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Preface

Welcome to the 25th International Workshop on Description Logics, DL 2012,
in Rome, Italy. The workshop continues the long-standing tradition of interna-
tional workshops devoted to discussing developments and applications of knowl-
edge representation formalisms and systems based on Description Logics. The
list of the International Workshops on Description Logics can be found at http:
//dl.kr.org. There were 58 papers submitted each of which was reviewed by at
least three members of the program committee or additional reviewers recruited
by the PC members. A total of 55 papers were selected for oral or poster pre-
sentation. The best student paper award was given to the paper Elimination of
Complex RIAs without Automata by Frantisek Simancik from Oxford University.
In addition to the presentation of the accepted papers, posters, and demos the
following invited talks were given at the workshop:

– Serge Abiteboul (Collège de France, INRIA Saclay & ENS Cachan),
Viewing the Web as a Distributed Knowledge Base.

– Piero Bonatti (Università degli Studi di Napoli “Federico II”, Italy),
Defaults in Description Logics: So Simple, So Difficult.

– Alan Rector (University of Manchester, U.K),
What’s missing? DLs, OWL and the Ecology of Semantic Systems.

The talk by Piero Bonatti was given as part of a joint session with the 14th
International Workshop on Non-Monotonic Reasoning. Our thanks go to all the
authors for submitting to DL, and to the invited speakers, PC members, and all
additional reviewers who made the technical programme possible. DL 2012 was
sponsored by the Artificial Intelligence Journal and by Principles of Knowledge
Representation and Reasoning, Incorporated (KR). We would like to acknowl-
edge that the work of the PC was greatly simplied by using the EasyChair confer-
ence management system (www.easychair.org) developed by Andrei Voronkov.

Yevgeny Kazakov, Domenico Lembo, and Frank Wolter
DL 2012 Chairs
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Alex Borgida Rutgers University
Diego Calvanese Free University of Bozen-Bolzano
Bernardo Cuenca Grau University of Oxford
Giuseppe De Giacomo University of Rome “La Sapienza”
Enrico Franconi Free University of Bozen-Bolzano
Birte Glimm University of Ulm
Valentin Goranko Technical University of Denmark
Rajeev Gore The Australian National University
Ian Horrocks University of Oxford
Yevgeny Kazakov University of Ulm
Pavel Klinov University of Arizona & Clark and Parsia, LLC
Boris Konev University of Liverpool
Roman Kontchakov Birkbeck College
Markus Krötzsch University of Oxford
Maurizio Lenzerini University of Rome “La Sapienza”
Thorsten Liebig derivo GmbH
Carsten Lutz University of Bremen
Maarten Marx University of Amsterdam
Thomas Meyer Meraka Institute
Boris Motik University of Oxford
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Non-Gödel Negation Makes Unwitnessed Consistency Undecidable . . . . . . 411
Stefan Borgwardt and Rafael Peñaloza
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Viewing the Web as
a Distributed Knowledge Base

Serge Abiteboul

Collège de France, INRIA Saclay & ENS Cachan, France

Information of interest may be found on the Web in a variety of forms, in
many systems, and with different access protocols. A typical user may have in-
formation on many devices (smartphone, laptop, TV box, etc.), many systems
(mailers, blogs, Web sites, etc.), many social networks (Facebook, Picasa, etc.).
This same user may have access to more information from family, friends, as-
sociations, companies, and organizations. Today, the control and management
of the diversity of data and tasks in this setting are beyond the skills of casual
users. Facing similar issues, companies see the cost of managing and integrating
information skyrocketing.

We are interested here in the management of such data. Our focus is not on
harvesting all the data of a particular user or a group of users and then managing
it in a centralized manner. Instead, we are concerned with the management of
Web data in place in a distributed manner, with a possibly large number of
autonomous, heterogeneous systems collaborating to support certain tasks.

Our thesis is that managing the richness and diversity of user-centric data
residing on the Web can be tamed using a holistic approach based on a dis-
tributed knowledge base. All Web informations are represented as logical facts,
and Web data management tasks as logical rules. We discuss Webdamlog, a vari-
ant of datalog for distributed data management that we use for this purpose.
The automatic reasoning provided by its inference engine, operating over the
Web knowledge base, greatly benefits a variety of complex data management
tasks that currently require intense work and deep expertise.
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Defaults in Description Logics:
So Simple, So Difficult

Piero Bonatti

Università degli Studi di Napoli “Federico II”, Italy

Frame systems—the ancestors of Description Logics—supported a form of
defeasible inheritance and overriding. Such nonmonotonic features disappeared
from implementations after the logical reconstruction of frame systems, although
applications provide interesting use cases for nonmonotonic inferences. This talk
gives an overview of the nonmonotonic DLs introduced so far, and illustrates
the many complexity issues that affect them (which probably explain the lack of
support to nonmonotonic reasoning in DL reasoners). Research never surrenders,
though: a pragmatic change of perspective yields encouraging results, that bring
the quest for low-complexity, nonmonotonic DLs closer to its goal.
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What’s missing?
DLs, OWL and the Ecology of Semantic Systems

Alan Rector

University of Manchester, U.K.

Description logics are about to take off. Or are they? We’ve said it before.
“Ontologies” and “OWL” have become buzz words. But there are barriers for
anyone not in a centre of DL expertise, and sometimes even there. We use
DLs/OWL in our commercial collaborations to manage concept composition,
heterogeneity, indexing and context. We do not see how to do without them.
In some areas, progress has been stunning. However, we still find gaps, e.g.: a)
expressiveness and interaction with other knowledge representation paradigms
b) Interaction with software engineering, c) tooling and user-friendly “interme-
diate representations” d) predictability and stability. This talk deals with the
first three.

Before DLs emerged in the 1980s, most Knowledge Representation Systems
were massively hybrid. They were messy, heuristic, certainly neither complete
nor decidable. DLs have brought rigour but at the cost of a narrow focus, often
too narrow we argue. Ontologies/DL models are not all of knowledge representa-
tion. Most knowledge is particular rather than universal; much is probabilistic,
possibilistic, heuristic, or just navigational. Many other modelling paradigms -
e.g. Frames, UML, RDF(S), Object oriented programming - are template based
whereas DLs are axiom based. How do we bridge the gaps?

Most users and many software engineers naturally express and understand
their knowledge at higher level of abstraction than raw DLs. How do we provide
them with appropriate “intermediate representations”? How do we best build on
their existing software engineering expertise? How do we be clear about when
DLs are not suitable? In short, how do we embed DLs in an effective ecology of
semantic systems?
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Representability in DL-LiteR Knowledge Base Exchange

M. Arenas1, E. Botoeva2, D. Calvanese2, V. Ryzhikov2, and E. Sherkhonov3

1 Dept. of Computer Science, PUC Chile
marenas@ing.puc.cl

2 KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy
lastname@inf.unibz.it

3 ISLA, University of Amsterdam, Netherlands
e.sherkhonov@uva.nl

Abstract. Knowledge base exchange can be considered as a generalization of
data exchange in which the aim is to exchange between a source and a target con-
nected through mappings, not only explicit knowledge, i.e., data, but also implicit
knowledge in the form of axioms. Such problem has been investigated recently
using Description Logics (DLs) as representation formalism, thus assuming that
the source and target KBs are given as a DL TBox+ABox, while the mappings
have the form of DL TBox assertions. In this paper we are interested in the prob-
lem of representing a given source TBox by means of a target TBox that captures
at best the intensional information in the source. In previous work, results on
representability have been obtained for DL-LiteRDFS , a DL corresponding to the
FOL fragment of RDFS. We extend these results to the positive fragment of DL-
LiteR, in which, differently from DL-LiteRDFS , the assertions in the TBox and the
mappings may introduce existentially implied individuals. For this we need to
overcome the challenge that the chase, a key notion in data and knowledge base
exchange, is not guaranteed anymore to be finite.

1 Introduction

Knowledge base exchange is an extension of the data exchange setting, where the source
may contain implicit knowledge by which new data may be inferred. The first frame-
work for data exchange with incompletely specified data in the source was proposed
in [3]. This framework is based on the general notion of representation system, as a
mechanism to represent multiple instances of a data schema, and considers the problem
of incomplete data exchanges under mappings constituted by a set of tuple generating
dependencies (tgds), i.e., mappings between pairs of conjunctive queries. Given that the
source data may be incompletely specified, (possibly infinitely) many source instances
are implicitly represented. This framework was refined in [1, 2] to the case where as a
representation system Description Logics (DL) knowledge bases (KBs) were used: the
TBox and the ABox of a DL KB represent implicit and explicit information respec-
tively, and mappings are sets of DL inclusions. While in the traditional data exchange
setting, given a source instance and a mapping specification, (universal) solutions are
target instances derived from the source instance and the mapping, in this case solutions
are target DL KBs, derived from the source KB and the mapping.
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In such a setting, in order to minimize the exchange (and hence transfer and materi-
alization) of explicit (i.e., ABox) information, one is interested in computing universal
solutions that contain as much implicit knowledge as possible. Therefore, the notion of
representability was defined, which helps us in understanding the capacity of (univer-
sal) solutions to transfer implicit knowledge: we say that a source TBox is representable
under a mapping if there exists a target TBox that leads to a universal solution when it is
combined with a suitable ABox computed from the source ABox, independently of the
actual source ABox. Weak representability is concerned with representability under a
mapping extended with assertions that are implied by the given mapping and the source
TBox. (Weak) representability of a source TBox under a mapping implies that the only
knowledge that remains to be transferred explicitly via the (extended) mapping is the
one in the source ABox. Therefore, checking (weak) representability and computing
a representation of a source TBox under a(n extended) mapping turn out to be crucial
problems in the context of KB exchange.

In [1, 2] the problems of deciding representability and weak-representability, and
of computing a representation for a given mapping and a TBox was tackled for DL-
LiteRDFS , the DL counterpart of RDFS [5] and a member of the DL-Lite family of
DLs [6]. It has been shown that these problems can be solved in polynomial time for
DL-LiteRDFS mappings and TBoxes. Moreover, due to the simplicity of the logic, the
characterization of representations is concise and simple.

In this paper we extend those results to the case of DL-LiteR without disjointness
assertions, a DL that we call DL-Lite pos

R . The presence of existential quantifiers on the
right-hand side of concept inclusions makes the problem considerably more compli-
cated than for DL-LiteRDFS . However, we show that also in the presence of existentials
on the right-hand side we are able to decide representability and weak representability
of a DL-Lite pos

R TBox under a DL-Lite pos
R mapping in polynomial time and to construct

a polynomial size representation.

2 Preliminaries

2.1 DL-Lite pos
R Knowledge Bases

The DLs of the DL-Lite family [6] are characterized by the fact that reasoning can be
done in polynomial time, and that data complexity of reasoning and conjunctive query
answering is in AC0. We present now the syntax and semantics of DL-Lite pos

R , which is
the DL that we adopt here, together with a sub-language of it.

In the following, we use A and P to denote concept and role names, respectively,
and B and R to denote generic concepts and roles, respectively. The latter are defined
by the following grammar:

R ::= P | P− B ::= A | ∃R

For a role R, we use R− to denote P− when R = P , and P when R = P−.
A DL-Lite pos

R TBox is a finite set of concept inclusions B v B′ and role inclusions
R v R′. A DL-Lite pos

R ABox is a finite set of membership assertions of the form A(u)
and P (u, v), where u and v are individuals or labeled nulls. We distinguish between the

5



two, since individuals are interpreted under the unique name assumption, while labeled
nulls obtain their meaning through assignments (see below). Notice that we include
labeled nulls in ABoxes as they are needed in the exchange of KBs. A DL-Lite pos

R KB
K is a pair 〈T ,A〉, where T is a DL-Lite pos

R TBox and A is a DL-Lite pos
R ABox.

Note that DL-Lite pos
R is the fragment of the DL DL-LiteR studied in [6] without

disjointness assertions on concepts and roles. In DL-LiteR, B and R are called basic
concepts and basic roles, respectively, and for coherence with previous work on the DL-
Lite family, we adopt here this terminology as well. We call DL-LiteRDFS the fragment
of DL-Lite pos

R (and hence of DL-LiteR) in which there are only atomic concepts and
atomic roles on the right-hand side of inclusions.

The semantics of DL-Lite pos
R is, as usual in DLs, based on the notion of first-order

interpretation I = 〈∆I , ·I〉, where ∆I is a non-empty domain and ·I is an interpreta-
tion function such that: (1) AI ⊆ ∆I , for every concept name A; (2) P I ⊆ ∆I ×∆I ,
for every role name P ; (3) aI ∈ ∆I , for every individual name a; and (4) such that:

(∃R)
I

= {x ∈ ∆I | there exists y ∈ ∆I s.t. (x, y) ∈ RI}
(P−)

I
= {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P I}

Moreover, satisfaction of concept and role inclusions is defined as follows: I |=
B v B′ if BI ⊆ B′I , and I |= R v R′ if RI ⊆ R′I . Finally, satisfaction of member-
ship assertions is defined as follows. A substitution over an interpretation I is a function
h from individuals and labeled nulls to ∆I such that h(a) = aI for each individual a.
Then (I, h) |= A(u) if h(u) ∈ AI , and (I, h) |= P (u, v) if (h(u), h(v)) ∈ P I .

An interpretation I is a model of a DL-Lite pos
R TBox T if for every α ∈ T , it holds

that I |= α, and it is a model of a DL-Lite pos
R ABox A if there exists a substitution h

over I such that for every α ∈ A, it holds that (I, h) |= α. Finally, I is a model of a
DL-LiteR KB K = 〈T ,A〉 if I is a model of both T and A. The set of all models of
K is denoted MOD(K), and K is consistent if MOD(K) 6= ∅. We observe that in DL-
Lite pos
R one cannot express any form of negative information, and hence a DL-Lite pos

R
KB is always consistent.

We assume that interpretations satisfy the standard names assumption, that is, we
assume given a fixed infinite set U of individual names, and we assume that for every
interpretation I, it holds that ∆I ⊆ U and aI = a for every individual name a. This
implies that interpretations satisfy the unique name assumption over individual names.

A signature Σ is a set of concept and role names. An interpretation I is said to be
an interpretation of Σ if it is defined exactly on the concept and role names in Σ. Given
a KB K, the signature Σ(K) of K is the alphabet of concept and role names occurring
inK, andK is said to be defined over (or simply, over) a signatureΣ ifΣ(K) ⊆ Σ (and
likewise for a TBox T , an ABox A, inclusions B v C and R v Q, and membership
assertions A(u) and P (u, v)).

2.2 Queries, Certain Answers, and Chase

A k-ary query q over a signatureΣ, with k ≥ 0, is a function that maps every interpreta-
tion 〈∆I , ·I〉 ofΣ into a k-ary relation qI ⊆ ∆k. In particular, if k = 0, then q is called
a Boolean query, and qI is either a relation containing the empty tuple () (representing
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the value true) or the empty relation (representing the value false). A query q is said to
be a query over a KBK if q is a query over a signatureΣ andΣ ⊆ Σ(K). Moreover, the
answer to q over K, denoted by cert(q,K), is defined as cert(q,K) =

⋂
I∈MOD(K) q

I .
Each tuple in cert(q,K) is called a certain answer for q over K. Notice that if q is
a Boolean query, then cert(q,K) evaluates to true if qI evaluates to true for every
I ∈ MOD(K), and it evaluates to false otherwise.

In this paper, we adopt the class of unions of conjunctive queries as our main query
formalism. A conjunctive query (CQ) over a signature Σ is a first-order formula of the
form q(x) = ∃y.conj (x,y), where x, y are tuples of variables and conj (x,y) is a
conjunction of atoms of the form: (1) A(t), with A a concept name in Σ and t either
an individual from U or a variable from x or y, or (2) P (t1, t2), with P a role name
in Σ and ti (i = 1, 2) either an individual from U or a variable from x or y. In a CQ
q(x) = ∃y.conj (x,y) over a signature Σ, x is the tuple of free variables of q(x).
Moreover, given an interpretation I = 〈∆I , ·I〉 of Σ, the answer of q over I, denoted
by qI , is defined as the set of tuples a of elements from ∆I for which there exist a
tuple b of elements from ∆I such that I satisfies every conjunct in conj (a, b). Finally,
a union of conjunctive queries (UCQ) over a signature Σ is a finite set of CQs over Σ
that have the same free variables. A UCQ q(x) is interpreted as the first-order formula∨
qi∈q qi(x), and its semantics is defined as qI =

⋃
qi∈q qi

I .
Certain answers in DL-Lite pos

R can be characterized through the notion of chase. We
call a chase a (possibly infinite) set of assertions of the form A(t), P (t, t′), where t,
t′ are either individuals from U, or labeled nulls interpreted as not necessarily distinct
domain elements (see the definition of the semantics of DL-Lite pos

R in Section 2.1). For
DL-Lite pos

R KBs, we employ the notion of restricted chase as defined in [6]. For such a
KB 〈T ,A〉, the chase ofA w.r.t. T , denoted chaseT (A), is a chase obtained fromA by
adding facts implied by inclusions in T , and introducing fresh labeled nulls whenever
required by an inclusion with ∃R in the right-hand side (see [6] for details).

2.3 Knowledge Base Exchange Framework

Assume that Σ1, Σ2 are signatures with no concepts or roles in common. Then we
say that an inclusion N1 v N2 is an inclusion from Σ1 to Σ2, if N1 is a concept or
a role over Σ1 and N2 is a concept or a role over Σ2. For a DL L (e.g., DL-Lite pos

R ),
we define an L-mapping (or just mapping, when L is clear from the context) as a tuple
M = (Σ1, Σ2, T12), where T12 is a TBox in L consisting of inclusions from Σ1 to Σ2:

(1) C1 v C2, where C1, C2 are concepts in L over Σ1 and Σ2, respectively, and
(2) Q1 v Q2, where Q1 and Q2 are roles in L over Σ1 and Σ2, respectively.

If T12 is an L-TBox, for a DL L (e.g., DL-Lite pos
R ), thenM is called an L-mapping.

The semantics of a mapping is defined in terms of the notion of satisfaction. More
specifically, given a mapping M = (Σ1, Σ2, T12), an interpretation I of Σ1 and an
interpretation J of Σ2, pair (I,J ) satisfies TBox T12, denoted by (I,J ) |= T12,
if for each concept inclusion C1 v C2 ∈ T12, it holds that C1

I ⊆ C2
J , and for

each role inclusion Q1 v Q2 ∈ T12, it holds that Q1
I ⊆ Q2

J . Moreover, given an
interpretation I of Σ1, SATM(I) is defined as the set of interpretations J of Σ2 such
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that (I,J ) |= T12, and given a set X of interpretations of Σ1, SATM(X ) is defined as:
SATM(X ) =

⋃
I∈X SATM(I).

LetM = (Σ1, Σ2, T12) be a mapping, K1 a KB over Σ1, and K2 a KB over Σ2.

– K2 is called a solution for K1 underM if MOD(K2) ⊆ SATM(MOD(K1)), and
– K2 is called a universal solution for K1 under M if MOD(K2) =

SATM(MOD(K1)).

Universal solutions present several limitations, as argued in [1, 2]. First, a universal
solution (in DL-Lite pos

R and DL-LiteR) does not always exist. Second, if it exists, then
its TBox is trivial (that is, equivalent to the empty TBox). Finally, in the worst case
the smallest universal solution is exponential in the size of the mapping and the source
KB. A notion of solution parametrized w.r.t. a query language was proposed in [1, 2] in
order to overcome these limitations. Such a notion, though weaker, is in line with the
objective of (data and) KB exchange of providing in the target sufficient information to
answer queries that could also be posed over the source.

Let Q be a class of queries,M = (Σ1, Σ2, T12) a mapping, K1 = 〈T1,A1〉 a KB
over Σ1, and K2 a KB over Σ2. Then

– K2 is called a Q-solution for K1 under M if for every query q ∈ Q over Σ2,
cert(q, 〈T1 ∪ T12,A1〉) ⊆ cert(q,K2), and

– K2 is called a universal Q-solution for K1 underM if for every query q ∈ Q over
Σ2, cert(q, 〈T1 ∪ T12,A1〉) = cert(q,K2).

The definitions of solutions are illustrated in the following example.

Example 1. Assume Σ1 = {Painting(·), PaintedBy(·, ·), ArtMovement(·, ·)} and
Σ2 = {ArtPiece(·), ArtAuthor(·, ·), HasStyle(·, ·), HasGenre(·, ·)}. Consider map-
pingM = (Σ1, Σ2, T12), where T12 is the following TBox:

Painting v ArtPiece
Painting v ∃HasGenre

PaintedBy v ArtAuthor
ArtMovement v HasStyle

Further, assume T1 = {Painting ≡ ∃PaintedBy , Painting v ∃ArtMovement} and
A1 = {Painting(blacksquare)}. Then, a universal solution for the KB K1 = 〈T1,A1〉
under M is the KB K2 = 〈T2,A2〉, where T2 = ∅ and A2 is the following ABox,
where n01, n02, and m01 are labelled nulls:

ArtPiece(blacksquare)
HasGenre(blacksquare, m01)

ArtAuthor(blacksquare, n01)
HasStyle(blacksquare, n02)

Now, consider KB K′2 = 〈T ′2 ,A′2〉 with non-empty TBox, where T ′2 =
{ArtPiece ≡ ∃ArtAuthor ,ArtPiece v ∃HasStyle,ArtPiece v ∃HasGenre} and
A′2 = {ArtPiece(blacksquare)}. Then we have that K′2 is a solution for K1 underM.
However, we also have that K′2 is not a universal solution for K1 under M. Notably,
both KB K2 and KB K′2 are universal UCQ-solutions for KB K1 under mappingM.

In order to understand the capacity of universal solutions, and also of the query-
languages based notions of solutions to transfer implicit knowledge, the notion of rep-
resentability has been introduced in [1, 2]. Here we adapt that definition to the case
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where the KB is always satisfiable, as in DL-Lite pos
R . In the definition below we use

chaseT ,Σ(A) to denote the projection of chaseT (A) on the signature Σ.
Let L be a DL, Q a class of queries,M = (Σ1, Σ2, T12) an L-mapping, and T1 an

L-TBox over Σ1. Then,

– T1 is (Q-)representable under M if there exists an L-TBox T2 over Σ2, called
a (Q-)representation of T1 under M, such that for every ABox A1 over Σ1,
〈T2, chaseT12,Σ2

(A1)〉 is a (Q-)universal solution for 〈T1,A1〉 underM.
– T1 is weakly (Q-)representable under M if there exists a mapping M? =

(Σ1, Σ2, T ?12) such that T12 ⊆ T ?12, T1 ∪ T12 |= T ?12, and T1 is (Q-)representable
underM?.

Example 2. Let M = (Σ1, Σ2, T12) and T1 be as in Example 1. Then we have that
T2 = {ArtPiece ≡ ∃ArtAuthor ,ArtPiece v ∃HasStyle,ArtPiece v ∃HasGenre}
is a UCQ-representation of T1 underM.

On the other hand, ifM′ = (Σ1, Σ2, T ′12) with T ′12 = {PaintedBy v ArtPiece},
then we have that T1 is not UCQ-representable under M′: take ABox A1 =
{Painting(blacksquare)}, then chaseT ′12,Σ2

(A1) = ∅ and for no TBox T ′2 ,
〈T ′2 , chaseT ′12,Σ2

(A1)〉 is a universal UCQ-solution for 〈T1,A1〉 underM′. However,
if we consider T ?12 = T ′12 ∪{Painting v ∃ArtAuthor}, we conclude that T1 is weakly
UCQ-representable under M′ since T ′12 ⊆ T ?12, T1 ∪ T ′12 |= T ?12 and T1 is UCQ-
representable under M? = (Σ1, Σ2, T ?12) (in fact, ∅ is a UCQ-representation of T1
underM?).

3 Solving UCQ-Representability for DL-Lite pos
R

In this section, we show that the UCQ-representability problem can be solved in poly-
nomial time for the case where TBoxes and mappings are expressed in DL-Lite pos

R .
More specifically, we give a polynomial time algorithm UCQREP pos that, given a DL-
Lite pos
R -mapping M = (Σ1, Σ2, T12) and a DL-Lite pos

R -TBox T1, verifies whether T1
is UCQ-representable underM, and if this is the case computes a UCQ-representation
of T1 under M. Moreover, we also show that this algorithm can be used to solve the
UCQ-representability problem for the case of DL-LiteRDFS . It is important to notice that
the algorithm we present can be used to compute universal UCQ-solutions of polyno-
mial size, which make good use of the source implicit knowledge. Thus, this algorithm
computes solutions with good properties to be used in practice.

A related problem is that of query inseparability [7], which can be formulated as
follows: given TBoxes T1 and T2, and a signature Σ, decide whether for each ABox A
over Σ and for each query q over Σ, cert(q, 〈T1,A〉) = cert(q, 〈T2,A〉). In contrast to
our polynomial result for UCQ-representability, query inseparability has been proved to
be PSPACE-hard for DL-LiteR TBoxes and CQs [7], and an analysis of the proof shows
that the same lower bound holds already for DL-Lite pos

R .

3.1 Checking Whether a Given Target TBox is a UCQ-Representation

We start by considering the decision problem associated with UCQ-representability:
Given a DL-LiteR-mapping M = (Σ1, Σ2, T12), a DL-LiteR-TBox T1 over Σ1, and
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a DL-LiteR-TBox T2 over Σ2, check whether T2 is a UCQ-representation of T1 under
M, i.e., for each ABoxA1 overΣ1, 〈T2, chaseT12,Σ2

(A1)〉 is a universal UCQ-solution
for 〈T1,A1〉 underM. This problem can be solved in two steps:

(C1) Check whether for each ABox A1 over Σ1, 〈T2, chaseT12,Σ2
(A1)〉 is a UCQ-

solution for 〈T1,A1〉 underM.
(C2) Check whether for each ABoxA1 over Σ1 and for each UCQ q over Σ2, we have

that cert(q, 〈T2, chaseT12,Σ2
(A1)〉) ⊆ cert(q, 〈T1 ∪ T12,A1〉).

If both checks succeed, then T2 is a UCQ-representation of T1 underM, otherwise not.
We develop now techniques to perform these two checks in polynomial time.

Checking Condition (C1). For a DL-Lite pos
R TBox T and a concept or role N ,

we define the upward closure of N w.r.t. T as the set UT (N) = {N ′ |
N ′ is concept or role and T |= N v N ′}, and the strict upward closure ST (N)
as UT (N) \ {N}. Then, for a set N of concepts and roles we define UT (N) =⋃
N∈N UT (N), and its strict version ST (N). Notice that both ST12(UT1(N)) and

UT2(SM(N)) are sets over Σ2, for each concept or role N over Σ1.
With these notions in place, we can provide a necessary and sufficient condition for

the satisfaction of condition (C1).

Proposition 1. Let M = (Σ1, Σ2, T12) be a DL-Lite pos
R -mapping, T1 a DL-Lite pos

R -
TBox over Σ1, and T2 a DL-Lite pos

R -TBox over Σ2. Then T1, T2, andM satisfy condi-
tion (C1) iff the following conditions are satisfied:

(A) SM(UT1(B)) ⊆ UT2(SM(B)), for each basic concept B over Σ1;
(B) SM(UT1(R)) ⊆ UT2(SM(R)), for each basic role R over Σ1;
(C) for each basic concept B and each basic role R over Σ1 such that ∃R ∈ UT1(B)

and SM(UT1(∃R−)) 6= ∅, we have that
if SM(UT1(R)) 6= ∅, then there exists a role QR,B over Σ2 such that

(CA) ∃QR,B ∈ UT2(SM(B)),
(CB) SM(UT1(R)) ⊆ UT2(QR,B), and
(CC) SM(UT1(∃R−)) ⊆ UT2(∃Q−R,B),

and if SM(UT1(R)) = ∅, either
(CD) SM(UT1(∃R−)) ⊆ UT2(SM(B)),

or there exist roles Q1
R,B , . . . , Q

n
R,B over Σ2 such that

(CE) ∃Q1
R,B ∈ UT2(SM(B)),

(CF) T2 |= ∃(Q1
R,B)− v ∃Q2

R,B , . . . ,∃(Qn−1R,B )− v ∃QnR,B , and
(CG) SM(UT1(∃R−)) ⊆ UT2(∃(QnR,B)

−
).

It is important to notice that the necessary and sufficient condition in Proposition 1
can be checked in polynomial time, as the implication problem for DL-Lite pos

R can
be solved in polynomial time. In particular, for a basic concept B and a basic role
R over Σ1 such that ∃R ∈ UT1(B), SM(UT1(∃R−)) 6= ∅, SM(UT1(R)) = ∅, and
SM(UT1(∃R−)) * UT2(SM(B)), checking the existence of roles Q1

R,B , . . . , Q
n
R,B

over Σ2 satisfying conditions (CE), (CF), and (CG) can be reduced to checking reach-
ability in a directed graph. Indeed, for each pair of basic concepts B2, B

′
2 over Σ2

10



such that B2 ∈ SM(B) and SM(UT1(∃R−)) ⊆ UT2(B′2), we use the following ap-
proach to check for the existence of the roles Q1

R,B , . . . , Q
n
R,B over Σ2 such that

T2 |= B2 v ∃Q1
R,B , T2 |= ∃(Q1

R,B)− v ∃Q2
R,B , . . . , T2 |= ∃(QnR,B)− v B′2. Let

G = (V,E) be the directed graph defined as:

V = {B2, B
′
2} ∪ {Q2 | Q2 is a role in Σ2}

E = {(B2, B
′
2) | T2 |= B2 v B′2} ∪ {(B2, Q2) | T2 |= B2 v ∃Q2} ∪

{(Q2, B
′
2) | T2 |= ∃Q−2 v B′2} ∪ {(Q2, Q

′
2) | T2 |= ∃Q−2 v ∃Q′2}

Then we test for the existence of the roles Q1
R,B , . . . , Q

n
R,B by verifying whether B′2 is

reachable from B2 in G. If for some pair B2, B′2 the aforementioned two-step test suc-
ceed, then we have that there exist roles Q1

R,B , . . . , Q
n
R,B that satisfy conditions (CE),

(CF), and (CG). Otherwise, we know that such roles do not exist.

Checking Condition (C2). We rely on the following result:

Proposition 2. Let M = (Σ1, Σ2, T12) be a DL-Lite pos
R -mapping, T1 a DL-Lite pos

R -
TBox over Σ1, and T2 a DL-Lite pos

R -TBox over Σ2. Then T1, T2, andM satisfy condi-
tion (C2) iff the following conditions are satisfied:

(A) UT2(SM(B)) ⊆ SM(UT1(B)) for each basic concept B over Σ1;
(B) UT2(SM(R)) ⊆ SM(UT1(R)) for each role R ∈ Σ1;
(C) for each basic role Q over Σ2 and each basic concept B over Σ1 such that ∃Q ∈

UT2(SM(B)) and UT2(∃Q−) 6= {∃Q−}, there exists a role RQ,B over Σ1 s.t.
(CA) ∃RQ,B ∈ UT1(B) and
(CB) Q ∈ SM(RQ,B).

The necessary and sufficient condition in Proposition 2 can be checked in polynomial
time, as the implication problem can be solved in polynomial time for DL-Lite pos

R .

Thus, given that, by Propositions 1 and 2, both conditions (C1) and (C2) can be
tested in polynomial time, we obtain the following result.

Theorem 1. The problem of verifying, given a DL-Lite pos
R -mapping M =

(Σ1, Σ2, T12), a DL-Lite pos
R -TBox T1 over Σ1, and a DL-Lite pos

R -TBox T2 over Σ2,
whether T2 is a UCQ-representation of T1 underM can be solved in polynomial time.

3.2 The Algorithm for Computing a UCQ-Representation

In what follows, we present the algorithm UCQREP pos, which verifies whether a source
TBox T1 is UCQ-representable under a mapping M, and if this is the case returns a
UCQ-representation of T1 underM.

Intuitively, given a source TBox T1 and a mappingM, algorithm UCQREP pos con-
structs the best possible candidate T2 for a UCQ-representation of T1 underM (given
the conditions in Propositions 1 and 2), and then checks whether T2 effectively satisfies
the properties required for a UCQ-representation (note, that T2 is indeed a DL-Lite pos

R
TBox). To prove the correctness of this algorithm, we need to show that T1 is UCQ-
representable underM if and only if T2 is a UCQ-representation of T1 underM. This
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Algorithm: UCQREP pos(T1,M)
Input: A DL-Lite pos

R -mappingM = (Σ1, Σ2, T12) and a DL-Lite pos
R -TBox T1 over Σ1.

Output: A DL-Lite pos
R -TBox T2 over Σ2 that is a UCQ-representation of T1 underM, if

T1 is UCQ-representable underM. The keyword false otherwise.

1. Let T2 be a TBox over Σ2 defined as:

T2 = {N2 vM2 | N1 a basic concept or role over Σ1,
N2 ∈ SM(N1),M2 ∈ SM(UT1(N1))}

2. Remove from T2 every inclusion N2 v M2 such that (i) N2 ∈ SM(N1) for some
N1 over Σ1, and (ii) for every M1 over Σ1 such that M2 ∈ SM(M1), it holds that
T1 6|= N1 vM1. Moreover, ifN2 = ∃R2 andM2 = ∃R′2, then also remove inclusions
R2 v R′2 and R−2 v R′2− from T2.

3. Remove from T2 every inclusion of the form either ∃R−2 v B2 or R2 v R′2 or R−2 v
R′2 for rolesR2,R′2 and a conceptB2 overΣ2, if there exists a conceptB1 overΣ1 such
that (i) ∃R2 ∈ SM(B1), and (ii) for every role R1 over Σ1 such that ∃R1 ∈ UT1(B1)
and R2 ∈ SM(R1), it holds that T1 6|= B1 v ∃R1.

4. Verify whether T2 is a UCQ-representation of T1 underM. If the test succeeds, return
T2, otherwise return false.

Fig. 1. Algorithm to compute the UCQ-representation of a DL-Lite pos
R TBox T1 under a DL-Lite pos

R
mappingM.

is done in the following theorem, where it is also proved that the algorithm works in
polynomial time. The latter is a consequence of the fact that T2 is of polynomial size
in the sizes of T1 andM, and that, by Theorem 1, it is possible to check in polynomial
time whether T2 is a UCQ-representation of T1 underM.

Theorem 2. Algorithm UCQREP pos is correct and runs in polynomial time.

The following examples illustrate how algorithm UCQREP pos works.

Example 3. Let M = (Σ1, Σ2, T12), where Σ1 = {A1(·), B1(·), C1(·)}, Σ2 =
{A2(·), B2(·)}, and T12 = {A1 v A2, B1 v B2, C1 v B2}. Furthermore, assume that
T1 = {B1 v A1}. Then, in step 1, the algorithm constructs the TBox T2 = {B2 v A2}.
In step 2, it removes the only axiom from T2 as B2 ∈ SM(C1) and T1 6|= C1 v A1.
In step 3, it does nothing, and finally, at the last step it checks whether the empty
TBox T2 is a UCQ-representation of T1 under M. Since A2 ∈ SM(UT1(B1)) and
A2 /∈ UT2(SM(B1)), the algorithm returns false.

Example 4. Let M = (Σ1, Σ2, T12), where Σ1 = {B1(·), P1(·, ·), R1(·, ·)}, Σ2 =
{A2(·), B2(·), R2(·, ·)}, and T12 = {∃P−1 v A2, B1 v B2, R1 v R2}. Furthermore,
assume that T1 = {B1 v ∃P1, B1 v ∃R1,∃R−1 v ∃P−1 }. Then, in step 1, the al-
gorithm constructs the TBox T2 = {B2 v ∃R2,∃R−2 v A2}. It does not remove
anything in steps 2 and 3. Finally, at the last step it successfully checks that T2 is a
UCQ-representation of T1 underM and returns T2.
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3.3 Solving UCQ-Representability for DL-LiteRDFS

It is not difficult to see that if the input of algorithm UCQREP pos is a DL-LiteRDFS -
mapping M = (Σ1, Σ2, T12) and a DL-LiteRDFS -TBox T1 over Σ1, then the set T2
computed by this algorithm is a DL-Lite pos

R -TBox over Σ2 that can be easily trans-
formed into an equivalent DL-LiteRDFS -TBox. Indeed, T2 might contain inclusions be-
tween basic concepts of the form ∃R2 v ∃R′2, but this occurs only if T2 implies also
the role inclusion R2 v R′2. Hence, all concept inclusions that would fall outside DL-
LiteRDFS are implied by the DL-LiteRDFS fragment of T2 and can be removed from T2
without affecting its semantics. Thus, we conclude that algorithm UCQREP pos can also
be used to solve in polynomial time the UCQ-representability problem for DL-LiteRDFS

mappings and TBoxes.

4 Solving Weak UCQ-Representability for DL-Lite pos
R

In this section, we show that also the weak UCQ-representability problem can be solved
in polynomial time when TBoxes and mappings are expressed DL-Lite pos

R . We first need
to introduce some terminology. Given a DL-LiteR-TBox T over a signature Σ and a
UCQ q overΣ, a UCQ qr overΣ is said to be a perfect reformulation of q w.r.t. T if for
every ABoxA overΣ, it holds that [6]: cert(q, 〈T ,A〉) = cert(qr, 〈∅,A〉). That is, the
certain answers to the UCQ q over a KB 〈T ,A〉 can be computed by posing the UCQ
qr over the ABox A. It is well-known that every UCQ q admits a perfect reformulation
w.r.t. a DL-LiteR-TBox T , which can be computed in polynomial time [6].

Interestingly, the fundamental notion of perfect reformulation can be used to
solve the UCQ-representability problem for DL-Lite pos

R . More precisely, let M =
(Σ1, Σ2, T12) be a DL-LiteR-mapping and T1 a DL-LiteR-TBox overΣ1. Then define a
mapping COMP(M, T1) = (Σ1, Σ2, T ?12) that extendsM by compiling the knowledge
from T1 into T12. Formally, for a basic concept or role N over Σ1, let bqN be the CQ
defined as follows: bqA(x) = A(x), bq∃P (x) = ∃y.P (x, y), bq∃P−(x) = ∃y.P (y, x),
bqP (x, y) = P (x, y), and bqP−(x, y) = P (y, x). Then, for every concept inclusion
B v C ∈ T12 and for every CQ q in the perfect reformulation of bqB w.r.t. T1, include
Cq v C into T ?12, where Cq is the (unique) basic concept such that bqCq

= q. Also, for
every role inclusion R v Q ∈ T12 and for every CQ q in the perfect reformulation of
bqR w.r.t. T1, include Rq v Q into T ?12, where Rq is the basic role such that bqRq

= q.
It is important to notice that if M = (Σ1, Σ2, T12) is a DL-Lite pos

R -mapping and
T1 a DL-Lite pos

R -TBox over Σ1, then COMP(M, T1) = (Σ1, Σ2, T ?12) is a DL-Lite pos
R -

mapping that can be computed in polynomial time in the sizes ofM and T1. Therefore,
given that the set of inclusions defining COMP(M, T1) contains the set of inclusions
definingM and T1 ∪T12 |= T ?12, we conclude that COMP(M, T1) can be used to check
in polynomial time whether T1 is weakly UCQ-representable underM.

Theorem 3. Let M = (Σ1, Σ2, T12) be a DL-Lite pos
R -mapping and T1 a DL-Lite pos

R -
TBox over Σ1. Then T1 is weakly UCQ-representable under M if and only if T1 is
UCQ-representable under COMP(M, T1).

From this result and Theorem 2 we obtain a polynomial time algorithm for solving
the weak UCQ-representability problem for DL-Lite pos

R mappings and TBoxes.
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The example below shows a DL-Lite pos
R TBox T1 and a DL-Lite pos

R mappingM such
that T1 is not weakly UCQ-representable underM.

Example 5. Let M = (Σ1, Σ2, T12), where Σ1 = {P1(·, ·), B1(·)}, Σ2 = {A2(·),
B2(·)}, and T12 = {B1 v B2, ∃P−1 v A2}. Furthermore, assume that T1 = {B1 v
∃P1}. Then T1 is not weakly UCQ-representable underM. In fact, given that the perfect
reformulation of ∃P−1 w.r.t. TBox T1 is ∃P−1 itself, and likewise for concept B1, we
have thatM = COMP(M, T1) and, thus, T1 is not weakly UCQ-representable under
M, as T1 is not UCQ-representable underM.

Instead, as shown in [1, 2], for each DL-LiteRDFS TBox T1 and DL-LiteRDFS mapping
M, T1 is weakly UCQ-representable underM.

5 Conclusions

In this paper, we have extended previous results on representability in the knowledge
exchange framework to DL-Lite pos

R , a DL of the DL-Lite family that allows for existen-
tials in the right-hand side of inclusion assertions, both in the source TBox and in the
mapping. We are currently working on extending our results to DL-LiteR, which in-
cludes disjointness assertions, and to the other DLs in the extended DL-Lite family [4].
A further interesting problem that we are investigating is that of checking the existence
of universal solutions for DL-Lite pos

R and other more expressive DLs.
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Modular Combination of Reasoners for
Ontology Classification

Ana Armas Romero, Bernardo Cuenca Grau, Ian Horrocks
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Abstract. Classification is a fundamental reasoning task in ontology
design, and there is currently a wide range of reasoners highly optimised
for classification of SROIQ ontologies. Existing reasoners, however, do
not exploit the fact that most of the axioms in many realistic SROIQ
ontologies are expressed in some lightweight DL, such as EL++. In this
paper, we propose a novel reasoning technique that allows us to com-
pletely classify a large subset of the signature of a SROIQ ontology
by relying only on a reasoner for a given lightweight DL. We also show
how this information can then be exploited by the fully-fledged SROIQ
reasoner HermiT to complete the classification of the ontology.

1 Introduction

Classification —the problem of identifying the subsumption relationships be-
tween all pairs of atomic concepts occurring in the input ontology— is a fun-
damental reasoning task in ontology design. The decision problems associated
to classification, however, have a very high worst-case complexity for expressive
DLs; in particular, subsumption w.r.t. an ontology is 2Nexptime-complete for
SROIQ [14] —the DL underlying the standard ontology language OWL 2 [5].

Despite these discouraging complexity results, considerable effort has been
devoted to making classification feasible in practice. As a result, many reasoning
algorithms and optimisation techniques have been developed, and there is cur-
rently a wide range of highly-optimised reasoners, such as Pellet [19], FaCT++
[20], RacerPro [9] and HermiT [6], that support classification of ontologies writ-
ten in expressive description logics.

Since individual subsumption tests performed during classification can be
computationally very expensive, most DL reasoners implement variants of the
well-known Enhanced Traversal Algorithm [2], which reduces the number of
required subsumption tests. Sophisticated optimisation techniques are also im-
plemented on top of these algorithms to further reduce the number of potentially
expensive subsumption tests [10].

A widely implemented technique is the told subsumptions optimisation [10],
which provides an inexpensive way of computing subsumption relationships that
hold in the input ontology. In typical ontologies, however, most candidate sub-
sumption relationships between atomic concepts will not hold; hence, efficiently
identifying and exploiting such non-subsumption relationships becomes critical
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in practice, and several optimisation techniques have been developed with this
goal in mind. In particular, the completely defined concepts optimisation [21]
identifies a fragment of the ontology for which told subsumption provides com-
plete information; furthermore model-merging and other related techniques ex-
ploit the computations performed during individual concept satisfiability tests
to detect non-subsumptions [10, 8, 6]. However, although these techniques have
proved effective in practice, the classification of very large ontologies can still
require a large number of expensive subsumption tests.

In recent years, there has been a growing interest in so-called lightweight
DLs. The description logic EL++ [1], for example, can capture several promi-
nent ontologies, and allows classification to be performed in polynomial time.
Reasoners specifically designed for EL++, such as CEL [3] and ELK [15], can
classify ontologies as large as SNOMED CT in a few seconds.

Unfortunately, many ontologies fall outside the EL++ fragment, and so can-
not be classified using EL++ reasoners. In many cases, however, such ontologies
contain only a relatively small number of non EL++ axioms. For example, out of
the 219,224 axioms in the latest version of NCI, only 65 are non EL++. Being able
to use an EL++ reasoner to efficiently compute most of the subsumptions and
non-subsumptions required to classify these ontologies could lead to significant
improvements in both performance and scalability.

In this paper, we propose a technique where a reasoner for some DL L is
used as “black box” by a reasoner for a more expressive logic L′. We focus on
the case where L′ is SROIQ, and we present a classification algorithm that,
given a SROIQ ontology O, proceeds as follows:

1. It computes a signature ΣL ⊆ Sig(O) and a fragment ML ⊆ O written
in L such that the concepts in ΣL can be completely classified using only
the axioms in ML; more precisely, ΣL and ML will be such that, for each
atomic concept A ∈ ΣL and each B ∈ Sig(O)∪{>,⊥}, we have O |= A v B
iff ML |= A v B.

2. It classifies ML using an L-reasoner and feeds (in a compact way) the ob-
tained (non-)subsumptions to a SROIQ-reasoner, such as HermiT, that can
effectively exploit this information [6].

Step 1 involves two important technical challenges. First, ΣL should be as large
as possible; in particular, for ontologies with only a few non-L axioms, it is
reasonable to expect ΣL to contain most of the ontology’s signature. Second,
ML must be complete for ΣL. Although techniques such as the completely
defined concepts optimisation can be used to identify a complete fragment, these
techniques are very restricted; thus, we exploit module extraction techniques [4,
7], which, in addition to giving completeness guarantees, are more generally
applicable, more flexible, and more robust.

We believe that our results are interesting from both a theoretical and a
practical point of view. We show that given a SROIQ ontology O that is not
captured by any known polynomial fragment of SROIQ, it is often possible
to identify a large subset Σ of Sig(O) such that all subsumers of concepts in Σ
w.r.t. O can be computed using a polynomial time classification algorithm. From
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a practical point of view, our first experiments with a prototype implementation
suggest the potential of this approach for optimising classification.

This paper is supplemented by an online Appendix containing additional
technical details.1

2 Preliminaries

We adopt standard DL notation, as well as standard notions of signature, in-
terpretations, entailment, satisfiability and subsumption. We also assume basic
familiarity with the description logics SROIQ [11] and EL++ [1]. When talking
about ontologies and axioms we will implicitly refer to SROIQ-ontologies and
SROIQ-axioms, respectively.

We denote with Sig(O) (respectively, Sig(α)) the signature of an ontology
O (respectively, of an axiom α). Furthermore, given an ontology O and a DL
L ⊆ SROIQ, we denote with OL the subset of L-axioms in O.

2.1 Module Extraction

Intuitively, a module M for an ontology O w.r.t. a signature Σ is an ontology
M⊆ O such that M entails the same axioms over Σ as O.

This intuition is typically formalised using different notions of a conservative
extension [16, 4]. In this paper, we define modules in terms of a model-theoretic
notion of conservative extension.

Definition 1 (Model Conservative Extension). Let O be an ontology and
let Σ ⊆ Sig(O). We say that O is a model conservative extension of M ⊆ O
w.r.t. Σ if, for every model I = (∆I , ·I) ofM, there exists a model J = (∆J , ·J )
of O such that ∆I = ∆J and XI = XJ for every symbol X ∈ Σ.

Definition 2 (Module). Let O be an ontology and let Σ be a signature. We
say thatM⊆ O is a module in O w.r.t. Σ if O is a model conservative extension
of M w.r.t. Σ.

In particular, if M is a module in O w.r.t. Σ, then the following condition
holds: for each axiom α with Sig(α) ⊆ Σ, we have M |= α iff O |= α.

The problem of checking whether M is a module in O w.r.t. Σ, however, is
already undecidable for EL++ [17], so approximations are typically needed in
practice. The following sufficient condition for model conservativity is known to
work well in practice [4].

Definition 3 (∅-locality). Let Σ be a signature and let O be an ontology. An
interpretation I is ∅-local for Σ if for every atomic concept A 6∈ Σ and every
atomic role R 6∈ Σ, we have AI = RI = ∅. An axiom α is ∅-local for Σ if I |= α
for each I that is ∅-local for Σ. An ontology O is ∅-local for Σ if every axiom
in O is ∅-local for Σ.

1 http://www.cs.ox.ac.uk/files/4770/ModClassDL12.pdf
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Checking ∅-locality for SROIQ axioms is, however, a Pspace-complete
problem [4]. Since our goal is to optimise classification, checking ∅-locality might
still be too costly. Instead, we will use ⊥-locality — a well-known sufficient syn-
tactic condition for ∅-locality which has been successfully used for both ontology
reuse and reasoning problems [4, 12, 18, 7].

The precise grammar defining ⊥-locality for SROIQ is given for reference in
the Appendix, and can also be found in the literature [7, 4]. It suffices to consider
that, for each O and Σ, ⊥-locality implies ∅-locality and it can be checked in
polynomial time. Furthermore, the following property holds [7, 4]:

Proposition 1. If an axiom α is ⊥-local w.r.t. a signature Σ, then α is ⊥-local
w.r.t. Σ′ for any Σ′ ⊆ Σ.

We can use⊥-locality to define the notion of a⊥-module. The aforementioned
properties of ⊥-locality ensure that, ifM is a ⊥-module w.r.t. Σ in O as defined
next, then it is also a module w.r.t. Σ in O.

Definition 4 (⊥-module). An ontology M⊆ O is a ⊥-module in O w.r.t. Σ
if O \M is ⊥-local for Σ ∪ Sig(M).

Clearly, there is a unique smallest⊥-module for a givenO andΣ (the smallest
subsetM⊆ O s.t. O\M is ⊥-local for Σ∪Sig(M)). In what follows, we refer to
such smallest module as the ⊥-module in O w.r.t. Σ and we denote it M[O,Σ].

In addition to being modules as in Definition 2, ⊥-modules also enjoy an ad-
ditional property that makes them especially well-suited for optimising ontology
classification [7].

Proposition 2. Let O be an ontology, let A,B be concepts in Sig(O)∪ {>,⊥},
let Σ ⊆ Sig(O) with A ∈ Σ, and let M⊆ O be a ⊥-module in O w.r.t. Σ. Then
O |= A v B iff M |= A v B.

2.2 Ontology Classification in HermiT

The reasoner HermiT implements a classification algorithm [6] that differs sig-
nificantly from the standard Enhanced Traversal Algorithm [2] implemented in
most other DL reasoners. The key feature of HermiT’s classification algorithm
that makes it especially well-suited for our purposes is that it exploits sets K
and P of pairs 〈A,B〉 of atomic concepts representing known subsumptions and
possible subsumptions, respectively. These sets are used to reduce the number of
required tests during classification. Information about non-subsumptions is im-
plicitly stored in these sets (as it would be too costly to store it explicitly), i.e.,
if A = {〈A,B〉 | A,B are atomic concept names in Sig(O)}, then A \ (K∪P) is
the set of known non-subsumptions.

The algorithm works in two clearly distinct phases. In the initialisation phase,
sets K and P are given initial values using information obtained from satisfi-
ability tests performed on atomic concepts. In the classification phase, K is
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augmented with pairs from P until K contains all the entailed subsumptions
and P is empty.

Additional technical details about HermiT’s classification algorithm are pro-
vided in the Appendix.

3 Modular Classification of Ontologies

Given a SROIQ ontology O and a description logic L ⊆ SROIQ, our first goal
is to identify a signature ΣL ⊆ Sig(O) such that M[O,ΣL] ⊆ OL. We call any
such subset of Sig(O) an L-signature for O. Section 3.1 addresses the problem
of identifying as large an L-signature as possible.

We can then use an L-reasoner to compute fromM[O,ΣL] complete classifica-

tion information about the atomic concepts in ΣL —by Proposition 2, given any
A ∈ ΣL and B ∈ Sig(O) ∪ {>,⊥} we have O |= A v B iff M[O,ΣL] |= A v B.

HermiT’s classification algorithm needs to be slightly modified in order to
exploit the information computed by the L-reasoner. In section 3.2 we show
how to adapt the initialisation phase to efficiently encode this information into
K and P. Additional technical information about our modification of HermiT’s
algorithm (including a proof of correctness) is given in the Appendix.

3.1 Computing an L-signature

The definition of ⊥-module immediately suggests a simple “guess and check”
algorithm for computing a (maximal) L-signature for O: consider all subsets
Σ ⊆ Sig(O) in decreasing size order and, for each of them, check whetherM[O,Σ]

is an L-ontology.
Our goal in practice, however, is to optimise classification; hence, we propose

a more practical algorithm. Although our algorithm is not guaranteed to compute
a maximal L-signature, it can be implemented very efficiently and, as shown in
the evaluation section, it typically computes large L-signatures, provided that
OL is a large enough fragment of O.

We will exploit the fact that every L-signature ΣL must satisfy the following
property (?). If (?) does not hold, thenM[O,ΣL] will contain some non L-axiom.

Property (?): O \ OL is ⊥-local w.r.t. ΣL

Example 1. Consider L = EL and the following ontology

Oex = {A v B, ∃R.C v D,E v ∀S.A, ∃R.D v ¬B}

Note that the set of L-axioms in Oex is Oex
L = {A v B, ∃R.C v D}. Further-

more, the signature of Oex
L , namely Σ1 = {A,B,C,D,R}, is not an L-signature

for Oex; indeed, the non L-axiom ∃R.D v ¬B is not ⊥-local w.r.t Σ1.
In contrast, we have that Oex \ Oex

L = {E v ∀S.A, ∃R.D v ¬B} is ⊥-local
w.r.t. Σ2 = (Sig(Oex) \ Sig(Oex

L )) = {C}. Furthermore,M[Oex,Σ2] = ∅; hence, Σ2

is an L-signature for Oex, and we can ensure that Oex 6|= C v X for each atomic
concept X ∈ Sig(Oex) different from C. ♦
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Although Example 1 might suggest that property (?) is also a sufficient
condition for ΣL to be an L-signature in O, this is unfortunately not the case.

Example 2. Consider Σ3 = {A,C,D,R, S}; clearly, Oex \ Oex
L is ⊥-local w.r.t Σ3

and hence (?) holds for Σ3. However, Σ3 is not an L-signature for Oex.
By Definition 4, each axiom inOex\M[Oex,Σ3] must be ⊥-local w.r.t. signature

Σ3 ∪ Sig(M[Oex,Σ3]) (and not just w.r.t Σ3). Axiom α = A v B is not ⊥-local
w.r.t. Σ3, so we have α ∈ M[Oex,Σ3]. But then, we have B ∈ Sig(M[Oex,Σ3]) and
hence the non L-axiom β = ∃R.D v ¬B is not ⊥-local w.r.t. Σ3∪Sig(M[Oex,Σ3]).

We can address this problem by reducing Σ3 to Σ4 = Σ3 \ {A}. The corre-
sponding ⊥-module for Σ4 then becomes M[Oex,Σ4] = {∃R.C v D}, which is an
L-ontology; thus, Σ4 is an L-signature for Oex. ♦

Example 2 suggests an algorithm for computing an L-signature for O, which
can be intuitively described as follows.

1. Reduce Σ0 = Sig(O) to a subset Σ1 of Σ0 such that S0 = O \OL is ⊥-local
w.r.t. Σ1 (thus satisfying (?)).

2. Compute the axioms S1 in M[O,Σ1] containing symbols not in Σ1.
3. Reduce Σ1 to a subset Σ2 of Σ1 such that S1 is ⊥-local w.r.t. Σ2.
4. Repeat Steps [2-4] until the set of axioms computed in Step 2 is empty.

Note that there can be many ways to perform the signature reduction required in
Steps 1 and 4. For instance, Σ2 and Σ3 in Examples 1 and 2 are both possible re-
ductions of Sig(Oex) in Step 1. These acceptable reductions can be characterised
using a function

localise : P(Sig(O))× P(O)→ P(Sig(O))

such that, givenΣ ∈ P(Sig(O)) and S ∈ P(O) not⊥-local w.r.t.Σ, localise(Σ,S)
returns

– Σ if S = ∅.
– a subset Σ′ ⊂ Σ such that every axiom in S is ⊥-local w.r.t. Σ′ if S 6= ∅

and Σ′ exists.
– ∅ otherwise.

Given a particular localise function, Algorithm 1 accepts a SROIQ ontology
O and returns either the pair 〈false, ∅〉 or a pair 〈true, ΣL〉 with ΣL ⊆ Sig(O)
an L-signature for Oex. Termination and correctness are granted by Theorem 1.

Theorem 1. Let Si, Σi (i ≥ 0) be defined by the following construction:

(i = 0): Σ0 = Sig(O) S0 = O \ OL
(i ≥ 1) : Σi = localise(Σi−1,Si−1) Si = {α ∈M[O,Σi] | Sig(α) 6⊆ Σi}

Let ΣL :=
⋂
i≥0Σi. Then, the following properties hold:

1. There exists k < |Sig(O)| such that either Σk = ∅ or Sk = ∅.
2. Either ΣL = ∅ or M[O,ΣL] ⊆ OL.
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Algorithm 1 L-signature(O)
Input: a SROIQ ontology O
1: Σ := Sig(O)
2: S := O \ OL
3: canLocalise = true
4: while S 6= ∅ and canLocalise do
5: Σ := localise(Σ,S)
6: if Σ = ∅ then
7: canLocalise := false
8: else
9: S := {α ∈M[O,Σ] | Sig(α) 6⊆ Σ}
10: return 〈canLocalise, Σ〉

Proof. We first show Claim 1. Suppose Σi 6= ∅ for each i ≥ 0. A straightforward
inductive argument would show that Σj ⊆ Σi for each j > i ≥ 0. Furthermore,
Σ0 = Sig(O), so it cannot be the case that Σj ⊂ Σi for each 0 ≤ i < j ≤ |Sig(O)|.
Therefore, there must be some k < |Sig(O)| such that Σk+1 = Σk; by the
definition of localise, this implies that Sk = ∅.

We finally show Claim 2. Suppose ΣL 6= ∅. It is enough to prove that each
α ∈ O \ OL is ⊥-local w.r.t. ΣL ∪ Sig(M[O,ΣL]).

First, we are going to see that Sig(M[O,ΣL]) ⊆ ΣL. According to Claim 1,
there exists k < |Sig(O)| such that Sk = ∅. This implies that, for each axiom
α ∈M[O,Σk], we have Sig(α) ⊆ Σk. It is easy to see that Sk = ∅ also implies that
Σj = Σk for each j > k. Together with the fact that Σj ⊆ Σi for each j > i ≥ 0,
this implies ΣL =

⋂
i≥0Σi = Σk. But then for each α ∈M[O,ΣL] =M[O,Σk] we

have Sig(α) ⊆ Σk = ΣL, and so Sig(M[O,ΣL]) ⊆ ΣL.

Now we can just prove that each α ∈ O \ OL is ⊥-local w.r.t. ΣL. Because
ΣL =

⋂
i≥0Σi 6= ∅, in particular it must be the case that Σ0 6= ∅. By definition of

localise, either O\OL = ∅—in which case it is immediate thatM[O,ΣL] ⊆ OL—
or every axiom in S0 = O \ OL is ⊥-local w.r.t. Σ1 = localise(Σ0,S0). Then, by
Proposition 1, each α ∈ O \ OL is ⊥-local w.r.t. ΣL ⊆ Σ1. ut

In practice, it is more convenient to use the L-reasoner to classify OL, instead
of M[O,ΣL]. Once ΣL has been computed, the following proposition shows that
OL provides as much information as M[O,ΣL] about the classification of O.
Furthermore, in generalM[O,ΣL] ⊂ OL so additional subsumption relationships
might be obtained by classifying OL.

Proposition 3. Let ΣL be an L-signature for an ontology O. Then for each
atomic concept A ∈ ΣL and each B ∈ Sig(O) ∪ {>,⊥} we have

O |= A v B iff OL |= A v B
Proof. Consider an atomic concept A ∈ ΣL and B ∈ Sig(O) ∪ {>,⊥}. By
monotonicity, because OL ⊆ O, we know that

O 6|= A v B implies OL 6|= A v B
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Algorithm 2 L-ModularClassification(O)
Input: a SROIQ ontology O
1: OL := {α ∈ O | α is an L-axiom}
2: ΣL := L-signature(O) . See Algorithm 1
3: HOL := L-classification(OL)
4: H := HermiTclassification(OL, HOL , Σ

L) . See Section 3.2 and Appendix
5: return H

By monotonicity, becauseM[O,ΣL] ⊆ OL (by Theorem 1), it is the case that
M[O,ΣL] |= A v B implies OL |= A v B. Now M[O,ΣL] is a ⊥-module in O
w.r.t. ΣL, so by Proposition 2, O |= A v B implies M[O,ΣL] |= A v B, and

O |= A v B implies OL |= A v B

Therefore, for each atomic concept A ∈ ΣL and B ∈ Sig(O) ∪ {>,⊥} we have
O |= A v B if and only if OL |= A v B, as required. ut

3.2 Adapting HermiT’s Initialisation Phase

As mentioned in Section 2.2, HermiT’s classification algorithm works with (dis-
joint) sets K and P of known and possible subsumptions, respectively. We next
discuss how we can use the information extracted from OL by the L-reasoner in
the initialisation of K and P.

Let K′ = {〈A,B〉 ∈ Sig(O) × (Sig(O) ∪ {>,⊥}) | OL |= A v B} be the
positive subsumptions extracted from OL by the L-reasoner. We can clearly
complement the initialisation of K by simply adding K′ to K.

To improve the initialisation of P, we can simply make sure that no pair
〈A,B〉 ∈ ΣL×Sig(O) is ever added to P. Indeed, by Proposition 3, if O |= A v B
then 〈A,B〉 must already be in K′; otherwise, we must have O 6|= A v B and
there is no need to consider the pair 〈A,B〉 as a possible subsumption.

We include in the Appendix a slightly modified version of the intialisation
algorithm in HermiT that is capable of exploiting the information extracted from
OL by the L-reasoner in the way just explained.

Algorithm 2 describes, at an abstract level, how the entire classification pro-
cess can be performed with our modular technique for a particular L ⊆ SROIQ
and a particular function localise.

4 Implementation and Experiments

We have implemented our algorithms in Java using the OWL API.2 Our im-
plementation of the localise function is based on the locality module extractor
described in [12], which is publicly available.3

2 http : //owlapi.sourceforge.net/
3 http : //www.cs.ox.ac.uk/isg/tools/ModuleExtractor
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Table 1. Test ontologies

Number of axioms Signature

Ontology Total EL++ Size Concepts
SNOMEDt 582,364 582,362 291,207 291,145
NCI 219,224 219,159 91,497 91,225
FMA-SNOMED 385,146 385,142 159,415 159,328

Table 2. L-signature and classification times for L = EL++

ΣL Classification time(s)
Ontology Size Concepts Time (s) HermiT Modular
SNOMEDt 280,985 (96%) 280,923 15.3 2,016.5 189.9
NCI 85,411 (93%) 85,139 7.6 74.9 32.0
FMA-SNOMED 33,124 (21%) 33,046 14.3 876.5 790.6

In the implementation of localise, symbols required to make a set of axioms
⊥-local are selected greedily axiom by axiom. When selecting symbols, we rely on
heuristics that try to keep as many roles as possible within ΣL. This is because
ontologies contain many more concepts than roles, and each role typically occurs
in a large number of axioms; thus, having a role outside ΣL is likely to cause
many other symbols to be left outside ΣL.

In our experiments, we have used the ontologies given in Table 1:

– SNOMEDt is a modification of the well-known SNOMED ontology (v. Jan-
uary 2010), where two axioms containing disjunction have been added (using
feedback obtained from SNOMED’s developers).

– NCI is the latest version of the National Cancer Institute Thesaurus. This
ontology contains 65 non EL++ axioms.

– FMA-SNOMED is the ontology obtained from the integration of (a frag-
ment of) the Foundational Model of Anatomy (FMA) and (a fragment of)
SNOMED using ontology mappings [13]. In this case, all the non EL++

axioms come from FMA.

Our results are summarised in Table 2. The first two columns in the table
provide the total size and number of concepts in the EL++-signature. The third
column indicates the time required to compute the EL++-signature using the
algorithm described in Section 3.1. Finally, the last two columns provide the total
classification time using (the latest version of) HermiT, and the classification
time required to complete the classification of OL as described in Section 3.2.
For convenience of implementation, we have also classified OL using HermiT
(and this time has not been included in the table); however, the reasoner ELK
can classifyOL in all cases in just a few seconds (e.g., ELK can classify SNOMED
using concurrent classification techniques in about 5 seconds [15]).

We can observe that 96% of the symbols in SNOMEDt (and 93% of the sym-
bols in NCI) are included in the EL++-signature; thus, all subsumers of concepts
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in this signature can be completely determined using an EL++-reasoner. Note,
however, that the size of the EL++-signature for FMA-SNOMED is compara-
tively much smaller. This is due to the structure of FMA, which contains several
non EL++ axioms about roles that are widely used in the ontology. For example,
the domain of the role hasMass is defined as a disjunction of very general con-
cepts, such as MaterialThing; since role hasMass is outside the EL++-signature, so
will be MaterialThing (and, as a consequence, also the many concepts subsumed
by MaterialThing).

Finally, concerning classification times, our results suggest the potential of
our techniques. Improvements are especially substantial for both SNOMEDt

and NCI, where the EL++-signature is very large.

5 Conclusion and Future Work

In this paper, we have proposed a technique for classifying a SROIQ ontology
O by exploiting a reasoner for a fragment L of SROIQ. Our technique allows
us to show that the subsumers of many concepts in O can be completely de-
termined using only the L-reasoner. Although our implementation is still at a
very prototypical stage, our preliminary experiments show the potential of our
approach in practice.

Our work is only very preliminary, and there are many interesting possibilities
for future work.

– Our heuristics for computing an L-signature ΣL are rather naive and there is
plenty of room for improvement. For example, it might be possible to explore
modular decomposition techniques to compute larger L-signatures [22].

– HermiT’s initialisation phase could be further improved to make better use
of the information obtained from the L-reasoner.

– We are using ⊥-modules, which provide very strong preservation guarantees
(they preserve even models). It would be interesting to devise novel tech-
niques for extracting modules that are more “permissive”, in the sense that
they only provide preservation guarantees for atomic subsumptions.

– Our technique could also be applied to a different notion of locality, as long
as it satisfied a result analogous to Proposition 2.

– It would be interesting to explore ontology rewriting techniques that comple-
ment module extraction. For example, we could rewrite O into an L-ontology
O′ such that O′ |= O, in which case the classification of O′ would provide
an “upper bound” to the classification of O.
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9. Haarslev, V., Möller, R.: Racer system description. In: Proc. of IJCAR. pp. 701–705
(2001)

10. Horrocks, I.: Implementation and optimisation techniques. In: The Description
Logic Handbook: Theory, Implementation, and Applications, chap. 9, pp. 306–346
(2003)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of KR. pp. 57–67 (2006)

12. Jimenez-Ruiz, E., Cuenca Grau, B., Schneider, T., Sattler, U., Berlanga, R.: Safe
and economic re-use of ontologies: a logic-based methodology and tool support. In:
Proc. of ESWC (2008)

13. Jiménez-Ruiz, E., Grau, B.C.: Logmap: Logic-based and scalable ontology match-
ing. In: Proc. of ISWC (2011)

14. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. of KR. pp.
274–284 (2008)
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UEL: Unification Solver for EL
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Abstract. UEL is a system that computes unifiers for unification prob-
lems formulated in the description logic EL. EL is a description logic
with restricted expressivity, but which is still expressive enough for the
formal representation of biomedical ontologies, such as the large medical
ontology SNOMEDCT.We propose to use UEL as a tool to detect redun-
dancies in such ontologies by computing unifiers of two formal concepts
suspected of expressing the same concept of the application domain. UEL
provides access to two different unification algorithms and can be used
as a plug-in of the popular ontology editor Protégé, or stand-alone.

1 Motivation

The description logic (DL) EL, which offers the concept constructors conjunction
(u), existential restriction (∃r.C), and the top concept (>), has recently drawn
considerable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL [1,10,4]. On the other hand,
though quite inexpressive, EL can be used to define biomedical ontologies, such
as the large medical ontology SNOMEDCT.1

Unification in DLs has been proposed in [9] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe head injury as

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_injury u ∃finding_site.Head). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by treating the concept names Head_injury and Severe_injury as variables, and
substituting the first one by Injury u ∃finding_site.Head and the second one by
Injury u ∃severity.Severe. In this case, we say that the descriptions are unifiable,
and call the substitution that makes them equivalent a unifier. Intuitively, such
? Supported by DFG under grant BA 1122/14-1
1 see http://www.ihtsdo.org/snomed-ct/
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Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ C AI = CI

a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head_injury as Injuryu∃finding_site.Head
and Severe_injury as Injury u ∃severity.Severe, then the two concept descriptions
(1) and (2) are equivalent w.r.t. these definitions. Of course, this example was
constructed such that the unifier actually provides sensible definitions for the
concept names used as variables. In general, the existence of a unifier only says
that there is a structural similarity between the two concepts. The developer that
uses unification as a tool for finding redundancies in an ontology or between two
different ontologies needs to inspect the unifier(s) to see whether the suggested
definitions really make sense.

In [6] it was shown that unification in EL is an NP-complete problem. Basi-
cally, this problem is in NP since every solvable unification problem has a “local”
unifier, i.e., one built from parts of the unification problem. The NP algorithm
introduced in [6] is a brutal “guess and then test” algorithm, which guesses a
local substitution and then checks whether it is a unifier. In [8], a more practical
rule-based EL-unification algorithm was introduced, which tries to transform
the given unification problems into a solved form, and makes nondeterministic
decisions only if triggered by the problem. Finally, the paper [7] proposes a third
algorithm, which encodes the unification problem into a set of propositional
clauses and then solves it using an existing highly optimized SAT solver.

Version 1.0.0 of our system UEL2 used only the SAT translation to solve uni-
fication problems. This approach allowed us to get a fast unification algorithm—
the unification problem only has to be translated into a propositional formula
and the SAT solver is used to actually solve the problem. In contrast, for the
implementation of the rule-based algorithm from [8] we had to find efficient
methods to deal with the nondeterminism ourselves. As of version 1.2.0, UEL
includes both implementations, as well as a variant of the SAT translation that
tries to compute only small unifiers.

2 EL and Unification in EL

In order to explain what the algorithms implemented in UEL actually compute,
we need to recall the relevant definitions and results for unification in EL.
2 All versions of this system are available at http://uel.sourceforge.net.
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Starting with a finite set NC of concept names and a finite set NR of role
names, EL-concept descriptions are built from concept names using the con-
structors conjunction (C u D), existential restriction (∃r.C for every r ∈ NR),
and top (>). On the semantic side, concept descriptions are interpreted as sets.
To be more precise, an interpretation I = (∆I , ·I) consists of a non-empty do-
main ∆I and an interpretation function ·I that maps concept names to subsets
of ∆I and role names to binary relations over ∆I . This function is extended to
concept descriptions as shown in the semantics column of Table 1.

A concept definition is of the form A ≡ C for a concept name A and a
concept description C. A TBox T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a definition in
T . The TBox T is called acyclic if there are no cyclic dependencies between its
concept definitions. Given a TBox T , we call a concept name A a defined concept
if it occurs as the left-side of a concept definition A ≡ C in T . All other concept
names are called primitive concepts. An interpretation I is a model of a TBox
T if AI = CI holds for all definitions A ≡ C in T .

Subsumption asks whether a given concept description C is a subconcept of
another concept description D: C is subsumed by D w.r.t. T (C vT D) if every
model I of T satisfies CI ⊆ DI . We say that C is equivalent to D w.r.t. T
(C ≡T D) if C vT D and D vT C. For the empty TBox, we write C v D and
C ≡ D instead of C v∅ D and C ≡∅ D, and simply talk about subsumption and
equivalence (without saying “w.r.t. ∅”).

In order to define unification, we partition the set NC of concept names into
a set Nv of concept variables (which may be replaced by substitutions) and
a set Nc of concept constants (which must not be replaced by substitutions).
Intuitively, Nv are the concept names that have possibly been given another
name or been specified in more detail in another concept description describing
the same notion. A substitution σ maps every variable to a concept description.
It can be extended to concept descriptions in the usual way.

Unification in EL was first considered w.r.t. the empty TBox [6]. In this
setting, an EL-unification problem is a finite set Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}
of equations. A substitution σ is a unifier of Γ if σ solves all the equations in
Γ , i.e., if σ(C1) ≡ σ(D1), . . . , σ(Cn) ≡ σ(Dn). We say that Γ is solvable if it
has a unifier. Without loss of generality, we can assume that the unification
problem is flat, i.e., that all concept descriptions occurring in it are conjunctions
of concept names or existential restrictions of the form ∃r.A with A ∈ NC . If a
unification problem is not flat, we can transform it into a flat unification problem
by introducing auxiliary variables.

As mentioned before, the main reason for solvability of unification in EL to be
in NP is that any solvable unification problem has a local unifier. Basically, any
unification problem Γ determines a polynomial number of so-called non-variable
atoms, which are concept constants or existential restrictions of the form ∃r.A
for a role name r and a concept constant or variable A. An assignment S maps
every concept variable X to a subset SX of the set Atnv of non-variable atoms
of Γ . Such an assignment induces a relation >S on Nv, which is the transitive

28



closure of {(X,Y ) ∈ Nv × Nv | Y occurs in an element of SX}. We call the
assignment S acyclic if >S is irreflexive (and thus a strict partial order). Any
acyclic assignment S induces a unique substitution σS , which can be defined by
induction along >S :

– If X ∈ Nv is minimal w.r.t. >S , then we define σS(X) :=
d
D∈SX

D.
– Assume that σS(Y ) is already defined for all Y such that X >S Y . Then we

define σS(X) :=
d
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS . Consequently, one can enumerate (or guess, in
a nondeterministic machine) all acyclic assignments and then check whether any
of them induces a substitution that is a unifier. Using this brute-force approach,
in general many local substitutions will be generated that only in the subsequent
check turn out not to be unifiers.

The fact that any solvable unification problem has a local unifier was shown
in [6] by proving that such a problem always has a minimal unifier and that
every minimal unifier is equivalent to a local unifier. Minimality and equivalence
of unifiers are determined by the following order � on substitutions. For two
substitutions σ and θ, we define σ � θ iff σ(X) v θ(X) holds for all variables
X. We say that a unifier σ of a unification problem Γ is minimal if there is no
unifier γ of Γ such that σ � γ and γ � σ. Two unifiers σ, θ are equivalent iff
σ � γ and γ � σ. We introduce a similar order � on assignments and write
S � S′ iff SX ⊇ S′X holds for all X ∈ Nv. We call an assignment S minimal
if σS is a unifier of Γ and there is no assignment S′ different from S such that
σS′ is a unifier of Γ and S � S′. The following is easy to show: if S � S′, then
σS � σS′ . As shown in [3], this implies that all minimal unifiers are induced
by minimal assignments, but the opposite need not hold. Computing only the
minimal assignments is thus a first step towards computing only minimal unifiers.
Computig only minimal unifiers is desirable since they are those among the local
unifiers that substitute the variables by smaller concept descriptions and their
corresponding assignments do not contain “irrelevant” non-variable atoms.

In [8], unification w.r.t. an acyclic TBox T was introduced. In this setting,
the concept variables are a subset of the primitive concepts of T , and substi-
tutions are applied both to the concept descriptions in the unification problem
and to the right-hand sides of the definitions in T . To deal with such unification
problems, one does not need to develop a new algorithm. In fact, by viewing the
defined concepts of T as variables, one can turn T into a unification problem,
which one simply adds to the given unification problem Γ . As shown in [8], there
is a 1–1-correspondence between the unifiers of Γ w.r.t. T and the unifiers of
this extended unification problem.

We will now describe the two unification algorithms implemented in UEL
1.2.0. Both algorithms have in common that they generate acyclic assignments,
and thus output only local unifiers. They follow two different approaches to
reduce the amount of blind guessing of the brute-force approach.
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The SAT Translation

Instead of blindly generating all local substitutions, the reduction to the propo-
sitional satisfiability problem introduced in [7] ensures that only assignments
that induce unifiers are generated. The set of propositional clauses C(Γ ) gen-
erated by the reduction contains two kinds of propositional letters: [A v B]
for A,B ∈ Atnv

3 and [X > Y ] for concept variables X,Y . Intuitively, setting
[A v B] = 1 means that the local substitution σS induced by the corresponding
assignment S satisfies σS(A) v σS(B), and setting [X > Y ] = 1 means that
X >S Y . The clauses in C(Γ ) are such that Γ has a unifier iff C(Γ ) is sat-
isfiable. In particular, any propositional valuation τ satisfying C(Γ ) defines an
assignment Sτ with SτX := {A | τ([X v A]) = 1, A ∈ Atnv}, which induces a
local unifier of Γ . Conversely, any local unifier of Γ can be obtained in this way.
Thus, by generating all propositional valuations satisfying C(Γ ) we can generate
all local unifiers of Γ . The main advantage of this algorithm is the speed of the
used SAT solver. However, the number of generated clauses is in general cubic in
the size of the unification problem. Thus, the translation will generate huge SAT
instances even from moderately sized unification problems, which might lead to
memory problems even before the SAT solver is applied.

The Rule-Based Algorithm

The second unification algorithm implemented in UEL is based on the rule-based
algorithm from [8]. However, internally it uses subsumptions of the form C v? D
instead of equivalences. This is without loss of generality since any equivalence
C ≡? D can be expressed by the two subsumptions C v? D and D v? C. This
variant of the algorithm has been described in more detail in [2].

The algorithm generates local unifiers by maintaining a set of current sub-
sumptions Γ and a current acyclic assignment S, both of which are extended by
applying certain rules. Initially, all subsumptions are marked as unsolved and
rules apply only to unsolved subsumptions and mark them as solved. In the pro-
cess, new subsumptions may be generated and the current assignment may be
extended by adding non-variable atoms to some of the sets SX . Once all sub-
sumptions are solved, the substitution σS induced by the current assignment is
a unifier of the unification problem.

Some of the rules are don’t-know nondeterministic, i.e., they might apply in
different ways to the same subsumption, but we do not know beforehand which
application is the correct one. Also the choice between several applicable non-
deterministic rules is don’t-know nondeterministic. The algorithm additionally
employs several eager rules that are always applied first and leave no choice in
their application. They are mainly there to reduce the number of nondetermin-
istic choices the algorithm has to make.

In contrast to the SAT reduction, this rule-based algorithm does not generate
all local unifiers. A non-variable atom D will only be put in the set SX if there
3 The reduction in [7] actually uses variables [A 6v B], but it turned out that the
reduction using non-negated subsumptions behaves better in practice.
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is a reason to do so in the unification problem, although there may be a local
unifier whose assignment S′ contains D in S′X . However, it was shown in [8] that
it can generate all minimal unifiers (up to equivalence). The converse is not true,
i.e., it might also generate local unifiers that are not minimal.

The main advantage of this algorithm is that non-variable atoms are only
added to the assignment if this is required by the unification problem, and thus
fewer unifiers of relatively small size are generated. The space requirements are
also quite low, since the current set of subsumptions and the current assignment
are of size at most quadratic in the input size. The downside of this algorithm
is that, without any of the optimizations implemented in modern SAT solvers,
the algorithm naively traverses the search space. However, implementing such
optimizations to improve its efficiency requires a huge effort.

3 Stuff not Mentioned in the Theoretical Papers

When implementing UEL, we had to deal with several issues that are abstracted
away in the theoretical papers describing unification algorithms for EL. Most of
them are not specific to the used unification algorithm.

Primitive definitions In addition to concept definitions, as introduced above,
biomedical ontologies often contain so-called primitive definitions A v C where
A is a concept name and C is a concept description. Models I of A v C need
to satisfy AI ⊆ CI . Thus, primitive definitions formulate necessary conditions
for concept membership, but these conditions are not sufficient. SNOMEDCT
contains about 350,000 primitive definitions and only 40,000 concept definitions.

By using a trick first introduced by Nebel [13], primitive definitions A v C
can be turned into concept definitions A ≡ C u A_UNDEF, where A_UNDEF
is a new concept name that stands for the undefined part of the definition of A.
In the resulting acyclic TBox, these new concept names are primitive concepts,
and thus can be declared to be variables. In this case, a unifier σ suggest how to
complete the definition of A by providing the concept description σ(A_UNDEF).

Unifiers as acyclic TBoxes Given an acyclic assignment S computed by one
of the unification algorithms, our system UEL actually does not produce the
corresponding local unifier σS as output, but rather the acyclic TBox TS :=
{X ≡ d

D∈SX
D | X ∈ Nv}. This TBox solves the input unification problem

Γ w.r.t. T in the sense that C ≡T ∪TS D holds for all equations C ≡? D in Γ .
This is actually what the developer that employs unification wants to know: how
must the concept variables be defined such that the concept descriptions in the
equations become equivalent? Another advantage of this representation of the
output is that the size of S and thus of TS is polynomial in the size of the input
Γ and T , while the size of the concept descriptions σS(X) may be exponential
in this size. In the following, we will also call the TBoxes TS unifiers.

Internal variables As mentioned before, the unification algorithms for EL as-
sume that the unification problem is first transformed into a flat form. This form
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can easily be generated by introducing auxiliary variables. These new variables
have system-generated names, which do not make sense to the user. Thus, they
should not show up in the output acyclic TBox TS . By replacing such auxiliary
defined concepts in TS by their definitions as long as auxiliary names occur, we
can transform TS into an acyclic TBox that satisfies this requirement, actually
without causing an exponential blow-up of the size of the TBox.

Reachable subontology As mentioned above, acyclic TBoxes are treated by
viewing them as part of the unification problem. For very large TBoxes like
SNOMEDCT, adding the whole TBox to the unification problem is neither
viable nor necessary. In fact, it is sufficient to add the reachable part of the
TBox, i.e., the definitions on which the concept descriptions in the unification
problem depend. This reachable part is usually rather small, even for very large
ontologies.

Enumeration of unifiers While computing a single unifier is usually quite
fast, computing all of them can take much longer. We alleviate this problem by
enabling the user to compute and then inspect one unifier at a time. If this unifier
makes sense, i.e., suggests reasonable definitions for the variables, then the user
can stop. Otherwise, the computation of the next unifier can be initiated.

For the rule-based algorithm, we output all produced unifiers by a depth-first
traversal of the search space. This means that we apply applicable nondetermin-
istic rules as long as this is possible. If there are no more unsolved subsumptions,
we return the corresponding unifier. If no rule is applicable, we backtrack and
apply the last nondeterministic rule in a different way or apply another rule.

For the SAT reduction, the approach is different. If the SAT solver has pro-
vided a satisfying propositional valuation, we can add a clause to the SAT prob-
lem that prevents the re-computation of this assignment, and call the SAT solver
with this new SAT instance. If the SAT solver determines that the current set
of clauses is unsatisfiable, then there are no more unifiers.

Computing only minimal assignments The satisfying valuations of the
propositional formula generated by the SAT translation yield all local unifiers
of the unification problem. Depending on how many concept names are turned
into variables, there can be many local unifiers. To address this problem, we
implemented a variant of the SAT reduction that computes only the local unifiers
induced by minimal assignments w.r.t. �, which are often significantly fewer.

This approach is still complete in the sense that it computes all minimal
unifiers (see Section 2). It works by transforming the SAT problem into a special
case of a partial MAX-SAT problem [11], where in addition to the clauses that
are to be satisfied one can specify a subset Vmin of the propositional variables.
The goal is to minimize the number of variables from the set Vmin that are set
to 1. By setting Vmin = {[X v A] | X ∈ Nv, A ∈ Atnv}, we ensure that the first
valuation returned by the MAX-SAT solver induces a minimal assignment S.4

4 If {(X,A) | X ∈ Nv, A ∈ SX} has minimal cardinality among all assignments that
induce a unifier of the unification problem, then it is also minimal w.r.t. set inclusion.
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To ensure that subsequent calls to the MAX-SAT solver return no assignments
larger than S, we add a clause to the problem instance that requires that at
least one of the variables of the form [X v A] with A ∈ SX should be set to 0.

Of course, the reformulation of the problem as a MAX-SAT instance adds
an overhead to the computation time. However, this approach guarantees that
no “superfluous,” i.e., non-minimal, assignments are presented to the user.

4 The User Interface

UEL was implemented in Java 1.6 and is compatible with Java 1.7. It uses the
OWL API 3.2.45 to read ontologies. It has a visual interface that can be used
as a Protégé 4.1 plug-in, or as a standalone application. For the SAT-based
unification algorithm, we currently use SAT4J6 as (MAX-)SAT solver, which
is implemented in Java. However, this configuration can easily be changed to
any solver that accepts the popular DIMACS CNF7 (or WCNF8) format as
input and returns the computed satisfying propositional valuation. For the rule-
based algorithm, we have implemented everything from scratch, and thus have
no external dependencies.

After opening UEL’s visual interface, the first step is to open one or two
ontologies. The latter enables unification of concepts defined in different ontolo-
gies. Additionally, the user can choose between the three unification algorithms
by selecting the “SAT-based algorithm [(minimal assignments)]” or the “Rule-
based algorithm”. The user can then choose two concepts to be unified. This is
done by choosing two concept names that occur on the left-hand sides of concept
definitions or primitive definitions (see Figure 1). UEL then computes the subon-
tologies reachable from these concept names, and turns the primitive definitions
in these subontologies into concept definitions.

After choosing the concepts to be unified, pressing the button opens
a dialog window in which the user is presented with the primitive concepts
contained in these subontologies (including the ones with ending _UNDEF).
The user can then decide which of these primitive concepts should be viewed as
variables in the unification problem.

Once the user has chosen the variables, UEL computes the unification prob-
lem defined this way and opens a dialog window with control buttons. By pressing
the button , the user triggers the computation of the first (or next) unifier.
Each computed unifier is shown as an acyclic TBox in KRSS format. The button

can be used to go back to the previously computed unifier. The button
can be used to trigger the computation of all remaining unifiers, and the button

allows to jump back to the first unifier (see Figure 2). Computed unifiers
are stored, and thus need not be recomputed during navigation. Each unifier
(i.e., the acyclic TBox representing it) can be saved using the RDF/OWL or the
5 http://owlapi.sourceforge.net
6 http://www.sat4j.org
7 http://www.satcompetition.org/2011/format-benchmarks2011.html
8 http://www.maxsat.udl.cat/11/requirements/index.html

33



Fig. 1. The user can choose the unification algorithm and the concepts to be unified.

Fig. 2. The user can browse through the computed unifiers.

KRSS format by pressing the button . The file format is determined by the
filename extension given by the user (.owl or .krss).

The user can use the button to retrieve internal details about the compu-
tation process. The unification problem created internally by UEL is then shown
in KRSS format in a separate dialog. Additionally, the number of all concept
variables (those chosen by the user and internal variables) is given. Depending
on the chosen algorithm, several other internal statistics can be viewed. If the
SAT reduction is used, the number of propositional letters and the number of
propositional clauses are listed. For the rule-based algorithm, the number of
initial subsumptions, the maximal number of generated subsumptions (over all
nondeterministic choices), and the size of the search tree (i.e., the number of
nondeterministic choices) are shown, as well as the number of “dead ends” where
the algorithm had to backtrack. These numbers always reflect the current status
and might increase if more unifiers are computed.

5 Some Examples

To illustrate the behavior of the three approaches, we consider several exam-
ple problems. The size of these problems as well as the size of the generated
data structures (propositional clauses or subsumptions) is depicted in Table 2,
together with the runtimes of the three algorithms one these problems.

The first example is a modified version of our example from the beginning,
where the TBox gives (1) as definition for Patient_with_severe_head_injury and
(2) as definition for Patient_with_severe_injury_at_head. In addition, the TBox
contains two primitive definitions, saying that Head_injury and Severe_injury
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Table 2. These are the numbers of equations and variables of some example problems,
as well as the numbers of generated clauses, propositional variables, and subsumptions,
and the number of dead ends encountered by the rule-based algorithm. The second part
contains the runtime and number of computed unifiers of each algorithm.

problem size SAT MAX-SAT Rule
# equ. var. clauses prop. subs. (max.) dead ends time unif. time unif. time unif.
1 7 8 3,976 320 20 (52) 0 0.249 128 0.047 1 0.001 1
2 23 12 17,971 820 47 (217) 63,523 0.500 0 0.510 0 1.920 0
3 34 14 28,071 1,096 62 (320) 1,126,286 1.086 15 1.162 15 26.308 30

are subconcepts of Injury. If we choose Patient_with_severe_head_injury and
Patient_with_severe_injury_at_head as the concepts to be unified, the system
offers us the primitive concepts Patient, Severe, Head, Head_injury_UNDEF, and
Severe_injury_UNDEF as possible variables, of which we choose only the latter
two.

The SAT translation generates a large SAT problem (4,000 clauses are created
from only 7 equations) and first computes the following unifier:

{Head_injury_UNDEF 7→ ∃finding_site.Head,

Severe_injury_UNDEF 7→ ∃severity.Severe}.

This substitution completes the primitive definitions of the concepts Head_injury
and Severe_injury to concept definitions Head_injury ≡ Injuryufinding_site.Head
and Severe_injury ≡ Injury u ∃severity.Severe.

However, the unification problem has 127 additional local unifiers. Some of
them are similar to the first one, but contain “redundant” conjuncts. Others do
not make much sense in the application (e.g., ones where Patient occurs in the
images of the variables). In contrast, the MAX-SAT variant of the translation
has to deal with an even larger problem since it has to consider the additional
set Vmin. However, it is much faster since it computes only the unifier shown
above, which is the only minimal unifier of this unification problem. The rule-
based algorithm shows an even better performance since the data structures it
creates are orders of magnitude smaller than the SAT problem and the unifica-
tion problem is very deterministic—in fact, no backtracking is necessary. It also
returns only the minimal unifier.

The second unification problem was constructed starting with a “hard” SAT
instance (according to the approach in [12]), which was translated into a uni-
fication problem using the construction in [5]. Even though a large number of
propositional clauses are constructed in the reduction back to a SAT problem,
the SAT solver takes little time to determine that the problem has no solution.
The overhead incurred by the use of a MAX-SAT problem is negligible. In con-
trast, the rule-based algorithm works on a much smaller data structure (at most
217 subsumptions during the whole run), but lacks the optimizations of the SAT
solver and naively traverses a large search tree looking for a unifier.

The last example shows even more extreme differences. Again, we started
from a simple SAT problem (“Choose exactly 2 out of 6 variables.”) that has 15
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models which correspond to 15 minimal unifiers. Both the SAT-based and the
MAX-SAT-based approach compute these unifiers quite fast, but the rule-based
algorithm takes much longer and even computes each of the solutions twice.

6 Conclusions

Our system UEL enables ontology engineers to test ontologies for redundancies
and allows them to choose between different algorithms with different strengths.
The rule-based algorithm has a big advantage over the SAT translation since it
needs only small data structures, but currently lacks important search optimiza-
tions, which make this implementation unsuitable for large problems.

In the current version 1.2.0, UEL only supports checking two pre-selected
concept names for similarities. In future versions, we plan to implement an au-
tomatic search feature that can scan (a part of) an ontology for concept names
that unify. For this we also need to find an intelligent way to automatically select
the variables from a set of primitive concept names.

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. IJCAI’03. pp. 325–330. Morgan Kaufmann (2003)

2. Baader, F., Borgwardt, S., Morawska, B.: Unification in the description logic EL
w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Chair of Automata Theory, TU
Dresden, Germany (2011), see http://lat.inf.tu-dresden.de/research/reports.html.

3. Baader, F., Borgwardt, S., Morawska, B.: Computing minimal EL-unifiers is
hard. LTCS-Report 12-03, Chair for Automata Theory, TU Dresden (2012), see
http://lat.inf.tu-dresden.de/research/reports.html.

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI’05. pp.
364–369. Professional Book Center (2005)

5. Baader, F., Küsters, R.: Matching concept descriptions with existential restrictions.
In: Proc. KR’00. pp. 261–272. Morgan Kaufmann (2000)

6. Baader, F., Morawska, B.: Unification in the description logic EL. In: Proc. RTA’09.
LNCS, vol. 5595, pp. 350–364. Springer (2009)

7. Baader, F., Morawska, B.: SAT encoding of unification in EL. In: Proc. LPAR’10.
LNCS, vol. 6397, pp. 97–111. Springer (2010)

8. Baader, F., Morawska, B.: Unification in the description logic EL. Log. Meth.
Comput. Sci. 6(3) (2010)

9. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

10. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. ECAI’04. pp. 298–302 (2004)

11. Li, C.M., Manyà, F.: Maxsat, hard and soft constraints. In: Handbook of Satisfia-
bility, chap. 19, pp. 613–631. IOS Press (2009)

12. Markström, K.: Locality and hard SAT-instances. JSAT 2(1-4), 221–227 (2006)
13. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems, LNAI, vol.

422. Springer (1990)

36



A Goal-Oriented Algorithm for Unification in EL
w.r.t. Cycle-Restricted TBoxes?

Franz Baader, Stefan Borgwardt, and Barbara Morawska
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Theoretical Computer Science, TU Dresden, Germany

1 Introduction

Unification in DLs has been proposed in [7] (for the DL FL0, which offers the
constructors conjunction (u), value restriction (∀r.C), and the top concept (>))
as a novel inference service that can, for instance, be used to detect redundancies
in ontologies. For example, assume that one developer of a medical ontology
defines the concept of a patient with severe head injury as

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by treating the concept names Head_injury and Severe_finding as variables, and
substituting the first one by Injury u ∃finding_site.Head and the second one by
∃severity.Severe. In this case, we say that the descriptions are unifiable, and call
the substitution that makes them equivalent a unifier. Intuitively, such a unifier
proposes definitions for the concept names that are used as variables: in our
example, we know that, if we define Head_injury as Injury u ∃finding_site.Head
and Severe_finding as ∃severity.Severe, then the two concept descriptions (1)
and (2) are equivalent w.r.t. these definitions. Here equivalence holds without
additional GCIs.

To motivate our interest in unification w.r.t. GCIs, assume that the second
developer uses the description

Patient u ∃status.Emergency u (3)
∃finding.(Severe_finding u Injury u ∃finding_site.Head)

instead of (2). The descriptions (1) and (3) are not unifiable without additional
GCIs, but they are unifiable, with the same unifier as above, if the GCI

∃finding.∃severity.Severe v ∃status.Emergency

? Supported by DFG under grant BA 1122/14-1
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is present in a background ontology.
In [4], we were able to show that unification in the DL EL (which differs from

FL0 by offering existential restrictions (∃r.C) in place of value restrictions) is of
considerably lower complexity than in FL0: the decision problem in EL is NP-
complete rather than ExpTime-complete in FL0. In addition to a brute-force
“guess and then test” NP-algorithm [4], we have developed a goal-oriented uni-
fication algorithm for EL, in which nondeterministic decisions are only made if
they are triggered by “unsolved parts” of the unification problem [6], and an algo-
rithm that is based on a reduction to satisfiability in propositional logic (SAT)
[5], which enables the use of highly-optimized SAT solvers. In [6] it was also
shown that the approaches for unification of EL-concept descriptions (without
any background ontology) can easily be extended to the case of an acyclic TBox
as background ontology without really changing the algorithms or increasing
their complexity. Basically, by viewing defined concepts as variables, an acyclic
TBox can be turned into a unification problem that has as its unique unifier
the substitution that replaces the defined concepts by unfolded versions of their
definitions. For GCIs, this simple trick is not possible.

In [2], we extended the brute-force “guess and then test” NP-algorithm from
[4] to the case of GCIs, which required the development of a new characterization
of subsumption w.r.t. GCIs in EL. Unfortunately, the algorithm is complete only
for general TBoxes (i.e., finite sets of GCIs) that satisfy a certain restriction
on cycles, which, however, does not prevent all cycles. For example, the cyclic
GCI ∃child.Human v Human satisfies this restriction, whereas the cyclic GCI
Human v ∃parent.Human does not.

In the present paper, we describe a goal-oriented algorithm for unification in
EL w.r.t. cycle-restricted general TBoxes, which extends the one from [6] and
reduces the amount of nondeterministic guesses considerably. Full proofs of the
presented results can be found in [1].

2 The Description Logic EL

Syntax and semantics of EL are defined in the usual way (see, e.g., [9]). Here,
we just recall that EL-concept descriptions are built from a finite set NC of
concept names and a finite set NR of role names using the concept constructors
top-concept (>), conjunction (C uD), and existential restriction (∃r.C for every
r ∈ NR). Nested existential restrictions ∃r1.∃r2. · · · ∃rn.C will sometimes also be
written as ∃r1r2 . . . rn.C, where r1r2 . . . rn is viewed as a word over the alphabet
of role names, i.e., an element of N∗R. As usual, concepts C are interpreted as sets
CI over some domain such that the semantics of the constructors is respected.

A general concept inclusion (GCI) is of the form C v D for concept de-
scriptions C,D, and a general TBox is a finite set of GCIs. An interpretation I
satisfies such a GCI if CI ⊆ DI , and it is a model of the general TBox T if it
satisfies all GCIs in T . Subsumption asks whether a given GCI C v D follows
from a general TBox T , i.e. whether every model of T satisfies C v D. In this
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case we say C is subsumed by D w.r.t. T and write C vT D. Subsumption in
EL w.r.t. a general TBox is known to be decidable in polynomial time [9].

An EL-concept description is an atom if it is an existential restriction or a
concept name. The atoms of an EL-concept description C are the subdescriptions
of C that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any EL-concept description is the
conjunction of its top-level atoms, where the empty conjunction corresponds to
>. The atoms of a general TBox T are the atoms of all the concept descriptions
occurring in T .

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, we define structural subsumption
between atoms as follows: the atom C is structurally subsumed by the atom D
w.r.t. T (C vs

T D) iff either (i) C = D is a concept name, or (ii) C = ∃r.C ′,
D = ∃r.D′, and C ′ vT D′. It is easy to see that subsumption w.r.t. ∅ between
two atoms implies structural subsumption w.r.t. T , which in turn implies sub-
sumption w.r.t. T . The unification algorithm in [2] and the one presented below
crucially depend on the following characterization of subsumption:

Lemma 1. Let T be a general TBox and C1, . . . , Cn, D1, . . . , Dm atoms. Then
C1 u · · · u Cn vT D1 u · · · uDm iff for every j ∈ {1, . . . ,m}
1. there is an index i ∈ {1, . . . , n} such that Ci vs

T Dj, or
2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

a) A1 u · · · uAk vT B,
b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci vs

T Aη, and
c) B vs

T Dj.

Our proof of this lemma in [1] is based on a new Gentzen-style proof calculus
for subsumption w.r.t. a general TBox, which is similar to the one developed in
[10] for subsumption w.r.t. cyclic and general TBoxes.

As mentioned in the introduction, our unification algorithm is complete only
for general TBoxes that satisfy a certain restriction on cycles.

Definition 2. The general TBox T is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C vT ∃w.C.
In [1] we show that a given general TBox can easily be tested for cycle-

restrictedness. The main idea is that it is sufficient to consider the cases where
C is a concept name or >.
Lemma 3. Let T be a general TBox. It can be decided in time polynomial in
the size of T whether T is cycle-restricted or not.

3 Unification in EL w.r.t. General TBoxes

We partition the set NC into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not be
replaced by substitutions). A substitution σ maps every concept variable to an
EL-concept description. It is extended to concept descriptions in the usual way:
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– σ(A) := A for all A ∈ Nc ∪ {>},
– σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept description C is ground if it does not contain variables. Obvi-
ously, a ground concept description is not modified by applying a substitution.
A general TBox is ground if it does not contain variables.

Definition 4. Let T be a general TBox that is ground. An EL-unification prob-
lem w.r.t. T is a finite set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions
between EL-concept descriptions. A substitution σ is a unifier of Γ w.r.t. T if σ
solves all the subsumptions in Γ , i.e. if σ(C1) vT σ(D1), . . . , σ(Cn) vT σ(Dn).
We say that Γ is unifiable w.r.t. T if it has a unifier.

Note that we have restricted the background general TBox T to be ground.
This is not without loss of generality. If T contained variables, then we would
need to apply the substitution also to its GCIs, and instead of requiring σ(Ci) vT
σ(Di) we would thus need to require σ(Ci) vσ(T ) σ(Di), which would change
the nature of the problem considerably (see [1] for a more detailed discussion).

Preprocessing To simplify the description of the algorithm, it is convenient to
first normalize the TBox and the unification problem appropriately. An atom is
called flat if it is a concept name or an existential restriction of the form ∃r.A
for a concept name A. The general TBox T is called flat if it contains only GCIs
of the form A u B v C, where A,B are flat atoms or > and C is a flat atom.
The unification problem Γ is called flat if it contains only flat subsumptions of
the form C1 u · · · u Cn v? D, where n ≥ 0 and C1, . . . , Cn, D are flat atoms.1

Let Γ be a unification problem and T a general TBox. By introducing auxil-
iary variables and concept names, respectively, Γ and T can be transformed in
polynomial time into a flat unification problem Γ ′ and a flat general TBox T ′
such that the unifiability status remains unchanged, i.e., Γ has a unifier w.r.t.
T iff Γ ′ has a unifier w.r.t. T ′. In addition, if T was cycle-restricted, then so is
T ′ (see [1] for details). Thus, we can assume without loss of generality that the
input unification problem and general TBox are flat.

Local Unifiers The main idea underlying the “in NP” results in [4,2] is to show
that any EL-unification problem that is unifiable has a so-called local unifier. Let
T be a flat cycle-restricted TBox and Γ a flat unification problem. The atoms
of Γ are the atoms of all the concept descriptions occurring in Γ . We define

At := {C | C is an atom of T or of Γ} and
Atnv := At \Nv (non-variable atoms).

Every assignment S of subsets SX of Atnv to the variables X in Nv induces the
following relation >S on Nv: >S is the transitive closure of

{(X,Y ) ∈ Nv ×Nv | Y occurs in an element of SX}.
1 If n = 0, then we have an empty conjunction on the left-hand side, which as usual
stands for >.
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We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS , which can
be defined by induction along >S :

– If X ∈ Nv is minimal w.r.t. >S , then we define σS(X) :=
d
D∈SX

D.
– Assume that σ(Y ) is already defined for all Y such that X >S Y . Then we

define σS(X) :=
d
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic assign-
ment S such that σ = σS . If the unifier σ of Γ w.r.t. T is a local substitution,
then we call it a local unifier of Γ w.r.t. T .

The main technical result shown in [2] is that any unifiable EL-unification
problem w.r.t. a cycle-restricted TBox has a local unifier. This yields the follow-
ing brute-force unification algorithm for EL w.r.t. cycle-restricted TBoxes: first
guess an acyclic assignment S, and then check whether the induced local sub-
stitution σS solves Γ . As shown in [2], this algorithm runs in nondeterministic
polynomial time. NP-hardness follows from the fact that already unification in
EL w.r.t. the empty TBox is NP-hard [4].

4 A Goal-Oriented Unification Algorithm

The brute-force algorithm is not practical since it blindly guesses an acyclic
assignment and only afterwards checks whether the guessed assignment induces
a unifier. We now introduce a more goal-oriented unification algorithm, in which
nondeterministic decisions are only made if they are triggered by “unsolved parts”
of the unification problem. In addition, failure due to wrong guesses can be
detected early. Any non-failing run of the algorithm produces a unifier, i.e.,
there is no need for checking whether the assignment computed by this run
really produces a unifier. This goal-oriented algorithm generalizes the algorithm
for unification in EL w.r.t. the empty TBox introduced in [6], though the rules
look quite different because in the present paper we consider unification problems
that consist of subsumptions whereas in [6] we considered equivalences.

We assume without loss of generality that the cycle-restricted TBox T and
the unification problem Γ0 are flat. Given T and Γ0, the sets At and Atnv are
defined as above. Starting with Γ0, the algorithm maintains a current unification
problem Γ and a current acyclic assignment S, which initially assigns the empty
set to all variables. In addition, for each subsumption in Γ it maintains the in-
formation on whether it is solved or not. Initially, all subsumptions are unsolved,
except those with a variable on the right-hand side. Rules are applied only to
unsolved subsumptions. A (non-failing) rule application does the following:

– it solves exactly one unsolved subsumption,
– it may extend the current assignment S, and
– it may introduce new flat subsumptions built from elements of At.

Each rule application that extends SX additionally expands Γ w.r.t. X as follows:
every subsumption s ∈ Γ of the form C1 u · · · uCn v? X is expanded by adding
the subsumption C1 u · · · u Cn v? A to Γ for every A ∈ SX .
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Eager Ground Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if it is ground.
Action: If C1 u · · · u Cn vT D does not hold, the rule application fails. Oth-
erwise, s is marked as solved.

Eager Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if either
– there is i ∈ {1, . . . , n} such that Ci = D or Ci = X ∈ Nv and D ∈ SX , or
– D is ground and

dG vT D holds, where G is the set of all ground atoms
in {C1, . . . , Cn} ∪

⋃
X∈{C1,...,Cn}∩Nv

SX .
Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1u· · ·uCn v? D if there is i ∈ {1, . . . , n}
with Ci = X ∈ Nv and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: Its application adds D to SX . If this makes S cyclic, the rule appli-
cation fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Fig. 1. The eager rules of the unification algorithm.

Subsumptions are only added if they are not already present in Γ . If a new
subsumption is added to Γ , either by a rule application or by expansion of Γ ,
then it is initially designated unsolved, except if it has a variable on the right-
hand side. Once a subsumption is in Γ , it will not be removed. Likewise, if a
subsumption in Γ is marked as solved, then it will not become unsolved later.

If a subsumption is marked as solved, this does not mean that it is already
solved by the substitution induced by the current assignment. It may be the
case that the task of satisfying the subsumption was deferred to solving other
subsumptions which are “smaller” than the given subsumption in a well-defined
sense. The task of solving a subsumption whose right-hand side is a variable is
deferred to solving the subsumptions introduced by expansion.

The rules of the algorithm consist of the three eager rules Eager Ground
Solving, Eager Solving, and Eager Extension (see Figure 1), and several nonde-
terministic rules (see Figures 2 and 3). Eager rules are applied with higher pri-
ority than nondeterministic rules. Among the eager rules, Eager Ground Solving
has the highest priority, then comes Eager Solving, and then Eager Extension.

Algorithm 5. Let Γ0 be a flat EL-unification problem. We set Γ := Γ0 and
SX := ∅ for all X ∈ Nv. While Γ contains an unsolved subsumption, apply the
steps (1) and (2). Once all subsumptions are solved, return the substitution σ
induced by the current assignment.

(1) Eager rule application: If some eager rules apply to an unsolved sub-
sumption s in Γ , apply one of highest priority. If the rule application fails,
then return “not unifiable”.

(2) Nondeterministic rule application: If no eager rule is applicable, let s be
an unsolved subsumption in Γ . If one of the nondeterministic rules applies
to s, nondeterministically choose one of these rules and apply it. If none of
these rules apply to s or the rule application fails, then return “not unifiable”.
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Decomposition:

Condition: This rule applies to s = C1 u · · · uCn v? ∃s.D′ if there is at least
one index i ∈ {1, . . . , n} with Ci = ∃s.C′.
Action: Its application chooses such an index i, adds the subsumption C′ v?

D′ to Γ , expands it w.r.t. D′ if D′ is a variable, and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · uCn v? D if there is at least one
i ∈ {1, . . . , n} with Ci ∈ Nv.
Action: Its application chooses such an i and adds D to SCi . If this makes S
cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci and s is
marked as solved.

Fig. 2. The nondeterministic rules Decomposition and Extension.

