c-means (FCM) family of 

algorithms imposes relaxed constraints on cluster 

assignment by allowing nonexclusive but partial 

memberships, thereby, modeling cluster overlapping. The 

first FCM algorithm was proposed in (Dunn 1973). Its 

convergence was later improved in (Bezdek 1981). Both 

schemes, crisp and fuzzy, optimize a variance-criterion 

with respect to cluster center and point membership for the 

specified cluster number. The final clustering is given by a 

membership matrix,    [   ];     is the membership of    

in   . When     assumes values in {   } or [   ], the 

matrix characterizes crisp or  fuzzy partitions respectively. 

 It is common to define the pairwise similarities-

dissimilarities in terms of distances which, in turn, give a 

structure i.e. the dataset underlying structure. The 

clustering algorithm, by processing the pairwise distances 

implicitly or explicitly, produces a structure, a partition. Its 

success is determined by the extent to which the produced 

partition aligns with the underlying structure, or more 

precisely, agrees with the pairwise distances. Supplying 

inconsistent values for  , forces the algorithm either to 

separate similar points or to group dissimilar points in the 

same cluster. Hence the issue of cluster number is crucial 

and largely affects clustering quality. Even by choosing 

features and a measure consistent with the end-use, the 

inherent number of clusters might be unknown. For 

example, in a topic-driven clustering application, terms that 

are significant to each possible topic or common theme 

might be universally known, but the number of topics 



represented by documents in a particular dataset is 

unknown. Even if the cluster number is guessed correctly, 

there is the unfortunate possibility of obtaining a 

suboptimal clustering due to local optimum convergence. 

Besides, clustering of different types, crisp versus fuzzy, 

can be obtained on the same dataset.  For “this and that 

kind” of reasons, cluster analysis is incomplete without the 

assessment of clustering quality. The issues of cluster 

number and quality are the main concerns of cluster 

validity. 

 This study reviews some fuzzy cluster validity indices 

then presents a generalization of silhouettes to fuzzy 

partitions. The performance of all reviewed indices is 

compared, with discussion, using two different datasets. 

Fuzzy c-Means Algorithm 

FCM, described in (Bezdek, Ehrlich, & Full 1984), 

incorporates fuzzy membership values in its variance-

based criterion as 
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where    is the center of cluster   . The clustering 

mechanism is carried as a Picard iterative process that 

alternates the application of 
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The update rules are derived from the necessary conditions 

of (1) constrained by 
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FCM output ranges from crisp partitions, as produced by 

HCM, to the fuzziest possible partition for the specified 

number of clusters i.e.         [   ]. Informally 

speaking, there are two sources for fuzziness in a produced 

partition. First is the amount of overlapping in the 

underlying structure; equation (3) assigns each point 

almost the same membership to overlapping clusters whose 

centers are within small proximity. Second is the exponent; 

the ratios in (3) become compressed around the value 1 

when   is too high, thereby, weakening the role of 

‘geometry’ as a key factor in shaping membership values.  

Cluster Validity 

Modeling the pairwise similarities-dissimilarities by a 

distance measure restates the goal of clustering as the 

search for optimally compact and separated clusters. One 

cluster is compact only if its member points are within 

small proximity from each other. Two clusters are well 

separated only if their member points are distant from each 

other. Accordingly, the variance-based criterion found in c-

means can be thought of as a measure of compactness, 

which was shown to be equivalent to a measure of 

separation for the same number of clusters (Zhao & 

Karypis 2001). Hence, c-means is capable of producing 

partitions that are optimally compact and well separated, 

for the specified number of clusters. Note that better 

clustering might still be achieved by specifying different 

cluster numbers. Since clustering algorithms are supposed 

to optimize their output in compactness and separation, 

both should be assessed to find clustering quality. 

One might need to distinguish between the desired 

structure, the underlying structure, and candidate 

structures produced by clustering algorithms. The desired 

structure is the ground truth clustering, mentioned earlier. 