In step (2), the choice which unsolved subsumption to consider next is don’t
care nondeterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know nondeterministic. Additionally, the application of non-
deterministic rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid
nondeterministic choices if a deterministic decision can be made. For example,
a ground subsumption, as considered in the Eager Ground Solving rule, either
follows from the TBox, in which case any substitution solves it, or it does not,
in which case it does not have a solution. This condition can be checked in poly-
nomial time using the polynomial time subsumption algorithm for EL [9]. In
the case considered in the Eager Solving rule, the substitution induced by the
current assignment already solves the subsumption. In fact, if the first (second)
condition of the rule is satisfied, then the first (second) condition of Lemma 1
applies. The Eager Extension rule solves a subsumption that contains only a
variable X and some elements of SX on the left-hand side. The rule is moti-
vated by the following observation: for any assignment S′ extending the current
assignment, the induced substitution σ′ satisfies σ′(X) ≡ σ′(C1) u . . . u σ′(Cn).
Thus, if S′X contains D, then σ′(X) vT σ′(D), and σ′ solves the subsumption.
Conversely, if σ′ solves the subsumption, then σ′(X) vT σ′(D), and thus adding
D to S′X yields an equivalent induced substitution.

The nondeterministic rules only come into play if no eager rules can be
applied. In order to solve an unsolved subsumption s = C1 u · · · u Cn v? D, we
consider the two conditions of Lemma 1. Regarding the first condition, which is
addressed by the rules Decomposition and Extension, assume that γ is induced
by an acyclic assignment S. To satisfy the first condition of the lemma with γ,
the atom γ(D) must subsume a top-level atom in γ(C1)u· · ·uγ(Cn). This atom
can either be of the form γ(Ci) for an atom Ci, or it can be of the form γ(C) for
an atom C ∈ SCi and a variable Ci. In the second case, the atom C can either
already be in SCi

or it can be put into SCi
by an application of the Extension rule.

The Mutation rules cover the second condition in Lemma 1. For example, let us
analyze in detail how Mutation 1 ensures that all the requirements of the second
condition of Lemma 1 are satisfied. Whenever this condition requires a structural
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Mutation 1:
Condition: This rule applies to s = C1 u · · · uCn v? D if n > 1 and there are
atoms A1, . . . , Ak, B of T such that A1 u · · · uAk vT B holds.
Action: Its application chooses such atoms, marks s as solved, and generates
the following subsumptions:
– it chooses for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and adds the new

subsumption Ci v? Aη to Γ ,
– it adds B v? D to Γ .

Mutation 2:
Condition: This rule applies to s = ∃r.X v? D if X is a variable, D is ground,
and there are atoms ∃r.A1, . . . , ∃r.Ak of T such that ∃r.A1 u · · · u ∃r.Ak vT D
holds.
Action: Its application chooses such atoms, adds A1, . . . , Ak to SX , expands
Γ w.r.t. X, and marks s as solved.

Mutation 3:
Condition: This rule applies to s = ∃r.X v? ∃s.Y if X and Y are variables,
and there are atoms ∃r.A1, . . . , ∃r.Ak, ∃s.B of T with ∃r.A1 u · · · u ∃r.Ak vT
∃s.B.
Action: Its application chooses such atoms, marks s as solved, and generates
the following subsumptions:
– it adds A1, . . . , Ak to SX and expands Γ w.r.t. X,
– it adds the subsumption B v? Y to Γ and expands it w.r.t. Y .

Mutation 4:
Condition: This rule applies to s = C v? ∃s.Y if C is a ground atom or >,
Y is a variable, and there is an atom ∃s.B of T such that C vT ∃s.B holds.
Action: Its application chooses such an atom, adds the new subsumption B v?

Y to Γ , expands this subsumption w.r.t. Y , and marks s as solved.

Fig. 3. The nondeterministic Mutation rules of the unification algorithm.

subsumption γ(E) vs
T γ(F ) to hold for a (hypothetical) unifier γ of Γ , the rule

creates the new subsumption E v? F , which has to be solved later on. This way,
the rule ensures that the substitution built by the algorithm actually satisfies
the conditions of the lemma. To check the subsumption A1 u · · · uAk vT B, the
rule again employs a polynomial-time subsumption algorithm.

The other mutation rules follow the same idea, but they implicitly apply
one or more Decomposition or Eager Extension rules after mutation. This en-
sures that the generated subsumptions are “smaller” than the subsumption that
triggers their introduction.

Soundness We will show that, if Algorithm 5 returns a substitution σ on input
Γ0, then σ is a unifier of Γ0 w.r.t. T . In the following, let S be the final acyclic
assignment computed by a non-failing run of Algorithm 5 on input Γ0, and σ
the substitution induced by S. By Γ̂ we denote the final set of subsumptions
computed by this run, i.e., the original subsumptions of Γ0 together with the
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new ones generated by rule applications. To show that σ solves all subsumptions
in Γ̂ , we use well-founded induction [8] on the well-founded order � on Γ̂ :

Definition 6. Let s = C1 u · · · u Cn v? Cn+1 ∈ Γ̂ .
– s is small if n = 1 and C1 is ground or Cn+1 is ground.
– We define m(s) := (m1(s),m2(s),m3(s)), where
• m1(s) := 0 if s is small, and m1(s) := 1 otherwise;
• m2(s) := X if Cn+1 = X or Cn+1 = ∃r.X for a variable X and some
r ∈ NR, and m2(s) := ⊥ otherwise;

• m3(s) := max{rd(σ(Ci)) | i ∈ {1, . . . , n + 1}} where rd yields the role
depth of a concept description, i.e., the maximal nesting of existential
restrictions.

– The strict partial order � on such triples is the lexicographic order, where
the first and the third component are compared w.r.t. the normal order > on
natural numbers. The variables in the second component are compared w.r.t.
the relation >S induced by S, and ⊥ is smaller than any variable.

– We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

As the lexicographic product of well-founded strict partial orders is again
well-founded [8], � is a well-founded strict partial order on Γ̂ .

Lemma 7. σ is an EL-unifier of Γ̂ w.r.t. T , and thus also of its subset Γ0.

Proof. Let s ∈ Γ̂ and assume that σ solves all subsumptions s′ ∈ Γ̂ with s′ ≺ s.
– If s has a non-variable atom as its right-hand side, then it was initially

marked as unsolved and must have been marked solved by a successful rule
application. As an example, we consider the application of the Decomposition
rule (the other rules can be treated similarly [1]). Then s is of the form
C1 u · · · u Cn v? ∃s.D′ with Ci = ∃s.C ′ for some i ∈ {1, . . . , n} and we
have s′ = C ′ v? D′ ∈ Γ̂ . We will show that s � s′ holds. By induction, this
implies that σ solves s′, and by Lemma 1 thus also s.
Observe first that m2(s) = m2(s′) since either ∃s.D′ and D′ contain the
same variable or are both ground. We now make a case distinction based on
m1(s′). If s′ is small, then s is either non-small, i.e. m1(s) > m1(s′), or small
and of the form ∃s.C ′ v? ∃s.D′. In the second case, we have m1(s) = m1(s′)
and m3(s) > m3(s′). If s′ is non-small, then both C ′ and D′ are variables,
and thus s is also non-small, which yields m1(s) = m1(s′). Furthermore, the
maximal role depth obviously decreases when going from s to s′, and thus
m3(s) > m3(s′). In all cases we have shown m(s) � m(s′), i.e., s � s′.

– If s has a variable as its right-hand side, it is of the form C1 u · · · uCn v? X
and for every A ∈ SX there is a subsumption sA = C1 u · · · uCn v? A in Γ̂ .
If s is small, then n = 1 and C1 is ground, and thus the subsumptions sA are
also small. Thus, we have m1(s) ≥ m1(sA) for every A ∈ SX . Furthermore,
we have m2(s) > m2(sA) since A is ground or contains a variable on which
X depends. This yields s � sA, and thus by induction σ(C1)u· · ·uσ(Cn) vT
σ(A) for every A ∈ SX , which implies that σ(C1)u · · · u σ(Cn) vT σ(X) by
the definition of σ. ut
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Completeness Assume that Γ0 is unifiable w.r.t. T and let γ be a ground unifier
of Γ0 w.r.t. T . We use this unifier to guide the application of the nondeterministic
rules such that Algorithm 5 does not fail. The following invariants for Γ and S
will be maintained:

(I) γ is a unifier of Γ .
(II) For all B ∈ SX we have γ(X) vT γ(B).

Since SX is initialized to ∅ for all variables X ∈ Nv and Γ is initialized to Γ0,
these invariants are satisfied after the initialization of the algorithm.

The invariants immediately rule out one cause of failure for the algorithm,
namely that the current assignment becomes cyclic. This is the only place in the
whole proof where our assumption on cycle-restrictedness of T is needed.

Lemma 8. If invariant (II) is satisfied, then the current assignment S is acyclic.

The proofs of this and of the next lemma can be found in [1].

Lemma 9. Assume that the current set of subsumptions Γ and the current as-
signment S satisfy the invariants (I) and (II), and let s ∈ Γ be unsolved.

1. If an eager rule applies to s, then its application does not fail and the resulting
set Γ ′ and assignment S′ also satisfy the invariants (I) and (II).

2. If no eager rule applies to s, then there is a nondeterministic rule that can
successfully be applied to s such that the resulting set Γ ′ and assignment S′
also satisfy the invariants (I) and (II).

An immediate consequence of this lemma is that, if Γ0 is unifiable, then there
is a non-failing run of Algorithm 5 on Γ0 during which the invariants (I) and (II)
are satisfied. Together with the fact that every run of the algorithm terminates
(see below), this shows completeness, i.e., whenever Γ0 has a unifier w.r.t. T ,
the algorithm computes one.

Termination Consider a run of Algorithm 5. It is easy to show that any sub-
sumption encountered during this run falls into one of the following categories:

1. subsumptions from Γ0;
2. subsumptions created by expansion from Γ0: these are of the form C1u · · ·u
Cn v? A for a subsumption C1 u · · · u Cn v? X ∈ Γ0 and A ∈ Atnv;

3. subsumptions of the form C v? D for C,D ∈ At.

Since the cardinality of At is polynomially bounded by the size of Γ0 and T ,
there are only polynomially many subsumptions of this form. Rules are only
applicable to subsumptions that are marked unsolved, and the application of a
rule marks at least one subsumption as solved. Thus, only polynomially many
rules can be applied during the run. In addition, each rule application takes
only polynomial time. This shows that every run of the algorithm terminates in
polynomial time.

Theorem 10. Algorithm 5 is an NP-decision procedure for unifiability in EL
w.r.t. cycle-restricted TBoxes.
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5 Conclusions

We have presented a goal-oriented NP-algorithm for unification in EL w.r.t.
cycle-restricted TBoxes. In [3], we developed a reduction of this problem to a
propositional satisfiability problem (SAT), which is based on a characterization
of subsumption different from the one in Lemma 1. Though clearly better than
the brute-force algorithm introduced in [2], both algorithms suffer from a high
degree of nondeterminism introduced by having to guess atoms and GCIs from
the underlying cycle-restricted TBox. We have to find optimizations to tackle
this problem before an implementation becomes feasible.

On the theoretical side, the main topic for future research is to consider
unification w.r.t. unrestricted general TBoxes. In order to generalize the brute-
force algorithm in this direction, we need to find a more general notion of locality.
Starting with the goal-oriented algorithm, the idea would be not to fail when
a cyclic assignment is generated, but rather to add rules that can break such
cycles, similar to what is done in procedures for general E-unification [11].
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Abstract. Given the high expressivity of modern ontology languages,
such as OWL, there is the possibility for great diversity in the logical
content of ontologies. Informally, this can be seen by the constant evo-
lution of reasoners to deal with new sorts of content and the range of
optimisations reasoners need in order to be competitive. More formally,
the fact that many naturally occurring entailments have multiple justi-
fications (i.e., minimal entailing subsets) indicates that ontologies often
overdetermine their consequences, indicating a diversity in supporting
reasons. However, the multiplicity of justifications might be due mostly
to diverse material, not formal, grounds for an entailment. That is, the
logical form of these multiple reasons could be less diverse than their
numbers suggest.

In the present paper, we introduce and explore several equivalence rela-
tions over justifications for entailments of OWL ontologies. These equiv-
alence relations range from strict isomorphism to a looser notions which
cover similarities between justifications containing different concept ex-
pressions or possibly different numbers of axioms. We survey a corpus of
ontologies from the bio-medical domain and find that large numbers of
justifications can often be reduced to a significantly smaller set of justifi-
cations which are isomorphic with respect to one of the given definitions.

1 Introduction

Since its standardisation by the W3C in 2004, the Web Ontology Language
OWL has been used to represent domain knowledge from diverse areas, such
as medicine and general biology. OWL 21 is based on the highly expressive
Description Logic SROIQ [10] as underlying formalism: An OWL 2 ontology
corresponds to a set of SROIQ axioms.

Justifications, minimal entailing subsets of an OWL ontology, provide helpful
and easy-to-understand explanation support when repairing unwanted entail-
ments in the ontology debugging process. While previous research has focused
on the issue of making individual justifications easier to understand, only little
attention has been paid to the occurrence of multiple justifications other than

1 http://www.w3.org/TR/owl2-syntax
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the computational problems they often imply. An entailment of an OWL on-
tology can have a large number of justifications (potentially exponential in the
number of axioms in the ontology), with up to several thousands found in large
real-life ontologies.

When encountering justifications for a finite set of entailments of an ontology
(e.g. the set of entailed atomic subsumptions), we are often faced with a seem-
ingly large and diverse body of reasons why these entailments hold. On closer
inspection, however, we frequently find that multiple justifications for different
entailments are identical sets of axioms, or that justifications are structurally
identical and only diverge in the concept, role, and individual names they use.

In order to draw a clearer picture of the logical diversity of a corpus of justi-
fications, we need to take into account these similarities between justifications.
Grouping the set of justifications into subsets according to some similarity mea-
sure helps structuring the unsorted pool of justifications. Rather than trying to
understand each individual justification, users can focus on understanding the
template of a particular subset of justifications. This can lead to significantly
fewer justifications that the user has to deal with, and therefore to a reduction
in user effort.

A well-known syntactical equivalence relation in OWL is structural equiva-
lence. The OWL Structural Specification2 states the condition for two OWL ob-
jects (named concepts, roles, or instances, complex expressions, or OWL axioms)
to be structurally equivalent. In short, it defines the objects to be equivalent if
they contain the same names and constructors, regardless of ordering and repe-
tition (in an unordered association). The OWL API,3 a Java API which is used
to manipulate OWL ontologies, implements this notion of structural equivalence
by default.

Justification isomorphism [5] was first introduced in a study of the cognitive
complexity of justifications: Two justifications are isomorphic if they are struc-
turally identical,4 i.e. the axioms contain the same concept expressions and only
differ in the concept, role and individual names.

While justification isomorphism helps to eliminate the effects of diverging
concept, role, and individual names, we can also identify types of justifications
which may be considered to be very similar despite their use of different con-
structors:

Example 1

J1 = {A v B u C,B u C v D} |= A v D
J2 = {A v ∃r.C, ∃r.C v D} |= A v D

In this example, the semantics of the complex concept expressionsBuC in J1 and
∃r.C in J2 are not relevant for the respective entailment; their occurrences in the

2 http://www.w3.org/TR/owl2-syntax
3 http://owlapi.sourceforge.net
4 Modulo structural equivalence, which takes into account redundant expressions and

the commutativity of constructors.
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justifications and their entailments can be replaced by freshly generated atomic
concept names without affecting the entailment relation. Such a substitution in
turn would make the two justifications isomorphic.

Likewise, justifications of different lengths may be considered similar if their
general structure of reasoning is identical:

Example 2

J1 = {A v B,B v C} |= A v C
J2 = {A v B,B v C,C v D} |= A v D

These two justifications clearly require the same form of reasoning from a
user. Strict isomorphism only applies to justifications which contain the same
number of axioms; it does not cover situations like the above. However, for the
purpose of structuring sets of justifications and analysing the logical diversity of
a corpus of justifications, capturing those kinds of similarities illustrated in the
above examples would be highly desirable.

These examples motivate a looser notion of isomorphism, which allows us to
identify justifications as equivalent if they require the same reasoning mecha-
nisms, regardless of size, signature and logical constructors used. In the present
paper, we introduce two new types of equivalence relations based on matching
subexpressions and lemmas, and show how these extended relations are applied
to a corpus of justifications from the bio-medical domain.

2 Preliminaries

Justifications in OWL We assume the reader to be familiar with OWL and the
underlying Description Logic SROIQ. In what follows, A,B, . . . denote concept
names in an ontology O, r, s role names, and sig(α) denotes the set of concept,
role, and individual names in an OWL axiom α.

Justifications [13,11] are a popular type of explanation for entailments of
OWL ontologies. A justification is defined as a minimal subset of an ontology O
that causes an entailment η to hold:

Definition 1 (Justification) J is a justification for O |= η if J ⊆ O,J |= η
and, for all J ′ ⊂ J , it holds that J ′ 2 η.

For every axiom which is asserted in the ontology, the axiom itself naturally
is a justification. We call an entailment which has only itself as a justification a
self-supporting entailment, and the justification a self-justification.

It is important to note that a justification is always defined with respect
to an entailment η. In the remainder of this paper we will therefore use the
term justification to describe a justification-entailment pair (J , η) where J is a
justification for η.
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Justification Isomorphism Isomorphism between justifications was first in-
troduced as a method to reduce the number of similar justifications when sam-
pling from a large corpus to justifications of distinct types [5].

Definition 2 (Justification Isomorphism) Two justifications (J1, η1), (J2, η2)
are isomorphic ((J1, η1) ≈i (J1, η1)) if there exists an injective renaming φ
which maps concept, role, and individual names in J1 and η1 to concept, role,
and individual names in J2 and η2, respectively, such that φ(J1) = J2 and
φ(η1) = η2.

Example 3 (Isomorphic Justifications)

J1 = {A v B u ∃r.C,B u ∃r.C v D} |= A v D
J2 = {E v B u ∃s.F,B u ∃s.F v D} |= E v D
φ = {A 7→ E,C 7→ F, r 7→ s}

The relation ≈i is symmetric, reflexive and transitive, from which it fol-
lows that ≈i is an equivalence relation and thus partitions a set of justifications.
Justification isomorphism preserves the numbers and types of axioms and subex-
pressions in the justifications:

1. J1 ≈i J2 → |J1| = |J2|
2. J1 ≈i J2 → |sig(J1)| = |sig(J2)|
3. The sets of logical constructs used in J1 and J2 coincide.

In the remainder of this paper, we may refer to the isomorphism defined above as
strict isomorphism in order to distinguish it from the other equivalence relations.

3 Subexpression-Isomorphism

From the above definition of isomorphism it follows that only justifications which
have the same number and types of axioms and subexpressions can be isomor-
phic. It is easy to see, however, that justifications can have a similar structure
despite their use of different concept expressions, as demonstrated in Example
1. This motivates a notion of isomorphism which allows not only the mapping
of concept names, but also that of subexpressions.

The idea of finding similarities between concepts in Description Logics has
been widely explored in the work on unification and matching, e.g. [2,1,3], for
the purpose of detecting redundant concept descriptions in knowledge bases.
The aim of unification is to find a suitable substitution σ which maps atomic
concepts in a concept term C to (possibly non-atomic) concepts in a concept
term D such that the two terms are made equivalent.

While the basic idea behind extended subexpression-isomorphism is based on
unification and matching, the concepts are not directly applicable to the given
problem of matching justifications. We therefore introduce a unifying justifica-
tion J , which functions as the template for the isomorphic justifications:
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Definition 3 (Subexpression-Isomorphism) Two justifications (J1, η1),
(J2, η2) are s-isomorphic ((J1, η1) ≈s (J2, η2)) if there exists a justification
(J , η) and two injective substitutions φ1, φ2, such that φ1(J ) = J1, φ2(J ) = J2,
φ1(η) = η1, and φ2(η) = η2. The mappings φ1 and φ2 map concept, role, and in-
dividual names in (J , η) to subexpressions of (J1, η1) and (J2, η2), respectively.

It can be shown that the relation ≈s is reflexive, transitive and symmetric;
it is therefore an equivalence relation and thus partitions a set of justifications.

The substitutions φ1, φ2 are injective, but not surjective, as the set of subex-
pressions in the justifications J1 and J2 can be of higher arity than the set of
concept names in the unifying justification J (unless the justifications them-
selves contain no complex expressions).

S-isomorphism can easily be shown to be a more general case of strict isomor-
phism between two justifications J1 and J2: The unifying justification J is set
to J1, φ1 is the identity relation id which maps J1 to itself, and φ2 corresponds
to the mapping φ, which maps concept, role, and individual names in J2 to the
respective names in J1. It follows that J1 ≈i J2 → J1 ≈s J2.

In order to be s-isomorphic, the justifications may differ in the number of
subexpressions. They must, however, have the same number of axioms: J1 ≈s
J2 → |J1| = |J2|

While we focus on entailed atomic subsumptions in the present paper, we
point out that s-isomorphism between justifications is not restricted to a specific
axiom type as entailment, as the substitutions φ1, φ2 preserve all entailment
relations regardless of the axiom type and constructor usage.

4 Lemma-Isomorphism

While s-isomorphism covers a number of justifications that can be regarded
as equivalent due to them requiring the same type of reasoning to reach the
entailment, it only applies to justifications which have the same number of ax-
ioms. This does not take into account cases where the justifications differ only
marginally in some subset, but where the general reasoning may be regarded as
similar nonetheless. We therefore introduce the notion of lemma-isomorphism,
which extends subexpression-isomorphism with the substitution of subsets of
justifications through intermediate entailments, so-called lemmas [7]. The gen-
eral motivation behind lemma-isomorphism is demonstrated by the following
example:

Example 4

J1 = {A v B,B v C} |= A v C
J2 = {A v B,B v C,C v D} |= A v D

It is straightforward to see that both J1 and J2 require the same type of
reasoning from a human user. As the justifications only differ in the length of
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the atomic subsumption chains that lead to the entailment, we can certainly con-
sider them to be similar with respect to some similarity measure. However, the
two justifications are not considered isomorphic with respect to the definitions
for strict isomorphism or subexpression-isomorphism. We therefore introduce
a new type of isomorphism which takes into account the fact that subsets of
justifications can be replaced with intermediate entailments which follow from
them.

Lemmas of OWL justifications have previously found use in the extension of
justifications to justification-oriented proofs [9]. The following definitions intro-
duce simplified variants of the definitions [7] of justification lemmas and lemma-
tisations. Please note that for the purpose of illustrating the effect of lemma-
isomorphism, we will simplify the lemmatisations to a more specific type of
lemmas in the next section.

Definition 4 (Lemma) Let J be a justification for an entailment η. A lemma
of (J , η) is an axiom λ for which there exists a subset S ⊆ J such that S |= λ.
A summarising lemma of (J , η) is a lemma λ for which there exists an S ⊆ J
such that J \ S ∪ {λ} |= η for S |= λ.

Definition 5 (Lemmatisation) Let (J , η) be a justification, let S1 . . . Sk be
subsets of J , and let λ1 . . . λk be axioms satisfying Si |= λi for i ∈ {1, . . . , k}.
Then the set J Λ := (J \⋃Si)∪

⋃
λi is called a lemmatisation of J if J Λ |= η.

If clear from the context, a lemmatisation J Λ may also be called a lemmatised
justification. Given the definitions for lemmatisations, we can now define lemma-
isomorphism as an extension to subexpression-isomorphism:

Definition 6 (Lemma-isomorphism) Two justifications (J1, η1), (J2, η2) are
`-isomorphic ((J1, η) ≈` (J2, η)) if there exist lemmatisations J Λ1

1 ,J Λ2
2 which

are s-isomorphic: J Λ1
1 ≈s J Λ2

2 .

Lemma-isomorphism using arbitrary lemmas as defined above carries some
undesirable properties: First, unlike the previously defined relations, it describes
a relation which is not transitive. Further, the lemmatised justifications might
differ strongly from the original justifications; in the most extreme case, the lem-
matisation of a justification can be the entailment itself. We therefore have to
introduce some constraints on the admissible lemmatisations in order to guar-
antee the transitivity of the isomorphism relation, as well as preserve the nature
of the original justifications. In what follows we will focus on lemmatisations
through obvious steps in justifications.

4.1 Lemmatisations and Obvious Steps

The notion of obvious proof steps [4,12] describes how proof steps which are
intuitively obvious can be replaced with their conclusion (thereby shortening
the proof) without omitting important information. We loosely base the lemma
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restriction on this obviousness and select an example of obvious proof steps which
commonly occur in DL justifications, namely chains of atomic subsumptions.

In atomic subsumption chains of the type A0 v A1, A1 v A2 . . . An−1 v An
only the relation between the subconcept A0 in the first axiom and the supercon-
cept An in the last axiom are relevant for understanding the subsumption chain;
i.e. the step from the subconcept to the final superconcept is obvious. We can
say that it is only important to understand that there is a connection between
the subconcept and the final superconcept, but we do not need to know what
this connection is. Therefore, it seems reasonable to substitute the chain with its
conclusion in the form of a single axiom A0 v An. Restricting lemmatisations to
atomic subsumption chains leads to the definition for a transitivity-preserving
type of l-isomorphism:

Definition 7 (Transitivity-preserving l-isomorphism) Two justifications
(J1, η1), (J2, η2) are `t-isomorphic ((J1, η) ≈`t (J2, η)) if there exist summaris-
ing lemmatisations J Λ1

1 ,J Λ2
2 which are s-isomorphic, and every Si ⊆ Ji where

Si |= λi ∈ Λ1(λi ∈ Λ2, respectively) is of type {Ai v Ai+1 | i ∈ {0, . . . , n}} where
n is the number of axioms in the respective chain of subsumption axioms, and
Ai a concept name.

Atomic subsumption chains represent only one of many examples of such lem-
matisations which preserve transitivity. For the purpose of introducing lemma-
isomorphism as an equivalence relation, it suffices to focus on this particular
type of lemmatisations, as it captures a frequently occurring pattern in OWL
justifications.

5 Diversity of Reason in the NCBO BioPortal Ontologies

5.1 Test Corpus

We performed a survey of equivalence relations in OWL- and OBO-ontologies
from the NCBO BioPortal. The BioPortal provides ontologies from various
groups from the biomedical domain, including the full set of daily updated OBO
Foundry5 ontologies, which are built based on common design principles. OBO
ontologies use a flat-file format, which can be translated into OWL 2 and were
therefore included in the test corpus.

At the time of downloading (January 2012), the BioPortal listed 278 OWL-
and OBO-ontologies, of which 241 could be downloaded, merged with their im-
ports, and serialised as OWL/XML. 15 of those ontologies could not be processed
in the given time frame of 30 minutes using the selected reasoner, and another 25
did not contain any relevant entailments (direct subsumptions between named
classes). For the remaining 201 ontologies, we computed justifications for all en-
tailments with a maximum of 500 justifications per entailment. Self-supporting
entailments and self-justifications were excluded from the survey, which led to
the discarding of further ontologies.

5 http://obofoundry.org
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The final corpus of justifications consisted of 6,744 justifications from 83 on-
tologies, covering a broad spectrum of sizes and complexity. Half of the ontologies
had less than 1000 named concepts and axioms, with the other half reaching a
maximum of 13,959 concepts and 70,015 axioms. Likewise, the expressivity of
the corpus ranged from AL to several highly expressive samples in SROIQ,
which corresponds to the OWL 2 language. A detailed listing of the surveyed
ontologies, as well the complete data from the study is available online.6

5.2 Implementation

The algorithm for detecting structural similarities between justifications (and
therefore, OWL axioms) uses a purely syntactic search for matching subexpres-
sions of OWL axioms. The axioms are first parsed into a tree form, which allows
for pairwise comparison of the nodes which represent connectives as well as con-
cept and role names. The implementation uses the OWL API (v3.2.4.) and the
HermiT (v1.3.6.) reasoner. Our experiments were performed on a 3GHz Intel
Core2 Duo machine with 4GB of RAM allocated to the Java Virtual Machine.
The 7051 justifications in the test corpus could be analysed for strict isomor-
phism in approximately 3 minutes.

5.3 Results of the Survey

Isomorphic Justifications Strict isomorphism applied to all justifications of
the individual ontologies drastically reduces the number of regular justifications
from an average of 81.3 (σ = 185.5) justifications per ontology to 10.5 (σ = 18.0)
templates for equivalent justifications. The mean number of justifications per
template is 7.7 (σ = 41.7) , which means that in each ontology nearly 8 justifi-
cations have an identical structure. This effect is highly visible in the Orphanet
Ontology of Rare Diseases, where the a single template covers 901 (of 1139)
justifications for distinct entailments. These justifications are all of the type
{gen x v (∃geneOf.pat y), Domain(geneOf, gen id 1)} |= gen x v gen id 1
where x and y denote identifiers used in the ontology.

Likewise, in the Cognitive Atlas ontology, all 401 justifications for a single
entailment are reduced to only one template. Intuitively, it seems that we can
observe a much stronger reduction on a large set of justifications than those
ontologies that produce only 1 or 2 justifications. And indeed, there exists a
strong correlation between the number of justifications of an ontology and the
amount of reduction (Spearman’s ρ = 0.78). However, even some of the larger
sets of justifications are only reduced by a small proportion. The 95 justifications
of the Gene Regulation Ontology are represented by 61 distinct templates, which
indicates a fairly diverse corpus.

When applied across all justifications from the corpus, strict isomorphism
reduces the corpus from 6,744 justifications to only 614 templates, a reduction

6 http://owl.cs.manchester.ac.uk/research/publications/supporting-material/just-
iso-dl2012
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to only 9.1% of the original corpus. On average, 11 justifications share the same
template, with the most frequent template occurring 1,603 times across 18 differ-
ent ontologies; coincidentally, this template is of the same form as the Orphanet
Ontology described above. The most prevalent template in the corpus, based on
its occurrence in 37 distinct ontologies, is an atomic subsumption chain with 2
axioms.

Subexpression-Isomorphism The reduction from strict isomorphism to s-
isomorphism is clearly less drastic than the difference between the main pool
and the non-isomorphic pool. The justifications of the 83 ontologies are reduced
from an average of 81.3 justifications to 8.8 templates (σ = 13.1), which is a
reduction by 1.7 templates compared to strict isomorphism. An average of 9.2
justifications (σ = 46.6) in an ontology share the same template.

Surprisingly, the majority of ontologies (67) does not show any difference be-
tween strict isomorphism and s-isomorphism. Only 2 ontologies, the Lipid Ontol-
ogy and Bleeding History Phenotype, are significantly affected by s-isomorphism,
with a reduction from 118 to 13 templates (11.0%) and 32 to 14 templates
(43.8%), respectively. Recall that two justifications are s-isomorphic, if their dif-
ferent complex subexpressions can be mapped to an atomic variable name. The
significant reduction therefore suggests that in these two ontologies complex ex-
pressions are frequently used in the same way as atomic concepts.

Closer inspection reveals, however, that a large number of justifications in
the Lipid Ontology consist of one axiom of the form A ≡ B u x, with the en-
tailment being A v B. Here, x represents a number of complex expressions of
varying nesting depth. While s-isomorphism captures these types of justifica-
tions as equivalent, the actual reason for their similarity lies in their identical
cores, with the remainder x being a superfluous part (with respect to the given
entailment).

Across the entire corpus, the number of justifications is reduced from 6,744
to 456 templates (6.8% of the corpus), which is a further reduction compared
to strict isomorphism (614 templates). The most frequent templates in terms of
number of justifications and prevalence across all ontologies are the same as for
strict isomorphism, with numbers only differing slightly.

Lemma-Isomorphism As with s-isomorphism, the effects of l-isomorphism
were not as significant as the first reduction through strict isomorphism. The
justifications were further reduced to an average of 7.4 templates per ontol-
ogy (σ = 11.4), with 11 justifications per template (σ = 51.5). Still, 35 of the
83 ontologies show at least a minor difference between s-isomorphism and l-
isomorphism, which indicates that they contain at least 1 atomic subsumption
chain.

L-isomorphism reduces the 106 justifications generated for the Cereal Plant
Gross Anatomy ontology to only 14 templates, compared to 29 templates for s-
isomorphism. This shows that, while not very frequent, there are indeed ontolo-
gies in which justifications with subsumption chains of differing lengths occur.
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In the Plant Ontology, l-isomorphism reduces the 74 justifications to 12 tem-
plates, with one template capturing 32 justifications of varying sizes. These
justifications contain atomic subsumption chains ranging from 2 to 6 atomic
subsumption axioms, which can all be reduced to a single axiom (namely the
entailment of the subsumption chain) in the lemmatised version of the justifica-
tion.

Across the corpus, l-isomorphism reduces the 6,744 justifications to a mere
384 templates, which is an overall reduction of 94.3%. The effect of lemma-
isomorphism is visible when we look at the most prevalent justification, an atomic
subsumption chain of size 2, which occurs in 44 (compared to previously 37)
ontologies. This chain represents all 701 atomic subsumption chains of differing
sizes that can be found in the corpus.

5.4 Counting Distinct Reasons

For the purpose of detecting how many distinct types of justifications there are
for a given set of entailments, we have seen that it is crucial to focus not on
the material form of a justification, but rather on the justification templates in
an ontology. By only considering the abstract template of a set of justifications,
we can represent the reasoning that underlies not only one, but a whole class of
justifications in the ontology.

Surprisingly, while the newly introduced equivalence relations, s-isomorphism
and l-isomorphism, could be shown to capture some of the structural similari-
ties in the surveyed corpus, a large number of justifications were indeed strictly
isomorphic. We can argue, however, that even a small reduction can be benefi-
cial when presenting multiple justifications to OWL ontology developers for the
purpose of explaining entailments, as it prevents repetitive actions and gives a
higher-level view of the set of justifications. This is made obvious in the example
of the Plant Ontology, where a large number of justifications that differed only
in the length of their atomic subsumption chains, could be captured by a single
template.

Another aspect to take into account when dealing with OWL justifications
is the superfluousness of expressions, as we have seen in the case of the Lipid
Ontology. Two justifications may be nearly identical and only differ in expres-
sions that are not necessary for the entailment to hold; these superfluous parts
would prevent them from being isomorphic with respect to any of the above
definitions, but it is clear that their form is the same. This situation describes
one of several types of justification masking [8]. In order to prevent distortion
caused by masking effects, we may want to focus on a type of justifications which
is minimal with respect to its subexpressions.

A laconic justification [6] is a justification which does not contain any super-
fluous parts, with every subexpression being as weak as possible. A comparison
of the equivalence relations between the regular justifications for the above set of
ontologies and their laconic versions as part of future work will allow us to gain
further insight into the effect of superfluousness on the diversity of justifications.
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6 Conclusions and Future Work

In this paper, we introduced new types of equivalence relations between OWL
justifications, subexpression-isomorpism and lemma-isomorphism. We demon-
strated how a seemingly diverse corpus of justifications from the NCBO Bio-
Portal could be reduced by over 90% to a much smaller set of non-isomorphic
justifications. We have found that, surprisingly, most justifications are in fact
strictly isomorphic, with only a few ontologies being affected by the other equiv-
alence relations.

Future work will involve exploring further notions of obvious proof steps in
order to extend lemma-isomorphism beyond atomic subsumption chains. We will
also consider the issue of overlapping chains, i.e. subsumption chains which lead
to non-summarising lemmas. Since the present paper demonstrates the effects
of the different equivalence relations on only a subset of the justifications from
the BioPortal corpus, we are planning a survey of the entire set of justifications,
taking into account the differences between laconic and non-laconic justifica-
tions. Finally, we aim to obtain more detailed knowledge about the application
of ontology design patterns in the surveyed ontologies, which will allow us to in-
vestigate the relations between these design patterns and the form and frequency
of justification templates.
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1 Introduction

In recent years, there has been growing interest in using description logic (DL)
ontologies to query instance data. An important issue which arises in this setting
is how to handle the case in which the data (ABox) is inconsistent with the
ontology (TBox). Ideally, one would like to restore consistency by identifying and
correcting the errors in the data (using e.g. techniques for debugging or revising
DL knowledge bases, cf. [13]). However, such an approach requires the ability to
modify the data and the necessary domain knowledge to determine which part
of the data is erroneous. When these conditions are not met (e.g. in information
integration applications), an alternative is to adopt an inconsistency-tolerant
semantics in order to obtain reasonable answers despite the inconsistencies.

The related problem of querying databases which violate integrity constraints
has long been studied in the database community (cf. [1] and the survey [6]),
under the name of consistent query answering. The semantics is based upon the
notion of a repair, which is a database which satisfies the integrity constraints
and is as similar as possible to the original database. Consistent query answering
corresponds to evaluating the query in each of the repairs, and then intersecting
the results. This semantics is easily adapted to the setting of ontology-based data
access, by defining repairs as the inclusion-maximal subsets of the data which
are consistent with the ontology.

Consistent query answering for the DL-Lite family of lightweight DLs was
investigated in [10, 11]. The obtained complexity results are rather disheartening:
the problem was shown in [10] to be co-NP-hard in data complexity, even for
instance queries; this contrasts sharply with the very low AC0 data complexity for
(plain) conjunctive query answering in DL-Lite. Similarly discouraging results
were recently obtained in [14] for another prominent lightweight DL EL⊥ [3]. In
fact, we will see in Example 1 that if we consider conjunctive queries, only a single
concept disjointness axiom is required to obtain co-NP-hard data complexity.

In the database community, negative complexity results spurred a line of re-
search [8, 9, 15] aimed at identifying cases where consistent query answering is
feasible, and in particular, can be done using first-order query rewriting tech-
niques. The idea is to use targeted polynomial-time procedures whenever possi-
ble, and to reserve generic methods with worst-case exponential behavior for dif-
ficult cases (see [9] for some experimental results supporting such an approach).
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A similar investigation for DL-Lite ontologies was initiated in [4], where general
conditions were identified for proving either first-order expressibility or coNP-
hardness of consistent query answering for a given TBox and instance query.

The main objective of the present work is to gain a better understanding
of what makes consistent conjunctive query answering in the presence of on-
tologies so difficult. To this end, we conduct a fine-grained complexity analysis
which aims to characterize the complexity of consistent query answering based
on the properties of the ontology and the conjunctive query. We focus on sim-
ple ontologies, consisting of class subsumption (A1 v A2) and class disjointness
(A1 v ¬A2) axioms, since the problem is already far from trivial for this case. We
identify the number of quantified variables in the query as an important factor in
determining the complexity of consistent query answering. Specifically, we show
that consistent query answering is always first-order expressible for conjunctive
queries with at most one quantified variable; the problem has polynomial data
complexity (but is not necessarily first-order expressible) when there are two
quantified variables; and it may become coNP-hard starting from three quan-
tified variables. For queries having at most two quantified variables, we further
identify a necessary and sufficient condition for first-order expressibility.

To obtain positive results for arbitrary conjunctive queries, we propose a
novel inconsistency-tolerant semantics which is a sound approximation of the
consistent query answering semantics (and a finer approximation than the ap-
proximate semantics proposed in [10]). We show that under this semantics, first-
order expressibility of consistent query answering is guaranteed for all conjunc-
tive queries. Finally, in order to treat more expressive ontologies, and to demon-
strate the applicability of our techniques, we show how our positive results can
be extended to handle DL-Litecore ontologies without inverse roles.

Full proofs can be found in a long version available on the author’s website.

2 Preliminaries

Syntax. All the ontology languages considered in this paper are fragments of
DL-Litecore [5, 2]. We recall that DL-Litecore knowledge bases (KBs) are built
up from a set NI of individuals, a set NC of atomic concepts, and a set NR of
atomic roles. Complex concept and role expressions are constructed as follows:

B → A | ∃P C → B | ¬B P → R | R−

where A ∈ NC and R ∈ NR. A TBox is a finite set of inclusions of the form
B v C (B,C as above). An ABox is a finite set of (ABox) assertions of the
form A(a) (A ∈ NC) or R(a, b) (R ∈ NR), where a, b ∈ NI. We use Ind(A) to
denote the set of individuals in A. A KB consists of a TBox and an ABox.

Semantics An interpretation is I = (∆I , ·I), where ∆I is a non-empty set and
·I maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each P ∈ NR

to P I ⊆ ∆I × ∆I . The function ·I is straightforwardly extended to general
concepts and roles, e.g. (¬A)I = ∆I \ AI and (∃S)I = {c | ∃d : (c, d) ∈ SI}.
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I satisfies G v H if GI ⊆ HI ; it satisfies A(a) (resp. P (a, b)) if aI ∈ AI

(resp. (aI , bI) ∈ P I). We write I |= α if I satisfies inclusion/assertion α. An
interpretation I is a model of K = (T ,A) if I satisfies all inclusions in T and
assertions in A. We say a KB K is consistent if it has a model, and that K entails
an inclusion/assertion α, written K |= α, if every model of K is a model of α.

We say that a set of concepts {C1, . . . , Cn} is consistent w.r.t. a TBox T
if there is a model I of T and an element e ∈ ∆I such that e ∈ Ci for every
1 ≤ i ≤ n. Entailment of a concept from a set of concepts is defined in the obvious
way: T |= S v D if and only if for every model I of T , we have ∩C∈SCI ⊆ DI .

Queries A (first-order) query is a formula of first-order logic with equality,
whose atoms are of the form A(t) (A ∈ NC), R(t, t′) (R ∈ NR), or t = t′ with t, t′

terms, i.e., variables or individuals. Conjunctive queries (CQs) have the form
∃y ψ, where y denotes a tuple of variables, and ψ is a conjunction of atoms
of the forms A(t) or R(t, t′). Instance queries are queries consisting of a single
atom with no variables (i.e. ABox assertions). Free variables in queries are called
answer variables, whereas bound variables are called quantified variables. We use
terms(q) to denote the set of terms appearing in a query q.

A Boolean query is a query with no answer variables. For a Boolean query q,
we write I |= q when q holds in the interpretation I, and K |= q when I |= q for
all models I of K. For a non-Boolean query q with answer variables v1, . . . , vk,
a tuple of individuals (a1, . . . , ak) is said to be a certain answer for q w.r.t.
K just in the case that K |= q[a1, . . . , ak], where q[a1, . . . , ak] is the Boolean
query obtained by replacing each vi by ai. Thus, conjunctive query answering is
straightforwardly reduced to entailment of Boolean CQs.

First-order rewritability Calvanese et al. [5] proved that for everyDL-Litecore
TBox T and CQ q, there exists a first-order query q′ such that for every ABox
A and tuple a: T ,A |= q[a]⇔ IA |= q′[a], where IA denotes the interpretation
with domain Ind(A) that makes true precisely the assertions in A.

3 Consistent Query Answering for Description Logics

In this section, we formally recall the consistent query answering semantics,
present some simple examples which illustrate the difficulty of the problem, and
introduce the main problem which will be studied in this paper. For readability,
we will formulate our definitions and results in terms of Boolean CQs, but they
can be straightforwardly extended to general CQs.

The key notion underlying consistent query answering semantics is that of a
repair of an ABox A, which is an ABox which is consistent with the TBox and
as similar as possible to A. In this paper, we follow common practice and use
subset inclusion to compare ABoxes.

Definition 1. A repair of a DL ABox A w.r.t. a TBox T is an inclusion-
maximal subset B of A consistent with T . We use RepT (A) to denote the set of
repairs of A w.r.t. T .
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Consistent query answering can be seen as performing standard query an-
swering on each of the repairs and intersecting the answers. For Boolean queries,
the formal definition is as follows:

Definition 2. A query q is said to be consistently entailed from a DL KB
(T ,A), written T ,A |=cons q, if T ,B |= q for every repair B ∈ RepT (A).

Just as with standard query entailment, we can ask whether consistent query
entailment can be tested by rewriting the query and evaluating it over the data.

Definition 3. A first-order query q′ is a consistent rewriting of a Boolean query
q w.r.t. a TBox T if for every ABox A, we have T ,A |=cons q iff IA |= q′.

As mentioned in Section 1, consistent query answering in DL-Litecore is
co-NP-hard in data complexity, even for instance queries [10], which means in
particular that consistent rewritings need not exist. All known reductions make
crucial use of inverse roles, and indeed, we will show in Section 7 that consistent
instance checking is first-order expressible for DL-Litecoreontologies without in-
verse. However, in the case of conjunctive queries, the absence of inverses does
not guarantee tractability. Indeed, the next example shows that only a single
concept disjointness axiom can yield coNP-hardness.

Example 1. We use a variant of UNSAT, called 2+2UNSAT, proved coNP-hard
in [7], in which each clause has 2 positive and 2 negative literals, where literals
involve either regular variables or the truth constants true and false. Consider
an instance ϕ = c1 ∧ . . . ∧ cm of 2+2-UNSAT over v1, . . . , vk, true, and false.
Let T = {T v ¬F}, and define A as follows:

{P1(ci, u), P2(ci, x), N1(ci, y), N2(ci, z) | ci = u ∨ x ∨ ¬y ∨ ¬z, 1 ≤ i ≤ m}
∪ {T (vj), F (vj) | 1 ≤ j ≤ k } ∪ {T (true), F (false)}

Then one can show that ϕ is unsatisfiable just in the case that (T ,A) consistently
entails the following query:

∃xy1... y4P1(x, y1)∧F (y1)∧P2(x, y2)∧F (y2)∧N1(x, y3)∧T (y3)∧N2(x, y4)∧T (y4)

Essentially, T v ¬F forces the choice of a truth value for each variable, so the
repairs of A correspond exactly to the set of valuations. Importantly, there is
only one way to avoid satisfying a 2+2-clause: the first two variables must be
assigned false and the last two variables must be assigned true. The existence of
such a configuration is checked by q.

We remark that the query in the preceding reduction does not have a particularly
complicated structure (in particular, it is tree-shaped). Its only notable property
is that it has several quantified variables.

In this paper, we aim to gain a better understanding of what makes consistent
conjunctive query answering so difficult (and conversely, what can make it easy).
To this end, we will consider the following decision problem:
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ConsEnt(q, T ): Is A such that T ,A |=cons q?

and we will try to characterize its complexity in terms of the properties of the
pair (q, T ). We will in particular investigate the impact of limiting the number
of quantified variables in the query q.

In the next three sections, we focus on simple ontologies, consisting of inclu-
sions of the forms A1 v A2 and A1 v ¬A2 where A1, A2 ∈ NC. As Example 1
demonstrates, the problem is already non-trivial in this case. All obtained lower
bounds transfer to richer ontologies, and we will show in Section 7 that positive
results can also be extended to DL-Litecore ontologies without inverse roles.

4 Tractability for Queries with At Most Two Quantified
Variables

In this section, we investigate the complexity of consistent query answering in the
presence of simple ontologies for CQs having at most two quantified variables.
We show this problem has tractable data complexity, and we provide necessary
and sufficient conditions for FO-expressibility.

We begin with queries with at most one quantified variable, showing that a
consistent rewriting always exists.

Theorem 1. Let T be a simple ontology, and let q be a Boolean CQ with at
most one quantified variable. Then ConsEnt(q, T ) is first-order expressible.

Proof (Sketch). We show how to construct the desired consistent rewriting of q
in the case where q has a single quantified variable x. First, for each t ∈ terms(q),
we set Ct = {A | A(t) ∈ q}, and we let Σt be the set of all S ⊆ NC such that every
maximal subset U ⊆ S consistent with T is such that T |= U v Ct. Intuitively,
Σt defines the possible circumstances under which the conjunction of concepts
in Ct is consistently entailed. We can express this condition with the first-order
formula ψt:

ψt =
∨

S∈Σt

(
∧

A∈S
A(t) ∧

∧

A∈NC\S
¬A(t))

Now using the ψt, we construct q′:

q′ = ∃x
∧

R(t,t′)∈q
R(t, t′) ∧

∧

t∈terms(q)

ψt

It can be shown that q′ is indeed a consistent rewriting of q w.r.t. T . To see
why this is so, it is helpful to remark that the repairs of (T ,A) contain precisely
the role assertions in A, together with a maximal subset of concept assertions
consistent with T for each individual.

The next example shows that Theorem 1 cannot be extended to the class of
queries with two quantified variables.
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Fig. 1: ABoxes for Example 2. Arrows indicate the role R, and each of the four
R-chains has length exceeding 2k.

Example 2. Consider q = ∃xy A(x)∧R(x, y)∧B(y) and T = {A v ¬B}. Suppose
for a contradiction that q′ is a consistent rewriting of q w.r.t. T , and let k be the
quantifier rank of q′. In Fig. 1, we give two ABoxes A1 and A2, each consisting
of two R-chains of length > 2k. It can be verified that q is consistently entailed
from T ,A1. This is because in every repair, the upper chain will have A at one
end, B at the other, and either an A or B at all interior points; every such
configuration makes q true somewhere along the chain. On the other hand, we
can construct a repair for T ,A2 which does not entail q by always preferring A
on the top chain and B on the bottom chain. It follows that the interpretation
IA1

satisfies q′, whereas IA2
does not. However, one can show using standard

tools from finite model theory (cf. Ch. 3-4 of [12]) that no formula of quantifier
rank k can distinguish IA1 and IA2 , yielding the desired contradiction.

We can generalize the preceding example to obtain sufficient conditions for
the inexistence of a consistent rewriting.

Theorem 2. Let T be a simple ontology, and let q be a Boolean CQ with two
quantified variables x, y. Assume that there do not exist CQs q1 and q2, each with
less than two quantified variables, such that q ≡ q1∧q2. Denote by Cx (resp. Cy)
the set of concepts A such that A(x) ∈ q (resp. A(y) ∈ q). Then ConsEnt(q, T )
is not first-order expressible if there exists S ⊆ NC such that:

- for v ∈ {x, y}, there is a maximal subset Dv ⊆ S consistent with T s.t.
T 6|= Dv v Cv

- for every maximal subset D ⊆ S consistent with T , either T |= D v Cx or
T |= D v Cy

Proof (Sketch). The proof generalizes the argument outlined in Example 2. In-
stead of having a single role connecting successive elements in the chains, we
establish the required relational structure for each pair of successive points. We
then substitute the set Dy for A, the set Dx for B, and the set S for {A,B}.
The properties of S ensure that if S is asserted at some individual, then we can
block the satisfaction of Cx using Dy, and we can block Cy using Dx, but we
can never simultaneously block both Cx and Cy. The assumption that q cannot
be rewritten as a conjunction of queries with less than two quantified variables
is used in the proof of T ,A2 6|=cons q to show that the only possible matches
of q involve successive chain elements (and not constants from the query). To
show IA1

and IA2
cannot be distinguished, we use Ehrenfeucht-Fräıssé games,
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rather than Hanf locality, since the latter is inapplicable when there is a role
atom containing a constant and a quantified variable.

The following theorem shows that whenever the conditions of Theorem 2 are
not met, a consistent rewriting exists.

Theorem 3. Let T be a simple ontology, and let q be a Boolean CQ with two
quantified variables x, y. Then ConsEnt(q, T ) is first-order expressible if q is
equivalent to a CQ with at most one quantified variable, or if there is no set S
satisfying the conditions of Theorem 2.

Proof (Sketch). When q is equivalent to a query q′ with at most one quantified
variable, then Theorem 1 yields a consistent rewriting of q′, and hence of q.
Thus, the interesting case is when there is no such equivalent query, nor any set
S satisfying the conditions of Theorem 2. Intuitively, the inexistence of such a
set S ensures that if at some individual, one can block Cx, and one can block Cy,
then it is possible to simultaneously block Cx and Cy (compare this to Example
2 in which blocking A causes B to hold, and vice-versa). This property is key,
as it allows different potential query matches to be treated independently.

Together, Theorems 2 and 3 provide a necessary and sufficient condition for
the existence of a consistent rewriting. We now reconsider T and q from Example
2 and outline a polynomial-time method for solving ConsEnt(q, T ).

Example 3. Suppose we have an ABox A, and we wish to decide if T ,A |=cons q,
for T = {A v ¬B} and q = ∃xy A(x)∧R(x, y)∧B(y). The basic idea is to try to
construct a repair which does not entail q. We start by iteratively applying the
following rules until neither rule is applicable: (1) if R(a, b), A(a), B(a), B(b) ∈ A
but A(b) 6∈ A, then delete A(a) from A, and (2) if R(a, b), A(a), A(b), B(b) ∈ A
but B(a) 6∈ A, then delete B(b). Note that since the size of A decreases with
every rule application, we will stop after a polynomial number of iterations.
Once finished, we check whether there are a, b such that A(a), R(a, b), B(b) ∈ A,
B(a) 6∈ A, and A(b) 6∈ A. If so, we return ‘yes’ (to indicate T ,A |=cons q), and
otherwise, we output no’ (for T ,A 6|=cons q). Note that in the latter case, for all
pairs a, b with A(a), R(a, b), B(b) ∈ A, we have both B(a) and A(b). Thus, we
can choose to always keep A, thereby blocking all remaining potential matches.

By carefully generalizing the ideas outlined in Example 3, we obtain a tract-
ability result which covers all queries having at most two quantified variables.

Theorem 4. Let T be a simple ontology, and let q be a CQ with at most 2
quantified variables. Then ConsEnt(q, T ) is polynomial in data complexity.

5 An Improved coNP Lower Bound

The objective of this section is to show that the tractability result we obtained
for queries with at most two quantified variables cannot be extended further
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Fig. 2: Abox Ac` for clause c` = ¬vi ∨ ¬vj ∨ ¬vk

to the class of conjunctive queries with three quantified variables. We will do
this by establishing coNP-hardness for a specific conjunctive query with three
quantified variables, thereby improving the lower bound sketched in Example 1.
Specifically, we will reduce 3SAT to ConsEnt(q, T ) where:

T = {A v ¬B,A v ¬C,B v ¬C}
q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

The first component of the reduction is a mechanism for choosing truth values
for the variables. For this, we create an ABox Avi = {A(vi), C(vi)} for each
variable vi. It is easy to see that there are two repairs for Avi w.r.t. T : {A(vi)}
and {C(vi)}. We will interpret the choice of A(vi) as assigning true to vi, and
the presence of C(vi) to mean that vi is false.

Next we need some way of verifying whether a clause is satisfied by the
valuation associated with a repair of ∪iAvi . To this end, we create an ABox Ac`
for each clause c`; the ABox Aϕ encoding ϕ will then simply be the union of the
ABoxes Avi and Ac` . The precise definition of the ABox Ac` is a bit delicate
and depends on the polarity of the literals in c`. Figure 2 presents a pictorial
representation of Ac` for the case where c` = ¬vi ∨ ¬vj ∨ ¬vk (the ABoxes Avi ,
Avj , and Avk are also displayed).

Let us now see how the ABox Ac` pictured in Fig. 2 can be used to test the
satisfaction of c`. First suppose that we have a repair B of Aϕ which contains
A(vi), A(vj), and A(vk), i.e. the valuation associated with the repair does not
satisfy c`. We claim that this implies that q holds. Suppose for a contradiction
that q is not entailed from T ,B. We first note that by maximality of repairs, B
must contain all of the assertions A(vj), R(vj , a`), B(a`), and R(a`, c

2
`). It follows

that including C(c2`) in B would cause q to hold, which means we must choose to
include B(c2`) instead. Using similar reasoning, we can see that in order to avoid
satisfying q, we must have C(d`) in B rather than B(d`), which in turn forces us
to select C(c3`) to block A(c3`). However, this is a contradiction, since we have
identified a match for q in B with x = vi, y = c2` , z = c3` . The above argument
(once extended to the other possible forms of Ac`) is the key to showing that
the unsatisfiability of ϕ implies T ,Aϕ |= q.

Conversely, it can be proven that if one of c`’s literals is made true by the
valuation, then it is possible to repair Ac` in such a way that a match for q
is avoided. For example, consider again Ac` from Figure 2, and suppose that
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the second literal vj is satisfied. It follows that C(vj) ∈ B, hence A(vj) 6∈ B,
which means we can keep C(c2`) rather than B(c2`), thereby blocking the match
at (vi, c

2
` , c

3
`). By showing this property holds for the different forms of Ac` ,

and by further arguing that we can combine “q-avoiding” repairs of the Ac`
without inducing a match for q, we can prove that the satisfiability of ϕ implies
T ,Aϕ 6|= q. We thus have:

Theorem 5. ConsEnt(q, T ) is coNP-hard in data complexity for T = {A v
¬B,A v ¬C,B v ¬C} and q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

6 Tractability through Approximation

The positive results from Section 4 give us a polynomial algorithm for consistent
query answering in the presence of simple ontologies, but only for CQs with
at most two quantified variables. In order to be able to handle all queries, we
explore in this section alternative inconsistency-tolerant semantics which are
sound approximations of the consistent query answering semantics.

One option is to adopt the IAR semantics from [10]. We recall that this
semantics (denoted by |=IAR) can be seen as evaluating queries against the ABox
corresponding to the intersection of the repairs. Conjunctive query answering
under IAR semantics was shown in [11] tractable for general CQs in the presence
of DL-Lite ontologies (and a fortiori simple ontologies) using query rewriting.

To obtain a finer approximation of the consistent query answering semantics,
we propose a new inconsistency-tolerant semantics which corresponds to clos-
ing repairs with respect to the TBox before intersecting them. In the following
definition, we use clT (B) to denote the set of assertions entailed from T ,B.

Definition 4. A Boolean query q is said to be entailed from (T ,A) under ICR
semantics (“intersection of closed repairs”), written T ,A |=ICR q, if T ,D |= q,
where D =

⋂
B∈RepT (A) clT (B).

The following theorem, which is easy to prove, establishes the relationship
among the three semantics.

Theorem 6. For every Boolean CQ q and TBox T :

T ,A |=IAR q ⇒ T ,A |=ICR q ⇒ T ,A |=cons q

The reverse implications do not hold.

The next example illustrates the difference between IAR and ICR semantics:

Example 4. Let T = {A v C,B v C,A v ¬B} and A = {A(a), B(a)}. Then
C(a) is entailed from (T ,A) under ICR semantics, but not under IAR semantics.

Finally, we show that under ICR semantics, we can answer any conjunctive
query in polynomial time using query rewriting.

67



Theorem 7. Let T be a simple ontology and q a Boolean CQ. Then there exists
a first-order query q′ such that for every ABox A: T ,A |=ICR q iff IA |= q′.

Proof (Sketch). We first compute, using standard techniques, a union of conjunc-
tive queries ϕ such that for every A, we have T ,A |= q if and only if IA |= ϕ.
Next we use Theorem 1 to find a consistent rewriting ψA(t) of each concept atom
A(t) ∈ ϕ, and we let q′ be the first-order query obtained by replacing each oc-
currence of A(t) in ϕ by ψA(t). It can be shown that the query q′ is such that
T ,A |=ICR q if and only if IA |= q′.

7 Extension to Inverse-Free DL-Litecore

In this section, we show how the techniques we developed for simple ontologies
can be used to extend our positive results to DL-Litecore ontologies which do
not contain inverse roles (we will use DL-Liteno− to refer to this logic).

Our first result shows that the analogues of Theorems 1 and 4 hold for
DL-Liteno− ontologies. The main technical difficulty in adapting the proofs of
Theorems 1 and 4 is that role assertions may now be contradicted, which means
repairs need not have the same set of role assertions as the original ABox.

Theorem 8. Consider a DL-Liteno− ontology T , and a Boolean CQ q with
at most two quantified variables. Then ConsEnt(q, T ) is polynomial in data
complexity, and first-order expressible if there is at most one quantified variable.

We can also extend the general first-order expressibility result for the new
ICR semantics (Theorem 7) to the class of DL-Liteno− ontologies.

Theorem 9. Let T be a DL-Liteno− ontology, and let q be a Boolean CQ. Then
there exists a first-order query q′ such that for every ABox A: T ,A |=ICR q if
and only if IA |= q′.

As noted earlier, consistent query answering in (full) DL-Litecore is coNP-
hard in data complexity even for instance queries, which means that neither of
the preceding theorems can be extended to the class of DL-Litecore ontologies.

8 Conclusion and Future Work

The detailed complexity analysis we conducted for consistent query answering
in the presence of simple ontologies provides further insight into previously ob-
tained negative complexity results [10, 14], by making clear how little is needed to
obtain first-order inexpressibility or intractability. Our investigation also yielded
some positive results, including the identification of novel tractable cases, such
as inverse-free DL-Litecore ontologies coupled with CQs with at most two quan-
tified variables (or coupled with arbitary CQs, under the new ICR semantics).

There are several natural directions for future work. First, it would be in-
teresting to explore how far we can push our positive results. We expect that
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adding Horn inclusions and positive role inclusions should be unproblematic, but
role disjointness axioms will be more challenging. In order to handle functional
roles, we might try to combine our positive results with those which have been
obtained for relational databases under functional dependencies [15]. It would
also be interesting to try to build upon the results in this paper in order to
obtain a criterion for first-order expressibility (or tractability) which applies to
all conjunctive queries, regardless of the number of quantified variables.

Finally, we view the present work as a useful starting point in the develop-
ment of sound but incomplete consistent query answering algorithms for popular
lightweight DLs like (full) DL-Litecore and EL⊥. For example, our results could
be extended to identify some CQ-TBox pairs in these richer logics for which
consistent query answering is tractable. Another idea is to use the new ICR
semantics to lift tractability results for IQs (like those in [4]) to classes of CQs.
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Abstract. We consider the problem of deciding, given an instance query A(x),
an EL-TBox T , and possibly an ABox signature Σ, whether A(x) is FO-rewri-
table relative to T and Σ-ABoxes. Our main results are PSPACE-completeness
for the case where Σ comprises all symbols and EXPTIME-completeness for the
general case. We also show that the problem is in PTIME for classical TBoxes
and that every instance query is FO-rewritable into a polynomial-size FO query
relative to every (semi)-acyclic TBox (under some mild assumptions on the data).

1 Introduction

Over the last years, query answering over instance data has developed into one of the
most prominent problems in description logic (DL) research. Many approaches aim
at utilizing relational databases systems (RDBMSs), exploiting their mature technol-
ogy, advanced optimization techniques, and the general infrastructure that those sys-
tems offer. Roughly, RDBMS-based approaches can be classified into query rewriting
approaches, where the original query and the DL TBox are compiled into an SQL query
that is passed to the RDBMS for execution [5], and combined approaches, where the
consequences of the TBox are materialized in the data in a compact form and some
query rewriting is used to ensure correct answers despite the compact representation
[12, 11]. This division is by no means strict, as illustrated by the approach presented in
[7] which is based on query rewriting, but also has strong similarities with combined
approaches.

A fundamental difference between the query rewriting approach and the combined
approach is that, in query rewriting, an exponential blowup of the query is often un-
avoidable [8] while the combined approach typically blows up both query and data
only polynomially [12, 11]. It is thus unsurprising that query execution is more efficient
in the combined approach than in the query rewriting approach, see the experiments
in [11]. Depending on the application, however, there can still be good reasons to use
pure query rewriting. Ease of implementation: Query rewriting approaches are often
easier to implement as they do not involve a data completion phase. When the TBox
is sufficiently small so that the exponential blowup of the query is not prohibitive or
when only a prototype implementation is aimed at, it may not be worthwhile to imple-
ment a full combined approach. Access limitations: If the user does not have permission
to modify the data in the database, materializing the consequences of the TBox in the
data might simply be out of the question. This problem arises notably in information
integration applications.
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In this paper, we are interested in TBoxes formulated in the description logic EL,
which forms the basis of the OWL EL fragment of OWL 2 and is popular as a ba-
sic language for large-scale ontologies. In general, query rewriting approaches are not
applicable to EL because instance query answering in this DL is PTIME-complete re-
garding data complexity while AC0 data complexity marks the boundary of DLs for
which the pure query rewriting approach can be made work [5]. For example, the query
A(x) cannot be answered by an SQL-based RDBMS in the presence of the very simple
EL-TBox T = {∃r.A v A}, intuitively because T forces the concept name A to be
propagated unboundedly along r-chains in the data and thus the rewritten query would
have to express transitive closure of r. We say that A(x) is not FO-rewritable relative
to T , alluding to the known equivalence of first-order (FO) formulas and SQL queries.

Of course, such an isolated example does not rule out the possibility that some EL-
TBoxes, including those that are used in applications, still enjoy FO-rewritability. For
example, the query A(x) is FO-rewritable relative to the EL-TBox T ′ = {A v ∃r.A}:
since the additional instances of A stipulated by T ′ are ‘anonymous objects’ (nulls in
database parlance) rather than primary data objects, there is no unbounded propagation
through the data and, in fact, we can simply drop T ′ when answering A(x). Inspired
by these observations, the aim of this paper is to study FO-rewritability on the level of
individual TBoxes, essentially following the non-uniform approach initiated in [15]. In
particular, we are interested in deciding, for a given instance query (IQ) A(x) and EL-
TBox T , whether q is FO-rewritable relative to T . Sometimes, we additionally allow
as a third input an ABox-signature Σ that restricts the symbols which can occur in the
data [2, 3].

Our main result is that deciding FO-rewritability of IQs relative to general EL-
TBoxes (sets of concept inclusions C v D) is PSPACE-complete when the ABox signa-
ture Σ is full (i.e., all symbols are allowed in the ABox) and EXPTIME-complete when
Σ is given as an input. For proving these results, we establish some properties that are
of independent interest, such as: (1) whenever an IQ is FO-rewritable, then it is FO-
rewritable into a union of tree-shaped conjunctive queries; (2) an IQ is FO-rewritable
relative to all ABoxes iff it is FO-rewritable relative to tree-shaped ABoxes (see Sec-
tion 3 for a precise formulation). We also study more restricted forms of TBoxes, show-
ing that FO-rewritability of IQs relative to classical TBoxes (sets of concept definitions
A ≡ C and concept implications A v C with A atomic, cycles allowed) is in PTIME,
even when Σ is part of the input. For semi-acyclic TBoxes T (classical TBoxes without
cycles that involve only concept definitions, but potentially with cycles that involve at
least one concept inclusion), we observe that every IQ is FO-rewritable relative to T (for
any ABox signatureΣ) and that, under the mild assumption that the admitted databases
have domain size at least two, even a polynomial-sized rewriting is possible. While it is
not our primary aim in this first publication to actually generate FO-rewritings, we note
that all our results come with effective procedures for doing this (the rewritings are of
triple-exponential size in the worst case).

Although we focus on simple IQs of the form A(x), all results in this paper also
apply to instance queries of the form C(x) with C an EL-concept. The treatment of
conjunctive queries (CQs) is left for future work. We also discuss the connection of FO-
rewritability in EL to boundedness in datalog and in the µ-calculus. Proof details are
deferred to the long version at at http://www.informatik.uni-bremen.de/∼clu/papers/.
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2 Preliminaries

We remind the reader that EL-concepts are built up from concept names and the con-
cept > using conjunction C uD and existential restriction ∃r.C. When we speak of a
TBox without further qualification, we mean a general TBox, i.e., a finite set of concept
inclusions (CIs) C v D. Other forms of TBoxes will be introduced later as needed. An
ABox is a finite set of concept assertions A(a) and role assertions r(a, b) where A is a
concept name, r a role name, and a, b individual names. We use Ind(A) to denote the
set of all individual names used inA. It will sometimes be convenient to view an ABox
A as an interpretation IA, defined in the obvious way (see [15]).

Regarding query languages, we focus on instance queries (IQ), which have the form
A(x) with A a concept name and x a variable. We write T ,A |= A(a) if aI ∈ AI for
all models I of T and A and call a a certain answer to A(x) given A and T . We
use certT (A(x),A) to denote the set of all certain answers to A(x) given A and T .
To define FO-rewritability, we require first-order queries (FOQs), which are first-order
formulas constructed from atoms A(x), r(x, y), and x = y. We use ans(I, q) to denote
the set of all answers to the FOQ q in the interpretation I.

A signature is a set of concept and role names, which are uniformly called symbols
in this context. A Σ-ABox is an ABox that uses only concept and role names from Σ.
The full signature is the signature that contains all concept and role names.

Definition 1 (FO-rewritability). Let T be an EL-TBox and Σ an ABox signature. An
IQ q is FO-rewritable relative to T and Σ if there is a FOQ ϕ such that certT (A, q) =
ans(IA, ϕ) for all Σ-ABoxes A. Then ϕ is an FO-rewriting of q relative to T and Σ.

Example 1. Recall from the introduction that A(x) is not FO-rewritable relative to
T = {∃r.A v A} and the full signature. If we add ∃r.> v A to T , then A(x) is
FO-rewritable relative to the resulting TBox and the full signature, and ϕ(x) = A(x)∨
∃y r(x, y) is an FO-rewriting. If we chooseΣ = {A}, thenA(x) becomes FO-rewritable
also relative to the original T , with the trivial FO-rewritingA(x). Conversely, if a query
q is FO-rewritable relative to a TBox T ′ and a signature Σ, then q is FO-rewritable rel-
ative to T ′ and any Σ′ ⊆ Σ (take an FO-rewriting relative to T ′ and Σ and replace all
atoms which involve predicates that are not in Σ′ with false).

Sometimes, instance queries have the more general form C(x) with C an EL-
concept. Since C(x) is FO-rewritable relative to T and Σ whenever A(x) is FO-
rewritable relative to T ∪ {A ≡ C} and Σ, A a fresh concept name, queries of this
form are captured by the results in this paper.

3 General TBoxes – Upper Bounds

We first characterize failure of FO-rewritability of an IQ A(x) relative to a TBox T
and an ABox signature Σ in terms of the existence of certain Σ-ABoxes and then show
how to decide the latter. The following result provides the starting point. An ABox
is called tree-shaped if the directed graph (Ind(A), {(a, b) | r(a, b) ∈ A}) is a tree
and r(a, b), s(a, b) ∈ A implies r = s. A FOQ is a tree-UCQ if it is a disjunction
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q1 ∨ · · · ∨ qn and each qi is a conjunctive query (CQ) that is tree-shaped (defined in
analogy with tree-shaped ABoxes) and where the root is the only answer variable; see
e.g. [15] for details on CQs.

Theorem 1. Let T be an EL-TBox, Σ an ABox signature, and A(x) an IQ. Then

1. If A(x) is FO-rewritable relative to T and Σ, then there is a tree-UCQ that is an
FO-rewriting of A(x) relative to T and Σ;

2. If ϕ(x) is an FO-rewriting of A(x) relative to T and tree-shaped Σ-ABoxes and
ϕ(x) is a tree-UCQ, then ϕ(x) is an FO-rewriting relative to T and Σ;

3. A(x) is FO-rewritable relative to T and Σ iff A(x) is FO-rewritable relative to T
and tree-shaped Σ-ABoxes.

Of the three points in Theorem 1, Point 1 is most laborious to prove. It involves applying
an Ehrenfeucht-Fraı̈ssé game and explicitly constructing a tree-UCQ as a disjunction of
certain EL-concepts (c.f. the characterization of FO-rewritability in terms of datalog
boundedness given in [15] and its proof). Point 2 can then be derived from Point 1, and
Point 3 is an immediate consequence of Points 1 and 2.

For a tree-shaped ABox A and k ≥ 0, we use A|k to denote the restriction of A to
depth k. The following provides the first version of the announced characterization of
FO-rewritability in terms of the existence of certain ABoxes.

Theorem 2. Let T be an EL-TBox, Σ an ABox signature, and A(x) an IQ. Then A(x)
is not FO-rewritable relative to T and Σ iff for every k ≥ 0, there is a tree-shaped
Σ-ABox A of depth exceeding k with root a0 s.t. T ,A |= A(a0) and T ,A|k 6|= A(a0).

The proof of Theorem 2 builds on Point 1 of Theorem 1. Note that if A(x) is FO-
rewritable relative to T and Σ, then there is a k ≥ 0 such that for all tree-shaped Σ-
ABoxesA of depth exceeding k with root a0, T ,A |= A(a0) implies T ,A|k |= A(a0).
In the proof of Theorem 2, we explicitly construct FO-rewritings which are tree-UCQs
of outdegree at most |T | and depth at most k.

To proceed, it is convenient to work with TBoxes in normal form, where all CIs
must be of one of the forms A v B1, A v ∃r.B, > v A, B1 u B2 v A, ∃r.B v A
with A,B,B1, B2 concept names. This can be assumed without loss of generality:

Lemma 1. For any EL-TBox T , ABox signature Σ, and IQ A(x), there is a TBox T ′
in normal form such that for any FOQ ϕ, we have that ϕ(x) is an FO-rewriting ofA(x)
relative to T and Σ iff ϕ(x) is an FO-rewriting of A(x) relative to T ′ and Σ.

To exploit Theorem 2 for building a decision procedure for FO-rewritability, we impose
a bound on k. The next theorem is proved using Theorem 2 and a pumping argument.

Theorem 3. Let T be an EL-TBox in normal form, Σ an ABox signature, A(x) an IQ,
and n = |(sig(T ) ∪ Σ) ∩ NC|. Then A(x) is not FO-rewritable relative to T and Σ
iff there exists a tree-shaped Σ-ABox A of depth exceeding 2n with root a0 such that
T ,A |= A(a0) and T ,A|2n 6|= A(a0).

Note that, with the remark after Theorem 2, we obtain a triple exponential upper bound
on the size of FO-rewritings. The bound in Theorem 3 is optimal in the sense that, for
every n ≥ 1, there is an EL-TBox T and an IQ A(x) such that |sig(T ) ∩ NC| = n,
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A(x) is FO-rewritable relative to T and the full Σ, and for all ABoxes of depth at least
2n with root a0, we have T ,A |= A(a0) iff T ,A|2n−1 |= A(a0). Such a T can be
constructed by simulating a binary counter, see Section 4 of [13]. Based on Theorem 3,
we can establish the following result.

Theorem 4. Deciding FO-rewritability of an IQ relative to an EL-TBox and an ABox
signature is in EXPTIME.

The proof utilizes non-deterministic bottom-up automata on finite, ranked trees: we
construct exponential-size automata that accept precisely the ABoxes A from Theo-
rem 3 and then decide their emptiness in PTIME.

When Σ is full, the characterization given in Theorem 3 can be further improved.
An ABox A is linear if it consists of role assertions r0(a0, a1), . . . , rn−1(an−1, an)
and concept assertions A(a) with a ∈ {a0, . . . , an}. Somewhat unexpectedly, with full
Σ we can replace the tree-shaped ABoxes from Theorem 3 with linear ones.

Theorem 5. Let T be an EL-TBox in normal form, A(x) an IQ, and n = |(sig(T ) ∪
Σ)∩NC|. Then A(x) is not FO-rewritable relative to T (and the full Σ) iff there exists
a linear ABox A of depth exceeding 2n with root a0 such that T ,A |= A(a0) and
T ,A|2n 6|= A(a0).

The surprisingly subtle proof of Theorem 5 is based on the careful extraction of a lin-
ear ABox from the tree-shaped one whose existence is guaranteed by Theorem 3. The
subtlety is largely due to the fact that it is not sufficient to simply select a linear chain
of individuals from the tree-shaped ABox; additionally, the concept assertions on that
chain have to be modified in a very careful way.

The following example shows that, when Σ is not full, tree-shaped ABoxes in The-
orem 3 cannot be replaced with linear ones.

Example 2. Let T = {Ai v Xi, Bi uXi v Yi, ∃r.Yi v Xi | i ∈ {1, 2}}∪
{X1 uX2 v X, B1 uB2 v Z, ∃r.Z v X},

Σ = {A1, A2, B1, B2, r}, and take the IQ X(x). The tree-shaped ABox

A = {r(a0, ai,0), r(ai,0, ai,1), . . . , r(ai,2n−1, ai,2n) | i ∈ {1, 2}}∪
{B(ai,0), . . . , B(ai,2n), Ai(ai,2n) | i ∈ {1, 2}},

with n as in Theorems 3 and 5, is of depth exceeding 2n and it can be verified that
T ,A |= X(a0), but T ,A|2n 6|= X(a0). However, for all linear Σ-ABoxes A, we have
T ,A |= X(a0) iff T ,A|1 |= X(a0).

Theorem 5 allows us to replace the non-deterministic tree automata in the proof of
Theorem 6 with word automata, improving the upper bound to PSPACE.

Theorem 6. Deciding FO-rewritability of an IQ relative to an EL-TBox and the full
ABox signature is in PSPACE.
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4 General TBoxes – Lower Bounds

We establish lower bounds that match the upper bounds from the previous section.

Theorem 7. Deciding FO-rewritability of an IQ relative to a general EL-TBox and an
ABox signature Σ is (1) PSPACE-hard when Σ is full and (2) EXPTIME-hard when Σ
is an input.

The proof of Point 1 is by reduction of the word problem of polynomially space-
bounded deterministic Turing machines (DTMs). For Point 2, we modify the proof
of Point 1 to yield a reduction of the word problem of polynomially space-bounded
alternating Turing machines (ATMs). We start with the former.

Let M = (Q,Ω, Γ, δ, q0, qacc, qrej) be a DTM and p(·) its polynomial space bound.
We assume w.l.o.g. thatM terminates on every input, that it never attempts to move left
on the left-most end of the tape, that q0 /∈ {qacc, qrej}, and that there are no transitions
defined for qacc and qrej. Let x ∈ Ω∗ be an input to M of length n. Our aim is to
construct a TBox T and select a concept name B such that B is not FO-rewritable
relative to T and the full signature iff M accepts x.

By Theorem 5, non-FO-rewritability of B w.r.t. T is witnessed by a sequence of
linear ABoxes of increasing depth. In the reduction, these ABoxes take the form of
longer and longer r-chains (with r a role name). The chains represent the computation
of M on x, repeated over and over again. Specifically, the tape contents, the current
state, and the head position are represented using the elements of Γ ∪ (Γ × Q) as
concept names. If, for example, x = ab and the computation of M on x consists of the
two configurations qab and aq′b,4 then this is represented by ABoxes of the form

{r(b0, b1), r(b1, b2), r(b2, b3), . . . , r(bn−1, bn)}

where additionally, the concept (q, a) is asserted for b0, b4, b8, . . . , a is asserted for
b1, b5, b9, . . . and for b2, b6, b10, . . . , and (q′, b) for b3, b7, b11, . . . . IfM accepts x, then
B is propagated backwards along these chains (from b0 to b1 to b2 etc) unboundedly
far, starting from a single explicit occurrence of B asserted for b0. If M rejects x or the
chain in the ABox does not properly represent the computation of M on x, then B will
already be implied by any subchain of length at most p(n)2 and thus the unbounded
propagation of B gets ‘disrupted’ resulting in FO-rewritability of B relative to T .

The following CI in T results in backwards propagation of B provided that every
ABox individual is labeled with at least one symbol from Γ ∪ Γ ×Q:

∃r.(A uB) v B for all A ∈ Γ ∪ (Γ ×Q). (1)

Disrupt the propagation of B when M does not accept x:

(a, qrej) v B for all a ∈ Γ.

We have to enforce that the ABox actually represents a (repeated) computation of M .
To do this, we again use disruptions of the propagation of B: whenever an ABox A

4 uqv ∈ Γ ∗QΓ ∗ means that M is in state q, the tape left of the head is labeled with u, and
starting from the head position, the remaining tape is labeled with v.
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represents a configuration sequence that is not a proper computation, then B is implied
by a sub-chain of bounded length. Let forbid denote the set of all tuples (A1, A2, A3, A)
withAi ∈ Γ∪(Γ×Q) such that whenever three consecutive tape cells in a configuration
c are labeled with A1, A2, A3, then in the successor configuration c′ of c, the tape cell
corresponding to the middle cell cannot be labeled with A. Put

A u ∃rp(n)+1.A1 u ∃rp(n).A2 u ∃rp(n)−1.A3 v B (2)

for all (A1, A2, A3, A) ∈ forbid. This ensures that the transition relation is respected
and that the content of tape cells which are not under the head does not change. We also
need to say that every tape cell has a unique label, that there is at not more than one
head position per configuration, and at least one, again via disrupting the propagation
of B:

A uA′ v B for all distinct A,A′ ∈ Γ ∪ (Γ ×Q)

(a, q) v H for all (a, q) ∈ Γ ×Q a v H for all a ∈ Γ
∃ri.H u ∃rjH v B for i < j < p(n) H u ∃r.H u · · · u ∃rp(n)−1.H v B

whereH is a concept name indicating that the head is on the current cell andH indicat-
ing that this is not the case. It remains to set up the initial configuration. It is tempting
to introduce a concept name I that sets up the initial configuration and must be used
at the end of the r-chain to start the propagation of B. However, since we assume the
ABox signature Σ to be full, we can always put B itself at the end of the chain, avoid-
ing I . To fix this issue, we refrain from introducing I , but utilize the final states qacc
and qrej, enforcing that they must always be followed by the initial configuration. Let
A

(0)
1 , . . . , A

(0)
m be the concept names that describe the initial configuration, i.e., when

the input x is x1 · · ·xn, then A(0)
0 = (x1, q0), A(0)

i = xi for 2 ≤ i ≤ n, and A(0)
i = xi

is the blank symbol for n < i ≤ p(n). Now put

∃ri.qacc v A(0)
i and ∃ri.qrej v A(0)

i for 1 ≤ i ≤ p. (3)

Note that all witness ABoxes for non-FO-rewritability of B must eventually contain
qacc or qrej, thus the initial configuration will be properly set up at some point: ABoxes
A that do not contain these states do not represent a proper computation of M because
M reaches qacc or qrej after at most p(n) states, thus the propagation of B is disrupted
in A.

We now come to Point 2 of Theorem 7. When the ABox signature Σ is not re-
quired to be full, it is much simpler to set up the initial configuration. Indeed, we
can then simply introduce the mentioned concept name I , add I v B to T , and set
Σ = Γ ∪ (Γ ×Q) ∪ {r, I} to ensure that we must use I to start the propagation of B.
We can further replace the CIs (3) above with ∃ri.I v A

(0)
i and ∃ri.I v A

(0)
i for

1 ≤ i ≤ p to ensure that I sets up the initial configuration as intended. With this modi-
fication, we can adapt the reduction from DTMs to ATMs in a straightforward way, thus
improving the PSPACE lower bound to an EXPTIME one. We only give a brief sketch.
Assume w.l.o.g. that each configuration of the ATM M has at most two successor con-
figurations. We introduce a second role name s ∈ Σ, reserving r for the first successor
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of a configuration and s for the second successor. Then the CIs (1) are replaced with

∃r.(A uB) u ∃s.(A′ uB) v B for all A,A′ ∈ Γ ∪ (Γ ×Q).

resulting in witness ABoxes to take the form of a tree-shaped ATM computation rather
than a linear DTM computation. It remains to adapt the CIs (2) to reflect the branch-
ing of computations. The set forbid now contains tuples (A1, A2, A3, A

′
1, A

′
2, A

′
3, A),

where A1, A2, A3 describe three neighboring cells in the left predecessor configuration
and A′1, A

′
2, A

′
3 the corresponding cells in the right predecessor configuration (for exis-

tential states of M , we simply assume that the left and right predecessor are identical).
We can then replace (2) with

Au∃rp(n)+1.A1u∃rp(n).A2u∃rp(n)−1.A3u∃sp(n)+1.A′1u∃sp(n).A′2u∃sp(n)−1.A′3 v B.

5 Classical TBoxes

A classical TBox T is a finite set of concept definitions A ≡ C and CIs A v C where
A is a concept name. No concept name is allowed to occur more than once on the left
hand side of a statement in T .

Theorem 8. Deciding FO-rewritability of an IQ relative to a classical EL-TBox and
an ABox signature is in PTIME.

We give examples illustrating FO-rewritability in classical TBoxes and give the main
idea of the proof.

Example 3. (a) The IQ A(x) is not FO-rewritable relative to the classical TBox {A ≡
∃r.A} and the full ABox signature.

(b) The concept name A has a cyclic definition in the TBox T = { A ≡ Bu∃r.A,B v
∃r.A } which often indicates non-FO-rewritability, but in this case the IQ A(x) has an
FO-rewriting relative to T and the full ABox signature, namely ϕ(x) = A(x) ∨B(x).

To present the idea of the proof, we use an appropriate normal form for classical
TBoxes. A concept name A is defined in T if there is a definition A ≡ C ∈ T and
primitive otherwise; A is non-conjunctive in T if it occurs in T , but there is no CI of
the form A ≡ B1 u · · · uBn in T with n ≥ 1 and B1, . . . , Bn concept names. We use
non-conj(T ) to denote the set of non-conjunctive concepts in T . A classical TBox T
is in normal form if it is a set of statements A ≡ ∃r.B and A ≡ B1 u · · · uBn where
B,B1, . . . , Bn are concept names and B1, . . . , Bn are non-conjunctive. For every clas-
sical TBox T , one can construct in polynomial time a classical TBox T ′ in normal form
that uses additional concept names such that T ′ |= T and every model of T can be ex-
panded to a model of T ′ [10]. It is not hard to verify that an IQ A(x) is FO-rewritable
relative to T and Σ if and only if it is FO-rewritable relative to T ′ and Σ, provided that
A is not among the new concept names introduced during the construction of T ′. For a
classical TBox T in normal form and a concept name A, define

non-conjT (A) =

{
{A} if A is non-conjunctive in T
{B1, . . . , Bn} if A ≡ B1 u · · · uBn ∈ T .
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Our polytime algorithm utilizes an ABox introduced in [10, 9] in the context of conser-
vative extensions and logical difference: given a classical TBox T in normal form and
an ABox signature Σ, we compute in polytime a polysize Σ-ABoxAT ,Σ with individ-
ual names aB , B non-conjunctive in T , such that for any Σ-ABox A, individual name
a in A, and concept name A the following conditions are equivalent:

– T ,A 6|= A(a);
– there exists B ∈ non-conjT (A) such that (A, a) is simulated by (AT ,Σ , aB) (see

appendix of long version of this paper).

It follows that to check whether A(x) is FO-rewritable, instead of considering arbitrary
tree-shaped Σ-ABoxes A and A|k as in Theorem 2, it suffices to consider the tree
unfolding of AT ,Σ at aB and its restriction to depth k, for all B ∈ non-conjT (A). The
original search problem has been reduced to the problem of analysing the tree unfolding
of AT ,Σ . A polytime algorithm performing that analysis is given in the long version.

6 Semi-Acyclic TBoxes

It is easy to see that every IQ is FO-rewritable relative to every acyclic EL-TBox and ev-
ery ABox signature Σ. We observe that the same holds for semi-acyclic TBoxes, where
some cycles are still allowed, and that it is possible to find rewritings of polynomial size
when only databases of domain size at least two are admitted.

A semi-acyclic TBox is defined like a classical TBox, except that definitorial cycles
are disallowed, i.e., there cannot be concept definitions A0 ≡ C0, . . . , An−1 ≡ Cn−1
such that Ai occurs in Ci+1modn. Note that cycles via concept inclusions, such as A v
∃r.A, are still permitted. Let T be a semi-acyclic TBox and Σ an ABox signature. For
an EL-concept C, we use preT ,Σ(C) to denote the FO-formula

∨
B∈Σ | T |=BvC B(x).

For all concept names A and EL-concepts C and D and role names r, set

ϕΣ>,T (x) = true

ϕΣA,T (x) = preT ,Σ(A) if A is primitive
ϕΣA,T (x) = ϕΣC,T (x) if A ≡ C ∈ T

ϕΣCuD,T (x) = ϕΣC,T (x) ∧ ϕΣD,T (x)

ϕΣ∃r.C,T (x) = preT ,Σ(∃r.C) ∨ ∃y.(r(x, y) ∧ ϕΣC,T [y/x]) if r ∈ Σ
ϕΣ∃r.C,T (x) = preT ,Σ(∃r.C) if r /∈ Σ

where ϕ[x/y] denotes the result of first renaming all bound variables in ϕ so that y does
not occur, and then replacing the free variable x of ϕ with y.

Lemma 2. For all IQsA(x), ϕΣA,T (x) is an FO-rewriting ofA(x) relative to T andΣ.

The size of ϕΣA,T (x) can clearly be exponential in the size of T , for example when
A = An and T = {Ai ≡ ∃r.Ai−1 u ∃s.Ai−1 | 1 ≤ i ≤ n}. To reduce ϕΣA,T
to polynomial size, we can use Avigad’s observation that FO supports structure shar-
ing [1]. More precisely, let ϕ be a positive FOQ (such as ϕΣA,T ) whose subformulas
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include ψ(x1), . . . , ψ(xn). The multiple occurences of ψ can be avoided by rewriting
ϕ to ∃u∀y∀z

(
(ψ(y) ↔ z = u) → ϕ′

)
where ϕ′ is ϕ with each ψ(xi) replaced with

y = xi → z = u. Intuitively, we iterate over all y and memorize whether ψ(y) holds
using identity of z with u. Since we need at least two different ‘values’ for z to make
this trick work, the resulting FOQ is an FO-rewriting only on ABoxes with at least two
individual names.

7 Related Work

In [15], deciding FO-rewritability is studied in the context of the expressive DLALCFI
and several of its fragments. In general, though, the setup in that paper is different:
while we are interested in deciding FO-rewritability of a single query relative to a
TBox, the results in [15] concern deciding whether, for a given TBox T , all queries
are FO-rewritable relative to T . It is shown that this problem is decidable for Horn-
ALCFI-TBoxes of depth at most two and for Horn-ALCF-TBoxes (queries are IQs
or, equivalently, CQs). As a by-product of these results, a close connection between
FO-rewritability of TBoxes formulated in Horn DLs and boundedness of datalog pro-
grams is observed, see e.g. [6, 17] for the latter problem. In its original formulation,
the following result is established for a larger class of TBoxes, namely materializable
ALCFI-TBoxes of depth one.

Lemma 3 ([15]). For every (general) EL-TBox T in normal form, there is a datalog
program ΠT such that for every ABox signature Σ and IQ A(x), the predicate A is
bounded in ΠT relative to Σ-databases iff A(x) is FO-rewritable relative to T and Σ.

In [15], the program ΠT is of exponential size. Since we are only interested in EL-
TBoxes, it is easy to find a ΠT of polynomial size. More specifically, ΠT consists of

A(x)← true if > v A ∈ T
B(x)← r(x, y), A(x) if ∃r.A v B ∈ T X∃r.A(x)← B(x) if B v ∃r.A ∈ T
B(x)← A1(x), A2(x) if A1 uA2 v B ∈ T (where possibly A1 = A2)
B(x)← X∃r.A(x) if ∃r.B0 v B ∈ T and T |= A v B0

This allows to carry over the 2EXPTIME upper bound for predicate boundedness of con-
nected monadic datalog programs [6] to FO-rewritability of an IQ relative to a general
EL-TBoxes and an ABox signature.5

Note that boundedness has been studied also in the context of the µ-calculus and
monadic second order (MSO) logic [16, 4]. Here, an EXPTIME upper bound is known
from [16] and it seems likely that this result can be utilized to find an alternative proof
of Theorem 6. In particular, it is possible to find a µ-calculus rewriting ϕ of an IQ
A(x) relative to an EL-TBox T and ABox signature Σ: proceeding similarly to the
construction of the above datalog program ΠT , we can find a µ-calculus formula ϕT ,Σ
such that for all Σ-ABoxes A and a ∈ Ind(A), we have T ,A |= A(a) iff IA, a |= ϕ.
When simultaneous fixpoints are admitted, ϕ even has polynomial size.

5 Note that we explicitly fix the signature Σ of the databases over which boundedness of ΠT is
considered instead of assuming that only the EDB predicates can be used in the data as in [6];
this is only for simplicity and, in fact, it is easy to adapt ΠT to the latter assumption.
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8 Conclusions

It would be interesting to generalize the results presented in this paper to more expres-
sive DLs and to more expressive query languages. Regarding the former, we note that
using the techniques in [14, 15] it is possible to derive a NEXPTIME upper bound for
deciding FO-rewritability of IQs relative to Horn-ALCI-TBoxes and ABox signatures.
Regarding the latter, CQs are a natural choice and we believe that a mix of techniques
from this paper and those in [3] might provide a good starting point. It is interesting
to note that FO-rewritability of all IQ-atoms A(x) in a CQ q does not imply that q is
FO-rewritable and the converse fails, too.

Acknowledgements. C. Lutz was supported by the DFG SFB/TR 8 ‘Spatial Cognition’.
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Answering Expressive Path Queries
over Lightweight DL Knowledge Bases ?
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Abstract. We establish tight complexity bounds for answering an extension of
conjunctive 2-way regular path queries over EL and DL-Lite knowledge bases.

1 Introduction

It has been extensively argued in the description logic (DL) community that answering
queries over ABoxes in the presence of ontological constraints formulated in a DL TBox
is a fundamental reasoning service. In databases, similar attention has been paid to the
related problem of querying graph databases, which are relational databases where only
unary and binary predicates occur, or in other words, node- and edge-labeled graphs [8,
3]. The relevance of both problems lies in the fact that in many application areas data
can be naturally modeled as an ABox or a graph database. This applies, in particular, to
XML data on the web, including RDF datasets. While the two communities share some
common research goals, the research agendas they have pursued differ significantly. In
the DL community, the focus has been on designing efficient algorithms for answering
(plain) conjunctive queries in the presence of expressive ontological constraints. By
contrast, work on graph databases typically does not consider ontological knowledge,
but instead aims at supporting expressive query languages, like regular path queries
(RPQs) and their extensions, which enable sophisticated navigation of paths.

This paper aims to help bridge this gap, by considering an expressive extension
of RPQs, and providing algorithms and precise complexity bounds for the EL and
DL-Lite families of lightweight DLs. We build on conjunctive (2-way) regular path
queries (C2RPQs), which simultaneously extend plain conjunctive queries (CQs) and
basic RPQs: they allow conjunctions of atoms that can share variables in arbitrary ways,
where the atoms may contain regular expressions that navigate the arcs of the database
(roles) in both directions. C2RPQs are one of the most expressive and popular languages
for querying graph databases. These queries have already been studied for some DLs.
In particular, automata-based algorithms have been proposed for the very expressive
DLs ZIQ, ZIO, and ZOQ [5, 6], for which query answering is 2-EXPTIME hard.
Even in data complexity, that is, when the query and ontology are assumed fixed, these
algorithms need exponential time. More recently, algorithms for answering C2RPQs
were proposed in [11] for Horn-SHOIQ and Horn-SROIQ. They are polynomial in
data complexity but still EXPTIME in combined, which is worst-case optimal for these

? This work partially supported by the Austrian Science Fund (FWF) grants P20840 and T515.
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logics. For prominent lightweight DLs like the DL-Lite [4] and EL [2], which underly
the OWL 2 profiles, queries with regular paths had not been explored and many ques-
tions remained open, like whether algorithms that require only polynomial space are
possible. In DL-Lite, FO-rewritability and AC0 data complexity are clearly lost, since
we can express reachability, but it was not known whether P-hardness was avoidable.
In this paper, we answer these questions by providing precise complexity bounds.

We propose an extension of C2RPQs that we call conjunctive (2-way) regular path
queries with complex labels, abbreviated `-C2RPQs. To illustrate its expressiveness, we
consider a graph representation of the Mathematics Genealogy Project (MGP) database,
which contains about 160K historic records of advisor relationships of PhD holders in
mathematics and related disciplines. We use nodes for mathematicians, theses, topics of
research, and universities. Nodes and edges are labeled with concepts (unary relations)
and roles (binary relations), respectively. Figure 1 depicts a fragment of such a graph.
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Fig. 1: Example graph database of the Mathematics Genealogy Project

An ontology containing the axioms in Fig. 2 can be used to express, for example,
that a person that works in computer science or that wrote a doctoral thesis in computer
science is a computer scientist (1,2). In a similar way we can define other specialities
such as biologists (3,4), logicians (5,6), physicists, etc. We group the first level subjects
of the Mathematics Subject Classification (MSC) used in the MGP database into their
5 major areas (7–11), and these major areas into subjects (12–16).

(1) ∃worksOn.CompSci vCompScientist
(2) ∃wroteThesis.(∃hasTopic.CompSci)vCompScientist
(3) ∃worksOn.Biology&NaturalSciences vBiologist
(4) ∃wroteThesis.(∃hasTopic.Biology&NaturalSciences)vBiologist
(5) ∃worksOn.MathLogic&Foundns vLogician
(6) ∃wroteThesis.(∃hasTopic.MathLogic&Foundns)vLogician

(7) MathLogic&Foundns vGeneral&Foundns
(8) Geometry vGeometry&Topology
(9) CompSci vAppliedMath&Other
(10)Biology&NaturalSciences vAppliedMath&Other
(11) Physics vAppliedMath&Other

(12) General&Foundns vSubject
(13)DiscreteMath&Algebra vSubject
(14) Analysis vSubject
(15) Geometry&Topology vSubject
(16) AppliedMath&Other vSubject

Fig. 2: An example MGP ontology

In RPQs, C2RPQs and similar languages, regular paths usually talk about the arc
labels only, and do not allow to verify conditions on the node labels. For example, one
can use the expression hasAdvisor∗◦WroteThesis ◦ hasTopic to navigate arbitrarily long
chains of advisors and visit their thesis topics, but we cannot look at the subjects and
thesis topics and impose conditions on them. This limitation is not so significant for
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graph databases, as arc labels play a more prominent role and are often used to simulate
node labels. In the DL setting, by contrast, concepts are crucial and should be treated as
first-class citizens. For this reason, we add to C2RPQs the ability to talk about combina-
tions of concept and roles that appear along a path. In our language, we can use the ex-
pression (hasAdvisor ,Logician∨CompScientist)∗◦WroteThesis ◦ (hasTopic,Geometry)

to navigate a chain of advisors that are computer scientist or logicians, until we reach
one that wrote a doctoral thesis in Geometry. Note that this query could be expressed
(less succinctly) using the test operator (cf. [6]): (hasAdvisor ◦Logician?∪hasAdvisor ◦
CompScientist?)∗ ◦ WroteThesis ◦ hasTopic ◦ Geometry?. However, our language is
slightly more expressive (for DLs without role conjunction), since we can navigate a
chain of people that are both advisors and coauthors using (hasAdvisor ∧ coAuthor)∗ .

In this paper, we show that answering these queries over EL and DL-Lite knowl-
edge bases is PSPACE-complete, but drops to NP if we consider DL-LiteRDFS. For data
complexity, the problem is NLSPACE-complete for DL-Lite and P-complete for EL.

2 Preliminaries

We briefly recall the syntax of DL-LiteR [4] and ELH [2] (and relevant sublogics). As
usual, we assume sets NC, NR, and NI of concept names, role names, and individuals.
We will use NR to refer to NR∪{r− | r ∈ NR}, and ifR ∈ NR, we useR− to mean r− if
R = r and r ifR = r−. An ABox is a set of assertions of the formA(b) or r(b, c), where
A ∈ NC, r ∈ NR, and b, c ∈ NI. A TBox is a set of inclusions, whose form depends
on the DL in question. In DL-Lite, inclusions take the form B1 v (¬)B2, where each
Bi is either A (where A ∈ NC) or ∃R (where R ∈ NR). DL-LiteR additionally allows
role inclusions of the form R1 v (¬)R2, where R1, R2 ∈ NR. DL-LiteRDFS is obtained
from DL-LiteR by disallowing inclusions which contain negation or have existential
concepts (∃R) on the right-hand side. In EL, inclusions have the form C1 v C2, where
C1, C2 are complex concepts constructed as follows: C := > | A | C u C | ∃r.C. The
DL ELH additionally allows role inclusions of the form r v s, where r, s ∈ NR. A
knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A.

As usual, the semantics is based upon interpretations, which take the form I =
(∆I , ·I), where ∆I is a non-empty set and ·I maps each a ∈ NI to aI ∈ ∆I , each
A ∈ NC to AI ⊆ ∆I , and each r ∈ NR to rI ⊆ ∆I × ∆I . The function ·I is
straightforwardly extended to general concepts and roles, e.g. (¬A)I = ∆I \ AI and
(∃r.C)I = {c | ∃d : (c, d) ∈ rI , d ∈ CI}. I satisfies G v H if GI ⊆ HI ; it satisfies
A(a) (resp. r(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ rI). I is a model of K = (T ,A) if I
satisfies all inclusions in T and assertions in A.

To simplify the presentation, we will assume that ELH TBoxes are normalized,
meaning that all concept inclusions are of one of the following forms:

> v A A v B A v ∃r.B B1 uB2 v A ∃r.B v A
with A,B,B1, B2 concept names. It is well-known that for every ELH TBox T , one
can construct in polynomial time a normalized ELH TBox T ′ that uses fresh concept
names such that T ′ |= T and every model of T can be expanded to a model of T ′.

For convenience, we introduce a set of basic concepts, denoted BC, defined as fol-
lows: BC = NC ∪ {∃R | R ∈ NR} for DL-LiteR, and BC = NC for ELH.
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Canonical Models We recall the definition of canonical models for DL-LiteR and ELH
KBs. For both logics, the domain of the canonical model IT ,A for a KB (T ,A) will
consist of paths of the form aR1C1 . . . RnCn (n ≥ 0), where a ∈ Ind(A), each Ci is a
basic concept, and each Ri a (possibly inverse) role. When T is a DL-LiteR TBox, the
domain ∆IT ,A contains exactly those paths aR1∃R−1 . . . Rn∃R−n which satisfy:

– if n ≥ 1, then T ,A |= ∃R1(a);
– for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.

When T is a (normalized) ELH TBox, the domain ∆IT ,A contains exactly those paths
ar1A1 . . . rnAn for which each ri ∈ NR, and:

– if n ≥ 1, then T ,A |= ∃r1.A1(a);
– for 1 ≤ i < n, T |= Ai v ∃ri+1.Ai+1.

We denote the last concept in a path p by tail(p), and define IT ,A by taking:
aIT ,A = a for all a ∈ Ind(A)
AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)} ∪ {p ∈ ∆IT ,A \ Ind(A) | T |= tail(p) v A}
rIT ,A = {(a, b) | r(a, b) ∈ A}∪

{(p1, p2) ∈ ∆IT ,A ×∆IT ,A | p2 = p1 · S C and T |= S v r}∪
{(p2, p1) ∈ ∆IT ,A ×∆IT ,A | p2 = p1 · S C and T |= S v r−}

Note that IT ,A is composed of a core consisting of the ABox individuals and an anon-
ymous part consisting of (possibly infinite) trees rooted at ABox individuals. We will
use IT ,A|e to denote the submodel of IT ,A obtained by restricting the universe to paths
having e as a prefix.

Regular Languages We assume the reader is familiar with regular languages, repre-
sented either by regular expressions or nondeterministic finite state automata (NFAs).
An NFA over an alphabet Σ is a tuple α = 〈S,Σ, δ, s0, F 〉, where S is a finite set of
states, δ ⊆ S × Σ × S the transition relation, s0 ∈ S the initial state, and F ⊂ S the
set of final states. We use L(α) to denote the language defined by an NFA α, and when
the way a regular language is represented is not relevant, we denote it simply by L.

3 Conjunctive Regular Path Queries with Complex Labels

We now formally introduce our query language.

Definition 1. By B(S) we denote the set of all (positive) Boolean formulas built from
the symbols in S ∪ {true, false} using the connectives ∧ and ∨. A conjunctive (two-
way) regular path query with complex labels (abbreviated to `-C2RPQ) has the form
q(x) = ∃y ϕ where x and y are tuples of variables, and ϕ is a conjunction of atoms
of the following forms:

(i) β(t), where β ∈ B(NC) and t ∈ NI ∪ x ∪ y, and
(ii) L(t, t′), where L is (an NFA or regular expression defining) a regular language

over B(NR)× B(NC), and t, t′ ∈ NI ∪ x ∪ y.

As usual, variables and individuals are called terms, and the variables in x are called
answer variables. A query with no answer variables is called Boolean.

If all atoms of type (i) are of the form A(t) with A ∈ NC, and the regular languages
L in atoms of type (ii) comprise only symbols of the form (R, true) with R ∈ NR, then
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q is called a conjunctive (two-way) regular path query (C2RPQ). Conjunctive one-way
regular path queries with complex labels (`-CRPQs) and conjunctive one-way regular
path queries (CRPQs) are defined analogously, the only difference being that they use
formulas from B(NR) instead of B(NR) in atoms of type (ii). Conjunctive queries (CQs)
are C2RPQs where all atoms of type (ii) have the form (R, true)(t, t′) with R ∈ NR.

Example 1. For readability, we write symbols (R, true) ∈ B(NR)× B(NC) simply as
R. Recall the MGP database. The query q1(x, y) in Fig. 3 searches for pairs of com-
puter scientists that have a biologist as common academic ancestor, and such that there
is a physicist on that path. It returns, among others, Jack Minker and Edmund Clarke,
who have the biologist and mathematician Johann Bernoulli (1667–1748) as common
ancestor on a path including the physicist and mathematician Joseph Fourier (1768 –
1830); as well as Gert Smolka and Georg Gottlob, who have as ancestors Nikolaus Poda
von Neuhaus, an Austrian entomologist (1723 - 1798), and the physicist Ludwig Boltz-
mann (1844 – 1906). The query q2(x, y) searches for a common academic ancestor x
of Robert Kowalski and Franz Baader, together with the country y where the ancestor’s
thesis was defended; it requires all ancestors on the path to be computer scientists and
logicians. It returns one tuple: (Bernard Meltzer, UK). The query q3(x) is similar but
we require x to be a biologist or physicist, and additionally allow physicists along the
path. This query retrieves 8 people, going back to Gabriel Gruber (1740–1805), a Jesuit
priest, philosopher, mathematician and professor of physics.
q1(x, y) = CompScientist ∨ Logician(x),CompScientist ∨ Logician(y),ˆ

hasAdvisor∗ ◦ (hasAdvisor ,Physicist) ◦ hasAdvisor∗ ◦ (hasAdvisor ,Biologist)

◦ (hasAdvisor−)∗ ◦ (hasAdvisor−,Physicist) ◦ (hasAdvisor−)∗
˜
(x, y)

q2(x, y) = [
`
hasAdvisor ,CompScientist ∧ Logician

´∗](RKowalski, x),
[
`
hasAdvisor ,CompScientist ∧ Logician

´∗](FBaader , x)
[wroteThesis ◦ submittedTo ◦ locatedIn](x, y)

q3(x) = [(hasAdvisor , ((CompScientist ∧Logician) ∨ Physicist))∗

◦ (hasAdvisor ,Biologist ∨ Physicist)](RKowalski, x)
[
`
hasAdvisor , ((CompScientist ∧Logician) ∨ Physicist)

´∗◦(hasAdvisor)](FBaader , x)

Fig. 3: Example queries

We now define the semantics of `-C2RPQs. We say that a set X ⊂ X satisfies a
formula ϕ ∈ B(X), written X |= ϕ, if the formula that results from replacing each
v ∈ X by true if v ∈ X and by false otherwise is equivalent to true. For a regular
language L over the alphabet B(NR) × B(NC), we call d2 an L-successor of d1 in I if
there is somew = (Γ1, Υ1) . . . (Γn, Υn) ∈ L and some sequence e0, . . . , en of elements
in ∆I such that e0 = d1, en = d2, and, for all 1 ≤ i ≤ n:

{R ∈ NR | 〈ei−1, ei〉 ∈ RI} |= Γi and {A ∈ NC | ei ∈ AI} |= Υi.

A match for a Boolean `-C2RPQ q in an interpretation I is a mapping π from the
terms in q to elements in ∆I such that:

– π(c) = cI if c ∈ NI,
– {A ∈ NC | π(t) ∈ AI} |= β for each atom β(t) in q, and
– π(t′) is an L-successor of π(t) for each atom L(t, t′) in q.

We write I |= q if there is a match for q in I, and T ,A |= q if I |= q for every model
I of T ,A.
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Given an `-C2RPQ q with answer variables v1, . . . , vk, we say that a tuple of indi-
viduals (a1, . . . , ak) is a certain answer for q w.r.t. T ,A just in the case that in every
model I of T ,A there is a match π for q such that π(vi) = aIi for every 1 ≤ i ≤ k. Just
as for CQs and C2RPQs, deciding whether a tuple of individuals is a certain answer for
an `-C2RPQ can be linearly reduced to Boolean `-C2RPQ entailment. For this reason,
we consider only the latter problem in what follows.

It is well known that the canonical model IT ,A can be homomorphically embedded
into any model of T ,A, hence a CQ q is entailed by T ,A if and only if there is a match
for q in IT ,A. This result can be easily lifted from CQs to `-C2RPQs, as `-C2RPQs are
also monotonic and their matches are preserved under homomorphisms.

Lemma 1. For every DL-LiteR or ELH KB (T ,A) and Boolean `-C2RPQ q: T ,A |=
q if and only if IT ,A |= q.

This property will be a crucial element in establishing our main theorem:

Theorem 1. Boolean `-C2RPQ entailment is NLSPACE-complete in data complexity
and PSPACE-complete in combined complexity for DL-LiteR; the combined complexity
drops to NP-complete for DL-LiteRDFS. For ELH, the problem is P-complete in data
complexity and PSPACE-complete in combined complexity. All lower bounds hold also
for CRPQs and in the absence of role inclusions.

We split the proof of this theorem into parts, with the lower bounds shown in the
next section, and the (more involved) proofs of the upper bounds outlined in Section 5.

4 Lower Bounds

We start by establishing the required lower bounds.

Proposition 1. Boolean CRPQ entailment is

1. NLSPACE-hard in data complexity for DL-LiteRDFS;
2. P-hard in data complexity for EL;
3. NP-hard in combined complexity for DL-LiteRDFS;
4. PSPACE-hard in combined complexity for DL-Lite and EL.

Proof. Statement (1) follows from the analogous result for graph databases [8]. It can
be shown by a simple reduction from the NLSPACE-complete directed reachability
problem: y is reachable from x in a directed graph G if and only if (x, y) is an an-
swer to r∗(x, y) w.r.t. the ABox AG encoding G. Statement (2) is immediate given the
P-hardness in data complexity of CQ entailment in EL [7], and (3) follows from the
well-known NP-hardness in combined complexity of CQ entailment for databases [1].

For statement (4), we give a reduction from the problem of emptiness of the in-
tersection of an arbitrary number of regular languages, which is known to PSPACE-
complete [10]. Consider some regular languages L1, . . . , Ln over alphabet Σ. We will
use the symbols in Σ as role names, and we add a concept name A. Then we set
A = {A(a)} and q = ∃x L1(a, x) ∧ . . . ∧ Ln(a, x). For DL-Lite, we will use the
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following TBox: T = {A v ∃r | r ∈ Σ} ∪ {∃r− v ∃s | r, s ∈ Σ}. For EL, we can
use T = {A v ∃r.A | r ∈ Σ}. Notice that in both cases the canonical model IT ,A
consists of an infinite tree rooted at a such that every element in the interpretation has a
unique r-child for each r ∈ Σ (and no other children). Thus, we can associate to every
domain element the word over Σ given by the unique path from a, and moreover, for
every word w ∈ Σ∗ we can find an element ew whose path from a is exactly w. This
means that if w ∈ L1 ∩ . . . ∩ Ln, we obtain a match for q in the canonical model by
mapping x to ew. Conversely, if q is entailed, then any match in the canonical model
defines a word which belongs to every Li, which means L1∩ . . .∩Ln is non-empty. ut

5 Upper Bounds

The main objective of this section will be to define procedure for deciding IT ,A |=
q for a given KB T ,A and a given `-C2RPQ q. The procedure comprises two main
steps. First, we rewrite q into a set Q of `-C2RPQs such that IT ,A |= q if and only if
IT ,A |= q′ for some q′ ∈ Q. The advantage of the rewritten queries is that in order
to decide whether IT ,A |= q′, we will only need to consider matches which map the
variables to Ind(A). The second step evaluates the rewritten queries over the core part
of the canonical model involving only Ind(A).

Preliminary Notions In order to more easily manipulate regular languages, it will
prove convenient to use NFAs rather than regular expressions. Thus, in what follows, we
assume all binary atoms take the form α(t, t′), where α is an NFA over B(NR)×B(NC).
Given α = 〈S,Σ, δ, s0, F 〉, we use αs,G to denote the NFA 〈S,Σ, δ, s,G〉, i.e. the NFA
with the same states and transitions as α but with initial state s and final states G.

A key to defining our rewriting procedure will be to understand how an atomL(t, t′)
can be satisfied in the anonymous part of the canonical model IT ,A. A subtlety arises
from the fact that the path witnessing the satisfaction of an atom L(t, t′) may be quite
complicated: it may move both up and down, passing by the same element multiple
times, and possibly descending below t′. This will lead us to decompose an atomL(t, t′)
into multiple “smaller” atoms corresponding to segments of the L-path which are situ-
ated wholly above or below an element. Importantly, we know that the canonical model
displays a high degree of regularity, since whenever two elements p1 and p2 in the
anonymous part end with the same concept (i.e. Tail(p1) = Tail(p2)), the submod-
els IT ,A|p1 and IT ,A|p2 are isomorphic. In particular, this means that if Tail(p1) =
Tail(p2), then p1 is an L-successor of itself in the interpretation IA,T |p1 just in the case
that p2 is an L-successor of itself in the interpretation IA,T |p2 .

We now wish to define a way of testing for a given TBox T and NFA α with states
s, s′ whether Tail(e) = C ensures that there is a loop from e back to itself, situated
wholly within IT ,A|e, which takes α from state s to state s′. To this end, we construct
a table Loopα which contains for each pair s, s′ of states in α, a subset of BC. If T is a
DL-LiteR TBox, then Loopα is defined inductively using the following rules:

(1) for every s ∈ S, Loopα[s, s] = BC

(2) if C ∈ Loopα[s1, s2] and C ∈ Loopα[s2, s3], then C ∈ Loopα[s1, s3]
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(3) if C ∈ BC, T |= C v ∃R, ∃R− ∈ Loopα[s2, s3],
(s1, (Γ, Υ ), s2) ∈ δ, (s3, (Γ

′, Υ ′), s4) ∈ δ,
{U ∈ NR | T |= R v U} |= Γ , {A ∈ NC | T |= ∃R− v A} |= Υ ,
{U ∈ NR | T |= R− v U} |= Γ ′, and {A ∈ NC | T |= C v A} |= Υ ′,
then C ∈ Loopα[s1, s4]

For ELH, we replace the third rule by:

(3’) if C ∈ BC, T |= C v ∃r.D, D ∈ Loopα[s2, s3],
(s1, (Γ, Υ ), s2) ∈ δ, (s3, (Γ

′, Υ ′), s4) ∈ δ,
{s ∈ NR | T |= r v s} |= Γ , {A ∈ NC | T |= D v A} |= Υ ,
{s− ∈ NR | T |= r v s} |= Γ ′, and {A ∈ NC | T |= C v A} |= Υ ′,
then C ∈ Loopα[s1, s4]

Note that the table Loopα can be constructed in polynomial time in |T | and |α| since
entailment of inclusions is polynomial for both DL-LiteR and ELH. The following
lemma shows that Loopα has the desired meaning:

Lemma 2. For every element p ∈ ∆IA,T \ Ind(A): Tail(p) ∈ Loopα[s, s′] if and only
if p is an L(αs,s′)-successor of itself in the interpretation IA,T |p.

Query Rewriting Our aim is to rewrite our query in such a way that we do not need
to map any variables to the anonymous part of the model. We draw our inspiration
from a query rewriting procedure for Horn-SHIQ described in [9]. The main intuition
is as follows. Suppose we have a match π for q which maps some variable y to the
anonymous part, and no other variable is mapped below π(y). Then we modify q so
that it has essentially the same match except that variables mapped to π(y) are now
mapped to the (unique) parent of π(y) in IT ,A. The delicate point is that we must
“split” atoms of the form α(t, t′) with y ∈ {t, t′} into the parts which are satisfied in
the subtree IT ,A|π(y) (these have already been shown to hold, so can be dropped), and
those which occur above π(y), whose satisfaction still needs to be determined and thus
must be incorporated into the new query. With each iteration of the rewriting procedure,
we obtain a query which has a match which maps variables “closer” to the core of IT ,A,
until eventually we find some query that has a match which maps all terms to Ind(A).

We now give a recursive non-deterministic query rewriting procedure which imple-
ments the above intuition.

PROCEDURE rewrite(q, T )

1. Choose either to output q or to continue.
2. Choose a non-empty set Leaf ⊆ vars(q) and y ∈ Leaf. Rename all variables in

Leaf to y.
3. Choose some concept C ∈ BC such that {B | T |= C v B} |= ϕ for every atom
ϕ(y). Drop all such atoms from q.

4. For each atom α(t, t′) where α = 〈S,Σ, δ, s, F 〉 is a NFA and y ∈ {t, t′},
– choose a sequence s1, . . . sn of distinct states from S such that sn ∈ F ,
– replace the atom α(t, t′) in q by the atoms αs,s1(t, y), αs1,s2(y, y), . . . ,
αsn−2,sn−1

(y, y), αsn−1,sn(y, t′).
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5. Drop all atoms αs,s′(y, y) such that C ∈ Loopα[s, s′].
6. Choose some D ∈ BC and R ∈ NR such that:

(a) if T is a DL-LiteR TBox, then C = ∃R− and T |= D v ∃R.
(a’) if T is an ELH TBox, then R ∈ NR and T |= D v ∃R.C.
(b) for each atom of the form α(y, x) with α = 〈S,Σ, δ, s, F 〉, there exist s′ ∈ S

and (Γ, Υ )∈Σ with (s, (Γ, Υ ), s′)∈ δ and {U ∈ NR | T |= R− v U} |=Γ .
(c) for each atom of the form α(x, y) with α = 〈S,Σ, δ, s, F 〉, there exists s′′ ∈ S,

sf ∈ F and some (Ω,Θ) ∈ Σ with (s′′, (Ω,Θ), sf ) ∈ δ such that {U ∈ NR |
T |= R v U} |= Ω and {A ∈ NC | T |= C v A} |= Θ.

Note that both (b) and (c) apply to an atom of the form α(y, y).
7. Replace

– each atom α(y, x) with x 6= y by atoms αs′,sf (y, x) and Υ (y)
– each atom α(x, y) with x 6= y by αs,s′′(x, y)
– each atom α(y, y) by atoms αs′,s′′(y, y) and Υ (y)

with s, s′, s′′, sf , Υ as in Step 6.
8. If D ∈ NC is the concept chosen in Step 6, add D(y) to q. If D = ∃P−, add
αP (z, y) to q, where z is a fresh variable and L(αP ) = {(P, true)}. Go to Step 1.

Slightly abusing notation, we will use rewrite(q, T ) to denote the set of queries
which are output by some execution of rewrite on input q,T . We remark that the num-
ber of variables and atoms in each query in rewrite(q, T ) is linearly bounded by the
original q. This is the key property used to show the following:

Lemma 3. There are only exponentially many queries in rewrite(q, T ) (up to equiva-
lence), and each one has size polynomial in |q|.

The next lemma shows that using rewrite(q, T ), we can reduce the problem of find-
ing an arbitrary query match to finding a match involving only ABox individuals.

Lemma 4. T ,A |= q if and only if there exists a match π for some query q′ ∈
rewrite(q, T ) in IA,T such that π(t) ∈ Ind(A) for every term t in q′.

Query Evaluation We have reduced T ,A |= q to checking whether there is a match π
for some q′ ∈ rewrite(q, T ) with π(t) ∈ Ind(A) for every term t in q′. However, even
when all terms are mapped to ABox individuals, the paths between them may need to
pass by the anonymous part in order to satisfy the regular expressions in the query. To
handle this problem, we define a relaxed notion of query entailment, which exploits
the fact that if all variables are mapped to Ind(A), only loops (that is, paths from an
individual a to itself in IA,T |a) may participate in the paths between them. Hence, we
look for paths in the ABox that may use such loops to skip states in the query automata.

Thus, as part of our evaluation procedure, we will need to decide for a given in-
dividual a whether a is an L(αs,s′)-successor of itself in IA,T |a. We cannot use the
table Loopα directly, since it does not take into account the concepts which are en-
tailed due to ABox assertions. We note however that the set of loops starting from a
given individual is fully determined by the set of concepts in BC which the individ-
ual satisfies. We thus introduce a new table ALoopα such that ALoopα[s, s′] contains
all subsets G ⊆ BC such that a is an L(αs,s′)-successor of itself in IA,T |a whenever
G = {C ∈ BC | a ∈ CIT ,A}. Note that the size of ALoopα is exponential in |T |, but
the associated decision problem is in P:
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Lemma 5. It can be decided in polytime in |T | and |α| whether G ∈ ALoopα[s, s′].

Definition 2. We write T ,A |≈ q if there is a mapping π from the terms in q to Ind(A)
such that:

(a) π(c) = c for each c ∈ NI,
(b) {A ∈ NC | T ,A |= A(π(t))} |= β for each atom β(t) in q, and
(c) for each α(t, t′) ∈ q with α = 〈S,Σ, δ, s, F 〉, there is a sequence (a0, s0), . . .

(an, sn) of distinct pairs from Ind(A)×S such that a0 = π(t), an = π(t′), s0 = s,
sn ∈ F , and for every 0 ≤ i < n, one of the following holds:

(i) ai = ai+1 and {C ∈ BC | T ,A |= C(ai)} ∈ ALoopα[si, si+1]
(ii) there is some (Γ, Υ ) ∈ Σ with (si, (Γ, Υ ), si+1), {R ∈ NR | T ,A |=

R(ai, ai+1)} |= Γ and {A ∈ NC | T ,A |= A(ai+1)} |= Υ .

Lemma 6. T ,A |= q if and only if T ,A |≈ q′ for some q′ ∈ rewrite(q, T ).

Using the preceding lemma, we can derive our upper bounds:

Proposition 2. Boolean `-C2RPQ entailment is

1. NLSPACE in data complexity for DL-LiteR and DL-LiteRDFS;
2. P in data complexity for ELH;
3. NP in combined complexity for DL-LiteRDFS;
4. PSPACE in combined complexity for DL-LiteR and ELH.

Proof. By Lemmas 4 and 6, we can reduce T ,A |= q to deciding whether T ,A |≈ q′

for some q′ ∈ rewrite(q, T ). For items 1 and 2, if T and q are fixed, then computing
rewrite(q, T ) requires only constant time in |A|. To decide whether T ,A |≈ q′ for
q′ ∈ rewrite(q, T ), we guess a mapping π from the terms in q′ to Ind(A) and verify
that it satisfies the conditions in Definition 2. Note that for condition (c), we cannot keep
the whole sequence (a0, s0), . . . (an, sn) in memory at once, so we use a binary counter
that counts up to Ind(A) × |S| and store only one pair of nodes (ai, si), (ai+1, si+1)
at a time. To verify conditions (b) and (c)(ii) we need checks of the form {R ∈ NR |
T ,A |= R(a, b)} |= Γ and {A ∈ NC | T ,A |= A(a)} |= Υ . Each one amounts
to a fixed number of instance checks (one for each symbol in Γ or Υ ), hence the data
complexity of these checks is the same as for instance checking in the corresponding
DL: in AC0 for DL-LiteR, and in P for ELH. This yields the desired upper bounds:
NLSPACE for the former, and NLSPACE P =P for the latter.

For statement 4, instead of building the whole set rewrite(q, T ), which can be ex-
ponential, we generate a single q′ ∈ rewrite(q, T ) non-deterministically. More pre-
cisely, we take the initial query q and apply a sequence of rewriting steps to obtain
some q′ ∈ rewrite(q, T ). By Lemma 3, every query in rewrite(q, T ) can be generated
after at most exponentially many steps, so we can use a polynomial-sized counter to
check when we have reached this limit. Since each rewritten query is of polynomial
size (Lemma 3), and we keep a single query in memory at a time, the generation of
a single query in rewrite(q, T ) requires only polynomial space. Then we can use the
same strategy as above to decide in polynomial space whether T ,A |≈ q′. We thus
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have a non-deterministic polynomial space procedure for deciding T ,A |= q. Using
the well-known fact that NPSPACE =PSPACE, we obtain the desired upper bound.

For statement 3, we note that if T is an DL-LiteRDFS TBox, then the query cannot
be rewritten, i.e. rewrite(q, T ) = {q}. Thus, it suffices to decide whether T ,A |≈ q. We
then remark that the procedure described above is in NP, since we guess a (polysize)
mapping π and verify in polytime that π satisfies the conditions of Definition 2. ut

6 Future Work

In future work, we plan to study what types of restrictions on the TBox and query
lead to better combined complexity. We also wish to explore other types of path-based
query languages. One interesting extension which has been recently proposed for graph
databases [3] is the addition of path variables. In Boolean queries, these prove useful
for speaking about equality of paths. For example, one might want to find whether there
is a chain of advisors of the same length between both Edmund Clarke and Bernoulli,
and Jack Minker and Bernoulli. Things become even more interesting if we allow path
variables in the output. By outputting the paths for the preceding query, we could dis-
cover that Clarke and Minker have a path to Bernoulli of length 12. We could even
output the common areas of expertise of the scientists along the path to find out that
both have an 8-step path to some physicist (Poisson and Fourier), that in turn reach
Bernoulli via an important figure in analysis (Lagrange) and a graph theorist (Euler).
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1 Summary
BIM is a new language for capturing business models containing information
relevant for strategic analysis of business operations. It has been used in several
large case studies and is being pursued in industry.

The paper introduces the key notions of BIM, including goals, evidence,
and influence. It also outlines their translation into DL axioms, forming an
upper-level ontology. Specific BIM domain models then result from the addi-
tion of axioms to this. The result provides both a formal semantics of the BIM
language, and all the familiar advantages of decidable DL reasoning, including
consistency checking, defined-concept classification, and, in our case “What if”
scenario analysis. We focus on the parts of the translation which are most inter-
esting, including: i) modeling “evidence and pursuit propagation” about goals,
ii) dealing with “meta-properties”, which were introduced as a result of an on-
tological analysis of previous BI languages, and iii) the repeated need for too
many similar axioms.

For the last two, we sketch how parametrized concepts, together with
rules, would significantly help knowledge-base maintenance. This opens up a
new research area in hybrid DL+rule KBs, involving rules that generate new
axioms.

2 Introduction to BIM
Business intelligence (BI) offers considerable potential for gaining insights into
day-to-day business operations, as well as longer term opportunities and threats.
Most businesses have a significant investment in BI; however, much of the in-
formation is data oriented – mostly low-level values difficult to understand in
terms of business strategy. Instead, there is a need for analysis using terms like
strategic objectives, business models, processes, markets, trends and risks.

Several BI modeling techniques exist already: the Business Motivation Model
(BMM) [1], Strategy Maps (SM) [2], Balanced Scorecards (BSc) [3], Goal Mod-
eling frameworks (GM) [4, 5]. These languages introduce many concepts infor-
mally, making it difficult to distinguish between them; (except for GM), do not
support reasoning over models; and do not offer facilities for standard concep-
tual modeling of domain entities. The Business Intelligence Model (BIM) was
introduced [8, 7] to rationalize and extend notions in previous languages.
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A portion of a realistic BIM schema for the credit card industry is shown in
in Fig. 1, using a (provisional) graphical notation based on the i* GM [4].
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Figure 1: Fragment of BIM schema for banking industry

Generally, the model shows the decomposition of basic business services
(e.g., offer cards, offer international banking) into operational tasks, their ef-
fects on strategic goals, an assessment of influencing situations, and measure-
ment through indicators. So BIM focuses on four types of things: Situations,
Indicators, Tasks and Entities, which are subclasses of BIM Thing. (We
abbreviate this to Thing, using OWL:Thing, if we need, to talk about the top
DL concept.) Situations are partial descriptions of world state, which may affect
business objectives, and in BIM are specialized into Goals, OperationalSitu-
ations, and DomainAssumptions.

Goals are situations that may be desired by the modeling organization, such
as “Increase revenue”. Goals may or may not be actively pursued at any time,
and have an evidence value. As usual in GM, goals are refined until one finds
actions that help achieve them (Tasks), or domain assertions that are assumed
to hold in the real world.

Additional concepts found in other BI languages can be obtained in BIM by
providing values to meta-attributes (see Section 3.4). These provide an optional
richer subclass structure for BIM without over-complicating the initial model
design, and language learning.
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BIM includes five different types of relationships between things: influences,
evaluates, refines , and measures, but their domains/ranges are restricted to
various subclasses of Thing.

We are only going to touch on those aspects of BIM that raise interesting
issues for DL modeling. Unfortunately, this excludes one of the most interesting
features of BIM: the notion of indicators, which measure the performance of
some business activity. These use heavily numeric functions [9], and we were
unable to model them in depth in OWL2.

3 The Translation of BIM to DL

3.1 Some BIM Classes and their Axioms

The DL axioms capturing the semantics4 of the subclass hierarchy under Thing
are standard, as is the specification of disjointness between sibling classes.

BIM allows accumulation of evidence for or against every thing in BIM. The
question “Evidence for . . . ?” is answered depending on the specific type of thing.
So BIM tracks evidence for the occurrence of situations, the satisfaction of goals
and domain assumptions, the performance of indicators, the execution of tasks,
and the existence of entities. In this way, we use BIM to monitor the state of
relevant business concepts. Following [6], we will accumulate various qualitative
kinds of evidence (for and against) from multiple sources, and combine them
using a multi-valued logic approach, so that the value of evidence can be zero
or more of StrongEvidenceFor (SF), WeakEvidenceFor (WF), StrongEvidenceA-
gainst (SA), and WeakEvidenceAgainst (WA). We therefore have

evidence vr Thing × {SF,WF,WA,SF}
Rather than constantly asking whether the evidence for something is strong by
checking subsumption by (evidence : SF ) (a synonym for ∃ evidence.{SF}),
we will find it convenient to define four concepts like

SFThing ≡ Thing u (evidence : SF)

Such repetitions of axioms are frequent and annoying for BIM so we introduce
schemas for them, using the notation of programming language features such as
C++ templates and Java generics:

Thing〈?V〉 ≡ Thing u (evidence : ?V) for ?V ∈{SF,WF,WA,SF}
Note that in C++ and Java, parameters may be restricted to be subtypes of

other types; for example, a class SortedList〈?V〉 may require ?V to be a subtype
of Comparable to guarantee a lessThan operation. We will present parameter-
ized DL concepts using rules, whose body limits the parameter values using
P-facts (think of these as “parameter facts”), about individuals or “punned”
class identifiers. Thus after introducing P-predicate EvidV alues, with instances
SF, WF, WA and SF, we can write:

4 We have intentionally not chosen a particularly restrictive DL at this point, since a
lower bound on complexity of BIM reasoning can only be obtained directly. Since
we want to have off-the shelf reasoners, we have limited ourselves to OWL2, though
nominals, transitivity and even inverses are not strictly needed for reasoning.
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Goal〈?V〉 ≡ Goal u (evidence : ?V) :- EvidV alues(?V)

For more complicated cases, and more uniform notation, we might prefer to
use rules extending the syntax of higher-order logics such as Hi(D) [11]:

DefineC(Goal〈?V〉, And(Goal, HasValue(evidence , ?V) )) :-
InstanceOfC(?V , EvidValues)

Returning to BIM, we need to also say that strong implies weak evidence,
using axioms:

Thing〈SF〉 v Thing〈WF〉 Thing〈SA〉 v Thing〈WA〉
Information about the pursuit property can also come from multiple situa-

tions, so its value is a subset of {Pur,NegPur}.

3.2 BIM Relationships: Their Domains and Ranges

Influences. The influences relationship is used to represent the (transmission
of) (un)favorable effects on situations. As natural, we represent BIM relation-
ships by DL properties, so we have simply

influences vr Situation × Situation infBy ≡r influences−

Borrowing from GM [6], there are a variety of influence links: a ++ (resp. +)
represents strong (resp. partial) positive influence on evidence, and a −−/−
influence link represents strong/partial negative one. In Fig. 1, “Strong economic
growth” has a partial positive influence on “Increase sales”. Influence links also
can affect the pursuit of goals, using optional influence annotations P and !P,
representing pursuing and its denial respectively. The different kinds of labels
on influence will be encoded thru sub-properties of influences, with the original
labels as prefixes separated by an underscore. Thus “StayCompetitive” positively
influences “IncreaseSales” from Fig. 1, would be encoded, in part, by the axiom

IncreaseSales v ∃+ infBy.StayCompetitive

Refines. The refines relationship helps decompose concepts into other, often
more detailed, concepts of that type. Refines is also used to determine evidence
for/against a thing, based on the evidence for/against its refinements. Unlike
other relationships (or UML associations), refines is limited to different pairs
of sub-(domain,range) pairs. Thus a goal refines other goals (not other kinds of
situations), but goals can be refined into goals, domain assumptions (DA) or
tasks:

Goal v ∀ refines.Goal ∃ refines.Goal v (Goal t DA t Task)

Every other subclass of Situation, except Task, only has axioms like

Situation v ∀ refines.Situation ∃ refines.Situation v Situation

Refinements are by default interpreted disjunctively, but can also be marked as
explicitly AND-ed: e.g., both “Facilitate card processing” and “Select type of
card(s)” are required to satisfy “Offer cards”. Since on any particular node, we
want all refinements to be AND-ed or OR-ed, we add a subclass AND Thing of
Thing, and have axioms:

AND Thing v Thing OR Thing ≡ Thingu ¬AND Thing

These concepts will be used below to define the propagation of evidence values
for AND and OR refinements.
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3.3 Evidence and Pursuit

Recall that each BIM thing has an evidence property, with value a subset of {SF,
WF, WA, SA} and pursuit property, with value a subset of {Pur, NegPur}. We
provide the precise rules for relating both evidence and pursuit values in the
presence of refines and influences relationships between nodes.

For refines, we use the rules for combining evidence on AND and OR nodes
inspired from [6]. Positive evidence values from the sources are propagated to
the target according to its node kind: on an OR node, it is enough to have one
refiner with V=SF,WF to get V; on an AND node, all refiners must have V:

OR Thing u ∃ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SF,WF}
AND Thing u ∀ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SF,WF}

For negative evidence, the converse holds:

OR Thing u ∀ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SA,WA}
AND Thing u ∃ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SA,WA}

Note that the presence of common DL concept constructors, such as qualified
number restrictions ≥ n R.C, immediately suggests extending BIM to support
AND(n) nodes, which require the satisfaction of at least n refinements.

For influences, ideally we would separate the evidence and pursuit aspects,
but the desired semantics sometimes requires knowing both aspects at the same
time. So we introduce a taxonomy of properties, starting with leafs like ++P InfBy.
These are then grouped in various ways as subproperties of others like InfByP
and infBy++; in turn, infBy++ and infBy+ are subproperties of infByPositively.
This allows us to later state some axioms once, for a higher property, rather than
repeat it for each subproperty.

The evidence values of the source are propagated to the target depending on
the strength of the source evidence and the influence label. The 12 rules from
[6] could then be written as 12 axioms, such as

∃ infBy++.Goal〈SF〉 v Goal〈SF〉
However, if we used parametrized classes and axioms, the following shows much
more intuitively what happens in the 6 axioms involving positive influence:

∃ infByPositively.Goal〈?V〉 v Goal〈?V〉 :- EvidV alues(?V)

The meaning of negative influences requires more complexity, because the “polar-
ity” of the evidence value must be switched. Using P-facts complement(SF,WF )
and complement(SF,WF ), with symmetric complement, we encode the 6 other
axioms with the rule

∃ infByNegatively.Goal〈?V〉 v Goal〈?W〉 : − complement(?V,?W).

The propagation of pursuit along influence links from goals to goals is similar
to that of evidence with Pur,NotPur, P, !P playing the role of ++,−−, SF, SA
respectively. Again, we can choose 4 ordinary axioms, or 2 parameterized ones.
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Reasoning with Missing Pursuit. Recall that only goals have a pursuit
attribute. This means complex special cases.

If the source does not have a pursuit attribute, e.g. a situation influencing a
goal, the satisfaction polarity of the source determines the pursuit of the target
in P and !P influence types. This is one of the 4 axioms for this:

∃ InfByP.(¬Goal u (Thing〈SF〉 t Thing〈WF〉)) v PurGoal

If the source has a pursuit attribute but the destination does not, e.g. a
goal influencing a situation, then the influence of the source evidence on the
destination evidence only occurs when the goal is pursued, in case P is on the
label, or not pursued, in the case of !P. For example, if the goal is satisfied and
pursued, and the label is +P, the target situation partially occurs. If the goal is
satisfied and not pursued, the situation has no incoming evidence from that goal.
This requires replacing each of the original 12 axioms for propagating evidence
by pairs such as

∃++P infBy . Goal u PurGoal v SFThing
∃++!P infBy . SFGoal u NotPurGoal v SFThing

which check the appropriate combination of edge and node labels. Again, these
could be stated much more succinctly by using parametric concepts and prop-
erties:

∃ infBy〈?S,?P〉. ( EGoal〈?S〉 u PGoal〈?P〉 ) v EThing〈?S〉 :-
EvidV alue(?S),PursuitV alue(?P).

where we must now distinguish parameterizing concepts like Goal and Thing by
evidence or by pursuit

EGoal〈?V〉 ≡ Goal u (evidence : ?V)
PGoal〈?V〉 ≡ Goal u (pursuit : ?V)

Translating BIM Models to DL Given a specific model, such as the one
in Fig.1, we need to generate axioms that connect it to the generic terms of
BIM axiomatized above. For this, we make every node a class, and add axioms
describing its “BIM type”. For example, node “Offer International Banking”,
which is a goal, would generate:

OfferInternationBanking v Goal u AND Thing

We also add axioms declaring the disjointness of all nodes. Finally, every edge
is translated into DL axioms in a manner that respects the following intuition
of GM users: for every instance of a top-level goal, there is a separate set of
instances connected to it, which result in an isomorphic copy of the (concept
level) graph. This is assured by pairs of axioms, illustrated for the + influences
edge from StayCompetitive to IncreaseSales:

IncreaseSales v ∃+ infBy . StayCompetitive
StayCompetitive v (= 1 + influences . IncreaseSales)

CWA axioms such as OfferCards v (= 2 refinedBy . Thing) complete the
encoding of the graph.

“What if” Scenarios Frequently, business managers want to explore “What
if?” scenarios, such as “How is the evidence for/against any particular model
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element affected if our organization offers cards but does not offer international
banking?”.

There are two approaches to such explorations. The first, more comfortable
for domain experts, who view element models as propositions, is carried out at
the class level. Thus, we would add:

OfferCards v EGoal〈SF〉 OfferInternationBanking v EGoal〈SA〉
and then check whether BroadRangeOfServices is classified as a subclass of
EGoal〈SF〉,. . . ,EGoal〈SA〉 respectively. One can similarly check the classifica-
tion of any other component, such as IncreaseRevenue, to see the effect of these
assumptions on it.

One might also want to answer a different question: “Is it possible to fully
satisfy BroadRangeOfServices?” At its simplest, this is just adding the axiom

BroadRangeOfServices v EGoal〈SF〉
and wait for the reasoner to detect any inconsistent concepts. Using the ability
of DLs to represent incomplete information, one could of course also explore less
precise scenarios (e.g., “What if we offer cards or international banking”).

A final variant of exploration, supported for goals in [6], is finding what
(minimal) set of tasks and domain assumptions must hold if some goal is to
be achieved. For this purpose one can add axioms corresponding to “predicate
completion”, which end up defining AND and OR nodes in terms of the classes
that refine them. Standard DL reasoning would then indicate what task must
be executed in all circumstances if OfferCards is to be fully supported. However,
one must use abduction to find a set of tasks that are sufficient to satisfy it.
Unfortunately, abduction for highly expressive languages such as OWL2 has
not been studied. (In [6], this is achieved using min-SAT algorithms for the
propositional encoding.)

The alternative approach to studying scenarios, more natural to those famil-
iar with DL modeling, would be to create an A-Box with individuals describing
the particular goals, etc. being considered. For example, it would contain A-Box
assertions such as BroadRangeOfServices(brs1) , OfferCards(oc1) and
refines(oc1,brs1). One can the then provide evidence for a scenario, such as
SFGoal(oc1) , and check for consequences on individuals.

The advantage of such an approach is that it does not require changing
the schema (enabling better run-time monitoring), as well as allowing the co-
existence of models for multiple businesses, with potentially overlapping indi-
viduals. The disadvantage is that for a single business, one essentially duplicates
the concept level axioms in the A-Box.

3.4 BIM Meta-properties

Rather than simply make BIM the union of all sorts of unrelated concepts found
in other business analysis languages (e.g., Vision, Mission, Strategy (BMM),
Softgoal, Hardgoal (GM), Initiative (BSc)), an ontological analysis was per-
formed on their underlying meaning. The result is a set of six meta-properties:
duration (long-term/short-term), likelihood of fulfillment (high/low), nature of
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definition (formal/informal), scope (broad/narrow), number of instances (many/
few), and perspective (financial/ customer/ internal/ learning and growth).

New, more specialized, BIM subconcepts can now be obtained using values
for these metaproperties. For example, the BMM concept of a Vision is a “goal
with a long duration, broad scope, low chance of fulfillment, informal definition,
and few instances”. Examples of Visions from our credit card organization could
include “Stay competitive” or “Have a worldwide presence”.

Not all meta-properties must take on specific values in order to express a
more specialized BIM concept. Thus, Vision does not deal with perspectives.
And, Softgoals/Hardgoals from GM can just be goals with an informal/formal
definition, leaving the values of other metaproperties open.

The values of metaproperties at the class level do not constrain class in-
stances, but only say something about the nature of instances, that they are
likely or generally conform to the expressed metaproperties.

The representation of metaproperties in DLs is known to be problematic,
especially in our case, where we want the metaproperties to behave so that re-
stricting their possible values results in subclasses. However, this is exactly the
behavior one would get if the metaproperties were treated as ordinary (func-
tional) properties. So we could just add property axioms like

number of instances vr Thing × { few, many }
and then define classes

Vision≡ Goal u (numbear of instances : few) u . . .
u (nature of defintion : informal)

SoftGoal ≡ Goal u (nature of defintion : informal)

DL reasoning would then automatically classify Vision as a subclass of Soft-
Goal. The main difficulty with the above approach is that this conceptual model
no longer makes sense intuitively, since it associates with individual goal g, be-
longing to Vision, (which I might be pursuing tomorrow), the property num-
ber of instances, with value few. It would be much more desirable to be able to
have real meta-properties of classes, but then state that, for a group of such
metaproperties, value restrictions result in subclasses at the class (rather than
metaclass) level.

Ideally, one would be able to state rules dealing with meta-properties, like
duration, such as the following (namedC/1 is a predicate that is true of atomic
concept names used in DL axioms) :

?C v ?D :- namedC(?C), namedC(?D),not diff duration(?C, ?D).
diff duration(?C, ?D) :- duration(?C, ?X), duration(?D, ?Y ), ?X 6=?Y .

Since duration is functional, this says that C is a subclass of D as long as D
has not been specified to have a different meta-property value than C (i.e., D’s
duration is unrestricted, or restricted to the same value as C’s). The idea is that
such rules are interpreted as in Logic Programming, with negation as failure.
(The precise semantics of such rules is given in Section 4.1.)

Since we want to do this for an entire set of meta-properties, we could try
to use the idea of HiLog [13] to allow variables ranging over named properties,
stating rules like
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differ on some metaProp(?C,?D) : −
namedC(?C), namedC(?D), namedI(?V ), namedI(?W ),
?MP ∈ {duration, scope, . . .}, ?MP (?C, ?V ), ?MP (?D, ?W ),
?V 6=?W.

or simply use ternary P-assertions of the form hasV alue(?C, ?MP, ?V ) in the
formula above.

4 More on Parametric Concepts and Rules
The Galen ontology of medical concepts [14] provides further evidence for the
utility of parametric concepts/axioms. Consider the pervasive use of so-called
Selectors. Here is one example of its use in the OWL translation of Galen
(shortened by eliminating ‘Object’ vs ‘Data’, and URIs):

Declaration(Class(#LeftEye))

EquivalentClasses(#LeftEye

IntersectionOf(SomeValuesFrom(#hasLeftRightSelector #leftSelection)

#Eye))

Declaration(Class(#RightEye))

EquivalentClasses(#RightEye

IntersectionOf(SomeValuesFrom(#hasLeftRightSelector #rightSelection)

#Eye))

The following parametric declaration

Declaration(Class(#Eye<?LR>), ?LR in {#leftSelection,#rightSelection}

EquivalentClasses(#Eye<?LR>

IntersectionOf(SomeValuesFrom(#hasLeftRightSelector ?LR) #Eye))

is meant to capture the two axioms, using an enumeration of possible concept
values for the variables. Instead of the name #LeftEye, we would then use
#Eye〈#leftSelection〉, or more likely abbreviate the values, and say #Eye〈#left〉.
Both #Eye〈#left〉 and #Eye〈?V〉 could then be used in axioms. If this was the
only example, the gain would not be much. But there are far more complex
definitions involving #hasLeftRightSelector. And the above kind of repetition
occurs for everything we have two in our body due to vertical symmetry. Also,
there are other selectors, including #hasPositionalSelector, #hasMedialLater-
alSelector, #hasAnteriorPosteriorSelector, some with more than 2 values, while
some concepts, such as #LeftInferiorPulmonaryVein, combine multiple selectors.

In fact a grep of the Galen OWL files revealed over 26,000 lines containing
Selector (and naming in Galen is very systematic). So our approach would not
only eliminate roughly half these axioms, but, more importantly would make
maintenance of the ontology much easier and likely to be correct, by lessening
the chance of errors when the definitions are modified later, since it is highly
likely that both definitions need to be changed the same way.

Note also that in BIM, the set of qualitative values such as StrongEvidenceFor
(SF), etc. might be extended to include more alternatives, such as VeryStrongEv-
idenceFor (VSF). For our above axiomatization of evidence propagation, this
could be handled by adding only three more P-assertions: EvidV alues(VSF),
EvidV alues(VSA), and complement(VSF,VSA) – clearly showing that we had
captured significant patterns in our rules.
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4.1 Formal and Computational Aspects

The following is a sketch of the simplest formalization of the hybrid DL+rule
language we used to give the semantics of BIM. The set of primitive identifiers
is split into atomic ones and parametric ones. Then axioms are formed as usual,
except that parametric identifiers require atomic primitive constants or variables
as arguments, and variables may occur alone as identifiers in axioms. However,
any non-ground DL axiom must appear as the head of a rule, whose body binds
positively all the variables in the axiom. Rules have the form

γ(X) : − r1(Y1), ..., rk(Yk), not s1(Z1), ...,not sm(Zm)

where ri and sj are P-predicates (i.e., not in the signature of the DL), and all
variables in X and Zj appear among the variables in Yi for some i. The P-
atoms in the body are constructed using variables or constants, some of which
are atomic identifiers from the DL. γ is either another P-atom, or a DL axiom
with free parameters X. When k = m = 0, if γ is a P-atom then we have
a P-assertion, such as EvidV alues(SF ); otherwise, it is an ordinary (ground)
DL-axiom.

The semantics of the resulting hybrid system obeys the desirable property of
“modularity of reasoning” [12], by (i) using the rules first to obtain a complete
set of variable-free DL axioms, and then (ii) using pure DL reasoning on the
result. The semantics of rules are the standard stable-model semantics of logic
programming with default negation (see [12] for a summary), with the Herbrand
universe of a set of rules consisting of constants appearing in P-assertions or
atomic primitive constants occurring in ground axioms. The semantics of DL
are also standard, except that names of the form C〈d1,...〉 receive interpretation
as atomic concepts, when there are no variables in the arguments.

In our case the rules are restricted to be non-recursive, so there are no prob-
lems with infinite Herbrand universes, decidability and complexity in part (i): one
can use bottom-up evaluation as for stratified Datalog¬; so the complexity will
likely reduce to that of part (ii), since we are using a fairly expressive DL. (The
precise details of this formalization can be found at http://www.cs.rutgers.edu/

~borgida/BIM/dl12.appendix.pdf.)
As usual, the semantics should not be taken as guide to preprocess the KB

and eliminate rules. First, if the benefits of parametric concepts for KB mainte-
nance are to be realized, then the rule format should be maintained for editing,
etc. Second, lightweight type-checking techniques used in Programming Lan-
guages can be used to detect certain errors in axioms without theorem proving.
Third, even for absorption in tableau implementations one can perform unifi-
cation to see if the parameterized axiom should be applied. Only experimental
evaluation can tell whether this would result in speed-ups in an ontology like
Galen, where thousands of axioms might be eliminated.

5 Summary

The presentation of BIM semantics as translation into DL provided several po-
tentially interesting observations for the DL community.
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Foremost, it led us to consider parametric concepts, axioms and rules. We
have only scratched the surface of this area, and there remain lots of formal ques-
tions on how far one can push this in terms generalizing the syntax, semantics,
complexity, and implementations.

In addition, we provided a novel way to express so-called “goal reasoning”
using DL constructors. This translation makes possible the posting of goal mod-
els on the Semantic Web, and made evident the possibility of a useful “at least k
subgoals need to be satisfied” variant of AND decomposition. However, in order
to compete with [6], this requires more research in DL on abduction in languages
more expressive than ALC: the minimal language needed in our translation re-
quires the ability to state that attributes are functional.

Acknowledgments We are very grateful to Daniel Amyot, Daniele Barone, Lei
Jiang, and Eric Yu for co-developing and applying BIM.
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Abstract. Ontology consistency has been shown to be undecidable for
a wide variety of fairly inexpressive fuzzy Description Logics (DLs). In
particular, for any t-norm “starting with” the  Lukasiewicz t-norm, con-
sistency of crisp ontologies (w.r.t. witnessed models) is undecidable in
any fuzzy DL with conjunction, existential restrictions, and (residual)
negation. In this paper we show that for any t-norm with Gödel negation,
that is, any t-norm not starting with  Lukasiewicz, ontology consistency
for a variant of fuzzy SHOI is linearly reducible to crisp reasoning, and
hence decidable in exponential time. Our results hold even if reasoning
is not restricted to the class of witnessed models only.

1 Introduction

Fuzzy Description Logics (DLs) were introduced over a decade ago to represent
and reason with vague or imprecise knowledge. Since their introduction, several
variants of these logics have been studied; in fact, in addition to the constructors
and kinds of axioms used, fuzzy DLs have an additional degree of liberty in the
choice of the t-norm that specifies the semantics. An extensive, although slightly
outdated survey of the area can be found in [18].

Very recently, it was shown that some fuzzy DLs lose the finite model property
in the presence of GCIs [3]. This eventually led to a series of undecidability
results [1, 2, 12, 10]. Most notably, for t-norms that “start with” the  Lukasiewicz
t-norm, consistency of crisp ontologies becomes undecidable for the inexpressive
fuzzy DL ⊗-NEL, which allows only the constructors conjunction, existential
restrictions and (residual) negation [10].

So far, the only known decidability results for fuzzy DLs rely on a restriction
of the expressivity: either by allowing only finitely-valued semantics [6, 8], by
limiting the terminological knowledge to be acyclic or unfoldable [14, 11, 5], or
by using the very simple Gödel semantics [4, 21–23]. Moreover, with very few
exceptions [6, 8], reasoning is usually restricted to the class of witnessed mod-
els.1 In fact, witnessed models were introduced in [14] to correct the previous
algorithms for fuzzy DL reasoning.

? Partially supported by the DFG under grant BA 1122/17-1 and in the Collaborative
Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

1 All fuzzy logics with finitely-valued semantics have the witnessed model property.
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Table 1. The three fundamental continuous t-norms

Name t-norm (x⊗ y) t-conorm (x⊕ y) residuum (x⇒ y)

Gödel min{x, y} max{x, y}
{

1 if x ≤ y

y otherwise

product x · y x + y − x · y
{

1 if x ≤ y

y/x otherwise

 Lukasiewicz max{x + y − 1, 0} min{x + y, 1} min{1− x + y, 1}

In this paper we show that for any t-norm with Gödel negation, ontology
consistency is decidable in the very expressive fuzzy DL ⊗-SHOI−∀, which is the
sub-logic of ⊗-SHOI where value restrictions ∀ are not allowed. For these logics,
ontology consistency w.r.t. general models is linearly reducible to consistency of
a crisp SHOI ontology, and hence decidable in exponential time. In particular,
this holds for the product t-norm. We emphasize that our proofs do not depend
on the models being witnessed or not, hence decidability is shown for reasoning
w.r.t. both, general models and witnessed models.

Since a t-norm has Gödel negation iff it does not start with the  Lukasiewicz
t-norm [17], this yields a full characterization of the decidability of ontology
consistency (w.r.t. witnessed models) for all fuzzy DLs between ⊗-NEL and
⊗-SHOI−∀. We also provide the first decidability results w.r.t. general models
for infinitely-valued, non-idempotent fuzzy DLs.

2 T-norms without Zero Divisors

Mathematical fuzzy logic [13] generalizes classical logic by allowing all the real
numbers from the interval [0, 1] as truth values. The interpretation of the differ-
ent logical constructors depends on the choice of a triangular norm (t-norm for
short). A t-norm is an associative, commutative, and monotone binary operator
on [0, 1] that has 1 as its unit element. The dual operator of a t-norm ⊗ is the
t-conorm ⊕ defined as x⊕ y = 1− ((1− x)⊗ (1− y)). Notice that 0 is the unit
of the t-conorm, and hence

x⊕ y = 0 iff x = 0 and y = 0. (1)

Every continuous t-norm ⊗ defines a unique residuum⇒ such that x⊗y ≤ z
iff y ≤ x⇒ z for all x, y, z ∈ [0, 1]. It is easy to see that for all x, y ∈ [0, 1]

– x⇒ y = sup{z ∈ [0, 1] | x⊗ z ≤ y},
– 1⇒ x = x, and
– x ≤ y iff x⇒ y = 1.

Based on the residuum, one can define the unary precomplement 	x = x ⇒ 0.
Three important continuous t-norms are the Gödel, product and  Lukasiewicz
t-norms shown in Table 1, together with their t-conorms and residua. These are
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fundamental in the sense that every continuous t-norm can be described as an
ordinal sum of copies of these t-norms [20].

In this paper, we are interested in t-norms that do not have zero divisors. An
element x ∈ (0, 1) is called a zero divisor for ⊗ if there is a z ∈ (0, 1) such that
x ⊗ z = 0. Of the three fundamental continuous t-norms, only the  Lukasiewicz
t-norm has zero divisors. In fact, every element of the interval (0, 1) is a zero
divisor for this t-norm. The Gödel and product t-norms are just two elements of
the uncountable class of continuous t-norms without zero divisors.

Proposition 1. For any t-norm ⊗ without zero divisors and every x ∈ [0, 1],

1. x⇒ y = 0 iff x > 0 and y = 0, and
2. 	x = 0 iff x > 0.

Proof. For the first claim, we prove only the if direction, since the other direction
is known to hold for every t-norm [17]. Assume that x > 0 and y = 0. Then
x ⇒ y = x ⇒ 0 = sup{z | z ⊗ x = 0}. Since ⊗ has no zero divisors, z ⊗ x > 0
for all z > 0. Therefore {z | z ⊗ x = 0} = {0} and thus x ⇒ y = 0. The second
statement follows from the first one since 	x = x⇒ 0. ut

In particular, this implies that if the t-norm ⊗ does not have zero divisors, then
its precomplement is the so-called Gödel negation, i.e. for every x ∈ [0, 1],

	x =

{
0 if x > 0

1 otherwise.

It can be shown that the converse also holds: if the precomplement is the Gödel
negation, then the t-norm has no zero divisors.

We now define the function 1 that maps fuzzy truth values to crisp truth
values by setting, for all x ∈ [0, 1],

1(x) =

{
1 if x > 0

0 if x = 0.

For a t-norm without zero divisors it follows from Proposition 1 that 1(x) = 		x
for all x ∈ [0, 1]. This function is compatible with negation, the t-norm, the
corresponding t-conorm, implication and suprema.

Lemma 2. Let ⊗ be a t-norm without zero divisors. For all x, y ∈ [0, 1] and all
non-empty sets X ⊆ [0, 1] it holds that

1. 1(	x) = 	1(x),
2. 1(x⊗ y) = 1(x)⊗ 1(y),
3. 1(x⊕ y) = 1(x)⊕ 1(y),
4. 1(x⇒ y) = 1(x)⇒ 1(y), and
5. 1 (sup{x | x ∈ X}) = sup{1(x) | x ∈ X}.
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Proof. It holds that 1(	x) = 			x = 	1(x) which proves 1. Since ⊗ does not
have zero divisors, x⊗ y = 0 iff x = 0 or y = 0. This shows that

1(x⊗ y) = 0 iff 1(x)⊗ 1(y) = 0. (2)

Both 1(x ⊗ y) and 1(x) ⊗ 1(y) can only have the values 0 or 1. Hence, (2)
proves the second statement. Following similar arguments we obtain from (1)
that 1(x⊕y) = 0 holds iff 1(x)⊕1(y) = 0, thus proving 3. We use Proposition 1
to prove 4:

1(x⇒ y) =

{
1 iff x = 0 or y > 0

0 iff x > 0 and y = 0
=

{
1 iff 1(x) = 0 or 1(y) = 1

0 iff 1(x) = 1 and 1(y) = 0

= 1(x)⇒ 1(y).

To prove 5, observe that supX = 0 iff X = {0}. Thus,

1
(

supX
)

= 0⇔ supX = 0⇔ X = {0}
⇔ {1(x) | x ∈ X} = {0} ⇔ sup{1(x) | x ∈ X} = 0.

ut

Notice that in general 1 is not compatible with the infimum. Consider for
example the set X = { 1n | n ∈ N}. Then inf X = 0 and hence 1(inf X) = 0, but
inf{1( 1

n ) | n ∈ N} = inf{1} = 1.

3 The Fuzzy DL ⊗-SHOI−∀

A fuzzy description logic usually inherits its syntax from the underlying crisp
description logic. We consider the constructors of SHOI with the addition of
→, which in the crisp case can be expressed by t and ¬.

Definition 3 (syntax). Let NC, NR, and NI, be disjoint sets of concept, role,
and individual names, respectively, and N+

R ⊆ NR be a set of transitive role
names. The set of (complex) roles is NR ∪ {r− | r ∈ NR}. ⊗-SHOI (complex)
concepts are constructed by the following syntax rule:

C ::= A | > | ⊥ | {a} | ¬C | C u C | C t C | C → C | ∃s.C | ∀s.C,

where A is a concept name, a is an individual name, and s is a complex role.

The inverse of a complex role s (denoted by s) is s− if s ∈ NR and r if s = r−.
A role s is transitive if either s or s belongs to N+

R .
Given a continuous t-norm ⊗, concepts in the fuzzy DL ⊗-SHOI are inter-

preted by functions specifying the membership degree of each domain element
to the concept. The interpretation of the constructors is based on the t-norm ⊗
and the induced operators ⊕, ⇒, and 	.
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Definition 4 (semantics). An interpretation is a pair I = (∆I , ·I), where the
domain ∆I is a non-empty set and ·I is a function that assigns to every concept
name A a function AI : ∆I → [0, 1], to every individual name a an element
aI ∈ ∆I , and to every role name r a function rI : ∆I ×∆I → [0, 1] such that
rI(x, y) ⊗ rI(y, z) ≤ rI(x, z) holds for all x, y, z ∈ ∆I if r ∈ N+

R . The function
·I is extended to complex roles and concepts as follows for every x, y ∈ ∆I ,

– (r−)I(x, y) = rI(y, x),
– >I(x) = 1, ⊥I(x) = 0,
– {a}I(x) = 1 if aI = x and 0 otherwise,
– (¬C)I(x) = 	CI(x),
– (C1 u C2)I(x) = CI1 (x)⊗ CI2 (x), (C1 t C2)I(x) = CI1 (x)⊕ CI2 (x),
– (C1 → C2)I(x) = CI1 (x)⇒ CI2 (x),
– (∃s.C)I(x) = supz∈∆I sI(x, z)⊗ CI(z), and
– (∀s.C)I(x) = infz∈∆I sI(x, z)⇒ CI(z).

I is finite if its domain ∆I is finite, and crisp if AI(x), rI(x, y) ∈ {0, 1} for all
A ∈ NC, r ∈ NR, and x, y ∈ ∆I .

Recall from the previous section that ¬ is interpreted by the Gödel negation iff
the t-norm ⊗ does not have zero divisors. In particular, (¬C)I(x) ∈ {0, 1} holds
for every concept C, interpretation I, and x ∈ ∆I , i.e. the value of ¬C is always
crisp.

Knowledge is encoded using axioms, which restrict the class of interpretations
that are considered and specify a degree to which the restrictions should hold.

Definition 5 (axioms). A ⊗-SHOI-axiom is either an assertion of the form
〈a :C, `〉 or 〈(a, b):s, `〉, a GCI of the form 〈C v D, `〉, or a role inclusion of
the form 〈s v t, `〉, where C and D are ⊗-SHOI-concepts, a, b ∈ NI, s, t are
complex roles, and ` ∈ (0, 1]. An axiom is called crisp if ` = 1.

An interpretation I satisfies an assertion 〈a :C, `〉 if CI(aI) ≥ ` and an
assertion 〈(a, b):s, `〉 if sI(aI , bI) ≥ `. It satisfies the GCI 〈C v D, `〉 if
CI(x)⇒ DI(x) ≥ ` holds for all x ∈ ∆I . It satisfies a role inclusion 〈s v t, `〉
if sI(x, y)⇒ tI(x, y) ≥ ` holds for all x, y ∈ ∆I .

A ⊗-SHOI-ontology (A, T ,R) is defined by a finite set A of assertions
(ABox), a finite set T of GCIs (TBox), and a finite set R of role inclusions
(RBox). It is crisp if every axiom in A, T , and R is crisp. An interpretation I
is a model of this ontology if it satisfies all its axioms.

We consider also the logic ⊗-SHOI−∀, which restricts ⊗-SHOI by disallow-
ing the constructor ∀. ⊗-SHOI−∀-concepts, axioms and ontologies are defined
in the obvious way. Notice that, contrary to the crisp case, value- and existential-
restrictions are not dual. In fact, we will show in Section 4 that for every t-norm
⊗ without zero divisors ⊗-SHOI is strictly more expressive than ⊗-SHOI−∀.

Several reasoning problems are of interest in the area of fuzzy DLs. Here
we focus only on deciding whether a ⊗-SHOI (or ⊗-SHOI−∀) ontology is
consistent ; that is, whether it has a model. We will show that, if the t-norm
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⊗ has no zero divisors, then consistency in ⊗-SHOI−∀ is effectively the same
problem as consistency in crisp SHOI. Moreover, the precise values appearing
in the axioms in the ontology are then irrelevant. The same is not true, however,
for consistency in ⊗-SHOI.

Recall that the semantics of the quantifiers require the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. In the fuzzy DL community it is customary to restrict
reasoning to a special kind of models, called witnessed models [14].

Definition 6 (witnessed). An interpretation I is called witnessed if for every
x ∈ ∆I , every role s and every concept C there are y1, y2 ∈ ∆I such that

(∃s.C)I(x) = sI(x, y1)⊗ CI(y1), (∀s.C)I(x) = sI(x, y2)⇒ CI(y2).

In particular, if an interpretation I is crisp or finite, then it is also witnessed.
Witnessed models were introduced to simplify the reasoning tasks. In fact, al-
though this concept was only formalized in [14], the earlier reasoning algorithms
for fuzzy DLs semantics based on the Gödel t-norm (e.g. [23]) implicitly used
only witnessed models. We show that consistency of ⊗-SHOI−∀-ontologies can
be decided in exponential time, without restricting to witnessed models.

4 The Crisp Model Property

The existing undecidability results for fuzzy DLs all rely heavily on the fact
that one can design ontologies that allow only models with infinitely many truth
values. We shall see that for t-norms without zero divisors one cannot construct
such an ontology in ⊗-SHOI−∀. It is even true that all consistent ⊗-SHOI−∀-
ontologies have a crisp model; that is, using at most two truth values.

Definition 7. A fuzzy DL L has the crisp model property if every consistent
L-ontology has a crisp model.

For the rest of this paper we assume that ⊗ is a continuous t-norm that does
not have zero divisors, and hence has the properties described in Section 2. In
particular, Lemma 2 allows us to construct a crisp interpretation from a fuzzy
interpretation by simply applying the function 1.

Let I be a fuzzy interpretation for the concept names NC and role names
NR. We construct the interpretation J = (∆J , ·J ), where ∆J := ∆I and for all
concept names A ∈ NC, all role names r ∈ NR, and all x, y ∈ ∆I ,

AJ (x) := 1
(
AI(x)

)
and rJ (x, y) := 1

(
rI(x, y)

)
.

To show that J is a valid interpretation, we first verify the transitivity condition
for all r ∈ N+

R and all x, y, z ∈ ∆J . From Lemma 2, we obtain

rJ (x, y)⊗ rJ (y, z) = 1
(
rI(x, y)

)
⊗ 1
(
rI(y, z)

)
= 1

(
rI(x, y)⊗ rI(y, z)

)
.
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Since I satisfies the transitivity condition and 1 is monotonic, we have

1
(
rI(x, y)⊗ rI(y, z)

)
≤ 1

(
rI(x, z)

)
= rJ (x, z),

and thus rJ (x, y)⊗ rJ (y, z) ≤ rJ (x, z).

Lemma 8. For all complex roles s and x, y ∈ ∆I , sJ (x, y) = 1(sI(x, y)).

Proof. If s is a role name, this follows directly from the definition of J . If s = r−

for some r ∈ NR, then sJ (x, y) = rJ (y, x) = 1(rI(y, x)) = 1(sI(x, y)). ut

The interpretation J preserves the compatibility of 1 with all the construc-
tors of ⊗-SHOI−∀.

Lemma 9. For every ⊗-SHOI−∀-concept C and x ∈ ∆I , CJ (x) = 1
(
CI(x)

)
.

Proof. We use induction over the structure of C. The claim holds trivially for
C = ⊥ and C = >. For C = A ∈ NC it follows immediately from the definition
of J . It also holds for C = {a}, a ∈ NI, because {a}I(x) can only take the values
0 or 1 for all x ∈ ∆I .

Assume now that the concepts D and E satisfy DJ (x) = 1(DI(x)) and
EJ (x) = 1(EI(x)) for all x ∈ ∆I . In the case where C = D u E, Lemma 2
yields that for all x ∈ ∆I

CJ (x) = DJ (x)⊗ EJ (x) = 1
(
DI(x)

)
⊗ 1
(
EI(x)

)

= 1
(
DI(x)⊗ EI(x)

)
= 1

(
CI(x)

)
.

Likewise, the compatibility of 1 with the t-conorm, the residuum, and the nega-
tion entails the result for the cases C = D t E, C = D → E, and C = ¬D.

For C = ∃s.D, where s is a complex role and D is a concept description
satisfying DJ (x) = 1(DI(x)) for all x ∈ ∆I , we obtain

1
(
CI(x)

)
= 1

(
(∃s.D)I(x)

)
= 1

(
sup
y∈∆I

{
sI(x, y)⊗DI(y)

})

= sup
y∈∆I

{
1
(
sI(x, y)

)
⊗ 1
(
DI(y)

)}
(3)

because 1 is compatible with the supremum and the t-norm. Lemma 8 yields

sup
y∈∆I

{
1(rI(x, y))⊗ 1(DI(y))

}
= sup
y∈∆I

{
rJ (x, y)⊗DJ (y)

}
= (∃r.D)J (x). (4)

Equations (3) and (4) prove 1(CI(x)) = CJ (x) for C = ∃r.D. ut

We can use this lemma to show that the crisp interpretation J satisfies all
the axioms that are satisfied by I.

Lemma 10. Let O = (A, T ,R) be a ⊗-SHOI−∀-ontology. If I is a model of
O, then J is also a model of O.
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Proof. We prove that J satisfies all assertions, GCIs, and role inclusions from
O. Let 〈a :C, `〉, ` ∈ (0, 1], be a concept assertion from A. Since the assertion
is satisfied by I, CI(aI) ≥ ` > 0 holds. Lemma 9 yields CJ (aJ ) = 1 ≥ `. The
same argument can be used for role assertions.

Let now 〈C v D, `〉 be a GCI in T and x ∈ ∆I . Since I satisfies the GCI,
we get CI(x)⇒ DI(x) ≥ ` > 0. By Lemmata 2 and 9, we obtain

CJ (x)⇒ DJ (x) = 1(CI(x))⇒ 1(DI(x)) = 1(CI(x)⇒ DI(x)) = 1 ≥ `,

and thus J satisfies the GCI 〈C v D, `〉. A similar argument, using Lemma 8
instead of Lemma 9, shows that J satisfies all role inclusions in R. ut

The previous results show that by applying 1 to the truth degrees we obtain
a crisp model J from any fuzzy model I of a ⊗-SHOI−∀-ontology O.

Theorem 11. If ⊗ is a t-norm without zero divisors, then ⊗-SHOI−∀ has the
crisp model property.

A trivial consequence of this theorem is that every consistent ⊗-SHOI−∀-
ontology has also a witnessed model, since every crisp model is also crisp.

Corollary 12. If ⊗ is a t-norm without zero divisors, then ⊗-SHOI−∀ has the
witnessed model property.

In the next section we will use this result from Theorem 11 to show that
⊗-SHOI−∀ ontology consistency can be decided in exponential time, by testing
consistency of a (crisp) SHOI ontology. But first, we show that value restrictions
destroy the crisp model property, even if only crisp axioms are used.

Example 13. Consider the ⊗-SHOI-ontology

O = {〈> v ¬¬A, 1〉, 〈a :¬∀r.A, 1〉}.

The interpretation I = (∆I , ·I) with ∆I = N (the set of all natural numbers),
aI = 1, AI(n) = 1/(n+ 1), rI(1, n) = 1, and rI(n′, n) = 0 for all n, n′ ∈ N with
n′ > 1 is a model of O, and hence O is consistent.

Let now J be a crisp interpretation satisfying the first axiom in O. Then,
AJ (x) = 1 for all x ∈ ∆J . This implies that

(∀r.A)J (aJ ) = inf
y∈∆J

rJ (aJ , y)⇒ AJ (y)

= inf
y∈∆J

rJ (aJ , y)⇒ 1

= 1.

And thus, (¬∀r.A)J (aJ ) = 0, violating the second axiom. This means that O
has no crisp model.
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The example shows that no fuzzy DL with the constructor ∀ and Gödel
negation2 has the crisp model property. A similar example in [14] demonstrates
that no fuzzy DL with the constructors ∃ and ∀ and Gödel negation has the
witnessed model property.

Theorem 14. For any continuous t-norm ⊗ and any fuzzy DL ⊗-L having the
constructors >, ¬, and ∀, ⊗-L does not have the crisp model property.

In particular, this means that ⊗-SHOI does not have the crisp model prop-
erty and is strictly more expressive than ⊗-SHOI−∀.
Corollary 15. If ⊗ is a t-norm without zero divisors, then ⊗-SHOI is strictly
more expressive than ⊗-SHOI−∀.

5 Deciding Consistency

For a given ⊗-SHOI−∀-ontology O, we define crisp(O) to be the crisp SHOI-
ontology that is obtained from O by replacing all the truth values appearing in
the axioms by 1. For example, for the ontology

O =
{
〈a :C, 0.2〉, 〈(a, b):r, 0.8〉, 〈C v D, 0.5〉, 〈r v s, 0.1〉

}

we obtain

crisp(O) =
{
〈a :C, 1〉, 〈(a, b):r, 1〉, 〈C v D, 1〉, 〈r v s, 1〉

}
.

Lemma 16. Let O be a ⊗-SHOI−∀-ontology and I be a crisp interpretation.
Then I is a model of O iff it is a model of crisp(O).

Proof. Assume that crisp(O) has a model I. Let 〈C v D, `〉, ` > 0, be an axiom
from O. Since I is a model of crisp(O), it must satisfy 〈C v D, 1〉; that is,
CI(x)⇒ DI(x) ≥ 1 ≥ ` holds for all x ∈ ∆I . Thus I satisfies 〈C v D, `〉. The
proof that I satisfies assertions and role inclusions is analogous. Hence I is also
a model of O.

For the other direction, assume that I satisfies 〈C v D, `〉 with ` > 0. As I
is a crisp interpretation it holds that CI(x) ⇒ DI(x) ∈ {0, 1} for all x ∈ ∆I .
Together with CI(x)⇒ DI(x) ≥ ` > 0 we obtain CI(x)⇒ DI(x) = 1. Thus, I
satisfies the GCI 〈C v D, 1〉. The same argument can be used for role inclusions
and assertions. Thus, I is also a model of crisp(O). ut

In particular, a ⊗-SHOI−∀-ontology O has a crisp model iff crisp(O) has a
crisp model. Together with Theorem 11, this shows that a ⊗-SHOI−∀-ontology
O is consistent iff crisp(O) has a crisp model. Therefore, one can use any reason-
ing procedure for crisp SHOI to decide consistency of ⊗-SHOI−∀-ontologies.
Reasoning in crisp SHOI is known to be ExpTime-complete [15]. Recall that
under crisp semantics, value restrictions can be expressed by negation and exis-
tential restrictions, and hence, crisp SHOI is equivalent to crisp SHOI−∀.
2 Recall that a fuzzy DL has Gödel negation iff its semantics is based on a t-norm

without zero divisors.
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Corollary 17. Deciding consistency in ⊗-SHOI−∀ is ExpTime-complete.

Lemma 16 and Theorem 11 still hold when we restrict the semantics to the
slightly less expressive logics ⊗-SHO−∀, which does not allow for inverse roles,
or ⊗-SI−∀ which does not allow for nominals and role hierarchies. The crisp DLs
SHO and SI are known to have the finite model property [16, 19], and ⊗-SI−∀
and ⊗-SHO−∀ inherit the finite model property from their crisp counterparts.

Theorem 18. The logics ⊗-SHO−∀ and ⊗-SI−∀ and their sublogics have the
finite model property.

6 Conclusions

In this paper we have described a family of expressive fuzzy DLs for which
ontology consistency is decidable. More precisely, we have shown that if ⊗ is a
t-norm without zero divisors, consistency of ⊗-SHOI−∀ ontologies is ExpTime-
complete, and hence as hard as consistency of (crisp) SHOI ontologies. Our
construction shows that the fuzzy values appearing in ⊗-SHOI−∀ ontologies
are irrelevant for consistency: a ⊗-SHOI−∀ ontology O has a (fuzzy) model iff
its crisp variant crisp(O), where the degrees of all the axioms in O are changed to
1, has a crisp model. This implies that ⊗-SHOI−∀ has the crisp model property,
and hence also the witnessed model property. If the constructor ∀ is also allowed,
hence obtaining the logic ⊗-SHOI, then these properties do not hold anymore.

For other reasoning problems such as entailment and subsumption it is un-
known whether they are decidable in ⊗-SHOI−∀. In [7] it is shown for ⊗-SHOI
with witnessed models that subsumption and entailment, as well as computing
the best subsumption and entailment degrees, cannot be reduced to crisp rea-
soning by simply mapping all nonzero truth degrees to 1. We conjecture that
this is also the case in ⊗-SHOI−∀.

It has recently been shown that if the t-norm ⊗ has zero divisors, then
consistency of crisp ontologies in the very inexpressive fuzzy DL ⊗-NEL w.r.t.
witnessed models [10] and w.r.t. general models [9] is undecidable.3 Combining
these results, we obtain a characterization of the decidability of consistency w.r.t.
witnessed and general models for all fuzzy DLs between ⊗-NEL and ⊗-SHOI−∀:
it is decidable (in ExpTime) iff ⊗ has no zero divisors.

In future work, we plan to study reasoning problems in fuzzy DLs allowing for
value restrictions without the restriction to witnessed models. In this direction
it is worth looking at the decidability results for ⊗-ALC with product t-norm
w.r.t. quasi-witnessed models [11].
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1. Baader, F., Peñaloza, R.: Are fuzzy description logics with general concept inclu-
sion axioms decidable? In: Proc. of the 2011 IEEE Int. Conf. on Fuzzy Systems
(FUZZ-IEEE’11). pp. 1735–1742. IEEE Press (2011)

3 ⊗-NEL is the sublogic of ⊗-SHOI−∀ that allows only the constructors >, ¬ and ∃.

112



2. Baader, F., Peñaloza, R.: On the undecidability of fuzzy description logics with
GCIs and product t-norm. In: Proc. of 8th Int. Symp. Frontiers of Combining
Systems (FroCoS’11). pp. 55–70. Springer-Verlag (2011)

3. Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in
some fuzzy description logics. Fuzzy Sets and Systems 172(23), 1–12 (2011)
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1 Introduction

Representation of context dependent knowledge in the Semantic Web is a recently emer-
gent issue. A number of logical formalisms with this aim have been proposed [3, 11, 14].
Among them is the DL based Contextualized Knowledge Repository (CKR) [13]. One
of the mostly advocated advantages of context based knowledge representation is that
reasoning procedures can be constructed by composing local reasoners running inside
each context, with the obvious divide-and-conquer advantage.

We recently proposed a tableaux decision algorithm [5, 9] for the case of CKR
framework based on ALC DL. The algorithm extends the well known ALC tableaux
algorithm [6, 12] and it is based on a combination of local reasoning inside each context
with a set of novel rules that propagate knowledge across the neighboring contexts. To
our best knowledge, it is the only direct tableaux reasoning algorithm for contextualized
DL knowledge to date: by direct we mean not based on some reduction to a single DL
knowledge base, which neglects the divide-and-conquer advantage.

In this paper, we review this algorithm and we describe our initial ideas on pos-
sible optimization, including dimensional coverage caching and parallelization. In or-
der to maximize the divide-and-conquer advantage, it is important to propagate only
those symbols between local tableaux which are really needed to assure complete-
ness. We propose a (correctness preserving) modification of three propagation rules that
decreases the amount of propagation and also of related non-deterministic branching.
Proofs of all theorems can be found in the accompanying technical report [9].

2 Contextualized Knowledge Repositories

We briefly introduce the basic definition of CKR, for all details see [13]. A meta vo-
cabulary Γ is used to state information about contexts. It contains contextual attributes
(called dimensions), their possible values and coverage relations between these values.
Formally, it is a DL vocabulary that contains: (a) a finite set of individuals called context
identifiers; (b) a finite set of roles A called dimensions; (c) for every dimensionA ∈ A,
a finite set of individualsDA, called dimensional values, and a role≺A, called coverage
relation. The number of dimensions k = |A| is assumed to be a fixed constant.

Dimensional vectors are used to identify each context with a specific set of di-
mensional values. Given a meta-vocabulary Γ with dimensions A = {A1, . . . , Ak},
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a dimensional vector d = {Ai1 :=d1, . . . , Aim :=dm} is a (possibly empty) set of as-
signments such that for every j, h, with 1 ≤ j ≤ h ≤ m, dj ∈ DAij

, and j 6= h

implies ij 6= ih. A dimensional vector d is full if it assigns values to all dimensions
(i.e., |d| = k), otherwise it is partial. If it is apparent which value belongs to which
dimension, we simply write {d1, . . . , dm}. By dA (eA, etc.) we denote the actual value
that d (e, etc.) assigns to the dimension A. The dimensional space DΓ of Γ is the set
of all full dimensional vectors of Γ .

An object-vocabulary, encodes knowledge inside contexts: it is a standard DL vo-
cabulary Σ (with disjoint sets NC of atomic concepts, NR of roles and NI of individ-
uals) closed w.r.t. concept/role qualification. That is, for every concept or role symbol
X of Σ and every (possibly partial) dimensional vector d, a new symbol Xd is added
to Σ, called the qualification of X w.r.t. d. If d is partial then Xd is partially qualified,
if d is full, it is fully qualified. Qualified symbols are used inside contexts to refer to
the meaning of symbols w.r.t. some other context. This will become apparent from the
semantics. Contexts and CKR knowledge bases are formally defined as follows.

Definition 1 (Context). Given a pair of meta and object vocabularies 〈Γ,Σ〉, a context
is a triple 〈C,dim(C),K(C)〉 where: C is a context identifier of Γ ; dim(C) is a full
dimensional vector of DΓ ; and K(C) is an ALC knowledge base over Σ.

Definition 2 (Contextualized Knowledge Repository). Given a pair of meta and ob-
ject vocabularies 〈Γ,Σ〉, a CKR knowledge base (CKR) is a pair K = 〈M,C〉 where C
is a set of contexts on 〈Γ,Σ〉 and M, called meta knowledge, is a DL knowledge base
over Γ such that:
(a) for A∈A and d, d′∈DA, if M |= A(C, d) and M |= A(C, d′) then M |= d = d′;
(b) for C ∈ C with dim(C) = d and for A ∈ A, we have M |= A(C, dA);
(c) the relation {〈d, d′〉 |M |= d≺Ad′} is a strict partial order on DA.

In the rest of the paper we assume that CKR knowledge bases are defined over some
suitable vocabulary 〈Γ,Σ〉, and all concepts are in negation normal form (NNF, see
[1]). We also assume the unique name assumption (UNA) for the meta knowledge (i.e.,
if a 6= b are two different symbols then M 6|= a = b). This is just to avoid the confusing
possibility of two contexts located as the same place in the dimensional space.

For a CKR K, we will denote by Cd a context with dim(C) = d. For d, e ∈ DΓ

and B,C ⊆ A, dB := {(A:=d) ∈ d | A ∈ B} is the projection of d w.r.t. B; and
dB+eC := dB ∪ {(A:=d) ∈ eC | A /∈ B} is the completion of dB w.r.t. eC.

An important notion is the strict (≺) and non-strict (�) coverage between dimen-
sional values: for d, d′ ∈ DA, d ≺ d′ if M |= d≺Ad′; and d � d′ if either d ≺ d′ or
M |= d = d′. Similarly, coverage for dimensional vectors: d �B e for some B ⊆ A if
dB � eB for eachB ∈ B; and d ≺B e if d �B e and dB ≺ eB for at least oneB ∈ B.
Also, d � e if d �A e, and d ≺ e if d ≺A e. Finally coverage for contexts: Cd � Ce
if d � e, and Cd ≺ Ce if d ≺ e. Intuitively, if Cd ≺ Ce, then Cd is the narrower and Ce
is the broader context.

An example CKR Kfb shown in Fig. 1 uses three dimensions time, location, and
topic. It has four contexts associated with dimensional vectors sp (general context
of sports in 2010), fb (football in 2010), wc10 (FIFA World Cup 2010), and nfl10
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Fig. 1. Example CKR knowledge base Kfb

(national football leagues in 2010). Axioms are placed inside each context while the
associated vector is placed above it. Coverage relation ≺ is visualized with arrows.

Note that in CKR built on top of more expressive logics, conditions 2 (a,c) of Def-
inition 2 can be assured directly in the meta knowledge with respective axioms: each
A ∈ A is declared functional, and each ≺A is declared irreflexive and transitive. In
ALC we do not have this option, however this is not a problem, because the number of
all dimensions is assumed to be finite as it is the number of contexts in a CKR. Hence
after the meta knowledge is modeled, these conditions can be verified even without a
reasoner (e.g., by some script). These conditions are needed to assure reasonable prop-
erties of contextual space, i.e., acyclicity, dimensional values uniquely determined [13].

CKR uses DL semantics inside each context combined with some additional se-
mantic restrictions to ensure proper meaning of qualified symbols. A partial DL inter-
pretation of a DL vocabulary Σ is a DL interpretation I =

〈
∆I , ·I

〉
that allows two

exceptions: ∆I is possibly an empty set, and ·I is totally defined on NC and NR and
it is partially defined on NI (i.e., aI ∈ ∆I can be undefined for some a ∈ NI). Partial
interpretations need not necessarily provide denotations for all individuals of Σ. This is
needed for technical reasons: intuitively, all contexts rely on the same object vocabulary
Σ, but some element of Σ may not be meaningful in all contexts. Also, interpretations
with empty domains are useful to treat inconsistency among contexts [13].

Definition 3 (CKR-Model). A model of a CKR K is a collection I = {Id}d∈DΓ
of

partial DL interpretations (local interpretations) s.t. for all d, e, f ∈ DΓ , B ⊆ A,
A ∈ NC, R ∈ NR, X ∈ NC ∪NR, a ∈ NI:

1. (>d)If ⊆ (>e)If if d ≺ e
2. (Af )Id ⊆ (>f )Id

3. (Rf )Id ⊆ (>f )Id × (>f )Id

4. aIe = aId if d ≺ e and
– aId is defined or,
– aIe is defined and aIe ∈ ∆d

5. (XdB
)Ie = (XdB+e)Ie

6. (Xd)Ie = (Xd)Id if d ≺ e
7. (Af )Id = (Af )Ie ∩∆d if d ≺ e
8. (Rf )Id = (Rf )Ie ∩ (∆d×∆d) if d ≺ e
9. Id |= K(Cd)

The semantics takes care that local domains respect the coverage hierarchy (condi-
tion 1). Note that >d represents the domain of Id in the context where it appears. It
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gives rigid meaning to individuals, however, the meaning of an individual in a super-
context is independent if its meaning in a sub-context is undefined (condition 4). The
interpretation of anyXf in any context Cd is roofed under (>f )Id (conditions 2, 3). The
meaning of Xf in some context Ce is based on its context of origin Cf if this context
is less specific than Ce (condition 6); otherwise, at least, any Xf in Cd and Ce must be
equal on the shared part of their domains (conditions 7 and 8). Finally, each Id is a
DL-model of Cd (condition 9). Albeit useful for modeling, partially qualified symbols
are a kind of syntactic sugar in this framework as the completed version of the symbol
can always be used instead (condition 5, cf. [13]). To simplify the algorithm, we as-
sume w.l.o.g. that the CKR on the input is always fully qualified. In the examples we
use non-qualified symbols only for improving readability.

Given a CKR K and d ∈ DΓ , a concept C is d-satisfiable w.r.t. K if there exists
a CKR model I = {Ie}e∈DΓ

of K such that CId 6= ∅; K is d-satisfiable if it has a
CKR model I = {Ie}e∈DΓ

such that ∆d 6= ∅; K is globally satisfiable if it has a CKR
model I = {Ie}e∈DΓ

such that ∆e 6= ∅ for every e ∈ DΓ . An axiom α is d-entailed
by K (denoted K |= d : α) if for every model I = {Ie}e∈DΓ

of K it holds Id |= α. As
usual, d-entailment can be reduced to d-satisfiability: in particular K |= d : C v D iff
C u ¬D is not d-satisfiable w.r.t. K.

3 Tableaux Algorithm for CKR

We denote by clos(C) the set of all syntactically correct atomic and complex concepts
that occur in a concept C. The closure of a concept C w.r.t. a CKR K is closK(C) =
clos(C) ∪ {clos(¬D t E) | D v E ∈ K(C) for some context C of K} ∪ {clos(D) |
D(a) ∈ K(C) for some context C of K} ∪ {clos(¬>e t >f ) | e ≺ f}. We denote
with RK,C the set of roles R ∈ NR appearing in C or some K(C) of K. The sets
closK(C) and RK,C contain all possible concepts and roles relevant in order to verify
d-satisfiability of C w.r.t. K.

The tableaux algorithmCT for CKR decides the d-satisfiability of a conceptC w.r.t.
a CKR K: it is partly based on the well knownALC tableaux algorithm [12, 6] which is
extended in order to deal with multiple contexts. The algorithm works on a completion
tree, a partial representation of a CKR model that the algorithm incrementally builds.

Definition 4 (Completion tree). Given a CKR K, a completion tree is a triple T =
〈V,E,L〉 s.t.:

1. 〈V,E〉 is a tree, where V is an ordered set of elements with order <V ;
2. there is a collection {Vd}d∈DΓ

of sets such that Vd ⊆ V ;
3. Ed = {〈x, y〉 ∈ E | x, y ∈ Vd}, for each d ∈ DΓ ;
4. L = {Ld}d∈DΓ

is a collection of labeling functions such that for each d ∈ DΓ :
(a) Ld(x) ⊆ closK(C), for each x ∈ Vd;
(b) Ld(〈x, y〉) ⊆ RK,C , for each 〈x, y〉 ∈ Ed.

In order to verify d-satisfiability of a conceptC w.r.t. a CKR K, the algorithm initializes
and then iteratively expands the tree using a number of tableaux expansion rules. To
avoid infinite looping, a blocking policy adapted from Buchheit et al. [6] is used. We
assume that the algorithm always adds nodes into the completion tree respecting the
order <V (i.e., whenever a new node x is added, y <V x holds for all y already in V ).
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Table 1. CKR completion rules

u-rule: if x ∈ Vd, C1 u C2 ∈ Ld(x),
{C1, C2} 6⊆ Ld(x)

then Ld(x) := Ld(x) ∪ {C1, C2}
t-rule: if x ∈ Vd, C1 t C2 ∈ Ld(x),

{C1, C2} ∩ Ld(x) = ∅
then Ld(x) := Ld(x)∪{C1} or
Ld(x) := Ld(x)∪{C2}

∃-rule: if x ∈ Vd, ∃R.C ∈ Ld(x), and there is no
R-successor y ∈ Vd of x s.t. C ∈ Ld(y)

then Vd := Vd ∪ {z} with z new,
Ed := Ed ∪ {〈x, z〉}
Ld(〈x, z〉) := {R}, Ld(z) := {C}

∀-rule: if x ∈ Vd, ∀R.C ∈ Ld(x),
and there existsR-successor
y ∈ Vd of x s.t. C /∈ Ld(y)

then Ld(y) := Ld(y) ∪ {C}
T -rule: if x ∈ Vd, C v D ∈ K(Cd),

nnf(¬C tD) /∈ Ld(x)
then Ld(x) := Ld(x) ∪ {nnf(¬C tD)}

∆↑-rule: if x ∈ Vd,d ≺ e, x /∈ Ve

then Ve := Ve ∪ {x}

∆↓-rule: if x ∈ Ve,d ≺ e,>d ∈ Le(x), x /∈ Vd

then Vd = Vd ∪ {x}
A-rule: if x ∈ Vd ∩ Ve,d ≺ e or d � e,

Af ∈ Ld(x), Af /∈ Le(x)
then Le(x) := Le(x) ∪ {Af}

R-rule: if x, y ∈ Vd ∩ Ve, 〈x, y〉 ∈ E,
d ≺ e or d � e, Rf ∈ Ld(〈x, y〉),
Rf /∈ Le(〈x, y〉)

then Le(〈x, y〉) := Le(〈x, y〉) ∪ {Rf}
>A-rule: if x ∈ Ve, Ad ∈ Le(x),>d /∈ Le(x)

then Le(x) := Le(x) ∪ {>d}
>R-rule: if x, y ∈ Ve, 〈x, y〉 ∈ E,

Rd ∈ Le(〈x, y〉),
>d /∈ Le(x) ∩ Le(y)

then Le(x) :=Le(x)∪{>d},
Le(y) :=Le(y)∪{>d}

>v-rule: if x ∈ Vd, e ≺ f ,¬>e t >f /∈ Ld(x)
then Ld(x) := Ld(x) ∪ {¬>e t >f}

M-rule: if ag ∈ Vd, a
h ∈ Ve, and d � e,

then merge(ag, ah)

Definition 5 (Blocking). Given a CKR K and a completion tree T = 〈V,E,L〉, we
say that a node w ∈ V is the witness for x ∈ V , if Ld(x) = Ld(w) for all d ∈ DΓ ,
w <V x and there is no y ∈ V such that y <V w and Ld(x) = Ld(y) for all d ∈ DΓ .
We say that x ∈ V is blocked by w ∈ V if w is the witness for x.

We say that a tableaux rule is applicable if all of its preconditions (the if-part of the rule)
are satisfied for some node x ∈ V or a pair of nodes x, y ∈ V and the nodes are not
blocked. A completion tree T is complete, if none of the tableaux rules is applicable. A
completion tree T = 〈V,E,L〉 contains a clash in a node x ∈ V , if for some d ∈ DΓ

and some concept C both C ∈ Ld(x) and ¬C ∈ Ld(x), or if ⊥ ∈ Ld(x). We say that
T is clash-free if no clash occurs in any of its nodes.

In initialization, ABox axioms are encoded in the initial completion tree. This tech-
nique is well known for logics like ALC [1]. However, we must consider that in CKR
same individuals appearing in different contexts may possibly have different meanings.
In the completion tree, individuals will be represented by elements of the form ag where
a ∈ NI and g ∈ DΓ identifies the context in which the individual was first introduced.
To implement condition 4 of CKR-models we will merge nodes when needed.

Definition 6 (Merging). Executing merge(x, y) on a completion tree T = 〈V,E,L〉,
with x, y ∈ V , transforms T as follows: a) node x is added into Ve for all e ∈ DΓ s.t.
y ∈ Ve; b) all concepts from Le(y) are added into Le(x), for all e ∈ DΓ ; c) all edges
directed into/from y are redirected into/from x; d) node y is removed from V .

Finally, the algorithm is formally defined as follows:

Definition 7 (Algorithm CT ). Given as input a CKR K, d ∈ DΓ , and a concept C in
NNF, the algorithm CT verifies the d-satisfiability of C w.r.t. K in the following steps:
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1. for all e ∈ DΓ , initialize Ve, E, and Le as follows:
(a) Ve := {ae |C(a) ∈ K(Ce)} ∪ {ae, be |R(a, b) ∈ K(Ce)};

E := {〈ae, be〉 |R(a, b) ∈ K(Ce), e ∈ DΓ };
Le(ae) := {C |C(a) ∈ K(Ce)}; Le(〈ae, be〉) := {R |R(a, b)∈K(Ce)};

(b) Vd := Vd ∪ {s0}, where s0 is a new constant in Vd; Ld(s0) := {C};
2. exhaustively apply completion rules of Table 1 on T ;
3. once T is complete, answer “C is d-satisfiable w.r.t. K” if T is clash-free; answer

“C is not d-satisfiable w.r.t. K” otherwise.

The first five rules used by the algorithm (fromu- to T -rule) are the usualALC tableaux
rules [1] responsible for local reasoning inside each context. The additional rules are
new and they handle propagation of information between contexts.

The ∆↑- and ∆↓-rules are responsible for propagation of nodes: if d ≺ e, all nodes
from Vd are propagated to Ve (∆↑-rule), but only the nodes belonging to >d are prop-
agated from Ve to Vd (∆↓-rule).

Given contexts Cd and Ce, with d ≺ e, the conditions 6 and 7 of CKR-models
require that the interpretations of any symbol Xf in the contexts agree on all elements
shared by their domains. Hence, if a node (or a pair of nodes) belongs to both Vd and
Ve (i.e. it belongs to both local tableaux), then its labels are propagated by A-rule and
R-rule from one local tableaux to another, in both directions.

The following rules maintain the first three semantic conditions of CKR-models.
The >A- and >R-rules take care that any qualified symbol Xd is always roofed under
>d in any context Ce. If a qualified concept Ad (role Rd) is found in the Le-label of
some node (edge) in Ve, then >d is added to the Le-label of this node (or both nodes
connected by this edge). Also, if e ≺ f , then the >v-rule assures that the subsumption
>e v >f must hold in any context. Finally, the M-rule takes care of cases when it is
inferred that the same individual a appears in two different contexts.

It is however not the case that there is one-to-one correspondence between the se-
mantic conditions of CKR (Definition 3) and the tableaux rules. Consider condition 6
and the case when Xd = Ad and d ≺ e. If for instance due to a firing of the ∃-rule a
new node x was added into Ve with Le(x) initiated to {Ad}, to maintain condition 6
the same node with the same label must also be added to Vd and Ld respectively. This
is achieved by consecutive firing of >A-, ∆↓-, and A-rules. A more complex example
of reasoning with CKR tableaux rules follows.

Example 1 (Tableaux algorithm). Using the algorithm and our example CKR Kfb , let
us show the proof for the following subsumption:

Kfb |= nfl10 : WorldChampionPlayerfb v ∀playsForwc10.WinnerTeamwc10

Initialization yields Vnfl10 := {s0} and Lnfl10(s0) := {WorldChampionPlayerfb u
∃playsForwc10. ¬WinnerTeamwc10}. Then tableaux rules are applied as follows:

(1) Lnfl10(s0) :=Lnfl10(s0) ∪ {WorldChampionPlayerfb,
∃playsForwc10.¬WinnerTeamwc10} by u-rule;

(2) Vnfl10 := Vnfl10 ∪ {s1}, Enfl10 := {〈s0, s1〉},
Lnfl10(〈s0, s1〉) := {playsForwc10}, Lnfl10(s1) := {¬WinnerTeamwc10} by ∃-rule;

(3) Vfb := {s0, s1}, Lfb(s0) := {WorldChampionPlayer},
Lfb(〈s0, s1〉) := {playsForwc10} by ∆↑-, A- and R-rules;
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(4) Lfb(s0) ∪ {ChampionPlayerwc10} by T - and t-rules;
(5) Lfb(s0) := Lfb(s0) ∪ {>wc10}, Lfb(s1) := Lfb(s1) ∪ {>wc10} by >R-rule;
(6) Vwc10 := {s0, s1}, Lwc10(s0) := {ChampionPlayer},
Lwc10(〈s0, s1〉) := {playsFor} by ∆↓-, A- and R-rules;

(7) Lwc10(s0) := Lwc10(s0) ∪ {∀playsFor.WinnerTeam} by T - and t-rules;
(8) Lwc10(s1) := Lwc10(s1) ∪ {WinnerTeam} by ∀-rule;
(9) Lfb(s1) := Lfb(s1) ∪ {WinnerTeamwc10},
Lnfl10(s1) := Lnfl10(s1) ∪ {WinnerTeamwc10} by A-rule;

The application of last rule creates a clash, since Lnfl10(s1) = {¬WinnerTeamwc10,
WinnerTeamwc10}. Note that in the non-deterministic choices asked in steps 4 and
7 (due to t-rule), all other choices immediately lead to a clash. Hence no clash-free
completion tree can be constructed and the algorithm answers that the input concept is
nfl10-unsatisfiable w.r.t. Kfb . This implies that the subsumption in question is entailed.

Note the required inter-contextual knowledge propagation: we first had to propagate
nodes and their labels from Vnfl10 to Vfb and finally to Vwc10 by tracking the context
coverage structure (steps 3–6). Then with the last rule application (step 9), we propagate
back the derived concepts to the label Lnfl10 and detect the clash. 3

The algorithm CT is correct: it terminates on any input and it is sound and complete.

Theorem 1 (Correctness). Given a CKR K, d ∈ DΓ , and a concept C in NNF on the
input, the tableaux algorithm CT always terminates and C is d-satisfiable w.r.t. K iff
CT generates a complete and clash free completion tree.

The ALC tableaux algorithm which we extended in this paper is in NEXPTIME [6],
and this is the case also for the resulting tableaux algorithm for CKR.

Theorem 2 (Complexity). The complexity of the CT algorithm is NEXPTIME with
respect to the combined size of the input.

In general, the problem of deciding d-satisfiability (and thus d-subsumption) in ALC-
based CKR is EXPTIME-complete [4]. That is, the complexity is the same as forALC
with general TBoxes [1]. To obtain an optimal algorithm for CKR on top of ALC we
would have to extend one of the EXPTIME algorithms forALC (like, e.g., [7]). On the
other hand, the algorithm presented in this paper is an important first step towards the
algorithmic support for CKR based on more expressive DL (like SHIQ or SROIQ),
since the tableaux algorithms for these logics can be seen as extensions of the basic
ALC algorithm on top of which we have built.

4 Algorithm Optimization

In this section we share our initial ideas about optimization of the algorithm. CKR
maintains a certain level of separation between meta and object knowledge (the former
influences the latter but not vice versa). Object reasoning queries the meta knowledge
only to verify the coverage between dimensional vectors. The number of contexts m is
typically much smaller than the size of whole KB n and the number of dimensions k
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is assumed to be a constant, it hence makes sense to precompute3 the context coverage
beforehand. This can be done within k×m2 = O(m2) queries of the form M |=d≺A d′.
Consequently, meta reasoning does not slow down object reasoning more than in other
approaches with simpler meta knowledge representations [14].

One of the advantages of contextual reasoning is that the KB is split into smaller
units and reasoning can be parallelized. Let us briefly sketch how this can be done with
CKR. Reasoning in each context will be handled by a separate processor, which will
exchange messages to deal with knowledge propagation. The computation time will
be bounded by the context which requires the longest execution time together with the
number of required messages. In this sense, the t-, u-, ∃-, ∀-, >A-, >R-, and >v-rules
are locally executed. The remaining rules will be implemented as follows:

∆↑-, ∆↓-rules: the fact that a node has to be added into the target context is detected
locally in the source context. A message is sent into the target context and this fact
is also cached in the source context, which will be used by the other rules.

A-, R-rules: thanks to caching of the information to which contexts nodes have been
added, it can be locally detected that the concept and role labels of some node have
to be propagated to the target context which is then done by a message.

M-rule: note that if ag ∈ Vd, ah ∈ Ve, and d ≺ e, then eventually ag is added into Ve

by the ∆↑-rule. Therefore also the precondition the M-rule can be locally verified
and once detected, a respective message is sent to all other contexts.

Propagation of knowledge increases the number of messages and can trigger additional
computation in the target context. It is hence desired to limit it to the necessary cases
only. Using a technique similar to lazy unfolding [1], we were able to optimize the three
tableaux rules >A, >R, and >v for propagation of the >e symbols as follows:

>∗A-rule: if x ∈ Vf , d � e, Ad ∈ Lf (x),>e /∈ Lf (x)

then Lf (x) := Lf (x) ∪ {>e}
>∗R-rule: if x, y ∈ Vf , d � e, Rd ∈ Lf (〈x, y〉),>e /∈ Lf (x) ∩ Lf (y)

then Lf (x) :=Lf (x)∪{>e}, Lf (y) :=Lf (y)∪{>e}
>∗v-rule: if x ∈ Vf , d ≺ e, ¬>e ∈ Lf (x),¬>d /∈ Lf (x)

then Lf (x) := Lf (x) ∪ {¬>d}

The main idea of these optimized rules is to avoid the introduction of a number of
disjunctive concept expressions of the form ¬>d t >e caused by the >v-rule which
could possibly cause unnecessary non-deterministic branching. Instead, we apply each
disjunction only after one of the disjuncts is proven untrue.

Normally the >A-rule would add >d into the label of any node x in which Ad

was found. Consequently, the >v-rule would be fired once for each e � d and add
¬>d t >e every time. This eventually results into adding >e into the same label for
each such e over the run of the algorithm. The optimized>∗A-rule skips the introduction
of these disjunctions and directly adds the>e symbol for all such e. The>R-rule is also
optimized in the very same fashion. Hence the two optimized rules >∗A- and >∗R-rule

3 This does not imply that a DL KB at meta level is useless. In meta knowledge modeling, DL
axioms on dimensional values can constrain the coverage structure, e.g., given a location di-
mension, we can require cities to be located within some country: City v ∃ ≺location .Country.
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do the work previously done by the >A- and >R-rules but in addition they take care
of the first part of the disjunction ¬>d t >e (i.e., the one which adds >e if >d was
found). We still have to take care of the second part, and this is done by the >∗v-rule
which adds ¬>d to any label in which ¬>e was found for d ≺ e.

The version of the algorithm CT that uses the >∗A-, >∗R-, and >∗v-rules instead of
the >A-, >R-, and >v-rules respectively, will be denoted by CT ∗.

Theorem 3 (Correctness of optimized rules). Given a CKR K, d ∈ DΓ , and a con-
ceptC in NNF on the input, the algorithmCT

∗ always terminates andC is d-satisfiable
w.r.t. K iff CT ∗ generates a complete and clash free completion tree.

Example 2 (Optimized tableaux rules). Let us now compare the original tableaux rules
with the optimized rules by the following deduction:

Kfb |= sp : TopSportsman v ∀playsForwc10.WinnerTeamwc10

The algorithm is initialized with Vsp = {s0} and the label Lsp = {TopSportsmanu
∃playsForwc10. ¬WinnerTeamwc10}. The original algorithm CT proceeds as follows:

(1) Lsp(s0) :=Lsp(s0) ∪ {TopSportsman, ∃playsForwc10.¬WinnerTeamwc10} by u-rule;
(2) Vsp := Vsp ∪ {s1}, Esp = {〈s0, s1〉}, Lsp(〈s0, s1〉) = {playsForwc10},
Lsp(s1) = {¬WinnerTeamwc10} by ∃-rule;

(3) Lsp(s0) := Lsp(s0) ∪ {>wc10}, Lsp(s1) := Lsp(s1) ∪ {>wc10} by >R-rule;
(4) Lsp(s0) := Lsp(s0) ∪ {¬>wc10 t >fb,¬>nfl10 t >fb, ¬>wc10 t >sp,¬>nfl10 t
>sp,¬>fb t >sp},
Lsp(s1) := Lsp(s1) ∪ {¬>wc10 t >fb,¬>nfl10 t >fb, ¬>wc10 t >sp,¬>nfl10 t
>sp,¬>fb t >sp} by multiple applications of the >v-rule;

(5) Lsp(s0) := Lsp(s0)∪{>fb,>sp},Lsp(s1) := Lsp(s1)∪{¬>nfl10,>fb,>sp} byt-rule;
(6) Vfb = {s0, s1}, Lfb(s0) = {TopSportsmansp} by ∆↓- and A-rules;
(7) Lfb(s0) := Lfb(s0) ∪ {WorldChampionPlayer} by T -rule4 and t-rule;
(8) Lfb(s0) := Lfb(s0) ∪ {ChampionPlayerwc10} by T - and t-rules;
(9) Vwc10 = {s0, s1}, Lwc10(s0) = {ChampionPlayer}, Lwc10(〈s0, s1〉) = {playsFor} by

∆↓- A and R-rules;
(10) Lwc10(s0) := Lwc10(s0) ∪ {∀playsFor.WinnerTeam} by T - and t-rules;
(11) Lwc10(s1) := Lwc10(s1) ∪ {WinnerTeam} by ∀-rule;
(12) Lsp(s1) := Lsp(s1) ∪ {WinnerTeamwc10} by A-rule;

The last rule application yields a clash since we obtain Lsp(s1)={¬WinnerTeamwc10,
WinnerTeamwc10}. Notice that out of the ten applications of the >v-rule in step (4),
only the one resulting into adding ¬>wc10 t >fb into Lfb(s0) is actually needed for
propagation of the concept TopSportsman into Lfb(s0). On the other hand, the addition
of ¬>nfl10 t >fb,¬>nfl10 t >sp into the labels of both nodes (carrying irrelevant
information about the context for nfl10) is preliminary at this point and it may lead
to unnecessary choices by the t-rule which may need to be backtracked later on – for
instance the choice to add ¬>nfl10 to s1 in step (5). If instead the optimized algorithm
CT
∗ is used, a similar derivation is obtained in which steps (3)–(5) are replaced with:

4 The two disjunctive concepts ¬TopSportsmansp t WorldChampionPlayer and
¬WorldChampionPlayer t ChampionPlayerwc10 which are added to Lfb in steps (7)
and (8) respectively by the T -rule are not listed here to improve readability.

122



(3’) Lsp(s0) := Lsp(s0) ∪ {>wc10,>fb,>sp},
Lsp(s1) := Lsp(s1) ∪ {>wc10,>fb,>sp} by >∗R-rule;

The remainder of derivation is the same: the unnecessary choice is thus avoided. 3

The optimized rules constrain the propagation of >e concepts, which are needed to
reflect the context hierarchy in reasoning, to necessary propagations only and avoid the
introduction of unnecessary disjunctive concepts which may cause branching. Observe
that in Examples 1 and 2 we have shown the application of rules in the right order.
However, additional non relevant rules may be applied by the algorithm before a clash
is reached. For instance, due to the axiom WinnerTeam ≡ WinnerFinal in K(Cwc10)
the algorithm may add WinnerFinal into Lwc10(s1) after step (11) in Example 2 (by T -
and t-rules) and consequently propagate WinnerFinalwc10 into Lfb(s1) and Lsp(s1)
by A-rule. Such a propagation is unnecessary as there are no axioms in Cfb nor Csp
which could derive new knowledge from WinnerFinalwc10. Therefore in the future we
would also like to investigate when it is necessary to propagate qualified symbols.

5 Related Works

The only other approach for reasoning with DL-based CKR is a translation from CKR
into a single DL KB [13]. Unfortunately, this solution is not practically efficient, as the
translation adds a large number of axioms in order to track complex relations between
qualified symbols in a single KB. This is reflected also by a significant (cubic) blow up
in the size of knowledge base after the translation. In contrast, a direct tableaux algo-
rithm allows for more effective reasoning: local reasoning is executed in the respective
part of the completion tree and only relevant consequences posed on other contexts are
propagated into their respective tableaux labels, thus opening the possibility of paral-
lelization. Our tableaux procedure is also related to the distributed tableaux algorithms
for DDL [8] and P-DL [2], especially in the way how symbols are propagated between
local tableaux. Apart from the fact that each of these algorithms implements a different
semantics, our algorithm is also able to handle semantic dependencies between roles
which is an open problem for DDL and P-DL so far.

Our newly introduced optimizations bring us near to approaches interested in paral-
lelization of DL reasoning. One relevant approach in this area is presented in [10]. This
work proposes a saturation procedure for the classification of the polynomial fragment
ELHR+ of OWL 2 EL, distributable among multiple processors as a concurrent algo-
rithm. The paper also presents an implementation in the reasoner ELK together with a
promising evaluation over known EL ontologies. Even if the scope of [10] is different
from our work, it highlights some aspects that support our approach. In particular, it
shows that there is interest in a parallelized vision of DL reasoning algorithms. More-
over, it suggests that the sort of knowledge distribution and independence between con-
texts which we point to can effectively result in promising performance improvements.

6 Conclusions

Contextualized Knowledge Repository (CKR) is a knowledge representation frame-
work that provides a contextual layer for DL knowledge bases. The recently introduced
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reasoning algorithm [5, 9] for ALC-based CKR provides the first direct tableaux deci-
sion procedure for contextualized knowledge. This solution is more effective than the
previously known approaches based on reduction that lead to KB blow ups and loss of
the divide-and-conquer advantage of contextual representation.

In this paper, we reviewed the algorithm and discussed on its possible optimization
including dimensional structure caching, parallelization and a set of new rules that opti-
mize the propagation of symbols among local tableaux. In the future we want to extend
the algorithm towards more expressive DL such as SHIQ and SROIQ and formu-
late an EXPTIME algorithm based on the existing approaches [7]: we note that some
of the optimizations (e.g. the lazy unfolding for >v or the precomputation of context
coverage) can be easily adapted to different formulations of the algorithm. We will also
study further optimizations for the propagation of qualified symbols.
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Inverting Subsumption for Constructive Reasoning

Simona Colucci, Francesco M. Donini

DISUCOM, Università della Tuscia, Viterbo, Italy

Abstract. We present a Logic Programming prototype implementation, working
as proof-of-concept for a unified strategy proposed in our past research to solve
several non-standard reasoning problems in Description Logics (DLs), denoted
by Constructive Reasoning. In order to prove both the problem-independence
and the logic-independence of the adopted approach, the prototype is focused
on the solution of three different problems — namely Least Common Subsumer,
Concept Abduction and Concept Difference — and two different, though simple
and endowed with structural subsumption, DLs, i.e., EL andALN . Accordingly
to the implemented strategy, problems are formalized as conjunction of both sub-
sumption and non-subsumption statements, causing the whole prototype to rely
on a Prolog program solving subsumption. The program is built around a pred-
icate, which on the one hand checks for the existence of subsumption relations
between ground elements, providing boolean answers, and on the other hand, if
inverted, exploits Prolog built-in unification to enumerate variable values making
subsumption true between concept terms containing concept variables.

1 Introduction

The power of knowledge lays in its ability to enhance the production of unknown infor-
mation, through management strategies whose significance increases with the level of
novelty introduced by provided results.

In past knowledge management literature, in fact, interest has been given to the
proposal of special purpose inferences allowing for exploiting as much as possible the
informative content achieved through knowledge representation effort. To this aim, sev-
eral non-standard reasoning services have been proposed and continue to be investigated
to cope with different representation or inference needs. The most relevant services we
may cite are explanation [16], interpolation [18], concept abduction [12], concept con-
traction [11], concept unification [5], concept difference [19], concept similarity [8],
concept rewriting [3], least common subsumer [7], most specific concept [1], knowl-
edge base completion [6], forgetting or uniform interpolation [14].

We notice that the crucial role of non-standard reasoning in the process of capturing
unexpected sources of information has been stressed also in research fields apparently
far from knowledge representation [15].

Moreover, recent Description Logics (DLs) literature has shown interest for easily
tractable, even though not very expressive, sub-languages, like EL [17, 4, 13].

In our past research [10] we proposed an integrated approach and solving strategy
for dealing with several different non-standard inferences. The framework, presented
as independent of the DL adopted for knowledge representation, takes a constructive
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reasoning perspective on problem solving: most inferences are in the form “Find one
or more concept(s) C such that {sentence involving C }“ and the proposed framework
aims at building such C.

In order to show the feasibility of such an integrated constructive reasoning ap-
proach, we here present a prototype implementation in Logic Programming solving
Least Common Subsumer, Concept Difference and Concept Abduction in the simple
DLs EL, ALN , both endowed with structural subsumption algorithms.

Though still inefficient at this stage, the prototype works as proof-of-concept for
the integrated solution framework. It exploits the property of our approach according to
which most non-standard reasoning problems may be formalized as conjunction of both
subsumption and non-subsumption statements and therefore relies on a Prolog program
solving subsumption, built around a main predicate called either subs el or subs aln,
depending on the adopted DL. In particular, we show how to invert the subs predicate
(either subs el or subs aln ), so that not only it can check subsumption between ground
elements (providing boolean answers), but it can also exploit Prolog built-in unification
to enumerate variable values making subsumption true between concept terms contain-
ing concept variables. The approach takes a generate-and-test strategy.

In the next section, we shortly recall how to formalize the three problems in the
integrated framework. Then,we describe the architecture of the prototype implementing
the solving strategy in Section 3, before delving into details of subsumption program,
on which the whole prototype relies, in Section 4. We show how to query the presented
prototype in Section 5, and, finally, close the paper with discussions and future work.

2 Background Framework

The approach presented in our past research [10] models each of the problems at hand
as Optimal Solution Problem, whose definition exploits specific second order formulas,
written as conjunction of concept subsumptions and non-subsumptions, in the following
form:

Γ = (C1 v D1) ∧ · · · ∧ (C` v D`) ∧ (C`+1 6v D`+1) ∧ · · · ∧ (Cm 6v Dm) (1)

In Formula (1), C1, . . . , Cm,D1, . . . , Dm ∈ DL denote concept terms containing
concept variables X0, X1, . . . , Xn. We say that Γ is satisfiable in DL iff there exists
a substitution σ = X0− > E0, ...Xn− > En such that σ(Γ ) is true (i.e., , each sub-
sumption and non-subsumption statement in (1) is true). If Γ is satisfiable in DL then
E is called a solution for Γ and the set of solutions for Γ is defined as:

SOL(Γ) = {E = 〈E0, . . . , En〉 | E is a solution for Γ}

Definition 1 (OSP). An Optimal Solution Problem (OSP) P is a pair 〈Γ,≺〉, where
Γ is a formula of the form (1) and ≺ is a preorder over SOL(Γ). A solution to P is a
concept tuple E such that both E ∈ SOL(Γ) and there is no E ′ ∈ SOL(Γ) with E ′ ≺ E .
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2.1 Non-standard Services in DLs as OSPs

In the following, we recall how to model the three investigated problems as OSP. Aim-
ing at a fixpoint computation for solving each of the problems below, a greatest element
(i.e., a least preferred one) w.r.t.≺ is provided, which could be used to start the iteration
of an inflationary operator.

Least Common Subsumer

Definition 2. [9] Let C1 and C2 be two concepts. The Least Common Subsumer (LCS)
of C1, C2 is the least element w.r.t. v of the set of concepts which are Common Sub-
sumers of C1, C2 and is unique up to equivalence.