What is known about this clustering might be vague or 

incomplete but it should drive the problem design. The 

underlying structure is the one shaped by the pairwise 

distances which suggests unique clustering (Fig. 1a), 

multiple clusterings (Fig. 1b) or no clustering due to the 

lack of any structure (Fig. 1c). A clustering algorithm 

produces different partitions for different configurations i.e. 

distance measure, parameters, etc. The best case scenario is 

when the pairwise distances structure the points into the 

desired grouping and an algorithm successfully produces a 

clustering that aligns with the underlying structure. 

Validating a produced clustering with respect to the 

underlying structure is possible by means of cluster validity 

indices. 

Partition Coefficient 

The partition coefficient, PC, is defined as the Frobenius 

norm of the membership matrix, divided by the number of 

points, as in 
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The coefficient is bounded by     and 1, if applied to FCM 

output. Its use as a measure of partition fuzziness was first 

investigated by Bezdek in his Ph.D. dissertation (Bezdek 



1973). Although it can be used as a validity index with 

some success, it has been shown to be irrelevant to the 

problem of cluster validity (Trauwaert 1988). Clearly, the 

coefficient does not incorporate the pairwise distances that 

are necessary to the assessment of compactness and 

separation. Therefore, it is not reliable for the validation of 

any given partition, for example, one produced by random 

cluster assignment. Also, the coefficient assumes its upper 

value on any crisp partition, regardless of its clustering 

quality. Nevertheless, the coefficient does what it knows 

best, measuring fuzziness. 

 

 
Figure 1. The structure of the dataset suggests (a) c = 2, (b) c = 2, 

4 and 6, (c) c = 1; no structure. 

Xie-Beni Index 

An index that really measures compactness and separation 

was proposed by Xie and Beni, XB index (Xie & Beni 

1991). XB takes the form of a ratio; the minimum center-

to-center distance appears in its denominator and    , as 

exactly as in FCM, is in its numerator but divided by  . 

Hence, XB is a measure of compactness divided by a 

measure of separation, given by 
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In (7),    {            } denotes the set of cluster 

centers. The authors define the variation of each cluster as 

the sum of point fuzzy deviations, squared. With respect to 

a cluster, a point deviation is its distance from the cluster 

center weighted by its membership. The total variation is 

the sum of all cluster variations that gives the compactness 

of the partition, when divided by  . This description 

explains why memberships and distances in (7) are 

squared. However, they suggest substituting    
  in place of 

   
  where   is the same as the value used in FCM, justified 

by making the index ‘compatible’ with FCM. The final 

value of (1) can be directly plugged in (7), provided it is 

still available, or else recomputed. It is unclear how being 

compatible with FCM or raising membership values to 

powers different than 2 relates to the assessment of 

compactness and separation, or to the ‘geometry’ 

underlying the data. 

Fuzzy Hypervolume 

The development of the index started as part of work that 

formulates clustering as a problem of maximum likelihood 

estimation (MLE) of a mixture of multivariate densities 

(Wolfe 1970); the dataset is assumed to be drawn from 

such a mixture. Bezdek and Dunn, in (Bezdek & Dunn 

1975), give the MLE algorithm and FCM as well. The 

MLE algorithm solves for a composite parameter vector of 

densities’ means, covariance matrices and the a priori 

probabilities. They describe the use of FCM to approximate 

the ML parameters. Substituting FCM-generated 

membership values for posterior probabilities computes the 

remaining ML parameters. A justification is given by 

comparing the behavior of two update rules in both 

algorithms. They produce small values when evaluated on 

data points that are distant from some density-cluster center 

relative to their distance from nearest center. However, 

they point out the fact that both algorithms compute 

different centers and distances.  

Gath and Geva in (Gath & Geva 1989), first, give a similar 

description of FCM, and fuzzy MLE that is derived from 

FCM, as opposed to the separate treatment given by 

Bezdek and Dunn. Then, they suggest a 2-stage clustering 

scheme, FCM followed by MLE, justified by the unstable 

behavior of MLE as a standalone clustering scheme. As 

part of their work, some validity measures were proposed; 

among them is the fuzzy hypervolume measure (FHV). FHV 

is defined in terms of the covariance matrix determinants. 