Common subsumers of C1, C2 satisfy the formula of the form (1):

ΓLCS = (C1 v X) ∧ (C2 v X)

Then, the LCS problem can be expressed by the OSP LCS = 〈ΓLCS ,@〉. We note that
> is always a solution of ΓLCS which is a greatest element w.r.t. @.

Concept Difference Following the algebraic approaches adopted in classical informa-
tion retrieval, Concept Difference [19] was introduced as a way to measure concept
similarity.

Definition 3. [19] Let C and D be two concepts such that C v D. The Concept Dif-
ference C −D is defined by maxv{B ∈ DL such that D uB ≡ C}.
We can define the following formula of the form (1):

ΓDIFF = (C v (D uX)) ∧ ((D uX) v C)

Such a definition causes Concept Difference to be modeled as the OSP DIFF =
〈ΓDIFF ,A〉. We recall that, is spite of its name, a Concept Difference problem may
have several solutions [19]. Note that a greatest solution for ΓDIFF w.r.t. A is C itself.

Concept Abduction Concept Abduction is a straight adaptation of Propositional Ab-
duction.

Definition 4. [12] Let C, D, be two concepts in DL, both C and D satisfiable. A
Concept Abduction Problem (CAP) is finding a conceptH ∈ DL such thatCuH 6v ⊥,
and C uH v D.

Every solution H of a CAP satisfies the formula

ΓABD = (C uX 6v ⊥) ∧ (C uX v D)

The preference relation for evaluating solutions is subsumption-maximality, since less
specific solutions should be preferred because they hypothesize the least. According to
the proposed framework, we can model Subsumption-maximal Concept Abduction as
ABD = 〈ΓABD,A〉. Note that a greatest—i.e., most specific—solution of ABD w.r.t.
A is D, if C uD is a satisfiable concept (if it is not, then ABD has no solution at all
[12, Prop.1]).
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2.2 Optimality by Fixpoint

Optimal solutions w.r.t. a preorder might be reached by iterating an inflationary op-
erator. We now specialize the definition of inflationary operators and fixpoints to our
setting.

Definition 5 (Inflationary operators and fixpoints). Given an OSP P = 〈Γ,≺〉, we
say that the operator bP : SOL(Γ) → SOL(Γ) (for better) is inflationary if for every
E ∈ SOL(Γ), it holds that bP(E) ≺ E if E is not a least element of ≺, bP(E) = E
otherwise. In the latter case, we say that E is a fixpoint of bP.

Intuitively, bP(E) is a solution better than E w.r.t.≺, if such a solution exists, otherwise
a fixpoint has been reached, and such a fixpoint is a solution to P. Being bP inflationary,
a fixpoint is always reached—possibly in an infinite number of steps—by the following
induction: starting from a solution E , let

E0 = E
Ei+1 = bP(Ei) for i = 0, 1, 2, . . .

Then, there exists a limit ordinal λ such that Eλ is a fixpoint of bP. For each of the pre-
vious non-standard reasoning services, we highlighted a greatest solution E ∈ SOL(Γ)
which this iteration can start from. Obviously, when ≺ is well-founded (in particular,
when SOL(Γ) is finite) the fixpoint is reached in a finite number of steps, but the
general conditions for well-foundedness of ≺ are not known, and out of the scope of
this paper. However, also when after n iterations En is not a fixpoint, one can stop and
consider En as an approximation of an optimal solution, since Ei+1 ≺ Ei for every
i = 0, . . . , n. In this sense, our method can be used as an anytime approximation.

Note also that the Tarski-Knaster results about uniqueness of the least fixpoint for
a monotone operator are not applicable in this setting, first of all, because bP is not
monotone, and secondly because there can be more than one minimal fixpoint: in fact,
it is known that forALN , both Concept Difference and Concept Abduction admit more
than one solution.

We stress the fact that we are not proving here that every instance of Formula (1)
can be solved by this method. For instance, deciding whether a formula of the form (1)
is satisfiable is an open problem for ALN , to the best of our knowledge. In this paper
we address particular cases of (1), corresponding to known non-standard inferences, for
which a solution is always known to exist.

It is interesting to observe that such particular cases are similar to matching prob-
lems [2], in that variables appear only on one side of each subsumption and non-
subsumption statement.

3 Prototype Architecture

In the following, we present a prototype Logic Programming system implementing the
above mentioned approach to non-standard inference [10]. The system has been devel-
oped exploiting the integrated environment provided by SWI-Prolog1 (Multi-threaded,
32 bits, Version 5.6.64) and follows the modular architecture depicted in Figure 1.

1 http://www.swi-prolog.org/
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Fig. 1. Prototype Architecture

The system design has been focused on proving main distinguishing features of
our approach: the generality and the independence of the adopted DL (within a given
subset) of non-standard inferences solving strategy. In particular, the prototype here
presented is devoted to the solution of three different reasoning services, namely Least
Common Subsumer, Concept Difference and Concept Abduction, in EL and ALN .2

Coherently with the strategy introduced so far, the prototype searches for solutions
for the system of the OSP modeling the non-standard inference need at hand. It is easy to
notice that, therefore, the whole approach relies on the logic rules formalizing structural
subsumption, which is at the basis of each formula to be solved.

The crucial role of subsumption affects the system architecture in Figure 1, whose
main components are described below:

– Subs is the central component, which implements a recursive algorithm solving
subsumption between concept descriptions; such a module is designed to provide
one interface for each DL adopted to model the problem: the current prototype
allows for solving subsumption in EL and ALN .

– Problems is the component implementing OSP solving algorithms: the current pro-
totype allows for solving Least Common Subsumer (lcs), Concept Difference (diff)
and Concept Abduction (abd), but Problems may be extended to include further
services. It is noteworthy how, depending on the DL adopted to model the problem,
a different subsumption interface, either subs EL or subs ALN, is invoked.

– Support Modules includes clauses supporting the performance of subsumption
and inferences included in Problems, but related to sorts of information process-
ing outside the core solving algorithms, such as ALN concept normalization in
Concept Centered Normal Form and special purpose lists manipulation.

2 See http://dl.dropbox.com/u/28260263/DL2012exe.rar for an executable version of the proto-
type.
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4 Inverting Subsumption

In order to show the prototype implementing the solving strategy detailed so far, we
refer to Least Common Subsumer computation, solved by the Prolog code fragment in
the following, excerpted from Problems module.

1 :-use_module(’subs_el’).
2 :-use_module(’subs_aln’).
3 :-use_module(’support_modules’).
4 :-use_module(’normalization’).

5 problem(lcs,C,D,Result,DL):- lcs(C,D,Result,DL).
6 problem(abd,C,D,Result,DL):- abd(C,D,Result,DL).
7 problem(diff,C,D,Result,DL):- diff(C,D,Result,DL).

8 lcs(C1, C2, LN, DL) :-
9 manage_concept(C1, C1N, DL),
10 manage_concept(C2, C2N, DL),
11 find_lcs(C1N, C2N, [top], L, DL),
12 normalization_top(L, LN).

13 find_lcs(C1, C2, L1, L3, DL) :-
14 decorate(L1, L2),
15 better_lcs(C1, C2, L1,L2, DL), !,
16 find_lcs(C1, C2, L2, L3, DL).
17 find_lcs(C1, C2, L1, L1, _).

18 decorate(C,C0):- list(C,CL),select(some(R,D),CL,Rest),
19 decorate(D,DL),append(Rest,[some(R, DL)], C0).
20 decorate(C,C0):- list(C,CL), append(CL,[X0],C0).

21 better_lcs(C1, C2, L1, L2, el):-
22 subs_el(C1, L2),
23 subs_el(C2, L2),
24 not(subs_el(L1, L2)).

25 better_lcs(C1, C2, L1, L2, aln):-
26 computeMaxAtLeast(C1,Max3),
27 computeMaxAtLeast(C2,Max4),
28 MaxL is max(Max3,Max4),
29 computeMaxAtMost(C1,Max1),
30 computeMaxAtMost(C2,Max2),
31 MaxM is max(Max1,Max2),
32 subs_aln(C1, L2, MaxL, MaxM),
33 subs_aln(C2, L2, MaxL, MaxM),
34 not(subs_aln(L1, L2, MaxL, MaxM)).
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We shortly recall that the shared strategy we proposed relies on the solution of an
Optimal Solution Problem in which we search for solutions which are optimal w.r.t. a
given preorder, by incrementally trying to find solutions which are better than the one
at hand, till a best one is reached.

In order to compute the Least Common Subsumer LN of two concepts, C1 and C2

in a DL (see line 8), we need to incrementally construct a concept which subsumes
both C1 and C2, and is optimal w.r.t. subsumption minimality (in fact, LN must be the
most specific common subsumer of C1 and C2). To this aim, we start considering the
trivial, subsumption maximal, solution, L1 = > (line 11) and recursively try to find
(lines 13–16) better common subsumers L2 (line 15), by solving the system reported
hereafter: {C1 v L2;C2 v L2;L1 6v L2} (lines 22–24 or 32–34, depending on the
adopted DL). When no common subsumer Ln such that Ln−1 6v Ln exists, Ln−1 is
returned as best (Least) Common Subsumer (line 17).

The incremental construction of candidate better common subsumers L2 exploits
a predicate, namely decorate, which makes the common subsumer at hand L1 more
specific by appending fresh variables to it at every nesting level(lines 18–20). We no-
tice that, even though different clauses are needed to check if L2 is better than L1 in
EL (lines 21–24) and ALN (lines 25–34), such a distinction is only due to efficiency
reasons: subs aln needs two parameters more than subs el and the adoption of a logic-
independent unique better lcs would force subs el to work less efficiently with such two
parameters, even though instantiated to anonymous variables. By the way, the reader can
notice that the solving strategy underlying better is shared by both characterizations.

We observe also that all predicates invoked but not listed in the previously reported
excerpt belong to one of the imported modules. In particular, subs el and sub aln mod-
ules provide the related logic-dependent subsumption programs, listed in Section 4.1.
The other imported modules, i.e., support modules and normalization, include clauses
crucial for the problem solution, but outside the core solving algorithms.

Among the others, we underline the role of the logic-dependent predicate man-
age concept (see lines 9–10), which manipulates input concepts to make them ready
for subsumption in the adopted DL: in the case of EL, simple list manipulation oper-
ations are performed, while in the case of ALN , such a predicate starts the process
of normalization of input concepts: concepts are reduced in CCNF and both possible
clashes and inherent subsumption relationships between number restrictions are identi-
fied.

4.1 Subsumption

Both in EL and in ALN , the subsumption algorithm takes as input concept descrip-
tions written as conjunctions, formalized as Prolog lists. We recall that in ALN such
Prolog lists result from a pre-processing step of problem inputs: before checking for
subsumption, concepts are manipulated to identify and manage possible clashes, num-
ber restrictions relationships and reduction in CCNF.

Given two concept descriptions C1 and C2 in a DL DL, in order to prove whether
C2 subsumes C1 (formally C1 v C2), the algorithm recursively searches, for each
member of the list related to C2, at least one subsumed member in the list represent-
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ing C1. In other words, the whole subsumption check mechanism reverts to a one-one
comparison between list members (or, more appropriately, conjuncts).

With ground lists, the proposed subsumption predicate just returns boolean answers
showing check results. Nevertheless, we notice that conjuncts in input concept descrip-
tions may also include concept variables: when lists are not ground, subsumption is
inverted to exhibit possible variables substitutions making subsumption between list
members true. The mechanism exploits Prolog built-in unification.

As hinted before, the overall mechanism solving subsumption is shared by both
implementations and is built on one-to-one comparison of list members, either ground
or variables.

Clauses comparing single list members exploit syntactical features of the DL at
hand to either check subsumption between ground elements or unify variables to values
making subsumption true. In the following, the Prolog code for such clauses in both
implementations is provided.

Subsumption in EL
1 subsoneone(A, A, BL, BLF):-
2 literal(A),
3 not(member(A, BL)),
4 append([A], BL, BLF).
5 subsoneone(some(R,C1), some(R, C2N), BL, BLF):-
6 subs_el(C1, C2),
7 normalization_top(C2, C2N),
8 not(subs_el(BL,some(R,C2N))),
9 append([some(R,C2N)],BL,BLF) .
10 subsoneone(Any, top, [], [top]).

11 subsoneoneground(A, A):- literal(A).
12 subsoneoneground(some(R,C1), some(R, C2)):-
13 subs_el(C1, C2).
14 subsoneoneground(_, top).

Subsumption in ALN
1 subsoneone(bottom, _ , _, _).
2 subsoneone(_, top, _, _).
3 subsoneone(A, A, _, _):- literal(A).
4 subsoneone(atleast(N,R), atleast(M, R), _, _):-
5 integer(N),
6 integer(M),
7 >=(N, M).
8 subsoneone(atleast(N,R), atleast(M, R),_, _):-
9 var(M),
10 geqpositive(N,M).
11 subsoneone(atleast(N,R), atleast(M, R), MaxL, _):-
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12 var(N),
13 integer(M),
14 integer(MaxL),
15 leqBounded(M,N,MaxL).
16 subsoneone(atmost(N,R), atmost(M, R),_, _):-
17 integer(N),
18 integer(M),
19 !,
20 =<(N,M).
21 subsoneone(atmost(N,R), atmost(M, R),_, MaxM):-
22 var(M),
23 integer(MaxM),
24 leqBounded(N, M, MaxM).
25 subsoneone(atmost(N,R), atmost(M, R),_, _):-
26 var(N),
27 geqpositive(M,N).
28 subsoneone(_, all(R, top), MaxL, MaxM):-
29 nonvar(R).
30 subsoneone(all(R,C1), all(R, C2), MaxL, MaxM):-
31 subsoneone(C1, C2, MaxL, MaxM).
32 subsoneone(atmost(0, R), all(R, C), _, _).

5 Querying the Prototype

In order to show our prototype working mode, we refer to the examples in the following,
related to the three computational problems and the two DLs investigated in the paper:

1. L = LCS(C1, C2), DL = EL
C1 = ∃R.(A uB) u ∃R.(C uD);
C2 = ∃R.(A u C) u ∃R.(B uD)

2. L = LCS(C1, C2), DL = ALN
C1 = (> 3G) u (6 7S) u ∀R.(6 2M);
C2 = (> 4G) u (6 3S) u ∀R.U

3. L = DIFF (C1, C2), DL = EL
C1 = A uB u ∃R.(C uD u ∃S.(H u J));
C2 = A uB u ∃R.(∃S.H)

4. L = DIFF (C1, C2), DL = ALN
C1 = A u ∀R.(B u (6 4S)) u (6 0T );
C2 = A u ∀R.(6 4S) u ∀T .(D u ∀U .E u (> 2V ))

5. L = ABD(C1, C2), DL = EL
C1 = ∃R.(∃S.H);
C2 = A uB u ∃R.(C uD u ∃S.(H u J))

6. L = ABD(C1, C2), DL = ALN
C1 = (> 2R) u ∀R.¬A uB,uC;
C2 = B u (> 3R)
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Table 1 shows the Prolog formalization and the results for the queries corresponding to
the problems above. We note that, when problems admit multiple solutions — as it is in

Table 1. Prolog Queries

Query Formalization Result

1 problem(lcs, [some(r,[a,b]), some(r,[c,d])],
[some(r,[a,c]), some(r,[b,d])], L, el)

L = [some(r,[a]), some(r,[b]),
some(r,[c]), some(r,[d])]

2
problem(lcs, [atleast(3,g), atmost(7,s),
all(r,atmost(2,m))], [atleast(4,g), atmost(3,s),
all(r,u)], L, aln)

L = [atleast(3, g), atmost(7, s)]

3 problem( diff, [a,b, some(r, [c,d, some(s,[h,j])])],
[a,b, some(r,[some(s, [h])])], L, el)

L = [some(r, [c, d, some(s, [h,
j])])]

4
problem(diff, [a, all(r, [b, atmost(4, s)]), atmost(0,
t)],[ a, all(r, atmost(4, s)), all(t, [d,all(u, e),
atleast(2,v)]) ], L , aln)

L = [atmost(0, t), all(r, b)]

5 problem(abd, [some(r,[some(s, [h])])], [ a,b, some(r,
[c,d, some(s,[h,j])])], L, el)

L = [a,b, some(r, [c, d, some(s,
[h, j])])]

6 problem(abd, [atleast(2,r),all(r,neg(a)), b, c],[b,
atleast(3, r)],L , aln )

L = [atleast(3, r)]

Concept Abduction and Concept Difference—the system stops searching for solutions
when the first one is retrieved. As pointed out since the introduction, our prototype is
still inefficient at this stage: all results in Table 1 need a few seconds to be returned, and
Query 4, which is the most complex one, asks for about 10 seconds.3

6 Discussion and Future Work

Motivated by the need to unify as much as possible the process of solving non-standard
reasoning problems, we proposed a general framework dealing with several inferences
according to a logic-independent strategy, to be further specialized to cope with the DL
adopted to model the problem at hand.

The paper presents a modular Logic Programming prototype system demonstrating
the feasibility of the proposed strategy for Least Common Subsumer, Concept Differ-
ence and Concept Abduction computation in EL and ALN .

The extension of the approach to different DL sublanguages, and the implementa-
tion, for each investigated DL, of further non-standard reasoning services in the proto-
type is part of our future work, together with the improvement of system efficiency.

Of course, the approach presented in this paper has some theoretical limitations.
Namely, the use of structural subsumption limits this approach to DLs for which struc-
tural subsumption is complete. For more expressive DLs, the fixpoint mechanism could

3 Using an Intel(R) Core(TM) i5 CPU 2.40 GHz with 4.00 GB RAM.
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still be exploited, but using some higher-order tableaux methods that are still to be de-
fined and whose correctness and termination should be proved.
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Abstract. In this paper, we propose an EXPSPACE tableau-based algorithm for
SHOIQ. The construction of this algorithm is founded on the standard tableau-
based method for SHOIQ and the technique used for designing a NEXPTIME

algorithm for the two-variable fragment of first-order logic with counting quanti-
fiers C2.

1 Introduction

The ontology language OWL-DL [6] is widely used to formalize semantic resources
on the Semantic Web. This language is mainly based on the description logic SHOIQ
which is known to be decidable [9]. There have been several works on the consistency
problem of a SHOIQ knowledge base. These works have not only shown decidability
and complexity of the problem but also led to develop and implement efficient systems
for reasoning on OWL-based ontologies. Tobies [9] has shown that the consistency
problem of a SHOIQ knowledge base is NEXPTIME-complete. Horrocks et al. [2]
have proposed a tableau-based algorithm that has been exploited to implement reasoners
such as Pellet [8], which inherit from the success of early Description Logic reasoners
such as FaCT [1].

It has been shown that when nominals are added to DLs the consistency problem is
harder. In fact, the complexity jumps from EXPTIME-complete for SHIQ to NEXP-
TIME-complete for SHOIQ [9]. Kazakov et al. [4] have indicated that when nominals
are allowed in SHIQ, the resolution-based approach yields a triple exponential deci-
sion procedure for the consistency problem. The authors have also identified that the
interaction between nominals, inverse roles and number restrictions makes termination
more difficult to be achieved, and thus, is responsible for this hardness.

Our approach is inspired from the technique that was employed by Pratt-Hartmann
[7] to construct a NEXPTIME algorithm for the logic C2 that almost includes SHOIQ.
Unlike the existing tableau-based algorithms, this technique does not explicitly build a
graph for representing a model but it builds a structure, called a frame, from star-types
each of which represents a set of individuals. Pratt-Hartmann [7] shows that a model of
a C2 knowledge base can be constructed from a frame tiled by well selected star-types.

The present paper is structured as follows. In the next section, we describe the logic
SHOIQ and the consistency problem for a SHOIQ knowledge base. Section 3 de-
scribes a 2EXPSPACE tableau-based algorithm for checking consistency of a SHOIQ
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knowledge base. An advantage of this algorithm is that a tree-like structure can be main-
tained to obtain termination. Section 4 transfers results from C2 [7] to SHOIQ, and
presents an EXPSPACE tableau-based algorithm for SHOIQ. Finally, we discuss the
results and future work. For the lack of place, we refer the reader to [5] for examples
and full proofs.

2 The Description Logic SHOIQ

In this section, we present the syntax and the semantics of SHOIQ. We start by defin-
ing a role hierarchy and its semantics.

Definition 1 (role hierarchy). Let R be a non-empty set of role names and R+ ⊆ R
be a set of transitive role names. We use RI = {P− | P ∈ R} to denote a set of inverse
roles. Each element of R∪RI is called a SHOIQ-role. We defineR	 := R− ifR ∈ R,
and R	 := R if R ∈ RI. A role hierarchy R is a finite set of role inclusion axioms
R v S whereR and S are two SHOIQ-roles. A relation ∗v is defined as the transitive-
reflexive closure ofv onR∪{R	 v S	 | R v S ∈ R}. We define a function Trans(R)
which returns true iff there is some Q ∈ R+ ∪ {P	 | P ∈ R+} such that Q∗vR. A
role R is called simple w.r.t. R if Trans(Q) = false. An interpretation I = (∆I , ·I)
consists of a non-empty set ∆I (domain) and a function ·I which maps each role name
to a subset of ∆I × ∆I such that R−I = {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI} for
all R ∈ R, and 〈x, z〉 ∈ SI , 〈z, y〉 ∈ SI implies 〈x, y〉 ∈ SI for each S ∈ R+. An
interpretation I satisfies a role hierarchyR if RI ⊆ SI for each R v S ∈ R. Such an
interpretation is called a model ofR, denoted by I |= R.

Definition 2 (terminology). Let C be a non-empty set of concept names with a non-
empty subset Co ⊆ C of nominals. The set of SHOIQ-concepts is inductively defined
as the smallest set containing allC in C,>,CuD,CtD,¬C, ∃R.C, ∀R.C, (≤nS.C)
and (≥nS.C) where n is a positive integer, C and D are SHOIQ-concepts, R is an
SHOIQ-role and S is a simple role w.r.t. a role hierarchy. We denote ⊥ for ¬>. The
interpretation function ·I of an interpretation I = (∆I , ·I) maps each concept name
to a subset of ∆I such that >I = ∆I , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
(¬C)I = ∆I\CI , card{oI} = 1 for all o ∈ Co, (∃R.C)I = {x ∈ ∆I | ∃y ∈
∆I , 〈x, y〉 ∈ RI ∧ y ∈ CI}, (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I , 〈x, y〉 ∈ RI ⇒
y ∈ CI}, (≥ nS.C)I = {x ∈ ∆I | card{y ∈ CI | 〈x, y〉 ∈ SI} ≥ n},
(≤nS.C)I ={x ∈ ∆I | card{y ∈ CI | 〈x, y〉 ∈ SI} ≤ n}
where card{S} is denoted for the cardinality of a set S.
∗ C v D is called a general concept inclusion (GCI) where C,D are SHOIQ-
concepts (possibly complex), and a finite set of GCIs is called a terminology T .

∗ An interpretation I satisfies a GCI C v D if CI ⊆ DI and I satisfies a terminology
T if I satisfies each GCI in T . Such an interpretation is called a model of T , denoted
by I |= T .

Definition 3 (knowledge base). A pair (T ,R) is called a SHOIQ knowledge base
where R is a SHOIQ role hierarchy and T is a SHOIQ terminology. A knowledge
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base (T ,R) is said to be consistent if there is a model I of both T and R, i.e., I |= T
and I |= R. A concept C is called satisfiable w.r.t. (T ,R) iff there is some interpre-
tation I such that I |= R, I |= T and CI 6= ∅. Such an interpretation is called a
model of C w.r.t. (T ,R). A concept D subsumes a concept C w.r.t. (T ,R), denoted by
C v D, if CI ⊆ DI holds in each model I of (T ,R).

Thanks to the reductions between unsatisfiability, subsumption of concepts and knowl-
edge base consistency, it suffices to study knowledge base consistency.

For the ease of construction, we assume all concepts to be in negation normal form
(NNF), i.e., negation occurs only in front of concept names. Any SHOIQ-concept
can be transformed to an equivalent one in NNF by using DeMorgan’s laws and some
equivalences as presented in [3]. For a concept C, we denote the nnf of C by nnf(C)
and the nnf of ¬C by ¬̇C. Let D be an SHOIQ-concept in NNF. We define cl(D) to
be the smallest set that contains all sub-concepts of D including D. For a knowledge
base (T ,R), we can define a set cl(T ,R). For the sake of brevity, we refer the reader
to [2] for a more complete definition.

To prove soundness and completeness of our algorithms, we need a tableau structure
that represents a model of a SHOIQ knowledge base. Regarding the definition of
tableaux for SHOIQ presented in [2], we add a new property that imposes an exact
number of S-neighbour individuals t of s if (≤ nS.C) ∈ L(s). This property makes
explicit non-determinism implied from the semantics of (≤ nS.C) and requires an extra
expansion rule for the tableau-based algorithm.

3 A 2EXPSPACE Decision Procedure for SHOIQ
In this section, we introduce a structure, called SHOIQ-forest. We will show that such
a forest is sufficient to represent a model of a SHOIQ-knowledge base.

Definition 4 (tree). Let (T ,R) be a SHOIQ knowledge base. For each o ∈ Co, a
SHOIQ-tree for (T ,R), denoted by To = (Vo, Eo,Lo, x̂o, ·6=o), is defined as follows:
∗ Vo is a set of nodes containing a root node x̂o ∈ Vo. Each node x ∈ Vo is labelled
with a function Lo such that Lo(x) ⊆ cl(T ,R) and o ∈ Lo(x̂o). A node x ∈ Vo is
called nominal if o′ ∈ Lo(x) for some o′ ∈ Co. In addition, the inequality relation ·6=o

is a symmetric binary relation over Vo.
∗ Eo is a set of edges. Each edge 〈x, y〉 ∈ Eo is labelled with a function Lo such that
Lo(〈x, y〉) ⊆ R(T ,R). If 〈x, y〉 ∈ Eo then y is called a successor of x, denoted by
y ∈ succ1(x), or x is called the predecessor of y, denoted by x = pred1(y). In this
case, we say that x is a neighbour of y or y is a neighbour of x. If z ∈ succn(x)
(resp. z = predn(x)) and y is a successor of z (resp. y is the predecessor of z) then
y ∈ succ(n+1)(x) (resp. y = pred(n+1)(x)) for all n ≥ 0 where succ0(x) = {x} and
pred0(x) = x. A node y is called a descendant of x if y ∈ succn(x) for some n > 0.
A node y is called an ancestor of x if y = predn(x) for some n > 0. To ensure that
To is a tree, it is required that (i) x is a descendant of x̂o for all x ∈ Vo with x 6= x̂o,
and (ii) each node x ∈ Vo with x 6= x̂o has a unique predecessor. A node y is called
an R-successor of x, denoted by y ∈ succ1

R(x) (resp. y is called the R-predecessor
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of x, denoted by y = pred1
R(x)) if there is some role R′ such that R′ ∈ Lo(〈x, y〉)

(resp. R′ ∈ Lo(〈y, x〉)) and R′ ∗vR. A node y is called a R-neighbour of x if y is
either a R-successor or R-predecessor of x. If z is an R-successor of y (resp. z is the
R-predecessor of y) and y ∈ succnR(x) (resp. y = prednR(x)) then z ∈ succ

(n+1)
R (x)

(resp. z = pred
(n+1)
R (x)) for n ≥ 0 with succ0

R(x) = {x} and x = pred0
R(x).

∗ For a node x, a role S and o ∈ Co, we define the set STo(x,C) of x’s S-neighbours
as follows: STo(x,C) = {y ∈ Vo | y is a S-neighbour of x and C ∈ Lo(x)}.
∗ A node x is called iterated by y w.r.t. a node xo if x has no nominal ancestor except
for x̂o and there are integers n,m > 0 and nodes x′, y′ such that : (i) xo = predn(y),
y = predm(x), (ii) x′ = pred1(x), y′ = pred1(y), (iii) Lo(x) = Lo(y), Lo(x′) =
Lo(y′), (iv) Lo(〈x′, x〉) = Lo(〈y′, y〉), and (v) if there are z, z′ and i > 0 such that
z′ = pred1(z), predi(z′) = xo, Lo(z) = Lo(y), Lo(z′) = Lo(y′) and Lo(〈z′, z〉) =
Lo(〈y′, y〉) then i ≥ n.
A node x is called 1-iterated by y if x is iterated by y w.r.t. x̂o. A node x is called
blocked by y, denoted by y = b(x), if x is iterated by y w.r.t. a 1-iterated node xo.
∗ In the following, we often use L(x), L(〈x, y〉), ST(x,C) and ·6= instead of Lo(x),
Lo(〈x, y〉), STo(x,C) and ·6=o, respectively. This does not cause any confusion since
Vo ∩Vo′ = ∅ and Eo ∩Eo′ = ∅ if o 6= o′. In addition, x ·6=oy is never defined for x ∈ Vo
and y ∈ Vo′ with o 6= o′.

We remark that the definition of 1-iterated nodes in Definition 4 for SHOIQ-trees
is very similar to the standard definition of blocked nodes for SHIQ completion trees
(see [3]). Moreover, if we consider the sub-tree rooted at a 1-iterated node as a SHIQ
completion tree then blocked nodes according to Definition 4 are also blocked nodes
according to the standard definition for this SHIQ completion tree.

A SHOIQ-tree consists of two layers : the first layer is formed of nodes from the
root to 1-iterated nodes or nominal nodes, and the second layer consists of nodes from
each 1-iterated node to blocked or nominal nodes. In addition, each node x in the layer
2 has a unique 1-iterated node, denoted b̂(x), such that b̂(x) is an ancestor of x.

Definition 5 (forest). Let (T ,R) be a SHOIQ knowledge base. A SHOIQ-forest
for (T ,R) is a pair G = 〈T, ϕ〉, where T = {To | o ∈ Co} is a set of SHOIQ-
trees for (T ,R) with To = (Vo, Eo,Lo, x̂o, ·6=o), and ϕ is a partitioning function ϕ :
V → 2V with V =

⋃
o∈Co

Vo. We denote L′(〈x, y〉) = Lo(〈x, y〉) if 〈x, y〉 ∈ Eo, and
L′o(〈x, y〉) = {S	 | S ∈ Lo(〈y, x〉)} if 〈y, x〉 ∈ Eo for some o ∈ Co. The partitioning
function ϕ satisfies the following conditions:

1. For each x ∈ V , ϕ(x) is the partition of xwith x ∈ ϕ(x). There are x0, · · · , xn ∈ V
such that ϕ(xi) ∩ ϕ(xj) = ∅ with 0 ≤ i < j ≤ n and

⋃
0≤i≤n ϕ(xi) = V;

2. For all x, x′ ∈ V , if x′ ∈ ϕ(x) then ϕ(x) = ϕ(x′) and L(x) = L(x′). We de-
note Λ(ϕ(x)) = L(x). In addition, an inequality relation over partitions can be
described as follows : for x, x′ ∈ V we define ϕ(x) ·6=ϕ(x′) if there are two nodes
y ∈ ϕ(x) and y′ ∈ ϕ(x′) such that y ·6=oy

′ for some o ∈ Co;
3. For all ϕ(x) and ϕ(x′), if there are two edges 〈y, y′〉 ∈ Eo and 〈w,w′〉 ∈ Eo′ with
o, o′ ∈ Co such that y, w ∈ ϕ(x), y′, w′ ∈ ϕ(x′), L′(〈y, y′〉) 6= ∅,L′(〈w,w′〉) 6= ∅
then L′(〈y, y′〉) = L′(〈w,w′〉).
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We define a functionΛ(〈·, ·〉) for labelling edges ended by two partitions as follows:
Λ(〈ϕ(x), ϕ(x′)〉) = L′(〈z, z′〉) where z ∈ ϕ(x), z′ ∈ ϕ(x′), L′(〈z, z′〉) 6= ∅, and
{〈z, z′〉, 〈z′, z〉} ∩ Eo′ 6= ∅ for some o′ ∈ Co. We say ϕ(x′) is a S-neighbour
partition of ϕ(x) if S ∈ Λ(〈ϕ(x), ϕ(x′)〉).

4. For all x, x′ ∈ V , if o ∈ L(x) ∩ L(x′) for some o ∈ Co and ϕ(x) ·6=ϕ(x′) does not
hold then ϕ(x) = ϕ(x′);

5. If (≤ nR.C) ∈ Λ(ϕ(x)) for some x ∈ V and there exist (n+1) nodes x0, · · · , xn ∈
V such that (i) ϕ(xi) ∩ ϕ(xj) = ∅ for all 0 ≤ i < j ≤ n, and (ii) C ∈ Λ(ϕ(xi)),
R ∈ Λ(〈ϕ(x), ϕ(xi)〉) for all i ∈ {0, · · · , n}, then ϕ(xl)

·6=ϕ(xm) for all 0 ≤ l <
m ≤ n; and

6. If (≥ nR.C) ∈ Λ(ϕ(x)) for some x ∈ V then ϕ(x) has n R-neighbour partitions
ϕ(x1), · · · , ϕ(xn) such that ϕ(xi)∩ϕ(xj) = ∅ and C ∈ Λ(ϕ(xi)) for all 1 ≤ i <
j ≤ n.

∗ Clashes: T is said to contain a clash if one of the following conditions holds:

1. There is some node x ∈ V such that {A, ¬̇A} ⊆ Λ(ϕ(x)) for some concept name
A ∈ C;

2. There are nodes x, y ∈ V such that ϕ(x) ·6=ϕ(y) and o ∈ Λ(ϕ(x)) ∩ Λ(ϕ(y)) for
some o ∈ Co;

3. There is a node x ∈ V with (≤ nR.C) ∈ Λ(ϕ(x)) and there are (n + 1) nodes
x0, · · · , xn ∈ V such that ϕ(xi) ∩ ϕ(xj) = ∅, ϕ(xi)

·6=ϕ(xj) with 0 ≤ i < j ≤ n,
and C ∈ Λ(ϕ(xi)), R ∈ Λ(〈ϕ(x), ϕ(xi)〉) for i ∈ {0, · · · , n}.

We now describe the tableau-based algorithm whose goal is to construct from a
knowledge base (T ,R) a SHOIQ-forest G = 〈T, ϕ〉. To do this, the algorithm ap-
plies expansion rules (as described in Fig. 1 and Fig. 2 in [5]), and terminates when
none of the rules is applicable. The obtained G is called complete, and if G contains no
clash then G is called clash-free. In this case, we also say To is complete and clash-free
for all To ∈ T.

The expansion rules maintain the tree-like structure of SHOIQ-forest and they are
similar to those in [2] except that if a concept C is added to the label of a node x due
to application of these rules then C is propagated to the label of each node y ∈ ϕ(x).
Moreover, all rules in Fig. 1 in [5] except for ∃- and ≥-rule update only the label of
nodes or edges and do not change the partitioning function ϕ. In particular, when the
≤-rule is applied to a node x with two S-neighbours y, z of x, it must propagate the
label of 〈x, y〉 to that of all 〈x′, z′〉 (or 〈z′, x′〉) where x′ ∈ ϕ(x) and z′ ∈ ϕ(z), and
set the label of 〈x, y〉 to empty set. This may change ϕ only if ϕ(y) is singleton. By a
new rule, namely the ./-rule, each node x containing a term (≤ nS.C) has exactly m
S-neighbours containing C with some m ≤ n. As a result, this rule and ≥-rule ensure
that if there are two nodes y, y′ ∈ ϕ(x) then y and y′ have exactly m S-neighbours
which contain C in their label. Finally, we can avoid infinite sequences of “merging-
and-generating” without pruning nodes since all merges due to number restrictions or
nominals are performed by updating the partitioning function. The following lemma
establishes correctness and completeness of the algorithm.

Lemma 1. Let (T ,R) be a SHOIQ knowledge base.
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1. The tableau algorithm terminates and builds a SHOIQ-forest whose the size is
bounded by a doubly exponential function in the size of (T ,R).

2. If the tableau algorithm yields a clash-free and complete SHOIQ-forest for (T ,R)
then there is a tableau for (T ,R).

3. If there is a tableau for (T ,R) then the tableau algorithm yields a clash-free and
complete SHOIQ-forest for (T ,R).

To prove soundness of the tableau algorithm, we can devise a model from a clash-free
and complete SHOIQ-forest by considering a partition as an individual and unravel-
ling blocked nodes since we can show that each blocking node b(x) has no “core path”
from b(x) to each nominal descendant y, i.e., there do not exist terms (≤ miRi.Ci) ∈
predi(y), roles Ri ∈ L(〈predi−1(y), predi(y)〉) and concepts Ci ∈ L(predi+1(y)) for
k < i ≤ 0, b(x) = predk(y). The following theorem is a consequence of Lemma 1.

Theorem 1. Let (T ,R) be a SHOIQ knowledge base. The tableau algorithm is a
decision procedure for consistency of (T ,R) and it runs in 2NEXPTIME in the size of
(T ,R).

4 An EXPSPACE Tableau-based Algorithm for SHOIQ

This section starts by translating some results presented in [7] for C2 into those for
SHOIQ.

Definition 6 (star-type). Let (T ,R) be a SHOIQ knowledge base. A star-type is a
triplet σ = 〈λσ, ν̄σ, µ̄σ〉, where λσ ∈ 2cl(T ,R), µ̄σ = (〈r1, l1〉, · · · , 〈rd, ld〉) is a d-
tuple over 2R(T ,R) × 2cl(T ,R), and ν̄σ = (〈r′, l′〉) with 〈r′, l′〉 ∈ 2R(T ,R) × 2cl(T ,R).
A pair 〈r, l〉 is a ray of σ if 〈r, l〉 is a component of µ̄σ or ν̄σ . In particular, 〈r, l〉 is a
predecessor ray if (〈r, l〉) = ν̄σ , and 〈r, l〉 is a successor ray if 〈r, l〉 is a component
of µ̄σ . We denote ξ̄σ = (〈r1, l1〉, · · · , 〈rd, ld〉, 〈rd+1, ld+1〉) if ν̄σ = (〈r′, l′〉) where
r′ = rd+1, l′ = ld+1, and ξ̄σ = µ̄σ if ν̄σ is empty.

– A ray 〈r′, l′〉 of σ is primary w.r.t. a term (≤ mR.C) if (≤ mR.C) ∈ λσ , R ∈ r′
and C ∈ l′. For a term (≤ mR.C) ∈ λσ , we denote Cσ〈≤mR.C〉 for the set of all
rays 〈r′, l′〉 of σ such that R ∈ r′, C ∈ l′.

– A star-type σ is nominal if o ∈ λσ for some o ∈ Co.
– A star-type σ is chromatic if there is a term (≥ nS.D) ∈ λσ and σ has n rays
〈r′1, l′1〉, · · · , 〈r′n, l′n〉 such that S ∈ l′i, D ∈ l′i for all 1 ≤ i ≤ n, and l′i 6= l′j for all
0 ≤ i < j ≤ n with l′0 = λσ .

– A star-type σ is homomorphic (resp. isomorphic) to a star-type σ′ if λσ = λσ′ ,
and for each term (≤ mR.C) ∈ λσ , there is an injection (resp. a bijection) π :
Cσ〈≤mR.C〉 → Cσ

′
〈≤mR.C〉 such that π(〈r, l〉) = 〈r′, l′〉 implies r′ = r and l′ = l.

– Two star-types σ, σ′ are equivalent if λσ = λσ′ , and there is a bijection π between
ξ̄σ and ξ̄σ′ such that π(〈r, l〉) = 〈r′, l′〉 implies r′ = r and l′ = l.

We denote Σ for the set of all star-types for (T ,R). C
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In the context of a SHOIQ-forest, we can think of a star-type σ as the set of nodes
x such that L(x) = λσ , and each ray 〈ri, li〉 of σ corresponds to a neighbour xi of x
such that L′(〈x, xi〉) = ri and L(xi) = li. In this case, we say that x satisfies σ.

Remark 1. The notion of chromaticity introduced in Definition 6 implies an inequality
relation ·6= over nodes. That stronger notion is needed to prevent “distinct” star-types
from including nodes x, y which are neighbours or x ·6=y. In order to make star-types
chromatic, it is necessary to add to knowledge bases some new concepts and axioms
as follows. Let (T ,R) be a SHOIQ knowledge base. For each term (≥ nS.D) ∈
cl(T ,R), we add to cl(T ,R) n new concept names C0

(≥nS.D), · · · , Cn(≥nS.D), and to

T the following axioms: Ci(≥nS.D) u C
j
(≥nS.D) v ⊥ for all 0 ≤ i < j ≤ n. It is

straightforward to prove that the terminology (T ′,R) is consistent iff (T ,R) is con-
sistent where T ′ is obtained from T by adding these new axioms. Thanks to these new
concepts and axioms, the following definition points out how to build chromatic star-
types.

Definition 7 (valid star-type). Let (T ,R) be a SHOIQ knowledge base. Let σ be
a star-type for (T ,R) where σ = 〈λσ, ν̄, µ̄〉 with µ̄ = (〈r1, l1〉, · · · , 〈rd, ld〉) and
λσ = l0, ν̄ = {〈rd+1, ld+1〉}. σ is valid with an inequality relation ·6= over Cσ if the
following conditions are satisfied:

1. If C v D ∈ T then nnf(¬C tD) ∈ li for all 0 ≤ i ≤ d+ 1;
2. {A,¬A} 6⊆ li for every concept name A with 0 ≤ i ≤ d+ 1;
3. If C1 u C2 ∈ li then {C1, C2} ⊆ li for all 0 ≤ i ≤ d+ 1;
4. If C1 t C2 ∈ li then {C1, C2} ∩ li 6= ∅ for all 0 ≤ i ≤ d+ 1;
5. If ∃R.C ∈ λσ then there is some 1 ≤ i ≤ d+ 1 such that C ∈ li and R ∈ ri;
6. If (≤ nS.C) ∈ λσ and there is some 1 ≤ i ≤ d + 1 such that S ∈ ri then C ∈ li

or ¬̇C ∈ li;
7. If (≤ nS.C) ∈ λσ and there is some 1 ≤ i ≤ d + 1 such that C ∈ li and S ∈ ri

then there is some 1 ≤ m ≤ n such that {(≤ mS.C), (≥ mS.C)} ⊆ λ;
8. For each 1 ≤ i ≤ d+ 1, if R ∈ ri and R∗vS then S ∈ ri;
9. If ∀R.C ∈ λσ and R ∈ ri for some 1 ≤ i ≤ d+ 1 then C ∈ li;

10. If ∀R.D ∈ λσ , S ∗vR, Trans(S) andR ∈ ri for some 1 ≤ i ≤ d+1 then ∀S.D ∈ li;
11. If (≥ nS.C) ∈ λσ then C0

(≥nS.C) ∈ λσ and there are 1 ≤ i1 < · · · < in ≤ d + 1

such that {C,Cj(≥nS.C)} ⊆ lij , S ∈ rij for all 1 ≤ j ≤ n.
12. If (≤ nS.C) ∈ λσ and there are no 1 ≤ i1 < · · · < in+1 ≤ d+1 such that C ∈ lij

and S ∈ rij for all 1 ≤ j ≤ n+ 1. C

Notice that a valid star-type according to Definition 7 is chromatic. If we think of a
star-type σ as a node x satisfying σ in a SHOIQ-forest then σ is valid if no expansion
rule is applicable to x. Moreover, due to the conditions 7, 11 and 12 in Definition 7, if
there is a term (≤ nS.D) ∈ λσ for a valid star-type σ then σ has exactly n primary rays
〈ri, li〉, · · · , 〈rn, ln〉 w.r.t. (≤ nS.D).

Definition 8 (frame). Let (T ,R) be a SHOIQ knowledge base. A frame for (T ,R) is
a tuple F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉, whereH ∈ N is the dimension ofF;Ni ⊆ Σ for

142



all 0 ≤ i ≤ H , and all star-types in N0 are nominal. We denote N =
⋃
i∈{1,··· ,H}Ni;

δ is a function δ : N→ N; Φ is a function Φ : N̄→ Σ where N̄ is denoted for the set of
all star-types σ ∈ N such that one of the three condition holds : (i) σ is nominal; (ii) σ
has a ray 〈r, l〉 such that there is a term (≤ mR.C) with (≤ mR.C) ∈ λσ , C ∈ l and
R ∈ r; (iii)σ has a ray 〈r, l〉 such that there is a term (≤ mR.C) with (≤ mR.C) ∈ l,
C ∈ λσ and R ∈ r; δ̂ is a function δ̂ : Φ(N̄)→ N which is defined as follows:

For two star-types σ, σ′ ∈ N̄, Φ(σ) = Φ(σ′) iff either σ is isomorphic to σ′, or
there is a star-type ω ∈ N \ NH such that σ and σ′ are homomorphic to ω.

Additionally, a star-type σ ∈ Nk (0 < k < H) is linkable with a star-type σ′ ∈ Nk−1

by a ray 〈r, l〉 of σ if σ′ has a ray 〈r′, l′〉 such that λσ′ = l, r′ = r− and l′ = λσ where
r− = {R	 | R ∈ r}.

Remark 2. For σ, σ′ /∈ NH and σ, σ′ are valid, if σ is homomorphic to σ′ then σ is
isomorphic to σ′. In fact, if there is a term (≤ mR.C) ∈ λσ then both σ, σ′ have
exactly m primary rays w.r.t. (≤ mR.C). If there is a homomorphism between the two
sets of primary rays w.r.t. (≤ mR.C) then it is an isomorphism as well.

The frame structure, as introduced in Definition 8, allows us to tile a forest structure
by star-types. Such a structure is crucial to obtain termination when designing a tableau-
based algorithm. An important difference between a frame and a SHOIQ-forest is that
a frame does not represent nodes corresponding to individuals but stores the number of
individuals satisfying a star-type. The function δ(σ) is used for this purpose. In the
context of a SHOIQ-forest, we can think of Φ(σ) as a star-type which is satisfied
by nodes forming a set of partitions. In fact, the function Φ maps star-types forming a
SHOIQ-forest into another set of star-types that regroups non-neighbour partitions.

Notice that the function Φ introduced in Definition 8 does not transfer the relation
of linkability from N̄ to Φ(N̄), and that chromaticity of star-types prevents chromati-
cally linkable star-types from collapsing into a unique star-type by the function Φ. The
function δ̂(Φ(σ)) counts the number of partitions that are mapped to a star-type by Φ.
Such a function can be defined if all star-types “covering” a partition must be mapped
to a unique star-type by Φ. This is a consequence of the Φ’s definition.

Definition 9 (valid frame). Let (T ,R) be a SHOIQ knowledge base. A frame F =

〈(N0, · · · ,NH), δ, Φ, δ̂〉 is valid if the following conditions are satisfied:

1. For each σ ∈ N, if δ(σ) ≥ 1 then σ is valid;
2. For each σ ∈ N̄, if δ(σ) ≥ 1 then δ̂(Φ(σ)) ≥ 1;
3. For each o ∈ Co there is a unique σo ∈ N0 such that o ∈ λσo

and δ(σo) = 1;
4. For each σ ∈ N, if o ∈ λσ with some o ∈ Co then Φ(σ) = Φ(σo) and δ̂(Φ(σo)) =

1 with σo ∈ N0 such that o ∈ λσo and δ(σo) = 1;
5. For each 0 ≤ k < H and 〈λ, r, λ′〉 ∈ 2cl(T ,R) × 2R(T ,R) × 2cl(T ,R) with r− =
{R	 | R ∈ r},

∑

σ∈Nk

δ(σ)|µ̄σ|〈λ,r,λ′〉 =
∑

σ′∈Nk+1

δ(σ′)|ν̄σ′ |〈λ′,r−,λ〉
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where |ν̄σ|〈λ,r,λ′〉 and |µ̄σ|〈λ,r,λ′〉 are denoted for the number of components 〈r′, l′〉
of respective ν̄σ and µ̄σ such that λσ = λ, r′ = r and l′ = λ′;

6. For each 〈λ, r, λ′〉 ∈ 2cl(T ,R) × 2R(T ,R) × 2cl(T ,R) with r− = {R	 | R ∈ r},
∑

σ∈N̄
δ̂(Φ(σ))

∣∣ξ̄Φ(σ)

∣∣
〈λ,r,λ′〉 =

∑

σ′∈N̄
δ̂(Φ(σ′))

∣∣ξ̄Φ(σ′)

∣∣
〈λ′,r−,λ〉

where
∣∣ξ̄Φ(σ)

∣∣
〈λ,r,λ′〉 =

∣∣ν̄Φ(σ)

∣∣
〈λ,r,λ′〉 +

∣∣µ̄Φ(σ)

∣∣
〈λ,r,λ′〉 C

Remark 3. It is not required that star-types Φ(σ) are valid. We will use function Φ to
trim rays 〈r, l〉 of star-types such that (i) 〈r, l〉 or 〈r−, l〉 is not a primary ray of every
star-type. The images of star-types σ by Φ, i.e. trimmed star-types Φ(σ), are employed
to represent partitions obtained from merge processes. As described in Section 3, in
order to govern partitions, it suffices to deal with nodes x containing a term (≤ mR.C)
and the R-neighbours of x containing C. For this reason, the function Φ maps only
star-types in N̄ by trimming non-primary rays.

The notion of validity for a frame is crucial to establish a connection with the
tableau-based algorithm presented in Section 3, i.e., how to build a SHOIQ-forest
from a valid frame, and inversely. The condition 1 in Definition 9 requires that every
star-type satisfied by at least one node must be valid. The condition 2 implies that each
valid star-type including a primary ray will be mapped by Φ. The condition 3 ensures
that each nominal is counted exactly once while the condition 4 imposes that all nomi-
nal star-types containing some o ∈ Co are mapped into a unique star-type by Φ. In the
context of a SHOIQ-forest, these conditions imply that for each nominal o ∈ Co there
is exactly one tree whose root contains o and there is exactly one partition containing
o. The condition 5 allows for linking star-types at level k with star-types at level k − 1
and k + 1. It ensures that each node x satisfying (or counted for) a star-type σ at level
k is linked by its rays to neighbours satisfying star-types at level k − 1 and k + 1. The
number of these neighbours corresponds exactly to the number of σ’s rays. Finally, the
condition 6 deals with partitions. In the context of a SHOIQ-forest where Φ(σ) rep-
resents the image of a set of partitions, the condition 6 points out how star-types Φ(σ)
would be interconnected.

Lemma 2. Let (T ,R) be a SHOIQ knowledge base.

1. If the tableau algorithm can build a clash-free and complete SHOIQ-forest for
(T ,R) then there is a valid frame for (T ,R).

2. If there is a valid frame F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉 for (T ,R) then the tableau
algorithm can build a clash-free and complete SHOIQ-forest for (T ,R).

Lemma 2 points out the equivalence between a clash-free and complete SHOIQ-
forest and a valid frame for (T ,R). The following lemma affirms that there is an expo-
nential structure, a valid frame, which can represent a SHOIQ-forest whose size may
be doubly exponential.

Lemma 3. Let (T ,R) be a SHOIQ knowledge base. The size of a valid frame F =

〈(N0, · · · ,NH), δ, Φ, δ̂〉 is bounded by an exponential function in the size of (T ,R).
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We can sketch a proof of the lemma here. We have H ≤ K where K = 22m+k × 2
with m = card{cl(T ,R)} and k = card{R(T ,R)}. Moreover, each star-type has at
most M distinct rays where M =

∑
mi + E, mi occurs in a number restriction term

(≥ miR.C) appearing in T , and E is the number of distinct terms ∃R.C appearing in
T . If we denote Σ for the set of all star-types then card{Σ} ≤ ((card{cl(T ,R)})2 ×
card{R(T ,R)})M . Since δ(σ) is bounded by Mδ(σ′) where σ′, σ are respective star-
types at level k − 1 and k, it holds that δ(σ) ≤ M22m+k×2. If δ(σ) is represented as a
binary number then it takes an exponential number of bits.

Based on Lemma 3 and 2, we can present straightforwardly an optimal worst-case
algorithm for checking the consistency of a SHOIQ knowledge base. However, such
an algorithm cannot be used in practice since the non-determinism is not sufficiently
constrained to obtain termination in feasible time. In the sequel, based on the results
obtained so far, we try to design an algorithm which has more goal-directed behaviour.
Blocking Condition for a Frame Let F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉 be a frame. A star-
type σk ∈ Nk with 0 < k ≤ H is blocked if there are σi ∈ Ni with 0 ≤ i ≤ k such
that σi is linkable with σi−1 for all i ∈ {1, · · · , k}, then there are 0 < k1 < k2 < k3 <
k4 ≤ k such that:
1. λσk1

= λσk2
, ν̄σk1

= ν̄σk2
, and there is no 0 < j < k2 such that j 6= k1, λσj

= λσk2

and ν̄σj
= ν̄σk2

;
2. λσk3

= λσk4
, ν̄σk3

= ν̄σk4
, and there is no k2 < j < k4 such that j 6= k3,

λσj
= λσk4

and ν̄σj
= ν̄σk4

.
Notice that this blocking condition is looser than the blocking condition introduced in
Definition 5 for a SHOIQ-forest. Since we cannot determine the path from root to a
node satisfying a star-type over a frame, it is not possible to check blocking condition in
the same way as for a SHOIQ-forest. The blocking condition for a frame, as described
above, implies that a node satisfying a blocked star-type must have an ancestor which
is blocked according to the blocking condition for a SHOIQ-forest.

We are now ready to propose an EXPSPACE tableau-based algorithm for SHOIQ.
It starts by generating nominal star-types at level 0. The goal of the algorithm is to
replace progressively non-valid star-types with those which are “nearer” the validity.
When a non-valid star-type σ at a level h is replaced with a “better” one σ′ at the same
level, the algorithm adds δ(σ) to δ(σ′) and sets δ(σ) = 0. This may lead to update δ(ω)
where ω is linkable with σ. In addition, the algorithm has to maintain two functions
Φ(σ) and δ̂(Φ(σ)) such that the conditions 5 and 6 in Definition 9 always hold after
each update of star-types.

An important difference between the tableau algorithm presented in Section 3 and
the tableau algorithm for constructing a valid frame is that the latter adds star-types to a
frame and updates functions δ(σ) and δ̂(Φ(σ)) instead of adding nodes for representing
individuals. Again, we refer the readers to [5] where the rules for building a valid frame,
called frame rules, can be found.

Soundness of the tableau-based algorithm for building a frame can be established
thanks to Lemma 2. Since each frame rule has its counterpart in the expansion rules,
completeness of the algorithm can be shown by using the same arguments as those
employed to prove Lemma 1. From these results and Lemma 3, we obtain the following
main result of the section:
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Theorem 2. Let (T ,R) be a SHOIQ knowledge base. The tableau algorithm for con-
structing a frame is a decision procedure for consistency of (T ,R) and it runs in EX-
PSPACE in the size of (T ,R).

5 Conclusion and Discussion

We have presented in this paper a practical EXPSPACE decision procedure for the logic
SHOIQ. The construction of this algorithm is founded on the well-known results for
SHOIQ and C2. First, we have based our approach on a technique that constructs tree-
like structures for representing a model. This allows us to reuse the standard blocking
technique over these tree-like structures to obtain termination. Second, we have trans-
ferred to SHOIQ the method used for constructing a NEXPTIME algorithm for C2.
This enables us to represent a doubly exponential SHOIQ-forest by an exponential
structure.

The tableau algorithms proposed in the present paper have introduced several new
non-deterministic rules, e.g., ./- or ≤o-rules. In particular, the most non-deterministic
behaviour of the tableau algorithm for building a valid frame is to update the function
δ for star-types ω when applying frame rules to a star-type σ which is linkable with ω.
Such an update may lead to choose a subset from an exponential set of linkable star-
types. An open issue consists in investigating whether the complexity resulting from
this behaviour is comparable to that caused by the ≤- and ≤o-rules.

Acknowledgements. Thanks to the reviewers for their helpful comments.
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Role-depth Bounded Least Common Subsumers
for EL+ and ELI

Andreas Ecke and Anni-Yasmin Turhan?

TU Dresden, Institute for Theoretical Computer Science

Abstract. For EL the least common subsumer (lcs) need not exist, if
computed w.r.t. general TBoxes. In case the role-depth of the lcs con-
cept description is bounded, an approximate solution can be obtained.
In this paper we extend the completion-based method for computing
such approximate solutions to ELI and EL+. For ELI the extension
needs to be able to treat complex node labels. For EL+ a naive method
generates highly redundant concept descriptions for which we devise a
heuristic that produces smaller, but equivalent concept descriptions. We
demonstrate the usefulness of this heuristic by an evaluation.

1 Introduction

The reasoning service least common subsumer (lcs) computes a concept descrip-
tion from set of concept descriptions expressed in a DL L. The resulting concept
description subsumes all of the input concept descriptions and is the least w.r.t.
subsumption expressible in L to do so. This reasoning service has turned out to
be useful for the augmentation of TBoxes [1] and as a subtask when computing
the (dis)similarity of concept descriptions [2, 3] or other non-standard inferences.

In particular several bio-medical TBoxes are written in extensions of EL that
allow to model roles in a more detailed way, such as SNOMED [4] which allows to
use role inclusions and is written in ELH or the Gene Ontology [5] and the FMA
ontology [6] which are both written in EL+, which is a DL that extends ELH
by right identities for roles. For these extensions of EL standard DL reasoning
can still be done in polynomial time [7]. However, the GALEN ontology uses the
DL ELHIfR+—a DL with inverse roles, which are known to make subsumption
w.r.t. general TBoxes ExpTime-complete [7] due to the use of inverse roles.
These TBoxes are known to be very large and are mostly build by hand.

If computed w.r.t. general or just cyclic EL-TBoxes, the lcs need not exist
[8], since resulting cyclic concept descriptions cannot be expressed in EL. In [9]
an extension of EL by fixed-points has been investigated that can capture such
concept descriptions. Since we want to obtain a concept description for the lcs
that is expressed in that DL in which the TBox is written, we follow the idea
from [10] and compute as an approximative solution the role-depth bounded lcs:
k-lcs which has a maximal nesting of quantifiers limited to k.
? Partially supported by the German Research Foundation (DFG) in the Collaborative

Research Center 912 “Highly Adaptive Energy-Efficient Computing”.
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Table 1. Constructors and axioms for EL and some of its extensions

Name Syntax Semantics
top > ∆I

conjunction C uD CI ∩DI
existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
inverse role r− {(y, x) ∈ ∆I ×∆I | (x, y) ∈ rI}
general concept inclusion C v D CI ⊆ DI
role inclusion axiom r1 ◦ . . . ◦ rk v r rI1 ◦ . . . ◦ rIk ⊆ rI

The approach to compute the k-lcs is to employ the completion method that
is used to classify the TBox. This method builds a graph structure, which is
saturated by completion rules [11, 7]. In case of EL the k-lcs can be more or less
directly be read off from the saturated completion graph. In this paper we devise
computation algorithms for the k-LCS for the DLs EL+ and in ELI. It turns
out that for EL+ the computation algorithm is the same as for EL [10]. While
the polynomial time completion algorithm for EL+ works on graph structures
with static node sets and have simple labellings, the algorithm for ELI requires
dynamic nodes sets and uses complex labels. In [12] such a completion algorithm
for ELI has been devised, which we employ for the computation of the k-lcs in
ELI.

For both methods we show that the obtained concept is a common subsumer
and that it is minimal w.r.t. subsumption for the given role-depth bound k.
Thus, the obtained concept description is the exact lcs, if the exact lcs exists for
a role-depth n and the k-lcs is computed for a maximal role-depth of k ≥ n.

The concept descriptions obtained in this way turn out to be highly redun-
dant. In order to obtain concise and readable concept descriptions, we devise a
heuristic to obtain smaller, equivalent concept descriptions.

This paper is organised as follows: next, we introduce the basic notions. In
Section 3 we recall the completion algorithm for EL+ and devise the computation
algorithms for the k-lcs in EL+. The computation algorithm for ELI is presented
in Section 4. In Section 5 we present the simplification heuristic to obtain smaller
EL+-concept descriptions. We end with conclusions and remarks on future work.

2 Preliminaries

We assume that the reader is familiar with the basic notions of DLs, for an
introduction see [13]. We introduce the DLs used in this paper formally. Concept
descriptions are inductively defined from a set of concepts names NC and a set
of role names NR by applying the constructors from the upper half of Table 1.
In particular, EL-concept descriptions only allow for conjunctions, existential
restrictions, and the top concept >. EL+ additionally allows for complex role
inclusion axioms (RIAs). These role inclusions can express role hierarchies (s v
r) and transitive roles (r ◦ r v r). The semantics are displayed in the lower half

148



of Table 1. ELI-concept description extend EL-concept descriptions by the use
of inverse roles.

The concept constructors and axioms are interpreted in the standard way.
We denote by NC,T and NR,T the sets of concept names and role names that
occur in a TBox T . For a concept description C we denote by rd(C) its role-
depth, i.e., its maximal nesting of quantifiers. We define the central reasoning
services of this paper.

Definition 1 ((Role-depth bounded) least common subsumer). Let L
be a DL, T be a L-TBox and C1, . . . , Cn be L-concept descriptions. Then the
L-concept description D is the least common subsumer of C1, . . . , Cn w.r.t. T
iff (1) Ci vT D for all i ∈ {1, . . . , n}, and (2) for all L-concept descriptions E:
Ci vT E for all i ∈ {1, . . . , n} implies D vT E.

Let k ∈ N. Then the L-concept description D is the role-depth bounded least
common subsumer of C1, . . . , Cn w.r.t. T and the role-depth k (k−lcs(C1, . . . , Cn))
iff (1) rd(D) ≤ k, (2) Ci vT D for all i ∈ {1, . . . , n}, and (3) for all L-concept
descriptions E with rd(E) ≤ k: Ci vT E ∀i ∈ {1, . . . , n} implies D vT E.

For the DLs considered in this paper the (k-)lcs is unique up to equivalence,
thus we speak of the (k-)lcs.

3 Computing the k-lcs in EL+

The algorithms to compute the role-depth bounded lcs rely on completion graphs
produced by completion-based subsumption algorithms. Completion algorithms
work on normalized TBoxes and for which they build a completion graph and ex-
haustively apply completion rules. After this step, the completion graph contains
all subsumption relations from the TBox explicitly.

3.1 Completion Algorithm for EL+

An EL+-TBox T is in normal form, if all concept inclusions in T are of the form
A v B, A1 u A2 v B, A v ∃r.B, or ∃r.A v B with A,A1, A2, B ∈ NC and r ∈
NR; and all role inclusions are of the form s v r or s ◦ t v r with {r, s, t} ⊆ NR.
All EL+-TBoxes can be normalized by applying a set of normalization rules [11].

The completion graph for a normalized TBox T ′ used by the completion
algorithm is of the form (V,E, S), where V = NC,T ′∪{>} is the set of nodes, E ⊆
V ×NR,T ×V is the set of role name labeled edges and S : V → 2NC,T ′∪{>} is the
node-labeling. The completion algorithms starts with an initial graph (V,E, S)
with E = ∅ and S(A) = {A,>} for each A ∈ NC,T ′ ∪ {>} and exhaustively
applies a set of completion rules from [11] until no more rule applies.

Once the rule-applications finished, all subsumption relations can be directly
be read off the completion graph. This completion algorithm is sound and com-
plete as shown in [11]. Specifically, given a normalized EL+-TBox T and its
completion graph (V,E, S) after all completions rules were applied exhaustively,
we have for each A,B ∈ V and r ∈ E:

149



Procedure k-lcs (C,D, T , k)
Input: C,D: EL+-concept descriptions; T : EL+-TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded EL+-lcs of C,D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r(A,B, (V,E, S), k)
4: return remove-normalization-names(L)

Procedure k-lcs-r(A,B, (V,E, S), k)
Input: A,B: concept names; (V,E, S): completion graph; k: natural number
Output: k-lcs(A,B): role-depth bounded EL+-lcs of A,B w.r.t. T and k

1: common-names := S(A) ∩ S(B)
2: if k = 0 then
3: return

l

P∈common-names

P

4: else
5: return

l

P∈common-names

P u
l

r∈NR

( l

(A,r,C)∈E,(B,r,D)∈E
∃r.k-lcs-r(C,D, (V,E, S), k − 1)

)

Fig. 1. Computation Algorithm for role-depth bounded EL+-lcs.

Soundness If B ∈ S(A), then A vT B; and
if (A, r,B) ∈ E, then A vT ∃r.B.

Completeness If A vT B, then B ∈ S(A); and
if A vT ∃r.B, then there are C,D ∈ V with C ∈ S(A), B ∈ S(D) and
(C, r,D) ∈ E.

3.2 Computation Algorithm of the k-lcs in EL+

The resulting completion graph can be used to compute the role-depth bounded
lcs. All RIAs from the EL+-TBox are explicitly captured in the completion graph
in the following sense: for each edge in the completion graph labeled with some
role r, the completion algorithm also creates edges for all its super-roles. This
means that for computing the k-lcs for an EL+-TBox the same algorithm can
be used as for EL, which was introduced in [10] and is shown in Algorithm 3.2
for the binary lcs. The idea is to introduce new concept names for the concept
descriptions of interest and to apply the completion algorithm. Then, starting
from the newly introduced names A and B, traverse the completion graph si-
multaneously. More precisely, for the tree unravelings of depth k for A and B
the cross product is computed. In a post-processing step those concept names
have to be removed from the concept that were introduced during normalization.
Obviously, this method creates heavily redundant concept descriptions, due to
the multiple edge labellings due to RIAs.
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Procedure simplify(C, (V,E, S), T )
Input: C: EL+-concept description; (V,E, S): completion graph; T : EL+-TBox
Output: simplify(C): simplified concept description
1: Let C ≡ A1 u . . . uAn u ∃r1.D1 u . . . u ∃rm.Dm with Ai ∈ NC for 1 ≤ i ≤ n.
2: Conj := {Ai | 1 ≤ i ≤ n} ∪ {∃rj .Dj | 1 ≤ j ≤ m}
3: for all X ∈ Conj do
4: for all Y ∈ Conj do
5: if X 6= Y ∧ subsumes-H(X,Y, (V,E, S), T ) then
6: Conj := Conj \ {X}
7: break
8: for all X ∈ Conj do
9: if X = ∃rj .Dj then

10: Conj := (Conj \ {∃rj .Dj}) ∪ {∃rj .simplify(Dj , (V,E, S), T )}
11: return

d
X∈Conj X

Fig. 2. Simplification algorithm for EL+-concept descriptions

3.3 Simplifying EL+-Concept Descriptions

The highly redundant ELH-concept descriptions obtained from the k-lcs algo-
rithm, need to be simplified, in order to make the resulting concept description
readable. The general idea for the simplification is to remove those subtrees
from the syntax tree which are subsumers of any of their sibling subtrees. For a
conjunction of concept names, this results in the least ones (w.r.t. vT ).

Algorithm 2 computes the simplification of an EL+-concept description.
Note, that the algorithm needs to be applied after the normalization names
were removed, otherwise it might remove names from the original TBox that
subsume normalization names, which get removed later during denormalization.

For the soundness of the simplification procedure simplify, it is only necessary
to ensure that the procedure ‘subsumes-H’ is sound. However, for our purpose
this procedure does not have to be complete. This might result in simplifications
that are correct k-lcs, but that are still redundant. This heuristic is given in [14].
The idea is to make simple structural comparison depending on the concept
constructor of the concepts in question.

Obviously, it would be desirable to avoid the generation of highly redundant
concept descriptions, instead of reducing them in a post-processing step. Due
to interactions with denormalization, such optimizations need to be conserva-
tive. Such optimizations have been investigated in [14], which avoid unnecessary
branching and role-depth of the generated concept description. Interestingly,
these optimizations do not only speed-up the execution of Algorithm 3.2, but
also of the subsequent simplification, see [14].

Evaluation. The k-lcs algorithm and the simplification algorithm are imple-
mented in our system GEL1, which is implemented on top of the jCEL rea-
1 GEL is freely available from http://sourceforge.net/p/gen-el.
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Fig. 3. Average gain in concept size for simplified k-lcs computed w.r.t. Not-Galen

soner2 [15]. We have tested the effectiveness of the simplification procedure on
the NotGalen ontology, which is a version of the GALEN ontology pruned to
EL+. Some input concept pairs resulted in run-times over a minute for k = 6,
which were mostly dominated by the run-time of the k-lcs-r-procedure. Simplifi-
cation of larger concepts was faster by a factor of 10 or more. Figure 3 shows the
average gain in concept size by simplification on various input pairs for different
values of k. For k = 6 concepts with a size of several thousands were reduced to a
concept size of 30 to 40, which are large, but still readable concept descriptions.
In an extreme case a concept of size of over 106 was reduced to a size of 140. For
more empirical results and details on the implementation of GEL see [14].

4 Computing the k-lcs in ELI
To handle inverse roles correctly, the completion algorithm needs to be adapted
in several ways. The normal form for TBoxes is the same as before.

4.1 Completion Algorithm for ELI
The EL-completion algorithm has been extended to ELI in [12]. One adaptation
is that the node set V is not fixed. Consider the example TBox T = {∃r−.A v
C,A v ∃r.B}. In this TBox, A has an r-successor subsumed by B and each r-
predecessor A implies C. However, that does not mean that C is also a subsumer
of B – only those elements in BI , that are r-successors of elements in AI are
also in CI . Thus, C 6∈ S(B). On the other hand we know that A v ∃r.C. To
solve this problem, we need to have a dynamic node set V , add a new node u to
V for u = B u ∃r−.A and then add C to the completion set S(u).

The node set V is defined as V ⊆ NC,T × 2{∃r.X|r is a role,X∈NC,T }. A node A
with A ∈ NC,T from the node set for EL+ would then correspond to the node
(A, ∅) from the node set for ELI. We will formalize the meaning of nodes in the
node set V by defining the concept descriptions that these nodes correspond to:
2 jCEL is freely available from http://jcel.sourceforge.net.
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Definition 2 (Concept descriptions for nodes). Let T be a normalized
ELI-TBox and (V,E, S) its completion graph. Then we define for each node
u = (A, φ) ∈ V : vconcept(u) = A ud

∃r.X∈φ ∃r.X
The graph (V,E, S) for the completion algorithm for ELI starts with V =
{(A, ∅) | A ∈ NC,T }, E = ∅ and S((A, ∅)) = {A,>} for all A ∈ NC,T . The
completions rules for ELI are the following:

CI1 If A1 ∈ S(v) and A1 v B ∈ T and B 6∈ S(v),
then S(v) := S(v) ∪ {B}

CI2 If A1, A2 ∈ S(v) and A1 uA2 v B ∈ T and B 6∈ S(v),
then S(v) := S(v) ∪ {B}

CI3 If A1 ∈ S(u), v = (B, ∅) and A1 v ∃r.B ∈ T and (u, r, v) 6∈ E,
then E := E ∪ {(u, r, v)}

CI4 If (u, r, v) ∈ E, B1 ∈ S(v) and ∃r.B1 v C ∈ T and C 6∈ S(u),
then S(u) := S(u) ∪ {C}

CI5 If (u, r, v) ∈ E, v = (B,ψ), A1 ∈ S(u), ∃r−.A1 v B1 ∈ T and B1 6∈ S(v),
then
v′ := (B,ψ ∪ {∃r−.A1})
if v′ 6∈ V then V := V ∪ {v′}, E := E ∪ {(u, r, v′}), S(v′) := S(v) ∪ {B1}
else E := E ∪ {(u, r, v′}), S(v′) := S(v′) ∪ {B1}

The completion algorithm for ELI defined this way is again sound. For complete-
ness one needs to consider only those edges that do not point to nodes, which
have an ‘extended copy’ generated by rule CI5, i.e., edges (u, r, v) for which there
is no ∃r−.A v B ∈ T with A ∈ S(u) and B 6∈ S(v). We call those edges bad
edges and collect them in the bad edge set Ebad. However, since for each edge
(u, r, v) in Ebad there is (u, r, v′) ∈ E \ ebad with vconcept(v′) vT vconcept(v),
completeness for good edges is sufficient to show that the concept description
obtained by Algorithm 1 is a common subsumer [16].

4.2 Computation of the k-lcs in ELI
Since ELI allows for inverse roles, we may also traverse edges backwards (i.e.,
use the inverse role of the role that the edge is labeled with in the k-lcs concept
description). However, we can only traverse those edges backwards, that we just
came from–as you can see in the example for T = {A v ∃r.>, B v ∃r.C,C v
∃r−.A}, which results in the following completion graph:

A

>

B

C

r r
r−

Now, traversing this completion graph to compute the lcs of A and B without
going backwards, we would get the result >u ∃r.> and then get stuck in the >
node. However, the lcs of A and B is ∃r.∃r−.A, therefore the algorithm must to
go backwards from > to A using the edge (A, r,>) as (>, r−, A), which yields
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the correct lcs. To see that the algorithm may not go backwards along arbitrary
edges consider to go from A to C using the edge (C, r−, A) as (A, r, C). This
would clearly be wrong, since we don’t have A vT ∃r.C. Thus the algorithm
may only traverse backwards on those edges that led to the current node.

Therefore, the recursive algorithm needs to know not only the current nodes,
but also the whole path from the start to the current node. This path is given
in the form [u0, r1, u1, r2, . . . , rn, un] where u0 is the starting node, un the cur-
rent node, and (ui−1, ri, ui) ∈ E are edges of the completion graph that have
been traversed. For each path [u0, r1, u1, r2, . . . , rn, un] we will define the concept
description they correspond to.

Definition 3 (Concept descriptions for paths). Let T be a normalized
ELI-TBox and (V,E, S) its completion graph. Then we define for each path
l = [u0, r1, u1, r2, . . . , rn, un]

lconcept(l) =
vconcept(un) u ∃r−n .(vconcept(un−1) u ∃r−n−1.(. . . u ∃r−1 .vconcept(u0) . . .))

Algorithm 1 depicted below computes the role-depth bounded lcs for two ELI-
concept descriptions C and D w.r.t. a general ELI-TBox. This algorithm differs
from the Algorithm 3.2 for EL+ mainly only in the following aspects:

– Algorithm 1 uses the whole path to the current node instead of the node
itself.

– While in Algorithm 3.2 the nodes to visit from the current node are computed
implicitly, Algorithm 1 stores all successors of the paths p1 and p2 explicitly
in the sets S1 and S2.

– Both algorithms traverse all edges (u, r, v) from the current node u, but
Algorithm 1 additionally traverses the last edge backwards, if it is the inverse
of r.

We give a proof sketch that Algorithm 1 indeed computes the k-lcs. Condition
(1) from the Definition of the role-depth bounded lcs is obviously given.

Common Subsumer. The fact that Algorithm 1 yields a common subsumer fol-
lows directly from the following lemma:

Lemma 1. Let L = k-lcs-r(p1, p2, (V,E, S), k) for the two given paths p1 =
[u0, r1, u1, r2, . . . , rn, un] and p2 = [v0, s1, v1, s2, . . . , sm, vm]. Then
lconcept(p1) vT L and lconcept(p2) vT L.

Proof. This lemma can be proven by induction on the role-depth k of L. For
k = 0, L = A1 u A2 u . . . u Al must be a conjunction of concept names Ai ∈
S(un) ∩ S(vm), 0 ≤ i ≤ l. Then soundness of the completion algorithm yields
that for each Ai, we have lconcept(p1) vT vconcept(un) vT Ai and similarly
lconcept(p2) vT Ai; therefore lconcept(p1) vT L and lconcept(p2) vT L.

For k ≥ 1, L is a conjunction of concept names and existential restric-
tions. For concept names, the same argument as above holds. All existential
restrictions are of the form ∃r.k-lcs-r(l1, l2, (V,E, S), k − 1) where l1 is either
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Algorithm 1 Computation of a role-depth bounded ELI-lcs.
Procedure k-lcs(C,D, T , k)
Input: C,D: ELI-concept descriptions; T : ELI-TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded ELI-lcs of C and D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r([(A, ∅)], [(B, ∅)], (V,E, S), k)
4: return remove-normalization-names(L)

Procedure k-lcs-r(p1, p2, (V,E, S), k)
Input: p1 = [(A0, ∅), r1, . . . , rn, (An, φn)] and p2 = [(B0, ∅), s1, . . . , sn, (Bm, ψm)]: two
paths in the completion graph; (V,E, S): completion graph; k: natural number
Output: role-depth bounded ELI-lcs of lconcept(p1) and lconcept(p2) w.r.t. T and k
1: result-concept :=

l

C∈S((An,φn))∩S((Bm,ψm))

C

2: if k > 0 then
3: for all r ∈ NR do
4: S1 := {[(A0, ∅), r1, . . . , rn, (An, φn), r, (A, φ)] | ((An, φn), r, (A, φ)) ∈ E}
5: if n > 0 ∧ r = r−n then
6: S1 := S1 ∪ {[(A0, ∅), r1, (A1, φ1), r2, . . . , (An−2, φn−2), rn−1, (An−1, φn−1)]}
7: S2 := {[(B0, ∅), s1, . . . , sn, (Bm, ψm), r, (B,ψ)] | ((Bm, ψm), r, (B,ψ)) ∈ E}
8: if n > 0 ∧ r = s−m then
9: S2 := S2∪{[(B0, ∅), s1, (B1, ψ1), s2, . . . , (Bm−2, ψm−2), sm−1, (Bm−1, ψm−1)]}

10: result-concept := result-concept u
l

l1∈S1
l2∈S2

∃r.k-lcs-r(l1, l2, (V,E, S), k − 1)

11: return result-concept

p1 extended by one more edge (un, r, u) ∈ E or shorted by the last edge if
rn = r−. In the first case soundness of completion for (un, r, u) ∈ E yields
vconcept(un) vT ∃r.vconcept(u) and thus lconcept(p1) vT ∃r.(vconcept(u) u
∃r−.lconcept(p1)) = ∃r.lconcept(l1). In the second case we have lconcept(p1) =
vconcept(un) u ∃r−n .lconcept(l1) vT ∃r.lconcept(l1). Then the induction hy-
pothesis yields that lconcept(p1) vT ∃r.k-lcs-r(l1, l2, (V,E, S), k − 1), therefore
lconcept(p1) vT L holds and by the same argument lconcept(p2) vT L holds.

Minimality. To show that Algorithm 1 yields the least common subsumer w.r.t.
the role-depth bound k, we show the following lemma.
Lemma 2. Let p1 and p2 be two paths in the completion graph (V,E, S) with
p1 = [u0, r1, . . . , rn, un] and p2 = [v0, s1, . . . , sm, vm], such that (ui−1, ri, ui) ∈
E \ Ebad for all 1 ≤ i ≤ n and (vj−1, sj , vj) ∈ E \ Ebad for all 1 ≤ j ≤ m,
u0 = (A, ∅) and v0 = (B, ∅). Let k ∈ N and F an ELI-concept description
with rd(F ) ≤ k. If lconcept(p1) vT F and lconcept(p2) vT F then L =
k-lcs-r(p1, p2, (V,E, S), k) vT F .

Proof. We prove this claim by induction on the role-depth bound k. For k = 0,
F = A1u. . .uAn must be a conjunction of concept names. Since lconcept(p1) vT

155



F and lconcept(p2) vT F , we have lconcept(p1) vT Ai and lconcept(p2) vT Ai
for all 1 ≤ i ≤ n. Since p1 and p2 only traverse edges over E\Ebad, all possible rule
applications of CI5 during that path were applied, and we have vconcept(un) vT
Ai and vconcept(vm) vT Ai. Then completeness of the completion algorithm
yields Ai ∈ S(un) and Ai ∈ S(vm) for all 1 ≤ i ≤ n. Thus, L vT F .

For k ≥ 1, F is a conjunction of concept names and existential restric-
tions. The concept names in F must appear in L by the same argument as
in the base case. For each existential restriction ∃r.F ′ of F , we can again use
the fact that p1 and p2 only traverse edges over E \ Ebad to derive that there
must be nodes u and v with vconcept(u) vT F ′, vconcept(v) vT F ′, such that
vconcept(un) vT ∃r.vconcept(u) and vconcept(vm) vT ∃r.vconcept(v). Then
completeness of completion yields that there are u′ and v′ with (un, r, u′) ∈
E \ Ebad or u′ = un−1, r = r−n and similarly (vm, r, v′) ∈ E \ Ebad or v′ =
vm−1, r = s−m, such that vconcept(u′) vT vconcept(u) and vconcept(v′) vT
vconcept(v). Therefore, there are new paths l1 ∈ S1 and l2 ∈ S2, such that
lconcept(l1) vT F ′ and lconcept(l2) vT F ′ which still only traverse edges in
E \Ebad, so the induction hypothesis yields k-lcs-r(l1, l2, (V,E, S), k− 1) vT F ′,
and thus L = k-lcs-r(p1, p2, (V,E, S), k) vT F .

This shows that the Algorithm 1 computes the role-depth bounded least
common subsumer for ELI. In contrast to subsumption, the computation of k-
lcs does not increase complexity-wise when going from EL to ELI– it remains
exponential in the size of k.

5 Conclusions and Future Work

In this paper we have extended the computation algorithm for the k-lcs in EL
w.r.t. general TBoxes to two members of the EL-family and showed that the
proposed methods indeed compute the k-lcs. In cases where the exact lcs exists,
our algorithms compute the exact lcs for a big enough k.

For ELI the extension of the EL algorithm for computing the k-lcs required
traversal of the completion graph w.r.t. paths and the correct handling of com-
plex node labels.

In case of EL+, the extension of the computation method for EL turned out
to be trivial, here our contribution rather lies in the simplification procedure
devised. This procedure turned out to be extremely helpful, when reducing the
concept size. For the NotGalen ontology the the result concepts were reduced
by several orders of magnitude. It would be desirable to obtain the simplified
EL+-concept descriptions directly, instead of in the generate and then reduce
kind of fashion employed so far. Besides this, we want to extend our results on
EL+ and ELI to the computation of most specific concepts by completion.
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1 Introduction

Query answering has become a prominent reasoning task in Description Logics. This is
witnessed not only by the high number of publications on the topic in the last decade,
but also by the increasing number of query answering engines. A number of systems
provide full conjunctive query (CQ) answering capabilities, including [1, 23, 25, 4, 11].
A common feature of these approaches is that they rely on existing technologies for
relational or deductive databases. They focus on lightweight DLs like DL-Lite and
EL, and they use query rewriting to reduce the problem of answering a query over a
DL ontology to a database query evaluation problem. For more expressive DLs that
are not tractable in combined complexity, however, CQs (with the complete first-order
semantics) are not yet supported by current reasoning engines. A range of algorithms
has been designed, but they serve for theoretical purposes such as showing complexity
bounds and are not amenable to practical implementation. The only exception is the
rewriting algorithm implemented in the REQUIEM system, which covers ELHI [23], an
expressive extension of EL for which standard reasoning is EXPTIME-hard.

In this paper, we contribute to the development of practical query answering systems
beyond DL-Lite and EL. We consider Horn-SHIQ, the Horn fragment of the popular
DL SHIQ that underlies OWL DL. It combines all the expressive features of DL-Lite
and EL, and simultaneously extends them with transitive roles, qualified number restric-
tions and some universal quantification. Standard reasoning tasks in Horn-SHIQ are
already EXPTIME-hard in combined complexity but, due to the absence of disjunction,
they are polynomial in data complexity. Since in Horn-SHIQ models are significantly
more complex than in DL-Lite and (most dialects of) EL, extending existing query
rewriting techniques is not straightforward.

The main contribution of this paper is a query answering method for Horn-SHIQ
that appears to be promising for practicable systems, as confirmed by the experimental
evaluation of a prototype implementation.

– The core of the method is a novel query rewriting technique which transforms
an input query q into a union Q of CQs (a UCQ) such that the answers of q over an
ontology O = 〈T ,A〉 with TBox T and ABox A coincide with the answers over A
? This work was supported by the Austrian Science Fund (FWF) grants P20840 and T515.
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of a Datalog program comprising Q and some rules to complete A, showing Datalog-
rewritability of CQ answering in Horn-SHIQ.

– Naturally, the set Q may be exponential in the size of q in the worst case, but in
practice we obtain rewritings Q that are of manageable size for real world ontologies.
This is mostly due to the fact that new queries are only generated taking into account
the anonymous domain elements implied by the terminology. Notably our algorithm is
worst-case optimal in both data and combined complexity.

– We describe a prototype implementation of the approach that uses off-the-shelf
Datalog reasoners. Despite being preliminary and lacking sophisticated optimizations,
it shows that the approach is promising. It can answer queries efficiently over Horn-
SHIQ ontologies and scales down nicely to DL-Lite, where it is competitive with
state of the art query rewriting systems.

– The technique works for full Horn-SHIQ and arbitrary CQs, but the imple-
mented version does not support transitive (or more generally, non-simple) roles in
the query. To keep presentation simple, we present here only the case without transi-
tive roles, and refer to [6, 9] for a more general version with transitive roles and richer
queries formulated in weakly DL-safe Datalog.

2 Preliminaries
Horn-SHIQ The syntax and semantics of Horn-SHIQ is defined in the usual way.
A role is a role name p or its inverse p−. A Horn-SHIQ TBox T in normal form is
a set of role inclusion axioms rv s, transitivity axioms trans(r), and general concept
inclusion axioms (GCIs) of the forms (F1)A1u. . .uAnvB, (F2)A1v∀r.B, (F3)A1v
∃r.B, and (F4)A1v 61 r.B,whereA1, . . . , An, B are concept names and r, s are roles.
Axioms (F3) are called existential. W.l.o.g. we consider only Horn-SHIQ TBoxes in
normal form [16, 17]. We call s transitive in T , if trans(s) ∈ T or trans(s−) ∈ T ,
and we call s simple in T , if there is no transitive r in T s.t. r v∗T s, where v∗ is the
reflexive transitive closure of {(r, s) | rv s ∈ T or inv(r)v inv(s) ∈ T }. Only simple
roles are allowed in axioms of the form (F4).

An ABox A is a set of assertions A(a) and r(a, b), where A is a concept name, r a
role, and a, b are individuals; the set of all individuals is denoted by NI. An ontology is
a pair (T ,A) of a TBox T and an ABox A. The semantics is given by interpretations
I = 〈∆I , ·I〉 in the usual way.

A Horn-ALCHIQ TBox is a Horn-SHIQ TBox with no transitivity axioms. Horn-
ALCHIQu TBoxes are obtained by allowing the conjunction r1 u r2 of roles r1 and
r2, interpreted (r1 u r2)I = rI1 ∩ rI2 . We let inv(r1 u r2) = inv(r1) u inv(r2) and
assume w.l.o.g. that for each role inclusion r v s of a Horn-ALCHIQu TBox T , (i)
inv(r)v inv(s) ∈ T , and (ii) s ∈ {p, p−} for a role name p. For a set W and a concept
or role conjunction Γ = γ1 u . . . u γm, we write Γ ⊆W for {γ1, . . . , γm} ⊆W .

Conjunctive Queries A conjunctive query (CQ) is an expression of the form
q(u)← p1(v1), . . . , pm(vm)

where each pi(vi) is an atom of the form A(x) or r(x, y), where A is a concept name
and r is a role, x, y are variables, and q is a special query predicate not occurring
elsewhere. For convenience, we may identify such a CQ with the set of its atoms, and
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Table 1: Inference rules. M (′), N (′), (resp., S(′)) are conjunctions of atomic concepts
(roles); A,B are atomic concepts

M v ∃S.(N uN ′) N vA
M v ∃S.(N uN ′ uA)

Rc
v

M v ∃(S u S′).N S v r
M v ∃(S u S′ u r).N

Rr
v

M v ∃S.(N u ⊥)

M v⊥
R⊥

M v ∃(S u r).N Av ∀r.B
M uAv ∃(S u r).(N uB)

R∀
M v ∃(S u inv(r)).(N uA) Av ∀r.B

M vB R−∀

M v ∃(S u r).(N uB) Av 61 r.B M ′ v ∃(S′ u r).(N ′ uB)

M uM ′ uAv ∃(S u S′ u r).(N uN ′ uB)
R≤

M v ∃(S u inv(r)).(N1 uN2 uA) Av 61 r.B N1 uAv ∃(S′ u r).(N ′ uB u C)

M uB v C M uB v ∃(S u inv(S′ u r)).(N1 uN2 uA)
R−≤

use q(u) (or simply q) to refer to it. We call u ⊆ ⋃
1≤i≤m vi the distinguished variables

of q. A match for q in I is a mapping from variables in q to elements in ∆I such that
π(t)∈ pI for each atom p(t) of q. The answer to q over O is the set of all c ∈ N

|u|
I

such that in every model I of O some match π for q exists with π(u) = (c)I .

Elimination of Transitivity. As usual, transitivity axioms roles can be eliminated from
Horn-SHIQ TBoxes. To obtain a Horn-ALCHIQ TBox T ∗ that is also in normal
form, we can use the transformation from [16]. This transformation preserves satisfia-
bility and, provided that queries contain only simple roles, also query answers (answers
are not preserved for arbitrary queries unless the notion of match is suitably relaxed). In
the rest of the paper we describe a procedure for answering CQs in Horn-ALCHIQu.

3 Canonical Models

For answering CQs in Horn DLs usually the canonical model property is employed [7,
21, 2]. In particular, for a consistent Horn-ALCHIQu ontology O = (T ,A), there
exists a model I of O that can be homomorphically mapped into any other model I ′ of
O. We show that such an I can be built in three steps:

(1) close T under specially tailored inferences rules,
(2) close A under all but existential axioms of T , and
(3) extend A by “applying” the existential axioms of T .

For Step (1) we use the calculus in Table 1, which is similar to [16, 20]. Given a
Horn-ALCHIQu TBox T , we denote by Ξ(T ) the TBox obtained from T by ex-
haustively applying the inference rules in Table 1. In Step (2) we simply ‘apply’ in the
ABox all but existential axioms in T . For convenience, this is done using the set cr(T )
of Datalog rules in Table 2. Since every ABox A can be seen as a set of Datalog facts,
A ∪ cr(T ) is a Datalog program (with constraints) which has a unique minimal Her-
brand model J = MM (A∪cr(T )) ifO is consistent. This model is almost a canonical
model of (T ,A); however, existential axioms may be violated. To deal with this, in
Step (3) we extend J with new domain elements as required by axioms M v ∃r.N in
Ξ(T ), using a procedure similar to the well known chase in databases.
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Table 2: (Completion rules) Datalog program cr(T ).
B(y)←A(x), r(x, y) for each Av ∀r.B ∈ T
B(x)←A1(x), . . . , An(x) for all A1u . . .uAnvB ∈Ξ(T )

r(x, y)← r1(x, y), . . . , rn(x, y) for all r1 u . . . u rn v r ∈ T
⊥(x)←A(x), r(x, y1), r(x, y2), B(y1), B(y2), y1 6= y2 for each Av 61 r.B ∈ T

Γ ←A(x), A1(x), . . . , An(x), r(x, y), B(y)
for all A1u . . .uAn v ∃(r1u . . .urm).(B1u . . .uBk)
and Av 61 r.B of Ξ(T ) such that r=ri and B=Bj for some i, j
with Γ ∈ {B1(y), . . . , Bk(y), r1(x, y), . . . , rk(x, y)}

Definition 1. Let T be a Horn-ALCHIQu TBox and let I be an interpretation. A
GCI M v ∃S.N is applicable at e ∈ ∆I if (a) e ∈ MI , (b) there is no e′ ∈ ∆I

with (e, e′) ∈ SI and e′ ∈ NI , (c) there is no axiom M ′ v ∃S′.N ′ ∈ T such that
e ∈ (M ′)I , S ⊆ S′, N ⊆ N ′, and S ⊂ S′ or N ⊂ N ′. An interpretation J obtained
from I by an application of an applicable axiom M v ∃S.N at e ∈ ∆I is defined as:

- ∆J = ∆I ∪{d} with d a new element not present in ∆I (we call d a successor of e),
- For each concept name A and each o ∈ ∆J , we have o ∈ AJ if (a) o ∈ ∆I and
o ∈ AI; or (b) o = d and A ∈ N .

- For each role name r and o, o′ ∈ ∆J , we have (o, o′) ∈ rJ if (a) o, o′ ∈ ∆I and
(o, o′) ∈ rI; or (b) (o, o′) = (e, d) and r ∈ S; or (c) (o, o′) = (d, e) and inv(r) ∈ S.

We denote by chase(I, T ) a possibly infinite interpretation obtained from I by applying
the existential axioms in T . We require fairness: the application of an applicable axiom
can not be infinitely postponed.

We note that chase(I, T ) is unique up to renaming of domain elements. As usual in
DLs, it can be seen as a ‘forest’: the application of existential axioms simply attaches
‘trees’ to an arbitrarily shaped model I.

Theorem 1. Let O= (T ,A) be a Horn-ALCHIQu ontology. Then O is consistent iff
A ∪ cr(T ) consistent. Moreover, if O is consistent, then (a) chase(MM (A ∪ cr(T )),
Ξ(T )) is a model of O, and (b) chase(MM (A ∪ cr(T )), Ξ(T )) can be homomorphi-
cally mapped into any model of O.

The proof of Theorem 1 can be found in [9]; see [21] for a proof of a similar result.
Observe that checking consistency of O = (T ,A) reduces to evaluating the Data-

log programA∪ cr(T ). We note that Ξ(T ) can be computed in exponential time in the
size of T : the calculus only infers axioms of the form M v B and M v ∃S.N , where
M,N are conjunctions of atomic concepts, B is atomic and S is a conjunction of roles,
and there are exponentially many such axioms.

4 Query Rewriting

The following theorem, which is immediate from Theorem 1, allows us to concentrate
on models obtained by the chase procedure.
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Fig. 1: Examples of query rewriting

Theorem 2. LetO= (T ,A) be a Horn-ALCHIQu ontology. ThenA∪ cr(T ) is con-
sistent iff O is consistent. Moreover, if O is consistent, then ans(O, q) = ans(IO, q),
where IO = chase(MM (A ∪ cr(T )), Ξ(T )).

Computing ans(IO, q) is still not trivial, as IO can be infinite. Hence, we rewrite q
into a set Q of CQs such that ans(IO, q) =

⋃
q′∈Q ans(MM (A ∪ cr(T )), q′), that is,

we can evaluate them over the finite MM (A ∪ cr(T )).
The intuition is the following. Suppose q has a non-distinguished variable x, and

that there is some match π in IO such that π(x) is an object in the ‘tree part’ introduced
by the chase procedure, and it has no descendant in the image of π. Then for all atoms
r(y, x) of q, the “neighbor” variable y must mapped to the parent of π(x). A rewrite
step makes a choice of such an x, and employs an existential axiom from Ξ(T ) to
‘clip off’ x, eliminating all query atoms involving it. By repeating this procedure, we
can clip off all variables matched in the tree part and obtain a query with a match in
MM (A ∪ cr(T )).

Definition 2 (Query rewriting). For a CQ q and a Horn-ALCHIQu TBox T , we
write q→T q′ if q′ can be obtained from q in the following steps:

(S1) Select in q an arbitrary non-distinguished variable x such that there are no atoms
of the form r(x, x) in q.

(S2) Replace each role atom r(x, y) in q, where y is arbitrary, by the atom inv(r)(y, x).
(S3) Let Vp = {y | ∃r : r(y, x) ∈ q}, and select some M v ∃S.N ∈ Ξ(T ) such that

(a) {r | r(y, x) ∈ q ∧ y ∈ Vp} ⊆ S, and
(b) {A | A(x) ∈ q} ⊆ N .

(S4) Drop from q each atom containing x.
(S5) Rename each y ∈ Vp of q by x.
(S6) Add the atoms {A(x) | A ∈M} to q.

We write q →∗T q′ if q= q0 and q′= qn for some finite rewrite sequence q0 →T
q1 · · · →T qn, n ≥ 0. Furthermore, we let rewT (q) = {q′ | q →∗T q′}.

Example 1. The query q1(x1) ← A1(x1), r1(x1, x2), A2(x2), r2(x2, x3), A3(x3), r3(x2,

x4), A4(x4) is depicted on the left hand side of Figure 1a. The node in bold corresponds
to the answer variable x1. Assume thatAv∃(r u r2).(B uA3) andAv∃(r u r3 u r−4 ).(B
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uA3) are in Ξ(T ). If we pick for (S1) the variable x3, we get Vp = {x2} and we can
select Av∃(r u r2).(B uA3) ∈ Ξ(T ), as it satisfies (S3.a) and (S3.b). After performing
(S4), (S5) and (S6) we obtain the rewritten query q′1(x1) ← A1(x1), r1(x1, x3), A2(x3),

A(x3), r3(x3, x4), A4(x4). Intuitively, we can safely remove from q1 all atoms containing
x3 because the added atom A(x3) ensures that whenever q′1 has a match so does q1.

Example 2 (ctd). Now we consider the query q2(x1) ← A1(x1), r2(x1, x2), A2(x2),

r3(x2, x3), A3(x3), r1(x1, x4), A4(x4), r4(x3, x4) in Figure 1b. We choose the variable
x3, replace r4(x3, x4) by r−4 (x4, x3) in step (S2), and get Vp = {x2, x4}. Intuitively,
if π(x3) is a leaf in a tree-shaped match π, then x2 and x4 must both be mapped to the
parent of π(x3). Since the GCI Av ∃(r u r3 u r−4 ).(B uA3) in Ξ(T ) satisfies (S3.a,b),
we can drop the atoms containing x3 from q2, and perform (S5) and (S6) to obtain the
rewritten query q′2(x1)← A1(x1), r1(x1, x3), r2(x1, x3), A4(x3), A2(x3), A(x3).

Now we can state our main result (see [9] for the proof of a more general result):

Theorem 3. Suppose O = (T ,A) is a consistent Horn-ALCHIQu ontology and let
q be a CQ. Then ans(O, q) =

⋃
q′∈rewT (q) ans(MM (A ∪ cr(T )), q′).

By the above reduction, we can answer q over O= (T ,A)) by evaluating rewT (q)
over MM (A∪cr(T ) or, equivalently, by evaluating the Datalog program rewT (q)∪A∪
cr(T ) and collecting the tuples u with q(u) in the minimal model. We note that rewT (q)
is finite and computable in time exponential in the size of T and q: rules in rewT (q) use
only relation names and variables that occur in q and T . Furthermore, the grounding of
rewT (q)∪A∪ cr(T ) is exponential in the size ofO, but polynomial for fixed T and q.
By the complexity of Datalog, it follows that the resulting algorithm is exponential in
combined but polynomial in data complexity; this is worst-case optimal [7].

5 Implementation

To evaluate the feasibility of the new rewriting, we have implemented a prototype sys-
tem CLIPPER,3 which supports CQ answering over Horn-SHIQ ontologies (non-simple

3 http://www.kr.tuwien.ac.at/research/systems/clipper/

163



Algorithm 1: Answering CQs via Query Rewriting
Input: Horn-SHIQ ontology O = (T ,A), Conjunctive Query q
Output: query results
T ← Normalize(T ) ; B Normalization
T ∗ ← ElimTrans(T ) ; B Eliminate Transitive Roles
Ξ(T ∗)← Saturate(T ∗) ; B TBox Saturation
Q← Rewrite(q, Ξ(T ∗)) ; B Query Rewriting
cr(T )← CompletionRules(T ) ; B Completion Rules
P = A ∪ cr(T ) ∪Q ; B Datalog Translation
ans← {u | q(u) ∈ MinimalModel(P)}; B Call Datalog Reasoner
return ans ;

roles are disallowed in queries). To the best of our knowledge, it is the first such system
for Horn-SHIQ (under the standard semantics of first-order logic), and in expressive-
ness subsumes similar DL-Lite and EL reasoning engines (see below).

We describe the architecture of CLIPPER in Figure 2, and the main steps in Al-
gorithm 1. CLIPPER is implemented in Java and uses OWLAPI 3.2.2 [13] for parsing
ontologies. It accepts an ontology O= (T ,A) and a CQ q in the SPARQL syntax as
input. For efficiency reasons we implemented a lightweight ontology representation: all
concepts, roles and individuals are encoded as integers; the conjunction of concepts and
roles are stored in hash sets. Since we often need to manipulate large tables of axioms,
we built inverted indexes over such axioms to support fast lookup and matching.

Ontology Preprocessing. This component is responsible for (1) ontology parsing (us-
ing OWLAPI 3.2.2), (2) profile checking and ontology normalization [16], and (3) con-
verting the ontology into the internal format.

Query Preprocessing. This component simply parses CQs in SPARQL syntax and
converts them into the internal format.

Saturation. This component exhaustively applies the saturation rules in Table 1 on
TBox. We use the index structure to find which rules can be applied and the new axioms
are generated incrementally.

Query Rewriting. This component uses Algorithm 2 to rewrite the input q. It imple-
ments the rewriting step from Definition 2, exhaustively traversing all existential axioms
in Ξ(T ) for all the non-distinguished variables. The index structure helps the system
efficiently search through the set of existential axioms while rewriting.

Datalog Translation. This component generates a Datalog program with the rewritten
set of queries Q, the completion rules cr(T ) in Table 2, and the facts in A.

Datalog Engine. The resulting program is evaluated using the Datalog engine DLV-
20101014 [18] or Clingo 3.0.3 [10]. If the program (and hence the ontology) is consis-
tent, its minimal model is returned and the answer tuples are filtered from it.

6 Experiments

We tested CLIPPER on a Pentium Core2 Duo 2.00GHZ with 2GB RAM under Ubuntu
10.04 and 512MB heap for the Java VM. We conducted the following experiments.

164



Algorithm 2: Rewrite(q, T )
Input: CQ q with only simple roles; TBox T
Output: Rewritten queries of q w.r.t. T
rewT (q)← ∅ ; B will be updated from the sub procedure
rewrite(q) ; B Call sub procedure
return rewT (q);

Sub Procedure rewrite (q)
rewT (q)← rewT (q) ∪ {q};
foreach non-distinguished variables x of q do

if r(x, x) 6∈ q then
Replace each r(x, y) in q by r−(y, x) ;
S ← {r | r(y, x) ∈ q} ; P ← {y | r(y, x) ∈ q} ; N ← {A | A(x) ∈ q} ;
foreach M v ∃S′N ′ ∈ T do

if S ⊆ S′ and N ⊆ N ′ then
Obtain q′ from q by:
begin

(1) Drop from q each atom containing the variable x;
(2) Rename each y ∈ P by x;
(3) Add {A(x) | A ∈M} to q;

if q′ 6∈ rewT (q) then
rewrite(q′) ; B Recursion

1. Downscaling test. We compared CLIPPER with other query rewriting systems for
DL-Lite, viz. REQUIEM (Perez-Urbina et al. [23]) and PRESTO [25], and found that it is
competitive and scales down well on DL-Lite ontologies. We used the ontologies and
queries (Q1–Q5) from the REQUIEM test suite, which have been widely used for system
tests; in addition we considered the queries in Table 3a.

Table 3b shows the number of rewritten queries and the rewriting time for the on-
tologies ADOLENA (A), STOCK-EXCHANGE (S), VICODI (V), and UNIVERSITY (U);
the rewriting time excludes loading and preprocessing. CLIPPER and PRESTO generated
in most cases rule sets of comparable size, and in short time. In a few cases PRESTO
generated significantly less rules than CLIPPER, and only for V PRESTO was notably
faster. REQUIEM generated in several cases significantly more rules, despite consider-
ing the G-version which generates optimized rules (and hence uses considerably more
time). The difference seems to be caused by rule unfolding required in their rewriting.

For UNIVERSITY, the only ontology in the suite having an ABox, we evaluated
the rewritten queries over four different ABoxes (67k to 320k assertions) using DLV.
Interestingly, in all cases the execution times for the three rewritings were very similar;
the average runtime of each query on the four ABoxes is shown in brackets.

2. Full Horn-SHIQ. To test CLIPPER on a full Horn-SHIQ ontology, we modified
the UOBM ontology [19], which is in SHOIN (D), by dropping or strengthening (in
case of disjunctions) non-Horn-SHIQ TBox axioms; the final ontology has 196 TBox
axioms. We used ABoxes Ai, 1≤ i≤ 4, with 20k, 80k, 140k and 200k assertions. The
test queries in Table 4a were tailored to require reasoning with Horn-SHIQ constructs
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Table 3: Experiments with DL-Lite ontology
(a) Additional Queries

A Q6(x)←Device(x), assistsWith(x,y), ReadingDevice(y)
Q7(x)←Device(x), assistsWith(x,y), ReadingDevice(y), assistsWith(y,z), SpeechAbility(z)

S Q6(x,z)←Investor(x), hasStock(x,y), Stock(y), Company(z), hasStock(z,y)
Q7(x,z,w)← Investor(x), hasStock(x,y), Stock(y), isListedIn(y,z),

StockExchangeList(z), Company(w), hasStock(w,y)

U Q6(x,y)←Professor(x), teacherOf(x,y), GraduateCourse(y)
Q7(x,z)←Faculty(y), Professor(z), Student(x), memberOf(x,y),worksFor(z,y)

V Q6(x,y,z)←Person(x), hasRole(x,y), Leader(y), exists(y,z)
Q7(x,y,z,w)← Person(x), hasRole(x,y), Leader(y), exists(y,z), TemporalInterval(z), related(x,w), Country(w)

(b) Downscaling evaluation
# Rules/CQs Time (ms)

RG Presto CLIPPER RG Presto CLIPPER

Q1 27 53 42 281 45 50
Q2 50 32 31 184 46 62
Q3 104 32 31 292 27 65

A Q4 224 43 36 523 32 71
Q5 624 37 36 1177 25 70
Q6 364 35 30 523 31 65
Q7 2548 43 32 7741 61 64
Q1 6 7 10 14 7 19
Q2 2 3 22 263 9 22
Q3 4 4 9 1717 10 21

S Q4 4 4 24 1611 9 23
Q5 8 5 10 18941 10 22
Q6 4 8 5 204 11 21
Q7 8 6 7 1733 11 17

# Rules/CQs Time (ms)
RG Presto CLIPPER RG Presto CLIPPER

Q1 15 16 15 13 8 73
Q2 10 3 10 16 10 58
Q3 72 28 26 77 12 63

V Q4 185 44 41 261 17 71
Q5 30 16 8 99 15 44
Q6 18 22 18 27 11 69
Q7 180 34 27 359 12 105
Q1 2 4 2 14 ( 1247 ) 12 ( 1252 ) 27 ( 1255 )
Q2 1 2 45 201 ( 1247 ) 23 ( 1262 ) 36 ( 1637 )
Q3 4 8 17 477 ( 2055 ) 26 ( 2172 ) 29 ( 1890 )

U Q4 2 56 63 2431 ( 1260 ) 20 ( 1235 ) 28 ( 1735 )
Q5 10 8 16 7216 ( 1267 ) 26 ( 1305 ) 36 ( 1372 )
Q6 10 13 10 13 ( 1272 ) 14 ( 1260 ) 27 ( 1262 )
Q7 960 24 19 1890 ( 1730 ) 15 ( 1310 ) 35 ( 1322 )

unavailable inDL-Lite and EL. Table 4b shows the number of rewritten queries, rewrit-
ing time and DLV running time. We see that CLIPPER answered all queries in reasonable
time and scaled well (time printed A1/ A2 / A3 /A4). The rewriting times for all the
queries are small and at most within a factor of 3. The high number of rules generated
for Q3 is due to many different possibilities for deriving some atoms in the query, like
Person(x). However, the evaluation still performs well (it stays within a small factor).