The covariance matrix of cluster    can be constructed 

using 
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The hypervolume is then computed by 
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The determinants are functions of cluster spreads and point 

memberships. A clustering that is evaluated the smallest is 

assumed to be optimal. However, the following 

observations can be made: 

 According to the authors, the index is sensitive to 
substantial overlapping in the dataset. 



 It is unclear how the measure accounts for compactness 
and separation. 

 Assuming that an MLE mixture has been successfully 
found, is it the best clustering in compactness and 
separation? 

 Is the measure applicable to crisp partitions? 

 The use of FCM as MLE requires setting m=2; how 
does the measure performs on partitions obtained using 
m different than 2? 

Pakhira-Bandyopadhyay-Maulik Index 

Pakhira et el. proposed an index, referred here as PBM, 

that targets both fuzzy and crisp partitions (Pakhira, 

Bandyopadhyay, & Maulik 2004). Its fuzzy version is 

defined as 
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In (10),   is the center of the whole dataset. The index can 

be factorized into a measure of compactness 
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a measure of separation 

            {                 }  (12) 

and an artificial factor, irrelevant to compactness and 

separation, 
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The whole term in (10) is raised to power two that is also 

irrelevant to the assessment of clustering quality. Larger 

values of the index are assumed to indicate better 

clustering. It can be noticed though that the quantity in 

(12) does not necessarily capture the separation between 

all pairs of clusters; an authentic separation measure 

should account for the poor separation found in partitions 

into large number of clusters.  . 

Average Silhouette Index 

Rousseeuw proposed an index for the validation of crisp 

partitions (Rousseeuw 1987). It is based on the notion of 

silhouette. A silhouette, constructed for each data point, 

measures the clustering quality for that point. The average 

over members of the whole dataset or an individual cluster 

is a measure of the set clustering quality. To illustrate 

silhouette construction, consider for the data point    , the 

cluster to which    has been assigned,  , and let   be any 

cluster different than  . The silhouette          is 

defined in terms of a measure of compactness    and a 

measure of separation    . The average distance of    to 

points in   computes     while    is the minimum average 

distance from    to all other clusters. Let   denotes the 

cluster corresponding to    (see Fig. 2). 

 
Figure 2. With respect to   ,    is the average length of lines 

within   and    is the average length of lines between   and  .  

Then the silhouette of    is defined by 
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Clearly, (14) evaluates to values in [    ]. The average 

silhouette over a cluster    or the whole dataset   are given 

respectively by 
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Note that the membership values in (15) are crisp and    
denotes the     cluster, as a set. 

From the data point perspective, the measure assumes 

positive values if the separation distance is larger than the 

compactness distance and negative values if vice versa. A 

value near zero indicates that the point is at clusters 

boundary region, of course in the context of clustering on 

hands. At the coarser cluster level, the average silhouette 

indicates weak structure if near zero, strong if near +1 and 

misclustering if near -1. Since a clustering algorithm 

cannot do any better than the underlying structure, an 

average close to +1 is attainable only in the presence of a 

strong structure. 

 The following appealing properties recommend the 

silhouette index: 



 As opposed to other indices, it validates a given 
clustering at point level, providing thus the finest 
granularity. 

 It is algorithm-independent. 

 It takes as input only the pairwise similarities-
dissimilarities and the membership matrix. 

 As explained in the original work of Rousseeuw, it can 
be used to ‘visualize’ the clustering quality of a given 
partition. 

 Its assessment of compactness and separation conforms 
literally to the stated goal of clustering; a relatively 
small    compared to    means that    has been 
successfully grouped with its similar points in the same 
cluster in a way that separates from its dissimilar points. 

Extended Average Silhouette Index 

The above construction of silhouettes is not directly 

applicable to fuzzy partitions since it requires crisp cluster 

boundaries, necessary to the computation of cluster 

average distances. Nevertheless, a fuzzy partition might be 

validated by silhouettes after being defuzzified, for 

example, by setting the maximum membership degree of 

each point to one and nullifying the rest. However, this 

discards cluster overlapping, defeating the reason of using 

FCM not HCM. An extension that integrates fuzzy values 

with silhouettes, computed from the defuzzified partition, 

into an average silhouette-based index was proposed in 

(Campello & Hruschka 2006). They suggest computing a 

weighted mean in which each silhouette is weighted by the 

difference in the two highest fuzzy membership values of 

the associated point. More precisely, if      and      
denote cluster indices with the two highest membership 

values associated with    then the index is given by 
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Therefore, points around cluster centers become significant 

to the computation of the index since they have higher 

weights, as opposed to the insignificant points found in 

overlapping regions. Clearly, such an assessment is not 

thorough since it tends to ignore the clustering of points in 

overlapping regions. 

Generalized Intra-Inter Silhouette Index 

A generalization of silhouettes to fuzzy partitions is given 

in (Rawashdeh & Ralescu), based on the following central 

observations: 

 A partition of a set of points into any number of clusters 
is essentially a clustering of the associated pairwise 
distances into intra-distances (within-cluster) and inter-
distances (between-cluster). 

 A strong structure, a good clustering, has small intra-
distances and large inter-distances i.e. similar points are 
grouped together and dissimilar points are separated. 

 In the context of a crisp partition, each distance is either 
intra-distance or inter-distance. This is modeled by intra-
inter scores associated to a distance that assume the 
values 0 and 1, indicating distance membership. 

 In the context of a fuzzy partition, two points belong to 
each cluster simultaneously and separately with some 
degree, intuitively suggesting the assignment of fuzzy 
intra-inter scores to the pairwise distances,  

The original construction of silhouettes, which already 

incorporates the pairwise distances, is reformulated to 

employ intra-inter scores. The following is applicable to 

both crisp and fuzzy partitions, and it carries similar 

computation as in the original construction, provided that 

the partition is crisp. As input, the construction requires the 

pairwise distances        and the membership matrix       . 

 

Step 1. Given a partition into   clusters, each distance    , 

associated with    and    , is intra-distance with respect to 

either cluster and inter-distance with respect to any of the 

2-combinations of   clusters. The following constructs all 

of the         intra-inter matrices: 
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Step 2. With respect to each point    , weighted means 

over the associated distances are computed, using intra-

inter scores as weights; from which the compactness 

distance    and the separation distances    are selected. 

That is 
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Step 3. The silhouette of each point is found using (14). 

 



Similar to the original average index, the average intra-

inter silhouette, gSil, over members of the whole dataset is 

an assessment of its clustering quality. For each fuzzy 

cluster, a weighted mean using point membership values as 

weights, is a measure of its clustering quality. 

Experiments and Discussion 

For further evaluation of the validity indices presented 

above, a few concrete examples are considered as follows: 

Example 1. 

Clustering algorithms rely on pairwise distances to form 

their output and this should be taken into consideration 

when testing any proposed validity index. Consider the 

dataset given in Fig. 3. It is tempting to claim that      is 

the optimal number of clusters, however, this requires a 

similarity measure better to the task, than the Euclidean 

distance. 

 
Figure 3. A dataset sampled from two Gaussians. The Euclidean 

distance is, somehow, inconsistent with the apparent clustering 

into 2 clusters. 

Although HCM, using the Euclidean distance, successfully 

detects the two clusters, XB, PBM, Sil, eSil and gSil all 

score     better than     due to better compactness 

(Fig. 4). Only FHV gives     a better score, since it is 

based on fitting the data with a mixture of Gaussians. A 

single bi-Gaussian fits the overlapping clusters in Fig. 4b 

better than two Gaussians, assuming the crisp probability-

membership values produced by HCM. 

 
Figure 4. HCM clustering of the dataset from Fig. 3 to (a) 2 

clusters and (b) 3 clusters. 

Example 2. 

Different FCM partitions, using        ,  were obtained 

on a dataset shown in Fig. 5. 

Fig. 6 shows the performance of PC, Sil, eSil and gSil. 

PBM, XB and FHV are shown in Figs. 7, 8 and 9 

respectively. 