7 Related Work

Since Calvanese et al. introduced query rewriting in their seminal work on DL-Lite [3],
many query rewriting techniques have been developed and implemented, e.g. (Perez-
Urbina et al. [23], Rosati and Almatelli [25], Chortaras et al. [4], Gottlob et al. [11]),
usually aiming at an optimized rewriting size. Some of them also go beyond DL-Lite;
e.g. Perez-Urbina et al. cover ELHI, while Gottlob et al. consider Datalog±. Most
approaches rewrite a query into a (union of) CQs; in [25] a non-recursive Datalog pro-
gram is generated, while Perez-Urbina et al. produce a CQ forDL-Lite and a (recursive)
Datalog program for DLs of the EL family. Our approach rewrites a CQ into a union of
CQs, but generates possibly recursive Datalog rules to capture the TBox. The closest DL
to Horn-SHIQ for which a rewriting technique has been implemented is ELHI [23].
Unlike ELHI, Horn-SHIQ can express functionality, a feature supported by DL-Lite
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Table 4: Experiments with UOBM Horn-SHIQ ontology
(a) Queries

Q1(x)←worksFor(x,y), isAffiliatedOrganizationOf(y,z), College(z)
Q2(x)←Postdoc(x), worksFor(x,y), University(y), hasAlumnus(y,x)
Q3(x)←Person(x), like(x,y), Chair(z), isHeadOf(z,w), like(z,y)
Q4(x)←takeCourse(x,y), GraduateCourse(y),

isTaughtBy(y,z), Professor(z)
Q5(x,z)←LeisureStudent(x), takesCourse(x,y), CSCourse(y),

isStudentOf(x, z), University(z)
Q6(x,y)←enrollIn(x,y), hasDegreeFrom(x,y), University(y)
Q7(x,y)←PeopleWithManyHobbies(x), isMemberOf(x,z), like(x,w),

TennisClass(w), hasMember(z,y), like(y,w)
Q8(x,z)←TennisFan(x), like(x,y), Sport(y),

isHeadOf(x,z), ReserachGroup(z)
Q9(x,y,z)←Student(x), hasDegreeFrom(x,y), Professor(z),

worksFor(z,y), isAdvisorOf(z,x)
Q10(x,y,w)←Professor(x), Dean(y), isMemberOf(y,w), worksFor(x,w),

hasPublication(x,z), isPublicationOf(z,y)

(b) Running time

# of Rew Datalog time (DLV)
Rules (ms) (ms)

Q1 3 87 120/ 370/ 620/ 870
Q2 16 98 130/ 380/ 630/ 880
Q3 180 212 370/ 890/ 1420/ 1960
Q4 45 156 180/ 480/ 780/ 1070
Q5 37 152 160/ 440/ 720/ 1010
Q6 16 112 130/ 370/ 630/ 880
Q7 55 143 180/ 470/ 750/ 1050
Q8 17 105 130/ 380/ 630/ 870
Q9 33 126 150/ 430/ 720/ 1010
Q10 23 137 150/ 390/ 640/ 880

considered relevant for applications. A comparison of both systems on ontologies be-
yond DL-Lite remains for future work. Our technique resembles Rosati’s for CQs in
EL [24], which incorporates the CQ into the TBox before saturation and then (after
saturation) translates it into Datalog, resulting in a best-case exponential algorithm. We
avoid this by doing a rewrite step only if the TBox has an applicable existential axiom.

Rewriting approaches for more expressive DLs are less common. The most notable
exception is Hustadt et al.’s translation of SHIQ terminologies into disjunctive Data-
log [15], which is implemented in the KAON2 reasoner. The latter can be used to answer
queries over arbitrary ABoxes, but supports only instance queries. An extension to CQs
(without transitive roles) is given in [14], but it is not implemented. To our knowledge,
also the extension of the rewriting in [23] to nominals remains to be implemented [22].
In [20] a Datalog rewriting is used to establish complexity bounds of standard reasoning
in the Horn fragments of SHOIQ and SROIQ, but it does not cover CQs.

8 Conclusion

We presented a rewriting-based algorithm for answering CQs over Horn-SHIQ on-
tologies. Our prototype implementation shows potential for practical applications, and
further optimizations will improve it. Future versions of CLIPPER will support transi-
tive roles and queries formulated in weakly DL-safe Datalog, for which the theoretic
foundations have been already developed here and in [9].

As an interesting application, we mention that our method allows to improve rea-
soning with DL-programs, which loosely couple rules and ontologies [5]. To avoid the
overhead caused by the interaction of a rule reasoner and an ontology reasoner of tra-
ditional methods, the inline evaluation framework translates ontologies into rules [12,
8]. The techniques of this paper can be faithfully integrated into the inline evaluation
framework to efficiently evaluate DL-programs involving Horn-SHIQ ontologies.
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Abstract We formalise the problem of query reformulation over a description lo-
gic ontology and a DBox in a general framework. This framework supports decid-
ing the existence of a safe-range first-order equivalent reformulation of a concept
query in terms of the signature of a DBox. A constructive method to compute the
reformulation is provided. We are particularly interested in safe-range reformula-
tions since they can be transformed to relational queries and executed using SQL.
We also discuss the completeness of the proposed framework with respect to fi-
nite and unrestricted models. As a case study we consider ontologies and queries
expressed in SHOQ.

1 Introduction

In this paper we study and develop a query rewriting framework which is applicable
to description logics systems where data is stored in a classical finite relational data-
base, in a way that in the literature has been called DBox [5,6]. A DBox is a set of
ground atoms which semantically behaves like a database, i.e., the interpretation of the
database predicates in the DBox is exactly equal to the database relations. The DBox
predicates are closed, i.e., their extensions are the same in every interpretation, whereas
the other predicates in the knowledge base are open, i.e., their extensions may vary
among different interpretations. We do not consider here the open interpretation for the
database predicates – i.e., the classical ABox. In an ABox, the interpretation of database
predicates contains the database relations and possibly more. This notion clearly is less
faithful in the representation of a database semantics since it would allow for spurious
interpretations of database predicates with additional unwanted tuples not present in the
original database.

In our general framework an ontology is a TBox in a first-order description logic,
and queries are concept expressions. Within this setting, the framework provides sup-
port to decide the existence of a relational algebra (i.e., safe-range first-order) equivalent
(a.k.a. exact) reformulation of the query in terms of the DBox signature. It also provides
an effective approach to construct the reformulation. We are particularly interested in
safe-range reformulations of queries because their range-restricted syntax is needed to
reduce the original query answering problem to a relational algebra evaluation (e.g., via
SQL) over the original database [7]. Our framework points out several conditions on the
ontology and the query in order to guarantee the existence of a safe-range equivalent
reformulation. We show that these conditions are not infeasible in practice and we also
provide an efficient method to ensure their validation. Standard tableau techniques can
be used to compute the reformulation.
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In order to be complete, our framework is applicable to ontologies and queries ex-
pressed in any fragment of first-order logic enjoying the finitely controllable determin-
acy [3,8]. If the employed logic does not enjoy the finitely controllable determinacy our
approach would become sound but incomplete, by still effectively implementable using
standard theorem proving techniques. We have explored non-trivial applications where
the framework is complete; in this paper, the application with SHOQ ontology and
concept queries is discussed. We show how (i) to check whether the answers to a given
query with an ontology are solely determined by the extension of the DBox predicates
and, if so, (ii) to find an equivalent rewriting of the query in terms of the DBox pre-
dicates to allow the use of standard database technology for answering the query. This
means we benefit from the low computational complexity in the size of the data for
answering queries on relational databases. In addition, it is possible to reuse standard
techniques of description logics reasoning to find rewritings, such as in [5].

The query reformulation problem has received strong interest in classical relational
database research as well as modern knowledge representation studies. Differently from
the mainstream research on query reformulation [9], which is mostly based on per-
fect or maximally contained rewritings with sound views (see, e.g., the DL-Lite ap-
proach [10]), we focus here on exact rewritings with exact views, since it character-
ises more precisely the query answering problem with ontologies and databases, and
it allows for very expressive ontology languages. An exact reformulation has the same
answer in any model of the ontology with the DBox, and it provides a fully determined
answer, which may be useful, e.g., for materialisation.

This work extends the seminal works on exact rewritings with exact views [2,5,3] by
focussing on safe-range reformulations and on the conditions ensuring their existence in
description logics. This is necessary when the description logic at hand is not enjoying
the Beth definability property [11], which would guarantee the rewriting to be safe-
range. The detailed algorithms and all the proofs for a more general framework are
available in the technical report [8].

The paper is organised as follows. Section 2 provides the necessary formal back-
ground and definitions. Section 3 introduces a characterisation of the query reformula-
tion problem, and the conditions allowing for an effective reformulation are analysed.
At the end, we discuss in details the application to SHOQ ontologies with a DBox.

2 Preliminaries

In this section we define the basic concepts that are used in the paper.

2.1 Description Logics and DBox

Let NC , NR and NI be sets of concept, role and individual names respectively. And let
L(NC , NR, NI) be some description logic language overNC ,NR andNI . An ontology
is a set of TBox assertions in L(NC , NR, NI).

Let C be a (possibly complex) concept or an assertion in L(NC , NR, NI). We de-
note as σ(C) the signature of C, that is the union of all concept, role and individual
names occurring in C.

A DBox D is a finite set of atomic concept and role assertions of the form A(a) and
R(a, b) respectively, where A ∈ NC , R ∈ NR and a, b ∈ NI . The sets of all concept,
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role and individual names appearing in D are denoted as σD(C), σD(R) and σD(I)
respectively. We call DBox predicates the set σD(P ) = σD(C) ∪ σD(R).

As usual, an interpretation I = 〈∆I , ·I〉 includes a domain ∆I and an interpreta-
tion function ·I that maps concepts to subsets of ∆I , roles to binary relations on ∆I

and individuals to elements of ∆I .
We say that an interpretation I embeds a DBox D, written I(D), if it holds that:

(i) aI = a for every DBox individual a ∈ σD(I), i.e. a follows the standard name
assumption (SNA) [7]; (ii) for every concept name A in σD(C) and every u ∈ ∆I ,
u ∈ AI if and only if A(u) ∈ D; and (iii) for every role name R in σD(R) and
every pair (u, v) ∈ ∆I × ∆I , (u, v) ∈ RI if and only if R(u, v) ∈ D. In other
words, in every interpretation embedding D, the interpretation of any DBox predicate
is always the same and it is given exactly by its content in the DBox; this is, in general,
not the case for the interpretation of the non-DBox predicates. Under above embedding
conditions, we say that all the DBox predicates are closed, while all the other predicates
are open and may be interpreted differently in different interpretations.

In order to allow for an arbitrary DBox to be embedded, we generalise the standard
name assumption to all the individual names in NI ; this implies that the domain of any
interpretation necessarily includes the set of all the individual names NI .

We denote an interpretation I with a specific domain ∆ as I(∆). Given an in-
terpretation I, we denote as I|S the interpretation restricted to the smaller signature
S ⊆ NC ∪ NR ∪ NI , i.e., the interpretation with the same domain ∆I and the same
interpretation function ·I defined only for the concept, role and individual names from
the set S.

We call FOL(C,P) a function free first-order language with equality over a signa-
ture Σ = (C,P), where C = NI is a set of constants and P = NC ∪ NR is a set of
predicates with arities 1 (for concept names) and 2 (for role names).

An interpretation in which an assertionϕ (TBox or ABox) is true is called a model of
ϕ; the set of all models of ϕ is denoted as M(ϕ). The set of all models of all assertions
in an ontology T is denoted as M(T ). We say that a DBox D is legal for an ontology
T if there exists a model of T embedding D. In the paper, we consider only consistent
non-tautological ontologies and legal DBoxes.

2.2 Queries and certain answers

A query is a concept in L(NC , NR, NI). Given a query Q, we define its certain answer
to a DBox D under T as follows:

Definition 1 (Certain Answer) The (certain) answer of a query Q to a DBox D under
an ontology T is the set of individuals:

{a ∈ NI | ∀ I(D) ∈M(T ) : I(D) |= Q(a)}.

We now show that we can weaken the standard name assumption for the constants
by just assuming unique names, without changing the certain answers. As we said be-
fore, an interpretation I embedding a DBox D satisfies the standard name assumption
– written I(D)SNA – if cI = c for any c ∈ NI . Alternatively, an interpretation I embed-
ding a DBox D satisfies the unique name assumption – written I(D)UNA – if aI 6= bI for
any different a, b ∈ NI . The following proposition allows us to freely interchange the
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standard name and the unique name assumptions in dealing with interpretations embed-
ding DBoxes. This is a practical advantage, since most description logics reasoners do
have a native unique name assumption.

Proposition 1 (SNA vs UNA) For any query Q(x), ontology T and DBox D,
{a ∈ NI | ∀ I(D)SNA ∈M(T ) : I(D)SNA |= Q(a)} =
{a ∈ NI | ∀ I(D)UNA ∈M(T ) : I(D)UNA |= Q(a)}.

A query is DBox-relativised if and only if its answer is bounded by the DBox.

Definition 2 (DBox-relativised query) A concept query Q is DBox-relativised under
ontology T , if in each model of T the interpretation ofQ includes only domain elements
which are among the interpretation of DBox predicates or of individuals from T or Q.

2.3 Safe-range formulas

Since a query can be an arbitrary first-order formula, its answer can be infinite (since
the domain is not restricted to be finite) or it may depend on the domain. To eliminate
such cases, we will consider domain independent queries. For example, the query Q =
¬Student over the DBox Student(A), Student(B), with domain {A,B,C} has the
answer {x = C}, with domain {A,B,C,D} has the answer {x = C, x = D}, and if
we change the domain to an infinite one, the answer will be infinite even in presence
of such a finite database. Therefore, the notion of domain independent queries has been
introduced in relational databases.

In general, the problem of checking whether a FOL formula is domain independent
is undecidable [7]. The well known safe-range syntactic fragment of FOL introduced
by Codd is an equally expressive language; indeed any safe-range formula is domain
independent, and any domain independent formula can be easily transformed into a
logically equivalent safe-range formula. Intuitively, a formula is safe-range if and only
if its variables are bounded by positive predicates or equalities – for the exact syntactical
definition see, e.g., [7]. For example, the formula ¬A(x) ∧ B(x) is safe-range, while
queries ¬A(x) and ∀x.A(x) are not. To check whether a formula is safe-range, the
formula is transformed into a logically equivalent safe-range normal form and its range
restriction is computed according to a set of syntax based rules; the range restriction of
a formula is a subset of its free variables, and if it coincides with the free variables then
the formula is said to be safe-range.

Any formula in FOL(C,P) can be transformed to a logically equivalent safe range
normal form (SRNF) by recursively applying the following steps :

– Variable substitution: no distinct pair of quantifiers may employ same variable.
– Elimination of universal quantifiers
– Elimination of implications
– Pushing negation
– Flattening of and/or

A formula is said to be SRNF if none of the aforementioned steps can be applied any
more. Let ϕ be a formula in FOL(C,P), we denote the set of all variables appearing
in ϕ as VAR(ϕ), and the set of the free variables appearing in ϕ as FREE(ϕ). The safe
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range normal form of ϕ is denoted as SRNF(ϕ). Let ϕ be a formula in SRNF. The range
restriction of ϕ, denoted as rr(ϕ), is either a subset of FREE(ϕ) or⊥, and it is computed
according to the following rules:

– rr(R(t1, . . . , tn)) = VAR(R(t1, . . . , tn));
– rr(x = y) = ∅;
– rr(x = c) = {x}, where c ∈ C;
– rr(ϕ1 ∧ ϕ2) = rr(ϕ1) ∪ rr(ϕ2);
– rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2);
– rr(ϕ∧x = y) = rr(ϕ), if {x, y}∩rr(ϕ) = ∅; and rr(ϕ∧x = y) = rr(ϕ)∪{x, y}

otherwise;
– rr(¬ϕ) = ∅ ∩ rr(ϕ);
– rr(∃xϕ) = rr(ϕ) \ x if x ∈ rr(ϕ) and rr(∃xϕ) = ⊥ otherwise.

We consider ⊥ as a special set, such that for any set Z : ⊥ ∪ Z = ⊥ ∩ Z = ⊥\Z =
Z\⊥ = ⊥. If ϕ is not in SRNF, then rr(ϕ) := rr(SRNF(ϕ)). We say that a variable
x ∈ FREE(ϕ) has restricted range in ϕ if x ∈ rr(ϕ).

Definition 3 (Safe range) A formula ϕ is safe range iff rr(SRNF(ϕ)) = FREE(ϕ).

We also consider a weaker version of safe-range property called ground safe-range.
Given a formula, its grounding is the formula itself where all free variables are replaced
by new constants.

Definition 4 (Ground safe-range) A formula is ground safe-range if its grounding is
safe-range.

The safe-range fragment of first-order logic with the standard name assumption is
equally expressive to the relational algebra, which is the core of the SQL query lan-
guage [7].

For any concept C in L(NC , NR, NI) we denote the corresponding logically equi-
valent formula in FOL(C,P) with one free variable x as C(x). We will call any axiom
(concept) in L(NC , NR, NI) (ground) safe-range, if the corresponding logically equi-
valent formula inFOL(C,P) is (ground) safe-range. An ontology T inL(NC , NR, NI)
is safe-range, if every formula in T is safe-range.

3 Exact Safe-range Query Reformulation

In this section we state the problem of finding a first-order safe-range reformulation of
a concept query. We then find the conditions to reduce the original query answering
problem – which corresponds to an entailment problem – to a model checking problem
of the reformulation over the DBox.

Let us consider the class of queries of interest. The certain answer to a query in-
cludes all the individuals which make the query true in all the models of the ontology:
so, if an individual would make the query true only in some model, then it would be
discarded from the certain answer. In other words, it may be the case that the answer
to the query is not necessarily the same among all the models of the knowledge base.
In this case, the query is not fully determined by the given source data; indeed, there
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is some answer which is possible, but not certain. Due to the indeterminacy of the data
wrt the query, the complexity to compute the certain answer in general increases, and it
corresponds to the complexity of entailment in the logic. In this paper we focus on the
case when a query has the same answer over all the models of the ontology, namely, on
the case when the information requested by the query is fully available from the source
data without ambiguity. In this way, the indeterminacy disappears, and the complexity
of the process may decrease.

A query is definable [12] if its truth value in any model of the ontology depends only
on the domain and on the interpretation of the database predicates and constants. The
answer of a definable query does not depend on the interpretation of non-database pre-
dicates. Once the database and a domain are fixed, it is never the case that an individual
would make the query true in some model of the knowledge base and false in others,
since the truth value of an implicitly defined query depends only on the interpretation
of the database predicates and constants and on the domain (which are fixed).

[12] proved that, in first-order logic, looking for definable queries from the DBox
predicates amounts at having an exact reformulation of the query in terms of the DBox
predicates.

Definition 5 (Exact Reformulation) The FOL(C,P) formula Q̂ is an exact reformu-
lation of Q under T over σD(P ) if σ(Q̂) ⊆ σD(P ) and T |= ∀x.Q(x)↔ Q̂(x).

Since we are dealing with finite databases, in the following we will focus on those
fragments of FOL(C,P) for which the exact reformulation over unrestricted models
and over finite models coincide; we say that these fragments have finitely controllable
determinacy.

Given DBox predicates σD(P ), an ontology T , and a queryQ in theL(NC , NR, NI)

language, our goal is to find a safe-range exact reformulation Q̂ of Q in FOL(C,P)
expressed in terms of DBox predicates, that being evaluated as a relational algebra ex-
pression over a legal DBox (e.g., using a relational database system with SQL) gives
the same answer as the certain answer of Q to the DBox under T .

Since an exact reformulation is equivalent under the ontology to the original query,
the certain answer of the original query and of the reformulated query are identical.
More precisely, the following proposition holds.

Proposition 2 Let Q̂ be an exact reformulation of Q under T over σD(P ), then:
{a ∈ NI | ∀ I(D) ∈M(T ) : I(D) |= Q(a)} =

{a ∈ NI | ∀ I(D) ∈M(T ) : I(D) |= Q̂(a)}.
From the above equation it is clear that in order to answer an exactly reformulated

query, one still may need to consider all the models I(D) of the ontology embedding the
DBox – i.e., we still have an entailment problem to solve. The following theorem states
the condition to reduce the original query answering problem – based on entailment –
to the problem of checking the validity of the exact reformulation over a single model:
the condition is that the reformulation should be safe-range.

Theorem 1 (Adequacy of Exact safe-range Query Reformulation) Let T be an on-
tology in L(NC , NR, NI), Q be a query in L(NC , NR, NI) and D be a legal DBox for
T . If Q̂ is an exact reformulation of Q under T over σD(P ) and Q̂ is safe-range, then:
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{a ∈ NI | ∀ I(D) ∈M(T ) : I(D) |= Q(a)} =

{a ∈ adom(σ(Q̂),D) | I(NI)
(D) |σD(P )∪NI

|= Q̂(a)},
where adom(σ(Q̂),D) consists of all the constants from Q̂ and from the assertions in
D corresponding to concept and role names appearing in Q̂.

A safe-range reformulation is necessary to transform a first-order query to a rela-
tional algebra query which can then be evaluated by using SQL techniques. The theorem
above shows in addition that being safe-range is also a sufficient property for an exact
reformulation to be correctly evaluated as an SQL query.

However, given an arbitrary input (an ontology, a DBox and a concept query), one
can not guarantee the existence of an exact safe-range reformulation. Therefore, in the
rest of this section we introduce conditions on the input to get an exact safe-range
reformulation. Moreover, since we are dealing with a finite DBox, we have also to
consider the condition under which the existence of an exact safe-range reformulation
under unrestricted reasoning and under finite reasoning coincide.

Let Q be any formula and Q̃ the formula obtained from it by uniformly replacing
every occurrence of each non-DBox predicate P with a new predicate P̃ . We extend
this renaming operator ·̃ to any set of formulas in a natural way. Then the following
constructive theorem gives us sufficient conditions to check the existence of an exact
safe-range reformulation.

Theorem 2 (Constructive Theorem) If the following conditions hold:

1. T ∪ T̃ |= Q ≡ Q̃;
2. Q is DBox-relativised under T ;
3. Q is ground safe-range;
4. T is safe-range;

then there exists an exact safe-range reformulation Q̂ of Q in FOL(C,P) over σD(P )
under T .

The above conditions can be divided into two groups: the first condition forces the exist-
ence of an exact reformulation, while the three last conditions guarantee its safe-range
property. The first condition says that one does not need to consider non-DBox pre-
dicates to answer the query. In other words, its answer in any model of the ontology
depends only on the domain and on the interpretation of the DBox predicates and con-
stants. This property of a query is called implicit definability from a set of predicates
(the DBox predicates) in first-order logic [12]. The second condition points out that
the answer of the query is necessarily in the set of individuals appearing in the DBox
original query or ontology.

The first two conditions are necessary to have an exact safe-range reformulation, i.e.
if there is an exact safe-range reformulation, then the original query should be implicitly
definable and DBox-relativised. The last two conditions are just sufficient ones, as the
following example shows.

Example 1 Let P = {A,B,C}, σD(I) = {C}, T = {A ≡ C,> v B}, Q = A uB.

– Q is implicitly definable from the DBox predicates under T because the first asser-
tion of T gives an explicit definition of Q;
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– Q is safe-range;
– Q is DBox-relativised under T because of the first assertion of T .
– Q̂(x) = C is an exact safe-range reformulation of Q under T over σD(I).

But T is not safe-range because of the second assertion. ut

4 A case study: SHOQ

Syntax Semantics
A AI ⊆ ∆I

R RI ⊆ ∆I ×∆I

C uD CI ∩DI

C tD CI ∪DI

¬C ∆I\CI

∃R.C {x|exists y such that (x, y) ∈ RI and y ∈ CI}
∀R.C {x|forall y (x, y) ∈ RI implies y ∈ CI}
{o} {o}I ⊆ ∆I

≥ nR.C {x|#({y|(x, y) ∈ RI} ∩ CI) ≥ n}
≤ nR.C {x|#({y|(x, y) ∈ RI} ∩ CI) ≤ n}

Table 1. Syntax and semantics of SHOQ concepts

SHOQ is an extension of the description logicALC with transitive roles, role hier-
archies, qualified number restrictions, and individuals; it is a fragment of first-order
logic and of OWL2. The syntax and semantics of SHOQ is summarised in table 1,
where A is an atomic concept, C and D are concepts, o is an individual name and R
is an atomic role. SHOQ is a pretty much standard description logic; for more details
see, e.g., [13]. A TBox in SHOQ is a set of concept inclusion axioms C v D, role
inclusion axioms R v S, and transitivity axioms Trans(R) (where C, D are concepts
and R, S are atomic roles) with the usual expected semantics.

In this section, we present an application of our framework where the ontology is a
TBox in SHOQ, and the query is a SHOQ concept.

Finitely controllable determinacy. Does SHOQ have finite controllability of determ-
inacy? It is enough to check that the entailment T ∪ T̃ |= Q ≡ Q̃ coincide in the
unrestricted and finite cases. The finite controllability of this equivalence axiom entail-
ment in SHOQ is guaranteed because of the two following reasons:

– The entailment T ∪ T̃ |= Q ≡ Q̃ can be reduced in SHOQ to a concept satisfiab-
ility problem for an empty TBox.

– SHOQ has finite model property [14].

So, we can use a standard SHOQ reasoner (e.g., an OWL2 reasoner) to check the first
condition.
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Safe-range ontology. Let’s now check whether a SHOQ ontology is safe-range. Role
inclusion and transitivity axioms are always safe-range. Unfortunately, concept inclu-
sion axioms in SHOQ ontologies may not be safe-range: for example, the axiom
¬ male v female is not safe-range. It is easy to see that an axiom C v D is not safe-
range if and only if C(x) is not safe-range and D(x) is safe-range: just observe that the
axiom is logically equivalent to the formula ¬∃x. C(x) ∧ ¬D(x) in FOL(C,P). The
following proposition provides rules deciding whether a SHOQ concept is safe-range.

Proposition 3 Let A be an atomic concept, C and D be SHOQ concepts. Then the
open formulas:

1. A(x), (∃R.C)(x), {o}(x), (≥ nR.C)(x) are safe-range;
2. (∀R.C)(x), (≤ nR.C)(x) are not safe-range;
3. (C uD)(x) is safe-range if and only if C(x) is safe-range or D(x) is safe-range;
4. (C tD)(x) is safe-range if and only if C(x) is safe-range and D(x) is safe-range;
5. ¬C(x) is safe-range if and only if C(x) is not safe-range.

Proposition 4 For any SHOQ concept C, C(x) is ground safe-range.

The presence of non-safe-range axioms in an ontology would prevent the applica-
tion of our framework, but we argue that non-safe-range axioms should not appear in
a cleanly designed SHOQ ontology, and, if present, they should be fixed. Indeed, the
use of absolute negative information in the subsumee – such as in the axiom “a non-
male is a female" (¬ male v female) – should be deprecated by a clean design
methodology, since the subsumer would include all sorts of objects in the universe (but
the ones of the subsumee type) without any obvious control. Only relativised negative
information in the subsumee should be allowed – such as in the axiom “a non-male
person is a female" (person u ¬ male v female). This observations suggests
a fix for non-safe-range axioms: for every non-safe-range axiom C v D users will be
asked to replace it by the safe-range one CuE v D, whereE is an arbitrary safe-range
concept. Therefore, the user is asked to make explicit the type of the subsumee, in a way
to make it safe-range; note that the type could be also a fresh new atomic concept. We
believe that the fix we are proposing for SHOQ is a reasonable one, and would make
all SHOQ ontologies eligible to be used with our framework.

Ground safe-range and DBox-relativised query. Let T be a SHOQ ontology, andQ an
implicitly definable query, which is a possibly complex concept in SHOQ. In order to
be able to use our framework, a query should be ground safe-range and DBox-relativised
under the ontology. We already know by proposition 4 that a concept query is always
ground safe-range. A query is DBox-relativised if it returns only DBox individuals; it
may be strange for a user to issue a query which is not meant to return just DBox objects.
One can check if Q is DBox-relativised under the ontology by using the following
proposition.

Proposition 5 The query Q is DBox-relativised under T if and only if:

T |=SHOIQ Q v
k⊔

i=1

{oi} t
n⊔

i=1

Ai t
m⊔

i=1

(∃Ri.> t ∃R−i .>), (1)
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where {A1, . . . , An} is the set of all DBox concepts appearing in T and Q;
{R1, . . . , Rm} is the set of all DBox roles appearing in T and Q; and
{o1, . . . , ok} is the set of all individual names appearing in T and Q.

In other words, if the SHOIQ entailment in the proposition is valid, then the query
is DBox-relativised under the ontology. We use SHOIQ instead of SHOQ because
we need inverse roles. Due to the incompleteness wrt finite model reasoning of the
SHOIQ test, one might conclude that a query is not DBox-relativised but in fact it is
DBox-relativised under finite model reasoning. In the rare case a user is issuing a real
non-DBox-relativised query, or a DBox-relativised query which failed the above test
due to its incompleteness, we would ask the user to conjoin the query with a safe-range
concept composed only by database atomic concepts, which would become the type of
the query. We believe that also this fix for the queries is a reasonable one, and would
make all queries eligible to be used with our framework.

A complete procedure. Given a SHOQ ontology T , a legal DBox D and a concept
query Q, one can apply the procedure below to generate a safe-range exact reformula-
tion over the DBox predicates.

Input: A SHOQ TBox T , a concept queryQ in SHOQ and a DBox predicates (DBox
atomic concepts and roles).

1. Check implicit definability of the query Q by testing T ∪ T̃ |= Q ≡ Q̃ using
standard DL reasoner of SHOQ. If it is the case, continue.

2. Check whether T is safe-range, and fix it if it is not safe-range.
3. Check the DBox-relativisation of Q, and fix it if it is not DBox-relativised.
4. Use the constructive theorem to

(a) compute a ground safe-range reformulation Q′(x) from the tableau proof gen-
erated in step 1 (this is an extension of what has been presented in [5,11]; see
[8] for a complete characterisation);

(b) transform it to a safe-range one as follows: Q̂(x) := Q′(x)∧ADOM(x),where
ADOM is a predicate containing all the individuals in the DBox, in T , and in
Q. ADOM actually represents the subsumer of the TBox axiom in (1).

Output: A safe-range first-order exact reformulation Q̂(x) expressed over the DBox
predicates.

Note that the above procedure could be executed once for all at compile time: in-
deed, it could be run for each atomic concept in the ontology, and the outcome for each
of them could be stored persistently, if the reformulation has been successful.

5 Conclusion

We have introduced a framework to compute the exact reformulation of concept queries
to a DBox in description logics. We have found the conditions which guarantee that a
safe-range reformulation exists, and we show that it can be evaluated as a relational
algebra query over the database to give the same answer as the original query under the
ontology. A non-trivial case study has been presented in the field of description logics,
with the SHOQ language.
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As a future work, we would like to study optimisations of reformulations. From
the practical perspective, since there might be many rewritten queries from one original
query, the problem of selecting an optimised one in terms of query evaluation is very
important. In fact, one has to take into account which criteria should be used to optim-
ise, such as: the size of the rewritings, the numbers of used predicates, the priority of
predicates, the number of relational operators, and clever usage of duplicates.

We wish to thank David Toman, İnanç Seylan, Jos de Bruijn, Alex Borgida, Grant
Weddell, Tommaso Di Noia, Umberto Straccia, Balder ten Cate with whom we have
learnt a lot about query rewriting based on Beth definability, and anonymous reviewers
for insightful comments.
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Abstract. In this paper we describe an approach for reasoning about typical-
ity and defeasible properties in low complexity preferential Description Logics.
We describe the non-monotonic extension of the low complexity DLs EL⊥ and
DL-Litecore based on a typicality operatorT, which enjoys a preferential seman-
tics. We summarize complexity results for such extensions,calledEL⊥Tmin and
DL-LitecTmin. Entailment inDL-LitecTmin is in Πp

2 , whereas entailment in
EL⊥Tmin is EXPTIME-hard. However, for the Left Local fragment ofEL⊥Tmin

the complexity of entailment drops toΠp
2 . We present tableau calculi for Left

Local EL⊥Tmin and forDL-LitecTmin. The calculi perform a two-phase com-
putation in order to check whether a query is minimally entailed from the initial
knowledge base. The calculi are sound, complete and terminating, and provide
decision procedures for verifying entailment in the two logics, whose complexi-
ties match the above mentioned complexity results.

1 Introduction
Nonmonotonic extensions of Description Logics (DLs) have been actively investigated
since the early 90s [15, 4, 2, 3, 7, 12, 8, 6]. A simple but powerful non-monotonic exten-
sion of DLs is proposed in [12, 8]: in this approach “typical”or “normal” properties can
be directly specified by means of a “typicality” operatorT enriching the underlying
DL; the typicality operatorT is essentially characterised by the core properties of non-
monotonic reasoning axiomatized bypreferential logic[13]. In ALC +T [12], one can
consistently express defeasible inclusions and exceptions such as: typical students do
not pay taxes, but working students do typically pay taxes, but working students hav-
ing children normally do not:T(Student) ⊑ ¬TaxPayer ; T(Student ⊓ Worker ) ⊑
TaxPayer ; T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer . Although the
operatorT is non-monotonic in itself, the logicALC + T is monotonic. As a con-
sequence, unless a KB contains explicit assumptions about typicality of individuals
(e.g. that john is a typical student), there is no way of inferring defeasible proper-
ties of them (e.g. that john does not pay taxes). In [8], a non-monotonic extension of
ALC + T based on a minimal model semantics is proposed. The resulting logic, called
ALC + Tmin, supports typicality assumptions, so that if one knows thatjohn is a stu-
dent, one can non-monotonically assume that he is also atypical student and therefore
that he does not pay taxes. As an example, for a TBox specified by the inclusions above,
in ALC+Tmin the following inference holds: TBox∪ {Student(john)} |=ALC+Tmin

¬TaxPayer (john).
Similarly to other non-monotonic DLs, adding the typicality operator with its min-

imal model semantics to a standard DL, such asALC, leads to a very high com-
plexity (namely, query entailment inALC + Tmin is in CO-NEXPNP [8]). This fact
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has motivated the study of non-monotonic extensions of low complexity DLs such as
DL-Litecore [5] and EL⊥ of the EL family [1] which are nonetheless well-suited for
encoding large knowledge bases (KBs).

In this paper, we consider the extensions of the low complexity logicsDL-Litecore
andEL⊥ with the typicality operator based on the minimal model semantics introduced
in [8]. We summarize complexity upper bounds for the resulting logicsEL⊥Tmin and
DL-LitecTmin given in [11]. ForEL⊥, it turns out that its extensionEL⊥Tmin is un-
fortunately EXPTIME-hard. This result is analogous to the one forcircumscribedEL⊥

KBs [3]. However, the complexity decreases toΠp
2 for the fragment ofLeft LocalEL⊥

KBs, corresponding to the homonymous fragment in [3]. The same complexity upper
bound is obtained forDL-LitecTmin.

We also describe the tableau calculi forDL-LitecTmin as well as for the Left Local
fragment ofEL⊥Tmin for deciding minimal entailment inΠp

2 . Our calculi perform a
two-phase computation: in the first phase, candidate models(complete open branches)
falsifying the given query are generated, in the second phase the minimality of candidate
models is checked by means of an auxiliary tableau construction. The calculi do not
require any blocking machinery in order to achieve termination. A reformulation of
existential rules, together with the idea of constructing multilinear models, is sufficient
to match theΠp

2 complexity.

2 The Typicality Operator T and the LogicEL⊥Tmin

Before describingEL⊥Tmin , let us briefly recall the underlying monotonic logic

EL+⊥
T, obtained by adding toEL⊥ the typicality operatorT. The intuitive idea is

that T(C) selects thetypical instances of a conceptC. In EL+⊥
T we can therefore

distinguish between the properties that hold for all instances of conceptC (C ⊑ D),
and those that only hold for the normal or typical instances of C (T(C) ⊑ D).

Formally, theEL+⊥
T language is defined as follows.

Definition 1. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andR ∈ R, we define

C := A | ⊤ | ⊥ | C ⊓ C CR := C | CR ⊓ CR | ∃R.C CL := CR | T(C)

A KB is a pair (TBox, ABox). TBox contains a finite set of general concept inclusions
(or subsumptions)CL ⊑ CR. ABox contains assertions of the formCL(a) andR(a, b),
wherea, b ∈ O.

The semantics ofEL+⊥
T is defined by enriching ordinary models ofEL⊥ by aprefer-

ence relation< on the domain, whose intuitive meaning is to compare the “typicality”
of individuals:x < y, means thatx is more typical thany. Typical members of a con-
ceptC, that is members ofT(C), are the membersx of C that are minimal with respect
to this preference relation.

Definition 2 (Semantics ofT). A modelM is any structure〈∆, <, I〉 where∆ is the
domain;< is an irreflexive and transitive relation over∆ that satisfies the following
Smoothness Condition: for all S ⊆ ∆, for all x ∈ S, eitherx ∈ Min<(S) or ∃y ∈
Min<(S) such thaty < x, whereMin<(S) = {u : u ∈ S and∄z ∈ S s.t.z < u}.
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Furthermore,< is multilinear: if u < z and v < z, then eitheru = v or u < v or
v < u. I is the extension function that maps each conceptC to CI ⊆ ∆, and each role
r to rI ⊆ ∆I × ∆I . For concepts ofEL⊥, CI is defined in the usual way. For theT
operator:(T(C))I = Min<(CI).

Given a modelM, I can be extended so that it assigns to each individuala of O a
distinct elementaI of the domain∆. We say thatM satisfies an inclusionC ⊑ D if
CI ⊆ DI , and thatM satisfiesC(a) if aI ∈ CI andaRb if (aI , bI) ∈ RI . Moreover,
M satisfies TBox if it satisfies all its inclusions, andM satisfies ABox if it satisfies all
its formulas.M satisfies a KB (TBox,ABox), if it satisfies both its TBox and its ABox.

The operatorT [12] is characterized by a set of postulates that are essentially a
reformulation of the KLM [13] axioms ofpreferential logicP. T has therefore all the
“core” properties of non-monotonic reasoning as it is axiomatized byP. The semantics
of the typicality operator can be specified by modal logic. The interpretation ofT can
be split into two parts: for anyx of the domain∆, x ∈ (T(C))I just in case (i)x ∈ CI ,
and (ii) there is noy ∈ CI such thaty < x. Condition (ii) can be represented by
means of an additional modality�, whose semantics is given by the preference relation
< interpreted as an accessibility relation. The interpretation of � in M is as follows:
(�C)I = {x ∈ ∆ | for everyy ∈ ∆, if y < x theny ∈ CI}. We immediately get that
x ∈ (T(C))I if and only if x ∈ (C ⊓ �¬C)I . From now on, we considerT(C) as an
abbreviation forC ⊓ �¬C.

As mentioned in the Introduction, the main limit ofEL+⊥
T is that it ismonotonic.

Even if the typicality operatorT itself is non-monotonic (i.e.T(C) ⊑ E does not imply

T(C ⊓ D) ⊑ E), what is inferred from anEL+⊥
T KB can still be inferred from any

KB’ with KB ⊆ KB’. In order to perform non-monotonic inferences, as done in [8], we

strengthen the semantics ofEL+⊥
T by restricting entailment to a class of minimal (or

preferred) models. We call the new logicEL⊥Tmin . Intuitively, the idea is to restrict
our consideration to models thatminimize the non typical instances of a concept.

Given a KB, we consider a finite setLT of concepts: these are the concepts whose
non typical instances we want to minimize. We assume that thesetLT contains at least
all conceptsC such thatT(C) occurs in the KB or in the queryF , where aqueryF is
either an assertionC(a) or an inclusion relationC ⊑ D. As we have just said,x ∈ CI

is typical forC if x ∈ (�¬C)I . Minimizing the non typical instances ofC therefore
means to minimize the objects falsifying�¬C for C ∈ LT. Hence, for a given model
M = 〈∆, <, I〉, we define:

M�−
LT

= {(x, ¬�¬C) | x 6∈ (�¬C)I , with x ∈ ∆, C ∈ LT}.

Definition 3 (Preferred and minimal models).Given a modelM = 〈∆ <, I〉 of a
knowledge baseKB, and a modelM′ = 〈∆′, <′, I ′〉 of KB, we say thatM is preferred
to M′ w.r.t. LT, and we writeM <LT M′, if (i) ∆ = ∆′, (ii) M�−

LT
⊂ M′�−

LT
, (iii)

aI = aI′
for all a ∈ O. M is aminimal modelfor KB (w.r.t.LT) if it is a model ofKB

and there is no other modelM′ of KB such thatM′ <LT M.

Definition 4 (Minimal Entailment in EL⊥Tmin ). A queryF is minimally entailed
in EL⊥Tmin by KB with respect toLT if F is satisfied in all models ofKB that are
minimal with respect toLT. We writeKB |=EL⊥Tmin

F .
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Example 1.The KB of the Introduction can be reformulated as follows inEL+⊥
T:

TaxPayer ⊓ NotTaxPayer ⊑ ⊥; Parent ⊑ ∃HasChild .⊤; ∃HasChild .⊤ ⊑ Parent ;
T(Student) ⊑ NotTaxPayer ; T(Student ⊓ Worker ) ⊑ TaxPayer ; T(Student ⊓
Worker ⊓ Parent) ⊑ NotTaxPayer . Let LT = {Student,Student ⊓ Worker ,
Student ⊓ Worker ⊓ Parent}. We have that TBox∪ {Student(john)} |=EL⊥Tmin

NotTaxPayer (john), sincejohnI ∈ (Student⊓�¬Student)I for all minimal models
M = 〈∆ <, I〉 of the KB. In contrast, by the non-monotonic character of minimal
entailment, TBox∪ {Student(john),Worker (john)} |=EL⊥Tmin

TaxPayer (john).
Last, notice that TBox∪ {∃HasChild .(Student ⊓ Worker)(jack)} |=EL⊥Tmin

∃HasChild .TaxPayer (jack). The latter shows that minimal consequence applies to
implicit individualsas well, without any ad-hoc mechanism.

Theorem 1 (Complexity for EL⊥Tmin KBs (Theorem 3.1 in [11])).The problem of
deciding whetherKB |=EL⊥Tmin

F is EXPTIME-hard.

To lower the complexity of minimal entailment inEL⊥Tmin , we considerLeft Local
KBs, a restriction similar to that introduced in [3] for circumscribedEL⊥ KBs.

Definition 5 (Left Local knowledge base).A Left LocalKB only contains subsump-
tionsCLL

L ⊑ CR, whereC andCR are as in Definition 1 and:

CLL
L := C | CLL

L ⊓ CLL
L | ∃R.⊤ | T(C)

There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no concept of the form∃R.C
with C 6= ⊤ occurs on the left hand side of inclusions. In [11] an upper bound for
the complexity ofEL⊥Tmin Left Local KBs is provided by a small model theorem.
Intuitively, what allows us to keep the size of the small model polynomial is that we
reuse the same world to verify the same existential concept throughout the model. This
allows us to conclude that:

Theorem 2 (Complexity for EL⊥Tmin Left Local KBs (Theorem 3.12 in [11])).If
KB is Left Local, the problem of deciding whetherKB |=EL⊥Tmin

F is in Πp
2 .

3 The Logic DL-LitecTmin

In this section, we present the extension of the logicDL-Litecore [5] with theT operator.
We call it DL-LitecTmin. The language ofDL-LitecTmin is defined as follows.

Definition 6. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andr ∈ R, we define

CL := A | ∃R.⊤ | T(A) R := r | r− CR := A | ¬A | ∃R.⊤ | ¬∃R.⊤

A DL-LitecTmin KB is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions of the formCL ⊑ CR. ABox contains assertions of the formC(a) andr(a, b),
whereC is a conceptCL or CR, r ∈ R, anda, b ∈ O.
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As for EL⊥Tmin , a modelM for DL-LitecTmin is any structure〈∆, <, I〉, defined
as in Definition 2, whereI is extended to take care of inverse roles: givenr ∈ R,
(r−)I = {(a, b) | (b, a) ∈ rI}.

In [11] it has been shown that a small model construction similar to the one for
Left LocalEL⊥Tmin KBs can be made also forDL-LitecTmin. As a difference, in this
case, we exploit the fact that, for each atomic roler, the same element of the domain
can be used to satisfy all occurrences of the existential∃r.⊤. Also, the same element of
the domain can be used to satisfy all occurrences of the existential∃r−.⊤.

Theorem 3 (Complexity for DL-LitecTmin KBs (Theorem 4.6 in [11])).The prob-
lem of deciding whetherKB |=DL-LitecTmin

F is in Πp
2 .

4 The Tableau Calculus for Left LocalEL⊥Tmin

In this section we present a tableau calculusTABEL⊥T
min for deciding whether a queryF

is minimally entailed from a Left Local knowledge base in thelogic EL⊥Tmin . It per-

forms a two-phase computation: in the first phase, a tableau calculus, calledTABEL⊥T
PH1 ,

simply verifies whether KB∪ {¬F} is satisfiable in anEL⊥T model, building candi-

date models; in the second phase another tableau calculus, called TABEL⊥T
PH2 , checks

whether the candidate models found in the first phase areminimalmodels of KB, i.e.

for each open branch of the first phase,TABEL⊥T
PH2 tries to build a model of KB which

is preferred to the candidate model w.r.t. Definition 3. The whole procedureTABEL⊥T
min

is formally defined at the end of this section (Definition 7).

The calculusTABEL⊥T
min tries to build an open branch representing a minimal model

satisfying KB∪ {¬F}. The negation of a query¬F is defined as follows: ifF ≡ C(a),
then¬F ≡ (¬C)(a); if F ≡ C ⊑ D, then¬F ≡ (C ⊓ ¬D)(x), wherex does not
occur in KB. Notice that we introduce the connective¬ in a very “localized” way. This
is very different from introducing the negation all over theknowledge base, and indeed
it does not imply that we jump out of the language ofEL⊥Tmin .

TABEL⊥T
min makes use of labels, which are denoted withx, y, z, . . .. Labels represent

individuals either named in the ABox or implicitly expressed by existential restrictions.

These labels occur inconstraints(or labelledformulas), that can have the formx
R−→ y

or x : C, wherex, y are labels,R is a role andC is either a concept or the negation of
a concept ofEL⊥Tmin or has the form�¬D or ¬�¬D, whereD is a concept.

Let us now analyze the two components ofTABEL⊥T
min , starting withTABEL⊥T

PH1 .

4.1 The Tableaux CalculusTABEL⊥T
P H1

A tableau ofTABEL⊥T
PH1 is a tree whose nodes are tuples〈S | U | W 〉. S is a set of

constraints, whereasU contains formulas of the formC ⊑ DL, representing subsump-
tion relationsC ⊑ D of the TBox.L is a list of labels, used in order to ensure the
termination of the tableau calculus.W is a set of labelsxC used in order to build a
“small” model, matching the construction of Theorem 3.11 in[11]. A branch is a se-
quence of nodes〈S1 | U1 | W1〉, 〈S2 | U2 | W2〉, . . . , 〈Sn | Un | Wn〉 . . ., where each
node〈Si | Ui | Wi〉 is obtained from its immediate predecessor〈Si−1 | Ui−1 | Wi−1〉
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by applying a rule ofTABEL⊥T
PH1 , having〈Si−1 | Ui−1 | Wi−1〉 as the premise and

〈Si | Ui | Wi〉 as one of its conclusions. A branch is closed if one of its nodes is an
instance of a (Clash) axiom, otherwise it is open. A tableau is closed if all its branches

are closed. The rules ofTABEL⊥T
PH1 are presented in Fig. 1. Rules(∃+

1 ) and(�−) are
calleddynamicsince they can introduce a new variable in their conclusions. The other
rules are calledstatic. We do not need any extra rule for the positive occurrences of
�, since these are taken into account by the computation ofSM

x→y of (�−). The(cut)

rule ensures that, given any conceptC ∈ LT, an open branch built byTABEL⊥T
PH1 con-

tains eitherx : �¬C or x : ¬�¬C for each labelx: this is needed in order to allow
TABEL⊥T

PH2 to check the minimality of the model corresponding to the open branch. As
mentioned above, given a node〈S | U | W 〉, each formulaC ⊑ D in U is equipped
with the list L of labels to which unfolding of the subsumption has already been ap-
plied. This avoids multiple unfolding of the same subsumption with the same label.

The calculusTABEL⊥T
PH1 is different from the calculusALC + Tmin [8] in two re-

spects. First, the rule(∃+) is split in the two rules(∃+)1 and (∃+)2. When the rule
(∃+)1 is applied to a formulau : ∃R.C, it introduces a new labelxC only when the set

W does not already containxC . Otherwise,xC is already on the branch andu
R−→ xC

is simply added to the conclusion of the rule. As a consequence, in a given branch,
(∃+)1 introduces a unique new labelxC for each conceptC occurring in the initial
KB in some∃R.C, and no blocking machinery is needed to ensure termination.This
simplification is possible since we are considering Left Local KBs, which have small
models; in these models all existentials∃R.C occurring in KB are made true by reusing
a single witnessxC (Theorem 3.12 in [11]). Notice also that the rules(∃+)1 and(∃+)2
introduce a branching on the choice of the label used to realize the existential restriction
u : ∃R.C. However, just the leftmost conclusion of(∃+)1 introduces a new labelxC ;
in all the other branches, a labelyi occurring inS is chosen.

Second, in order to build multilinear models of Definition 2,the calculus adopts
a strengthened version of the rule(�−) used inTABALC+T

min [8]. We write S as an
abbreviation forS, u : ¬�¬C1, . . . , u : ¬�¬Cn. Moreover, we defineSM

u→y = {y :

¬D, y : �¬D | u : �¬D ∈ S} and, fork = 1, 2, . . . , n, we defineS
�−k

u→y = {y :

¬�¬Cj ⊔ Cj | u : ¬�¬Cj ∈ S ∧ j 6= k}. The strengthened rule(�−) contains: (i)
n branches, one for eachu : ¬�¬Ck in S, in which anewtypical Ck individualx is
introduced (i.e.x : Ck andx : �¬Ck are added), and for all otheru : ¬�¬Cj , either
x : Cj holds or the formulax : ¬�¬Cj is recorded; (ii) othern × m branches, one for
each labelyi and for eachu : ¬�¬Ck in S (m is the number of labels occurring inS):
in these branches, a givenyi is chosen as a typical instance ofCk, that is to sayyi : Ck

andyi : �¬Ck are added, and for all otheru : ¬�¬Cj , eitheryi : Cj holds or the
formulayi : ¬�¬Cj is recorded. This rule is sound with respect to multilinear models.
The advantage of this rule over the(�−) rule in the calculusTABALC+T

min is that all the
negated box formulas labelled byu are treated in one step, introducing only a new label
x in one of the conclusions. To keepS readable, we have used⊔. Hence, our calculus
requires the rule for⊔, even if this constructor does not belong toEL⊥Tmin .

In order to check the satisfiability of a KB, we build itscorresponding constraint
system〈S | U | ∅〉, and we check its satisfiability. Given KB=(TBox,ABox), itscorre-
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〈S, u : ∃R.C | U | W 〉
〈S, u

R−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

if y : ¬C !∈ S

〈S | U,C ⊑ DL | W 〉

if x occurs in S and x !∈ L

(Unfold)〈S, x : T(C) | U | W 〉 〈S, x : ¬T(C) | U | W 〉
〈S, x : C, x : !¬C | U | W 〉 〈S, x : ¬C | U | W 〉 〈S, x : ¬!¬C | U | W 〉

(T+) (T−)

(⊓+) (⊓−)

(cut)

x occurs in S
if x : ¬!¬C !∈ S and x : !¬C !∈ S

C ∈ LT

〈S, x : ¬D | U | W 〉〈S, x : ¬C | U | W 〉〈S, x : C, x : D | U | W 〉
〈S, x : C ⊓ D | U | W 〉 〈S, x : ¬(C ⊓ D) | U | W 〉

〈S, x : C, x : ¬C | U | W 〉 (Clash)⊥(Clash)¬⊤

〈S, x : !¬C | U | W 〉〈S, x : ¬∃R.C, x
R−→ y, y : ¬C | U | W 〉

〈S, x : ¬∃R.C, x
R−→ y | U | W 〉

(∃−)

(Clash)

〈S, x : ¬!¬C | U | W 〉
〈S | U | W 〉

〈S, x : ⊥ | U | W 〉〈S, x : ¬⊤ | U | W 〉

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R−→ xC | U | W 〉

〈S, x : C | U | W 〉 〈S, x : D | U | W 〉

〈S, x : C ⊔ D | U | W 〉
(⊔+)

〈S, u
R−→ y1, y1 : C | U | W 〉

. . .〈S, u
R−→ y1, y1 : C | U | W 〉

〈S, u
R−→ ym, ym : C | U | W 〉

〈S, u
R−→ ym, ym : C | U | W 〉

〈S, x : Ck, x : !¬Ck, SM
u→x, S

!−k

u→x | U | W 〉
. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM
u→y1

, S
!−k

u→y1
| U | W 〉 〈S, ym : Ck, ym : !¬Ck, SM

u→ym
, S

!−k

u→ym
| U | W 〉

k = 1, 2, . . . , n

x new

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != u, . . . , ym != u

〈S, u : ¬!¬C1, u : ¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

Fig. 1. The calculusTABEL⊥T
PH1 .

sponding constraint system〈S | U | ∅〉 is defined as follows:S = {a : C | C(a) ∈
ABox} ∪ {a

R−→ b | R(a, b) ∈ ABox}; U = {C ⊑ D∅ | C ⊑ D ∈ TBox}. KB
is satisfiable if and only if its corresponding constraint system〈S | U | ∅〉 is satisfi-

able. In order to verify the satisfiability of KB∪ {¬F}, we useTABEL⊥T
PH1 to check

the satisfiability of the constraint system〈S | U | ∅〉 obtained by adding the constraint
corresponding to¬F to S′, where〈S′ | U | ∅〉 is the corresponding constraint system

of KB. To this purpose, the rules of the calculusTABEL⊥T
PH1 are applied until either a

contradiction is generated (Clash) or a model satisfying〈S | U | ∅〉 can be obtained
from the resulting constraint system.

The rules ofTABEL⊥T
PH1 are applied with the followingstandard strategy: 1. apply a

rule to a labelx only if no rule is applicable to a labely such thaty ≺ x (wherey ≺ x
says that labelx has been introduced in the tableaux later thany); 2. apply dynamic rules
only if no static rule is applicable. In [9] it has been shown that the calculus is sound

and complete and terminating. In particular, any tableau generated byTABEL⊥T
PH1 for

〈S | U | ∅〉 is finite, and the length of the tableau branches built by the strategy is
O(n2). This follows from the fact that dynamic rules(∃+)1 and(�−) generate at most
O(n) labels in a branch, and that, for each label, static rules areapplied at mostO(n)
times. Hence, given a KB and a queryF , the problem of checking whether KB∪ {¬F}
in TABEL⊥T

PH1 is satisfiable is in NP.
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(∃+)

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U, C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

〈S, x : C ⊓ D | U | K〉
〈S, x : C, x : D | U | K〉 〈S, x : ¬C | U | K〉

(T+)

(T−)

(⊓+) (⊓−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

〈S, x : ¬D | U | K〉
〈S, x : ¬(C ⊓ D) | U | K〉

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉
〈S | U | K〉〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉
〈S, x : C, x : !¬C | U | K〉

〈S, u : ¬!¬C1, . . . , u : ¬!¬Cn | U | K, u : ¬!¬C1, . . . , u : ¬!¬Cn〉

(Clash)⊥〈S, x : ¬⊤ | U | K〉 (Clash)¬⊤ 〈S, x : ⊥ | U | K〉

(!−)

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x | K〉

x ∈ D(B)

〈S, u
R−→ y1, y1 : C | U | K〉

〈S, u : ∃R.C | U | K〉

〈S, u
R−→ ym, ym : C | U | K〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!−k

u→ym
| U | K〉

. . .

〈S, y1 : Ck, y1 : !¬Ck, SM
u→y1

, S
!−k

u→y1
| U | K〉 . . .

if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != u, . . . , ym != u

Fig. 2. The calculusTABEL⊥T
PH2 . To save space, we omit the rule(⊔+).

4.2 The Tableaux CalculusTABEL⊥T
P H2

Let us now introduce the calculusTABEL⊥T
PH2 which, for each open branchB built by

TABEL⊥T
PH1 , verifies whether it represents a minimal model of the KB. Given an open

branchB of a tableau built fromTABEL⊥T
PH1 , let D(B) be the set of labels occurring on

B. Moreover, letB�−
be the set of formulasx : ¬�¬C occurring inB, that is to say

B�−
= {x : ¬�¬C | x : ¬�¬C occurs inB}.

A tableau ofTABEL⊥T
PH2 is a tree whose nodes are tuples of the form〈S | U | K〉,

whereS andU are defined as in a constraint system, whereasK contains formulas

of the formx : ¬�¬C, with C ∈ LT. The basic idea ofTABEL⊥T
PH2 is as follows.

Given an open branchB built by TABEL⊥T
PH1 and corresponding to a modelMB of

KB ∪ {¬F}, TABEL⊥T
PH2 checks whetherMB is a minimal model of KB by trying to

build a model of KB which is preferred toMB. To this purpose, it keeps track (inK)
of the negated box used inB (B�−

) in order to check whether it is possible to build

a model of KB containing less negated box formulas. The tableau built byTABEL⊥T
PH2

closes if it is not possible to build a model smaller thanMB, it remains open otherwise.
Since by Definition 3 two models can be compared only if they have the same domain,

TABEL⊥T
PH2 tries to build an open branch containing all the labels appearing onB, i.e.

those inD(B). To this aim, the dynamic rules use labels inD(B) instead of introducing

new ones in their conclusions. The rules ofTABEL⊥T
PH2 are shown in Fig. 2.

More in detail, the rule(∃+), when applied to a formulax : ∃R.C, introduces,

for each labely ∈ D(B), x
R−→ y andy : C. The choice of the labely introduces

a branching in the tableau construction. The rule (Unfold) is applied toall the labels
of D(B) (and not only to those appearing in the branch). The rule(�−) is applied
to a node〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U | K〉, when{u : ¬�¬C1, . . . , u :
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¬�¬Cn} ⊆ K, i.e. when the negated box formulasu : ¬�¬Ci also belong to the
open branchB. Also in this case, the rule introduces a branch on the choiceof the
individualyi ∈ D(B) to be used in the conclusion. In case a tableau node has the form

〈S, x : ¬�¬C | U | K〉, andx : ¬�¬C 6∈ K, thenTABEL⊥T
PH2 detects a clash,

called (Clash)�− : this corresponds to the situation wherex : ¬�¬C does not belong
to B, while the model corresponding to the branch being built containsx : ¬�¬C, and
hence isnot preferred to the model represented byB.

The calculusTABEL⊥T
PH2 also contains the clash condition (Clash)∅. Since each ap-

plication of(�−) removes the negated box formulasx : ¬�¬Ci from the setK, when
K is empty all the negated boxed formulas occurring inB also belong to the current

branch. In this case, the model built byTABEL⊥T
PH2 satisfies the same set ofx : ¬�¬Ci

(for all individuals) asB and, thus, it is not preferred to the one represented byB.
Let KB be a knowledge base whose corresponding constraint system is〈S | U |

∅〉. Let F be a query and letS′ be the set of constraints obtained by adding toS the

constraint corresponding to¬F . TABEL⊥T
PH2 is sound and completein the following

sense: an open branchB built by TABEL⊥T
PH1 for 〈S′ | U | ∅〉 is satisfiable in a minimal

model of KB iff the tableau inTABEL⊥T
PH2 for 〈S | U | B�−〉 is closed.

Termination of the calculusTABEL⊥T
PH2 is ensured by the fact that dynamic rules

make use of labels belonging toD(B), which is finite, rather than introducing “new”
labels in the tableau. Also, it is possible to show that the problem of verifying that a

branchB represents a minimal model for KB inTABEL⊥T
PH2 is in NP in the size ofB.

The overall procedureTABALC+T
min is defined as follows:

Definition 7. Let KB be a knowledge base whose corresponding constraint system is
〈S | U | ∅〉. LetF be a query and letS′ be the set of constraints obtained by adding to

S the constraint corresponding to¬F . The calculusTABEL⊥T
min checks whether a query

F is minimally entailed fromKB by means of the following procedure:(phase 1)the

calculusTABEL⊥T
PH1 is applied to〈S′ | U | ∅〉; if, for each branchB built byTABEL⊥T

PH1 ,

either (i) B is closed or (ii)(phase 2)the tableau built by the calculusTABEL⊥T
PH2 for

〈S | U | B�−〉 is open, thenKB |=LT
min F , otherwiseKB 6|=LT

min F .

In [9] it has been shown thatTABEL⊥T
min is a sound and complete decision procedure

for verifying if KB |=EL⊥Tmin
F . Furthermore, the problem of deciding whetherKB

|=EL⊥Tmin
F by means ofTABEL⊥T

min is in Πp
2 .

5 A Tableau Calculus forDL-LitecTmin

In this section we shortly describe a tableau calculusTABLitecT
min for deciding query

entailment in the logicDL-LitecTmin. The calculus is similar to the one introduced
for EL⊥Tmin in the previous section, however it is significantly different from it in
the definition of some of the rules. Given a set of constraintsS and a roler ∈ R, let
r(S) = {x

r−→ y | x
r−→ y ∈ S}. The calculusTABLitecT

PH1 used in the first phase

differs fromTABEL⊥T
PH1 in the following points:
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1. As in the calculusTABEL⊥T
PH1 , the split of the(∃+) in the two rules:

y new

〈S, x : ∃r.⊤ | U〉

〈S, x
r−→ y | U〉

(∃+)r
1

〈S, x : ∃r.⊤ | U〉
(∃+)r

2〈S, x
r−→ y1 | U〉 〈S, x

r−→ ym | U〉. . . 〈S, x
r−→ y1 | U〉 〈S, x

r−→ ym | U〉. . .

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S
if r(S) != ∅if r(S) = ∅

reflects the main idea of the construction of a small model at the base of Theorem 4.5
in [11]. Such small model theorem essentially shows thatDL-LitecTmin KBs can have
small models in which all existentials∃R.⊤ occurring in KB are made true in the model
by reusing a single witnessy. In the calculus we use the same idea: when the rule(∃+)r

1

is applied to a formulax : ∃r.⊤, it introduces a new labely and the constraintx
r−→ y

only when there is no other previous constraintu
r−→ v in S, i.e.r(S) = ∅. Otherwise,

rule (∃+)r
2 is applied and it introducesx

r−→ y. As a consequence,(∃+)r
2 does not

introduce any new label in the branch whereas(∃+)r
1 only introduces a new labely

for each roler occurring in the initial KB in some∃r.⊤ and no blocking machinery is
needed to ensure termination.

2. In order to keep into account inverse roles, two further rules for existential for-
mulas are introduced:

(∃+)r−
1

〈S, x : ∃r−.⊤ | U〉〈S, x : ∃r−.⊤ | U〉
〈S, y

r−→ x | U〉 〈S, y1
r−→ x | U〉 〈S, ym

r−→ x | U〉

y new

. . . 〈S, y1
r−→ x | U〉 〈S, ym

r−→ x | U〉. . .
(∃+)r−

2

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if r(S) = ∅ if r(S) != ∅

These rules work similarly to(∃+)r
1 and(∃+)r

2 in order to build a branch representing
a small model: when the rule(∃+)r−

1 is applied to a formulax : ∃r−.⊤, it introduces a
new labely and the constrainty

r−→ x only when there is no other constraintu
r−→ v

in S. Otherwise, since a constrainty
r−→ u has been already introduced in that branch,

y
r−→ x is added to the conclusion of the rule.

3. Negated existential formulas can occur in a branch, but only having the form (i)
x : ¬∃r.⊤ or (ii) x : ¬∃r−.⊤. (i) means thatx has no relationships with other individ-
uals via the roler, i.e. we need to detect a contradiction if both (i) andx

r−→ y belong
to the same branch (for somey), and mark the branch as closed. The clash condition

(Clash)r is added to the calculusTABLitecT
PH1 in order to detect such a situation. Anal-

ogously, (ii) means that there is noy such thaty is related tox by means ofr, then
(Clash)r− is introduced in order to close a branch containing both (ii)and, for somey,
a constrainty

r−→ x. These clash conditions are as follows:

(Clash)r (Clash)r−〈S, x
r−→ y, x : ¬∃r.⊤ | U〉 〈S, y

r−→ x, x : ¬∃r−.⊤ | U〉

Apart from the differences above, the rules ofTABLitecT
PH1 are the same as those of

TABEL⊥T
PH1 . Similarly for the calculusTABLitecT

PH2 used in the second phase. In [10] it

has been shown that bothTABLitecT
PH1 andTABLitecT

PH2 are sound, complete and termi-
nating. Furthermore, the problem of deciding whether KB|=DL-LitecTmin

F by means

of TABLitecT
min is in Πp

2 .
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6 Conclusions
We have proposed a non-monotonic extension of low complexity Description Log-
ics EL⊥ andDL-Litecore for reasoning about typicality and defeasible properties.We
have summarized complexity results recently studied for such extensions [11], namely
that entailment is EXPTIME-hard forEL⊥Tmin , whereas it drops toΠp

2 when con-
sidering the Left Local Fragment ofEL⊥Tmin . The sameΠp

2 complexity has been
found for DL-LitecTmin. These results match the complexity upper bounds of the
same fragments in circumscribed KBs [3]. We have also provided tableau calculi for
checking minimal entailment in the Left Local fragment ofEL⊥Tmin as well as in
DL-LitecTmin. The proposed calculi match the complexity results above. Of course,
many optimizations are possible and we intend to study them in future work.

As mentioned in the Introduction, several non-monotonic extensions of DLs have
been proposed in the literature and we refer to [12] for a survey. Concerning non-
monotonic extensions of low complexity DLs, the complexityof circumscribedfrag-
ments of theEL⊥ andDL-Lite families have been studied in [3]. Recently, a fragment
of EL⊥ for which the complexity of circumscribed KBs is polynomialhas been identi-
fied in [14]. In future work, we shall investigate complexityof minimal entailment for
such a fragment extended withT and possibly the definition of a calculus for it.
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Concept-Based Semantic Difference in
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Abstract. Detecting, much less understanding, the difference between
two description logic based ontologies is challenging for ontology engi-
neers due, in part, to the possibility of complex, non-local logic effects of
axiom changes. It is often quite difficult to even determine which terms
have had their meaning altered by a change. To address this, various prin-
cipled notions of “semantic diff” (based on deductive inseparability) have
been proposed in the literature and have been shown to be computation-
ally practical for the expressively restricted case of ELHr-terminologies
(which covers significant fragments of SNOMED-CT). However, prob-
lems arise even for such limited logics as ALC: First, computation gets
more difficult, becoming undecidable for logics such as SROIQ which
underly the Web Ontology Language (OWL). Second, the presence of
negation and disjunction make the standard semantic difference too sen-
sitive to change: essentially, any logically effectual change always affects
all terms in the ontology. To address these issues, we formulate the central
notion of finding the minimal change set based on model inseparability,
and present a method to differentiate changes which are specific to (and
“of interest” for) particular concept names. Subsequently we present a
series of computable approximations, and compare the variously approx-
imated change sets over a series of versions of the NCI Thesaurus (NCIt).

1 Introduction

Determining the significant differences between two documents (so-called “diff”)
is a standard and significant problem across a wide range of activities, notably
software development. Standard textual diffing algorithms perform poorly on de-
scription logic (DL) based ontologies, both for structural reasons (e.g., ontology
serializations, such as those of OWL, tend not to impose stable ordering of ax-
ioms), and due to the highly non-local and unintuitive logical effects of changes
to axioms. Syntactic diffs, such as those based on OWL’s notion of “structural
equivalence” [4, 8, 12], detect axiomatic changes between ontologies, but fall short
on the identification of differences w.r.t. their entailment sets. Recent notions of
semantic difference based on conservative extensions have provided a robust the-
oretical and practical basis for analysing these logical effects. In particular, they
provide a means for determining which terms have had their meaning “affected”
by an edit even if that effect is not readily determined by syntactic analysis.
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Unfortunately, semantic difference is computationally expensive even for inex-
pressive logics such as EL. For the very expressive logics such as SROIQ (the
DL underlying OWL 2) it is undecidable [10]. Furthermore, as we discuss in this
paper, semantic difference runs into other difficulties in more expressive logics.
In particular, if we compare entailment sets over logics with disjunction and
negation we easily end up with vacuously altered terms: any logically effectual
change will alter the meaning of every term.

In this paper, we provide a non-trivializable notion of semantic difference
and a series of computable approximations of it for expressive description logics.
We evaluate these algorithms on a select subset of the National Cancer Insti-
tute Thesaurus (NCIt) corpus, comparing the changes found via the proposed
approximations and related approaches. Our experiments show that one approxi-
mation, “Grammar diff”, finds significantly more changes than all other methods
across the corpus and far more than are identified in the NCIt change logs.

2 Preliminaries

We assume the reader to be reasonably familiar with ontologies and OWL, as
well as the underlying description logics (DLs) [1]. We use terms to refer to
concept and role names. When comparing two ontologies we refer to them as O1

and O2, and their signatures (i.e., the set of terms occurring in them) as Õ1 and

Õ2, respectively. The signature of an axiom α is denoted α̃. Throughout this
paper we use the standard description and first order logic notion of entailment;
an axiom α entailed by an ontology O is denoted O |= α. We refer to an effectual
addition (removal) from O1 to O2 as an axiom α such that α ∈ O2 and O1 6|= α
(α ∈ O1 and O2 6|= α) [4]. Thus two ontologies are logically equivalent, denoted
O1 ≡ O2, if there is no effectual change (addition or removal) between O1 and
O2. We also use the notion of a locality-based module [2]; a module M of O
for a set of terms (signature) Σ is a subset of O that preserves all entailments
of O w.r.t. Σ. A ⊥-module (>-module) extracted from an ontology O for Σ is
denoted ⊥-mod(Σ,O) (>-mod(Σ,O)). The set of subconcepts of an ontology O
is recursively defined as all subconcepts found in each axiom of O, plus {>,⊥}.

The restriction of an interpretation I to a set of terms Σ is denoted I|Σ .
Two interpretations I and J coincide on a signature Σ (denoted I|Σ = J |Σ) if
∆I = ∆J and tI = tJ for each t ∈ Σ.

Throughout this paper we use the notion of model conservative extension
(mCE) [3, 10], and associated inseparability relation [14]. The notions of
mCE-based inseparability, Σ-difference and Σ-entailment are, respectively:

Definition 1 Given two ontologies O1, O2 over a DL L, and a signature Σ.

O2 is model Σ-inseparable from O1 (O1 ≡mCEΣ O2) w.r.t. L(1)

if {I|Σ | I |= O1} = {J |Σ | J |= O2}
Diff(O1,O2)Σ = {η | O1 6|= η,O2 |= η and η is a GCI over L,(2)

with η̃ ⊆ Σ}
O1 Σ-entails O2 if Diff(O1,O2)Σ = ∅(3)
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3 State of the Art in Semantic Diff

The tool ContentCVS [6] employs a notion of deductive difference (for OWL 2
ontologies) which takes into account entailments of type A v C,1 where C is a
concept formed over grammar Gcvs and A,B are concept names, as follows:

Grammar Gcvs
C −→ B | ∃r.B | ∀r.B | ¬B
The rationale behind the use of this grammar is not exactly clear, and seems

rather ad hoc. In a user study of ContentCVS, users criticised “the excessive
amount of information displayed when using larger approximations of the de-
ductive difference” [6]. This suggests that, instead of focusing on presenting
entailments in the difference, we might prefer to present which concept names
are affected by those entailments, and how (e.g., specialised or generalised).

The diff method underlying the system CEX [7] establishes a way to com-
pute the semantic differences between two ontologies,2 based on the notion of
Σ-entailment, and corresponding diff notion Σ-difference. The output of CEX
is a set of entailed axioms in the Σ-difference, so called witness axioms, and
associated affected terms (denoted AT(O1,O2)Σ). The set AT(O1,O2)Σ con-
tains specialised (denoted AT(O1,O2)L

Σ) and generalised (AT(O1,O2)R
Σ) concept

names, as defined in [7]. The set AT(O1,O2)L
Σ contains those concept names A

for which there is a witness axiom α : A v C that follows from O2 but not
O1. The concept C in such axioms α is called a witness for the change in A. In
AT(O1,O2)R

Σ the witness is the subsumer rather than the subsumee.
The computational complexity of deciding Σ-entailment is undecidable for

expressive DLs such as SROIQ. For EL it is already ExpTime-complete [11],
while for ALC, ALCQ, and ALCQI it is 2ExpTime-complete [10]. Aside from
the high complexity result, a direct extension of Σ-difference for more expressive
logics such as ALC would fail; when we step beyond EL as a witness language
into more expressive logics with disjunction and negation, then we can create
a vacuously true witness that would make AT(O1,O2)Σ contain all terms in Σ
(so long as O1 6≡ O2). The ontologies need not be in the witness language; in
fact consider the following EL ontologies: O1 = {A v B,C v >, D v >}, and
O2 = {A v B,C v D}. Clearly O2 is a conservative extension of O1 w.r.t.

Σ = {A,B}, but if we take Σ′ = {Õ1 ∩ Õ2} then that is no longer the case.
A witness axiom for the separability would be, e.g., η := A v ¬C t D. This
witness “witnesses” a change to every concept A′ ∈ Σ′; for each witness axiom
η′ : A′ v ¬C tD we have that O1 6|= η′, while O2 |= η′. Such a witness would
suffice to pinpoint, according to Σ-difference, that all terms in Σ′ have changed:
AT(O1,O2)Σ′ = Σ′ since > v ¬C tD. Consequently, this kind of witnesses are
uninteresting for any particular concept aside from >. Likewise, a change A v ⊥
implies that, for all B in the signature of the ontology in question, we have that
A v B. Yet these consequences are of no interest to any concept B.

1 Additionally, ContentCVS also compares role hierarchies.
2 Albeit the implementation is restricted to acyclic ELHr terminologies (EL extended

with role inclusions and range restrictions).
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Similar to the case of the least common subsumer [9], the presence of disjunc-
tion (and negation) trivialises definitions that are meaningful in less expressive
logics. This phenomenon conveys the need to move to another diff notion when
dealing with propositionally closed ontologies, one which distinguishes directly
affected terms (thus “specific” changes) and indirectly affected terms (such as
those via > and ⊥ from previous examples).

4 Semantic Diff

Given the shortcomings of existing methodologies, we present a semantic diff
method that a) determines which concepts have been affected by changes. For
exposition reasons, we concentrate on concepts, though roles are easily added.
And b) identifies which concepts have been directly (or indirectly) changed.

Ideally, a solution to these problems would be 1) a computationally feasible
function (for OWL 2 ontologies), 2) based on a principled grammar, that 3)
returns those concept names affected by changes between two ontologies, while 4)
distinguishing whether each concept name is directly (or indirectly) specialised
and/or generalised.

4.1 Determining the Change Set

Given two ontologies O1 and O2, such that O1 6≡ O2 (i.e. there exists at
least one effectual change in Diff(O1,O2)), we know that O1 and O2 are not

Σ-inseparable (for Σ = Õ1 ∪ Õ2) w.r.t. model inseparability, i.e. O1 6≡mCEΣ O2

since an effectual change implies some change in semantics. In order to pinpoint
this change, we need to find the set of terms Σ′ s.t. O1 is mCE-inseparable from
O2 w.r.t. the remaining signature Σ \ Σ′: O1 ≡mCEΣ\Σ′ O2. Then we know that,

from O1 to O2, there are no changes in entailments over Σ \ Σ′. We refer to
this set of terms Σ′ as the Minimal Change Set (denoted MinCS(O1,O2)), in
the sense that we can formulate a non-trivial entailment η over Σ′ s.t. O1 6|= η
but O2 |= η. Thus we denote these terms as affected.

Definition 2 (Minimal Affected Terms) A set Σ′ ⊆ Σ is a set of minimal
affected terms between O1 and O2 if:

O1 6≡mCEΣ′ O2 and for all Σ′′ ( Σ′ : O1 ≡mCEΣ′′ O2.

The set of all such sets is denoted MinAT(O1,O2).

In order to form the minimal change set, we take the union over all sets of
affected terms in MinAT(O1,O2).

Definition 3 (Minimal Change Set) The minimal change set, denoted
MinCS(O1,O2), of two ontologies is defined as follows:

MinCS(O1,O2) :=
⋃

MinAT(O1,O2) .
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Given a set of witness axioms, we can tell apart specialised and generalised
concepts depending on whether the witness concept is on the right hand
side (RHS) or the left hand side (LHS) of the witness axiom, accordingly.
Furthermore, we regard a concept name A as directly specialised (generalised)
via some witness C if there is no concept name B that is a superconcept
(subconcept) of A, and C is also a witness for a change in B. Otherwise A
changed indirectly.

Definition 4 (Affected Terms) For a diff function Φ, the sets of affected con-
cept names for a signature Σ are:

Φ- AT(O1,O2)L
Σ = {A ∈ Σ | there exists A v C ∈ Φ- Diff(O1,O2)Σ}

Φ- AT(O1,O2)R
Σ = {A ∈ Σ | there exists C v A ∈ Φ- Diff(O1,O2)Σ}

Φ- AT(O1,O2)
>
Σ =

{
{>} if there is a > v C ∈ Φ- Diff(O1,O2)Σ
∅ otherwise

Φ- AT(O1,O2)
⊥
Σ =

{
{⊥} if there is a C v ⊥ ∈ Φ- Diff(O1,O2)Σ
∅ otherwise

Φ- AT(O1,O2)Σ =
⋃
Y ∈{L,R,>,⊥} Φ- AT(O1,O2)

Y
Σ

Given a concept name A ∈ Φ-AT(O1,O2)L
Σ (analogously A ∈ Φ-AT(O1,O2)R

Σ),
and a set of terms Σ+ := Σ ∪ {>,⊥}:

A direct change of A is a witness C s.t. A v C (C v A) ∈ Φ- Diff(O1,O2)
and there is no B ∈ Σ+ s.t. O2 |= A v B (O2 |= B v A),O2 6|= A ≡ B, and

B v C (C v B) ∈ Φ- Diff(O1,O2) .

An indirect change of A is a witness C s.t. A v C (C v A) ∈ Φ- Diff(O1,O2)
and there is at least one B ∈ Σ+ s.t. O2 |= A v B (O2 |= B v A),

O2 6|= A ≡ B and B v C (C v B) ∈ Φ- Diff(O1,O2) .

Concept A is purely directly changed if it is only directly changed
(analogously for purely indirectly changed).

As an example, given ontologies O1 := {A v B, ∃r.C v D} and O2 :=
O1∪{B v ∃r.C}, we have that B is purely directly specialised via witness ∃r.C,
while A is indirectly specialised via the same witness, since O2 |= A v B and
B v ∃r.C ∈ Diff(O1,O2), in other words, concept A changes via B.

The distinction between directly- and indirectly-affected concept names, and
the separation of concepts affected via > and ⊥, allows us to overcome the
problems described in Section 3, w.r.t. propositionally closed description logics.

4.2 Computation

Deciding the minimal change set between two ontologies involves deciding
whether, for a given signature Σ, two ontologies are mCE-inseparable w.r.t.
Σ. Since mCE-inseparability is undecidable for SROIQ [10], we present two
sound but incomplete approximations to the problem of computing the minimal
change set: “Subconcept” and “Grammar” diffs.
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In addition, and in order to provide a basis for comparison between diff no-
tions, we define the set of differences which would be captured by a comparison
of the concept hierarchies between two ontologies, i.e. differences in atomic sub-
sumptions, as AtDiff(O1,O2)Σ . Hereafter we refer to ContentCVS’s diff notion
as CvsDiff(O1,O2)Σ .

The first approximation, Subconcept diff (denoted SubDiff(O1,O2)Σ), is
based on subconcepts of ontologies, wherein we check whether there is a dif-
ference in entailments of type C v D, where C or D is a possibly complex
concept from the set of Σ-subconcepts of O1 and O2 (see Definition 5). It is at
least conceivable that many entailments will involve subconcepts, and, if that is
the case, those would be witnesses that the user could understand, since they are
explicitly asserted in either ontology. Moreover, this notion may exhibit entail-
ment differences which would not show up if we restrict ourselves to either atomic
subsumptions, or specific forms of entailments (in the manner of ContentCVS).
The restriction to forms of concepts explicit in either ontology limits the amount
of change captured. E.g., if we have O1 = {A v ∃r.B}, and in O2 add an axiom
B v ∃s.C, the change A v ∃r.∃s.C would not be found. However, the rationale
behind this approach is that we could detect other kinds of change in a principled
and relatively cheap way, e.g., O1 = {A v B}, O2 = O1 ∪ {B v ∃r.(C u ∃r.D)};
we have that O1 6|= α := A v ∃r.(C u ∃r.D), while O2 |= α.

In order to avoid only considering witnesses in their explicitly asserted
form, we extend the previous diff notion and present Grammar diff (denoted
GrDiff(O1,O2)Σ), which detects differences in additional types of entailments;
the grammars below define the types of concepts taken into account by Grammar
diff, where SC stands for a subconcept of O1 ∪ O2.

Grammar GL
C −→ SC | SC t SC | ∃r.SC | ∀r.SC | ¬SC

Grammar GR
C −→ SC | SC u SC | ∃r.SC | ∀r.SC | ¬SC

The semantic difference between ontologies w.r.t. each mentioned diff notion
is defined as follows:

Definition 5 Given two ontologies and a signature Σ, the set of Σ-differences
for a diff notion Φ is:

Φ- Diff(O1,O2)Σ := {η ∈ Φ-ax | O1 6|= η ∧ O2 |= η ∧ η̃ ⊆ Σ}

where the set Φ-ax is defined as follows:

if Φ = At, {C v D | C,D ∈ Σ}
if Φ = Sub, {C v D | C,D subconcepts in O1 ∪ O2}
if Φ = Gr, {C v D |D a concept over GL, or C a concept over GR}
if Φ = Cvs, {C v D | C ∈ Σ and D a concept over Gcvs}
if Φ = CEX, {C v D | C,D subconcepts in L(Σ)}
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It is not hard to see that there are subset relations between each diff and
the actual MinCS(O1,O2) that they approximate, as per Lemma 1:

Lemma 1 Given two ontologies and a signature Σ:

AtDiff-AT(O1,O2)Σ ⊆ SubDiff-AT(O1,O2)Σ ⊆ GrDiff-AT(O1,O2)Σ ⊆
MinCS(O1,O2)

CvsDiff-AT(O1,O2)Σ ⊆ GrDiff-AT(O1,O2)Σ

The current implementation of CEX only takes as input acyclic ELHr
terminologies, that is, ELHr TBoxes which are 1) acyclic and 2) every concept
appears (alone) on the left-hand side of an axiom exactly once. In order to apply
CEX to knowledge bases that are more expressive than ELHr terminologies, we
rely on an approximation that uses CEX as a sub-routine.

Definition 6 (Approx-CEX) Given two non-ELHr ontologies, the Approx-
CEX procedure is:

1. For i ∈ {1, 2}, approximate Oi as an ELHr terminology, resulting in O′i:
(a) Remove all non-EL axioms.
(b) Break cycles (non-deterministically).
(c) Remove all but one axiom with a given atomic left-hand side.

2. Apply CEX to O′1, O′2, resulting in a temporary change set: TempCS.
3. For each α ∈ TempCS, add α to FinalCS if O1 6|= α and O2 |= α.
4. Return FinalCS; the set of axioms in the diff.

Note that step 1 is parameterizable with any ELHr approximation algorithm.
Additionally, step 2 can be replaced with a diff implementation for more expres-
sive logics, with either the input approximation (step 1) and soundness check
(step 3) removed, or with an altered step 1 depending on the expressivity of the
input. Step 4 in Definition 6 is necessary to ensure that changes detected within
the ELHr approximations (obtained in step 1) are sound changes w.r.t. the whole
ontologies. Obviously, this approximation-based procedure throws away a lot of
information and is not deterministic. However, even such an approximation can
offer useful insight, esp. if it finds changes that other methods do not. There are
more elaborate existing approximation approaches (e.g., [13]), but they gener-
ally do not produce ELHr terminology, so their use requires either changing the
approximation output or updating CEX to take non-terminological EL input.

5 Empirical Results

The object of our evaluation is a subset of the NCIt corpus used in [4], with
expressivity ranging from ALCH(D) to SH(D). More specifically, we take into
account 12 versions of the NCIt which contain concept-based change logs. In
order to investigate the applicability of our approach we (1) compare the re-
sults obtained via our approximations with those output by Approx-CEX and
ContentCVS, and (2) inspect whether the devised approximations capture any
direct changes not reported in the NCIt change logs.
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The experiment machine used is an Intel Xeon Quad-Core 3.20GHz, with
16Gb DDR3 RAM. The system runs Mac OS X 10.6.8, Java Virtual Machine
(JVM v1.5), and all tests were run using the OWL API (v3.2.4) [5].3

In terms of computation times, on average computing AtDiff(O1,O2)Σ takes
≈20 seconds, Approx-CEX takes≈9 minutes, while computing SubDiff(O1,O2)Σ
takes ≈35 minutes. The computation of GrDiff(O1,O2)Σ takes ≈14 hours for a
subset of the ontology signature of size ≈1800 concept names, and ContentCVS
≈10 hours on the same randomly selected signature as GrDiff(O1,O2)Σ .4

5.1 Diff Comparison

The comparison of each diff w.r.t. number of affected concept names found is
shown in Table 1, which displays the number of specialised concepts (L-changes),
generalised concepts (R-changes), and the total number of affected concepts.
Figure 1 shows a comparison of the number of affected concept names found by
ContentCVS and Grammar diff within the randomly selected signatures. Note
that, at this point, no distinction is made between direct and indirect changes.

Table 1: Number of affected concept names found by each diff, and their respec-
tive coverage w.r.t. affected concepts found by GrammarDiff.

NCIt
Approx-CEX AtDiff SubconceptDiff GrammarDiff
L R Total L R Total L R Total L R Total

1 (05.07d) 454 307 668 979 486 1,416 1,701 490 2,131 10,501 3,597 12,178
2 (05.10e) 413 648 851 792 499 1,208 1,436 518 1,816 11,366 3,442 12,975
3 (05.11f) 3,508 2,089 5,013 5,233 1,172 6,135 5,910 1,178 6,528 12,379 6,806 17,542
4 (05.12f) 1,400 2,813 2,950 2,358 1,485 3,676 45,825 1,495 45,932 19,547 13,691 28,305
5 (06.01c) 7,305 2,495 8,692 3,808 1,321 4,978 15,254 1,498 15,691 36,333 20,137 39,491
6 (06.02d) 1,131 684 1,520 3,502 624 3,923 5,806 663 6,203 10,621 11,331 19,741
7 (06.03d) 1,721 2,434 3,052 2,462 1,127 3,217 5,777 1,201 6,330 20,620 9,799 24,567
8 (06.04d) 417 1,382 1,590 6,284 1,631 6,806 6,952 1,674 7,428 10,275 7,576 14,047
9 (06.05d) 1,095 1,455 1,711 2,224 678 2,745 4,928 737 5,329 13,291 9,223 13,819
10 (06.06e) 1,649 1,002 2,154 4,073 607 4,553 5,992 663 6,415 26,161 5,345 28,005
11 (06.08d) 624 968 1,099 1,240 610 1,714 3,910 731 4,325 37,674 3,630 38,502

Avg. Cov. 9% 18% 12% 20% 12% 18% 52% 13% 41%
Min. Cov. 2% 6% 3% 3% 6% 4% 10% 6% 11%
Max. Cov. 28% 31% 29% 61% 22% 48% 100% 22% 100%

Due to computational issues regarding Grammar diff and ContentCVS, in-
stead of comparing each pair of NCIt versions w.r.t. Σ = Õ1 ∪ Õ2 we take a
random sample of the terms in the ontology (generally n ≈ 1800) such that a
straightforward extrapolation allows us to determine that the true proportion
of changed terms lies in the confidence interval (+-3%) with a 99% confidence
level. In general, Grammar diff, even taking into account the confidence inter-
val, consistently detects more changes (both L and R) than all other diffs. Also,

3 http://owlapi.sourceforge.net/
4 Note that, originally, ContentCVS only computes AT(O1,O2)L

Σ, but in order to pro-
vide a direct comparison with the diffs here proposed we also compute AT(O1,O2)R

Σ

according to ContentCVS’s grammar.
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Fig. 1: Comparison of total number of affected concepts found by ContentCVS
and Grammar diff (y-axis: number of concept names, x -axis: NCIt version).

despite the one case where the lower bound of detected changes is inferior to
another diff, in version 4, it cannot be worse than Subconcept diff by Lemma 1.

5.2 Direct Changes in the NCIt Logs

The change logs supplied with each version of the NCIt contain those concept
names which were subject to changes. However, it is unclear whether each re-
ported change also (or solely) relates to annotation changes. It could be the case
that a reported concept change is purely ineffectual. In spite of this ambiguity, it
should be expected that a change log contains concept names that were directly
changed, and this is what we aim to find out in our next experiment; we extract
the concept names mentioned in the change log, and verify whether the obtained
direct changes for each NCIt version are contained in said change logs. The re-
sults are shown in Table 2, where the affected concept names shown in Section 5.1
are partitioned into purely direct, purely indirect, or both directly and indirectly
changed concepts. Overall, we see that the change logs do miss a lot of direct
changes, more specifically, on average, AtDiff(O1,O2)Σ reveals 767 changed con-
cept names not mentioned in the change logs, while SubDiff(O1,O2)Σ uncovers
908 such concept names per NCIt version.

6 Discussion

First thing to notice is that SubDiff finds many more changes than AtDiff and
Approx-CEX, while often not reaching close to the projected values of Gram-
marDiff (the average coverage being 41%). The latter, as expected, captures far
more changes within the selected signatures than ContentCVS.
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Table 2: Number of purely direct (P.D.), purely indirect (P.I.), and both directly
and indirectly (Mix) changed concepts. Number of directly changed concepts
that do not appear in the NCIt change logs (denoted Missed).

NCIt
AtDiff SubDiff

L R
Missed

L R
Missed

Mix P.D. P.I. Mix P.D. P.I. Mix P.D. P.I. Mix P.D. P.I.

1 524 122 333 88 206 192 798 686 134 881 88 210 192 953
2 440 125 227 95 179 225 149 803 344 289 96 198 224 211
3 2,106 215 2,912 211 680 281 315 2,242 549 3,119 212 686 280 445
4 1,498 126 734 146 1,041 298 190 2,647 78 43,100 148 1,050 297 432
5 1,401 154 2,253 127 882 312 243 6,511 1,527 7,216 304 882 312 317
6 813 77 2,612 153 232 239 199 1,163 143 4,500 161 240 262 199
7 984 206 1,272 256 448 423 273 2,400 320 3,057 267 513 421 511
8 5,923 152 209 154 1,267 210 5,546 5930 483 539 157 1,308 209 5,723
9 870 611 743 166 254 258 207 1,775 832 2,321 171 307 259 322
10 594 2,727 752 145 225 237 216 2,110 2,854 1,028 147 280 236 298
11 586 167 487 139 239 232 300 1,050 354 2,506 147 325 259 582

Considering the high number of affected concepts found by SubDiff in versions
4 and 5 of the NCIt, one can argue that analysing such a change set would be
rather unpleasant. By categorising concept names in the change set according
to whether they are directly or indirectly affected, we can greatly reduce the
information overload; notice that, e.g., in version 4 there are 45,825 specialised
concepts, out of which there are only 78 purely directly changed concepts, and
the majority of the remainder are purely indirect changes (43,100). Similarly in
version 5, from 15,254 specialised concepts there are only 1,527 purely direct
changes. Immediately we see that this mechanism can provide an especially
helpful means to assist change analysis, by, e.g., confining the changes shown
upfront to only those which are (purely) direct.

Despite the optimisations applied in GrammarDiff’s implementation, e.g., for
GrDiff(O1,O2)

L
Σ we start by verifying whether there exists some effectual change

between ⊥-mod({A},O1) and ⊥-mod({A},O2), for each A ∈ Σ (analogously we

use >-modules for GrDiff(O1,O2)
R
Σ), only considering witnesses whose signature

is contained in the module signature, stopping once we find a single witness for
a concept name, the computation of GrDiff(O1,O2)Σ still takes long, and needs
further optimisations. The major bottleneck is that the >-modules for a concept
name provide too big an approximation, e.g., for a top-level concept its >-module
contains almost the whole ontology. Thus >-modules do not restrict much of our
search space, not at least in the same way as ⊥-modules do. Additionally, in order
to take advantage of the categorisation mechanism proposed, we would need to
compute all witnesses for each Σ-concept (which is relatively cheap in SubDiff).

7 Conclusions

We have formulated the problem of finding the set of affected terms between on-
tologies via model inseparability, and presented feasible approximations to find-
ing this set. We have shown that each of the approximations can find considerably
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more changes than those visible in a comparison of concept hierarchies. Both
sound approximations devised capture more changes than Approx-CEX. The
restrictions imposed by CEX on the input ontologies make change-preserving
approximations a challenge, as we have seen in our attempt to reduce the NCIt
to EL in a less naive way.

The proposed distinction between (purely) direct and indirect allows users
to focus on those changes which are specific to a given concept, in addition to
masking possibly uninteresting changes to any and all concept names (such as
those obtained via witnesses constructed with negation and disjunction), thereby
making change analysis more straightforward. As demonstrated by the NCIt
change log analysis, we have found a (often high) number of direct changes
that are not contained in the NCIt change logs, which leads us to believe the
recording of changes does not seem to follow from even a basic concept hierarchy
comparison, but rather a seemingly ad hoc mechanism.

In future work we aim to optimise the devised approximations so as to com-
pare all NCIt versions w.r.t. their signature union, and deploy an end-user tool.
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Abstract. We tackle the problem of defining a well-founded semantics (WFS)
for Datalog rules with existentially quantified variables in their heads and nega-
tions in their bodies. In particular, we provide a WFS for the recent Datalog±

family of ontology languages, which covers several important description logics
(DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega-
tion in rule bodies, and we define a WFS for this generalization via guarded fixed
point logic. We refer to this approach as equality-friendly WFS, since it has the
advantage that it does not make the unique name assumption (UNA); this brings
it close to OWL and its profiles as well as typical DLs, which also do not make
the UNA. We prove that for guarded Datalog± with negation under the equality-
friendly WFS, conjunctive query answering is decidable, and we provide precise
complexity results for this problem. From these results, we obtain precise defi-
nitions of the standard WFS extensions of E L and of members of the DL-Lite
family, as well as corresponding complexity results for query answering.

1 Introduction

The recent Datalog± family of ontology languages [7] extends plain Datalog by the
possibility of existential quantification in rule heads and other features, and simultane-
ously restricts the rule syntax to achieve tractability. The following example illustrates
how description logic (DL) knowledge bases are expressed in Datalog±.

Example 1 (Literature) The knowledge that every conference paper is an article and
that every scientist is the author of at least one paper can be expressed in DL by
the TBox axioms ConferencePapervArticle and Scientistv∃isAuthorOf, respectively,
while the knowledge that John is a scientist can be expressed by the ABox axiom
Scientist(john). In Datalog±, the former are encoded as the rule ConferencePaper(X)→
Article(X) and the rule Scientist(X)→∃Y isAuthorOf(X ,Y ), respectively, and the latter
is encoded by an identical fact in the database. Furthermore, the TBox axiom that en-
codes that conference papers are not journal papers, can be expressed in Datalog± by
the negative constraint ConferencePaper∧ JournalPaper→⊥. A simple Boolean con-
junctive query (BCQ) asking whether John authors a paper is ∃X isAuthorOf(john,X).

The Datalog± languages bridge an apparent gap in expressive power between data-
base query languages and DLs as ontology languages, extending the well-known Dat-
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alog language in order to embed DLs. They also allow for transferring important con-
cepts and proof techniques from database theory to DLs. For example, it was so far
not clear how to enrich tractable DLs by the feature of nonmonotonic negation. By the
results of [7], DLs can be enriched by stratified negation via mappings from DLs to
Datalog± with stratified negation, which is defined and studied in that paper. Given that
stratified negation is quite limited, we wondered whether the richer and more expres-
sive well-founded negation could be defined for Datalog±. The well-founded seman-
tics (WFS) for normal (logic) programs [25] is one of the most widely used semantics
for nonmonotonic normal programs, it is the standard semantics for such programs for
database applications, and it is thus especially under a data-oriented perspective of great
importance for the Web. Having many nice features, the WFS is defined for all normal
programs (i.e., logic programs with the possibility of negation in rule bodies), has a
polynomial data tractability, approximates the answer set semantics, and coincides with
the canonical model in case of stratified normal programs.

In this paper, we concentrate on the important problem of defining a WFS for (un-
restricted) normal Datalog±, i.e., Datalog with existentially quantified variables in rule
heads and negations in rule bodies. This new semantics is called the equality-friendly
WFS (EFWFS), since it has the crucial advantage that it does not make the unique name
assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs,
which also do not make the UNA.

Since (unrestricted) normal Datalog± generalizes positive Datalog±, consistency
checking and query answering in it is in general undecidable. However, it turns out
that the guarded fragment of normal Datalog± can be translated to guarded fixed point
logic, which is a well-studied decidable formalism. Through this translation, we thus
obtain the decidability of consistency checking and query answering in guarded normal
Datalog±. Furthermore, we obtain upper complexity bounds, which are then also shown
to be tight. Guarded Datalog± covers in particular the DLs E L and DL-LiteR (which
is underlying the OWL 2 QL profile). Therefore, our decidability results and upper
complexity bounds carry over to these DLs. The following example illustrates how the
WFS can be extended to such DLs.

Example 2 (Holidays) Consider an ABox containing the three holiday destinations
Dest(d1), Dest(d2), and Dest(d3). Suppose that any destination that offers the oppor-
tunity to swim needs either direct access to the beach (Beach(x)) or a bus connection
to some beach (BeachBus(x,y)). That is, at destinations where swimming is possible,
we want to make sure that never both notBeach and not∃BeachBus hold. This can be
achieved by the following two rules:

DestuSwimmingunotBeachv ∃BeachBus; (1)
DestuSwimmingunot∃BeachBusv Beach. (2)

Observe also that notSwimming(d) would immediately imply the facts notBeach(d)
and not∃BeachBus(d), since it would make it impossible that either of the two axioms
could be applied to derive new facts about d.

The following example shows a case where not making the UNA is more appropri-
ate than making it under the WFS.
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Example 3 (Company) Suppose we are given certain facts about employees and their
employers. The following two concept membership axioms state that John and Sam are
employees: Employee(John), Employee(Sam). To these axioms, we add a concept in-
clusion axiom that maintains that every employee must have an employer: Employeev
∃.hasEmployer. Finally, we would like to test whether or not John and Sam work
in the same company, which is expressed by the query ∃x(hasEmployer(John,x) u
nothasEmployer(Sam,x)). Then, under the UNA, equality between all individuals (in-
cluding new ones) is minimized, and we evaluate the query to true, which is not the case
without UNA, where different Skolem terms may be interpreted by the same object.

2 Preliminaries

In this section, we briefly recall some basics on Datalog± [7].

Databases and Queries. We assume (i) an infinite universe of (data) constants ∆ (which
constitute the “normal” domain of a database), and (ii) an infinite set of variables V
(used in queries and constraints). We denote by X sequences of variables X1, . . . ,Xk
with k> 0. We assume a relational schema R, which is a finite set of relation names (or
predicate symbols, or simply predicates). A term t is a constant or variable. An atomic
formula (or atom) a has the form P(t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn
are terms. A conjunction of atoms is often identified with the set of all its atoms.

A database (instance) D for a relational schema R is a (possibly infinite) set of
atoms with predicates from R and arguments from ∆ . A conjunctive query (CQ) over R
has the form Q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms with the
variables X and Y, and eventually constants. Note that Φ(X,Y) may also contain equal-
ities but no inequalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We often
write a BCQ as the set of all its atoms, having constants and variables as arguments, and
omitting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms,
which are mappings µ : ∆ ∪V → ∆ ∪V such that (i) c ∈ ∆ implies µ(c) = c, and
(ii) µ is naturally extended to atoms, sets of atoms, and conjunctions of atoms. The set
of all answers to a CQ Q(X)=∃YΦ(X,Y) over a database D, denoted Q(D), is the
set of all tuples t over ∆ for which there exists a homomorphism µ : X∪Y→∆ such
that µ(Φ(X,Y))⊆D and µ(X)= t. The answer to a BCQ Q() over a database D is Yes,
denoted D |=Q, iff Q(D) 6= /0.

Tuple-Generating Dependencies (TGDs). Tuple-generating dependencies (TGDs) de-
scribe constraints on databases in the form of generalized Datalog rules with existen-
tially quantified conjunctions of atoms in rule heads; their syntax and semantics are as
follows. Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-
order formula of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z)
are conjunctions of atoms over R, called the body and the head of σ , respectively.
Such σ is satisfied in a database D for R iff, whenever there is a homomorphism h that
maps the atoms of Φ(X,Y) to atoms of D, there is an extension h′ of h that maps the
atoms of Ψ(X,Z) to atoms of D. Since TGDs can be reduced to TGDs with only single
atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its head.
A TGD σ is guarded iff it contains an atom in its body that contains all universally
quantified variables of σ . The leftmost such atom is the guard of σ .
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Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ on R, the set of models of D and Σ , denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The set
of answers for a CQ Q to D and Σ , denoted ans(Q,D,Σ), is the set of all tuples a
such that a ∈ Q(B) for all B∈mods(D,Σ). The answer for a BCQ Q to D and Σ is
Yes, denoted D∪Σ |=Q, iff ans(Q,D,Σ) 6= /0. Note that query answering under general
TGDs is undecidable [5], even with fixed schema and TGDs [6].

Negative Constraints. Another crucial ingredient of Datalog± for ontological modeling
are negative constraints (or simply constraints), which are first-order formulas of the
form ∀XΦ(X)→⊥, where Φ(X) is a conjunction of atoms (not necessarily guarded),
called its body. We usually omit the universal quantifiers, and we implicitly assume that
all sets of constraints are finite here.

Normal TGDs and BCQs. Normal TGDs are TGDs that may also contain (default-)
negated atoms in their bodies: Given a relational schema R, a normal TGD (NTGD) σ
has the form ∀X∀Y Φ(X,Y)→∃ZΨ(X, Z), where Φ(X,Y) is a conjunction of atoms
and negated atoms over R, and Ψ(X,Z) is a conjunction of atoms over R. We usually
omit the universal quantifiers. As for standard TGDs, w.l.o.g., Ψ(X,Z) is a singleton
atom. We say σ is satisfied in a database D for R iff, whenever there is a homomor-
phism h for all the variables and constants in the body of σ that maps (i) positive literals
of Φ(X,Y) to atoms of D and (ii) no negated atom of Φ(X,Y) to an atom of D, then
there is an extension h′ of h that maps the head atom to an atom of D. We call σ guarded
iff it contains a positive body atom that contains all universally quantified variables of σ .
W.l.o.g., constants in the body of guarded σ occur only in guards.

We next add negation to BCQs. A normal Boolean conjunctive query (NBCQ) Q
is an existentially closed conjunction of atoms and negated atoms ∃X p1(X)∧ ·· · ∧
pm(X)∧¬pm+1(X)∧ ·· ·∧¬pm+n(X), where m>1, n>0, and the variables of the pi’s
are among X. Q is covered if for every negative atom α in Q there is a positive atom in Q
containing every argument in α . In the sequel, w.l.o.g., NBCQs contain no constants.

3 Equality-Friendly WFS for Datalog±

In this section, we first recall the well-founded semantics (WFS) of normal programs.
As a central new contribution, we then introduce a WFS of normal Datalog± programs
without the UNA.

WFS of Normal Programs. The WFS [25] is the most widely used semantics for non-
monotonic programs, it is the standard semantics for such programs for database appli-
cations, and it is thus especially under a data-oriented perspective of great importance
for the Web. For our purposes, it is enough to recall the WFS of function-free ground
normal programs, and we refer to [25] for the general case.

We first give some preliminary definitions. A function-free normal program is a fi-
nite set of rules r of the form β1, . . . ,βn,¬βn+1, . . . ,¬βn+m→ α , where α,β1, . . . ,βn+m
are atoms and m,n > 0. We call α the head of r, denoted H(r), while the conjunc-
tion β1, . . . ,βn,¬βn+1, . . . ,¬βn+m constitutes its body. Let B(r)=B+(r)∪B−(r), where
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B+(r)={β1, . . . ,βn}, and B−(r)={βn+1, . . . ,βn+m}. The program is ground if it con-
tains no variables. Let P be a function-free ground normal program. The Herbrand base
of P, denoted HBP, is the set of all atoms that can be constructed from the predicate
symbols and the constants appearing in P. For all S ⊆ HBP, we let ¬.S = {¬.a |a∈S}.
We denote by LitP =HBP ∪¬.HBP the set of all literals with predicate symbols and
constants from P. A (three-valued) interpretation relative to P is any set I⊆LitP that is
consistent (i.e., there is no atom a∈HBP with {a,¬a} ⊆ I).

The WFS has many different equivalent definitions (see also [4]). We here recall
the one based on unfounded sets, via the operators UP, TP, and WP. A set U ⊆ HBP is
an unfounded set of P relative to I⊆LitP iff for every a∈U and every rule r ∈ P with
H(r)=a, either (i) ¬b∈ I∪¬.U for some atom b∈B+(r), or (ii) b∈ I for some atom
b∈B−(r). There exists the greatest unfounded set of P relative to I, denoted UP(I).
Intuitively, it collects all those atoms that cannot become true when extending I with
further information. We are now ready to define the two operators TP and WP on inter-
pretations I⊆LitP relative to P by:

TP(I)={H(r) |r∈P, B+(r)∪¬.B−(r)⊆ I}; WP(I)=TP(I)∪¬.UP(I).

Since WP is monotonic, it has a least fixed point, denoted lfp(WP), which is the well-
founded semantics (WFS) of P, denoted WFS(P). Intuitively, starting with I = /0, rules
are applied to obtain new positive and negated facts (via TP(I) resp. ¬.UP(I)). This is
repeated until no longer possible.
EFWFS of Normal Datalog± Programs. We relate normal Datalog± programs to
sets of function-free ground normal programs, and define their equality-friendly WFS
(EFWFS) as the set of well-founded models of the associated normal programs.

The basic idea is as follows. If we do not make the UNA, different constants in a
normal Datalog± program P may represent the same value. Thus, P may turn out to be
any of the programs P′ obtained from P by identifying constants. Furthermore, in every
such program P′, existential quantifiers may introduce one or more value, which, since
we do not make the UNA, does not have to be “fresh”, but can be any constant. Hence,
without the UNA, the meaning of P may be captured by the set of all normal programs
P′′ obtained from P by identifying values, and replacing TGDs in P by arbitrary in-
stances, at least one for each possible variable assignment for its body. It is then natural
to consider the well-founded models of all those programs P′′ as the semantics of P.

More precisely, an instance of a normal TGD Φ(X,Y)→ ∃ZΨ(X,Z) is a rule of
the form Φ(a,b)→Ψ(a,c), where a,b,c are tuples of constants. Let P = D∪Σ be
a normal Datalog± program, where D is a database and Σ a set of normal TGDs. An
instance I of P is a normal program consisting of all facts in D, and instances of
TGDs in Σ such that for all TGDs Φ(X,Y)→ ∃ZΨ(X,Z) in Σ , and all interpreta-
tions a,b for X,Y, there is at least one c such that Φ(a,b)→Ψ(a,c) is in I . Let
I (P) be the set of all instances of P, and dom(P) the set of all constants in P. For
any µ : dom(P)→ ∆ , let Pµ be the program obtained from P by replacing all con-
stants c with µ(c). Then, the equality-friendly well-founded semantics of P, denoted
EFWFS(P), is the set {WFS(P′′) | µ : dom(P)→ ∆ ,P′′ ∈ I (Pµ)}. Query-answering
for an NBCQ Q is now defined by saying that Q evaluates to Yes in EFWFS(P) iff Q
evaluates to Yes in all elements of EFWFS(P). Here, an NBCQ Q evaluates to Yes in a
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three-valued interpretation I iff there is a homomorphism that maps all elements of Q+

into atoms in I and all elements of Q− into negated atoms in I.

Example 4 Consider the following program P:

→ A(0); A(X)→ ∃Y1,Y2 (R(X ,Y1,Y2));
R(X1,X2,X3),¬A(X3)→ S(0); A(X),¬S(X)→ ∃Y1,Y2 (R(Y1,Y2,X)).

Obviously, A(0) is in the EFWFS of P. Furthermore, because of the second rule, every
possible well-founded model of P contains R(0,c1,c2). But we cannot assume c2 6=0. If
c2 =0, all possible applications of the third rule are blocked, and thus ¬S(0) would be
derived (the last rule may then still add another atom R(d1,d2,0), but this does not affect
the overall result). Otherwise, in case c2 6=0, the third rule would yield S(0), because
clearly we have ¬A(c2). Therefore, neither S(0) nor its negation is in EFWFS(P) and
the only atoms that are always in EFWFS(P) are A(0) and R(0,c1,c2) for some con-
stants c1 and c2 (so, the query ∃X1,X2 (R(0,X1,X2)) would evaluate to true). The picture
changes, if we add the constraint R(X1,X2,X3), R(X3,X2,X1)→⊥. Then, c2 generated
by the second rule must be different from 0, and so we always obtain S(0), and we get
¬R(d1,d2,0), for all d1,d2, by the last rule.

4 Translation into Guarded Fixed Point Logic

The EFWFS can be characterized in terms of guarded fixed point logic. This charac-
terization turns out to be more convenient for reasoning about the EFWFS of guarded
normal Datalog± programs.

Guarded fixed point logic (GFP), introduced by Grädel and Walukiewicz [13], si-
multaneously restricts and extends first-order logic by enforcing a certain quantification
pattern, and allowing for inductively defining relations, while having a satisfiability
problem of moderate complexity.

Let R be a relational schema. The set of formulas of GFP over R is built from
atomic formulas over R (including equality atoms) using Boolean combinations, and
the following two additional formula formation rules:

I. If α is an atomic formula over R containing the variables in X, and ψ is a GFP
formula over R whose free variables occur in α , then ∃X(α ∧ψ) and ∀X(α→ψ)
are GFP formulas over R. The formula α is called guard.

II. Let R be a k-ary predicate, X a k-tuple of variables, and ψ(R,X) a GFP formula
over R∪{R} whose free variables occur in X, and where R appears only positively
(in the scope of an even number of negation symbols) and not in guards. Then,
[lfpR,X ψ](X) and [gfpR,X ψ](X) are GFP formulas over R with free variables X.

As for the semantics of the formulas in II, given a database D for R, ψ defines an oper-
ator F : P(dom(D)k)→P(dom(D)k) with F(S) := {a | D |= ψ(S,a)}. This operator
is monotone and thus has a least fixed point lfp(F) and a greatest fixed point gfp(F).
Then, D |= [lfpR,X ψ](a) iff a ∈ lfp(F), and D |= [gfpR,X ψ](a) iff a ∈ gfp(F).

Example 5 ([13]) The following GFP sentence says that the binary relation E is well-
founded (i.e., no element is the endpoint of an infinite E-path): ∀x,y(E(x,y)→ [lfpW,x
∀y(E(y,x)→W (y))](x)).
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We are now ready to describe the translation of guarded normal Datalog± into GFP.
Let P = D∪Σ be a fixed guarded normal Datalog± program, where D is a database, and
Σ is a set of guarded NTGDs. Without loss of generality, we assume that P contains only
a single predicate R;4 let k be its arity. We construct a GFP sentence efwfs(P) whose
models closely correspond to the databases in EFWFS(P). The key is to “existentially
quantify” all the instances of NTGDs that we use to compute the WFS, and to mimic
the fixed-point definition of the WFS using those instances.

Technically, we represent instances of an NTGD σ ∈ Σ using a 2k-ary predicate
Sσ . If R(U) is the guard of σ , and R(V) is its head, then a tuple (a,b) in Sσ en-
codes the instance of σ obtained by substituting a and b for U and V, respectively.
For example, if σ is the NTGD R(X ,Y,0),¬R(X ,1,1)→ ∃Z R(Z,X ,2), then the atom
Sσ ((a,b,0),(c,a,2)) represents the instance R(a,b,0),¬R(a,1,1)→ R(c,a,2) of σ .

We also use k-ary predicates T ∗, C, T , F , and R, where T ∗ is intended to encode a
superset of all true atoms; C holds all permutations of tuples in T ∗; T and F respectively
hold the set of all true atoms and the set of all false atoms (the latter relativized to C);
and R corresponds to the predicate R of the initial database D. It is not hard to construct
GFP sentences that enforce the desired interpretation of the predicates Sσ , T ∗, C, and
R. Based on those GFP sentences, it is then possible to construct GFP sentences ψT
and ψF that enforce the desired interpretations of T and F . The sentence ψT basically
does nothing else than defining the (set of all positive literals of the) least fixed point of
WP′ , where P′ consists of all instances of NTGDs in Σ represented by the tuples in the
predicates Sσ , while ψF defines the greatest fixed point of a certain operator, yielding
the greatest unfounded set UP′(T ) (relativized to C).

For an NBCQ Q over {R}, let Q∗ be the BCQ obtained by replacing every positive
literal R(X) in Q with T (X), and every negative literal ¬R(X) in Q with F(X).

Lemma 6 For all covered NBCQs Q over the schema of P, we have EFWFS(P) |= Q
iff efwfs(P) |= Q∗.

5 Complexity
We now take a look at the complexity of answering covered NBCQs over guarded
normal Datalog± programs P = D∪Σ . More precisely, we consider the combined com-
plexity, measured in terms of the overall input, including P and the query.

In Section 4, we characterized the EFWFS of guarded normal Datalog± programs
via a translation into guarded fixed point logic GFP. From the fact that satisfiability for
GFP sentences is in 2-EXPTIME (and in EXPTIME in case of bounded arities) [13],
we obtain the following:

Theorem 7 Deciding EFWFS(P) |= Q, where P = D∪Σ is a guarded normal Datalog±

program and Q a covered NBCQ, is 2-EXPTIME-complete in the general case, and
EXPTIME-complete in the case of bounded arities and acyclic Q. Hardness holds even
with respect to atomic queries.

4 It is an easy task to transform a guarded normal Datalog± program into this form, since multi-
ple predicates can be simulated by constants and a single predicate. For example, A(x,y)∧B(x)
may be replaced by R(a,x,y)∧R(b,x,x), where a and b are extra constant symbols.
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We remark that Theorem 7 carries over to unions of covered NBCQs, that is, queries
Q of the form

∨n
i=1 Qi, where each Qi is a covered NBCQ.

6 WFS for OWL 2 QL

All the DLs of the DL-Lite family in [8,22] and the DL E L [3] can be embedded into
Datalog± [7]. In particular, this holds for DL-LiteR , which forms the theoretical basis of
the QL profile of the Web ontology language OWL 2. Both our equality-friendly WFS
(EFWFS) for normal Datalog± and the OWL 2 QL profile do not make the UNA. Our
work in this paper thus paves the way for an extension of OWL 2 QL with nonmonotonic
negation under the EFWFS.

The following definition extends DL-LiteR
5 (underlying the OWL 2 QL profile) and

DL-LiteR,u [8,22], and E L [3] with nonmonotonic negation under the EFWFS.

Definition 8 Recall that a DL-LiteR,u knowledge base consists of a pair (T ,A ), where
the TBox T is a finite set of concept and role inclusion axioms U1u ·· ·uUn vV , and
the ABox A is a finite set of concept and role membership axioms C(a) and R(a,b), re-
spectively. A DL-LiteR,u,not knowledge base (T ,A ) consists of a finite set of inclusion
axioms T and a finite set of membership axioms A , where:

– Any DL-LiteR,u inclusion axiom is a DL-LiteR,u,not inclusion axiom.
– If U1 u ·· · uUn v V and U ′1 u ·· · uU ′m v V with n,m > 0 are both either concept

or role inclusion axioms in DL-LiteR,u, and V is positive (i.e., not of the form V =
¬V ′), then U1 u ·· · uUn u notU ′1 u ·· · u notU ′m v V is a DL-LiteR,u,not concept or
role inclusion axiom, respectively. Here, the Ui’s and U ′i ’s contain no conjunction,
and notU ′i is the negation as failure (as opposed to the classical “¬” in DL-Lite).

– For any concept A, any role R, and any individuals a,b, the expressions A(a) and
R(a,b) are concept and role membership axioms, respectively.

A DL-LiteR,u,not knowledge base (T ,A ) is a DL-LiteR,not knowledge base iff all in-
clusion axioms in T contain precisely one positive atom on the left-hand side.

Finally, we define E L not as the extension of E L that allows formulas of the form
notC for atomic concepts C =A and for concepts C =∃R.B to occur in top-level con-
junctions on the left-hand side of TBox-axioms.

The semantics of DL-LiteR,not (resp., DL-LiteR,u,not) is defined by translating a given
DL-LiteR,not (resp., DL-LiteR,u,not) knowledge base KB into a normal Datalog± pro-
gram PKB and by computing the well-founded semantics of PKB. The details of the
translation of DL-LiteR,not (resp., DL-LiteR,u,not) into Datalog± are an extension of
the translation of DL-LiteR (resp., DL-LiteR,u) given in [7]. Similarly, it is possible to
translate E L not into our formalism. Note that the sameAs(a,b) and differentFrom(a,b)
constraints (specifying that the two individuals a and b are the same and different, re-
spectively) that may be contained in a given knowledge base (over an ontology lan-
guage without UNA) can be easily enforced by adding appropriate equalities a=b and
inequalities ¬(a=b) to the guarded fixed point sentence efwfs(PKB).

5 Note that although DL-LiteR adopts the UNA, it actually does not require it, since making this
assumption would have no impact on the semantic consequences of a DL-LiteR ontology.
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Example 9 (Holidays (cont’d)) Consider again Example 2. The two axioms (1) and
(2) are translated into the following normal Datalog± rules:

pDest(X), pSwimming(X),¬pBeach(X)→∃Y.pBB(X ,Y );

pDest(X), pSwimming(X),¬p∃BB(X)→ pBeach(X);

pBB(X ,Y )→ p∃BB(X),

where p∃BB(X) is a new predicate for ∃BeachBus.
Suppose next that we are additionally given a database with holiday destinations

Dest(d1), Dest(d2), and Dest(d3), which we want to be different, i.e., we assume that
differentFrom(d1,d2), differentFrom(d2,d3), and differentFrom(d1,d3). We want to for-
malize the idea that any destination where one can swim should have a beach or a bus
to a location with a beach — otherwise one has to take delight in walking. This can be
achieved by considering the rules (1) and (2) along with the additional rule

DestunotBeachunot∃BeachBusvWalkingOnly. (3)

Furthermore, we may assume that at any place where one is not confined to only walk-
ing, one can also swim:

DestunotWalkingOnlyv Swimming. (4)

Consider the following further facts: WalkingOnly(d1) and BeachBus(d2,d3). Clearly,
WalkingOnly(d1) implies that Swimming(d1) cannot be derived — because rule (4),
the only rule that can derive Swimming(d1), requires the negation of WalkingOnly(d1)
to be true. Thus, the WFS of the knowledge base includes notSwimming(d1). This is
in contrast to what would happen if we interpreted not as “classical” negation: in the
latter case, we could not derive anything from WalkingOnly(d1), as axiom (4) would
trivially be satisfied for d1. Other facts that are derived for d1 are notBeach(d1) and
not∃BeachBus(d1) (= notR(x,y) for any y), because the fact notSwimming(d1) im-
plies that rules (1) and (2) cannot be used to derive Beach(d1) or ∃BeachBus(d1) (note
that we use the fact that d1 has to be different from d2 and d3, because of our ABox
assumptions). Concerning the destination d2, the WFS contains the following atoms:
notBeach(d2), notWalkingOnly(d2), and Swimming(d2).

The complexity of answering covered NBCQs for any of our DL-Litenot logics and
for E L not can now be determined using Theorem 7. Note that Theorem 10 also yields
immediate bounds for the complexity of standard DL problems such as instance and
satisfiability checking.

Theorem 10 Let L be any of DL-LiteR,u,not, DL-LiteR,not or E L not. Then, given a
knowledge base KB = (T ,A ) and an acyclic (resp., general) covered NBCQ Q, decid-
ing whether Q is true under the EFWFS of KB is in EXPTIME (resp., 2-EXPTIME) for
combined complexity.
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7 Related Work
There is already a substantial amount of work on combining rules and ontologies. The
main direction of research so far has been to combine rules and ontologies into dl-
programs consisting of a knowledge base together with a set of rules. This combination
can be carried out in a loose or tight fashion. Representatives of the former are in partic-
ular the dl-programs in [10]. The hybrid MKNF knowledge bases in [21] are also close
in spirit. Some representatives of tight integrations of rules and ontologies include the
works by Rosati [23] and Lukasiewicz [18]. SWRL [15] and WRL [2] also belong to
this category. For several of the above combinations of rules and ontologies, a well-
founded semantics has been defined: [11], [19], [17], and [9] define a well-founded
semantics for the loosely integrated dl-programs in [10], for the tightly integrated dl-
programs in [18], for the hybrid MKNF knowledge bases in [21], and for an integration
of rules and ontologies that is close in spirit to Rosati’s approach [23], respectively.

We achieve the combination of rules and ontologies by a reduction from descrip-
tion logics to logic programming formalisms. Obviously our work is based on the earlier
work on Datalog±. Based on the same idea of translating ontologies into logic program-
ming rules and hence closely related to our work are [1], [24], [14], and [16]. Probably
the closest relationship to our work has the paper on FDNC-rules by [12] where the sta-
ble semantics is used in order to obtain a rule-based formalism with negation-as-failure
that allows for the formulation of ontological knowledge.

8 Summary and Outlook
We have defined the equality-friendly WFS for Datalog with existentially quantified
variables in rule heads and negations in rule bodies. Via a translation of its guarded frag-
ment to guarded fixed point logic, we have then proved the decidability in the guarded
case, and obtained complexity results for this case. These are important contributions in
their own right. In addition, since the approach does not make the UNA, it can be read-
ily used to extend DLs by nonmonotonic negation under the WFS, as illustrated along
several DLs, including DL-LiteR , underlying the important OWL 2 QL profile.

Interesting topics for future research include to investigate the data complexity of
guarded normal Datalog± and to explore how the approach can be extended by keys
and to other ontology languages, including OWL 2 EL and OWL 2 RL.
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1 Introduction

The relationship of description logics (DLs) and conceptual modelling has been
extensively studied in the literature [5, 4, 1]. One of the advantages of using de-
scription logics as modelling languages is that along with their capability of
representing knowledge they provide also reasoning services. More precisely, a
conceptual model can be represented by a DL ontology (TBox), and standard
reasoning services (e.g., satisfiability and subsumption) allow to verify some
properties of the conceptual model (e.g., consistency) and infer relations between
concepts (IS-A relationships between classes or entities) that are not explicitly
expressed. In order to use DLs effectively for conceptual modelling we need to
ensure (1) that the chosen DL language is expressive enough to capture faith-
fully the intended semantics of traditional modelling languages (e.g., UML class
diagrams, ER schema), and (2) that the complexity of reasoning in the chosen
DL is acceptable (e.g., tractable). Regarding (1), it is worth noticing that the
domain of interest in most applications is finite, therefore, reasoning on concep-
tual models should be understood as reasoning w.r.t. finite models. The latter is
not the usual assumption in DLs mainly because traditional description logics
enjoy the finite model property (FMP), and hence there is no need to distinguish
between reasoning w.r.t. arbitrary models, and w.r.t. finite ones. Notably, ALC
(one of the traditional DLs) is not expressive enough for capturing cardinality
constraints. In DLs cardinality constraints are expressed by (qualified) number
restrictions. ALCQI –which extends ALC with qualified number restrictions
and inverse roles– captures the semantics of UML class diagrams [4]. However,
this extension of ALC does not enjoy the FMP any more. One drawback for
the use of ALCQI is the complexity of reasoning: finite satisfiability of ALCQI
knowledge bases is ExpTime-complete [11]. The high complexity of reasoning
makes ALCQI not very attractive for the conceptual modelling task; specially
because no optimized algorithms for finite model reasoning exist. As an alterna-
tive, members of the DL-Lite-family of description logics including unqualified

? We would like to thank the anonymous reviewers, as well as Alessandro Artale,
André Hernich, and Vı́ctor Gutiérrez-Basulto for valuable remarks to improve the
final version of this paper.
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number restrictions [2] capture relevant modelling features [1]. However, little
has been done in the study of the complexity of reasoning w.r.t. finite models in
DL-Lite [13]. A consideration around the use of number restrictions (qualified
or unqualified) regards their semantics: on the DL side, number restrictions, in-
tended for possible infinite model semantics, constraint the numbers of objects
that are related to a certain object; while cardinality constraints in conceptual
modelling, intended for finite model semantics, establish relationships among the
cardinality of classes/entities.

The purpose of this paper is to bring attention to finite model reasoning
in description logics from a model theoretical view point. We adapt existing
techniques [6] and show that the complexity of finite model reasoning in the
Horn fragment of DL-Lite is tractable when only global functionality constraints
are considered. While this result seems to be an almost straightforward con-
sequence of existing results [13]; the approach taken in this paper leads to a
deeper understanding of the structural properties of finite models for DL-Lite
knowledge bases. We also observe that when allowing the use of arbitrary cardi-
nality constraints, finite satisfiability becomes harder than arbitrary reasoning
in DL-LiteNhorn. In Section 5 we provide an intuition for an upper bound on the
complexity of finite model reasoning in DL-LiteNhorn. The results and observa-
tions presented in this paper shall serve as the foundation for future work on the
finite model theory in light weight description logics [2, 3].

2 Preliminaries

DL-Lite syntax and semantics The language of DL-LiteNhorn contains individ-
ual names a0, a1, . . ., concept names A0, A1, . . ., role names P0, P1, . . ..Complex
roles R, and concepts B are built according to the following syntax rule:

R ::= Pi | P−i , B ::= ⊥ | Ai | ≥ n R,

where n in number restrictions (≥ n R) is a positive integer. We call existentials
those number restrictions with n = 1, denoted also by ∃R. A DL-LiteNhorn-TBox
T is a finite set of axioms of the form B1 u · · · u Bk v B, k ≥ 0, where by
definition the empty conjunction is >. We also consider the sublogic DL-LiteFhorn,
which of all number restrictions only allows for existentials, and those with n = 2
occurring only in concept inclusions of the form ≥ 2 R v ⊥, which are called
global functionality constraints, and are denoted by (funct R). An ABox A is a
finite set of assertions of the form: A(ai) or P (ai, aj). Together, a TBox T and

an ABox A constitute a DL-LiteFhorn knowledge base(KB) K = (T ,A). We use
ind(A) to denote the set of individual names occurring in A; role(K) the set of
role names in K, and role±(K) the set of roles {Pk, P−k | Pk ∈ role(K)}. For a
role R ∈ role±(K), R− = Pk if R = P−k , and R− = P−k if R = Pk. Finally,
concepts(K) denotes the set of basic concepts occurring in K, and concepts(T ),
for those occurring in T .

An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I , and an
interpretation function ·I that assigns to each individual name ai an element
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aIi ∈ ∆I ; to each concept name Aj a subset AIj ⊆ ∆I , and to each role name

Pk, a binary relation P Ik ⊆ ∆I ×∆I . The interpretation function is extended to
concepts and roles as follows:

(P−k )I = {(e, d) ∈ ∆I ×∆I | (d, e) ∈ P Ik }; (inverse role)

>I = ∆I ; (Top)

⊥I = ∅; (Bottom)

(≥ n R)I = {d ∈ ∆I | ]{e ∈ ∆I | (d, e) ∈ RI} ≥ n}; (number rest.)

(Bi uBj)
I = BIi ∩BIj ; (conjunction)

where ] denotes the cardinality of a set. An interpretation I satisfies a TBox
axiom

d
k Bk v B iff (

d
k Bk)I ⊆ BI , in that case we write I |= d

k Bk v B;
similarly, I |= (funct R) iff whenever both (d, e) ∈ RI and (d, e′) ∈ RI , then e =
e′. For ABox assertions we have that I |= A(ai) iff aIi ∈ AI ; and I |= Pk(ai, aj)
iff (aIi , a

I
j ) ∈ P Ik . A knowledge base K = (T ,A) is satisfiable (or consistent) if

there is an interpretation I, satisfying every axiom in T and every assertion in
A. In this case we write I |= K (as well as I |= T , and I |= A), and we say that
I is a model of K (and of T and A). If I is finite (i.e., its domain is finite) we
say that a K (as well as T and A) is finitely satisfiable. The type of d in I is the
set tI(d) = {B | d ∈ BI}, where B is a DL-LiteNhorn-concept. The set of all types
of I, is types(I) = {tI(d) | d ∈ ∆I}. We consider standard reasoning tasks.
Specifically, satisfiability and subsumption. Let L ∈ {DL-LiteFhorn, DL-LiteNhorn}.
The satisfiability problem consists on deciding, given an L-KB K, whether K is
satisfiable; while the subsumption problem amounts to decide, given an L-TBox
T and L-concepts C1 and C2, whether T |= C1 v C2, i.e., whether CI1 ⊆ CI2 in
every model I of T .

3 Model Theoretical Characterizations

Lutz et. al., [10] provide a model theoretical characterization of DL-Litehorn
(without number restrictions) based on (equi)simulation, a weaker notion of
the classical (bi)simulation [7]. In order to capture the counting capability of
DL-LiteNhorn we extend this notion similarly to the graded-bisimulation in [12].

For a DL-LiteNhorn interpretation I, an object d ∈ ∆I , and a role R,

R-succI(d) = {e ∈ ∆I | (d, e) ∈ RI}

is the set of R-successors of d in I.
Let I1 = (∆I1 , ·I1) and I2 = (∆I2 , ·I2) be two DL-LiteNhorn interpretations.

A graded equisimulation(or g-equisimulation) between I1 and I2 is a relation
ρ ⊆ ∆I1 ×∆I2 that satisfies the following properties:

(atom) for every concept name A, if (d, e) ∈ ρ then d ∈ AI1 iff e ∈ AI2 ;
(role) for every role R, if (d, e) ∈ ρ, then the following hold:

(i) for every finite set S ⊆ R-succI1(d), there exists a finite set S′ ⊆
R-succI2(e), such that ]S = ]S′; and
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(ii) for every finite set S ⊆ R-succI2(e), there exists a finite set S′ ⊆
R-succI1(d), such that ]S = ]S′.1

ρ is called global if and only if (i) for every d ∈ ∆I1 there is some e ∈ ∆I2 with
(d, e) ∈ ρ, (ii) for every e ∈ ∆I2 there is some d ∈ ∆I1 with (d, e) ∈ ρ.

We write (I1, d) ≈ (I2, e) if there exists a g-equisimulation ρ between I1 and
I2 such that (d, e) ∈ ρ. Finally, we say that I1 is g-equisimilar to I2, denoted as
I1 ≈ I2, if there is a global g-equisimulation ρ between I1 and I2.

Lemma 1. Let T be a DL-LiteNhorn TBox, C a DL-LiteNhorn concept; and I1
and I2 be two DL-LiteNhorn interpretations over the signature of T and C. The
following statements hold:

(a) DL-LiteNhornconcepts are invariant under g-equisimulations: (I1, d) ≈ (I2, e)
implies d ∈ CI1 iff e ∈ CI2 .

(b) DL-LiteNhorn TBoxes are invariant under global g-equisimulations: if I1 ≈ I2
then I1 |= T iff I2 |= T .

(c) Every model of a DL-LiteNhorn TBox is g-equisimilar to a tree-shaped model.

Canonical Models We use a standard characterization of unrestricted en-
tailment in terms of canonical models [8]. A canonical interpretation for a
DL-LiteNhorn KB K = (T ,A) is constructed by (i) expanding the set of indi-
vidual names in A with an additional set of individuals {dR | R ∈ role±(T )}
that serve as witness of existentials, and (ii) expanding the extensions of concept
and role names as required by T . A role R is called generating in K if there exist
a ∈ ind(A) and R0, . . . , Rn = R such that the following conditions hold:

(agen) K |= ∃R0(a) but R0(a, b) 6∈ A for all b ∈ ind(A) (written a ; dR−0
).

(rgen) For i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1 (written dR−i
; dR−i+1

).

Definition 1. Let K = (T ,A) be a DL-LiteNhorn KB. The canonical interpreta-
tion IK = (∆IK , ·IK) of K is defined as follows:

∆IK = ind(A) ∪ {dR | R− is generating in K};
aIK = a for every a ∈ ind(A);
AIK = {a ∈ ind(A) | K |= A(a)} ∪ {dR ∈ ∆IK | T |= ∃R v A};
P I
K

= {(ai, aj) ∈ ind(A)× ind(A) | P (ai, aj) ∈ A}∪
{(a, dP−) | a; dP−} ∪ {(dP , a) | a; dP }∪
{(dS , dP−) | dS ; dP−} ∪ {(dP , dS) | dS ; dP }.

The canonical interpretation IK of a given KB K can be computed in polynomial
time on the size of K [8], and serves as a finite compact representation of every
model of K. However, IK is not itself in general a model of K, as the following
example shows:

1 Clearly, if both R-succI1(d) and R-succI2(e) are finite, these conditions are equiva-
lent to ]R-succI1(d) = ]R-succI2(e).
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Example 1. Let K = (T ,A), where T = {∃S v ∃P1,∃P−1 v ∃P2,∃P−2 v
∃P1,∃P−2 v ∃P−3 ,∃P3 v ∃S−(funct P−1 ), (funct P−2 ), (funct S), B v ∃P1}, and
A = {B(a)}.
The canonical interpretation IK, depicted in Figure 1, clearly violates the func-
tionality of P−1 and hence is not a model of K.

In general, IK cannot be a model of K since it is finite, and DL-LiteNhorn does
not enjoy the finite model property (FMP). A standard way to construct a
(canonical) model from IK is to unravel it into a forest-shaped interpretation
UK [2, 8]. We omit the definition of UK here and focus only in its properties:

Lemma 2. Let K be a DL-LiteNhorn knowledge base, and UK the unravelling of
the canonical interpretation IK, then the following hold:

(p1) K is satisfiable iff UK |= K.
(p2) For every DL-LiteNhorn TBox axiom ϕ, K |= ϕ iff UK |= ϕ.

4 Finite Model Reasoning in DL-LiteFhorn

In this section, we study finite model reasoning in DL-LiteFhorn. Notably, the
FMP it is already lost when considering only functionality constraints. Let us
take the following DL-LiteFhorn KB to illustrate this:

K′ = (T ∪ {B u ∃P−2 v ⊥},A) (1)

with T and A from Example 1. It is not hard to see that K′ is satisfiable only by
infinite models. Intuitively, in every model I of K′, there is an infinite sequence of
objects connected by P1 and P2 starting from aI : since a is an instance of B, aI

has a P1-successor, d1, and from ∃P−1 v ∃P2, d1 has a P2 successor different from
aI (from B u ∃P−2 v ⊥), say d2, from ∃P−2 v ∃P1 , d2 has a P1-successor, d3,
different from d1, (since P−1 is functional), and d3 has a P2-successor, d4, different
from d2 (since P−2 is functional). These arguments can be used repeatedly to see
that indeed an infinite number of objects are needed to satisfy the constraints
in K′.

In order to provide a method for reasoning in DL-LiteFhorn w.r.t. finite models,
we follow the approach taken by Cosmadakis et. al., [6] for characterizing finite
implication of unary inclusion dependencies (UINDS) and functionality depen-
dencies in databases. Given a DL-LiteFhorn-KB K = (T ,A), we show that it is
possible to ‘enrich’ T in such a way that it explicitly contains concept inclusions
and functionality constraints that hold in every finite model of T . We adapt the
idea behind the axiomatization presented by Cosmadakis et. al., [6], and define
a closure of a given TBox T in terms of arbitrary reasoning. Differently from
what is done by Rosati [13], we do not exclude disjointness axioms of the form
B1 u . . . uBk v ⊥ from T for defining such a closure.

To simplify the presentation we consider an extension of DL-LiteFhorn with
axioms of the form Bi ≥ Bj , with the following intended semantics for finite
models: a finite interpretation I satisfies Bi ≥ Bj if and only if ](Bj)

I ≥ ](Bj)I .
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Definition 2. For a given DL-LiteFhorn TBox T , finClosure(T ) denotes the min-
imal set of axioms satisfying the following conditions:
1. T ⊆ finClosure(T );
2. For every pair of basic concepts B1, B2 occurring in T . If finClosure(T ) |=

B1 v B2, then B2 ≥ B1 ∈ finClosure(T );
3. if (funct R) ∈ finClosure(T ) then ∃R ≥ ∃R− ∈ finClosure(T );
4. if {B1 ≥ B2, B2 ≥ B3} ⊆ finClosure(T ) then B1 ≥ B3 ∈ finClosure(T );
5. if {(funct R),∃R− ≥ ∃R} ⊆ finClosure(T ) then (funct R−) ∈ finClosure(T );
6. if finClosure(T ) |= B1 v B2, and B1 ≥ B2 ∈ finClosure(T ) then B2 v B1 ∈

finClosure(T ).

From 1, it follows that every model of finClosure(T ) is also a model of T . Since
TBox reasoning in DL-LiteFhorn is PTime-complete [2], the following holds:

Proposition 1. finClosure(T ) can be computed in polynomial time on the size
of T .

(1)-(4) in Definition 2 are based in logical consequences and are therefore sound
w.r.t. arbitrary models. (5) and (6), on the other hand, are not sound w.r.t.
infinite models, but a simple counting argument shows that they are sound w.r.t.
finite models. Hence, we have the following result:

Lemma 3. Let T be a DL-LiteFhorn-TBox. Then, the following hold:

(a) if finClosure(T ) |= d
k Bk v B then T |=fin

d
k Bk v B;

(b) if (funct R) ∈ finClosure(T ) then T |=fin (funct R).

Moreover, the introduction of axioms of the form Bi ≥ Bj , induces a directed
graph (V, E), with V the set of concepts occurring in T and (Bi, Bj) ∈ E iff
Bi ≥ Bj ∈ finClosure(T ). The implications w.r.t. finite models can be better
understood by observing the structure of (V, E).

Example 2 (finClosure). Consider the TBox T from Example 1. finClosure(T )
contains (among others) the axioms T1 = {∃P2 v ∃P−1 ,∃P1 v ∃P−2 , (funct P1),
(funct P2)}. Figure 2 shows a portion of the graph induced by finClosure(T ).
The dashed lines represent ‘≥’ inferred by concept inclusions, and the solid lines
are ‘≥’ introduced by functionality assertions (rules 2–4). From a solid (dashed)
edge (Bi, Bj) belonging to a cycle, it is inferred a solid (dashed) edge (Bj , Bi)
(rules 5–6). In the example, from the edge (dP1 , d

−
P2

), corresponding to the axiom

∃P−2 v ∃P1, it is inferred that ∃P1 v ∃P−2 ∈ finClosure(T ). Analogously, from
the solid line labelled with P−1 , corresponding to (funct P−1 ) it is inferred that
(funct P1).
If there is an unsatisfiable concept Bi, this is reflected by an axiom of the form
⊥ ≥ Bi. Let us consider K′ from (1). We have that from the ‘cycle rules’, ∃P1 v
∃P−2 ∈ finClosure(T ′). Hence, finClosure(T ′) |= {∃P1 v ∃P−2 , B v ∃P1, B u
∃P−2 v ⊥}, which implies that finClosure(T ′) |= B v ⊥, and then, by rule 1,
⊥ ≥ B ∈ finClosure(T ′) (see Figure 3). This means that in every finite model I
of T ′, ]BI = 0. An inconsistency w.r.t. finite models is then derived from the
ABox assertion B(a).
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We proceed to prove that finClosure is complete. More precisely, we show the
following:

Lemma 4. Let T be a DL-LiteFhorn-TBox, and ϕ a DL-LiteFhorn axiom on the
signature of T , i.e., ϕ is either a concept inclusion or a functionality constraint.
If T |=fin ϕ then finClosure(T ) |= ϕ.

Proof. We shall show that finClosure(T ) 6|= ϕ implies T 6|=fin ϕ. In what follows,

we fix a DL-LiteFhorn-TBox T , and set T̂ = finClosure(T ). Then, by Lemma 2-
(p2), it suffices to show that UT̂ 6|= ϕ implies T 6|=fin ϕ, where UT̂ is the un-
ravelling of a canonical interpretation IT̂ that depends on ϕ. Specifically, if
ϕ = C v B, then the ‘root’ of UT̂ is an object d ∈ CUT̂ \ BUT̂ . On the other
hand, if ϕ = (funct R), then UT̂ is rooted at an object d with two different
R-successors e and e′.

Let us consider the case ϕ = C v B. We construct a finite model IfT of T
such that UT̂ 6|= C v B implies IfT 6|= C v B. But first, we introduce some
useful notation. For any two concepts B1, B2, we write B1 vT̂ B2 whenever

T̂ |= B1 v B2; and B1 ≡T̂ B2, if additionally B2 vT̂ B1. Since ≡T̂ is an

equivalence relation, the set of concepts E = {∃R | R ∈ role±(T̂ )} can be
partitioned into equivalence classes w.r.t. ≡T̂ . Then, [∃R] ∈ E/ ≡T̂ denotes
the following equivalence class of concepts: [∃R] = {Bi ∈ E | Bi ≡T̂ ∃R}.
Before moving forward with the definition of IfT , we observe that the canonical
interpretation IT̂ constructed as in Definition 1 may introduce multiple witnesses
for a given existential. We set ds = d′s whenever ∃S ≡T̂ ∃S′. Therefore, domain
of the canonical interpretation IT̂ contains exactly one element dS for each class
[∃S] ∈ E/ ≡T̂ (e.g., as in Figure 4).

We write [∃Si] R−→ [∃Sj ] iff ∃Si vT̂ ∃R and ∃R− ∈ [∃Sj ]. Analogously,

∃Si ≥T̂ ∃Sj denotes that ∃Si ≥ ∃Sj ∈ T̂ .
We observe that ≥T̂ induces a coarser partition on E. For a concept ∃Si ∈ E,

the cluster of ∃Si is the set C(∃Si) = {∃Sj ∈ E | ∃Si ≥T̂ ∃Sj and ∃Sj ≥T̂ ∃Si}.
In particular, for every two concepts ∃Si,∃Sj ∈ E, if ∃Si ≡T̂ ∃Sj then
∃Si ∈ C(Sj); but the implication on the other direction does not hold. Intu-
itively, if ∃Si,∃Sj belong to the same cluster, then their extensions have the

same cardinality in every finite model of T̂ , and of T .
Further, we use [∃Si] � [∃Sj ] to denote the fact that there exist concepts

∃R ∈ [∃Si] and ∃R′ ∈ [∃Sj ] such that ∃R ≥T̂ ∃R′, but ∃R′ 6≥T̂ ∃R, i.e., ∃R′ 6∈
C(∃R). For example, in the TBox T from Example 2, [∃P−1 ] � [∃S]. Notably,
∃P−1 ≥T̂ ∃S, but ∃S 6∈ C(∃P−1 ) = {∃P1,∃P−1 ,∃P2,∃P−2 }. It is also the case that
[∃P−1 ] 6� [∃P2], since C(∃P−1 ) = C(∃P2).

For constructing the domain of the desired finite model IfT , we define the set
of finite paths of IT̂ . σ = (dS0

· · · dSk
) ∈ finpaths(IT̂ ) iff σ satisfies the following

conditions:
1. [∃Si] R−→ [∃S′], for some role R, such that :

(a) (funct R−) ∈ T̂ ,
(b) [∃Si+1] ∈ C(∃S′), and
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(c) ∃R 6∈ [∃Si+1]
2. [∃Si+1] � [∃Si]

Intuitively, by condition (1a) a path (σ · d−R) can be ‘reused’ as a witness of
an existential ∃R, whenever the inverse of R is not functional, otherwise a new
object (σ′ ·d−R) is needed as a witness. Condition (1b) ensures that whenever such
a witness path (σ ·dS′) belongs to finpaths(IT̂ ), then also witnesses (σ ·dRi+1) for
each class [∃Ri+1] in the cluster C(∃S′) belong to finpaths(IT̂ ); condition (1c)
avoids to include a witness that is already realized by tail(σ). Moreover, by
condition 2 the length of every path is bounded, and since E is finite, then
finpaths(IT̂ ) is a also finite.

We consider a subset of finpaths(IT̂ ) as the domain of IfT that it is determined
by ϕ = C v B. More specifically, for σ = dS · σ′ ∈ finpaths(IT̂ ), we write ϕ; σ
iff there is a sequence of roles R0, . . . , Rn such that:
1. C u ¬B v ∃R0, ∃S ∈ [∃R−n ];

2. for i ≤ n, ∃Ri ∈ [∃Si], [∃Si] Ri−→ [∃Si+1], and ∃Ri 6∈ [∃Si+1];

3. either (funct R−i ) 6∈ T̂ or [∃Si+1] 6� [∃Si].
We are ready now to define IfT . We set ∆I

f
T = {σ ∈ finpaths(IT̂ ) | ϕ; σ}. For

each concept name A, AI
f
T ⊆ ∆IfT , and for each atomic role P , P ⊆ (∆I

f
T ×∆IfT ),

such that:

AI
f
T ={σ ∈ ∆I

f
T | tail(σ) vT̂ A};

P
IfT
k ={((σ · dSi), (σ · dSidSj )) | [∃Si]

P−→ [∃Sj ]}

∪ {((σ · dSidSj ), (σ · dSi)) | [∃Sj ]
P−−→ [∃Si]}

∪ {(dϕ, (d−P · σ)) | ϕ v ∃P}
∪ {((d−P · σ), dϕ) | ϕ v ∃P−}
∪ {((σ · dP ), (σ′, d−P )) | σ 6= σ′, (funct P−) 6∈ T̂ }.

As an example, consider the model IfT , shown in Figure 6 for the TBox T from
Example 2.

We claim that IfT and UT̂ are g-equisimilar. Indeed, a global g-equisimulation
ρ can be defined by (σ, γ) ∈ ρ iff tail(γ) = dR, tail(σ) = dS and ∃R ∈ [∃S].

Since UT̂ |= T̂ , by Lemma 1(b), IfT |= T̂ ; and since T ⊆ T̂ , IfT |= T . More-

over, IfT is as desired: IfT 6|= C v B, since by construction tIfT
(dϕ) = tUT̂ (dϕ).

Finally, the case for ϕ = (funct R), can be handled by a slight modification of the
previous construction. Essentially, we substitute dϕ in the previous construction
by a witness dR with two R-successors.

From Lemma 3 and Lemma 4 we conclude that finite model TBox reasoning in
DL-LiteFhorn can be reduced to arbitrary TBox reasoning.

Theorem 1. For a given DL-LiteFhorn TBox T , concepts C1 and C2. We have
that the following hold:
1. T is finitely satisfiable iff finClosure(T ) is satisfiable.
2. T |=fin C1 v C2 iff finClosure(T ) |= C1 v C2.
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Next, we show that the complexity of finite model reasoning in DL-LiteFhorn
remains in PTime, when considering also an ABox, i.e., the following hold:

Theorem 2. Let K = (T ,A) be a DL-LiteFhorn KB. Then K is finitely satisfiable
iff (finClosure(T ),A) is satisfiable.

Thus, the complexity of reasoning in DL-LiteFhorn coincides for finite and arbi-
trary models.

Theorem 3. Finite model reasoning in DL-LiteFhorn is PTime-complete.

As pointed out in Section 3 the canonical interpretation of a knowledge base
K constructed as in Definition 1 it is not in general a model of K, due to the
presence of functionality constraints (and arbitrary number restrictions in gen-

eral). The latter observation provides an intuition for the construction of IfT .
Intuitively, IT̂ can be transformed into a finite model by creating ‘copies’ of cer-
tain portions (clusters) in order to resolve violations to functionality constraints;
then, although the number of R-successors of some objects in the model increases
(specifically for those roles R in the TBox such that (funct R) 6∈ T̂ ), this does
not trigger any inconsistency, because the expressive power of DL-LiteFhorn al-
lows only to distinguish between two types of objects: those with exactly one
R-successor, and those with one or more. As we shall see on the next section
this approach for constructing a finite model fails when considering arbitrary
number restrictions.

5 Finite Model Reasoning in DL-LiteNhorn

Kontchakow et. al., [9] show the following result by a reduction of the SAT
problem to finite satisfiability in DL-LiteNhorn.

Lemma 5 ([9, Remark 98]). Finite satisfiability of DL-LiteNhorn TBoxes is
NP-hard.

From the proof of the previous lemma, it can be seen that, contrary to the arbi-
trary model case, when restricting to finite models in DL-LiteNhorn, it is possible
to express disjunctive knowledge, such as covering of a concept C by a disjunc-
tion of concepts, even though the disjunction operator, ‘t’, is not part of the
logic. Moreover, DL-LiteNhorn looses convexity when restricting to finite models.
In order to understand this more clearly, let us consider a TBox T with the
following axioms:
≥ 3 P1 v ⊥, ∃P1 v≥ 2 P1, ≥ 2 P1 ≡ ∃P2, > v ∃P−1 , (funct P−1 ),
B2 ≡ ∃P−2 , (funct P2), (funct P−2 ), B1 uB2 v ⊥.
Let I be a finite model of T , and N = ](∆I). We have that N = 2·](≥ 2 P1)I .

Furthermore, ](≥ 2 P1) = ](B2)I = M , since P I2 is a bijective function; and since
B1 is disjoint with B2, then ](B1)I = M . Hence, ∆I = (B1)I ∪ (B2)I ; and as
a consequence T |=fin≥ 2 P1 v B1 t B2. However, T 6|=≥ 2 P1 v B1, and
T 6|=≥ 2 P1 v B2.
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The best known upper bound for finite satisfiability in DL-LiteNhorn is Exp-
Time, which is given by the complexity of finite model reasoning in ALCQI [11].
The approach taken by Lutz et. al., [11] is to transform a given ALCQI TBox
into a system of linear inequalities which is exponential on the size of the TBox.
We conjecture that this exponential blow up can be avoided when considering
DL-LiteNhorn TBoxes. The combinatorial nature of this problem suggests indeed
the use of techniques of linear programming. However, we consider that a re-
duction of this problem to the fragment of FOL with one variable and counting
quantifiers is also feasible. For devising ad hoc algorithms for finite model rea-
soning in DLs, it is still relevant to propose a constructive approach as in the
case of DL-LiteFhorn. All these research problems, as well as constructions of finite
models of KBs in logics in the EL family constitute ongoing research.
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An Abstract Tableau Calculus for the
Description Logic SHOI Using Unrestricted

Blocking and Rewriting

Mohammad Khodadadi, Renate A. Schmidt, and Dmitry Tishkovsky?
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Abstract This paper presents an abstract tableau calculus for the de-
scription logic SHOI. SHOI is the extension of ALC with singleton
concepts, role inverse, transitive roles and role inclusion axioms. The
presented tableau calculus is inspired by a recently introduced tableau
synthesis framework. Termination is achieved by a variation of the un-
restricted blocking mechanism that immediately rewrites terms with re-
spect to the conjectured equalities. This approach leads to reduced search
space for decision procedures based on the calculus. We also discuss re-
strictions of the application of the blocking rule by means of additional
side conditions and/or additional premises.

1 Introduction

Since the late nineteen eighties various tableau algorithms have been developed
for description logics [2]. The way they are defined and blocking is performed
these tableau algorithms exploit in an essential way that the supported descrip-
tion logics have a kind of tree-model property. The basic idea is to perform the
derivations such that tree-like models are constructed by systematically creat-
ing maximally expanded label sets of concept expressions for individual terms
one-by-one in a stratified way. Blocking can then be used to ensure no two in-
dividuals (perhaps, in an ancestor relationship) have the same label sets, or are
a subset of other label sets. For description logics with role inverse, nominals
and number restrictions, this kind of stratified construction is more complex
requiring some back-and-forth traversal of a tree model together with forms of
dynamic blocking [9,10]. This more complex non-local construction is still aimed
at finding tree models and therefore not sufficient for description logics without
a kind of tree-model property.

In [14,13] we show description logics without the tree-model property, in
particular, the description logics ALBO and ALBOid, can be decided using
a labelled tableau approach enhanced with the so-called unrestricted blocking
mechanism. Labelled tableau approaches are common for modal logics, hybrid
logics and various other non-classical logics, cf. e.g., [5,3,4,1]. Labelled tableau
approaches are easy to understand, they are easy to define as abstract calculi,

? This research is supported by EPSRC research grant EP/H043748/1.
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even for undecidable logics, and are not limited to logics with a form of tree
model property. There is also more flexibility in the way that derivations can
be performed and it is thus easy to devise sound and complete tableau calculi.
Building on [14,13] we have devised a framework for systematically developing
labelled tableau calculi for various logics, not only description logics [12]. Essen-
tially for any logic whose semantic definition can be specified in the specification
language of the framework, a sound and complete labelled tableau calculus can
be synthesised, if certain general conditions hold.

Being based on a sound tableau rule and equality reasoning, the unrestricted
blocking mechanism is generally sound and can be incorporated into sound and
complete labelled tableau calculi or related approaches. We have shown that if
the logic has the finite model property then adding the unrestricted blocking
mechanism guarantees also termination [11,12]. Unrestricted blocking provides
an intuitively simple method for obtaining termination and behaves very dif-
ferent to standard blocking techniques. It does not require specialised blocking
tests and complicated dynamic processing steps. All individuals are blockable
and once blocked remain blocked. It can be used to find small finite models.

The aim of this paper is to formalise reasoning for a well-studied, expres-
sive description logic in an abstract labelled tableau calculus incorporating un-
restricted blocking. We also we want to explore the possibilities of emulating
different kinds of existing blocking techniques. In particular, we present an ab-
stract labelled tableau calculus for the description logic SHOI. The tableau
calculus is in line with a refined tableau calculus obtained in the tableau syn-
thesis framework, but exploiting the tree model property of SHOI, transitive
roles are accommodated via a propagation rule rather than a structural rule.

Different to most labelled tableau approaches the expansion of ∃ expressions
introduces Skolem terms rather than constants. Another novelty is the use of
ordered rewriting to realise equality reasoning for singleton concepts (nominals)
and blocking. Though there are similarities with substitution and nominal dele-
tion approaches (e.g., [10,4,1]), using Skolem terms and ordered rewriting avoids
the need to perform again some inference steps on the same branch. Also signifi-
cantly fewer inferences are performed than when using standard tableau rules for
equality as in, e.g., [3,14,13]. As the unrestricted blocking rule is generally sound,
any restriction of the rule obtained by adding side-conditions or premises is also
sound. This makes it possible to restrict the application of blocking without
losing soundness and completeness. For example, it is possible to approximate
standard loop checking techniques such as subset ancestor blocking or anywhere
equality blocking and simulate approaches using the δ∗-rule.

The paper is structured as follows. The syntax and semantics of SHOI are
defined in Section 2. In Section 3 we define the tableau calculus for SHOI and
in Section 4 we prove that it is sound, complete and terminating. Furthermore,
we present examples of restricting the blocking rule by imposing constraints via
additional premises and/or side conditions in Section 4. Due to space restrictions
we do not discuss the emulation of all known existing blocking techniques but
the examples given illustrate the general idea.
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2 The Description Logic SHOI

SHOI extends the description logic ALC with singleton concepts, role inverse,
transitive roles and role inclusion axioms. The language of SHOI is defined
over disjoint countable sets of concept names (atomic concepts), individuals, and
role names (atomic roles). The symbol A is used to denote an atomic concept,
the symbols a and b denote individuals, and the symbol r denotes an atomic
role. Concept and role expressions are built from atomic concepts, individuals,
and atomic roles using connectives {·} (singleton operator), ¬, t, and ∃ · .·
(existential restriction operator), − (role inverse operator). Formally, concept
and role expressions are defined respectively by the following grammar rules,
where C and D denote concept expressions and R denotes a role expression.

C,D
def
= A | {a} | ¬C | C tD | ∃R.C

R
def
= r | R−

The operators >, ⊥, u, and ∀ · .· are defined as usual. In order to simplify the
syntax and avoid repetitive occurrences of the role inverse operator we assume
that (r−)−

def
=r. Further, in SHOI, any atomic role is allowed to be declared as

transitive and the predicate Trans is used to denote this. Thus, for every atomic
role r, Trans(r) is true iff r is transitive.

A description logic knowledge base consists of an ABox A, a TBox T and
an RBox R. The ABox consists of a finite number of concept assertions of the
form a : C and role assertions of the form (a, b) : R. The TBox is used to express
a hierarchy between concepts through a finite set of inclusion statements of the
form C v D. A normalised TBox is a set of inclusion statements of the form
> v C. The RBox is a finite set of inclusion statements of the form R v S and
Trans(r), to specify a hierarchy between roles and define transitivity of some
roles. We define the closure R+ of the RBox R as the smallest RBox that
contains R and satisfies the following properties.

– if Q v R ∈ R+ then Q− v R− ∈ R+;

– if Q v R,R v S ∈ R+ then Q v S ∈ R+.

Given an RBox R, let R∗ denote the RBox R+ ∪ {R v R | R is a role}.
The semantics of SHOI is defined by an interpretation I = (∆I , ·I) given

by a pair of a non-empty set ∆I , referred to as the domain of interpretation, and
an interpretation function ·I . The function ·I maps individuals to elements of
the domain, concept names to subsets of ∆I and role names to binary relations
over ∆I . Regarding roles declared as being transitive, ·I must satisfy that rI

is a transitive relation whenever Trans(r) is true. The function ·I extends to all
concept and role expressions by induction on lengths of expressions as follows:

aI
def
= {aI}, (¬C)I

def
= ∆I \ CI , (C tD)I

def
= CI ∪DI ,

(∃R.C)I
def
= {x | ∃y ∈ CI (x, y) ∈ RI}, (R−)I

def
= {(x, y) | (y, x) ∈ RI}.
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According to the semantics, the inverse of a role is transitive iff the role is
transitive. Following this, we extend the predicate Trans to all role expressions
so that Trans(r−) is true iff Trans(r) is true.

Let E denote any concept expression, any concept inclusion, any role inclu-
sion, any concept assertion or any role assertion. We indicate by I |= E that E
is valid in the model I. We define:

I |= C
def⇐⇒ CI = ∆I I |= a : C

def⇐⇒ aI ∈ CI
I |= R v S def⇐⇒ RI ⊆ SI I |= (a, b) : R

def⇐⇒ (aI , bI) ∈ RI
I |= C v D def⇐⇒ CI ⊆ DI

Because SHOI supports singleton concepts, every ABox statement a : C can
be encoded by the TBox statement {a} v C. Also, every role assertion (a, b) : R
can be encoded as the TBox statement {a} v ∃R.{b}. Thus, without loss of
generality, we assume that a knowledge base is a pair (T ,R) which consists
of a normalised TBox T and an RBox R. It worth noting that the TBox can
be internalised as well [15] but for performance reasons we present a tableau
calculus that handles TBox statements directly.

A concept C is satisfiable in a model I iff CI 6= ∅. A concept is satisfiable in I
with respect to a knowledge base if it is satisfiable in I whenever every statement
of the knowledge base is valid in I. That is, C is satisfiable with respect to
(T ,R) in I iff CI 6= ∅ provided that I |= E for every E ∈ T ∪R.

3 An Abstract Tableau Calculus for SHOI
In this section we present a labelled semantic ground tableau calculus for SHOI.

The language of the tableau calculus is an extension of the language of SHOI
with equality formulae and individual terms used as labels. We add a function
symbol f which takes a triple (s,R,C) consisting of an individual term s, a role
expression R and a concept expression C as its arguments and define the set of
(individual) terms s inductively by the following grammar rule, where a denotes
any individual, C any concept and R any role.

s
def
= a | f(s,R,C)

Terms which are not ABox individuals can be viewed as being Skolem terms.
Formulae in the tableau language are defined by the following grammar rule,

where s and t are individual terms, C is a concept and R is a role.

E
def
= s : C | (s, t) : R | s ≈ t

We extend the interpretation of SHOI expressions to the formulae of the
tableau language. For every SHOI interpretation I, let the interpretation fI

in I of the function f be an arbitrary function mapping triples (x, ρ, χ) with
x ∈ ∆I , ρ ⊆ (∆I)2, χ ⊆ ∆I to elements of ∆I . We let

(f(a,R,C))I
def
= fI(aI , RI , CI), I |= (s : C)I

def⇐⇒ sI ∈ CI ,
I |= s ≈ t def⇐⇒ sI = tI , I |= (s, t) : R

def⇐⇒ (sI , tI) ∈ RI .
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The interpretations of the formulae s ≈ t, s : {t} and t : {s} coincide. In
accordance with their interpretation we refer to these formulae as equalities. We
also refer to the formulae of the form s : ¬{t} as inequalities.

Let Tab denote a tableau calculus comprising of a set of inference rules. A
derivation or tableau for Tab is a finitely branching, ordered tree whose nodes
are annotated by sets of tableau formulae. Assuming that C is the input concept
expression to be tested for satisfiability with respect a knowledge base (T ,R) the
root node of the tableau is the set {a : C}, where a denotes a fresh individual.
Successor nodes are constructed in accordance with a set of inference rules in
the calculus. The inference rules have the general form

X0

X1 | . . . | Xn
(side-condition),

where X0 is the set of premises and the Xi are the sets of conclusions. If n = 0,
the rule is called closure rule and written X0/⊥.

If σ is a substitution that acts on tableau formulae and X = {E1, . . . , Ek}
is a set of tableau formulae then Xσ denotes the set {E1σ, . . . , Ekσ}. A rule is
applicable to a tableau if there is a leaf node annotated with a set N and there
is a substitution σ such that X0σ ⊆ N , where X0 is the set of premises of the
rule, and the side-condition of the rule is true for N . σ is called the matching
substitution of the rule application. We assume in a rule individual symbols,
concept symbols and role symbols represent variables that are matched with
individual terms, concept expressions and role expressions respectively. We also
say the rule is applicable to the formulae X0σ in (the leaf node of) the branch.

If a rule of the calculus is applicable to a leaf node of the tableau with
a matching substitution σ, then the tableau is extended by attaching to the
leaf node n child nodes annotated with N ∪ Xiσ for i = 1, . . . n, respectively.
In order to avoid redundancies we stipulate that a rule application to a leaf
node annotated with N is redundant if there is a conclusion set Xi for some
i = 1, . . . n of the rule such that Xiσ ⊆ N , where σ is the matching substitution.
This ensures rules are not applied more than once to the same sets of formulae.

A branch in the tableau is a maximal path from the root of the tableau to
a leaf node. If a closure rule has been applied in a branch then the branch is
said to be closed. If a branch is not closed, it is called open. A tableau is closed
if all its branches are closed. A branch is fully expanded if no more rules are
applicable to its leaf node modulo redundancy. We call a tableau fully expanded
iff all its branches are fully expanded. We denote by Tab(T ,R, C) a fully ex-
panded tableau constructed in the calculus Tab for the input concept C and the
knowledge base (T ,R).

We need equality reasoning for individual terms to achieve termination for
the calculus. Equality reasoning can be provided in various ways. One is to
supply special tableau rules for reasoning modulo equalities within the branch
in a similar way as is done in [3,14,13]. Another is to use ordered term rewriting.
Ordered rewriting is more efficient for handling equal individuals because it
allows to reduce the number of tableau formulae in the current branch. Since
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(⊥):
s : ¬C, s : C

⊥ (¬¬):
s : ¬¬C
s : C

(t):
s : C tD

s : C | s : D
(¬t):

s : ¬(C tD)

s : ¬C, s : ¬D
(∃):

s : ∃R.C

f(s,R,C) : C, (s, f(s,R,C)) : R
(−):

(s, t) : R−

(t, s) : R

(¬∃):
s : ¬∃S.C, (s, t) : R

t : ¬C (R v S ∈ R∗) (id):
s : C

s : {s}
(¬∃−):

s : ¬∃S−.C, (t, s) : R

t : ¬C (R v S ∈ R∗) (id2):
s : ¬{t}
t : {t}

(+):
s : ¬∃S.C, (s, t) : R

t : ¬∃R.C
(R v S ∈ R∗, Trans(R) ∈ R) (cng):

(s, t) : R

s : {s}, t : {t}
(−+):

s : ¬∃S−.C, (t, s) : R

t : ¬∃R−.C (R v S ∈ R∗, Trans(R) ∈ R) (TBox):
s : {s}
s : C

(C ∈ T )

(RBox):
(s, t) : R

(s, t) : S
(R v S ∈ R+) (≈):

s : {t}
s ≈ t

(s 6= t)

Figure 1. The tableau calculus TabSHOI

all individual terms in any tableau derivation are ground we are dealing with a
special case of rewriting, namely, ground rewriting.

In this paper, a rewrite system R is a binary relation on the set of all indi-
vidual terms and consists of rewrite rules which are pairs of individual terms.
In order to handle equalities, we orient each equality formula appearing in the
current branch of a tableau derivation according to a special ordering � which is
a strict partial order on individual terms. We denote by s→ t a rewrite rule (s, t)
in which s � t. Thus, if an equality formula s ≈ t appears in a node of a branch
then either s→ t or t→ s is added as a rewrite rule to the rewrite system of the
branch. A term which cannot be rewritten (with respect to a rewrite system) is
said to be in normal form. A normal form of a term s is denoted by nf(s). A
rewrite system is terminating if there is a normal form for each term.

Our tableau calculus TabSHOI for the description logic SHOI is given in
Figure 1. The (⊥) rule is the closure rule. The (¬¬) rule removes occurrences
of double negation on concepts. The (t) and (¬t) rules are standard rules for
handling concept disjunctions. Given a tableau formula s : ∃R.C, the (∃) rule
introduces an individual term f(s,R,C) as an R-successor of s (instead of intro-
ducing a fresh individual as might be done in other presentations). The (¬∃) rule
is equivalent to the standard rule for universally restricted concept expressions.
The (¬∃−) rule allows the backward propagation of concept expressions along
inverted links. The (−) rule inverts a given link.

The (+) rule propagates negated existential concept restriction along a tran-
sitive link while the (−+) rule does the same for inverse occurrences of transitive
roles. Equalities of the form s : {s} are tautologies, used in our calculus as do-
main predicates for keeping track of the terms that have been introduced to a
branch. This is achieved with the three rules (id), (id2) and (cng). The (TBox)
rule concatenates every concept of the normalised TBox with every label occur-
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ring on the branch. The (RBox) propagates a link of a role into its superrole
according to the closure R+ of the given RBox R.

The (≈) rule is a special rule adding, what we call, a rewrite trigger s ≈ t
to the branch. Let � be any reduction ordering on the set of individuals in the
branch. The addition of any tableau formula s ≈ t to a set N of formulae which
annotates a leaf tableau node immediately triggers the following rewrite process.
Suppose that s � t (the case t � s is symmetrical). Then, s → t is added to
a rewrite system R associated with the current tableau branch. The tableau is
extended by attaching one child node to the current leaf node. The child node
is annotated by the set N ′ obtained by rewriting all the tableau formulae in N
with respect to the rewrite system R. In particular, this means that, in N ′ every
term s is replaced by a term u such that s

∗→u with respect to R.

4 Soundness, Completeness and Termination

It is not difficult to see that each rule of TabSHOI is sound, i.e., preserves
satisfiability of concept assertions. Consequently:

Theorem 1 (Soundness). The tableau calculus TabSHOI is sound for the de-
scription logic SHOI. That is, if a concept C is satisfiable with respect to the
knowledge base (T ,R) then any fully expanded TabSHOI-tableau for (T ,R, C)
has an open branch.

A tableau calculus Tab is complete iff for every knowledge base (T ,R) and
every concept C if C is unsatisfiable with respect to (T ,R) then there is a closed
tableau Tab(T ,R, C). In order to prove completeness of TabSHOI , we prove its
constructive completeness which implies completeness. A tableau calculus Tab
is constructively complete if for every open branch in any fully expanded tableau
Tab(T ,R, C) there is a model which validates the knowledge base (T ,R) and
satisfies C.

Theorem 2 (Completeness). TabSHOI is a (constructively) complete tableau
calculus for the description logic SHOI.

Next, we establish termination. A tableau calculus Tab is (weakly) termi-
nating if any tableau Tab(T ,R, C) has a finite open branch provided that C is
satisfiable concept with respect to the knowledge base (T ,R).

Although TabSHOI is a sound and complete tableau calculus for the descrip-
tion logic SHOI, it is not terminating. In order to achieve termination, a form of
blocking or loop-checking is necessary. One possibility is to add the unrestricted
blocking mechanism described in [14]. As is shown in [12], this will ensure ter-
mination of an arbitrary tableau calculus under certain conditions, one of which
being condition (c2) discussed below.

In this paper, we take a slightly different route and introduce a modified
version of the unrestricted blocking mechanism. It is given by the (ub-rw) rule
and ordered rewriting.

(ub-rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t} (s 6= t)
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Here, s ≈ t is a rewrite trigger as introduced in Section 3. Premises of this
rule are instantiated with any two distinct terms s and t used as labels in a set
of tableau formulae N annotating the current leaf node. As a result of a rule
application two successor nodes are created. If s � t (respectively t � s) then in
the left node a rewrite rule s → t (respectively t → s) is added to the rewrite
system R. The left node is annotated with a copy of N , which is rewritten with
respect to the newly obtained rewrite system R. The right node is annotated
with a copy of N extended with the additional formula s : ¬{t}. This formula
indicates the case that s and t are not equal.

The calculus consisting of all the rules of TabSHOI and the rule (ub-rw) is
denoted by TabSHOI(ub-rw). Clearly, the (ub-rw) rule is sound. Therefore:

Theorem 3. The calculus TabSHOI(ub-rw) is a sound and (constructively)
complete for the description logic SHOI.

In order to ensure termination for a procedure based on TabSHOI(ub-rw)
the rule application strategy must satisfy the following condition.

(c2) In every open branch there is some node from which point onward before
any application of the (∃) rule all possible applications of the (ub-rw) rule
have been performed.

(The unrestricted blocking mechanism in [14] also needs to satisfy a second
condition, which is already satisfied in our modified setting.)

Provided that condition (c2) holds, a sufficient and necessary condition for
termination of the tableau procedures based on TabSHOI(ub-rw) is that SHOI
has the finite model property with respect to its standard semantics. This can
be shown in a similar way as in [13]. A description logic has the finite model
property if for an arbitrary concept C and arbitrary knowledge base it holds
that if C is satisfiable with respect to the knowledge base in a model for the
logic then C is satisfiable with respect to the knowledge base in a finite model
of the logic.

The finite model property for SHOI can be shown by a filtration argument.

Theorem 4 (Finite model property of SHOI). The description logic
SHOI has the finite model property.

Therefore, using the results of [13] we obtain the following theorem.

Theorem 5 (Termination). Any implementation, fair in the sense of [13], of
the tableau calculus TabSHOI(ub-rw) and satisfies condition (c2) is a decision
procedure for SHOI and its sublogics.

5 Sound Restricted Blocking

The (ub-rw) rule creates potentially many branching points in a derivation,
especially if the number individuals and ∃-expressions in the knowledge base is
high. A way to reduce the number of applications of the (ub-rw) rule and thus
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reduce the search space is to apply the blocking rule less often. This can be
achieved by adding side-conditions and/or premises to the rule. Ideal would be
side-conditions and additional premises that maximise the chance of constructing
a finite model without the need for backtracking.

In the remaining section, we give some examples of restricted versions of
the (ub-rw) rule. They all preserve soundness and completeness. We have:

Theorem 6 (Soundness and completeness). The (ub-rw) rule constrained
by additional premises or side-conditions is sound. Thus, TabSHOI extended
with such a modified rule is sound and complete for SHOI.

Most existing description logic tableau algorithms aim to construct models
given by relational tree structures where the nodes are individuals (or individual
terms, if Skolem terms would have been used) and are annotated with label sets
of concept expressions. A label set of a term s is the set L(s)

def
={C | s : C ∈ N}.

These label sets are then used in the tests of standard blocking mechanism such
as subset ancestor blocking and dynamic anywhere equality blocking.

An emulation of subset ancestor blocking can be realised through the selective
application of the (ub-rw) rule, realised by adding a side-condition:

(ub⊆-rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t} (s 6= t, s is an ancestor of t and L(t) ⊆ L(s))

In this rule the application of the (ub-rw) rule is restricted to a term s and its
successor term t, where the label set of s is a superset of the label set of t. In
our setting, as the calculus creates Skolem terms in the (∃) rule, a term s is an
ancestor of a term t, if s is a subterm of t.

Standard ancestor subset blocking is used in tableau algorithms for descrip-
tion logics ALC, S and SH [7]. In ancestor subset blocking, a term t is blocked
by its ancestor s if L(t) ⊆ L(s). No rule is applicable to the blocked individ-
uals. As standard ancestor blocking is not a branching rule it is important to
perform the expansions in a stratified way and perform the subset test at an
appropriate moment in order to preserve soundness. But even if the expansions
are performed in the required way standard ancestor blocking is not generally
sound unlike blocking based on the (ub⊆-rw) rule.

Application of the (ub-rw) rule can be limited by ignoring the pairs of terms
where the application of the rule is not critical for termination. E.g., it is possi-
ble to ignore pairs where both terms appear before some fixed node of a tableau
derivation. We believe, as there are a finite number of individuals before a fixed
tableau node, excluding them does not endanger termination. In particular, the
pairs where both terms are ABox individuals can be ignored as in [8]. If the
unique name assumption is assumed for the given ABox individuals, identify-
ing these individuals by blocking would be incorrect. Using the following rule
instead of using the (ub-rw) rule can have a significant impact on the perfor-
mance, especially when reasoning over knowledge bases with a large number of
individuals.

(ubNo ABox-rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t} (s 6= t, not both s and t are ABox individuals)
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We can define a variation of the (ub-rw) rule restricted to the terms that are
known to be the ones that may cause infinite derivations. For TabSHOI , infinite
derivations can be caused only by infinite applications of the (∃) rule. This
means we may focus blocking on the terms to which the (∃) rule may eventually
be applicable, i.e., the terms which have an ∃-expression in their label sets. We
may formulate the (ub-rw) rule as follows to reflect this restriction:

(ub∃-rw):
s : ∃R.C, t : ∃S.D
s ≈ t | s : ¬{t} (s 6= t)

Here, ∃R.C, ∃S.D are two ∃-expression that can be matched with any ∃-expres-
sion. This rule is applicable to any pair of terms s and t which both have a
∃-expression in their label sets.

The three variations of the (ub-rw) rule just presented are all sound, thus
preserving soundness (and completeness) of the calculus is not an issue. An
issue is to show under which conditions and for which logics termination can be
ensured. Because of the side-conditions or additional premises these variations
of the (ub-rw) rule are no longer applied to every possible pair of terms. Thus,
condition (c2) does not hold. We believe however it can be proved that search
strategies can be adopted where blocking applies to sufficiently many pairs so
that the procedure terminates.

Next we illustrate how the (δ∗) rule [6] can be simulated using a restriction
of the (ub-rw) rule. The (δ∗) rule systematically reuses terms in order to find
finite models. For description logics the (δ∗) rule is defined as follows:

(δ∗):
s : ∃R.C

(s, t1) : R, t1 : C | · · · | (s, tn) : R, tn : C | (s, f(s,R,C)) : R, f(s,R,C) : C

Here, t1, . . . , tn are all existing terms, covering all given ABox individuals and
all introduced Skolem terms on the current branch. The (δ∗) rule is actually
a modified version of the (∃) rule. Instead of creating a new term to satisfy
an ∃-expression, this rule tries to satisfy the ∃-expression by reusing existing
terms. If all the attempts to satisfy the ∃-expression with existing terms end in
contradictions, then a new term f(s,R,C) is introduced.

In our abstract calculus we can simulate the (δ∗) rule with the (∃) rule and
modifying the (ub-rw) rule to:

(ubδ∗ -rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t} (s 6= t, t is a Skolem term)

We should use a rule application strategy where after each application of the
(∃) rule, the (ubδ∗ -rw) rule is applied to the newly added Skolem term and every
existing term. In contrast to the previous blocking variations, the (ubδ∗ -rw) rule
satisfies condition (c2), since all possible term comparisons are performed before
any application of the (∃) rule. Hence termination is ensured.

Theorem 7 (Termination). Any implementation, fair in the sense of [13], of
the tableau calculus TabSHOI extended with the (ubδ∗ -rw) rule and using the
described strategy is a decision procedure for SHOI and its sublogics.
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6 Concluding Remarks

The contribution of this paper is an abstract labelled tableau calculus for the
description logic SHOI using ordered rewriting and generic forms of blocking
defined as variations of the unrestricted blocking mechanism. The tableau cal-
culus is designed to be as general as possible in order to gain greater insight into
minimal requirements for soundness, completeness and termination and con-
duct the proofs without any considerations for search strategies, heuristics and
other implementation issues. The discussion in [13] of how to obtain determin-
istic tableau procedures for implementation based on the notion of fairness as
defined in that paper carries over to the calculi presented here. We hope this
ongoing work will lead to even greater insight of the theory and techniques of
different tableau approaches for description logics and their implementation.
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1 Introduction

An ontology language L is said to enjoy FO-rewritability if any conjunctive
query (CQ) q over any ontology T , given in L, can be transformed into an FO-
formula q′ such that, for any data A, all answers to q over the knowledge base
(T ,A) can be found by querying q′ over A using a standard relational database
management system (RDBMS). Ontology languages with this property include
the OWL2QL profile of OWL2, which is based on description logics of the
DL-Lite family [7, 16, 2], and fragments of Datalog± such as linear or sticky
TGDs [5, 6]. Various rewriting techniques have been implemented in the systems
QuOnto [1], REQUIEM [15], Presto [22], Nyaya [8], IQAROS3 and Quest.4

The idea of using languages with FO-rewritability for ontology-based data ac-
cess (OBDA) relies on the empirical fact that RDBMSs are usually very efficient
in practice. However, the first rewritings of CQs over OWL2QL ontologies [7, 15]
turned out to be too lengthy even for modern RDBMSs. The attempts to employ
various optimisation techniques still produced rewritings of exponential size in
the worst case: O((|T | · |q|)|q|) [22, 8, 20, 21]. The alternative two-step combined
approach [14, 13]—first expand the data by applying the ontology axioms to the
data and introducing (some of) the missing individuals, and only then rewrite the
query over the expanded data—resulted in a simple polynomial rewriting only
for the fragment of OWL2QL without role inclusions; for the full language, the
rewriting remained exponential. Two seemingly contradictory results, presented
at DL 2011, added more spice to the quest for short rewritings: [9] showed that
one can construct, in polynomial time, a nonrecursive Datalog (NDL) rewriting
for some fragments of Datalog± containing OWL2QL, while [11] argued that
no FO-rewriting for OWL2QL can be constructed in polynomial time.

The aim of this paper is twofold. First, we investigate the worst-case size
of FO- and NDL-rewritings for CQs over OWL2QL ontologies. We distinguish
between ‘pure’ rewritings, which can use the signature of the original query and
ontology as well as =, 6= (cf. [7]), and ‘impure’ rewritings, where other means
such as new constants are allowed. Here is a summary of the obtained results:

3 http://code.google.com/p/iqaros/
4 http://obda.inf.unibz.it/protege-plugin/quest/quest.html
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(1) An exponential blow-up is unavoidable for pure positive existential (PE)
rewritings and pure NDL-rewritings; pure FO-rewritings can blow-up super-
polynomially unless NP ⊆ P/poly.

(2) Pure NDL-rewritings are in general exponentially more succinct than pure
PE-rewritings.

(3) Pure FO-rewritings can be superpolynomially more succinct than pure PE-
rewritings.

(4) Impure PE- and NDL-rewritings can always be made polynomial, and so
they are exponentially more succinct than pure PE- and NDL-rewritings,
respectively.

(1)–(3) are proved by establishing connections between pure rewritings for CQs
over OWL2QL ontologies and circuits for monotone Boolean functions. In a
nutshell, we show that CQs and OWL2QL ontologies can encode such problems
as the existence of a k-clique in a graph with n vertices whose edges are given
by a single-element ABox. The polynomial PE-rewriting in (4) is similar to the
NDL-rewriting of [9]: using two extra constants, = and polynomially many new
existentially quantified variables, one can guess a relevant part of the canonical
model of T in the rewritten query. The difference between the resulting impure
PE-rewritings and exponential-size pure PE-rewritings is of the same kind as
the difference between deterministic and nondeterministic Boolean circuits.

Our second aim is to analyse the causes behind long rewritings and whether
they occur in real-world queries and ontologies. As a result, we suggest some
short rewritings that cover most practical cases.

Omitted proofs can be found in [10] and the full version of [12].

2 Queries over OWL2QL Ontologies

The language of OWL2QL is defined by the following grammar:5

R ::= Pi | P−i ,
B ::= ⊥ | Ai | ∃R,
C ::= B | ∃R.B,

where the Ai are concept names and the Pi are role names. An OWL2QL TBox,
T , is a finite set of inclusions of the form B v C, R1 v R2, B1 u B2 v ⊥ and
R1 uR2 v ⊥. Note that concepts of the form ∃R.B can only occur in the right-
hand side of concept inclusions. An ABox, A, is a finite set of assertions of
the form Ak(ai) and Pk(ai, aj), where ai, aj are individual names. T and A
together form the knowledge base (KB) K = (T ,A). The semantics is defined
in the usual way, based on interpretations I = (∆I , ·I) with domain ∆I and
interpretation function ·I . The set of individuals in A is denoted by ind(A); IA
is the interpretation with domain ind(A) such that, for any concept or role E
and any a ⊆ ind(A), we have IA |= E(a) iff E(a) ∈ A. We write E1 vT E2 if
T |= E1 v E2; and we set [E] = {E′ | E vT E′ and E′ vT E}.
5 We do not consider data properties, attributes and role (ir)reflexivity constraints.
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A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x,y), where ϕ is a con-
junction of atoms of the form Ak(t1) and Pk(t1, t2), and each ti is a term (an
individual or a variable from x, y). A tuple a ⊆ ind(A) is a certain answer to
q(x) over K = (T ,A) if I |= q(a) for all I |= K; then we write K |= q(a).

Query answering over OWL2QL KBs is based on the fact that, for any
consistent KB K = (T ,A), there is an interpretation CK such that, for all CQs
q(x) and a ⊆ ind(A), we have K |= q(a) iff CK |= q(a). The interpretation
CK, called the canonical model of K, can be constructed as follows. For each
pair [R], [B] with ∃R.B in T (we assume ∃R is just a shorthand for ∃R.>),
we introduce a fresh symbol w[RB] and call it the witness for ∃R.B. We write
K |= C(w[RB]) if ∃R− vT C or B vT C. Define a generating relation, ;, on the
set of these witnesses together with ind(A) by taking:

– a; w[RB] if a ∈ ind(A), [R] and [B] are vT -minimal such that K |= ∃R.B(a)
and there is no b ∈ ind(A) with K |= R(a, b) ∧B(b);

– w[R′B′] ; w[RB] if u; w[R′B′], for some u, [R] and [B] are vT -minimal with
K |= ∃R.B(w[R′B′]) and it is not the case that R′ vT R− and K |= B(u).

If a ; w[R1B1] ; · · · ; w[RnBn], n ≥ 0, then we say that a generates the path
aw[R1B1] · · ·w[RnBn]. Denote by pathK(a) the set of paths generated by a, and
by tail(π) the last element in π ∈ pathK(a). CK is defined by taking:

∆CK =
⋃

a∈ind(A)
pathK(a), aCK = a, for a ∈ ind(A),

ACK = {π ∈ ∆CK | K |= A(tail(π))},
P CK = {(a, b) ∈ ind(A)× ind(A) | K |= P (a, b)} ∪

{(π, π · w[RB]) | tail(π) ; w[RB], R vT P} ∪
{(π · w[RB], π) | tail(π) ; w[RB], R vT P−}.

Theorem 1 ([7, 13]). For every OWL2QL KB K = (T ,A), every CQ q(x)
and every a ⊆ ind(A), K |= q(a) iff CK |= q(a).

Given a CQ q(x) and a TBox T , a first-order formula q′(x), possibly with
= and 6=, is called an FO-rewriting for q(x) and T if, for any ABox A and any
a ⊆ ind(A), we have (T ,A) |= q(a) iff IA |= q′(a). If q′ is an FO-rewriting of
the form ∃y ϕ(x,y), where ϕ is built from atoms using only ∧ and ∨, then we
call q′(x) a positive existential rewriting for q(x) and T (or a PE-rewriting, for
short). We say that q′ is pure if it does not contain constants that do not occur
in q (such constants are interpreted by fresh individuals added to IA). The size
|q′| of q′ is the number of symbols in q′.

We also consider rewritings in the form of nonrecursive Datalog queries. We
remind the reader that a Datalog program, Π, is a finite set of Horn clauses
∀x (A1 ∧ · · · ∧ Am → A0), where each Ai is an atom of the form P (t1, . . . , tl)
and each tj is either a variable from x or a constant. A0 is called the head of the
clause, and A1, . . . , Am its body. All variables occurring in the head must also
occur in the body. A predicate P depends on a predicate Q in Π if Π contains a
clause whose head is P and whose body contains Q. Π is called nonrecursive if
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this dependence relation for Π is acyclic. A nonrecursive Datalog query consists
of a nonrecursive Datalog program Π and a goal G, which is just a predicate.
A tuple a ⊆ ind(A) is a certain answer to (Π,G) over A if Π,A |= G(a). The
size |Π| of Π is the number of symbols in it. We distinguish between pure and
impure Datalog queries [3]. In a pure query (Π,G), the clauses in Π do not
contain constant symbols in their heads. One reason for considering only pure
queries in OBDA is that impure ones can add new facts to the database that do
not follow from the background ontology. Impure queries are known to be more
succinct than pure ones.

Given a CQ q(x) and an OWL2QL TBox T , a pure nonrecursive Datalog
query (Π,G) is called a nonrecursive Datalog rewriting for q(x) and T (or an
NDL-rewriting, for short) if, for any ABox A and any a ⊆ ind(A), we have
(T ,A) |= q(a) iff Π,A |= G(a). If Π does not contain constants that do not
occur in q then we say that the NDL-rewriting (Π,G) is pure.

3 Query Rewritings and Boolean Circuits

To establish results (1)–(3) on the size of rewritings mentioned in the introduc-
tion, we show how the problem of constructing circuits that compute monotone
Boolean functions can be reduced to the problem of finding pure FO- and NDL-
rewritings for CQs over OWL2QL ontologies.

Our reduction proceeds in three steps. First, we take any family f1, f2, . . . of
monotone Boolean functions in NP, where fn : {0, 1}n → {0, 1}, a polynomial
p and a family C1,C2, . . . of polynomial-size circuits such that fn(α) = 1 iff
Cn(α,β) = 1, for some β ∈ {0, 1}p(n). Using the Tseitin transformation [23], we
construct a polynomial-size CNF θfn that computes fn in the following sense:

Lemma 1. If fn is monotone then ϕαfn =
(∧

αj=0 ¬xj
)
∧ θfn is satisfiable iff

fn(α) = 1, for all α = (α1, . . . , αn) ∈ {0, 1}n.

Let ϕfn be ϕαfn for α = (0, . . . , 0). It should be clear that ϕαfn is obtained
from ϕfn by removing the clauses ¬xj for which the jth component of α is 1.

The second step is to encode the ϕfn by means of TBoxes Tfn and CQs qfn .
Let p1, . . . , pN be the propositional variables and C1, . . . , Cd the clauses in ϕfn .
Then Tfn contains the following concept inclusions, for 1 ≤ i ≤ N , 1 ≤ j ≤ d:

Ai−1 v ∃P−.X`
i , X`

i v Ai, for ` = 0, 1, X0
i v Zi,j if ¬pi ∈ Cj ,

Zi,j v ∃P.Zi−1,j , X1
i v Zi,j if pi ∈ Cj ,

A0 uAi v ⊥, A0 u ∃P v ⊥, A0 u Zi,j v ⊥, if (i, j) /∈ {(0, 1), . . . , (0, n)},
and the CQ is defined as follows:

qfn = ∃y ∃z
[
A0(y0) ∧

N∧

i=1

P (yi, yi−1) ∧
d∧

j=1

(
P (yN , zN−1,j) ∧

N−1∧

i=1

P (zi,j , zi−1,j) ∧ Z0,j(z0,j)
)]
,
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where y = (y0, . . . , yN ) and z = (z0,1, . . . , zN−1,1, . . . , z0,d, . . . , zN−1,d). The size
of Tfn and qfn is O(|Cn|2). Note that Tfn is acyclic and qfn is tree-shaped and
has no answer variables. The canonical model C(Tfn ,{A0(a)}) of (Tfn , {A0(a)})
and the query qfn are illustrated below.

C(Tfn ,{A0(a)}) a
A0

X1
1 , A1

X0
1 , A1

X1
2 , A2, Z2,1

X0
2 , A2

X1
2 , A2

X0
2 , A2

X1
3 , A3

X0
3 , A3

X1
3 , A3

X0
3 , A3

X1
3 , A3

X0
3 , A3

X1
3 , A3

X0
3 , A3, Z3,2

Z1,1Z0,1

Z2,2Z1,2Z0,2

qfn

y0
A0

y1 y2 y3

z2,1

z2,2

z1,1

z1,2

z0,1

z0,2

Z0,1
Z0,2

For each α = (α1, . . . , αn) ∈ {0, 1}n, we define the following ABox:

Aα =
{
A0(a)

}
∪
{
Z0,j(a) | 1 ≤ j ≤ n and αj = 1

}
.

Lemma 2. (Tfn ,Aα) |= qfn iff ϕαfn is satisfiable, for α ∈ {0, 1}n.

To complete our reduction, we show that rewritings for qfn and Tfn can be
turned into Boolean circuits computing fn.

Lemma 3. (i) Suppose q′fn is a pure FO- (PE-) rewriting for Tfn and qfn . Then
there is a (monotone) Boolean formula ψfn computing fn with |ψfn | ≤ |q′fn |.

(ii) Suppose (Πfn , G) is a pure NDL-rewriting for Tfn and qfn . Then there
is a monotone Boolean circuit Cfn computing fn with |Cfn | ≤ |Πfn |.

The proof proceeds by eliminating quantifiers in the rewriting and replacing
its predicates with propositional variables using the fact that, in ABoxes Aα,
these predicates can only be true on the individual a. Lemmas 1 and 2 ensure
that the resulting Boolean formula or circuit computes fn. The next lemma
shows that circuits computing fn can be turned into pure rewritings for qfn and
Tfn .

Lemma 4. (i) Suppose qn is an FO-sentence such that (Tfn ,Aα) |= qfn iff
IAα |= qn, for all α ∈ {0, 1}n. Then there exists a pure FO-rewriting q′n for qfn
and Tfn with |q′n| ≤ |qn|+ p(n), for a polynomial p.

(ii) Suppose (Πn, G) is a pure NDL-query with a propositional goal G such
that (Tfn ,Aα) |= qfn iff Πn,Aα |= G, for α ∈ {0, 1}n. Then there is a pure
NDL-rewriting (Π ′n, G

′) for qfn and Tfn with |Π ′n| ≤ |Πn|+p(n), p a polynomial.

Now, results (1)–(3) formulated in the introduction can be obtained by ap-
plying Lemmas 1–4 to three concrete Boolean functions. For (1), we use the
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function Cliquen,k of n(n − 1)/2 variables eij , 1 ≤ i < j ≤ n, which returns
1 iff the graph with vertices {1, . . . , n} and edges {{i, j} | eij = 1} contains
a k-clique. A series of papers, started by Razborov’s [19], gave an exponential

lower bound for the size of monotone circuits computing Cliquen,k: 2Ω(
√
k) for

k ≤ 1
4 (n/ log n)2/3. For monotone formulas, an even better lower bound is known:

2Ω(k) for k = 2n/3 [18]. The question whether Cliquen,k can be computed by
a polynomial-size circuit is equivalent to whether NP ⊆ P/poly.

To show (2), we use the function Genn3 of n3 variables xijk, 1 ≤ i, j, k ≤ n,
defined as follows. We say that 1 generates k ≤ n if either k = 1 or, for some
i and j such that xijk = 1, 1 generates both i and j. Genn3(x111, . . . , xnnn)
returns 1 iff 1 generates n. It is clearly a monotone function computable by
polynomial-size monotone circuits. On the other hand, any monotone formula
computing Genn3 is of size at least 2n

ε

, for some ε > 0 [17].
For (3), we use the function Matching2n of n2 variables eij , 1 ≤ i, j ≤

n, which returns 1 iff there is a perfect matching in a bipartite graph G with
vertices {v11 , . . . , v1n, v21 , . . . , v2n} and edges {{v1i , v2j } | eij = 1}, i.e., a subset E of
edges in G such that every node in G occurs exactly once in E. An exponential
lower bound 2Ω(n) for the size of monotone formulas computing this function
was obtained in [18]. However, Matching2n is computable by non-monotone
formulas of size nO(logn) [4].

The exponential bounds for the size of rewritings can be reduced to polyno-
mial by using two extra constants, say 0 and 1, which are included in the domain
of every IA (see [9] and [10] for polynomial-size NDL- and PE-rewritings, re-
spectively). As these constants may not occur in the original query and intended
ABoxes, we call such rewritings impure (in [9] and [10], 0, 1, = and polynomially-
many fresh existentially quantified variables are used to guess some part of the
canonical model). The difference between pure and impure rewritings is simi-
lar to the difference between deterministic circuits and nondeterministic circuits
with additional existentially quantified input variables. For example, Cliquen,k
is computed by a polynomial-size monotone nondeterministic circuit, but not by
a monotone deterministic circuit of polynomial size [19].

4 Why are Pure Rewritings so Long?

Let q(x) = ∃y ϕ(x,y) be a connected CQ and T a TBox. Let term q be the
set of terms in q. Denote by CT the disjoint union of the canonical models
for consistent (T , {R(aRB , bRB), B(bRB)}), in which the generating relation is
extended with aRB ; bRB . The RB-subtree of CT has root aRB and consists
of the full subtree of CT with root bRB extended with the edge (aRB , bRB). We
also need the formulas

extC(x) =
∨

AvT C
A(x) ∨

∨

∃RvT C
∃y R(x, y), extP (x, y) =

∨

RvT P
R(x, y),

for concepts C and role names P . Suppose CK |=a ϕ, K = (T ,A), where a is an
assignment of elements of ∆CK to the variables in ϕ under which a(x) ∈ ind(A)
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for all x ∈ x. Consider an atom P (t, t′) ∈ q with bound variables t, t′ and assume
that a(t0) ∈ ind(A), for some t0 ∈ term q. The assignment a can send t and t′

to four different locations in CK: (A) a(t), a(t′) ∈ ind(A); (B) a(t) ∈ ind(A),
a(t′) /∈ ind(A); (B−) a(t) /∈ ind(A), a(t′) ∈ ind(A); (O) a(t), a(t′) /∈ ind(A). Let
us see how these alternatives can be reflected in a rewriting. In case (A) we have
CK |=a P (t, t′) iff A |=a extP (t, t′). Case (B) is possible only if, for some concept
∃R.B, we have a(t) ; w[RB], R vT P and the atoms of q ‘linked to’ t′ can be
mapped into the RB-subtree of CT . To illustrate, consider an example.

Example 1. Let T and q be as in the picture below. The answer variable x must
be mapped by a to an ABox element. However, y can be mapped either to an
ABox element or to the point a(x) · w[S−B] provided that a(x) is an instance
of ∃S−.B. In the latter case, we have two ways of mapping z: either to a(x) ·
w[S−B]w[SA′], in which case we must set a(v) = a(x) · w[S−B]w[SA′]w[T>], or to
a(x), provided that a(x) is an instance of ∃T . Thus we have two (partial) maps
f and g from q into the S−B-subtree of CT shown below.

T = { A v ∃S−.B, B v ∃S.A′,
A′ v ∃T }

q(x) = {S(y, x), S(y, z), T (z, v)}

x

y

z

v

S

S

T

aS−B

B

A′

S−

S

T

x

y

z

v

S

S

T

f

f

f

f

g

g

g

q q

These observations motivate our key definition. Given a pair (t, t′) of adjacent
terms in q, a tree witness6 for (t, t′) is a homomorphism f from the query
qf =

{
E(s) ∈ q | s ⊆ dom f, s 6⊆ [t]f

}
to the RB-subtree of CT , for some

∃R.B, such that f(t) = aRB , dom f is the smallest set containing t, t′ for which
s′ ∈ dom f whenever S(s, s′) ∈ q with s ∈ dom f \ [t]f , and all s ∈ dom f \ [t]f
are bound variables in q. Here ∼f denotes the equivalence relation on dom f
defined by taking s ∼f s′ iff f(s) = f(s′) and [t]f the equivalence class of t. In
Example 1, f and g are two tree witnesses for (x, y). Returning back to case (B),
we can say now that there must exist a tree witness f for (t, t′) such that a(t)
satisfies the following tree-witness formula twf for f with f(t) = aRB :

twf = ext∃R.B(t) ∧
∧

s∈[t]f
(t = s) ∧

∧

E(s)∈q, s⊆[t]f
extE(s).

Case (B−) is symmetric, and in case (O) there must exist S(s, s′) ∈ q for which
(B) holds, with P (t, t′) being ‘covered’ by the tree witness for (s, s′).

This analysis suggests the following idea for a rewriting. We guess pairs of
adjacent terms (t, t′) in q that will be mapped to edges of the tree part of CK
6 A different notion of tree witness was used for DL-LiteNhorn [13], where the structure

of the canonical models ensured uniqueness of every tree witness.
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and the tree witnesses that will cover them, as in cases (B), (B−) and (O). The
part of q that is not covered by these tree witnesses will be mapped to ind(A),
as in case (A). The query representing the guesses is then evaluated over IA.
The following example shows, however, that this idea needs a refinement.

Example 2. Let q(x1, x4) = {R(x1, y2), R(y3, y2), R(y3, x4)}, shown below on the
left, and T = {A v ∃R, A v ∃R−}.

x1

y2

y3

x4

R R Rf

g
A

a

aw[R>] aw[R−>]

R−R

C(T ,{A(a)})

Clearly, there is a tree witness f for (x1, y2) with dom f = {x1, y2, y3} and
[x1]f = {x1, y3}, and a tree witness g for (x4, y3) with dom g = {x4, y3, y2} and
[x4]g = {x4, y2}. Although these tree witnesses cover the whole query q, they
are only ‘realised,’ say, in the canonical model C(T ,{A(a)}) (shown above on the
right) under conflicting maps: f sends x1, y3 to a and y2 to aw[R>], while g
sends x4, y2 to a and y3 to aw[R−>]; in fact, (T , {A(a)}) 6|= q(a, a).

Tree witnesses f and g, for (t, t′) and (s, s′), respectively, are compatible if
dom f∩dom g ⊆ [t]f∩[s]g. If f and g are incompatible and neither dom f ⊆ dom g
nor dom g ⊆ dom f , then we call f and g conflicting (e.g., f and g in Example 2).
A set Ξ of tree witnesses is called consistent if all pairs of tree witnesses in Ξ
are compatible. Let

qe(x) = detachedq ∨
∨

Ξ consistent

∃y
( ∧

f∈Ξ
twf ∧

∧

E(s)∈q
s 6⊆dom f, for all f∈Ξ

extE(s)
)
,

where detachedq = ⊥ if x 6= ∅; otherwise it is a disjunction of the sentences
∃x ext∃R.B(x) such that there is a homomorphism from q to the RB-subtree of
CT . The next theorem shows that qe is a pure PE-rewriting for q and T :

Theorem 2. For all A and a ⊆ ind(A), we have (T ,A) |= q(a) iff IA |= qe(a).

Example 3. Let q(x) = {Ri(x, yi) | i ≤ n} and T = {Ai v ∃Ri | i ≤ n}. Each
pair (x, yi) gives rise to one tree witness fi with twfi = Ai(x) ∨ ∃y Ri(x, y), and
qe =

∨
N⊆[0,n] ∃y (

∧
i∈N twfi ∧

∧
j /∈N Rj(x, yj)).

The size of qe is O((nT ,q + 1)|q| · |T | · |q|2), where nT ,q is the number of
distinct tree witnesses. Now, we observe that if

(conf) there are no conflicting tree witnesses for q and T
then qe can be transformed to the query

qc(x) = detachedq ∨ ∃y
∧

{t,t′}
t,t′ adjacent

[ ∧

E(s)∈q, s⊆{t,t′}
extE(s) ∨

∨

f is a tree witness
t,t′∈dom f

twf
]

(if q has no binary predicates then qc = qe).
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Theorem 3. If T and q satisfy (conf) then, for any ABox A and a ⊆ ind(A),
we have (T ,A) |= q(a) iff IA |= qc(a).

The size of qc is O(nT ,q · |T |·|q|2). So, if (conf) holds and nT ,q is polynomial
then qc is a polynomial pure PE-rewriting of q and T . For instance, the expo-
nential qe of Example 3 reduces to polynomial qc = ∃y ∧i≤n(Ri(x, yi) ∨ twfi).
Note, however, that the CQs and TBoxes used in Section 3 generate exponentially
many distinct tree witnesses.

We show now that, for a large class of CQs q and TBoxes T , all tree witnesses
f for each (t, t′) in q (even if there are exponentially many of them) can be
represented by a polynomial formula. Observe that each twf is determined by
a concept ∃R.B (such that the RB-subtree of CT contains the range of f) and
the equivalence relation ∼f on dom f . As the number of concepts ∃R.B is linear
in |T |, the rewriting qc may be regarded polynomial if we show that all tree
witnesses for each (t, t′) have the same equivalence relation. For example, let
q(x) = {S(x, y), R(y, zi) | 1 ≤ i ≤ n} and T = {A v ∃S, ∃S− v ∃R.B1, ∃S− v
∃R.B2}. There are 2n tree witnesses for (x, y), as each zi can be mapped either to
a B1- or a B2-point in CT , and yet they all define the same equivalence relation
and the same tree-witness formula ext∃S(x).

We formalise this intuition in the following definition. For a pair (t, t′) of
adjacent terms in q, we call f = (domf ,∼f ) a universal tree witness for (t, t′) if
domf is a subset of term q with t, t′ ∈ domf and ∼f is an equivalence relation
on domf such that qf =

{
E(s) ∈ q | s ⊆ domf , s 6⊆ [t]f

}
/∼f is a tree-shaped

query with root [t]f and, for every tree witness g for (t, t′),

– dom g = domf and there exists a homomorphism h : qf → CT that preserves
the distance from the root and g(s) = h([s]f ), for every s ∈ domf .

A universal tree witness f for (t, t′) is not a tree witness in the sense of our orig-
inal definition, but rather a convenient structure representing all tree witnesses
for (t, t′): we can merge the tree-witness formulas for (t, t′) into one formula

twf =
[ ∨

∃R.B∈Φf
ext∃R.B(t)

]
∧
∧

s∈[t]f
(t = s) ∧

∧

E(s)∈q, s⊆[t]f
extE(s),

where Φf is the set of concepts ∃R.B such there is a homomorphism h from qf
to the RB-subtree of CT with h([t]f ) = aRB .

We now identify a class of CQs and TBoxes for which a universal tree witness
is unique (if exists) and can be constructed in time polynomial in |q| and |T |.
Intuitively, for each tree witness f , we disallow situations in which CT and the
quotient qf/∼f

of qf simultaneously contain fragments of the form

T S
T

S

T S

qf/∼f CT
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We say that a role S is forward if u ; v for all (u, v) ∈ SCT . If neither S nor
its inverse S− is forward then S is said to be a twisty role. A tree witness f for
(t, t′) is called perfect if, for all T (s1, s2), S(s2, s3) ∈ qf/∼f

such that s2 6= [t]f
and S is twisty, we have CT 6|= inv(T, S) ∧ suc(T, S), where

suc(T, S) = ∃x, y, z (T (x, y) ∧ S(y, z) ∧ (x 6= z)),

inv(T, S) = ∃x, y (T (x, y) ∧ S(y, x)).

Lemma 5. There is a polynomial-time algorithm which, given q, T and a pair
(t, t′), checks whether all tree witnesses for (t, t′) are perfect, and if this is the
case, returns a unique universal tree witness f t,t′ for (t, t′).

Note that even though there may be exponentially many tree witnesses for
(t, t′), the algorithm checks whether they all are perfect in polynomial time. We
are now in a position to define our polynomial PE-rewriting qp for q and T :

qp(x) = detachedq ∨ ∃y
∧

{t,t′}
t,t′ adjacent

[ ∧

E(s)∈q, s⊆{t,t′}
extE(s) ∨

∨

s,s′ adjacent
t,t′∈dom fs,s′

twfs,s′

]
.

Theorem 4. If all tree witnesses for q and T are perfect and condition (conf)
is satisfied then, for any ABox A and any a ⊆ ind(A), we have (T ,A) |= q(a)
iff IA |= qp(a). Moreover, qp is constructed in time polynomial in |q| and |T |.

If T does not contain any twisty roles, then all tree witnesses in any CQ q
over T are perfect. On the other hand, all examples of conflicting tree witnesses
above involve twisty roles. The following theorem shows that this is no accident:

Theorem 5. Let T be an OWL2QL ontology without twisty roles. Then, for
any CQ q, there are no conflicting tree witnesses for q and T . Thus, qp is a
pure PE-rewriting for q and T and it can be constructed in polynomial time.

Note that OWL2EL ontologies satisfy this condition, and so a polynomial
rewriting similar to qp can also be used for CQ answering over such ontologies
provided that the ABoxes are complete with respect to the ontologies [12].

5 Conclusions

As we saw in Section 3, pure PE- and NDL-rewritings of CQs over OWL2QL
ontologies are of exponential size in the worst case. The analysis in Section 4
showed that the length of a rewriting is related to the number of tree witnesses in
the query, which reflect how various parts of the query can be homomorphically
mapped to the intensional tree part of the canonical model. Thus, a rewriting
can be lengthy if the original query is sufficiently long and the intensional part of
the canonical model for the ontology is sufficiently complex. We proved that by
restricting the interaction between inverse roles and role inclusions in ontologies
and queries, we can guarantee transparent polynomial rewritings. Moreover, as
shown by a series of experiments [12], real-world ontologies and CQs contain
very few tree witnesses, which are never in conflict, satisfy the above mentioned
restrictions, and so enjoy pure, polynomial PE-rewritings.

244



References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on
AI, AAAI. pp. 1670–1671 (2005)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)

3. Benedikt, M., Gottlob, G.: The impact of virtual views on containment. PVLDB
3(1), 297–308 (2010)

4. Borodin, A., von zur Gathen, J., Hopcroft, J.E.: Fast parallel matrix and gcd
computations. In: Proc. of FOCS. pp. 65–71 (1982)

5. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. In: Proc. of PODS. pp. 77–86 (2009)

6. Cal̀ı, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries.
PVLDB 3(1), 554–565 (2010)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

8. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: Proc. of the IEEE Int. Conf. on Data Engineering, ICDE (2011)

9. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
Datalog programs. In: Proc. of DL. vol. 745. CEUR-WS.org (2011)

10. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. CoRR, arXiv:1202.4193, 2012.

11. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (in)tractability of OBDA with
OWL 2 QL. In: Proc. of DL. vol. 745. CEUR-WS.org (2011)

12. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proc. of KR. AAAI Press (2012) (see www.dcs.bbk.ac.uk/~kikot)

13. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Proc. of KR. AAAI Press (2010)

14. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proceedings of the 21st Int. Joint
Conf. on Artificial Intelligence, IJCAI 2009. pp. 2070–2075 (2009)
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1 Introduction

Query answering—the computation of answers to users’ queries w.r.t. ontologies and
data—is an important task provided by many description logic (DL) reasoners. Al-
though much effort has been spent on optimizing the ‘reasoning’ part of query an-
swering, i.e., the extraction of the individuals that satisfy a concept or role atom, less
attention has been given to optimizing the actual query answering part when ontologies
in expressive languages are used.

In the context of databases or triple stores, cost-based ordering techniques for find-
ing an optimal or near optimal join ordering have been widely applied [9, 10]. These
techniques involve the maintenance of a set of statistics about relations and indexes,
e.g., number of pages in a relation, number of pages in an index, number of distinct
values in a column, together with formulas for the estimation of the selectivity of pred-
icates and the estimation of the CPU and I/O costs of query execution that depends
amongst others, on the number of pages that have to be read from or written to sec-
ondary memory. The formulas for the estimation of selectivities of predicates (result
output size of query atoms) estimate the data distributions using histograms, parametric
or sampling methods or combinations of them.

In the context of ontologies, the formulas should be extended to take into account
another important cost component, i.e., the cost of executing specific reasoner tasks
such as entailment checks or instance retrievals. It is much more difficult to estimate
this cost precisely before query evaluation as this cost varies and takes values from
a wide range. For example, SROIQ has a worst case complexity of 2-NExpTime [4]
and typical implementations are not worst case optimal. The hypertableau satisfiability
checking algorithm for SROIQ that we use in this paper has a worst-case complexity
of 3-NExpTime in the size of the ontology [7, 4].3 Instead, a subset of possible mappings
for the variables of a query can be sampled and, based on the statistics extracted from
these samples, the most efficient join ordering can be estimated. This, however, requires
that the samples are selected according to an ontology based criterion and not randomly.
Preliminary efforts for finding good join ordering in knowledge bases have already been
made [8].

In this paper we address the issue of query atom ordering, which constitutes an
optimization task, for conjunctions of instance queries issued over ontologies with ex-
pressivity up to SROIQ. The optimization goal is to find the execution plan (an order
for query atoms) which leads to the most efficient execution of the query. This involves

3 The 2-NExpTime result for SHOIQ+ increases to 3-NExpTime when adding role chains [4]

246



the minimization of the number of needed reasoning tasks and the size of intermediate
results. The execution plan which satisfies the above property is determined by means
of a cost function that assigns costs to query atoms within an execution plan. This cost
function is based on heuristics and summaries for statistics about the data which are
extracted from a DL reasoner model. We explore static and dynamic algorithms that
greedily explore the execution plan search space to determine an optimal or near op-
timal execution plan. Static ordering refers to the finding of a join order before query
evaluation starts whereas dynamic ordering determines the ordering of query atoms
during query evaluation taking advantage of already computed query atom results.

2 Preliminaries

In this section we briefly present an overview of the model building tableau and hyper-
tableau calculi and give an introduction to conjunctive instance queries.

It is known that checking whether an individual s0 (pair of individuals 〈s0, s1〉) is
an instance (are instances) of a concept C (role R) w.r.t. an ontology O is equivalent to
checking whether O ∪ {¬C(c0)} (O ∪ {(∀R.¬{s1})(s0)}) is inconsistent w.r.t. O. In order
to perform this action, most DL reasoners use a model construction calculus such as
tableau or hypertableau. In the remainder, we focus on the hypertableau calculus [7],
but a tableau calculus could equally be used and we state how our results can be trans-
ferred to tableau calculi. The hypertableau calculus starts from an initial set of assertions
and by applying derivation rules it tries to construct (an abstraction of) a model of O.
Derivation rules usually add new concept and role assertion axioms, they may introduce
new individuals, they can be nondeterministic, leading to the need to choose between
several alternative assertions to add or they can lead to a clash when a contradiction
is detected. To show that an ontology O is (in)consistent, the hypertableau calculus
constructs a derivation, i.e., a sequence of sets of assertions A0, . . . , An, such that A0
contains all assertions in O, Ai+1 is the result of applying a derivation rule to Ai and An

is the final set of assertions where no more rules are applicable. If a derivation exists
such that An does not contain a clash, then O is consistent and An is called a pre-model
of O. Otherwise O is inconsisent. Each assertion in a set of assertions Ai is derived ei-
ther deterministically or nondeterministically. An assertion is derived deterministically
if it is derived by the application of a deterministic derivation rule from assertions that
were all derived deterministically. Any other derived assertion is derived nondetermin-
istically. It is easy to know whether an assertion was derived deterministically or not
because of the dependency directed backtracking that most (hyper)tableau reasoners
employ. In the pre-model, each individual s0 is assigned a label L(s0) representing the
concepts it is (non)deterministically an instance of and each pair of individuals 〈s0, s1〉
is assigned a label L(〈s0, s1〉) representing the roles through which individual s0 is
(non)deterministically related to individual s1.

Definition 1. Let S = (NC ,NR,NI) be a signature of an ontology O, NV a countably
infinite set of variables disjoint from NC ,NR and NI and S O = (CO,RO, IO) the restric-
tion of S to terms that occur in O. A term t is an element from NV ∪ NI . Let C ∈ CO
be a concept, r ∈ RO a role, and t, t′ ∈ IO ∪ NV terms. An atom is an expression
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C(t) or r(t, t′) and we refer to these types of atoms as concept and role atoms, respec-
tively. A query q is a non-empty set of atoms. We use Vars(q) to denote the set of vari-
ables occurring in q, Inds(q) to denote the set of individual names occurring in q, and
Terms(q) = Vars(q) ∪ Inds(q) for the set of terms in q. We use |q| to denote the number
of atoms in q.

Let q = {at1, . . . , atn} be a query. A mapping µ for q over O is a total function
µ : Terms(q) → IO such that µ(a) = a for each a ∈ Inds(q). The set Γq of all possible
mappings for q is defined as Γq := {µ | µ is a mapping for q}. A solution mapping µ
for q over O is a mapping such that O |= C(µ(t)) for each concept atom C(t) ∈ q and
O |= r(µ(t), µ(t′)) for each role atom r(t, t′) ∈ q.

According to the above definition, we deal with conjunctive queries with only dis-
tinguished variables. Without loss of generality, we assume that queries are connected.
In case they are not, the connected components of a query can be evaluated indepen-
dently and the results of these evaluations can be combined in the end [1].

3 Extracting Individual Information from Reasoner Models

The first step in the ordering of query atoms is the extraction of statistics, exploiting
information generated by reasoners.

As has been mentioned in Section 2, if an ontology is consistent and a pre-model is
constructed, individuals are assingned labels in this pre-model. These labels can provide
us with information about the concepts the individuals belong to or the roles in which
they participate. We exploit this information similarly as was suggested for determin-
ing known (non-)subsumers for classes during classification [2]. In the hypertableau
calculus, the following two properties hold for each ontology O and each constructed
pre-model An for O:

(P1) for each atomic concept C (role R), each individual s0 (each pair of individuals
〈s1, s2〉) in An, if C ∈ LAn (s0) (R ∈ LAn (〈s1, s2〉)) and the assertion C(s0) (R(s1 s2))
was derived deterministically, then it holds O |= C(s0) (O |= R(s1, s2)).

(P2) for an arbitrary individual s0 in An (an arbitrary pair of individuals 〈s1, s2〉 in
An) and an arbitrary atomic concept C (simple role R), if C < LAn (s0) (R <
LAn (〈s1, s2〉)), then O 6|= C(s0) (O 6|= R(s1, s2)).