The extended index, eSil, scores the partition with     

clusters (Fig. 5a) higher than the one with     clusters 

(Fig. 5b). A different ranking is suggested by the original 

index, Sil, and the generalized index, gSil. Both Sil and eSil 

incorporate the same silhouettes that are computed from the 

defuzzified membership matrix; clearly, the disagreement 

is caused by the weights in eSil. The points that occupy the 

undetected middle cluster (Fig. 5a) are not assigned high 

memberships to any of the three detected clusters; hence, 

they have low weights. The index eSil just ignores these 

points that are of insignificant weights and of 

approximately zero silhouettes. For the same reason, eSil 

always appears above the curve of Sil. The generalized 

index gSil can be naturally applied to both crisp and fuzzy 

partitions. It accounts for changes in the parameter   and 

does not require any defuzzification of partitions. It scores 

highest the partition with clusters     (Fig. 5c). 

The PBM index evaluates the clustering in Fig. 5d as the 

best. The separation measure, maximum center-to-center 

distance, does not decrease with   even after reaching the 

cluster number that is sufficient for a good clustering of the 

dataset. In addition, the compactness measure decreases 

monotonically with  , provided a reasonable clustering 

algorithm is used. Therefore, PBM has a nondecreasing 

behavior with   that can be easily exposed using small toy 

datasets. Moreover, it is not recommended to use any factor 

that is irrelevant to the assessment of compactness and 

separation, as part of a validity index. 

The XB index also fails in its ranking; it scores     better 

than    . The separation measure, minimum center-to-

center distance, does not account for the spread of detected 

clusters: in Fig. 5a, the centers are well separated but there 

is overlapping among the clusters in the middle region. The 

separation measure is not thorough in its assessment as 

opposed to silhouette-based indices that make assessments 

at point level. Therefore, XB is not reliable to detect good 

cluster numbers, and to compare between any two 

partitions, in general; it is in disagreement with the 

silhouette-based indices in its scoring of the partitions with 

    and    . 

 



 
Figure 5. Showing FCM clustering,     and           

obtained on a dataset of 1000 points, sampled from 5 bi-

Gaussians, 200 each.  

 

 
Figure 6. Silhouette-based indices and PC vs.  , of FCM applied 

to the dataset in Fig. 5. 

 
Figure 7. PBM vs.  , of FCM applied to the dataset in Fig. 5. 

 
Figure 8. XB vs.  , of FCM applied to the dataset in Fig. 5. 

 Distance-based similarities and dissimilarities are 

inferred from how distance values compare with each 

other, not from distance magnitudes. Hence, the strength of 

the underlying structure is determined by distance values 

relative to each other. Since the quotient in (14) is just a 

difference in compactness and separation relative to their 

maximum, an average over the whole dataset measures the 

strength of a given clustering. Values close to +1, obtained 

from the average silhouette index, indicate good clustering 

and a strong underlying structure as well. It is worth noting 

that, silhouette-based indices are also scale-invariant that 

is, scaling the dataset by some factor, multiplying by 100 



for example, does not affect their values since the structure 

is still the same. This is not the case for FHV and PBM. 

Hence, silhouette-based indices are easier to interpret. 

 
Figure 9. FHV vs.  , of FCM applied to the dataset in Fig. 5. 

Conclusion 

A satisfactory or useful clustering requires careful 

selection of the features and the measure which, combined 

together, define the pairwise similarities-dissimilarities. 

Clustering algorithms, probably of different models, by 

varying model parameters, as in cluster number, produce 

partitions, candidate structures. The job of a validity index 

is to find the candidate that is best supported by the 

pairwise similarities-dissimilarities, in other words, the 

clustering that best aligns with the underlying structure.  

FCM is used mainly to model cluster overlapping in 

datasets, facilitated by partial cluster memberships 

assigned to the points, which also results in points in the 

same cluster taking different membership values. The 

generalized silhouette index is applicable to both 

approaches, crisp and fuzzy, of structure modeling to guide 

the search for the best structure in the dataset. 
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