We use these properties to extract information from the pre-model of a satisfiable
ontology O as outlined in Algorithm 1. In our implementation we use a more compli-
cated procedure to only store the direct types of each individual. The information we
extract involves the maintenance of the sets of known and possible instances for all
atomic concepts of O. The known instances of a concept C (K[C]) are the individuals
that can be safely considered instances of the concept according to the pre-model, i.e.,
the individuals of the assertions referring to concept C that have been derived deter-
ministically. The possible instances of a concept C (P[C]) are the individuals of the
assertions referring to C that have been derived nondeterministically. These individuals
require costly consistency checks in order to decide whether they are real instances of
the respective concept.
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Algorithm 1 initializeKnownAndPossibleConceptInstances
Require: a consistent SROIQ ontology O to be queried
Ensure: sets K[C] (P[C]) of known (possible) instances for each concept C of O are computed
1: An := buildModelFor(O)
2: for all ind ∈ IO do
3: for all C ∈ LAn (ind) do
4: if C was derived deterministically then
5: K[C] := K[C] ∪ {ind}
6: else
7: P[C] := P[C] ∪ {ind}
8: end if
9: end for

10: end for

The procedure to find the known and possible instances of simple and complex
(transitive roles or roles having a transitive subrole) roles or, given an individual, the
known and possible role successors or predecessors, can be defined similarly. In the
case of complex roles, however, before the buildModelFor procedure is applied, O is
expanded with additional axioms that capture the semantics of the transitive relations
since (hyper)tableau reasoners typically do not deal with transitivity directly [7]. In
particular, for each individual ind and each complex role p, the new concepts Cp

ind and
Cind are created and the axioms Cind(ind) and Cind v ∀p.Cp

ind are added to O. Intuitively,
the consequent application of the transitivity encoding [7] produces axioms Cp

ind(s) that
propagate to each individual s that is reachable from ind via a p-chain. The known and
possible p-successors for ind can then be determined from concept assertions Cp

ind(s) in
the pre-model.

The technique presented in this paper can be used with any (hyper)tableau calcu-
lus for which properties (P1) and (P2) hold. All (hyper)tableau calculi used in practice
that we are aware of satisfy property (P1). Pre-models produced by tableau algorithms
as presented in the literature also satisfy property (P2); however, commonly used opti-
mizations, such as lazy unfolding, can compromise property (P2), which we illustrate
with the following example. Let us assume we have an ontology O containing the ax-
ioms A v ∃R.(C u D), B ≡ ∃R.C and A(a). It is obvious that in this ontology A is a
subconcept of B (hence O |= B(a)) since every individual that is R-related to an individ-
ual that is an instance of the intersection of C and D is also R-related to an individual
that is an instance of the concept C. However, even though the assertion A(a) occurs in
the ABox, the assertion B(a) is not added in the pre-model when we use lazy unfolding.
With lazy unfolding, instead of treating B ≡ ∃R.C as two disjunctions ¬B t ∃R.C and
B t ∀R.(¬C) as is typically done for general concept inclusion axioms (GCIs), B is
only lazily unfolded into its definition ∃R.C once B occurs in the label of an individual.
Thus, although (∃R.(C u D))(a) would be derived, this does not lead to the addition of
B(a).

Nevertheless, most (if not all) implemented calculi produce pre-models that satisfy
at least the following weaker property:
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(P3) for an arbitrary individual s0 in An and an arbitrary concept C where C is primitive
in O,4 if C < LAn (s0), then O 6|= C(s0).

Hence, properties (P2) and (P3) can be used to extract (non-)instance information from
pre-models. For tableau calculi that only satisfy (P3), Algorithm 1 can be modified
accordingly. In particular, for each non-primitive concept C in O we need to add to
P[C] the individuals in O that do not include the concept C in their label.

Even though the proposed technique for determining known and possible instances
of concepts and roles can be used in the same way with both tableau and hypertableau
reasoners, the effect that it will have when tableau algorithms are used is less intense.
This happens because tableau algorithms often introduce more nondeterminism than
hypertableau. In particular, in tableau algorithms a disjunction is added to each individ-
ual for each GCI in O and, when optimizations such as lazy unfolding are used, these
compromise property (P2) and we have to use the weaker property (P3) or even con-
sider all concepts that do not occur in the label of an individual as possible types, which
results in less accurate statistics.

4 Query Answering and Query Atom Ordering

In this section we describe two different algorithms (a static and a dynamic one) for
ordering the atoms of a query based on some costs and then we deal with the formulation
of these costs. We first introduce the abstract graph representation of a query q by means
of a labeled graph Gq on which we define the computed statistical costs.

Definition 2. A query join graph Gq for a query q is a tuple (V, E, EL), where

– V = q is a set of vertices (one for each query atom);
– E ⊆ V × V is a set of edges such that 〈at1, at2〉 ∈ E iff Vars(at1) ∩ Vars(at2) , ∅

and at1 , at2;
– EL is a function that assigns a set of variables to each 〈at1, at2〉 ∈ E such that

EL(at1, at2) = Vars(at1) ∩ Vars(at2).

In the remainder we use q for a query {at1, . . . , atn}, Gq for the according query join
graph and Ωq for the solution mappings of q. Our goal is to find a query execution plan,
which determines the evaluation order for atoms in q. Since the number of possible
execution plans is of order |q|!, the ordering task quickly becomes impractical. In the
following, we focus on greedy algorithms for determining an execution order, which
prune the search space considerably. Roughly speaking, we proceed as follows: We
define a cost function, which consists of two components: an estimate for the reasoning
costs and an estimate for the intermediate result size. Both components are combined
to induce an order among query atoms. In this paper, we simply build the sum of the
two cost components, but different combinations such as a weighted sum of the two
values could also be used. For the query plan construction we distinguish static from
dynamic planning. For the former, we start constructing the plan by adding a minimal

4 A concept C is considered primitive in O if O is unfoldable and it contains no axiom of the
form C ≡ E
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atom according to the order. Variables from this atom are then considered bound, which
changes the cost function and might induce a different order among the remaining query
atoms. Considering the updated order, we again select the minimal query atom that is
not yet in the plan and update the costs. This process continues until the plan contains all
atoms. Once a complete plan has been determined the atoms are evaluated. The dynamic
case differs in that after selecting an atom for the plan, we immediately determine the
solutions for the chosen atom, which are then used to update the cost function. Dynamic
ordering is a costly but accurate procedure. Sampling techniques can be used so that not
all mappings are used for the update of the cost function but only a subset of them. In
Section 5 we show that random sampling is not adequate and a more sophisticated
sampling criterion is needed. However, the definition of such criterion is out of the
scope of the current paper. We now make the process of query plan construction more
precise, but we leave the exact details of defining the cost function and the ordering it
induces to later.

Definition 3. A static (dynamic) cost function w.r.t. q is a function s : q × 2Vars(q) →
R × R (d : q × 2Γq → R × R). The two costs are combined to yield a static ordering �s

(a dynamic ordering �d), which is a total order over the atoms of q.
An execution plan for q is a duplicate-free sequence of query atoms from q. The

initial execution plan is the empty sequence and a complete execution plan is a sequence
containing all atoms of q. For Pi = (at1, . . . , ati) with i < n an execution plan for q
with query join graph Gq = (V, E, EL), we define the potential next atoms qi for Pi

w.r.t. Gq as qi = q for Pi the initial execution plan and qi = {at | 〈at′, at〉 ∈ E, at′ ∈
{at1, . . . , ati}, at ∈ q\ {at1, . . . , ati}} otherwise. The static (dynamic) ordering induces an
execution plan Pi+1 = (at1, . . . , ati, ati+1) with ati+1 ∈ qi and ati+1 �s at (ati+1 �d at) for
each at ∈ qi such that at , ati+1.

For i > 0, the set of potential next atoms only contains atoms that are connected to
an atom that is already in the plan since unconnected atoms will cause an unnecessary
blowup of the number of intermediate results. Let Pi = (at1, . . . , ati) with i ≤ n be an
execution plan for q. The procedure we follow to find the solution mappings Ωi for Pi

is recursively defined as follows: Initially, our solution set contains only the identity
mapping Ω0 = {µ0}, which does not map any variable to any value. Assuming that we
have evaluated the sequence Pi−1 = (at1, . . . , ati−1) and we have found the set of solution
mappings Ωi−1, in order to find the solution mappings Ωi of Pi, we use instance retrieval
tasks of reasoners to extend the mappings in Ωi−1 to cover the new variables of ati or the
entailment check service of reasoners if ati does not contain new variables. A detailed
description of the method we are using for the evaluation of an execution plan together
with optimizations can be found in our previous work [5].

We now define the cost functions s and d more precisely, which estimate the cost
of the required reasoner operations and the estimated result output size of evaluating
a query atom. The intuition behind the estimated value of the reasoner operation costs
(the functions’ first component) is that the evaluation of possible instances is much
more costly than the evaluation of known instances since possible instances require ex-
pensive consistency checks whereas known instances require cheap cache lookups. The
estimated result size (the functions’ second component) takes into account the number
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of known and possible instances and the probability that possible instances are actual
instances. The static cost function has more cases since for atoms we might only know
that their variables are bound, without knowing to which individuals they are bound to.
The functions depend on several factors:

– K[C] (K[R]) and P[C] (P[R]) for known and possible instances of a concept C (a
role R) from Section 3

– sucK[R] := {i | ∃ j.〈i, j〉 ∈ K[R]} (preK[R] := {i | ∃ j.〈 j, i〉 ∈ K[R]}) for the in-
dividuals with known successors (predecessors) for a role R. We define analogous
functions sucP[R] and preP[R] for the individuals with possible successors and
predecessors for a role R

– sucK[R, a] := {i | 〈a, i〉 ∈ K[R]} (preK[R, a] := {i | 〈i, a〉 ∈ K[R]}) for known
R-successors (R-predecessors) of an individual a. We define analogous functions
sucP[R, a] and preP[R, a] for possible R-successors and R-predecessors of an in-
dividual a

– CL for the cost of a cache lookup in the reasoner’s internal structures
– CE for the cost of an entailment check
– PIS for the possible instance success, i.e, an estimate for percentage of possible

instances that are actual instances

The values CL, CE and PIS are determined experimentally. The time needed for a
cache lookup is much less than the time needed for an entailment check with the differ-
ence between the two depending on the ontology and even within an ontology on the
queried concept (role). The two costs (CL and CE) were determined by taking the av-
erage time of the previous performed checks (lookup or entailment). In the case of CE ,
we multiply this number with the depth of the concept (role) hierarchy. The depth of
the concept (role) hierarchy should be taken into account for the estimation of CE since
we only store the direct types of each individual (roles in which each individual partic-
ipates). In order to find the instances of a concept (role), we may need to check all its
subconcepts (subroles) that contain possible instances. The possible instance success,
PIS , was determined by testing several ontologies and checking how many of the initial
possible instances were real ones, which was around 50% in nearly all ontologies.

In the following, we use a, b for individual names and x, y for variables. We first
define the static cost function s, which takes a pair 〈at(~t),VarsB〉 as input, where at(~t)
is a query atom and VarsB is the set of (bound) variables from Vars(at(~t)), and returns a
pair of real numbers as follows:

– for 〈at(~t),VarsB〉 ∈ {〈C(x), ∅〉, 〈R(x, y), ∅〉}
〈|K[at]| ·CL + |P[at]| ·CE , |K[at]| + PIS · |P[at]|〉 (1)

– for 〈at(~t),VarsB〉 ∈ {〈R(a, x), ∅〉}
〈|sucK[at, a]| ·CL + |sucP[at, a]| ·CE , |sucK[at, a]| + PIS · |sucP[at, a]|〉 (2)

– for 〈at(~t),VarsB〉 ∈ {〈R(x, a), ∅〉} we use preK (preP) instead of sucK (sucP) in (2)
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Table 1. Query Ordering Example

Atom Sequences Known Instances Possible Instances Real from Possible Instances
1 C(x) 200 350 200
2 R(x,y) 200 200 50
3 D(y) 700 600 400
4 R(x,y), C(x) 100 150 100
5 R(x,y), D(y) 50 50 40
6 R(x,y), D(y), C(x) 45 35 25
7 R(x,y), C(x), D(y) 45 40 25

– for 〈at(~t),VarsB〉 ∈ {〈C(a), ∅〉, 〈R(a, b), ∅〉}

〈CL, 1〉 if ~t ∈ K[at]

〈CE , PIS〉 if ~t ∈ P[at]
〈CL, 0〉 otherwise (3)

– for 〈at(~t),VarsB〉 ∈ {〈C(x), {x}〉, 〈R(x, y), {x, y}〉, 〈R(a, x), {x}〉, 〈R(x, a), {x}〉}
〈 |K[at]|
|IO| ·CL +

|P[at]|
|IO| ·CE ,

|K[at]| + PIS ·|P[at]|
|IO|·|IO|

〉
(4)

– for 〈at(~t),VarsB〉 = 〈R(x, y), {x}〉
〈 |K[at]|
|sucK[at]| ·CL +

|P[at]|
|sucP[at]| ·CE ,

|K[at]|
|sucK[at]| +

|P[at]|
|sucP[at]| ·PIS

〉
(5)

– for 〈at(~t),VarsB〉 = 〈R(x, y), {y}〉 we use preK (preP) instead of sucK (sucP) in (5)

The dynamic cost function d is based on the static function s, but only applies to
cases (1), (2) and (3). The function takes a pair 〈at(~t), Ω〉 as input, where at(~t) is a
query atom and Ω is the set of solution mappings for the atoms that have already been
evaluated, and returns a pair of real numbers using matrix addition as follows:

d(at(~t), Ω) =
∑

µ∈Ω
s(µ(at(~t)), ∅)

A motivating example showing the difference between static and dynamic ordering
and justifying why dynamic ordering can be beneficial in our setting is shown below.
Let us assume that a query q consists of the three query atoms: C(x), R(x, y), D(y).
Table 1 gives information about the known and possible instances of these atoms within
a sequence. In particular, the first column enumerates possible execution sequences
S i = (at1, . . . , ati) for the atoms of q. Column 2 (3) gives the number of mappings to
known (possible) instances of ati (i.e., the number of known (possible) instances of ati)
that satisfy at the same time the atoms (at1, . . . , ati−1). Column 4 gives the number of
possible instances of ati from Column 3 that are real instances (that belong to Ωi). Let
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us assume that we have 10,000 individuals in our ontologyO. We will now explain what
the formulas described above are doing. We assume that CL ≤ CE which is always the
case since a cache lookup is less expensive than a consistency check. In both techniques
(static and dynamic) the atom R(x, y) will be chosen first since it has the least number of
possible instances (200) while it has the same (or smaller) number of known instances
(200) with the other atoms (s(R(x, y), ∅) = d(R(x, y), {µ0}) = 〈200 ·CL + 200 ·CE , 200 +

PIS ·200〉, s(C(x), ∅) = d(C(x), {µ0}) = 〈200 ·CL +350 ·CE , 200+ PIS ·350〉, s(D(y), ∅) =

d(D(y), {µ0}) = 〈700 ·CL +600 ·CE , 700+PIS ·600〉). Then, in the case of static ordering,
after R(x, y), the atom C(x) is chosen since C has less possible (and known) instances
than D (350 versus 600). Indeed, s(C(x), {x}) = 〈 200

10,000 · CL + 350
10,000 · CE ,

200+350·PIS
108 〉,

s(D(y), {y}) = 〈 700
10,000 ·CL + 600

10,000 ·CE ,
700+600×PIS

108 〉. Hence, the order of evaluation in this
case will be P = (R(x, y),C(x),D(y)) leading to 200(row 2) + 150(row 4) + 40(row 7)
entailment checks. In the dynamic case, after the evaluation of R(x, y), which gives a
set of solutions Ω1, the atom D(y) has fewer known and possible instances (50 known
and 50 possible) than the atom C(x) (100 known and 150 possible) and, hence, a lower
cost. Indeed, d(D(y), Ω1) = 〈50 ·CL + 150 ·CL + 50 ·CE , 50 + 0 + 50 ·PIS〉, d(C(x), Ω1) =

〈100 ·CL + 0 ·CL + 150 ·CE , 100 + 0 + 150 · PIS〉. Therefore, atom D(y) will be chosen
next leading to the execution of the query atoms in the order P = (R(x, y),D(y),C(x))
and the execution of 200(row 2) + 50(row 5) + 35(row 6) entailment checks.

5 Evaluation

We tested our ordering techniques with the Lehigh University Benchmark (LUBM) [3]
as a case where no disjunctive information is present and with the more expressive Uni-
versity Ontology Benchmark (UOBM) [6] using the HermiT5 hypertableau reasoner.
All experiments were performed on a Windows 7 machine with a double core 2.53 GHz
Intel x86 64 bit processor and Java 1.6 allowing 1GB of Java heap space. We measure
the time for one-off tasks such as classification separately since such tasks are usually
performed before the system accepts queries. The ontologies and all code required to
perform the experiments are available online.6

We first used the 14 conjunctive ABox queries provided in LUBM. From these,
queries 2, 7, 8, 9 are the most interesting ones in our setting since they contain many
atoms and ordering them can have an effect in running time. We tested the queries on
LUBM(1,0) and LUBM(2,0) which contain data for one or two universities respec-
tively, starting from index 0. LUBM(1,0) contains 16,283 individuals and LUBM(2,0)
contains 38,334 individuals. LUBM(1,0) took 3.8 s to load and 22.7 s for classification
and initialization of known and possible instances of concepts and roles. LUBM(2,0)
took 15.8 s to load and 146 s for classification and initialization of known and possible
instances. Table 2 shows the execution time for each of the four queries for LUBM(1,0)
and LUBM(2,0). The queries marked with (*) are the queries where the static and dy-
namic algorithms result in the same ordering. In these queries we observe an increase in
running time when the dynamic technique is used (in comparison to the static) which is

5 http://www.hermit-reasoner.com/
6 http://code.google.com/p/query-ordering/
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Table 2. Query answering times in milliseconds for LUBM(1,0) and LUBM(2,0) and in seconds
for UOBM (1 university, dep 0-2) using i) the static algorithm ii) the dynamic algorithm and iii)
(only for LUBM) 50% sampling

LUMB(1, 0) LUBM(2,0) UOBM
Query Static Dynamic Sampling Static Dynamic Sampling Query Static Dynamic

2 110 203 721 386 917 12,767 4 23.81 24.08
∗7 47 66 1,743 138 127 9,653 9 701.24 690.51
∗8 686 873 867 2,434 4,237 2,488 11 2.22 2.07
9 1,670 13,056 13,372 17,960 91,787 94,087 12 0.13 0.16

14 212.28 215.56
q1 668.82 347.25
q2 179.92 85.65

especially evident on LUBM(2,0) Query 8, where the number of individuals in the on-
tology and the intermediate result sizes are larger. Dynamic ordering also behaves worse
than static in queries 2 and 9. This happens because, although the dynamic algorithm
chooses a better ordering than the static algorithm, the intermediate results (that need to
be checked in each iteration to determine the next query atom to be executed) are quite
large and hence the cost of iterating over all possible mappings in the dynamic case far
outweighs the better ordering that is obtained. We also observe that a random sampling
of individuals for collecting the ordering statistics in the dynamic case (checking only
50% of individuals in Ωi−1 randomly for detecting the next query atom to be executed)
leads to much worse results in most queries than plain static or dynamic ordering.

From the nondeterministic UOBM ontology we removed the nominals and only
used the first three departments containing 6,409 individuals. The ontology took 6.4 s
to load and 30.3 s to classify and initiliaze the known and possible instances. We ran
our static and dynamic algorithms on queries 4, 9, 11, 12 and 14 provided in UOBM,
which are the most interesting ones because they consist of many atoms. Most of these
queries contain one atom with possible instances. Static and dynamic ordering show
similar performance because the intermediate result set sizes are small and the available
statistics in this case are quite accurate and result in the same ordering for both methods.
For both ordering methods, atoms with possible instances for these queries are executed
last. In order to illustrate when dynamic ordering performs better than static, we also
created the two custom queries:

q1 = {isAdvisedBy(x,y), GraduateStudent(x), Woman(y) }
q2 = { SportsFan(x), GraduateStudent(x), Woman(x) }

In both queries, P[GraduateStudent], P[Woman] and P[isAdvisedBy] are non-empty.
The running times for dynamic ordering are smaller since the more accurate statistics
result in a smaller number of possible instances that have to be checked during query
execution. In particular, for the static ordering, 151 and 41 possible instances have to be
checked in query q1 and q2, respectively, compared to only 77 and 23 for the dynamic
ordering. Moreover, the intermediate results are generally smaller in dynamic ordering
than in static leading to a significant reduction in the running time of the queries. All of
the presented queries could not be answered in the time limit of 30 minutes in case no
ordering algorithm was used.
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6 Conclusions

In the current paper, we have dealt with the definition of cost formulas that are based on
information extracted from reasoners’ models for ordering the atoms of a conjunctive
instance query that is issued over an OWL ontology. We have devised two algorithms,
a static and a dynamic one, for finding a good order and show (through an experimental
study) that static techniques are quite adequate for deterministic ontologies, however,
when disjunctive knowledge is present, dynamic techniques often perform better. The
proposed query ordering costs can be used with either tableau or hypertableau reason-
ers, however, in the case of tableau reasoners they can be less accurate. Future work
will include the definition of additional cost measures and the use of appropriate crite-
ria for sampling the individuals and use only these samples for extracting the costs for
dynamic ordering.
Acknowledgements This work was done within the Transregional Collaborative Re-
search Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG).
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Abstract. This paper is motivated by two requirements arising in practical ap-
plications of ontology-based data access (OBDA): the need of inconsistency-
tolerant semantics, which allow for dealing with classically inconsistent speci-
fications; and the need of expressing assertions which go beyond the expressive
abilities of traditional Description Logics, namely identification and denial asser-
tions. We consider an extension of DL-Lite (the most used DL in OBDA) which
allows for the presence of both the aforementioned kinds of assertions in the
TBox. We adopt an inconsistency-tolerant semantics for such a DL, specifically
the so-called Intersection ABox Repair (IAR) semantics, and we study query
answering in this setting. Our main contribution is a query rewriting technique
which is able to take into account both identification and denial assertions. By
virtue of this technique, we prove that conjunctive query answering under such
semantics is first-order rewritable in the considered extension of DL-Lite.

1 Introduction

Ontology-based data access (OBDA) is a computing paradigm which considers the
problem of accessing data stored in autonomous databases through the use of an on-
tology, which provides a conceptual and shared representation of the domain of inter-
est [10]. The main components of an OBDA system are the ontology, the set of data
sources to be accessed, and the mapping, which specifies the relationship between the
ontology and the data sources. The reasoning service of main interest is query answer-
ing, which amounts to process a query expressed in terms of the ontology alphabet, and
to compute its answer on the basis of the knowledge specified by the ontology, the map-
ping, and the data stored at the sources. Various languages for specifying the ontology
in this context have been recently proposed [3,2,7], which are designed in order to allow
for tractable query answering w.r.t. the size of the data (data complexity). Among these,
the members of the DL-Lite family of light-weight Description Logics (DLs) present
the distinguishing feature of first-order rewritable query answering for unions of con-
junctive queries (UCQs), which means that such a reasoning service can be reduced
to the evaluation of a first-order query (directly translatable into SQL) over a database.
This turns out to be a crucial aspect in OBDA, where data are in general not moved from
the sources, and are usually managed by a Relational Database Management System.

In the last years we have experimented (see, e.g., [11]) that two important require-
ments arise in OBDA applications: (i) the need of declarative mechanisms for dealing
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with data that are inconsistent with respect to the intensional knowledge specified by
the ontology, and (ii) the need of expressing assertions which go beyond the expressive
abilities of traditional DLs, namely identification assertions and denial assertions. Solu-
tions aiming at fulfilling these two requirements should of course still guarantee enough
efficiency. Ideally, they should allow for inconsistency-tolerant first-order rewritable
query answering of UCQs. Devising one such solution is the goal of the present paper.

Motivated by the first mentioned requirement, we have recently proposed various
inconsistency-tolerant semantics [8], inspired by the studies on inconsistency handling
in belief revision [6] and by the work on consistent query answering in databases [5].
Later works [9,1] have then shown that answering UCQs under the so-called Inter-
section ABox Repair (IAR) semantics is first-order rewritable for ontologies specified
in DL-LiteA, a member of the DL-Lite family [9]. In the present paper we extend the
above result, and show that first-order rewritability of conjunctive query answering still
holds if we enrich DL-LiteA with identification and denial assertions.

Identification assertions (IdAs) are mechanisms for specifying a set of properties
that can be used to identify instances of concepts. IdAs we study here have been origi-
nally presented in [4]. Such assertions allow for sophisticated forms of object identifica-
tion, which may include paths realized through the chaining of roles, their inverses, and
attributes. Roughly speaking, when we say that instances of a concept C are identified
by a path π, we impose that no two instances of C with overlapping sets of π-fillers ex-
ist, i.e., in every interpretation I, no two instances o and o′ of C exist with a non-empty
intersection of the set of objects reachable by o and by o′ in I. This naturally extends
to IdAs involving more than one path. Identification assertions are very useful in prac-
tice and are essential to represent n-relations and attributes of roles through reification.
Indeed, reification is the only way to model n-relations and role attributes in ontology
languages, such as OWL, which do not natively allow for such constructs.

Denial Assertions (DAs) are instead used to impose that the answer to a certain
boolean conjunctive query over the ontology is false, analogous to negative constraints
in [2]. This is particularly useful to specify general forms of disjointness, which is again
not supported in traditional ontology languages.

The query rewriting algorithm given in this paper elegantly deals with all forms of
inconsistency that can arise in DL-LiteA enriched with IdAs and DAs, thus it represents
an alternative to the rewriting algorithm given in [9] for DL-LiteA only. Moreover, it
properly manages all the inconsistencies caused by erroneous assignments of values to
attributes, i.e., arising when a value of type Ti is assigned to an attribute of value-type
Tj disjoint from Ti. This kind of inconsistency has not been considered in [9].

In this paper, for the sake of simplicity, we consider the setting of a single ontology
constituted by a TBox and an ABox. However, our technique can be easily extended to
the OBDA setting, where mapping assertions relate the TBox to the data sources [10].

The paper is organized as follows. In section 2 we provide some preliminaries. In
Section 3 we provide some general properties of the IAR-semantics, useful for the rest
of the paper. In Section 4, we show first-order rewritability of query answering of UCQs
under the IAR-semantics. In Section 5 we conclude the paper.
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2 Preliminaries

Let Σ be a signature partitioned into ΣP , containing symbols for predicates, i.e.,
atomic concepts, atomic roles, attributes and value-domains, and ΣC , containing sym-
bols for individual (object and value) constants. Given a DL language L, an L-ontology
O = 〈T ,A〉 over Σ consists of a TBox T , i.e., a set of intensional assertions over Σ
expressed in L, and an ABoxA, i.e., a set of extensional assertions over Σ expressed in
L. We assume that ABox assertions are always atomic, i.e., they correspond to ground
atoms, and therefore we omit to refer to L when we talk about ABox assertions.

The semantics of a DL ontology O is given in terms of first-order (FOL) inter-
pretations. We denote with Mod(O) the set of models of O, i.e., the set of FOL-
interpretations that satisfy all the assertions in T andA, where the definition of satisfac-
tion depends on the DL language in which O is specified. An ontology O is satisfiable
if Mod(O) 6= ∅, and O entails a FOL-sentence φ, denoted O |= φ, if φ is satisfied by
every I ∈ Mod(O). The above definitions naturally apply to a TBox alone.

In the following, we consider DL ontologies 〈T ,A〉 in which the TBox T is always
satisfiable, whereas the ABox A may contradict T . When this happens, we say that A
is T -inconsistent, T -consistent otherwise. For ontologies of this kind, the Intersection
ABox Repair (IAR) semantics introduced in [8] allows for meaningful reasoning in the
presence of inconsistency, which is instead trivialized under the FOL-semantics. The
IAR-semantics is defined in terms of A-repairs: given an ontology O = 〈T ,A〉, an A-
repair for O is a set A′ ⊆ A such that Mod(〈T ,A′〉) 6= ∅, and there does not exist A′′
such that A′ ⊂ A′′ ⊆ A and Mod(〈T ,A′′〉) 6= ∅. In other terms, an A-repair for O is a
maximal T -consistent subset ofA. The set of A-repairs forO is denoted by AR-Set(O).
The IAR-semantics is then given in terms of IAR-models, as follows.

Definition 1. Let O = 〈T ,A〉 be a possibly inconsistent DL ontology. The set
of Intersection ABox Repair (IAR)-models of O is defined as ModIAR(O) =
Mod(〈T ,⋂Ai∈AR-Set(O)Ai〉)

Notice that if O is satisfiable under FOL-semantics, then Mod(O) = ModIAR(O).
The notion of consistent entailment is then the natural extension of classical entail-
ment to IAR-semantics: a FOL-sentence φ is IAR-consistently entailed, or simply IAR-
entailed, by O, written O |=IAR φ, if I |= φ for every I ∈ ModIAR(O).

We focus now on DL-LiteA,id, a DL of the DL-Lite family [3] equipped with iden-
tification assertions [4]. Since DL-LiteA,id distinguishes between object and value con-
stants, we partition the set ΣC into two disjoint sets ΣO, which is the set of constants
denoting objects, and ΣV , which is the set of constants denoting values.

Basic DL-LiteA,id expressions are defined as follows:

B −→ A | ∃Q | δ(U)
C −→ B | ¬B

Q −→ P | P−
R −→ Q | ¬Q

E −→ ρ(U)
F −→ T1 | · · · | Tn
V −→ U | ¬U

A, P , and P− denote an atomic concept, an atomic role, and the inverse of an atomic
role; δ(U) (resp. ρ(U)) denotes the domain (resp. the range) of an attribute U , i.e.,
the set of objects (resp. values) that U relates to values (resp. objects); T1, . . . , Tn are
unbounded pairwise disjoint predefined value-domains; B is called basic concept.
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A DL-LiteA,id TBox is a finite set of the following assertions:

B v C Q v R U v V E v F (funct Q) (funct U) (id B π1, . . . , πn)

The assertions above, from left to right, respectively denote inclusions between con-
cepts, roles, attributes, and value-domains, global functionality on roles and on at-
tributes, and identification assertions (IdAs). In IdAs, πi is a path, which is an ex-
pression built according to the following syntax: π −→ S | D? | π1 ◦ π2, where
S denotes an atomic role, the inverse of an atomic role, an attribute, or the inverse of
an attribute, π1 ◦ π2 denotes the composition of paths π1 and π2, and D?, called test
relation, represents the identity relation on instances of D, which can be a basic con-
cept or a value-domain. Test relations are used to impose that a path involves instances
of a certain concept or value-domain. In our logic, IdAs are local, i.e., at least one
πi ∈ {π1, ..., πn} has length 1, i.e., it is an atomic role, the inverse of an atomic role,
or an attribute. Intuitively, an IdA of the above form asserts that for any two different
instances o, o′ of B, there is at least one πi such that o and o′ differ in the set of their
πi-fillers, that is the set of objects that are reachable from o by means of πi. For exam-
ple, the IdA (id Match homeTeam, visitorTeam) says that there are not two different
matches with the same home team and host team (which is indeed what happens, for
instance, in a season schedule of a football league).

Inclusion assertions that do not contain (resp. contain) the symbols ’¬’ in the right-
hand side are called positive inclusions (resp. negative inclusions). The set of positive
(resp., negative) inclusions in T will be denoted by T + (resp., T −).

A DL-LiteA,id ABox is a finite set of assertions of the form A(a), P (a, b), and
U(a, v), where A is an atomic concept, P is an atomic role, U is an attribute, a and b
are constants of ΣO, and v is a constant of ΣV . In a DL-LiteA,id ontology O = 〈T ,A〉,
the following condition holds: each role or attribute that either is functional in T or
appears (in either direct or inverse direction) in a path of an IdA in T is not specialized,
i.e., it does not appear in the right-hand side of assertions of the form Q v Q′ or
U v U ′.

The semantics of DL-LiteA,id is given in [4]. We only recall here that each value-
domain Ti is interpreted by means of the same function, denoted val(Ti), in every
interpretation, and each constant ci ∈ ΣV is interpreted as one specific value, denoted
val(ci). Also, the Unique Name Assumption is adopted.

A boolean conjunctive query (BCQ) over a DL-LiteA ontology is an expression of
the form q = ∃~y.conj(~t) where ~y is a set of variables and ~t is a set of terms (i.e., con-
stants or variables) such that each variable in ~t is also in ~y, and conj(~t) is a conjunction
of atoms of the form A(z), T (z′), P (z, z′) U(z, z′) where A is an atomic concept, T
is a value-domain, P is an atomic role and U is an attribute, and z, z′ are terms. In the
following, we will mainly consider boolean unions of conjunctive queries (BUCQs),
i.e., first order sentences of the form Q =

∨n
i=1 qi where qi = ∃~yi.conji(~ti) is a BCQ.

A BCQ q is satisfied by an ABox A (denoted by 〈∅,A〉 |= q) if there exists a sub-
stitution σ from the variables in q to constants of ΣC such that the formula σ(q) is
satisfied in the FOL-interpretation structure where the ABox A determines the exten-
sion of concepts, roles and attributes and the function val determines the extension of
the value-domains. With a little abuse of notation we sometimes use σ(q) to indicate the
set of the atoms in σ(q). When query q is satisfied byA, we say that σA(q) = σ(q)∩A
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is the image of q in A. A BUCQ Q =
∨n
i=1 qi is satisfied by an ABox A if there exists

i ∈ {1, . . . n} such that qi is satisfied by A.
All the results of the present work can be straightforwardly extended to non-boolean

UCQs, by imposing the (natural) condition that every free variable in the query appears
in at least one atom not involving value-domains.

With the notion of query in place we introduce now denial assertions (DAs). A DA
is an expression of the form ∀~y.conj(~t) → ⊥ where conj(~t) is defined as for BCQs.
A DA is satisfied by an interpretation I if the formula ∃~y.conj(~t) evaluates to false
in I. DAs are used to impose general forms of disjointness. For example, the denial
∀x, y.Match(x)∧homeTeam(x, y)∧visitorTeam(x, y)→ ⊥ says that a match cannot
have the same team as both home and visitor team.

In the following we will consider DL-LiteA,id ontologies whose TBoxes are enriched
with DAs, and call them DL-LiteA,id,den ontologies.

3 Properties of the IAR-Semantics

We discuss here some properties of the IAR-semantics that will be used in the rest of
the paper. We recall that the IAR-semantics is defined for DL ontologies composed by a
consistent TBox and an ABox comprising only atomic assertions, therefore we consider
below only this kind of ontologies. We start with the notion of inconsistent set.

Definition 2. Let T be a TBox and letA be an ABox.A is a minimal T -inconsistent set
ifA is T -inconsistent, i.e., the ontology 〈T ,A〉 is unsatisfiable, and there is noA′ ⊂ A
such that A′ is T -inconsistent.

Let O = 〈T ,A〉 be a possibly inconsistent DL ontology. We denote with
minIncSets(O) the set of minimal T -inconsistent sets contained in A. Notice that O
is satisfiable iff minIncSets(O) = ∅. Then, the following property holds.

Proposition 1. Let O = 〈T ,A〉 be a DL ontology such that minIncSets(O) 6= ∅, and
let α be an ABox assertion in A. An A-repair A′ of O such that α 6∈ A′ exists iff there
exists V ∈ minIncSets(O) such that α ∈ V .

Let now AR-Set(O) = {A1, . . .An} be the set of A-repairs of an ontology O =
〈T ,A〉, and let q be a BCQ. From Definition 1, we derive that O |=IAR q iff there exists
a subset A′ of A such that A′ ⊆ Ai for every 1 ≤ i ≤ n and 〈T ,A′〉 |= q. From the
observation above, we derive the following theorem, which characterizes the notion of
IAR-entailment of BCQs.

Theorem 1. LetO = 〈T ,A〉 be a DL ontology such that minIncSets(O) 6= ∅, and let
q be a BCQ. O |=IAR q iff there exists A′ ⊆ A such that: (i) A′ is T -consistent; (ii)
〈T ,A′〉 |= q; (iii) A′ ∩ V = ∅ for every V ∈ minIncSets(O).

4 Query Rewriting under IAR-Semantics in DL-LiteA,id,den

In this section, we focus on DL-LiteA,id,den ontologies, and provide our technique for
computing FOL-rewritings of BUCQs under the IAR-semantics. The notion of FOL-
rewritability is essentially the same used under FOL-semantics [3]. More precisely,
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BUCQs in DL-LiteA,id,den are FOL-rewritable under the IAR-semantics if, for each
BUCQs q and each DL-LiteA,id,den TBox T , there exists a FOL-query qr such that,
for any ABox A 〈T ,A〉, |=IAR q iff 〈∅,A〉 |= qr. Such qr is called the IAR-perfect
reformulation of q w.r.t. T .

To come up with our reformulation method, we exploit Theorem 1. Roughly speak-
ing, in the reformulation of a BUCQ q over a DL-LiteA,id,den TBox T , we encode into
a FOL-formula all violations that can involve assertions belonging to images of q in
any ABox A. Indeed, this can be done by reasoning only on the TBox, and considering
each query atom separately. Intuitively, we deal with inconsistency by rewriting each
atom α of q into a FOL-formula αr in such a way that 〈∅,A〉 |= αr only if there exists
a substitution σ of the variables in q to constants of ΣC such that q is satisfied by A,
and σ(α) does not belong to any minimal T -inconsistent set.

This inconsistency-driven rewriting is then suitably casted into the final reformula-
tion, which takes into account also positive knowledge of the TBox, i.e., the inclusion
assertions in T +. As we will show later in this section, this can be done by means of a
slight variation of the algorithm PerfectRef of [3,10]. To formalize the above idea, we
need to introduce some preliminary definitions.

We consider Boolean queries corresponding to FOL-sentences of the form:

∃z1, . . . , zk.
n∧

i=1

Hi(t
1
i ) ∧

m∧

i=1

¬Ti(t2i ) ∧
∧̀

i=1

Si(t
3
i , t

4
i ) ∧

h∧

i=1

t5i 6= t6i (1)

where every Hi is an unary predicate, which is either an atomic concept or a value-
domain, every Ti is a value-domain, every Si is a binary predicate, which is either an
atomic role or an attribute, every tji is a term (i.e., either a constant or a variable), and
z1, . . . , zk are all the variables of the query. Notice that sentences of the form (1) are
BCQs enriched with limited forms of inequalities and negation.

Given a DL-LiteA,id,den TBox T , we denote with contr(T ) the set of all negative
inclusions, functionalities, identifications, denials, and value-domain inclusions occur-
ring in T . Intuitively, the set contr(T ) contains all those assertions in T which can
be contradicted by assertions in the ABox. Now, to each assertion τ ∈ contr(T ), we
associate a Boolean query, denoted ϕ(τ), which encodes the violation of τ , i.e., it looks
for images of the negation of τ . Below we provide some of such encodings. Missing
cases are can be obtained in a similar way.

- ϕ((funct P )) : ∃x, x1, x2.P (x, x1) ∧ P (x, x2) ∧ x1 6= x2
- ϕ(A1 v ¬A2) : ∃x.A1(x) ∧A2(x)
- ϕ(ρ(U) v T ) : ∃x1, x2.U(x1, x2) ∧ ¬T (x2)

- ϕ(∀~x.conj(~t)→ ⊥) : ∃~x.conj(~t)

For example, ϕ((id Match homeTeam, visitorTeam)) = ∃x, x′, y, z.Match(x) ∧
homeTeam(x, y) ∧ visitorTeam(x, z) ∧ Match(x′) ∧ homeTeam(x′, y) ∧
visitorTeam(x′, z) ∧ x 6= x′, and ϕ(∀x, y.Match(x) ∧ homeTeam(x, y) ∧
visitorTeam(x, y)→ ⊥) = ∃x, y.Match(x)∧homeTeam(x, y)∧visitorTeam(x, y).

Then, the algorithm unsatQueries(T ) computes the first-order reformulation un-
der FOL-semantics of ϕ(τ) for each τ ∈ contr(T ), and returns the union of all
such reformulations. To this aim, unsatQueries(T ) makes use of the algorithm

262



PerfectRef6=(T +, ϕ(τ)), which is a slight variation of the algorithm PerfectRef given
in [3]. In this modified version, inequality is considered as a primitive role and negated
value-domains are considered as primitive concepts, thus inequality and negated atoms
are never rewritten by the algorithm, and the algorithm does not unify query atoms if
this causes a violation of an inequality. Note that the result of PerfectRef6= is a union
of boolean queries of the form (1), represented as a set of queries, as usual.

For example, assume to have a TBox containing the above mentioned IdA τ1 :
(id Match homeTeam, visitorTeam) and the inclusion assertion playedMatch v
Match . The algorithm PerfectRef6=(T +, ϕ(τ1)) returns, among others, the query:

∃ x, x′, y, z. playedMatch(x) ∧ homeTeam(x, y) ∧ visitorTeam(x, z) ∧ playedMatch(x′)∧
homeTeam(x′, y) ∧ visitorTeam(x′, z) ∧ x 6= x′

Notice that the query ϕ(τ1) cannot be rewritten by unifying Match(x) and Match(x′)
because of the inequality x 6= x′. Such an inequality actually causes that in this example
the algorithm can never rewrite queries through unification.

Let O = 〈T ,A〉 be a DL-LiteA,id,den ontology. Since O is satisfiable iff there are
no T -inconsistent sets in A, the following theorem states that the query produced by
the algorithm unsatQueries(T ) can be used to check satisfiability of O.

Theorem 2. Let O = 〈T ,A〉 be a DL-LiteA,id,den ontology. A T -inconsistent set V ⊆
A exists iff 〈∅,A〉 |= unsatQueries(T ).

If 〈∅,A〉 |= unsatQueries(T ), then there exists q ∈ unsatQueries(T ) such that
〈∅,A〉 |= q. This implies that there exists a substitution σ from the variables in q to
constants of ΣC such that σ(q) projected over its positive atoms is contained in A.
Similar to BCQs, we call this set the image of q in A, denoted σA(q). It is possible
to show that σA(q) is a T -inconsistent set contained in A (in fact, this is part of the
proof of Theorem 2). In order to exploit Theorem 1 towards the definition of a FOL-
rewriting procedure, we need however to identify those assertions in A that participate
to a minimal T -inconsistent set. From the definition of minimal T -inconsistent set, and
from Theorem 2 it follows that σA(q) is a minimal T -inconsistent set iff for every
V ⊂ σA(q) and every query q′ ∈ unsatQueries(T ), we have that 〈∅, V 〉 6|= q′.

Based on the above observations, we introduce the algorithm
minUnsatQueries(T ) which, starting from the set unsatQueries(T ), computes
a new set Qmin of queries, which enjoys the following properties: (i) For each query
q ∈ Qmin, 〈∅,A〉 |= q iff there exists in unsatQueries(T ) a query q′ such that
〈∅,A〉 |= q′. This guarantees that Theorem 2 also holds with minUnsatQueries(T )
in place of unsatQueries(T ). (ii) For each query q ∈ Qmin, if 〈∅,A〉 |= q, then for
every image σA(q) of q in A, 〈∅, V 〉 6|= q′, where V ⊂ σA(q) and q′ ∈ Qmin. This
guarantees that if a query q ∈ Qmin is such that 〈∅,A〉 |= q, then every image of q in
A is a minimal T -inconsistent set.

Before presenting the algorithm minUnsatQueries(T ), we need to introduce some
preliminary notions. Given a query q, we say that a term t occurs in an object position
of q if q contains an atom of the form A(t), P (t, t′), P (t′, t), U(t, t′), whereas we say
that t occurs in a value position of q if q contains an atom of the form T (t), U(t′, t),
where A, P , U , and T have the usual meaning. Given two terms t1 and t2 occurring in
a query q, we say that t1 and t2 are compatible in q if either both t1 and t2 appear only
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in object positions of q or both t1 and t2 appear only in value positions of q. Moreover,
let q and q′ be two boolean queries. We say that q is a proper syntactical subset of q′,
written q ≺Rn q′ if there exists a renaming functionRn(q, q′) of the variables in q to the
variables in q′, such that every atom S(~t) occurring inRn(q, q′) occurs also in q′ and an
analogous renaming from q′ to q does not exists. The algorithm minUnsatQueries(T )
is given below.

Algorithm: minUnsatQueries(T )
Input: a DL-LiteA,id,den TBox T
Output: a set of queries

1 Q′ ← unsatQueries(T );
2 Q′′ ← saturate(Q′);
3 Q′′′ ← ∅;
4 whileQ′′′ 6= Q′′ do
5 Q′′′ ← Q′′;
6 foreach q ∈ Q′′ do
7 foreach atom U(t, t′) in q do
8 if there exist no atoms T (t′) and ¬T (t′) in q then
9 foreach value-domain T in {T1, . . . Tn} do

10 Q′′ ← Q′′ \ {q};
11 Q′′ ← Q′′ ∪ {q ∧ T (t′)};
12 Q′′ ← Q′′ ∪ {q ∧ ¬T (t′)};
13 foreach q ∈ Q′′′ do
14 foreach term t occurring in q do
15 if both Ti(t) and Tj(t) occur in q, with i 6= j then Q′′′ ← Q′′′ \ {q};
16 foreach q and q′ inQ′′′ do
17 if q ≺Rn q′ then Q′′′ ← Q′′′ \ {q′};
18 returnQ′′′

The algorithm proceeds as follows.
Step 1 (line 1): the algorithm initializes Q′ to the set unsatQueries(T ).
Step 2 (line 2): the algorithm computes the set Q′′ through the algorithm saturate.
Starting from each query q ∈ Q′, such an algorithm first unifies pairs of compatible
terms in q in all passible ways; then, for any query q′ computed in this way, for each
pair of terms t1 and t2 occurring in q′ that are syntactically different, it adds the in-
equality atom t1 6= t2 to q′; finally it returns the union of Q′ with this new set of
queries. Notice that such an operation is sound and complete with respect to the set of
queries in Q′: in particular, no answer to the set of queries is lost by this transforma-
tion, since, for every pair of compatible terms t1, t2 which are forced to be not equal
in q, there is a query q′ in Q′ where the same terms have been unified. For instance,
assume that Q′ contains only the query q : ∃x, y.Match(x) ∧ homeTeam(x, y) ∧
visitorTeam(x, y). Then, the algorithm saturate returns a set constituted by the
queries q1 : ∃x, y.Match(x) ∧ homeTeam(x, y) ∧ visitorTeam(x, y) ∧ x 6= y and
q2 : ∃x.Match(x) ∧ homeTeam(x, x) ∧ visitorTeam(x, x).
Step 3 (lines 3-12): let {T1 . . . Tn} be the set of value-domains. The algorithm com-
putes the setQ′′′ by producing from each query q ∈ Q′′ the following queries: for each
atom U(x, y), where U is an attribute name, if no atoms T (y) appears in q, where T
is a value-domain, then the algorithm builds 2n new queries by substituting the atom
U(x, y) with either the conjunction of atoms U(x, y) ∧ Ti(y) or U(x, y) ∧ ¬Ti(y), for
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each 1 ≤ i ≤ n. In this way, every possible combination is computed. It is easy to
verify that such a transformation is also sound and complete. Step 3 is motivated by the
need to provide a complete comparison in Step 5, as explained below.
Step 4 (lines 13-15): the algorithm removes from Q′′′ every query q in which a term t
occurs in two atoms of the form T1(t) and T2(t) (T1 and T2 are disjoint, and therefore
for each constant c in ΣV , T1(c) ∧ T2(c) is a contradiction).
Step 5 (lines 16-17): the algorithm removes from the set Q′′′ each query q′ such that
there is inQ′′′ a different query q whose atoms form, up to renaming of the variables in
q, a proper subset of the atoms appearing in q′. This simplified form of query contain-
ment guarantees that for every ABoxA and every query q inQ′′′, there does not exist a
query q′ inQ′′′, such that for every image σ(q) of q inA, 〈∅, V 〉 |= q′ where V ⊂ σ(q).
Step 6 (line 18): the algorithm terminates by returning the set Q′′′.

Let us now continue the example given at Step 2. Assume that Q′ contains
also the query q3 : ∃x.homeTeam(x, x) which is associate to the denial assertion
∀x.homeTeam(x, x) → ⊥. Obviously, besides query q1 and q2, Q′′ contains also q3,
which is natively in a “saturated” form. Step 3 and Step 4 have no effect in this ex-
ample, since none of the queries in Q′′ has atoms with attributes or value-domains
as predicate. Therefore, Q′′′ = Q′′, and Step 5 eliminates query q2 from Q′′′, since
q3 ≺Rn q2. Notice that this step is crucial to ensure that every image of a query
in Q′′′ in any ABox A is a minimal T -inconsistent set. Indeed, let us, for instance,
pose A = {Match(a), homeTeam(a, a), visitorTeam(a, a)}; q2 has an image in A,
which is A itself, which is also a T -inconsistent set, but not minimal: indeed, the
set {homeTeam(a, a)} ⊂ A is a also T -inconsistent set, since it violates the DA
∀x.homeTeam(x, x) → ⊥. This set is also minimal, and is indeed an image in A
of the query q3.

The following lemma states that the algorithm minUnsatQueries(T ) can be used
to check if a DL-LiteA,id,den ontology O = 〈T ,A〉 is consistent.

Lemma 1. Let O = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den ontology. Then,
〈∅,A〉 |= minUnsatQueries(T ) iff 〈∅,A〉 |= unsatQueries(T ).

The following crucial lemma guarantees instead that one can use the queries pro-
duced by the algorithm minUnsatQueries(T ) in order to compute every minimal T -
inconsistent set in A.

Lemma 2. Let O = 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den ontology, and
let q be a query in minUnsatQueries(T ). If 〈∅,A〉 |= q, then every image of q in A is
a minimal T -inconsistent set.

Let α, β be two atoms. We say that β is compatible with α if there exists a mapping
µ of the variables occurring in β to the terms occurring in α such that µ(β) = α
(and in this case we denote the above mapping µ with the symbol µα/β). Given an
atom α and a query q, we denote by CompSet(α, q) the set of atoms of q which are
compatible with α. Then, let T be a DL-LiteA,id,den TBox and let α be an atom, we
define MinIncSetT (α) as follows.

MinIncSetT (α) =
∨

q∈minUnsatQueries(T )∧CompSet(α,q)6=∅


 ∨

β∈CompSet(α,q)

µα/β(q)
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The following key property holds.

Theorem 3. Let 〈T ,A〉 be a possibly inconsistent DL-LiteA,id,den ontology, and let α
be an ABox assertion. There exists a minimal T -inconsistent set V inA such that α ∈ V
iff 〈∅,A〉 |= MinIncSetT (α).

Let T be a DL-LiteA,id,den TBox and let q be a BCQ of the form

∃z1, . . . , zk.
n∧

i=1
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1
i ) ∧

m∧

i=1
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2
i , t

3
i ) ∧
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4
i , t

5
i ) (2)

where all symbols have the usual meaning. We denote by IncRewr IAR(q, T ) the fol-
lowing FOL-sentence:

IncRewr IAR(q, T ) = ∃z1, . . . , zk.
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Let Q be a set of CQs, we define IncRewrUCQIAR(Q, T ) =∨
qi∈Q IncRewr IAR(qi, T ). We are then able to give our final results on refor-

mulation of UCQs under the IAR-semantics.

Theorem 4. Let T be a DL-LiteA,id,den TBox and let Q be a UCQ. For every ABox A,
〈T ,A〉 |=IAR Q iff 〈∅,A〉 |= IncRewrUCQIAR(saturate(PerfectRef(T +, Q)), T ).

In the above theorem, PerfectRef coincides with the algorithm of [10]. This algorithm
takes as input the set of positive inclusions T + and the query Q, and computes the
perfect reformulation under FOL-semantics of Q w.r.t. T +. PerfectRef(T +, Q) re-
turns a set of CQs specified over T . Through this reformulation we first preprocess
each query according to “positive” knowledge of the TBox, and then manage it to deal
with possible inconsistency. Then, the algorithm saturate previously described is ap-
plied to the query thus obtained: this step is necessary for technical reasons (roughly
speaking, it is needed in order to exactly identify, for every query atom α, the queries
from minUnsatQueries(T ) which correspond to inconsistent sets to which an image
of α might belong). This query is finally reformulated according to the definition of
IncRewrUCQIAR.

The following complexity result is a direct consequence of Theorem 4, since estab-
lishing whether 〈∅,A〉 |= IncRewrUCQIAR(saturate(PerfectRef(T +, Q)), T ) sim-
ply amounts to evaluating a FOL-query over the ABox A, which is in AC 0 in data
complexity.

Corollary 1. Let O be a DL-LiteA,id,den ontology and let Q be a UCQ. Deciding
whether O |=IAR Q is in AC 0 in data complexity.

We finally notice that the above results directly imply that query answering of UCQs
in DL-LiteA,id,den under standard semantics is FOL-rewritable, and therefore in AC 0 in
data complexity, i.e., it has the same computational behavior of all DLs of the DL-Lite
family.
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5 Conclusion

Motivated by the requirements arising in applications of ontology-based data access,
we have presented a new algorithm for inconsistency-tolerant query answering in a DL
obtained by extending DL-LiteA with identification and denial assertions. The algorithm
is based on a rewriting technique, and shows that query answering under the considered
inconsistency-tolerant semantics in DL-Lite remains first-order rewritable, even when
identification and denial assertions are added to the TBox. We will soon experiment our
new technique in the context of several ongoing OBDA projects. Our main goal is to
devise optimization techniques that allow for simplifying the rewritten query as much
as possible, so that the performance of the query answering process remains acceptable
even under the inconsistency-tolerant semantics.
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Abstract. When using ontologies to access instance data, it can be useful to
make a closed world assumption (CWA) for some predicates and an open world
assumption (OWA) for others. The main problem with such a setup is that con-
junctive query (CQ) answering becomes intractable already for inexpressive de-
scription logics such as DL-Lite and EL. We take a closer look at this situation
and carry out a fine-grained complexity analysis by considering the complex-
ity of CQ answering w.r.t. individual TBoxes. Our main results are a dichotomy
between AC0 and CONP for TBoxes formulated in DL-Lite and a dichotomy be-
tween PTIME and CONP for EL-TBoxes. In each tractable case, CQ answering
coincides with CQ answering under pure OWA; the CWA might still be useful as
it allows queries that are more expressive than CQs.

1 Introduction

Description logics (DLs) increasingly find application in ontology-based data access
(OBDA), where an ontology is used to enrich instance data and the chief aim is to pro-
vide efficient query answering services. In this context, it is common to make the open
world assumption (OWA). Indeed, there are applications where the data is inherently
incomplete and the OWA is semantically adequate, for example when the data is ex-
tracted from the web. In other applications, however, it is more reasonable to make a
closed world assumption (CWA) for some predicates in the data. In particular, when
the instance data is taken from a relational database, then the CWA can be appropri-
ate for the data predicates while additional predicates in the ontology should always
be interpreted under the OWA (this is the very idea of OBDA). As a concrete example,
consider geographical databases such as OpenStreetMap which contain pure geographi-
cal data as well as rich annotations, stating for example that a certain polygon describes
a ‘popular Thai restaurant’. As argued in [11, 7], it is useful to pursue an OBDA ap-
proach to take full advantage of the annotations, where one would naturally interpret
the geographical data under the CWA and the annotations under the OWA.

In the DL literature, there are a variety of approaches to adopting the CWA, often
based on epistemic operators or rules [6, 8, 10, 19, 22]. In this paper, we adopt the stan-
dard semantics from relational databases, which is natural, and straightforward: CWA
predicates have to be interpreted exactly as described in the data, assuming standard
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(and thus unique) names for data constants; for example, when A is a closed concept
name and A an ABox, then in any model I of A we must have AI = {a | A(a) ∈ A}.
Note that this semantics is also used in the recently proposed DBoxes [23]. In fact,
the setup considered in this paper generalizes both standard OBDA (only OWA predi-
cates permitted) and DBoxes (only CWA predicates permitted in data) by allowing to
freely mix OWA and CWA predicates both in the TBox and in the data. For readability,
we will from now on speak of open and closed predicates rather than OWA and CWA
predicates.

A major problem in admitting closed predicates is that query answering easily be-
comes intractable regarding data complexity (where the TBox and query are assumed
to be fixed and thus of constant size). In fact, this is true already for instance queries
(IQs), when only closed predicates are admitted in the data, and for TBoxes formulated
in inexpressive DLs such as the core dialect of DL-Lite [5] and EL [3]; this is shown
for conjunctive queries (CQs) and DL-Lite in [9], can easily be transfered to EL, and
strengthened to IQs by adapting a well-known reduction of Schaerf [21]. While this is a
relevant and interesting first step, it was recently demonstrated in [15, 16] in the context
of standard OBDA with more expressive DLs that a more fine grained, ‘non-uniform’
analysis is possible by studying data complexity on the level of individual TBoxes in-
stead of on the level of logics. In our context, we work with TBoxes of the form (T , Σ),
where T is a set of TBox statements as usual and Σ is a set of predicates (concept and
role names) that are declared to be closed. We say that CQ answering w.r.t. (T , Σ) is
in PTIME if for every CQ q(x), there exists a polytime algorithm that computes for a
given ABox A the certain answers to q in A given (T , Σ); CQ answering w.r.t. (T , Σ)
is CONP-hard if there is a Boolean CQ q such that, given an ABoxA, it is CONP-hard to
decide whether q is entailed byA given T . Other complexities are defined analogously.
The main aim of this paper is to carry out a non-uniform analysis of data complexity
for query answering with closed predicates in DL-Lite and EL.

Our main results are a dichotomy between AC0 and CONP for TBoxes formulated in
DL-Lite and a dichotomy between PTIME and CONP for EL-TBoxes. In each case, we
provide a transparent characterization that separates the easy cases from the hard cases.
These results are interesting when contrasted with query answering w.r.t. TBoxes that
are formulated in the expressive DLs ALC and ALCI, where the data complexity is
also between AC0 and CONP, but where the existence of a dichotomy between PTIME
and CONP is a deep open question that is equivalent to the Feder-Vardi conjecture
for the existence of a dichotomy between PTIME and NP in non-uniform constraint
satisfaction problems [16]. We also show that when CQ answering w.r.t. (T , Σ) is in
PTIME, then the certain answers to any CQ q in any ABox A given (T , Σ) (which
respect the closed-world declarations in Σ) coincide with the open world answers to q
in A given T—for ABoxes that are satisfiable w.r.t. T . In a sense, we thus show that
CQ answering with closed predicates is inherently intractable: in all the tractable and
consistent cases, the declaration of closed predicates does not have any impact on query
answers.

While this sounds discouraging, there is still a potential benefit of closed predicates
in tractable cases: for the ‘closed part’ of the signature, we can go beyond conjunctive
queries and admit (almost) full first-order queries without becoming undecidable and,
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indeed, without any negative impact on data complexity. We propose a concrete query
language that implements this idea and show that AC0 data complexity is preserved for
DL-Lite TBoxes and PTIME data complexity is preserved for EL-TBoxes when CQs
are replaced with queries formulated in the extended language.

Most proofs in this paper are deferred to the (appendix of the) long version, which
is available at http://www.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries

We use standard notation from description logic [4]. Let NC and NR be countably infi-
nite sets of concept and role names. A DL-Lite-concept is either a concept name from
NC or a concept of the form ∃r.> or ∃r−.>, where r ∈ NR. A DL-Lite-inclusion is an
expression of the form B1 v B2 or B1 v ¬B2, where B1, B2 are DL-Lite-concepts.
A DL-Lite-TBox is a finite set of DL-Lite-inclusions. In the literature, this version of
DL-Lite is often called DL-Litecore. EL-concepts are constructed according to the rule
C,D := > | A | C u D | ∃r.C, where A ∈ NC and r ∈ NR. An EL-inclusion is
an expression of the form C v D, where C,D are EL-concepts. An EL-TBox is a
finite set of EL-inclusions. ELI extends EL with the constructor ∃r−.C. ABoxes are
finite sets of assertions A(a) and r(a, b) with A ∈ NC, r ∈ NR, and a, b individual
names. We use Ind(A) to denote the set of individual names used in the ABox A and
write r−(a, b) ∈ A instead of r(b, a) ∈ A. We sometimes also use infinite ABoxes,
but this will be stated explicitly. Interpretations I are defined as usual, where for the
interpretation of individual names we make the standard name assumption (SNA), i.e.,
aI = a. Note that this implies the unique name assumption (UNA); to avoid enforcing
infinite models, we assume that interpretations need not interpret all individual names
and use Ind(I) to denote the individual names interpreted by I. A concept C (ABoxA)
is satisfiable w.r.t. a TBox T if there exists a model I of T with CI 6= ∅ (that satisfies
A, respectively).

Every ABox A corresponds to an interpretation IA whose domain is Ind(A) and in
which a ∈ AIA iff A(a) ∈ A, for all A ∈ NC and a ∈ Ind(A) and similarly for role
names. Conversely, every interpretation I corresponds to a (possibly infinite) ABoxAI
whose individual names are ∆I .

A predicate is a concept or role name. A signature Σ is a finite set of predicates.
The signature sig(C) of a concept C, sig(T ) of a TBox T , and sig(A) of an ABox A,
is the set of predicates occurring in C, T , andA, respectively. For being able to declare
predicates as closed, we add an additional component to TBoxes. A pair (T , Σ) with
T a TBox T and Σ a signature is a TBox with closed predicates. For any ABox A, a
model I of (T , Σ) and A is an interpretation I with Ind(A) ⊆ Ind(I) that satisfies T
and A and such that

AI = {a | A(a) ∈ A} for all A ∈ Σ ∩ NC

rI = {(a, b) | r(a, b) ∈ A} for all r ∈ Σ ∩ NR.

Note that TBox statements that only involve closed predicates are effectively integrity
constraints in the standard database sense [1]. In a DL context, integrity constraints are
discussed for example in [6, 8, 17–19].
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A first-order query (FOQ) q(x) is a first-order formula constructed from atoms
A(t), r(t, t′), and t = t′, where t, t′ range over individual names and variables and x =
x1, . . . , xk contains all free variables of q. We call x the answer variables of q(x). A
conjunctive query (CQ) q(x) is a FOQ using conjunction and existential quantification,
only. A tuple a = a1, . . . , ak ⊆ Ind(A) is a certain answer to q(x) in A given (T , Σ),
in symbols T ,A |=c(Σ) q(a), if I |= q[a1, . . . , ak] for all models I of (T , Σ) and
A. When computing certain answers we assume that all individual names in the query
occur in the ABox. If Σ = ∅, then we simply omit Σ and write T ,A |= q(a) instead
of T ,A |=c(Σ) q(a). If C is an ELI-concept, then the CQ corresponding to C(a) is
defined in the usual way and called an ELI-instance query. EL-instance queries are
defined analogously.

The following definition generalizes the definition of non-uniform data complexity
introduced in [16] to TBoxes with closed predicates.

Definition 1. Let (T , Σ) be a TBox with closed predicates. Then

– CQ answering w.r.t. (T , Σ) is in PTIME if for every CQ q(x) there is a polytime al-
gorithm that computes, for a given ABoxA, all a ⊆ Ind(A) with T ,A |=c(Σ) q(a);

– CQ answering w.r.t. (T , Σ) is CONP-hard if there is a Boolean CQ q such that it is
CONP-hard to decide, given an ABox A, whether T ,A |=c(Σ) q.

For other classes of queries such as FOQs and ELI-instance queries, analogous notions
can be defined. It is known that for Σ = ∅, CQ answering is in PTIME for EL-TBoxes
[5, 13] and in AC0 for DL-Lite [5, 2]. FOQ-answering is undecidable even for the empty
TBox, due to the OWA.

The following property, plays a central role in our analysis; see [16] which also
makes intensive use of this notion (there called ABox disjunction property).

Definition 2 (Disjunction property). A TBox with closed predicates (T , Σ) has the
disjunction property if for all ABoxes A and ELI-instance queries C1(a) and C2(a),
T ,A |=c(Σ) C1(a) ∨ C2(a) implies T ,A |=c(Σ) Ci(a) for some i ∈ {1, 2}.

It is standard to show that DL-Lite and EL TBoxes without closed predicates have the
disjunction property [16].

3 Main Results and Illustrating Examples

We first formulate the dichotomy result for DL-Lite. The next definition introduces a
class of TBoxes with closed predicates that turn out to be exactly the TBoxes for which
query answering is in AC0.

Definition 3. A DL-Lite TBox T with closed predicates Σ is safe if there are no DL-
Lite-concepts B1, B2 and role r such that

1. B1 is satisfiable w.r.t. T ;
2. T |= B1 v ∃r.> and T |= ∃r−.> v B2; and
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3. B1 6= ∃r.>, sig(B2) ⊆ Σ, and sig(r) ∩Σ = ∅.3

Note that it is easy to check in PTIME whether a given DL-Lite TBox is safe since
subsumption in DL-Lite can be decided in PTime [5]. Our results concerning DL-Lite
are summarized by the following theorem.

Theorem 1 (DL-Lite dichotomy). Let (T , Σ) be a DL-Lite-TBox with closed predi-
cates. Then the following holds:

1. If (T , Σ) is not safe, then the disjunction property fails and there is an ELI-
instance query C(a) such that answering C(a) w.r.t. (T , Σ) is coNP-hard.

2. If (T , Σ) is safe, then
(a) CQ answering w.r.t. (T , Σ) coincides with CQ answering w.r.t. (T , ∅) for all

ABoxes that are satisfiable w.r.t. (T , Σ), i.e., for every CQ q(x) and a ⊆
Ind(A), we have T ,A |=c(Σ) q(a) iff T ,A |= q(a).

(b) CQ answering w.r.t. (T , Σ) is in AC0 and (T , Σ) has the disjunction property.

The following example illustrates Theorem 1.

Example 1. (a) Let T = {A v ∃r.>,∃r−.> v B} and Σ = {B}. (T , Σ) is not safe.
The disjunction property can be refuted as follows. Let A = {A(a), B(b1), A1(b1),
B(b2), A2(b2)}, where A1, A2 are fresh concept names. Then

1. T ,A |=c(Σ) ∃r.(A1 uB)(a) ∨ ∃r.(A2 uB)(a);
2. T ,A 6|=c(Σ) ∃r.(Ai uB)(a) for i = 1, 2.

Point 1 should be clear since in any model I of (T , Σ) and A one has to link a with
r to b1 or to b2 to satisfy T . For Point 2 and i ∈ {1, 2}, consider the model Ii that
corresponds to A expanded with r(a, bi). Then Ii is a model of (T , Σ) and A (note
that r 6∈ Σ) but a 6∈ (∃r.(Ai u B))Ii where 1 = 2 and 2 = 1. Thus T ,A 6|=c(Σ)

∃r.(Ai uB)(a). When we add any of A,A1, A2 to Σ, all statements are still true.
(b) The failure of the disjunction property for the ABox A and TBox T results

in a choice that enables a coNP-hardness proof by reduction of 2+2-SAT, a variant of
propositional satisfiability where each clause contains precisely two positive literals and
two negative literals [21]. For this reduction, it suffices to use an EL-query that uses the
above queries ∃r.(Ai uB)(a), i = 1, 2, as subqueries for encoding truth values.

The proof of Theorem 1 is given in the next section. We now come to the case of
TBoxes formulated in EL, where we start with examples. Observe that we can find
an EL-TBox without the disjunction property by a reformulation of the DL-Lite TBox
from Example 1. Let T ′ = {A v ∃r.B} with Σ = {B}. Then, in the same way as
for (T , Σ) one can show that the disjunction property fails for (T ′, Σ) and that CQ
answering is coNP-hard. In EL, however, there is an additional (and more subtle) cause
for non-tractability, which we discuss in the following example.

Example 2. Consider again T ′ = {A v ∃r.B}, but now set Σ′ = {r}. We first show
that (T ′, Σ′) does not have the disjunction property. LetA′ = {A(a), r(a, b1), A1(b1),
r(a, b2), A2(b2)}, where A1, A2 are fresh concept names. Then one can easily show
that the disjunction property fails:

3 In other words, r is a role name and r 6∈ Σ or r = s− for a role name s 6∈ Σ.
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– T ′,A′ |=c(Σ′) ∃r.(A1 uB)(a) ∨ ∃r.(A2 uB)(a);
– T ′,A′ 6|=c(Σ′) ∃r.(Ai uB)(a), for i = 1, 2.

It is crucial that B 6∈ Σ′. The proof of CONP-hardness is very similar to the proof
mentioned in Example 1.

Observe that one cannot reproduce this example in DL-Lite: for the TBox T =
{A v ∃r.>,∃r−.> v B} with Σ′ = {r}, we have T ,A′ |=c(Σ′) B(bi) for i =
1, 2 and, therefore, T ,A′ |=c(Σ′) ∃r.(Ai u B)(a), for i = 1, 2. Thus, the disjunction
property is not violated.

We now identify a class of EL-TBoxes with closed predicates that turn out to be exactly
the TBoxes for which CQ answering is in PTIME. We call a concept E a top-level
conjunct (tlc) of C if C is of the form D1 u · · · u Dn with n ≥ 1 and E = Di for
some i.

Definition 4. Let (T , Σ) be an EL-TBox with closed predicates. (T , Σ) is safe if there
exists no EL-inclusion C v ∃r.D such that

1. T |= C v ∃r.D;
2. there does not exist a tlc ∃r.C ′ of C with T |= C ′ v D;
3. one of the following is true:

(s1) r 6∈ Σ and sig(D) ∩Σ 6= ∅;
(s2) r ∈ Σ, sig(D) 6⊆ Σ and there is no Σ-concept E with T |= C v ∃r.E and

T |= E v D.

Note that Condition 3(s1) of Definition 4 is similar to the definition of safety for DL-
Lite. Example 2 shows why Condition 3(s2) is needed. The following example illus-
trates the additional requirement of 3(s2) that no “interpolating” Σ-concept E exists.

Example 3. Let T = {A v ∃r.E,E v B} and first assume that Σ = {r}. Then the
inclusion A v ∃r.B satisfies Condition 3(s2) and thus (T , Σ) is not safe. Now assume
Σ = {r, E}. Then, the inclusion A v ∃r.B does not violate safety because E can be
used as a ‘Σ-interpolant’. Note that the ABox A′ from Example 2, which we used to
refute the disjunction property in a very similar situation, is simply unsatisfiable w.r.t.
(T , Σ) because E has to interpreted as the empty set. Indeed, it can be shown that
(T , Σ) is safe.

Note that, unlike the DL-Lite case, the definition of safety of EL-TBoxes with closed
predicates does not immediately suggest a decision procedure since there are infinitely
many candidates for the concepts C, D, and E. We conjecture that safety is decidable
in PTIME, but pursuing this further is left for future work.

Theorem 2 (EL-dichotomy). Let (T , Σ) be an EL-TBox with closed predicates. Then
the following holds:

1. If (T , Σ) is not safe, then the disjunction property fails and there exists an EL-
instance query C(a) such that answering C(a) w.r.t. (T , Σ) is coNP-hard.

2. If (T , Σ) is safe, then
(a) CQ answering w.r.t. (T , Σ) coincides with CQ answering w.r.t. (T , ∅) for all

ABoxes that are satisfiable w.r.t. (T , Σ).
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(b) CQ answering w.r.t. (T , Σ) is in PTIME and (T , Σ) has the disjunction prop-
erty.

As noted in the introduction, Theorems 1 and 2 essentially show that CQ answering
with closed predicates is inherently intractable. Note, though, that Points 2(a) of these
theorems refer only to satisfiable ABoxes. In fact, TBox statements that refer only to
closed predicates act as integrity constraints also in the tractable cases. Moreover, safe
TBoxes admit any integrity constraint that can be formulated in the DL at hand, i.e.,
if a TBox T formulated in DL-Lite or EL is safe, then it is still safe after adding any
concept inclusions that refers only to closed predicates. In the appendix of the long
version, we show that checking satisfiability of ABoxes w.r.t. safe TBoxes is in AC0 for
DL-Lite and in PTIME for EL (for data complexity).

Another way of taking advantage of closed predicates without losing tractability is
to admit more expressive query languages. Indeed, mixing open and closed predicates
seems particularly useful when large parts of the data stem from a relational database,
as in the geographical database application mentioned in the introduction. In such a
setup, one would typically not want to give up FOQs (SQL queries) available in the
relational system to accomodate open world predicates. We propose a query language
that combines, in a straightforward way, FOQs for closed predicates with CQs for open
(and closed) predicates. We then show that, for safe TBoxes with closed predicates,
such queries can be answered as efficiently as CQs both in the case of DL-Lite and
of EL.

As in the relational database setting, we allow only FOQs that are domain-inde-
pendent and thus correspond to expressions of relational algebra (and SQL queries).
Formally, a FOQ q(x) is domain-independent if for all interpretations I and J such
that P I = PJ for all P ∈ sig(q(x)), we have I |= q[d] iff J |= q[d] for all tuples
d ⊆ ∆I ∪ ∆J . Intuitively, the truth value of a domain-independent FOQ depends
only on the interpretation of the data predicates, but not on the actual domain of the
interpretation. For example, ¬A(x), is not domain-independent whereasB(x)∧¬A(x)
is domain-independent. In our query language, we allow domain-independent FOQs
over closed predicates as atoms in CQs.

Definition 5. LetΣ be a signature that declares closed predicates. A conjunctive query
with FO(Σ) plugins (abbreviated CQFO(Σ)) is of the form ∃x1 · · · ∃xn(ϕ1 ∧ . . .∧ϕm),
where n ≥ 0, m ≥ 1, and each ϕi is either a CQ or a domain-independent FOQ whose
signature is included in Σ.

The subsequent theorem shows that switching from CQs to CQFO(Σ)s does not increase
data complexity.

Theorem 3.

1. CQFO(Σ)-answering w.r.t. safe DL-Lite-TBoxes with closed predicates is in AC0.
More precisely, for every such TBox (T , Σ) and CQFO(Σ) q(x), there exists a FOQ
q′(x) such that for all A and a ⊆ Ind(A): T ,A |=c(Σ) q(a) iff IA |= q′(a).

2. CQFO(Σ)-answering w.r.t. safe EL-TBoxes is in PTIME.
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Query languages between CQs and FOQs have been studied before. In the standard
setup where all predicates are open, it was shown in [20] that extending CQs with union
and atomic negation results in coNP-hardness both in DL-Lite and in EL, and that ex-
tending CQs with union and inequality results in undecidability in EL. In our query
language CQFO(Σ), we avoid these problems by allowing only CQs for the open pred-
icates while restricting the expressive power of FOQs (which admits disjunction, full
negation, and (in)equality) to closed predicates. The language EQL-Lite(CQ) proposed
in [6] can, in some sense, be viewed as a fragment of our language that admits the full
expressivity of FOQs, but in which only closed predicates are admitted. Note though,
that the EQL-Lite approach closes predicates only for querying while all predicates are
interpreted as open world for TBox reasoning.

4 Proof Sketches

We sketch proofs of Theorems 1 and 2. We begin with the first part of Theorem 1.

Lemma 1. If a DL-Lite-TBox T with closed predicates Σ is not safe, then the disjunc-
tion property fails and there exists an ELI-instance query C(a) such that answering
C(a) w.r.t. (T , Σ) is coNP-hard.

Proof. Assume that B1 v ∃r.>,∃r−.> v B2 satisfy the conditions of Definition 3.
Take a finite model I of T with a0 ∈ BI1 ; such a model exists since B1 is satisfiable
w.r.t. T and DL-Lite has the finite model property. Let S = {b ∈ ∆I | (a0, b) ∈ rI}.
Since B1 6= ∃r.>, we have a0 ∈ BIS1 for the interpretation IS obtained from I by
removing all pairs (a0, b) with b ∈ S from rI . Take the ABox AS corresponding to IS
and let A be the disjoint union of two copies of AS . We denote the individual names of
the first copy by (b, 1), b ∈ ∆I , and the elements of the second copy by (b, 2), b ∈ ∆I .
Let

A′ = A ∪ {A1(b, 1) | b ∈ BI2 } ∪ {A2(b, 2) | b ∈ BI2 },
whereA1 andA2 are fresh concept names. Now one can show that the disjunction prop-
erty fails: (T ,A′) |=c(Σ) ∃r.(A1uB2)(a0, 1)∨∃r.(A2uB2)(a0, 1) and (T ,A′) 6|=c(Σ)

∃r.(Ai uB2)(a0, 1) for i = 1, 2.
The CONP-hardness proof is now similar to the proof for Example 1 given in the

appendix of the long version. o

For the second part of Theorem 1, we first prove (a):

Lemma 2. Let (T , Σ) be a DL-Lite TBox with closed predicates. If (T , Σ) is safe,
then CQ answering w.r.t. (T , Σ) coincides with CQ answering w.r.t. T without closed
predicates for ABoxes that are satisfiable w.r.t. (T , Σ).

Proof. Let (T , Σ) be safe and assume that A is satisfiable w.r.t. (T , Σ). We remind
the reader of the construction of a canonical model I of T and A (without closed
predicates!) [12]. I is the interpretation corresponding to an ABox Ac that is the limit
of a sequence of ABoxes A0,A1, . . .. Let A0 = A and assume a0, . . . is an infinite list
of individual names such that Ind(A0) = {a0, . . . , ak}. Assume Aj has been defined
already. Let i be minimal such that there exists B1 v B2 ∈ T with Aj |= B1(ai) but
Aj 6|= B2(ai) (if no such i exists, then set Ac := Aj). Then
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– if B2 is a concept name, let Aj+1 = Aj ∪ {B2(ai)};
– ifB2 = ∃s.>, then take a fresh individual bai,s and setAj+1 = Aj∪{s(ai, bai,s)}.

Now let J be the interpretation corresponding to the ABoxAc =
⋃
i≥0Ai. It is known

that J is a model of (T ,A) with the following properties:

1. For all CQs q(x) and a ⊆ Ind(A): T ,A |= q(a) iff J |= q[a].
2. For any individual bai,s ∈ Ind(Ac) \ Ind(A) introduced as a witness for some
B2 = ∃s.>, we have B(bai,s) ∈ Ac iff T |= ∃s−.> v B, for every DL-Lite-
concept B.

To show that J is a model of (T , Σ) and A we prove the following

Claim 1. For all i ≥ 0 and for all a ∈ Ind(Ai), if B1 v B2 ∈ T with Ai |= B1(a) but
Ai 6|= B2(a), then sig(B2) ∩Σ = ∅.
Claim 1 holds for all Ai, i ≥ 0, and all a ∈ Ind(A): otherwise, Ai+1 is unsatisfiable,
in contradiction to Point 1. It follows that Claim 1 holds for i = 0. We proceed by
induction, assuming that Claim 1 has been proved for Ai, but that to the contrary of
what is to be shown there are B1 v B2 ∈ T with Ai+1 |= B1(a), Ai+1 6|= B2(a), and
sig(B2)∩Σ 6= ∅, i.e., sig(B2) ⊆ Σ. By what was said above, we have a 6∈ Ind(A) and
thus a was introduced as a witness for some ∃s.>. By IH, sig(s) ∩ Σ = ∅ and there
exists B1 6= ∃s.> with B1 v ∃s.> ∈ T . Point 2 yields T |= ∃s−.> v B2, in contrary
to (T , Σ) being safe. This finishes the proof of Claim 1.
It follows from Claim 1 that J is a model of (T , Σ) and A. Thus, we have for CQs
q(x) and a ⊆ Ind(A): if T ,A 6|= q(a), then J 6|= q[a], and so T ,A 6|=c(Σ) q(a), as
required. o

To obtain a proof of Part 2 of Theorem 1, it remains to show that, for safe (T , Σ),
it is in AC0 to decide whether an ABox is satisfiable w.r.t. (T , Σ). To this end, it is
readily checked that an ABox A which is satisfiable w.r.t. T is satisfiable w.r.t. a safe
(T , Σ) iff T ,A |= B(a) implies A |= B(a) for all DL-Lite concepts B over Σ.
To see that this condition is in AC0, let ϕB(x) be an FO query with T ,A |= B(a)
iff IA |= ϕB(a), where IA is the interpretation corresponding to A. Then A is not
satisfiable w.r.t. (T , Σ) iff IA |= ∃x

∨
B∈X(ϕB(x)∧¬B(x)) where X denotes the set

of all DL-Lite concepts over Σ.
We now come to Theorem 2. With the exception of proof steps involving Condi-

tion 3(s2) of Definition 4, the proof technique for Theorem 2 extends the proof tech-
nique introduced for DL-Lite. We therefore focus on 3(s2). We require a certain interpo-
lation property. This interpolation property has been studied before forALC and several
of its extensions in the context of query rewriting for DBoxes and Beth definability [23,
24]. Note that it is different from the interpolation property investigated in [14], which
requires the interpolant to be a TBox instead of a concept.

Lemma 3 (Interpolation). Let T1, T2 be EL-TBoxes, T1 ∪ T2 |= D0 v D1 with
sig(T1, D0) ∩ sig(T2, D1) ⊆ Σ. Then there exists a Σ-concept F such that T1 ∪ T2 |=
D0 v F and T1 ∪ T2 |= F v D1.

The following lemma is the crucial step for proving Part 1 of Theorem 2 if 3(s2) applies.
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Lemma 4. Let (T , Σ) be an EL-TBox with closed predicates such that safety is vio-
lated by C v ∃r.D ∈ T because 3(s2) holds. Then the disjunction property fails.

Proof. Assume C v ∃r.D is given. Take the canonical model IT ,C of T and C as
defined in [14] (its domain ∆IT ,C consists of names aF , F a subconcept of T or C,
and aF ∈ GIT ,C iff T |= F v G, for all EL-concepts G). Assume for simplicity that
(aF , aC) 6∈ rIT ,C for any aF ∈ ∆IT ,C . Let

S = {aG ∈ ∆IT ,C | (aC , aG) ∈ rIT ,C ,∃r.G is not a top level conjunct of C}
and let IS be the interpretation obtained from IT ,C by removing all pairs (d, d′) with
d′ ∈ S from rIT ,C . We have aC ∈ CIS . Let AS be the ABox corresponding to IS and

K = {G | ∃r.G ∈ sub(T ), T |= C v ∃r.G}.
Since there is no tlc C ′ of C with T |= C ′ v D, by a result of [14] (Lemma 16), there
exists G ∈ K with T |= G v D.

Introduce copies X0 and X1 of any non-Σ-predicate X . Denote by E0 and E1

the resulting concept if each non-Σ predicate X in E is replaced by X0 and, respec-
tively, X1. Similarly, denote by T 0 and T 1 the TBoxes obtained from T by replacing
all concepts E in T by E0 and E1, respectively. The following can be proved using
Lemma 3:

Fact. For all G ∈ K: T 0 ∪ T 1 6|= G0 v D1.

Now one can take the canonical models JG := IT 0∪T 1,G0 for any G ∈ K and obtain
for aG := aG0 that aG 6∈ (D1)JG . Let AG,Σ be the Σ-reduct of the ABox correspond-
ing to JG and assume that the Ind(AG,Σ) are mutually disjoint, for G ∈ K, and that
aG ∈ Ind(AG,Σ), for all G ∈ K. Introduce two copies A1

G,Σ and A2
G,Σ of AG,Σ , for

G ∈ K. We denote the elements of the first copy by (a, 1), for a ∈ Ind(AG,Σ) and the
elements of the second copy by (a, 2), for a ∈ Ind(AG,Σ). Define the ABox A by tak-
ing two fresh concept names A1 and A2 and the union of AS ∪

⋃
G∈K A1

G,Σ ∪ A2
G,Σ

and the assertions r(aC , (aG, 1)), r(aC , (aG, 2)), A1(aG, 1), and A2(aG, 2), for ev-
ery G ∈ K and A1(aD′), for every tlc ∃r.D′ of C. One can show that the disjunc-
tion property is violated: T ,A |=c(Σ) ∃r.(A1 u D)(aC) ∨ ∃r.(A2 u D)(aC) and
T ,A 6|=c(Σ) ∃r.(Ai uD)(aC), for i = 1, 2. o

5 Future Work

We have presented first results regarding the non-uniform complexity of query answer-
ing in the presence of open and closed world predicates. We expect the proposed ex-
tension of CQs with FO-plugins to be useful in practical applications where closed
predicates are important and safe TBoxes suffice. As future work, we plan to extend
our investigation to more expressive DLs. For example, we conjecture that transparent
dichotomy results can still be obtained for the extensions of DL-Litecore and EL with
role hierarchies.
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1 Introduction

OWL 21 is commonly used to represent objects with complex structure, such as com-
plex assemblies in engineering applications [5], human anatomy [13], or the structure
of chemical molecules [7]. In order to ground our discussion, we next present a concrete
application of the latter kind; however, the problems and the solution that we identify
apply to numerous similar scenarios.

The European Bioinformatics Institute (EBI) has developed the ChEBI2 ontology—
a public dictionary of molecular entities used to enhance interoperability of applica-
tions supporting tasks such as drug discovery. In order to automate the classification of
molecular entities, ChEBI descriptions were translated into OWL and then classified us-
ing automated reasoning. However, this approach was hindered by the fundamental in-
ability of OWL to precisely represent the structure of complex molecular entities, as the
tree-model property of OWL prevents one from describing non-tree-like relationships
using schema axioms. For example, OWL axioms can state that butane molecules have
four carbon atoms, but they cannot state that the four atoms in a cyclobutane molecule
are arranged in a ring. Please note that this applies to schema descriptions only: the
structure of a particular cyclobutane molecule can be represented using class and prop-
erty assertions, but the general definition of all cyclobutane molecules—a problem that
terminologies such as ChEBI aim to solve—cannot be fully described in OWL. As we
show in Section 3, an ontology may therefore fail to entail certain desired consequences.

A common solution to this problem is to extend OWL 2 with a rule-based formalism
such as SWRL;3 however, this either results in undecidability [9] or requires restrictions
in the shape of the rules [8], which typically prevent the rules from axiomatising the re-
quired structures. An alternative approach suggests a combination of OWL 2, rules, and
description graphs (DGs) [12]—a graphical notation for describing non-tree-like struc-
tures. Decidability of reasoning is ensured via a property separation condition and by
requiring DGs to be acyclic. Intuitively, the latter means that DGs can describe struc-
tures of arbitrary shape, but bounded in size, while the former limits the interaction
between the OWL and DG parts, thus preventing multiple DG structures from merg-
ing into one structure of (potentially) unbounded size. As reported in [7], DGs solved
? Work supported by EU FP7 SEALS and EPSRC projects ConDOR, ExODA, and LogMap.
1 http://www.w3.org/TR/owl2-overview/
2 http://www.ebi.ac.uk/chebi/
3 http://www.w3.org/Submission/SWRL/
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only some of the problems related to the representation of structured objects, and our
subsequent discussions with EBI researchers revealed the following drawbacks.

First, the DG approach does not allow one to define structures based on the absence
of certain characteristics. For example, an inorganic molecule is commonly described
as ‘a molecule not containing a carbon atom’, which can then be used to classify water
as an inorganic molecule. Designing an axiomatisation that produces the desired entail-
ment is very cumbersome with the DG approach: apart from stating that ‘each water
molecule consists of one oxygen and two hydrogen atoms’, one must additionally state
that ‘these three atoms are the only atoms in a water molecule’ and that ‘neither hydro-
gen nor oxygen atoms are carbon atoms’. Second, the separation conditions governing
the interaction of the OWL 2 and DG components makes the combined language rather
difficult to use, as no role can be used in both components. Third, the acyclicity condi-
tion from [12] is rather cumbersome: a modeller must add a number of negative class
assertions to DGs so as to make any ontology with cyclic implications between DGs
unsatisfiable. This solution fails to cleanly separate the semantic consequences of an
ontology from the acyclicity check.

In response to this critique, in this paper we present a radically different approach
to modelling complex objects via a novel formalism that we call Description Graph
Logic Programs (DGLP). At the syntactic level, our approach combines DGs, rules, and
OWL 2 RL axioms.4 In order to overcome the first problem, we give semantics to our
formalism via a translation into logic programs interpreted under stable model seman-
tics. As we show in Section 4, the resulting formalism can capture conditions based on
the absence of information. Moreover, we address the second problem by ensuring de-
cidability without the need for complex property separation conditions. To address the
third problem, in Section 5 we discuss existing syntactic acyclicity conditions and argue
that they unnecessarily rule out some very simple and intuitively reasonable ontologies.
As a remedy, we present a novel semantic acyclicity condition. Roughly speaking, a
precedence relation describing allowed implications between DGs is specified by the
modeller; a cyclic ontology that is not compatible with this precedence relation entails
a special propositional symbol. A cyclic ontology can still entail useful consequences,
but termination of reasoning can no longer be guaranteed. In Section 6 we consider
the problem of reasoning with negation-free ontologies and ontologies with stratified
negation. We show that the standard bottom-up evaluation of logic programs can de-
cide the relevant reasoning problems for semantically acyclic ontologies, and that it can
also decide whether an ontology is semantically acyclic. In Section 7 we briefly discuss
a preliminary evaluation of our formalism which indicates that reasoning with DGLP
ontologies is practically feasible. Proofs of the technical results can be found online.5

2 Preliminaries

We assume the reader to be familiar with OWL and description logics; for brevity, we
write OWL axioms using the DL notation. LetΣ = (ΣC , ΣF , ΣP ) be a first-order logic
signature, where ΣC , ΣF , and ΣP are countably infinite sets of constant, function, and

4 http://www.w3.org/TR/owl-profiles/
5 http://www.cs.ox.ac.uk/isg/people/despoina.magka/pubs/reports/DGLPTechnicalReport.pdf
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predicate symbols, respectively, and where ΣP contains the 0-ary predicate ⊥. The
arity of a predicate A is given by ar(A). A vector t1, . . . , tn of first-order terms is often
abbreviated as ~t. An atom is a first-order formula of the form A(~t), where A ∈ ΣP and
~t is a vector of the terms t1, . . . , tar(A). A rule r is an implication of the form

B1 ∧ . . . ∧Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → H1 ∧ . . . ∧H` (1)

where H1, . . . ,H` are atoms, B1, . . . , Bm are atoms different from ⊥, m ≥ 0, and
` > 0. Let head(r) = {Hi}1≤i≤`, body+(r) = {Bi}1≤i≤n, body−(r) = {Bi}n<i≤m,
and body(r) = body+(r) ∪ body−(r). A rule r is safe if every variable that occurs
in head(r) ∪ body−(r) also occurs in body+(r). If body(r) = ∅ and r is safe, then
r is a fact. We denote with headP (r), body+

P (r), body−P (r), and bodyP (r) the set of
predicates that occur in head(r), body+(r), body−(r), and body(r), respectively. A rule
r is function-free if no function symbols occur in r. A logic program P is a set of rules.
A logic program P is negation-free if, for each rule r ∈ P , we have body−(r) = ∅.

Given a logic program P , HU (P ) (Herbrand Universe) is the set of all terms that
can be formed using constants and functions from P (w.l.o.g. we assume that P contains
at least one constant). If no variables occur in an atom (rule), then the atom (rule)
is ground. Given a logic program P , the set HB(P ) is the set of all ground atoms
constructed using the terms in HU (P ) and the predicates in P . The grounding of a rule
r w.r.t. a set of terms T is the set of rules obtained by substituting the variables of r by
the terms of T in all possible ways. Given a logic program P , the program ground(P )
is obtained from P by replacing each rule r ∈ P with its grounding w.r.t. HU (P ).

Let I ⊆ HB(P ) be a set of ground atoms. Then, I satisfies a ground rule r if
body+(r) ⊆ I and body−(r) ∩ I = ∅ imply head(r) ⊆ I . Furthermore, I is a model
of a (not necessarily ground) program P , written I |= P , if ⊥ 6∈ I and I satisfies each
rule r ∈ ground(P ). Given a negation-free program P , set I is a minimal model of P
if I |= P and no I ′ ( I exists such that I ′ |= P . The Gelfond-Lifschitz reduct P I of a
logic program P w.r.t. I is obtained from ground(P ) by removing each rule r such that
body−(r)∩ I 6= ∅, and removing all atoms not Bi in all the remaining rules. A set I is
a stable model of P if I is a minimal model of P I . Given a fact A, we write P |= A if
A ∈ I for each stable model I of P ; otherwise, we write P 6|= A.

A substitution is a partial mapping of variables to ground terms. The result of apply-
ing a substitution θ to a term, atom, or a set of atoms M is written as Mθ and is defined
as usual. Let P be a logic program in which no predicate occurring in the head of a rule
in P also occurs negated in the body of a (possibly different) rule in P . Operator TP ,
applicable to a set of facts X , is defined as follows:

TP (X) = X ∪ {hθ | h ∈ head(r), r ∈ P, θ maps the variables of r to
HU (P ∪X) such that body+(r)θ ⊆ X and body−(r)θ ∩X = ∅}

Let T 0
P = ∅, let T iP = TP (T i−1P ) for i ≥ 1, and let T∞P =

⋃∞
i=1 T

i
P . Such P has at

most one stable model, and T∞P is the stable model of P if and only if ⊥ 6∈ T∞P .

3 Motivating Application

We next motivate our work using examples from the chemical Semantic Web appli-
cation mentioned in the introduction. The goal of this application is to automatically

281



classify chemical entities based on descriptions of their properties and structure. The
inability of OWL to describe cyclic structures with sufficient precision causes problems
when modelling chemical compounds, as molecules are highly cyclic. For example,
the cyclobutane molecule contains four carbon atoms connected in a ring, as shown in
Figure 1(a). One might try to represent this structure using the following OWL axiom:

Cyclobutane v Molecule u = 4 hasAtom.[Carbon u (= 2 bond.Carbon)]

This axiom is satisfied in first-order interpretations I and I ′ shown in Figures 1(b)
and 1(c), respectively; however, only interpretation I correctly reflects the structure of
cyclobutane. Furthermore, interpretation I ′ cannot be ruled out by adding axioms due
to the tree-model property of OWL, according to which each satisfiable TBox has at
least one tree-shaped interpretation. This can prevent the entailment of certain desired
consequences. For example, one cannot define the class of molecules containing four-
membered rings that will be correctly identified as a superclass of cyclobutane.

The formalism from [12] addresses this problem by augmenting an OWL ontology
with a set of rules and a set of description graphs (DGs), where each DG describes a
complex object by means of a directed labeled graph. To avoid misunderstandings, we
refer to the formalism from [12] as DGDL (Description Graph Description Logics), and
to the formalism presented in this paper as DGLP (Description Graph Logic Programs).
Thus, cyclobutane can be described using the DG shown in Figure 2(a). The first-order
semantics of DGDL ontologies ensures that all models of an ontology correctly repre-
sent the DG structure; for example, interpretation I ′ from Figure 1(c) does not satisfy
the DG in Figure 2(a). Nevertheless, the interpretation I ′′ shown in Figure 1(d) also sat-
isfies the definition of cyclobutane under the semantics of DGDL ontologies. We next
show how the presence of models with excess information can restrict entailments.

One might describe the class of hydrocarbon molecules (i.e., molecules consisting
exclusively of hydrogens and carbons) using axiom (2). One would expect the definition
of cyclobutane (as given in a DGDL ontology) and (2) to imply subsumption (3).

Molecule u ∀hasAtom.(Carbon t Hydrogen) v Hydrocarbon (2)
Cyclobutane v Hydrocarbon (3)

This, however, is not the case, since interpretation I ′′ does not satisfy axiom (3). One
might preclude the existence of extra atoms by adding cardinality restrictions requiring
each cyclobutane to have exactly four atoms. Even so, axiom (3) would not be entailed
because of a model similar to I , but where one carbon atom is also an oxygen atom.
One could eliminate such models by introducing disjointness axioms for all chemical
elements. Such gradual circumscription of models, however, is not an adequate solution,
as one can always think of additional information that needs to be ruled out.

In order to address such problems, we present a novel expressive formalism that
we call Description Graph Logic Programs (DGLP). DGLP ontologies are similar to
DGDL ontologies in that they extend OWL ontologies with DGs and rules. In our case,
however, the ontology is restricted to OWL 2 RL so that the ontology can be translated
into rules [6]. We give semantics to our formalism by translating DGLP ontologies
into logic programs with function symbols. As is common in logic programming, the
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Fig. 1. The chemical structure and the models of cyclobutane

translation is interpreted under stable models. Consequently, interpretations such as I ′′

are not stable models of the DG in Figure 2(a), and hence subsumption (3) is entailed.
Logic programs with function symbols can axiomatise infinite non-tree-like struc-

tures, so reasoning with DGLP ontologies is trivially undecidable [2]. Our goal, how-
ever, is not to model arbitrarily large structures, but to describe complex objects up to a
certain level of granularity. For example, acetic acid has a carboxyl part, and carboxyl
has a hydroxyl part, but hydroxyl does not have an acetic acid part (see Fig. 3(a)). In
Section 5 we exploit this intuition and present a new acyclicity condition that ensures
decidability and allows for the modelling of naturally-arising molecular structures, such
as acetic acid, that would be ruled out by existing syntactic acyclicity conditions [4, 11].

4 Description Graph Logic Programs

We now present the DGLP formalism in detail; we first define description graphs.

Definition 1 (Description Graph). A description graph G = (V,E, λ,A,m) is a di-
rected labeled graph where

– V = {1, . . . , n} is a nonempty set of vertices,
– E ⊆ V × V is a set of edges,
– λ assigns a set of unary predicates λ(v) ⊆ ΣP to each vertex v ∈ V and a set of

binary predicates λ(v1, v2) ⊆ ΣP to each edge (v1, v2) ∈ E,
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Fig. 2. Representing cyclobutane with DGLP
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Fig. 3. The chemical graph of acetic acid and the GAA and the Gcxl DGs

– A ∈ ΣP is a start predicate for G such that A ∈ λ(1), and
– m ∈ {⇒,⇐,⇔} is a mode for G.

A description graph (DG) abstracts the structure of a complex object by means of
a directed labeled graph. For example, Figure 2 illustrates a DG that represents the
structure of a cyclobutane molecule. The start predicate of the graph (Cyclobutane in
this case) corresponds to the name of the object that the graph describes. The mode
determines whether a graph should be interpreted as an ‘only if’, ‘if’, or ‘if and only
if’ statement. More precisely, ⇒ means that each instance of the DG’s start predicate
implies the existence of a corresponding instantiation of the entire graph structure;⇐
means that an instantiation of a suitable graph structure is ‘recognised’ as an instance
of the corresponding DG; and ⇔ means both of the above. Next we define graph or-
derings, which will play an important role in ensuring the decidability of DGLP.

Definition 2 (Graph Ordering). A graph ordering on a set of description graphs DG
is a transitive and irreflexive relation ≺ ⊆ DG ×DG .

Intuitively, a graph ordering specifies which DGs can imply the existence of in-
stances of other DGs. For example, let GAA be a graph that represents acetic acid, and
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let Gcxl be a graph that represents the carboxyl group (Fig. 3); then, one might define ≺
such that GAA ≺ Gcxl, so that an acetic acid instance may imply the existence of a car-
boxyl group instance, but not vice versa. We are now ready to define DGLP ontologies.

Definition 3 (DGLP Ontology). A DGLP ontology O = 〈DG ,≺, R, F 〉 is a quadru-
ple where DG is a finite set of description graphs, ≺ is a graph ordering on DG , R is
a finite set of function-free and safe rules, and F is a finite set of function-free facts.

For the sake of simplicity, we do not explicitly include an OWL 2 RL TBox into the
definition of DGLP ontologies: OWL 2 RL axioms can be translated into rules as shown
in [6] and included in R, and datatypes can be handled as in [10]. Similarly, we could
think of F as an OWL 2 ABox, as ABox assertions correspond directly to facts [6]. An
example of a DGLP ontology is 〈{GAA,Gcxl}, {(GAA,Gcxl)}, ∅, {AceticAcid(a)}〉.

We next define the semantics of DGLP via a translation into logic programs. Since
R and F are already sets of rules and ≺ serves only to check acyclicity, we only need
to specify how to translate DGs into rules.

Definition 4 (Start, Layout, and Recognition Rule). Let G = (V,E,A, λ,m) be a
description graph and let fG1 , . . . , f

G
|V |−1 be fresh distinct function symbols uniquely

associated with G. The start rule sG, the layout rule `G, and the recognition rule rG of
G are defined as follows (G is also used as a predicate of arity |V |):

A(x)→ G(x, fG1 (x), . . . , fG|V |−1(x)) (sG)

G(x1, . . . , x|V |)→
∧

i∈V,B∈λ(i)
B(xi) ∧

∧

〈i,j〉∈E,R∈λ(i,j)
R(xi, xj) (`G)

∧

i∈V,B∈λ(i),B 6=A
B(xi) ∧

∧

〈i,j〉∈E,R∈λ(i,j)
R(xi, xj)→ G(x1, . . . , x|V |) (rG)

The start and layout rules of a description graph serve to unfold the graph’s struc-
ture, whereas the recognition rule identifies instances of the start predicate. The function
terms fG1 (x), . . . , fG|V |−1(x) correspond to existential restrictions whose existentially
quantified variables have been skolemised.

Example 1. The start rule and layout rule that correspond to the DG of cyclobutane
from Figure 2 (assuming mode⇒ as specified in Definition 5) are the following.

Cyclobutane(x)→ Gcb(x, fGcb
1 (x), fGcb

2 (x), fGcb
3 (x), fGcb

4 (x)) (sGcb
)

Gcb(x1, x2, x3, x4, x5)→ Cyclobutane(x1) ∧
∧

2≤i≤4
Bond(xi, xi+1) ∧ Bond(x5, x2) ∧

∧

2≤i≤5
HasAtom(x1, xi) ∧

∧

2≤i≤5
Carbon(xi) (`Gcb

)

Next, we define Axioms(DG), which is a logic program that encodes a set of DGs.

Definition 5 (Axioms(DG)). For a description graph G = (V,E, λ,A,m), the pro-
gram Axioms(G) is the set of rules that contains the start rule sG and the layout rule
`G if m ∈ {⇒,⇔}, and the recognition rule rG if m ∈ {⇐,⇔}. For a set of descrip-
tion graphs DG = {Gi}1≤i≤n, let Axioms(DG) =

⋃
Gi∈DG Axioms(Gi).
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For each DGLP ontologyO = 〈DG ,≺, R, F 〉, we denote with LP(O) the program
Axioms(DG)∪R∪F . We check whetherD subsumesC as in standard OWL reasoning:
we assert C(a) for a a fresh individual, and we check whether D(a) is entailed.

Definition 6 (Subsumption). Let O be a DGLP ontology, let C and D be unary pred-
icates occurring in O, and let a be a fresh constant not occurring in O. Then, D sub-
sumes C w.r.t. O, written O |= C v D, if LP(O) ∪ {C(a)} |= D(a) holds.

Example 2. We now show how a DGLP ontology can be used to obtain the inferences
described in Section 3. Rule (r1) encodes the class of four-membered ring molecules
and rules (r2) and (r3) represent the class of hydrocarbons.

Molecule(x) ∧
∧

1≤i≤4
HasAtom(x, yi) ∧

∧

1≤i≤3
Bond(yi, yi+1) ∧ Bond(y4, y1)

∧

1≤i<j≤4
not yi = yj → MolWith4MemberedRing(x) (r1)

Molecule(x) ∧ HasAtom(x, y) ∧ notCarbon(y) ∧ notHydrogen(y)→ NHC(x) (r2)
Molecule(x) ∧ not NHC(x)→ HydroCarbon(x) (r3)
Cyclobutane(x)→ Molecule(x) (r4)

The use of the equality predicate = in the body of r1 does not require an exten-
sion to our syntax: if = occurs only in the body and not in the head of the rules,
then negation of equality can be implemented using a built-in predicate. We also state
that cyclobutane is a molecule using (r4) that corresponds to the OWL 2 RL axiom
Cyclobutane v Molecule. Let DG = {Gcb}, let ≺ = ∅, let R = {ri}4i=1, let F =
{Cyclobutane(a)}, and let O = 〈DG ,≺, R, F 〉. Figure 2(b) shows the only stable
model of LP(O) by inspection of which we see that LP(O) |= Hydrocarbon(a) and
LP(O) |= MolWith4MemberedRing(a), as expected.

5 Semantic Acyclicity

Reasoning about logic programs with function symbols is undecidable in general [2].
This problem is similar to reasoning about datalog programs with existentially quan-
tified rule heads (known as tuple-generating dependencies or tgds) [3]. For such pro-
grams, conditions such as weak acyclicity [4] or super-weak acyclicity [11] ensure the
termination of bottom-up reasoning algorithms: these conditions examine the syntactic
structure of the rules and check whether values created by a rule’s head can be prop-
agated so as to eventually satisfy the premise of the same rule. Such conditions can
also be applied to DGLP ontologies; however, they may overestimate the propagation
of values introduced by existential quantification and thus rule out unproblematical pro-
grams that generate only finite structures. As shown in Example 4, this is the case for
programs that naturally arise from DGLP representations of molecular structures.

To mitigate this problem, we propose a new semantic acyclicity condition. The idea
is to detect repetitive construction of DG instances by checking the entailment of a spe-
cial propositional symbol Cycle. In particular, the graph ordering≺ of a DGLP ontology
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O is used to extend LP(O) with rules that derive Cycle whenever an instance of a DG
G1 implies existence of an instance of a DG G2 but G1 6≺ G2.

Definition 7 (Check(O)). Let Gi = (Vi, Ei, λi, Ai,mi), i ∈ {1, 2} be two description
graphs. We define ChkPair(G1, G2) and ChkSelf(Gi) as follows:

ChkPair(G1, G2) = {G1(x1, . . . , x|V1|) ∧A2(xk)→ Cycle | 1 ≤ k ≤ |V1|} (4)
ChkSelf(Gi) = {Gi(x1, . . . , x|Vi|) ∧Ai(xk)→ Cycle | 1 < k ≤ |Vi|} (5)

Let DG = {Gi}1≤i≤n be a set of description graphs and let ≺ be a graph ordering on
DG . We define Check(DG ,≺) as follows:

Check(DG ,≺) =
⋃

i,j∈{1,...,n}, i 6=j, Gi 6≺Gj

ChkPair(Gi, Gj) ∪
⋃

1≤i≤n
ChkSelf(Gi)

For a DGLP ontology O = 〈DG ,≺, R, F 〉, we define Check(O) = Check(DG ,≺).

Example 3. Figure 3(a) shows the structure of acetic acid molecules and the parts they
consist of. In this example, however, we focus on the description graphs for acetic acid
(GAA) and carboxyl (Gcxl), which are shown in Figures 3(b) and 3(c), respectively. Since
an instance of acetic acid implies the existence of an instance of a carboxyl, but not
vice versa, we define our ordering as GAA ≺ Gcxl. Thus, for DG = {GAA,Gcxl} and
≺ = {(GAA,Gcxl)}, set Check(DG ,≺) contains the following rules:

Gcxl(x1, x2, x3) ∧ AceticAcid(xi)→ Cycle for 1 ≤ i ≤ 3

GAA(x1, x2, x3) ∧ AceticAcid(xi)→ Cycle for 2 ≤ i ≤ 3

Gcxl(x1, x2, x3) ∧ Carboxyl(xi)→ Cycle for 2 ≤ i ≤ 3

Definition 8. A DGLP ontology O is said to be semantically acyclic if and only if
LP(O) ∪ Check(O) 6|= Cycle.

Example 4. Let DG = {GAA,Gcxl} with mAA = mcxl = ⇔ , let ≺ = {(GAA,Gcxl)},
let F = {AceticAcid(a)}, and let O = 〈DG ,≺, ∅, F 〉. The logic program LP(O) con-
tains F and the following rules (HP abbreviates HasPart):

AceticAcid(x)→ GAA(x, f1(x), f2(x))

GAA(x, y, z)→ AceticAcid(x) ∧Methyl(y) ∧ Carboxyl(z) ∧ HP(x, y) ∧ HP(x, z)

Methyl(y) ∧ Carboxyl(z) ∧ HP(x, y) ∧ HP(x, z)→ GAA(x, y, z)

Carboxyl(x)→ Gcxl(x, g1(x), g2(x))

Gcxl(x, y, z)→ Carboxyl(x) ∧ Carbonyl(y) ∧ Hydroxyl(z) ∧ HP(x, y) ∧ HP(x, z)

Carbonyl(y) ∧ Hydroxyl(z) ∧ HP(x, y) ∧ HP(x, z)→ Gcxl(x, y, z)

Let also Check(O) = Check(DG ,≺) as defined in Example 3. We can easily com-
pute the stable model of P = LP(O) ∪ Check(O) using the TP operator and check
that Cycle is not in the (only) stable model of P ; so P 6|= Cycle and O is semanti-
cally acyclic. However, P is neither weakly [4] nor super-weakly acyclic [11]. This, we
believe, justifies the importance of semantic acyclicity for our applications.
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6 Reasoning with DGLP Ontologies

Initially, we consider the problem of reasoning with a negation-free DGLP ontology
O = 〈DG ,≺, R, F 〉. Intuitively, one can apply the TP operator to P = LP(O) ∪
Check(O) and compute T 1

P , . . . , T
i
P and so on. By Theorem 5, for some i we will

either reach a fixpoint or derive Cycle. In the former case, we have the stable model of
O (if ⊥ 6∈ T iP ), which we can use to decide the relevant reasoning problems; in the
latter case, we know that O is not acyclic.

Theorem 5. Let O = 〈DG ,≺, R, F 〉 be a DGLP ontology with R negation-free, and
let P = LP(O) ∪ Check(O). Then, Cycle ∈ T iP or T i+1

P = T iP for some i ≥ 1.

Checking the semantic acyclicity of O is thus decidable. If the stable model of
LP(O)∪Check(O) is infinite, then Cycle is derived; note that the inverse does not hold
as semantic acyclicity is a sufficient but not necessary termination condition.

Next, we consider the case of DGLP ontologies with stratified negation-as-failure.
We start by recapitulating several definitions. For each program P , a stratification of P
is a mapping σ : P → N such that for each rule r ∈ P we have (i) if B ∈ body+

P (r),
then σ(r′) ≤ σ(r) for each r′ ∈ P with B ∈ headP (r′) and (ii) if B ∈ body−P (r), then
σ(r′) < σ(r) for each r′ ∈ P with B ∈ headP (r′). A logic program P is stratifiable if
there exists a stratification of P . Moreover, a partition P1, . . . , Pn of P is a stratification
partition of P w.r.t. σ if, for each r ∈ P , we have r ∈ Pσ(r). The sets P1, . . . , Pn are
called the strata of P . Let U∞P0

= T 1
P1

, U iPj
= T iPj

(U∞Pj−1
) for 1 ≤ j ≤ n and i ≥ 1

and U∞Pj
= T∞Pj

(U∞Pj−1
). The stable model of P is given by U∞Pn

. Next we introduce the
notion of a DG-stratification, which ensures that the cycle detection rules are assigned
to the strata containing the relevant start rules of DGs.

Definition 9 (DG-stratification). Let O = 〈DG ,≺, R, F 〉 be a DGLP ontology, let
P = LP(O) ∪ Check(O) and let P1, . . . , Pn be a stratification partition of P w.r.t.
some stratification σ of P . Then, σ is a DG-stratification if

– for each G1, G2 ∈ DG such that G1 6= G2, G1 6≺ G2, and {sG1
, sG2
} ⊆ Pi, we

have ChkPair(G1, G2) ⊆ Pi, and
– for each G ∈ DG such that sG ∈ Pi, we have ChkSelf(G) ⊆ Pi.

The following result shows that, as long as LP(O) is stratified, one can always
assign the cycle checking rules in Check(O) to the appropriate strata and thus obtain a
DG-stratification of LP(O) ∪ Check(O).

Lemma 1. Let O = 〈DG ,≺, R, F 〉 be a DGLP ontology. If σ is a stratification of
LP(O), then σ can be extended to a DG-stratification σ′ of LP(O) ∪ Check(O).

The following theorem implies that, given a stratifiable DGLP ontology, we can
decide whether the ontology is semantically acyclic, and if so, we can compute its
stable model and thus solve all relevant reasoning problems; please note that we show
the decidability of semantic acyclicity only for ontologies with stratified negation.

Theorem 6. Let O be a DGLP ontology and P = LP(O) ∪ Check(O). If P1, . . . , Pn
is a stratification partition of P w.r.t. a DG-stratification of P , then, for each j with
1 ≤ j ≤ n, there exists i ≥ 1 such that Cycle ∈ U iPj

, or U i+1
Pj

= U iPj
and U iPj

is finite.
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7 Implementation Results and Discussion

In order to test the applicability of our approach in practice, we developed a prototyp-
ical implementation based on the XSB system.6 Using data extracted from ChEBI, we
built a number of DGLP ontologies with stratified NAF and we checked each ontology
for acyclicity and for entailed subsumptions: all ontologies were found acyclic and all
molecules were classified as expected; additionally, testing subsumptions for an ontol-
ogy representing 70 molecules did not require more than a few minutes on a standard
desktop computer. Given the prototypical nature of our application, we consider the
results as evidence of the practical feasibility of our approach.

In this paper we have laid the theoretical foundations of a novel, expressive, and
OWL 2 RL-compatible ontology language that is well suited to modelling objects with
complex structure. In the future, we plan to modify our approach in order to avoid the
explicit definition of graph ordering by the modeller; furthermore, we shall investigate
whether semantic acyclicity can be combined with other conditions (such as those de-
fined in [1]) in order to obtain a more general acyclicity check. Finally, we will optimise
our prototype in order to obtain a fully-scalable chemical classification system.
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Axiom Pinpointing Using an Assumption-Based Truth
Maintenance System

Hai Nguyen, Natasha Alechina, and Brian Logan

University of Nottingham

1 Introduction

The problem of axiom pinpointing [1, 22], that is, finding the minimal set of axioms
responsible for an unwanted consequence, is an important problem in ontology debug-
ging. One approach to identifying the axioms responsible for an unwanted consequence
is to trace dependencies between inferences leading to the consequence. Several authors
have proposed truth maintenance systems as a means of keeping track of dependencies
or inferences in ontologies, e.g., [21, 5, 7]. In this paper we show that truth maintenance
systems can also be used for axiom pinpointing. More specifically, we present a system
which returns all minimal sets of axioms responsible for the derivation of inconsistency
in an unfoldable ALC ontology. Following Sirin et al [24], we refer to these sets of
axioms as explanations.

Our approach involves using a modified Assumption-Based Truth Maintenance Sys-
tem (ATMS) [11] to trace inferential dependencies between formulas and compute the
minimal sets of ontology axioms responsible for a contradiction. The main technical
contribution of the paper is extending the ATMS to deal with disjunctions. We gen-
eralise the notion of an ATMS environment (a set of axioms from which a formula is
derivable) to include the non-deterministic choices required for the derivation of the for-
mula. We show that this extended ATMS (which we call the D-ATMS), combined with a
tableau reasoner, produces correct, complete and minimal explanations for a contradic-
tion in an unfoldableALC ontology. We have developed a prototype implementation of
our approach which we call AOD. Preliminary results of experiments comparing AOD,
MUPSter and the Pellet explanation service are encouraging, and suggest that AOD can
outperform MUPSter and Pellet on both synthetic and real-world ontologies.

2 The Reasoner

Our ontology debugging framework, AOD, consists of two components: a tableau rea-
soner, and the D-ATMS (described in Section 3).

The reasoner takes a TBox as an input. To check for incoherence, we check whether
a contradiction is derivable from the TBox and a statement of non-emptiness of a con-
cept, eg A(a). We refer to all TBox and ABox elements as formulas and reserve the
term ‘axiom’ for the input formulas.

The reasoner is a tableau reasoner for ALC with unfoldable TBoxes [17, 2], and
uses essentially the same rules as in [22, 16]:
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v-rule from A(a) and A v C derive C(a)
u-rule from (C1 u . . . u Cn)(a) derive C1(a), . . . , Cn(a)
∃-rule from (∃s.C)(a) derive s(a, b), C(b) where b is a new individual and (∃s.C)(a)

has not been used before to generate another new individual
∀-rule from (∀s.C)(a) and s(a, b) derive C(b)
⊥-rule from A(a) and ¬A(a) derive ⊥
t-rule from (C1 t . . . t Cn)(a), derive choices C1(a), . . . , Cn(a)

where A is an atomic concept, C and D are arbitrary concepts, a, b are constants, and s
is a role.

The t-rule creates branches in the tableaux for each disjunct (choice) C1(a), . . . ,
Cn(a). A tableau is a tree where nodes are sets of formulas, and children of a node are
obtained by applying inference rules to formulas in the node, so that the child node(s)
contains all the formulas from the parent node and the newly derived formula. For
readability, we will sometimes show only the new formula in a child node, with the
understanding that all the formulas higher up on the branch belong to the node as well.
If a node contains several disjunctions, for exampleB1tB2tB3(a) and C1tC2(b) as
in Figure 1, the order in which the disjunction rule is applied does not matter, but once
this order is fixed, the choices for the second disjunction are repeated under each of the
choices for the first disjunction:

(B1 tB2 tB3)(a)
(C1 t C2)(b)

B1(a)
(C1 t C2)(b)

B1(a),
C1(b)

B1(a),
C2(b)

B2(a)
(C1 t C2)(a)

B2(a),
C1(b)

B2(a),
C2(b)

B3(a)
(C1 t C2)(a)

B3(a),
C1(b)

B3(a),
C2(b)

Fig. 1: Tableau with nested disjunctions

The reasoner derives consequences by applying inference rules to axioms and pre-
viously derived formulas. An inference φ1, . . . , φn

r
=⇒ φ indicates that the formula φ

can be derived from the set of formulas φ1, . . . , φn using the inference rule r. The rea-
soner does not stop after a contradiction is derived on a branch, but continues to apply
inference rules until no new rule applications are possible. A rule application is new if
the inference rule has not been used before with the same premises. The reasoner never
repeats the same rule application.

3 The D-ATMS

The D-ATMS maintains dependencies between formulas inferred by the reasoner. To do
so, the D-ATMS builds and maintains a justification graph. Each node in the graph cor-
responds to a formula or a justification. We denote the node corresponding to a formula
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φ by nφ. Axioms are represented by axiom nodes, and inconsistency is represented by
a distinguished false node, n⊥. A justification is a structure j : nφ1

, . . . , nφk
⇒ nφ,

where nφ1 , . . . , nφk
are nodes corresponding to the antecedents of an inference rule

application, nφ is a node corresponding to the consequent,and j is the justification id, a
unique, sequentially assigned integer that identifies the justification.1 In the interests of
readability, we will often refer to a formula node nφ by the formula φ it represents.

When the reasoner applies an inference rule, it passes the resulting inference to the
D-ATMS, causing the D-ATMS to update the justification graph. The reasoner keeps
making inferences until no new inferences can be made. The D-ATMS is then invoked
to compute all explanations for⊥. An explanation consists of all minimal sets of axioms
from which⊥ can be derived, and, optionally, the sequence of inference rules necessary
to derive ⊥ from each set of axioms. The explanations returned by the D-ATMS are
guaranteed to be correct (in the sense that ⊥ is derivable from each of the returned sets
of axioms) and minimal (in the sense that ⊥ is not derivable from their proper subsets).

As an example, consider the following TBox inspired by the MadCow example
from the OilEd tutorial:

ax1 Sheep v Animal
ax2 Cow v Animal u ∀eats.¬Animal
ax3 MadCow v Cow u ∃eats.(Sheep t Cow)

we also add the assumption MadCow(a). The inferences made by the reasoner give
rise to the following justifications (note that Animal(b) has two justifications):

j1 MadCow(a),MadCow v Cowu∃eats.(SheeptCow)⇒Cowu∃eats.(Sheept
Cow)(a)

j2 Cow u ∃eats.(Sheep t Cow)(a)⇒ Cow(a)
j3 Cow u ∃eats.(Sheep t Cow)(a)⇒ ∃eats.(Sheep t Cow)(a)
j4 Cow(a), Cow v Animal u ∀eats.¬Animal,⇒ Animal u ∀eats.¬Animal(a)
j5 ∃eats.(Sheep t Cow)(a)⇒ eats(a, b)
j6 ∃eats.(Sheep t Cow)(a)⇒ (Sheep t Cow)(a)
j7 (Animal u ∀eats.¬Animal)(a)⇒ Animal(a)
j8 (Animal u ∀eats.¬Animal)(a)⇒ ∀eats.¬Animal(a)
j9 eats(a, b), ∀eats.¬Animal(a)⇒¬Animal(b)
j10 (Sheep t Cow)(a)⇒ Sheep(a) (non-deterministic)
j11 (Sheep t Cow)(a)⇒ Cow(a) (non-deterministic)
j12 Sheep(b), Sheep v Animal⇒ Animal(b)
j13 Animal(b), ¬Animal(b)⇒⊥
j14 Cow(b), Cow v Animal u ∀eats.¬Animal⇒ (Animal u ∀eats.¬Animal)(b)
j15 (Animal u ∀eats.¬Animal)(b)⇒ Animal(b)
j16 (Animal u ∀eats.¬Animal)(b)⇒ ∀eats.¬Animal(b)

and the justification graph is shown in Figure 2.
In a standard ATMS [11], each node has a label consisting of a set of environments.

An environment is a minimal set of axioms from which the corresponding formula is

1 Note that we use the term justification as it is used in ATMS literature, rather than to mean the
minimal set of axioms responsible for an entailment as in, e.g., [4].
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n4 n5

n11

n7

n6 n8

n9 n10

n13

n14

n15

n0

n16

n18

MadCow(a) Cow(a)
Animal�

∀.eats¬Animal)(a)

n12

∀.eats¬Animal(a)

Animal(a)

∃eats.(Sheep � Cow)(a)

eats(a, b)

¬Animal(b)

Sheep(b)

Animal(b)

⊥

Cow(b)

n17

(Animal�
∀eats¬Animal)(b)

∀eats¬Animal(b)

n3

MadCow �
Cow � ∃eats.(Sheep � Cow)

n1

n2

Cow �
Animal � ∀eats.¬Animal

Cow(a)�
∃eats.(Sheep � Cow)(a)

(Sheep � Cow)(b)

Sheep � Animal

j1

j2

j3

j4

j5 j6

j7

j8

j9

j10

j11

j12
j13

j14

j15

j16

Fig. 2: Justification graph. Formula nodes are round, axioms are blue,⊥ is red. Justification nodes
are square, non-deterministic justifications are green with dashed arrows.

derivable (an explanation). For example,Animal(a) in Figure 2 would have an environ-
ment {Cow v Animalu∀eats.¬Animal,MadCow v Cowu∃eats.(SheeptCow),
MadCow(a)}. Labels are computed and minimised at the same time as the justifica-
tion graph is built. In contrast, in AOD, labels are computed only for the nodes which
belong to the part of the justification graph which is involved in the derivation of ⊥ (is
reachable from⊥ following the edges backwards), and only after the graph is complete.
In our example, the relevant part is the graph without the justifications j7, j16 and the
nodes n11, n18.

4 Computing Labels

In this section, we explain how the standard ATMS label computation algorithms are
generalised to deal with disjunctions. Basically, the generalisation consists in keeping
track of dependencies on disjunctive choices in addition to dependencies on axioms.

As in a standard ATMS, each node in the justification graph has a label consisting
of a set of environments. However in the D-ATMS, an environment represents a set of
axioms and choices under which a particular formula holds.

Definition 1 (environment). An environment e is a pair (A, C) where A is a set of
axioms and C is a sequence of choice sets [c1, . . . , ck] of length k ≥ 0. Each choice set
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ci is a pair (di, bi) where di = ψ1 t . . . t ψn is a disjunction and bi ⊂ {ψ1, . . . , ψn}
is a set of choices for di (i.e., a subset of the disjuncts appearing in the disjunction).

The presence of an environment (A, C) in the label of a node nφ indicates that φ can
be derived from the axioms A together with a sequence of choices from C. The choice
sequence corresponds to a (set of) tableau branch(es): each choice consists of a disjunc-
tion di and one or more of the disjuncts appearing in di. If φ can be derived from all the
disjuncts appearing in di, we have eliminated dependency on all choices for di, and the
choice set for di can be removed from C. If the sequence of choice sets is empty, then
φ does not depend on any choices (i.e., it can be derived from only the axioms A). For
example, the presence of the environment ({φ1, . . ., φk}, [ ]) in the label of a node nφ
means that φ has been derived by the reasoner from the axioms φ1, . . . , φk.

Environments in the D-ATMS thus capture the branching structure of a tableau.
For example, in the tableau in Figure 1 an environment for B1(a) will have a choice
sequence [((B1 tB2 tB3)(a), B1(a))] and C1(b) will have a choice sequence [((B1 t
B2 t B3)(a), B1(a)), ((C1 t C2)(b), C1(b))]. The order of choice sets in a choice
sequence comes from the order in which the t-rule is applied to disjunctions on the
corresponding branch. If one choice sequence corresponds to a prefix of another, then
the first choice sequence depends on fewer disjunctive choices. This intuition may be
helpful when considering the definition of subsumption for environments below.

The label of a node contains the set of environments from which the formula corre-
sponding to the node can be derived. The label of n⊥ consists of a set of inconsistent
environments or nogoods.

To define the D-ATMS algorithms for computing labels, we need the following
primitive operations on environments and labels which generalise and extend the corre-
sponding notions in [11].

We say that a choice sequence C1 is a prefix of a choice sequence C2, C1 � C2, if
C1 = [(d1, b1), . . . , (dk, bk)] and C2 = [(d′1, b

′
1), . . . , (d′n, b

′
n)], k ≤ n and for every

i ≤ k, di = d′i and b′i ⊆ bi. C1 ≺ C2 iff C1 � C2 and C2 6� C1.

Definition 2 (Subsumption of environments). An environment (A1, C1) subsumes an
environment (A2, C2), (A1, C1) ⊆s (A2, C2) iff A1 ⊆ A2, and C1 � C2. (A1, C1) ⊂s
(A2, C2) iff (A1, C1) ⊆s (A2, C2) and (A2, C2) 6⊆s (A1, C1).

An environment e is nogood if it is subsumed by an environment in the label of the
false node n⊥.

Definition 3 (Union of environments). The union of two environments e1 = (A1, C1)
and e2 = (A2, C2), e1 ∪≤ e2 = (A1 ∪ A2, C1 ∪≤ C2) if C1 and C2 are sequences of
choice sets for which C1 ∪≤ C2 is defined, otherwise e1 ∪≤ e2 is not defined. ∪≤ for
sequences of choice sets is defined as follows:

1. if C1 � C2 then C1 ∪≤ C2 = C2;
2. if C2 � C1 then C1 ∪≤ C2 = C1;
3. for all other cases, C1 ∪≤ C2 is not defined.

Intuitively, environments of two antecedents can be combined by ∪≤ to form an envi-
ronment of the consequent if the antecedents belong to the same branch of the tableau.
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Definition 4 (Merge of environments). The merge of two environments e1 = (A1, C1)
and e2 = (A2, C2), e1∪+e2 = (A1∪A2, C1∪+C2) if C1 and C2 are sequences of choice
sets for which ∪+ is defined. Otherwise, e1 ∪+ e2 is not defined. ∪+ for sequences of
choice sets is defined as follows:

1. if C1 = [(d1, b1), . . . , (dn, bn)] and C2 = [(d′1, b
′
1), . . . , (d′n, b

′
n)], n ≥ 1, and for

every i < n di = d′i and b′i = bi (in other words, C1 and C2 are the same apart
from their last element), dn = d′n, bn 6= b′n, then
(a) if bn∪b′n does not include all the disjuncts in dn, then C1∪+C2 = [(d1, b1), . . . ,

(dn, bn ∪ b′n)]
(b) C1 ∪+ C2 = [(d1, b1), . . . , (dn−1, bn−1)] otherwise;

2. for all other cases, C1 ∪+ C2 is not defined.

Intuitively, if the same formula belongs to all children of a disjunctive node in a tableau,
then it can be lifted ‘up’ to the parent, otherwise, ∪+ merges two subtrees into one
subtree where the formula belongs to all children. Recall that the label of a node is the
set of all environments from which the node can be derived.

Definition 5 (Union of labels). The union of two labels L1 and L2, L1 ∪+ L2 = L1 ∪
L2 ∪ {e1 ∪+ e2 | e1, e2 ∈ L1 ∪ L2}.

We can now give a sketch of how labels are computed.
Given a justification graph as in Figure 2, we first compute the justification closure

J for n⊥, namely the set of justifications that have n⊥ as a consequent, together with
the justifications of the antecedents of those justifications, and so on until we reach
justifications whose antecedents are axiom nodes. Initially, the labels of all nodes in J
other than axiom nodes are empty, and the label of each axiom node in J contains a
single environment consisting of the axiom itself.

The justifications in J are processed in order of their ids. For each justification
j : nφ1 , . . . , nφk

⇒ nφ ∈ J in turn, if j is deterministic (corresponds to any inference
rule apart from the t-rule), then for every k-tuple of environments from the labels
of nφ1

, . . . , nφk
(every way to derive the premises) we take their ∪≤ union (which

means, we only combine derivations on the same branch), remove any of the resulting
environments which are subsumed (to guarantee minimality), remove nogoods and, if
the label of nφ has changed as a result, propagate the changes to the nodes reachable by
following already processed (having a smaller id) justification links from nφ (since we
discovered a new way to derive those formulas, too).

If a justification j : nd ⇒ nψi
is non-deterministic (corresponds to t-rule), then

we need to make sure that the choices corresponding to splitting d are added at the
correct points in the tableau tree (recall Figure 1). New branches should be added un-
der each existing branch in the tableau where the disjunction is derivable. To reflect
this tableau structure in the label of nψi , for each environment (A, C) appearing in the
label of nd we compute the set of choice sequences of maximal length appearing in
any label, {C1, . . . , Ck}. Each element Cs (1 ≤ s ≤ k) of this set is maximal (corre-
sponds to a complete branch ending in a leaf), and C is a prefix of Cs. For each such Cs
we add an environment (A, Cs + (d, {ψi})) to a set L which is a new set of environ-
ments for ψi generated by j. For example, in Figure 1, when the t-rule is applied to
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(C1tC2)(b), the only choice sequence appearing in its label is [ ]. The set of choice se-
quences of maximal length which have [ ] as a prefix are [((B1tB2tB3)(a), B1(a))],
[((B1tB2tB3)(a), B2(a))], and [((B1tB2tB3)(a), B3(a))]. The choice sequences
in the environments of C1(b) and C2(b) become [((B1 tB2 tB3)(a), B1(a)), ((C1 t
C2)(a), C1(a))], [((B1tB2tB3)(a), B1(a)), ((C1tC2)(a), C2(a))], etc. Finally we
add L to the old label of ψi using ∪+, remove any subsumed environments and no-
goods, and propagate the changes to the nodes reachable from ψi by following already
processed justifications from ψi in J .

The label computation algorithms are correct, in that every set of axioms Γ ′ from
which ⊥ can be derived given the set of justifications produced by the reasoner is a
superset of the axioms appearing in some environment in the label of n⊥, and ⊥ can be
derived from every environment in its label.

5 Experimental Results

We have developed a prototype implementation of our approach.2 Both the reasoner
and the D-ATMS are implemented in Pop-11.3 The tableaux reasoner is implemented
as a set of six inference rules using Poprulebase, a Pop-11 rule interpreter.

To evaluate our approach, we performed experiments in which we compared the
performance of our prototype system when providing all minimal explanations for in-
consistencies in a variety of unfoldable ALC TBoxes with that of MUPSter [23] and
Pellet [24] (version 2.2.2). We chose to compare the D-ATMS with MUPSter and Pellet
as they represent different approaches to finding all minimal explanations for an in-
consistency. Both use a glass-box approach (extending the reasoner with dependency
tracking), but MUPSter finds all minimal explanations, while Pellet finds a single mini-
mal explanation, which is then combined with Reiter’s Hitting Set algorithm [19] to find
all other explanations [9, 24]. (In our experiments, we used Pellet’s glass-box approach,
as this typically requires less time to find an explanation [9].) The experiments were
performed on a Intel Dual Core 2.16GHz, 2GB RAM PC running Ubuntu. All times are
CPU times in ms and represent the average of 5 runs. Only the time actually used for
generating explanations is given. We do not count the time AOD, MUPSter, and Pellet
spend parsing and loading the ontologies, nor the time required for them to render the
explanations.

To test the correctness of our implementation, we compared the results for AOD
with those of MUPSter on the set of 1,611 randomly generated unfoldableALC TBoxes
used by Schlobach to evaluate the performance of MUPSter [23].4 For each ontology,
we obtained a list of unsatisfiable concept names from RacerPro before finding all min-
imal explanations for each unsatisfiable concept name.5 The explanations generated

2 AOD is available at http://www.agents.cs.nott.ac.uk/research/logics/
ontologies.

3 http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.
html

4 The dataset is available at http://www.few.vu.nl/˜schlobac/software.html.
5 http://www.racer-systems.com/products/racerpro

296



by both systems were the same, apart from one case where MUPSter returned a non-
minimal explanation.6

We also recorded the CPU time required for AOD, MUPSter and Pellet to generate
explanations for each ontology. In one case MUPSter did not produce an explanation
within 5000 seconds and the run was aborted. We omitted this case and the case in
which MUPSter returned a non-minimal explanation from our analysis, and in the fol-
lowing we consider only the remaining 1609 cases. Overall, AOD was noticeably faster
than both MUPSter and Pellet, with an average execution time of 30ms (median 9ms)
compared to 1001ms (median 166ms) for MUPSter and 478ms (median 383) for Pellet.

To evaluate the performance of AOD on more realistic examples, we used the Geo
ontology [23], the Biochemistry-primitive ontology from the TONES repository,7 a
fragment of the Ordnance Survey BuildingsAndPlaces ontology,8 and the Adult Mouse
Brain Ontology from the NCBO BioPortal.9 The Biochemistry-primitive, BuildingsAnd-
Places, and Adult Mouse Brain ontologies were translated into ALC by removing ax-
ioms for inverse roles and role inclusions. As in [23], the Geo ontology was made
incoherent by adding disjointness axioms of the form DJ(A1, . . . , An) stating that the
conceptsA1, . . . , An are pairwise disjoint. To handle the disjointness axioms, we added
the following inference rule to the reasoner:

dj-rule fromAi(a) andDJ(A1, . . . , An) derive ¬Aj(a) for all j 6= i, j ∈ {1, . . . , n}.

To make the other ontologies incoherent, we choose to systematically create unsatisfi-
able concepts from existing ontology entailments, allowing us to control the number of
unsatisfiable concepts and the form of the resulting explanations. For each ontology, we
randomly selected 10 pairs of concepts (A,B) where A v B is non-trivially entailed
by the ontology, i.e., A v B 6∈ T . Then for each entailment, A v B, we created a
concept EntailmentA B v A u ¬B. Finding all minimal explanations for the en-
tailment A v B thus becomes equivalent to finding all minimal explanations for the
unsatisfiability of EntailmentA B.

Table 1: Average execution times for AOD, MUPSter and Pellet.

Ontology Axioms Unsat concepts AOD MUPSter Pellet
Geo 500 11 72 259 3649

Biochemistry-primitive 265 10 20 70 418
BuildingsAndPlaces 124 10 42 88 515
Adult Mouse Brain 3447 10 802 1381 3443

6 For the TBox tbox 50 6 1 1 3 5 v1 and unsatisfiable concept A49 MUPSter returns
{A49, A37, A26, A34, A0} as an explanation for the unsatisfiability of A49, while the D-
ATMS returns {A49, A37, A34, A0}.

7 http://owl.cs.manchester.ac.uk/repository
8 http://www.ordnancesurvey.co.uk/oswebsite/ontology/
BuildingsAndPlaces/v1.1/BuildingsAndPlaces.owl

9 http://bioportal.bioontology.org/ontologies/1290
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The results are presented in Table 1. The second and third columns show the number
of axioms and the total number of unsatisfiable concepts in each ontology. As can be
seen, AOD is 1.5 to 3.5 times faster than MUPSter and 4 to 50 times faster than Pellet
on these ontologies.

6 Related Work

Two main approaches to axiom pinpointing have been proposed in the literature: glass-
box methods and black-box methods. A glass-box method extends a description logic
reasoner with some method of dependency tracking. A black-box method, e.g., [9], uses
the reasoner as an oracle to determine whether a set of axioms results in an inconsis-
tency or a concept is unsatisfiable with respect to a set of axioms, and then shrinks
that set to find a minimal set of reasons for the inconsistency or concept unsatisfiabil-
ity. Black-box methods have the advantage of being reasoner-independent. However it
can be argued that glass-box methods provide additional information in the form of a
derivation, which is useful for debugging, e.g., to present the user with a summary of
the derivation and which parts of the axioms were used to derive a contradiction.

AOD adopts a glass-box approach to ontology debugging. To date, much of the
work on glass box approaches, e.g., [22, 8, 16, 15], has been tailored to a particular
logic. More recently, Baader and Peñaloza [3] have proposed a generic tableau rule
specification format and a pinpointing algorithm that works for reasoners specified in
this format. They also show that termination of a tableau reasoner for satisfiability does
not necessarily lead to the termination of its pinpointing extension. In addition, for
tableau reasoners that require a blocking condition for termination, e.g., full ALC, it
is not sufficient for the pinpointing extension to use the same blocking condition as
the reasoner, because the pinpointing extension needs to take into account not only the
presence of an assertion in A, but also its justifications to determine if a tableau rule
instance should be blocked. In [3] they give a characterisation of a class of terminating
tableaux where the blocking condition yields a complete and terminating pinpointing
extension. However, to the best of our knowledge, this approach has not been imple-
mented. In [18] we sketched an approach to using an ATMS for ontology debugging in
a description logic without disjunctions, but did not provide an implementation.

The ATMS as described in [11] does not support non-deterministic choices. How-
ever several approaches to handling disjunctions in an ATMS have been proposed in the
literature. In [12] de Kleer extended the original ATMS to encode disjunctions of as-
sumptions (axioms) by introducing a set of hyper-resolution rules. However, such rules
may significantly reduce the efficiency of the ATMS. Another approach uses a justi-
fication for ⊥ by negated assumptions to represent a disjunction of assumptions, e.g.,
A∨B can be encoded by the justification ¬A,¬B ⇒⊥ [13]. Both of these approaches
are limited to encoding a disjunction of assumptions (axioms). However, in ontology
debugging, disjunctions often appear in concept descriptions. In contrast, the D-ATMS
allows disjunctions of nodes corresponding to arbitrary formulas. In [20] the original
ATMS was generalised to a clause management system (CMS) where justifications are
arbitrary disjunctive clauses. To find the ‘minimal support’ for a clause, the CMS im-
plementation described in [14] uses a method for computing prime implicants which
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relies on justifications being clauses consisting of literals to which the resolution rule
can be applied. Adopting such an approach would require translating TBox axioms into
clauses, and more importantly, finding some way of mapping the clauses returned by
the CMS back to the original TBox. The latter in particular is a non-trivial problem.
Label computation in the D-ATMS has some similarities with lazy label evaluation in
assumption-based truth maintenance systems, e.g., [10], and the restriction to n⊥ can
be seen as a special case of focussing the ATMS, e.g., [6]. Such approaches have been
shown to offer significant performance improvements relative to the ATMS described
in [11].

7 Conclusion

We described AOD, a system for debugging unfoldable ALC TBoxes based on an
ATMS with disjunctions. Our approach is correct and complete with respect to a rea-
soner for ALC with unfoldable TBoxes. We presented experimental results which sug-
gest that its performance compares favourably with that of MUPSter and Pellet. As the
D-ATMS maintains an explicit justification structure, it is straightforward to generate
explanations of how a contradiction is derivable intended for human users — the D-
ATMS essentially keeps intermediate steps in a derivation and can produce them on
request.

We believe the D-ATMS is a promising new approach to ontology debugging. Al-
though our approach was developed for ALC with unfoldable TBoxes, the reasoner
and the reason maintenance component are only loosely coupled, and the D-ATMS can
be adapted to work with other tableau reasoners. Characterising the conditions under
which a terminating tableau algorithm can be combined with the D-ATMS to produce a
debugging tool that will find all minimal explanations of⊥ is further work. One possible
approach would be to build on the results of [3]. The production of more user-friendly
explanations of how a contradiction is derivable is also a topic of future work.
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Abstract. First order logic (FOL) rewritability is a desirable feature
for query answering over geo-thematic ontologies because in most geo-
processing scenarios one has to cope with large data volume. Hence,
there is a need for combined geo-thematic logics that provide a suf-
ficiently expressive query language allowing for FOL rewritability. The
DL-Lite family of description logics is tailored towards FOL rewritability
of query answering for unions of conjunctive queries, hence it is a suit-
able candidate for the thematic component of a combined geo-thematic
logic. We show that a weak coupling of DL-Lite with the expressive
region connection calculus RCC8 allows for FOL rewritability under a
spatial completeness condition for the ABox. Stronger couplings allow-
ing for FOL rewritability are possible only for spatial calculi as weak
as the low-resolution calculus RCC2. Already a strong combination of
DL-Lite with the low-resolution calculus RCC3 does not allow for FOL
rewritability.

Keywords: FOL rewritability, region connection calculus, qualitative
spatial reasoning, GIS, combinations

1 Introduction

Query answering over a database becomes far more difficult if the extensional
knowledge in the database is extended by constraints in an ontology. The reason
is that a database plus an ontology may have many different models, hence
ontology based query answering has to compute the answers w.r.t. to all models
and build their intersection (certain answer semantics). But in some cases—when
using a lightweight logic like DL-Lite for the representation of the ontology and
a restricted query language like unions of conjunctive queries—query answering
w.r.t. an ontology can be reduced to model checking. This is formalized by the
notion of FOL (first order logic) rewritability : a given query can be rewritten
into a FOL query in which the intensional knowledge of the ontology is captured.
Though the rewritten queries may become exponentially bigger than the original
queries, there exist optimizations [13]. So, FOL rewritability means a benefit.
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DL-Lite per se [2] is not sufficient for use in scenarios of geographic informa-
tion processing, as these demand among others the representation and deduction
over spatial concepts. Though there exists related work combining spatial and
thematic reasoning [4], [15], [6], it is not aimed at FOL rewritability. Hence, there
is still a need for investigating combinations of logics that, on the one hand, are
sufficiently expressive to fit the representation’s needs in geographical informa-
tion processing and that, on the other hand, allow for computationally feasible
(in particular FOL rewritable) satisfiability checking and query answering.

Continuing previous work [7, 8], we investigate combinations of logics in the
DL-Lite family with different members of the region connection calculus (RCC)
family [9], a well-known family of calculi for qualitative spatial reasoning. The
DL-Lite logic we are using as thematic part differs from the known members
of the DL-Lite family as it also allows for concept conjunctions on the left-
hand side of general inclusion axioms. In previous work [8], we focussed on
the FOL rewritability aspects for weak combinations of DL-Lite with RCC8;
these combinations are weak in so far as they do not allow for the construction
of arbitrary RCC8 constraint networks in the intensional part (TBox) of the
ontology. In this paper we focus on strong combinations of DL-Lite with the
weaker fragments RCC3 and RCC2, and prove that DL-LiteuF,R(RCC3) does
not allow for FOL rewritability of satisfiability checking while the weaker DL-
LiteuF,R(RCC2) does.

The paper is structured as follows. Section 2 collects technical details on the
region connection calculus and the DL-Lite family of description logics. Weak
combinations of DL-Lite with the region connection calculus are described in
Sect. 3. In Sect. 4, the last section before the conclusion, we consider strong
combinations of DL-Lite with weaker fragments of the region connection calculus.

2 Logical Preliminaries

We recapitulate the main logical notation and concepts used in this paper; the
region connection calculus and DL-Lite.

2.1 The Region Connection Calculus

We will consider different fragments of the region connection calculus [9] as po-
tential candidates for the spatial logic to be combined with DL-Lite. Randell
and colleagues’ axiom system [9] is based on a primitive binary relation C in-
tended to denote a connectedness relation which is specified to be reflexive and
symmetric. On the basis of C other binary relations between regions which are
called base relations are explained. One set of base relations is the set BRCC8,
which is the main component of the most expressive region connection calculus
RCC8. The base relations of BRCC8 and their intended meanings are given as
follows: BRCC8 = {DC (disconnected), EC (externally connected), EQ (equal),
PO (partially overlapping), NTPP (non-tangential proper part), TPP (tangen-
tial proper part), NTPPi (inverse of NTPP), TPPi (inverse of TPP)}. We skip
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the concrete definitions of the base relations by the connectedness relation C
(see, e.g., [11, p. 45]), as we—in contrast to the axiom system of Randell and
colleagues—consider the following axiom system schema AxRCCi, which directly
specifies the properties of the base relations in BRCCi.
Definition 1 (Axiom system schema AxRCCi). For all i ∈ {2, 3, 5, 8} the
axiom set AxRCCi contains the following axioms:

{∀x, y.∨r∈BRCCi
r(x, y)} ∪ (joint exhaustivity)

{∀x, y.∧r1,r2∈BRCCi,r1 6=r2 r1(x, y)→ ¬r2(x, y)} ∪ (pairwise disjointness)

{∀x, y, z.r1(x, y) ∧ r2(y, z)→ r13(x, z) ∨ · · · ∨ rk3 (x, z) | r1; r2 = {r13, . . . , rk3}}
(weak composition axioms)

For i ∈ {3, 5, 8} additionally the axiom ∀xEQ(x, x) (reflexivity of EQ) is con-
tained. For i = 2 one has instead the axiom ∀xO(x, x) (reflexivity of O).

In particular, the axioms state the JEPD-property of the base relations (each
pair of regions x, y is related over exactly one base relation) and describe the
(weak) composition of two base relations (denoted by ;) according to the compo-
sition table for RCCi. With the composition of two base relations, in most cases,
only indefinite knowledge of spatial configurations follows. The spatial config-
uration r1(x, z) ∨ · · · ∨ rn(x, z) for base relations rj in BRCCi is also written
as {r1, . . . , rn}(x, z), and the set {r1, . . . , rn} is called a general RCCi relation.
Let RelRCCi be the set of all 2i general RCCi relations. An RCCi (constraint)
network consists of assertions of the form {r1, . . . , rn}(x, y).

We mention here the composition table for the low resolution logics RCC2
and RCC3. Their base relations are given by the sets BRCC3 = {DR,EQ,ONE}
and BRCC2 = {DR,O}, and their weak compositions are defined as shown in
Fig. 1. The discreteness relation DR is the same as {DC,EC}, the overlapping-
but-not-equal relation ONE is equal to {PO,NTPP,TPP,NTPPi,TPPi} and the
overlapping relation O is given by {ONE,EQ}.

; DR O

DR BRCC2 BRCC2

O BRCC2 BRCC2

; DR ONE EQ

DR BRCC3 {DR,ONE} DR

ONE {DR,ONE} BRCC3 ONE

EQ DR ONE EQ

Fig. 1. Composition tables for RCC2 and RCC3

Note that in the definitions of the base relations (of RCC3 and RCC2) we
followed the author of [14]. The base relations of the low resolution calculus of
[3] are different from those of RCC2; the authors of [3] consider the two base
relations DC and {EC,O}. But as we do not deal with the exact definitions of
the base relations referring to the connectedness relation C but with the axiom
systems referring to the composition table this difference has no effect—the low
resolution calculus of [3] has the same trivial composition table as RCC2. For
the composition tables of RCC5 and RCC8 have a look at [12, p. 45].
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2.2 DL-Lite

The family of DL-Lite description logics [2] is an appropriate candidate for the
thematic component of the envisioned geo-thematic logic as it offers computa-
tionally feasible satisfiability checking and query answering over ontologies and
data stored in a relational database. More concretely, satisfiability checking and
query answering (for unions of conjunctive queries) are first order logic (FOL)
rewritable. In this paper, we will mainly deal with a member of the extended
DL-Lite family which we termed DL-LiteuF,R, and which allows functional roles,
role hierarchies and role inverses as well as the conjunction of basic concepts on
the left-hand side of GCIs (general concept inclusions). The syntax is given in
Def. 2. The semantics of this logic is defined in the usual way—but imposing the
unique name assumption (UNA).

Definition 2 (DL-LiteuF,R). Let RN be the set of role symbols and P ∈ RN ,
CN be a set of concept symbols and A ∈ CN , Const be a set of individual
constants and a, b ∈ Const.

R −→ P | P− B −→ A | ∃R Cl −→ B | Cl uB Cr −→ B | ¬B
TBox∗): Cl v Cr, (funct R), R1 v R2

ABox: A(a), R(a, b)
*) Restriction: If R occurs in a functionality axiom, then R and its inverse

do not occur on the right-hand side of a role inclusion axiom R1 v R2.

FOL rewritability also holds for the logic DL-LiteuF,R which follows from the

corresponding FOL rewritability results for the Datalog extension Datalog± [1].
We assume that the reader is familiar with the notion of FOL queries, conjunctive
queries (CQ) and unions of conjunctive queries (UCQ), their semantics and the
notion of certain answers cert(Q,A ∪ T ) of a query w.r.t. to the union of a
TBox and an ABox T ∪ A [2]. Let DB(A) be the minimal Herbrand model of
A. Checking the satisfiability of ontologies is FOL rewritable iff for all TBoxes
T there is a boolean FOL query QT s.t. for all ABoxes A: the ontology T ∪ A
is satisfiable iff DB(A) 6|= QT . Answering queries from a subclass C of FOL
queries w.r.t. to ontologies is FOL rewritable iff for all TBoxes T and queries
Q = ψ(x) in C there is a FOL query QT such that for all ABoxes A it is the case

that cert(Q, T ∪ A) = Q
DB(A)
T . For DL-Lite, FOL-rewritability can be proved

w.r.t. to satisfiability as well as w.r.t. answering UCQs [2, Thm 4.14, Thm 5.15].
A crucial part of the proof for FOL rewritability w.r.t. query answering is the
perfect rewriting algorithm [2, Fig. 2]. This algorithm works by using positive
inclusion axioms of the form A1 v A2 as rewriting rules from right to left so
that for example an atom A2(x) occurring in a CQ would produce a new CQ
containing A1(x) instead of A2(x).

3 Weak Combinations of DL-Lite with RCC

In this section, we recapitulate the results concerning a weak coupling of DL-Lite
with the most expressive region connection calculus fragment RCC8, which we
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introduced in [7, 8], and provide an example for its use(fulness). This will give us
the opportunity to introduce further concepts that are necessary to understand
the following discussions on stronger couplings of DL-Lite with the weaker region
connection calculi RCC2 and RCC3.

The combination paradigm follows that of Lutz and Miličič [6] who combine
ALC with the RCC8 and, more generally, with ω-admissible concrete domains
[6, Def. 5, p. 7]. The combined logic ALC(RCC8) of [6] is well behaved in so far
as testing concept subsumption is decidable. As we aim at FOL rewritability we
have to be even more careful in choosing the right combination method.

We use an axiom set Tω with corresponding properties of an ω-admissible do-
main for coupling with DL-Lite because axioms are more appropriate for rewrit-
ing investigations. The axiom sets AxRCCi will instantiate Tω.

We recapitulate the syntax and the semantics of the constructors of [6] that
are used for the coupling of the thematic and the spatial domain. A path U (of
length at most 2) is defined as l for a fixed attribute l (“has location”) or as
R ◦ l, the composition of the role symbol R with l. We abbreviate R ◦ l with
R̃ in this paper. The usual notion of an interpretation I in our combined logic
is slightly modified by using two separate domains ∆I and (∆∗)I . All symbols
of the theory Tω are interpreted relative to (∆∗)I . Let r be an RCC-relation of
some RCC-fragment. That is, let be given a set of base relations BRCCi and r =
{r1, . . . rn} ≡ r1∨· · ·∨rn for ri ∈ BRCCi. Then lI ⊆ ∆I×(∆∗)I ; rI = rI1∪· · ·∪rIn;
(R◦l)I ={(d, e∗) ∈ ∆I×(∆∗)I | there is an e s.t. (d, e) ∈ RI and (e, e∗) ∈ lI};
(∃U1, U2.r)

I ={d ∈ ∆I | there exist e∗1, e∗2 s.t. (d, e∗1) ∈ UI1 , (d, e
∗
2) ∈ UI2 and

(e∗1, e
∗
2) ∈ rI}; (∀U1, U2.r)

I ={d ∈ ∆I | for all e∗1, e∗2 s.t. (d, e∗1) ∈ UI1 , (d, e∗2) ∈
UI2 it holds that (e∗1, e

∗
2) ∈ rI}.

Now we can define the following combined geo-thematic logic (where a∗, b∗

stand for constants intended to be interpreted by regions):

Definition 3 (DL-LiteuF,R(RCC8)). Let r ∈ RelRCC8 and Tω = AxRCC8.

R −→ P | P− U −→ R | R̃ B −→ A | ∃R | ∃l
Cl −→ B | Cl uB Cr −→ B | ¬B | ∃U1, U2.r
TBox∗): Cl v Cr, (funct l), (funct R), R1 v R2

ABox: A(a), R(a, b), l(a, a∗), r(a∗, b∗)
*) Restriction: If (functR) ∈ T , then R and R− do not occur on the right-

hand side of a role inclusion axiom or in a concept of the form ∃U1, U2.r.

As satisfiability checking of RCC8 constraint networks is NP-complete, there
is only a chance to reach FOL rewritability if we assume within the ABox a
constraint network which is consistent and complete, i.e., only base relations are
allowed as labels; in this case the ABox is called spatially complete. It seems to
us that for cadastral maps or maps containing areas of administration one can
assume pretty safely (almost) spatial completeness. The coupling with RCC8 is
so weak that FOL rewritability of satisfiability follows.

Proposition 1. Checking the satisfiability of DL− LiteuF,R(RCC8) ontologies
that have a spatially complete ABox is FOL rewritable.
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The FOL rewritability holds also for query rewriting w.r.t. to a restricted
class of treelike queries (termed GCQ+). The result is achieved by an adapted
perfect rewriting algorithm PerfectRef [2, Fig. 13].

Theorem 1. Answering GCQ+-queries w.r.t. DL− LiteuF,R(RCC8) ontologies
that have a spatially complete ABox is FOL rewritable.

DL-LiteuF,R(RCC8) as well as the logics introduced below are suited for use in
scenarios such as that of an engineering bureau planning additional parks in
a city [7]. Assume, the bureau has stored geographical data in some database
and declares relevant concepts in the TBox: Park+Lake v Park; Park4Playing v
Park; Park+Lake v ∃hasLake◦l, l.TPP; Park4Playing v ∃hasPlAr◦l, l.TPP. The
ABox A is derived virtually by mappings from geographical data in a database.
In particular, assume that {Park+Lake(a),Park4Playing(a)} ⊆ A. According to
A, the object a is a park with a lake and a park with a playing area but its
spatial extension is not known. Now, the engineering bureau asks for all parks
with lakes and playing areas such that the playing area is not contained as island
in the lake. This can be formalized by the GCQ+ query: Q =Park(x)∧∃hasLake◦
l, hasPlAr ◦ l.(BRCC8 \ {NTPP})(x). Using the composition entry TPP;TPPi =
{DC,EC,PO,TPP,TPPi,EQ} ⊆ BRCC8 \ {NTPP}, the reformulation algorithm
produces a UCQ that contains the following CQ: Q′ = (∃hasLake◦ l, l.TPP)(x)∧
(∃l, hasPlAr ◦ l.TPPi)(x). Rewriting ∃l, hasPlAr ◦ l.TPPi to ∃hasPlAr ◦ l, l.TPP
in combination with the rewriting rule for A1 v A2 we get another CQ Q′′ =
Park+Lake(x) ∧ Park4Playing(x). Now, Q′′ captures (as desired) the object a.

4 Strong Combinations of DL-Lite with RCC

Another way of reaching FOL rewritability for combinations of DL-Lite with
RCC is weakening the expressivity of the spatial component. Hence, one may
ask whether a combination with the calculus RCC3 or RCC2 [15], both fragments
with weak expressibility, allows for weak FOL rewritability w.r.t. satisfiability
checks (and query answering). Their potential use as logics for approximating
[5] ontologies in more expressible combined logics like ALC(RCC8) makes the
investigation valuable. The logics DL-Liteu,+F,R(RCC2) and DL-Liteu,+F,R(RCC3)
are defined as follows (’+’ indicates the strong combination):

Definition 4 (DL-Liteu,+F,R(RCC2) and DL-Liteu,+F,R(RCC3)). Let Tω =
AxRCC2 resp. Tω = AxRCC3 and r ∈ BRCC2 resp. r ∈ BRCC3

R −→ P | P− U −→ l | R̃ B −→ A | ∃R
Cl −→ B | Cl uB Cr −→ B | ¬B | ∃U1, U2.r
TBox∗): Cl v Cr, (funct l, R), R1 v R2

ABox: A(a), R(a, b), l(a, a∗), r(a∗, b∗)
*) Restriction: If (functR) ∈ T , then R and R− do not occur on the right-

hand side of a role inclusion axiom.

For RCC3 the strong combination with DL-LiteuF,R leads to non-FOL rewrita-
bility. The reason lies in the fact that testing the satisfiability of RCC3 is not in
the complexity class AC0 as shown by the following lemma.
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Lemma 1. Checking satisfiability of RCC3 networks is Logspace hard.

Proof. As is known, the reachability problem in symmetric (undirected) graphs is
logspace complete [10]—where graph reachability asks whether for nodes s, t in G
there is a path between s and t. By reducing this problem to the satisfiability test
for RCC3 networks we will have shown that the latter problem is Logspace hard
itself. So let be given a (symmetric) graph G = (V,E) and nodes s, t ∈ V . We
define the network N in the following way (see Figure 2): Let V = {v1, . . . , vn}
be an enumeration of the nodes of G; w.l.o.g. let s = v1 and t = vn and let
B = BRCC3. Nodes of N are given by V ∪ {a} where a /∈ V . Labelled edges of
N are given by: s{DR}a; t{ONE}a; vi{B}a for all i 6= 1, n; vi{EQ}vj if E(vi, vj);
vi{B}vj if ¬E(vi, vj). Now we show that the networkN is satisfiable iff s and t are
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Fig. 2. Network N used in proof of Lemma 1

connected inG. Assume that s and t are connected; then there is an EQ-path inN
between them, hence s{EQ}t follows. But this contradicts s{DR}a and t{ONE}a.
Now assume that s and t are not connected; then there is no path consisting only
of EQ-labels between s and t. The graph G consists of at least 2 components, and
s, t are in different components. We define a consistent configuration as follows:
For all nodes v, v′ in the component in which s is contained, let v{DR}a and
v{EQ}v′. For all nodes v, v′ in the component of t let v{ONE}a and v{EQ}v′.
For all nodes v, v′ in the other components let v{DR}a and v{EQ}v′. For all
nodes v, v′ which have not a label yet, let v{DR}v′. (Two remarks : 1) EQ-edges
for edges E(vi, vj) in G with j > i + 1 are not shown in Fig. 2. 2) We inserted
edges labelled B for better illustrations. But these are not needed.)

This lemma immediately entails the fact that satisfiability checking for on-
tologies over the logic DL-Liteu,+F,R(RCC3) is not FOL rewritable. This problem
does not vanish if we presuppose that the ABox A is spatially complete—as
shown by the following proposition.

Proposition 2. Satisfiability checking of ontologies in DL-Liteu,+F,R(RCC3) with
spatially complete ABoxes is not FOL rewritable.

Proof. We construct a generic TBox Tg that allows one to encode any RCC3
constraint network so that checking the consistency of RCC3 constraint networks
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is reducible to a satisfiability check of this TBox and a spatially complete ABox.
Let for every r ∈ RelRCC3 be given role symbols R1

r , R
2
r . The generic TBox Tg

has for every r ∈ RelRCC3 a concept symbol Ar and a corresponding axiom with
the content that all instances of Ar have paths over the abstract features R1

resp. R2 to regions that are r-related.

Tg = {Ar v ∃R̃1
r , R̃

2
r .r, (funct l, R1

r , R
2
r) | r ∈ RelRCC3} (1)

Now, let N be an arbitrary RCC3 constraint network which has to be tested for
relational consistency. Let AN be an ABox such that for every r(a, b) in N three
new constants are introduced: xab, xa, xb.

AN = {Ar(xab), R1
r(xab, xa), R2

r(xab, xb) | r(a, b) ∈ N} (2)

The construction entails: Tg ∪AN ∪AxRCC3 is satisfiable iff N ∪AxRCC3 is sat-
isfiable. If the data complexity of the satisfiability check for DL-Liteu,+F,R(RCC3)-

ontologies were in AC0, then the consistency of constraint networks could be
tested in AC0, too. (Note that Tg is a fixed TBox.) But checking the consistency
of RCC3 constraint networks is Logspace-hard and AC0 ( Logspace.

As a corollary to this proposition we get the assertion that strong combi-
nations of RCC5 and RCC8 into DL-Liteu,+F,R(RCC5) and DL-Liteu,+F,R(RCC8),
respectively—which are defined in the same manner as in Definition 4—do not
allow for FOL rewritability of satisfiability checking.

The low resolution calculus RCC2 is quite more inexpressive than RCC3
due to the fact that the composition table does not allow for the propagation
of information: All compositions of DR,O result in the maximally unspecified
relation {DR,O}. Hence, FOL rewritability of satisfiability testing follows easily
considering the query Q = ∃x, y[O(x, y) ∧ DR(x, y)] ∨ ∃x[DR(x, x)].

Proposition 3. Testing the satisfiability of RCC2 networks is FOL rewritable.

But in combination with functionality axioms of the TBox one could have the
problem that the ABox may lead to identifications of regions. The identified
regions are not allowed to have edges labelled O, DR resp. to the same region.
Though this can be tested, the problem arises when a chain of regions is identified
by the TBox and the ABox, because we do not know the length of the chain
in advance. More formally: In addition to RCC2 constraint-network assertions
we allow identity assertions v = w for regions v, w. As we can assume that all
nodes in a RCC2 network are connected by an edge labelled O, DR or BRCC2

we use a more intuitive formalism where, for every assertion v = w, the label of
the edge between v and w is marked with an =; e.g., an edge between v, w with
label DR= stands for DR(v, w) ∧ v = w. We call such a network an =-marked
RCC2 network (a RCC=2 network for short). Let B = BRCC2 in the following.

Proposition 4. An RCC=2 constraint network N is unsatisfiable iff

1. N contains DR(v, v) or DR=(v, v) for some node v; or
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2. N contains DR=(v, w); or
3. N contains a cycle in which there is DR(v, w) and in which there is a path

from v to w such that every label on the path is B= or O=; or
4. N contains a cycle in which there is DR(v, w) and in which there is a path

from v to w s.t. every label on the path is B= or O= except one which is O.

Proof. Sufficiency of the condition for unsatisfiability is clear. The proof for
necessity is done by induction on the number of =-marked labels. So let be
given a RCC= network N . We may assume, that the network has for every pair
of nodes exactly one labelled edge between; we assume the edges to be undirected
as all relations are symmetric.

Base case: Assume that none of the four conditions hold. As there are no
marked labels, then N unsatisfiability can occur only, if N contains DR(v, v) for
some node v (first condition) or DR(v, w) and O(v, w) (fourth condition). But
these cases are excluded by assumption.

Induction step: Let N contain n marked labelled edges and assume that for
all networks N ′ with n−1 marked labelled edges unsatisfiability of N ′ implies one
of the conditions. Now, assume that for N no one of the four conditions holds.
We have to show that N is satisfiable. Take an arbitrary =-marked labelled edge
between nodes v, w. The label λ of this edge is either O= or B=. We define a
new network N ′ which results as a contraction from N by identifying v and w to
the node z. For N ′ we may assume again that it contains for every pair of nodes
exactly one labelled edge: If in N we have r1(v, k) and r2(w, k), then the edge
between z and k in N ′ results as r1 ∩ r2 and is =-marked iff r1 or r2 is marked.
Clearly r1 ∩ r2 is not empty, as otherwise we would have a contradiction to the
fact that N does not fulfill conditions 3 and 4. Clearly N is satisfiable iff N ′ is
satisfiable. Assume to the contrary that N ′ is unsatisfiable. Hence, one of the
four conditions holds for N ′: 1) Assume N ′ contains DR(v′, v′) or DR=(v′, v′) for
some node v′. If v′ is not z, then also DR(v′, v′) ∈ N resp. DR=(v′, v′) ∈ N—
contradicting the fact that N does not fulfill condition 1. Otherwise v′ = z, but
this cannot be the case either, as there are no self-loops DR(v, v), DR=(v, v),
DR(w,w), DR=(w,w) in N nor DR(v, w) or DR(v, w). 2) Assume N ′ contains
DR=(v′, w′). If neither v′ nor w′ is z, this contradicts the fact that N does not
fulfill the 2. condition. Otherwise v′ = w′ = z, leading to a contradiction with
the fact that N does not fulfill condition 1. 3) Assume N ′ contains a cycle in
which there is DR(v′, w′) and there is a path from v′ to w′ such that every label
on the path is B= or O=. The case that the path does not contain z immediately
leads to a contradiction. Otherwise, the path extends to a path in N fulfilling
the 3. condition—contradiction. Similarly, if N ′ fulfills condition 4, the verifying
path can be extended to a path in N fulfilling condition 4—contradiction.

Proposition 4 shows that adding identity assertions to an RCC2 network may
require checking the existence of identity chains of arbitrary length. Hence, in
principle it is possible that the functional roles used in DL-Liteu,+F,R(RCC2) may
lead to identity chains. But as we want to show in the following proposition,
this cannot be the case: The identity paths induced by functionalities in DL-
Liteu,+F,R(RCC2) can have only a maximal length of one.
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Proposition 5. Satisfiability checking of ontologies in DL-Liteu,+F,R(RCC2) is
FOL rewritable.

We give a proof sketch. The idea is to find concepts that are unsatisfiable ac-
cording to the TBox (this amounts to constructing the negative closure as in the
proofs for pure DL-Lite [2, Def. 4.7, p. 292]); these are formulated as boolean
queries, and the (finite) disjunctions of these queries is answered over the ABox;
e.g., if A1 v ¬A2 is in the TBox, then the query would contain ∃x(A1(x)∧A2(x))
as disjunct. The introduction of concepts of the form ∃U1, U2.r enlarges the po-
tential conflicts of a TBox T with an ABox A. So in addition to the FOL queries
that result from the negative closure of the TBox, we have to find queries for
the potential conflicts in the four conditions of Proposition 4. The resulting con-
junctive queries have further to be fed into a perfect rewriting algorithm like
PerfectRef for pure DL-Lite [2] in order to capture the implications of the TBox.

Concerning the first two conditions we have to deal with axioms of the form
B v ∃l, l.DR. If this axiom occurs in the TBox T , then one has to produce
the CQ ∃x.B(x). Similarly, if {B v ∃R̃, R̃.DR, (functR)} ⊆ T , then the CQ
∃x.B(x) has to be added. Also if {B v ∃R̃1, R̃2.DR, (functR1, functR2)} ⊆
T , then we may get a conflict of the first kind and hence we have to add a
CQ ∃x, y[B(x)∧R1(x, y)∧R2(x, y)]. Concerning the third and fourth condition
we note that this can be only the case if the =-marked paths have maximal
length one. Otherwise we already have a contradiction of the ABox with the
functionality assertions in the TBox. Hence, one considers only the case of pairs
of TBox axioms of the general form A v ∃R̃1, R̃2.DR and B v ∃R̃3, R̃4.O with
(functR1, R2, R3, R4). In this case we feed also into the PerfectRef algorithm the
CQ ∃x, y, z, w[A(x) ∧B(y) ∧R1(x, z) ∧R3(y, z) ∧R2(x,w) ∧R4(y, w)].

5 Conclusion

As recapitulated in this paper, combining DL-Lite with expressive fragments
of the region calculus like RCC8 into logics that preserve the property of FOL
rewritability is possible if the coupling is weak: Constraints of the RCC8 network
contained in the ABox are not transported over to the implicitly constructed
constraint network resulting from the constructors of the form ∃U1, U2.r. In this
paper we mainly dealt with strong combinations for weaker calculi like RCC2
or RCC3. As we have shown by a reduction proof, a strong combination with
RCC3 destroys the FOL rewritability of satisfiability checking. The reason is
that checking the satisfiability of RCC3 networks needs to test for reachability
along EQ paths, which can be reproduced by the TBox. For the low resolution
calculus RCC2, FOL rewritability of satisfiability checking is provable—though
checking the satisfiability of RCC2 networks with additional identity assertions
is at least as hard as checking RCC3 networks. We plan to investigate whether
DL-Liteu,+F,R(RCC2) and DL-LiteuF,R(RCC8) can be used for approximation—
following the complete but not necessarily correct approximation method of
[5]. Moreover we want to check whether DL-Liteu,+F,R(RCC2) allows for FOL
rewritability of query answering w.r.t. unions of conjunctive queries.
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Abstract. UML has become a de facto standard in conceptual model-
ing. Class diagrams in UML allow one to model the data in the domain
of interest by specifying a set of graphical constraints. However, in most
cases one needs to provide the class diagram with additional semantics
to completely specify the domain, and this is where OCL comes into
play. While reasoning over class diagrams is decidable and has been in-
vestigated intensively, it is well known that checking the correctness of
OCL constraints is undecidable. Thus, we introduce OCL-Lite, a frag-
ment of the full OCL language and prove that reasoning over UML class
diagrams with OCL-Lite constraints is in ExpTime by an encoding in
the description logic ALCI. As a side result, DL techniques and tools
can be used to reason on UML class diagrams annotated with arbitrary
OCL-Lite constraints.

1 Introduction

The Unified Modeling Language (UML) has become a de facto standard in con-
ceptual modeling of information systems. In UML, a conceptual schema is rep-
resented by means of a class diagram, with its graphical constraints, together
with a set of user-defined constraints, which are usually specified in the Object
Constraint Language (OCL). In every application domain the set of instances
that can be stored or managed is necessarily finite and, thus, a schema has
not only to be consistent, but also finitely satisfiable [13]. It is well-known that
reasoning with OCL integrity constraints in their full generality is undecidable
since it amounts to full FOL reasoning [4]. Thus, reasoning with UML concep-
tual schemas in the presence of OCL constraints has been approached in the
following alternative ways:

? This paper is a shortened version of [14]. This work has been partly supported
by the Ministerio de Ciencia e Innovación under the projects TIN2008-03863 and
TIN2008-00444, Grupo Consolidado.
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Fig. 1. UML class diagram with OCL constraints

1. Allowing general constraints (in OCL or other languages) without guaran-
teeing termination in all cases [9, 6, 15].

2. Allowing general constraints and ensuring termination without guaranteeing
completeness of the result [1, 17, 12].

3. Ensuring both termination and completeness of finite reasoning by allowing
only specific kinds of constraints [13, 11, 18].

4. Ensuring terminating and complete reasoning by disallowing OCL constraints
and admitting unrestricted models [8, 5, 10, 3, 2].

To our knowledge, none of the existing approaches guarantees complete and
terminating reasoning on UML schemas coupled with OCL constraints able to
capture those in Figure 1. With approaches of the first kind, a result may not be
obtained in some particular cases. On the contrary, the second kind of approaches
may fail to find existing valid solutions. Approaches of the third kind do not allow
arbitrary constraints as the ones in Figure 1. Finally, the last approaches are
based on a Description Logic (DL) encoding of a UML schema. These methods do
not consider OCL constraints and they usually check unrestricted satisfiability.

The main purpose of this paper is to identify a fragment of OCL, which
we call OCL-Lite, that guarantees finite satisfiability while being significantly
expressive at the same time. In other words, we propose the specification of ar-
bitrary constraints within the bounds of OCL-Lite in a UML conceptual schema
to ensure completeness and decidability of reasoning. Such nice properties are
due to the finite model property (FMP) of the language, i.e., it is guaranteed that
a satisfiable UML/OCL-Lite schema is always finitely satisfiable. The proposed
OCL-Lite is the result of identifying a fragment of OCL that can be encoded
into the DL ALCI [7], which has interesting reasoning properties. In particu-
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lar, ALCI enjoys the FMP, i.e., every satisfiable set of constraints formalized in
ALCI admits a finite model. Thus, the FMP is also guaranteed for any fragment
of OCL that fits into ALCI.

The contributions of this paper can be summarized as follows:

– The identification of a fragment of OCL that enjoys the FMP. To our knowl-
edge, the reasoning properties of OCL had not been studied before, except
that full OCL leads to undecidability.

– A mapping from OCL-Lite to the DL ALCI to prove that the proposed
fragment has the same reasoning properties as ALCI. To our knowledge,
this is the first attempt to encode OCL constraints in DLs. As a side result,
a DL reasoner can be used to verify the correctness of a schema.

– Thanks to the mapping to ALCI we are able to show both the FMP and that
checking satisfiability in UML/OCL-Lite is an ExpTime-complete problem.

2 OCL-Lite Syntax and Semantics

In this section we present the fragment of OCL that corresponds to OCL-Lite.
We start by an overview of basic concepts of UML and OCL.

A UML class diagram represents the static view of the domain basically
by means of classes and associations between them, representing, respectively,
sets of objects and relations between objects. An association is constrained by
a set of participating classes. An association end is a part of an association
that defines the participation of a class in the association. The name of the
role played by a participant in an association is placed in the association end
near the corresponding class. If the role name is omitted, the role played by the
participant is the name of its class.

An OCL constraint (or invariant) has the form: context C inv: OCLExpr ,
where C is the contextual class, i.e., the class to which the constraint belongs,
and OCLExpr is an expression that results in a boolean value. An OCL constraint
is satisfied by an instantiation of the schema if OCLExpr evaluates to true for
each instance of the contextual class. An OCL expression is defined by means
of navigation paths, combined with predefined OCL operations to specify con-
ditions on those paths. A navigation path is a sequence of role names defined in
the associations of the class diagram. Each role name used in a path indicates
the direction of the navigation.

2.1 OCL-Lite Syntax

In this section we specify the syntax rules that allow one to construct OCL con-
straints belonging to the fragment of OCL that we call OCL-Lite. An OCL-Lite
constraint has the form: context C inv: OCL-LiteExpr . In the syntax rules,
shown in Figure 2, an OCL-Lite expression OCL-LiteExpr is defined recursively.
Intuitively, OCL-LiteExpr allows one to construct a boolean OCL-Lite expres-
sion, which can correspond to the whole constraint, or can be the condition
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OCL-LiteExpr ::= Path SelectExpr | oclIsTypeOf(C ) | not OCL-LiteExpr |
OCL-LiteExpr and OCL-LiteExpr |
OCL-LiteExpr or OCL-LiteExpr |
OCL-LiteExpr implies OCL-LiteExpr

Path ::= PathItem | PathItem .Path
PathItem ::= r i | oclAsType(C ).r i

SelectExpr ::= BooleanOp | ->select(OCL-LiteExpr ) SelectExpr

BooleanOp ::= ->exists(OCL-LiteExpr ) | ->forall(OCL-LiteExpr ) |
->size()>0 | ->size()=0 | ->isEmpty() | ->notEmpty()

Fig. 2. Syntax of OCL-Lite expressions

specified as a parameter in a select operation (see SelectExpr ) or in exists

and forall operations (see BooleanOp ). An OCL-LiteExpr can be either a Path

to which a SelectExpr is applied, a check of whether an object is of a certain
type, or boolean combinations of these OCL-Lite expressions.

The label Path indicates how a navigation path can be constructed as a
non-empty sequence of PathItem s. Each PathItem can be either a role name
r i specified in the class diagram, or a role name preceded by the operation
oclAsType(C) , when we need to access a role name of a particular class C .
When OCL-LiteExpr corresponds to the whole constraint, each path starts from
a role that is accessible from the contextual class (or a subclass C of the con-
textual class, in which case oclAsType(C ) must be specified first). Otherwise,
when OCL-LiteExpr is inside a select, exists, or forall operation, then, the
starting role name will depend on the context where the operation is used. After
a Path , one can apply a (possibly empty) sequence of selections on the collection
of objects obtained through the path, always followed by a BooleanOp .

The intuitive meaning of the OCL collection operations included in this frag-
ment of OCL is as follows. Let col denote the collection of objects reachable
along a path, and let o denote a single object, then:

– col ->select(OCL-LiteExpr ): returns the subset of elements of col that
satisfy OCL-LiteExpr ;

– col ->exists(OCL-LiteExpr ): returns true iff there is some element of col
that satisfies OCL-LiteExpr ;

– col ->forall(OCL-LiteExpr ): returns true iff all the elements of col sat-
isfy OCL-LiteExpr ;

– col ->size(): returns the number of elements of col ;
– col ->isEmpty(): returns true iff col is empty;
– col ->notEmpty(): returns true iff col is not empty;
– o .oclIsTypeOf(C ): returns true iff o is an instance of the class C ;

All constraints in Figure 1 are examples of well-formed OCL-Lite expressions.

2.2 OCL-Lite Semantics

OCL-Lite operations, except for oclIsTypeOf and oclAsType, can be expressed
only in terms of select, isEmpty, and notEmpty. Thus, to specify the seman-
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Table 1. Normalization of OCL-Lite expressions

Original expression Normalized expression

a) col ->exists(cond) col ->select(cond)->notEmpty()

b) col ->forall(cond) col ->select(not cond)->isEmpty()

c) col ->select(cond1)->select(cond2) col ->select(cond1 and cond2)

d) col ->size()>0 col ->notEmpty()

e) col ->size()=0 col ->isEmpty()

f) not col ->isEmpty() col ->notEmpty()

g) not col ->notEmpty() col ->isEmpty()

tics of OCL-Lite expressions, we first rewrite each expression as an equivalent
normalized one, which is expressed in terms of these operations only. Table 1
shows the OCL-Lite expressions together with their normal form. These nor-
malizations, together with de Morgan’s laws, are iteratively applied until the
expression only contains the operations select, isEmpty, and notEmpty, and
the boolean operator not only appears before oclIsTypeOf(C ). In the table,
col and cond denote, respectively, a collection and a condition, which must be
defined according to the syntax rules.

In our running example, the constraints in Figure 1 that have to be normal-
ized are 1, 3, 4, and 5. The resulting expressions we get after applying the rules
in Table 1 are:

– Constraint 1. We apply rule a) and we get the normalized expression:
context Person inv:

organized->select(oclIsTypeOf(CriticalEvent) and

sponsor->isEmpty())->notEmpty()

– Constraint 3. We first apply rule b) and we get:
context Person inv:

audited->select(not sponsor->notEmpty())->isEmpty()

We then apply rule g) to obtain the normalized expression:
context Person inv:

audited->select(sponsor->isEmpty())->isEmpty()

– Constraint 4. We apply rule f) and we get:
context CriticalEvent inv: responsible.organized->notEmpty()

– Constraint 5. We apply rule a) and we get:
context Sponsor inv:

event->select(oclIsTypeOf(CriticalEvent))->notEmpty() or

event->select(sibling->isEmpty() or

sibling->select(sponsor->isEmpty())->notEmpty())->notEmpty()

It can be seen from Table 1 that the expressions resulting from the normalization
conform to a limited set of patterns, basically consisting of an optional select
operation followed either by isEmpty or notEmpty. Also, the expression may
include the operation oclIsTypeOf.

In the following we consider OCL-Lite expressions in their normal form. For
each of them we specify its semantics by means of an interpretation function, f ,
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that maps each OCL-LiteExpr into a FOL formula OCL-LiteExpr f (x) with one
free variable. Other approaches specify the semantics of OCL expressions using
first-order terms instead of formulas [4]. However, as also argued in [4], using
formulas is preferable when dealing with sets, as in our case.

We start by formalizing the semantics of an OCL-Lite constraint

context C inv: OCL-LiteExpr

Its interpretation is: ∀x (C(x) → OCL-LiteExpr f (x)) where C is the unary
predicate corresponding to class C .

To define the semantics of OCL-Lite expressions, we first introduce some
notation to deal with navigation paths. Consider a navigation path pn...p1 in an
OCL-Lite expression, where each pi is either a role name or oclAsType(Ci).ri.
To formalize a (binary) association Ai, we introduce a binary predicate, Ai,
whose first argument represents an instance of dom(Ai) (the domain of Ai) and
whose second argument represents an instance of range(Ai) (the range of Ai). To
fix a semantics for role names we conform to the UML convention about role
names [16], i.e., a role name attached to an association end labeled with a class
C is used to navigate from one object to another one belonging to the class C .
Thus, in the following, pfi (x, y) = Ai(x, y) when pi is a role name attached to the

range(Ai)-end of Ai, and, viceversa, pfi (x, y) = Ai(y, x) when pi is a role name

attached to the dom(Ai)-end of Ai. Similarly, pfi (x, y) = Ci(x) ∧ Ai(x, y), when
pi = oclAsType(Ci).ri and ri is a role name attached to the range(Ai)-end of

Ai, while p
f
i (x, y) = Ci(x) ∧ Ai(y, x), when pi = oclAsType(Ci).ri and ri is a

role name attached to the dom(Ai)-end of Ai.

1. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr0)->notEmpty()
The semantics of this expression is

OCL-LiteExpr
f(x) = ∃xn · · · ∃x1(pfn(x, xn)∧· · ·∧pf1 (x2, x1)∧OCL-LiteExpr f

0 (x1))

A particular case of this expression is when no select operation is applied
on the objects obtained from the navigation, which corresponds to the ex-
pression OCL-LiteExpr = pn...p1->notEmpty(). In this case, we have

OCL-LiteExpr
f(x) = ∃xn · · · ∃x1 (pfn(x, xn) ∧ · · · ∧ p

f
1 (x2, x1))

2. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr 0)->isEmpty()
The semantics of this expression is

OCL-LiteExpr
f(x) = ∀xn · · · ∀x1(¬pfn(x, xn)∨· · ·∨¬pf1 (x2, x1)∨¬OCL-LiteExpr f

0 (x1))

Again, we have a particular case of this kind of expression in the absence
of select, namely OCL-LiteExpr = pn...p1->isEmpty(). In this case, the
semantics of the expression is

OCL-LiteExpr
f (x) = ∀xn · · · ∀x1 (¬pfn(x, xn) ∨ · · · ∨ ¬pf1 (x2, x1))

3. OCL-LiteExpr = [not] oclIsTypeOf(C )
where the brackets denote optionality. The semantics of the expression is

OCL-LiteExpr
f (x) = [¬]C(x)
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4. OCL-LiteExpr = OCL-LiteExpr1 and OCL-LiteExpr2
The semantics of this expression is

OCL-LiteExpr
f (x) = OCL-LiteExpr

f
1 (x) ∧ OCL-LiteExpr

f
2 (x)

5. OCL-LiteExpr = OCL-LiteExpr 1 or OCL-LiteExpr 2

The semantics of this expression is

OCL-LiteExpr
f (x) = OCL-LiteExpr

f
1 (x) ∨ OCL-LiteExpr

f
2 (x)

6. OCL-LiteExpr = OCL-LiteExpr 1 implies OCL-LiteExpr 2

The semantics of this expression is

OCL-LiteExpr
f (x) = OCL-LiteExpr

f
1 (x)→ OCL-LiteExpr

f
2 (x)

Definition 1 (Satisfiability of OCL-Lite constraints). Let Γ be a set of
OCL-Lite constraints and Γ f the resulting FOL theory. Then, Γ is said to be
satisfiable if there exists a first order interpretation I = (∆I , ·I) that satisfies
Γ f . I is called a model of Γ .

3 Encoding UML/OCL-Lite in ALCI
In this section we show that the proposed fragments of OCL and UML can
both be encoded in the DL ALCI. Thus, finite reasoning is guaranteed for every
conceptual schema expressed in this language. We first present the fragment of
UML we are interested in, and then we provide an encoding for the OCL-Lite
fragment, too.

We assume the encoding of a fragment of UML class diagrams in ALCI,
based on the encoding in ALCQI proposed in [5]. Since ALCQI is an extension
of ALCI that does not have the FMP [7] (i.e., a schema specified in ALCQI
might be satisfiable only by an infinite number of instances), we focus on a
fragment of UML that can be encoded into ALCI. In particular, we consider
UML class diagrams where the domain of interest is represented through classes
(representing sets of objects), possibly equipped with attributes and associations
(representing relations among objects), and types (representing the domains of
attributes, i.e., integer, string, etc.). The kind of UML constraints that we con-
sider in this paper are the ones typically used in conceptual modeling, namely
hierarchical relations between classes, disjointness and covering between classes,
cardinality constraints for participation of entities in relationships, and multiplic-
ity and typing constraints for attributes. To preserve the FMP we restrict both
cardinality and multiplicity constraints to be of the form * or 1..* (meaning that
either no constraint applies or the class participates at-least once, respectively).

The encoding, starting from a UML class diagram Σ, generates a satisfiability
preserving ALCI knowledge base KΣ (see [5] for details on the encoding). Given
the UML fragment chosen, a model of the knowledge base KΣ can be viewed as
an instantiation of the UML class diagram Σ.

In the following, we provide a mapping to translate OCL-Lite constraints
into ALCI. An OCL-Lite constraint, which has the general form
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context C inv: OCL-LiteExpr

is encoded as the following ALCI inclusion assertion:

C v OCL-LiteExpr †

where ·† is a mapping function that assigns to each OCL-Lite expression its cor-
responding ALCI encoding. This inclusion assertion, according to the semantics
of OCL constraints, states that each instance of C must satisfy OCL-LiteExpr .
We now illustrate the encoding of OCL-Lite expressions in ALCI. We consider
OCL-Lite expressions in their normal form, as provided in Section 2.2, and define
OCL-LiteExpr † by induction on the structure of OCL-LiteExpr .

1. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr 0)->notEmpty()

We define the ALCI concept OCL-LiteExpr † by induction on the length n
of the navigation path. For convenience, we consider as base case n = 0, and
in this case we set OCL-LiteExpr † = OCL-LiteExpr

†
0.

For the inductive case, let OCL-LiteExpr n =
pn...p1->select(OCL-LiteExpr 0)->notEmpty(), let pn+1 be an ad-
ditional path item, and let OCL-LiteExpr n+1 = pn+1.OCL-LiteExpr n.
Then OCL-LiteExpr

†
n+1 = p

†
n+1.(OCL-LiteExpr

†
n), where p

†
n+1 (for the

various cases of pn+1, cf. the OCL syntax in Section 2.1) is an abbreviation3

defined as follows (r denotes a role name of an association A , and dom(A )
and range(A ) denote respectively the domain and range of A ):

r † =

{
∃A if r is attached to range(A )

∃A− if r is attached to dom(A )

(oclAsType(C ).r )† =

{
C u ∃A if r is attached to range(A )

C u ∃A− if r is attached to dom(A )

Note that the ALCI concept corresponding to OCL-LiteExpr has the form

p†n.(p
†
n−1.(· · · (p†1.(OCL-LiteExpr †0)) · · · ))

Intuitively, this concept represents the fact that OCL-LiteExpr evaluates
to true, for a given instance o in the domain of pn, if o is related through
the path pn...p1 to some object o1 that satisfies the condition specified by
OCL-LiteExpr 0. When there is no select operation, i.e., the OCL expres-
sion has the form pn...p1->notEmpty(), then OCL-LiteExpr

†
0 = >, and

the constraint is encoded as p†n.(p†n−1.(· · · (p†1.>)· · · )).
For example, once it has been normalized in Section 2.2, an expression that
follows this pattern is the one in the body of constraint 4. The ALCI asser-
tion that encodes this constraint is:

CriticalEvent v ∃ResponsibleFor−.(∃Organizes.>)

3 Note that p † is not a valid DL expression.
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Note that, the first DL role, ResponsibleFor−, is inverted since the associ-
ation ResponsibleFor has domain Person and range CriticalEvent, and
the role name responsible is attached to Person. Thus, responsible† =
∃ResponsibleFor−. The next role name in the OCL-Lite expression is organized,
which is attached to Event, the range of the association Organizes. Thus,
organized† = ∃Organizes. Finally, since the OCL operation select does
not appear in the constraint, no condition must be imposed on the instances
reached at the end of the path.

2. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr 0)->isEmpty()

Similarly to the previous case, we define OCL-LiteExpr † by induction on n.
For the base case of n = 0, we set OCL-LiteExpr † = ¬OCL-LiteExpr †0. For
the inductive case, let:
OCL-LiteExpr n = pn...p1->select(OCL-LiteExpr 0)->isEmpty(),

let pn+1 be an additional path item, and let
OCL-LiteExpr n+1 = pn+1.OCL-LiteExpr n.

Then OCL-LiteExpr
†
n+1 = ¬p†n.(¬OCL-LiteExpr †n),

Considering that ¬¬C is equivalent to C, the ALCI concept corresponding
to OCL-LiteExpr has the form

¬(p†n.(p
†
n−1.(· · · (p†1.(OCL-LiteExpr †0)) · · · )))

Intuitively, this concept represents the fact that OCL-LiteExpr evaluates to
true, for a given instance o, if o is not related through the path pn...p1 to
any object that satisfies the condition specified by OCL-LiteExpr 0. As in the
previous case, if there is no select operation in the OCL expression, i.e., the
OCL expression has the form pn...p1->isEmpty(), then OCL-LiteExpr

†
0 =

>, and the constraint is encoded as ¬(p†n.(p†n−1.(· · · (p†1.>)· · · )))
As an example, let us consider constraint 3 in its normal form. The overall
OCL-Lite expression is encoded in ALCI as ¬(∃Audits.(¬∃SponsoredBy.>)),
and the ALCI assertion corresponding to the constraint is:

Person v ¬∃Audits.¬∃SponsoredBy.>

3. OCL-LiteExpr = oclIsTypeOf(C ), OCL-LiteExpr = not oclIsTypeOf(C )

The ALCI concept OCL-LiteExpr † corresponding to these OCL-Lite ex-
pressions is respectively

C, and ¬C,

4. OCL-LiteExpr = OCL-LiteExpr 1 and OCL-LiteExpr 2

The corresponding ALCI concept OCL-LiteExpr † is

OCL-LiteExpr
†
1 u OCL-LiteExpr †2

5. OCL-LiteExpr = OCL-LiteExpr 1 or OCL-LiteExpr 2

The corresponding ALCI concept OCL-LiteExpr † is

OCL-LiteExpr
†
1 t OCL-LiteExpr †2
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6. OCL-LiteExpr = OCL-LiteExpr 1 implies OCL-LiteExpr 2

The corresponding ALCI concept OCL-LiteExpr † is

¬OCL-LiteExpr †1 t OCL-LiteExpr †2
To further illustrate the mapping, we apply it to some other constraints

of our running example. For instance, consider the normalized expression of
constraint 1. This constraint is of kind 1, and its subexpressions are respectively
of kinds 4, 3, and 2. Applying the corresponding mapping rules we obtain:

Person v ∃Organizes.(CriticalEvent u ¬∃SponsoredBy.>)

As an example of an OCL-Lite expression of kind 6 we have constraint 2. Ac-
cording to the mapping rule, its corresponding ALCI expression is:

Event v ¬∃HeldWith.> t ¬CriticalEvent

Constraint 5 is of kind 5 once normalized. We recursively apply the mapping
rules to each part of the disjunction: rules 1 and 3 to the first subexpression,
and rules 5, 2, 1 to the second subexpression. The resulting ALCI expression is:

Company v∃SponsoredBy−.CriticalEventt
∃SponsoredBy−.(¬∃HeldWith.> t ∃HeldWith.¬∃SponsoredBy.>)

The following theorem states that the mapping from OCL-Lite to ALCI is
correct (we refer to [14] for the proof).

Theorem 1 (Correctness of the OCL-Lite encoding). Let Γ be a set of
OCL-Lite constraints and KΓ its ALCI encoding. Then, Γ is satisfiable if and
only if KΓ is satisfiable.

Concerning the complexity of reasoning over UML/OCL-Lite schemas we
first notice that reasoning just over the UML diagrams as proposed in this paper
is an NP-complete problem. Indeed, the UML language we consider here is a
sub-language of ERbool which was proved to be NP-complete in [3], and the very
same complexity proof applies to the UML language we use.

Theorem 2 (Complexity of UML/OCL-Lite). Checking the satisfiability
of UML/OCL-Lite conceptual schemas is an ExpTime-complete problem.

The upper bound follows from the fact that the ALCI encoding is correct,
and that reasoning in ALCI is in ExpTime. The lower bound is established by
reducing satisfiability of ALC TBoxes, which is known to be ExpTime-complete,
to satisfiability of OCL-Lite constraints (see [14] for the proof).
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1 Introduction

The DL-Lite family of description logics [4, 2] is currently one of the most studied on-
tology specification languages. DL-Lite constitutes the basis of the OWL2 QL language
[1], which is part of the standard W3C OWL2 ontology specification language. The
distinguishing feature of DL-Lite is to identify ontology languages in which expressive
queries, in particular, unions of conjunctive queries (UCQs), over the ontology can be
efficiently answered. Therefore, query answering is the most studied reasoning task in
DL-Lite (see, e.g., [16, 11, 8, 18, 7, 6, 5]).

The most common approach to query answering in DL-Lite is through query rewrit-
ing. This approach consists of computing a so-called perfect rewriting of the query with
respect to a TBox: the perfect rewriting of a query q for a TBox T is a query q′ that
can be evaluated on the ABox only and produces the same results as if q were evaluated
on both the TBox and the ABox. This approach is particularly interesting in DL-Lite,
because, for every UCQ q, query q′ can be expressed in first-order logic (i.e., SQL),
therefore query answering can be delegated to a relational DBMS, since it can be re-
duced to the evaluation of an SQL query on the database storing the ABox.

The shortcoming of the query rewriting approach is that the size of the rewritten
query may be exponential with respect to the size of the original query. In particular,
this is true when the rewritten query is in disjunctive normal form, i.e., is an UCQ. On
the other hand, [6] shows the existence of polynomial perfect rewritings of the query in
nonrecursive datalog.

However, it turns out that the disjunctive normal form is necessary for practical
applications of the query rewriting technique, since queries of more complex forms,
once translated in SQL, produce queries with nested subexpressions that, in general,
cannot be evaluated efficiently by current DBMSs. So, while in some cases resorting to
more compact and structurally more complex perfect rewritings may be convenient, in
general this strategy does not solve the problem of arriving at an SQL expression that
can be effectively evaluated on the database.

In this scenario, a very interesting way to limit the size of the rewritten UCQ has
been presented in [13]. This approach proposes the use of the so-called ABox depen-
dencies to optimize query rewriting in DL-LiteA. ABox dependencies are inclusions be-
tween concepts and roles which are interpreted as integrity constraints over the ABox:
in other words, the ABox is guaranteed to satisfy such constraints. For this reason, in
this paper we also call ABox dependencies extensional constraints. In the presence of
such constraints, the query answering process can be optimized, since this additional
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knowledge about the extensions of concepts and roles in the ABox can be exploited for
optimizing query answering. Intuitively, the presence of ABox dependencies acts in a
complementary way with respect to TBox assertions: while the latter complicate query
rewriting, the former simplify it, since they state that some of the TBox assertions are
already satisfied by the ABox.

As explained in [13], ABox dependencies have a real practical interest, since they
naturally arise in many applications of ontologies, and in particular in ontology-based
data access (OBDA) applications, in which a DL ontology acts as a virtual global
schema for accessing data stored in external sources, and such sources are connected
through declarative mappings to the global ontology. It turns out that, in practical cases,
many ABox dependencies may be (automatically) derived from the mappings between
the ontology and the data sources.

In this paper, we present an approach that follows the ideas of [13]. More specif-
ically, we present Prexto, an algorithm for computing a perfect rewriting of a UCQ
in the description logic DL-LiteA. Prexto is based on the query rewriting algorithm
Presto [16]: with respect to the previous technique, Prexto has been designed to fully
exploit the presence of extensional constraints to optimize the size of the rewriting;
moreover, differently from Presto, it also uses concept and role disjointness assertions,
as well as role functionality assertions, to reduce the size of the rewritten query. As
already observed in [13], the way extensional constraints interact with reasoning, and
in particular query answering, is not trivial at all: e.g., [13] defines a complex condition
for the deletion of a concept (or role) inclusion from the TBox due to the presence of
extensional constraints. In our approach, we use extensional constraints in a very dif-
ferent way from [13], which uses such constraints to “deactivate” corresponding TBox
assertions in the TBox: conversely, we are able to define significant query minimiza-
tions even for extensional constraints for which there exists no corresponding TBox
assertions. Based on these ideas, we define the Prexto algorithm: in particular, we re-
structure and extend the Presto query rewriting algorithm to fully exploit the presence
of extensional constraints. Finally, we show that the above optimizations allow Prexto
to outperform the existing query rewriting techniques for DL-Lite in practical cases. In
particular, we compare Prexto with Presto and with the optimization presented in [13].

This paper is an extended abstract of [15].

2 Preliminaries

We assume the reader is familiar with the basics of DLs as well as with DL-LiteA [12].
Given an ABox A, we denote by IA the DL-LiteA interpretation such that, for

every concept instance assertion C(a), aI ∈ CI iff C(a) ∈ A, for every role instance
assertion R(a, b), 〈aI , bI〉I ∈ RI iff R(a, b) ∈ A, and for every attribute instance
assertion U(a, b), 〈aI , bI〉I ∈ UI iff U(a, b) ∈ A.

A conjunctive query (CQ) q is an expression of the form q(x)← α1, . . . , αn, where
x is a tuple of variables, and every αi is an atom whose predicate is a concept name or a
role name or an attribute name, and whose arguments are either variables or constants,
such that every variable occurring in x also occurs in at least one αi. The variables
occurring in x are called the distinguished variables of q, while the variables occurring
in some αi but not in x are called the existential variables of q. The predicate q is called
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the predicate of the query, and the number of elements of x is called the arity of q. A
CQ is a Boolean CQ if it has no distinguished variables.

A union of conjunctive queries (UCQ) Q is a set of conjunctive queries of the same
arity and having the same query predicate. A UCQ Q is a Boolean UCQ if every CQ
belonging to Q is Boolean.

Given a CQ q of arity n, we denote by q(c) the Boolean CQ obtained from q by
replacing the distinguished variables in x with the constants in the n-tuple of constants
c. Given a CQ q of arity n, the evaluation of q in I, denoted by eval(q, I), is the set of
n tuples of constants c such that I satisfies the first-order sentence q(c). The evaluation
of a UCQ Q in I, denoted by eval(Q, I), is the set

⋃
q∈Q eval(q, I). The set of certain

answers to a UCQ Q over a DL-LiteA ontology 〈T ,A〉, denoted by cert(Q, 〈T ,A〉), is
the set of tuples

⋂
I∈Mod(〈T ,A〉) eval(Q, I).

Given a UCQQ and a TBox T , a UCQQ′ is a perfect rewriting ofQwith respect to
T if, for every ABoxA such that 〈T ,A〉 is consistent, cert(Q, 〈T ,A〉) = eval(Q, IA).
The above notion of perfect rewriting immediately extends to any query language for
which the evaluation eval of queries on a first-order interpretation is defined. We remark
that many algorithms are available to compute perfect rewritings in DL-Lite logics (e.g.,
[4, 12, 16, 11, 7, 6]).

In the following, for ease of exposition, we will not consider attributes in DL-LiteA
ontologies. However, all the algorithms and results that we present in this paper can be
immediately extended to handle attributes (since attributes can essentially be treated in
a way analogous to roles).

3 Extensional Constraints

We now define the notion of EBox, which constitutes a set of extensional constraints,
i.e., constraints over the ABox. The idea of EBox has been originally introduced in [13],
under the name of ABox dependencies.

The following definitions are valid for every DL, under the assumption that the
assertions are divided into extensional assertions and intensional assertions, and exten-
sional assertions correspond to atomic instance assertions.

Given a set of intensional assertions N and an interpretation I, we say that I satis-
fies N if I satisfies every assertion in N .

An extensional constraint box, or simply EBox, is a set of intensional assertions.
Notice that, from the syntactic viewpoint, an EBox is identical to a TBox. Therefore,
entailment of an assertion φ with respect to an EBox E (denoted by E |= φ) is defined
exactly in the same way as in the case of TBoxes.

Given an ABox A and an EBox E , we say that A is valid for E if IA satisfies E .

Definition 1. (Admissible ABox) Given a TBox T and an EBox E , an ABox A is an
admissible ABox for T and E if A is consistent with T and A is valid for E . We denote
with ADM(T , E) the set of ABoxes A that are admissible for T and E .

Informally, an EBox acts as a set of integrity constraints over the ABox. Differently
from other recent approaches that have proposed various forms of integrity constraints
for DL ontologies (e.g., [9, 17]), an EBox constrains the ABox while totally discarding
the TBox, since the notion of validity with respect to an EBox only considers the ABox.
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We are now ready to define the notion of perfect rewriting in the presence of both a
TBox and an EBox.

Definition 2. (Perfect rewriting in the presence of an EBox) Given a TBox T , an EBox
E , and a UCQ Q, a FOL query φ is a perfect rewriting of Q with respect to 〈T , E〉 if,
for every ABox A ∈ ADM(T , E), 〈T ,A〉 |= Q iff IA |= φ.

The above definition establishes a natural notion of perfect rewriting in the presence
of an EBox E . Since E constrains the admissible ABoxes, the more selective is E (for
the same TBox T ), the more restricted the set ADM(T , E) is. If for instance, E , E ′ are
two EBoxes such that E ⊂ E ′, we immediately get from the above definitions that
ADM(T , E) ⊇ ADM(T , E ′). Now, let Q be a UCQ, let φ be a perfect rewriting of Q
with respect to 〈T , E〉 and let φ′ be a perfect rewriting of Q with respect to 〈T , E ′〉: φ
will have to satisfy the condition 〈T ,A〉 |= Q iff IA |= φ for more ABoxes A than
query φ′. Consequently, φ will have to be a more complex query than φ′. Therefore,
larger EBoxes in principle allow for obtaining simpler perfect rewritings.

As already explained, the goal of this paper is to use extensional constraints
to optimize query rewriting in DL-LiteA. An intuitive explanation of how exten-
sional constraints allow for simplifying query rewriting can be given by the follow-
ing very simple example. Suppose we are given a TBox {Student v Person}, an
empty EBox E0, and an EBox E1 = {Student v Person}. Now, given a query
q(x)← Person(x), a perfect rewriting of this query with respect to 〈T , E0〉 is the UCQ
{q(x) ← Person(x) q(x) ← Student(x)}, while a perfect rewriting of query q with
respect to 〈T , E1〉 is the query q itself. Namely, under the EBox E1 we can ignore the
TBox concept inclusion Student v Person, since it is already satisfied by the ABox.

However, as already explained in [13], we can not always ignore TBox assertions
that also appear in the EBox (and are thus already satisfied by the ABox). For instance,
let q be the query q ← C(x). If the TBox T contains the assertions ∃R v C and
D v ∃R− and the EBox E contains the assertion ∃R v C, we cannot ignore this last
inclusion when computing a perfect rewriting of q (or when answering query q). In fact,
suppose the ABox is {D(a)}: then A ∈ ADM(T , E) and query q is entailed by 〈T ,A〉.
But actually q is not entailed by 〈T ′,A〉 where T ′ = T − E . From the query rewriting
viewpoint, a perfect rewriting of q with respect to T is the UCQ {q ← C(x) q ←
R(x, y) q ← D(y)}, while a perfect rewriting of q with respect to T ′ is the query q
itself. And of course, the ABoxA shows that this last query is not a perfect rewriting of
q with respect to 〈T , E〉. Therefore, also when computing a perfect rewriting, we cannot
simply ignore the inclusions of the TBox that are already satisfied by the ABox (i.e.,
that belong to the EBox).

The example above shows that we need to understand under which conditions we
are allowed to use extensional constraints to optimize query rewriting.

4 Prexto

In this section we present the algorithm Prexto (Perfect Rewriting under EXTensional
cOnstraints). Prexto makes use of the algorithm Presto, originally defined in [16],
which computes a nonrecursive datalog program constituting a perfect rewriting of a
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Algorithm Presto(Q, T )
Input: UCQ Q, DL-LiteR TBox T
Output: nr-datalog query Q′

begin
Q′ = Rename(Q);
Q′ = DeleteUnboundVars(Q′);
Q′ = DeleteRedundantAtoms(Q′, T );
Q′ = Split(Q′);
repeat

if there exist r ∈ Q′ and ej-var x in r
such that Eliminable(x, r, T ) = true and x has not already been eliminated from r

then begin
Q′′ = EliminateEJVar(r, x, T );
Q′′ = DeleteUnboundVars(Q′′);
Q′′ = DeleteRedundantAtoms(Q′′, T );
Q′ = Q′ ∪ Split(Q′′)

end
until Q′ has reached a fixpoint;
for each OA-predicate pnα occurring in Q′

do Q′ = Q′ ∪ DefineAtomView(pnα, T )
end

Fig. 1. The original Presto algorithm [16].

UCQ Q with respect to a DL-LiteA TBox T . The algorithm Presto is reported in Fig-
ure 1. We refer the reader to [16] for a detailed explanation of the algorithm. For our
purposes, it suffices to remind that the program returned by Presto uses auxiliary dat-
alog predicates, called ontology-annotated (OA) predicates, to represent every basic
concept and basic role that is involved in the query rewriting. E.g., the basic concept
B is represented by the OA-predicate p1B , while the basic role R is represented by the
OA-predicate p2R, where the superscript represents the arity of the predicate (actually,
to handle Boolean subqueries, also 0-ary OA-predicates, i.e., predicates with no argu-
ments, are defined: we refer the reader to [16] for more details).

In the following, we modify the algorithm Presto. In particular, we make the
following changes. First, the final for each cycle of the algorithm (cf. Figure 1) is
not executed: i.e., the rules defining the OA-predicates are not added to the returned
program. Second, the algorithm DeleteRedundantAtoms is modified to take into
account the presence of disjointness assertions and role functionality assertions in
the TBox. More precisely, the following simplification rules are added to algorithm
DeleteRedundantAtoms(Q′, T ) (in which we denote basic concepts by B,C, role
names by R,S, and datalog rules by the symbol r):

1. if p2R(t1, t2) and p2S(t1, t2) occur in r and T |= R v ¬S, then delete r from Q′;
2. if p1B(t) and p1C(t) occur in r and T |= B v ¬C, then delete r from Q′;
3. if p2R(t1, t2) and p1C(t1) occur in r and T |= ∃R v ¬C, then delete r from Q′;
4. if p0α and p0β occur in r and T |= α0 v ¬β0, then delete r from Q′;

5. if p1B(t) and p0α occur in r and T |= B0 v ¬α0, then delete r from Q′;
6. if p2R(t1, t2) and p0α occur in r and T |= R0 v ¬α0, then delete r from Q′;
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Algorithm Prexto(Q, T , E)
Input: UCQ Q, DL-LiteA TBox T , DL-LiteA EBox E
Output: UCQ Q′

begin
P = Presto(Q, T );
P ′ = ∅;
for each OA-predicate P 2

R occurring in P do
Φ = MinimizeViews(R, E , T );
P ′ = P ′ ∪ {p2B(x, y)← S(x, y) | S is a role name and S ∈ Φ}

∪ {p2B(x, y)← S(y, x) | S is a role name and S− ∈ Φ};
for each OA-predicate P 1

B occurring in P do
Φ = MinimizeViews(B, E , T );
P ′ = P ′ ∪ {p1B(x)← C(x) | C is a concept name and C ∈ Φ}

∪ {p1B(x)← R(x, y) | ∃R ∈ Φ} ∪ {p1B(x)← R(y, x) | ∃R− ∈ Φ};
for each OA-predicate P 0

N occurring in P do
Φ = MinimizeViews(N0, E , T );
P ′ = P ′ ∪ {p0N ← C(x) | C is a concept name and C0 ∈ Φ}

∪ {p0N ← R(x, y) | R is a role name and R0 ∈ Φ};
P ′′ = P ∪ P ′;
Q′ = Unfold(P ′′);
Q′ = DeleteRedundantAtoms(Q′, E);
return Q′

end
Fig. 2. The Prexto algorithm.

7. if p2R(t1, t2) and p2R(t1, t
′
2) (with t2 6= t′2) occur in r and (funct R) ∈ T , then, if t2

and t′2 are two different constants, then delete r from Q′; otherwise, replace r with
the rule σ(r), where σ is the substitution which poses t2 equal to t′2.

Analogous simplification rules (which can be immediately derived) hold when R,S are
inverse roles in cases 1, 3 and 7.

Example 1. Let us show the effect of the new transformations added to
DeleteRedundantAtoms through two examples. First, suppose T = {B v
¬B′, (funct R)} and suppose r is the rule q(x) ← p1B(y), p2R(x, y), p2R(x, z), p1B′(z).
First, the above rule 7 of algorithm DeleteRedundantAtoms can be applied, which
transforms r into the rule q(x) ← p1B(y), p2R(x, y), p1B′(y). Then, the above rule 2 of
algorithm DeleteRedundantAtoms can be applied, hence this rule is deleted from the
program. Intuitively, this is due to the fact that this rule looks for elements belonging
both to concept B and to concept B′, which is impossible because the disjointness as-
sertion B v ¬B′ is entailed by the TBox T . Therefore, it is correct to delete the rule
from the program.

From now on, when we speak about Presto we refer to the above modified ver-
sion of the algorithm, and when we speak about DeleteRedundantAtoms we refer
to the above modified version which takes into account disjointness and functionality
assertions.

The Prexto algorithm is defined in Figure 2. The algorithm is constituted of the
following four steps:
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Algorithm MinimizeViews(B, E , T )
Input: basic concept (or basic role, or 0-ary predicate) B,

DL-LiteA EBox E , DL-LiteA TBox T
Output: set of basic concepts (or basic roles, or 0-ary predicates) Φ′′

begin
Φ = {B′ | T |= B′ v B};
Φ′ = ∅;
for each B′ ∈ Φ do

if there exists B′′ ∈ Φ such that E |= B′ v B′′ and E 6|= B′′ v B′
then Φ′ = Φ′ ∪ {B′};

Φ′′ = Φ− Φ′;
while there exist B,B′ ∈ Φ′ such that B 6= B′ and E |= B v B′ and E |= B′ v B
do Φ′′ = Φ′′ − {B′};
return Φ′′

end
Fig. 3. The MinimizeViews algorithm.

1. the nonrecursive datalog program P is computed by executing the Presto algo-
rithm. This program P is not a perfect rewriting ofQ yet, since the definition of the
intermediate OA-predicates is missing;

2. the program P ′ is then constructed (by the three for each cycles of the program).
This program contain rules defining the intermediate OA-predicates, i.e., the con-
cept and role assertions used in the program P . To compute such rules, the algo-
rithm makes use of the procedure MinimizeViews, reported in Figure 3. This pro-
cedure takes as input a basic concept (respectively, a basic role) B and computes a
minimal subset Φ′′ of the set Φ of the subsumed basic concepts (respectively, sub-
sumed basic roles) of B which extensionally cover the set Φ, as explained below.

3. then, the overall nonrecursive datalog program P ∪ P ′ is unfolded, i.e., turned into
a UCQ Q′. This is realized by the algorithm Unfold which corresponds to the usual
unfolding of a nonrecursive program;

4. finally, the UCQ Q′ is simplified by executing the algorithm
DeleteRedundantAtoms which takes as input the UCQ Q′ and the EBox
E (notice that, conversely, the first execution of DeleteRedundantAtoms within
the Presto algorithm uses the TBox T as input).

Notice that the bottleneck of the whole process is the above step 3, since the number
of conjunctive queries generated by the unfolding may be exponential with respect to
the length of the initial query Q (in particular, it may be exponential with respect to the
maximum number of atoms in a conjunctive query ofQ). As shown by the following ex-
ample, the usage of extensional constraints done at step 2 through the MinimizeViews
algorithm is crucial to handle the combinatorial explosion of the unfolding.

Example 2. Let T be the following DL-LiteA TBox:

Company v ∃givesHighSalaryTo−

∃givesHighSalaryTo− v Manager
Manager v Employee
Employee v HasJob
∃receivesGrantFrom v StudentWithGrant
StudentWithGrant v FulltimeStudent

FulltimeStudent v Unemployed
FulltimeStudent v Student
isBestFriendOf v knows
(funct isBestFriendOf)
(funct isBestFriendOf−)
HasJob v ¬Unemployed
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Moreover, let E1, . . . , E4 be the following concept inclusions:

E1 = FulltimeStudent v StudentWithGrant
E2 = ∃receivesGrantFrom v StudentWithGrant

E3 = HasJob v Employee
E4 = Manager v Employee

and let E1 = {E1}, E2 = {E1, E2}, E3 = {E1, E2, E3}, E4 = {E1, E2, E3, E4} . Fi-
nally, let q0, q1, q2, q3 be the following simple queries:

q0(x) ← Student(x)
q1(x) ← Student(x), knows(x, y),HasJob(y)
q2(x) ← Student(x), knows(x, y),HasJob(y), knows(x, z),Unemployed(z)
q3(x) ← Student(x), knows(x, y),HasJob(y), knows(x, z),Unemployed(z),

knows(x,w), Student(w)

Let us focus on query q1 and let us consider the empty EBox. In this case, during
the execution of Prexto(q1, T , ∅) the algorithm MinimizeViews simply computes the
subsumed sets of Student, knows, HasJob, which are, respectively:

MinimizeViews(Student, ∅, T ) =
{Student, FulltimeStudent, StudentWithGrant, ∃receivesGrantFrom}

MinimizeViews(knows, ∅, T ) = {knows, isBestFriendOf }
MinimizeViews(HasJob, ∅, T ) = {HasJob, Employee, Manager, ∃givesHighSalaryTo−}

Since two sets are constituted of four predicates and one is constituted of two predicates,
the UCQ returned by the unfolding step in Prexto(q1, T , E) contains 32 CQs. This is
also the size of the final UCQ, since in this case no optimizations are computed by the
algorithm DeleteRedundantAtoms, because both the disjointness assertion and the
role functionality assertions of T have no impact on the rewriting of query q1.

Conversely, let us consider the EBox E4: during the execution of Prexto(q1, T , E),
we obtain the following sets from the execution of the algorithm MinimizeViews::

MinimizeViews(Student, E4, T ) = {Student, StudentWithGrant}
MinimizeViews(knows, E4, T ) = {knows, isBestFriendOf }
MinimizeViews(HasJob, E4, T ) = {Employee, ∃givesHighSalaryTo−}

Thus, the algorithm MinimizeViews returns only two predicates for Student and only
two predicates for HasJob. Therefore, the final unfolded UCQ is constituted of 8 CQs
(since, as above explained, the final call to DeleteRedundantAtoms does not produce
any optimization).

It is possible to prove correctness of Prexto [15], which in turn implies the following
property, which states that the computational cost of Prexto is no worse than all known
query rewriting techniques for DL-LiteA which compute UCQs.

Theorem 1. Prexto(Q, T , E) runs in polynomial time with respect to the size of T ∪E ,
and in exponential time with respect to the maximum number of atoms in a conjunctive
query in the UCQ Q.
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query algorithm E = ∅ E = E1 E = E2 E = E3 E = E4
q0 Presto+unfolding 4 4 4 4 4
q0 TBox-min 4 4 4 4 4
q0 Prexto-noEBox 4 4 4 4 4
q0 Prexto-noDisj 4 3 2 2 2
q0 Prexto-full 4 3 2 2 2
q1 Presto+unfolding 32 32 32 32 32
q1 TBox-min 32 32 32 32 32
q1 Prexto-noEBox 32 32 32 32 32
q1 Prexto-noDisj 32 24 16 12 8
q1 Prexto-full 32 24 16 12 8
q2 Presto+unfolding 256 256 256 256 256
q2 TBox-min 256 256 256 256 256
q2 Prexto-noEBox 224 224 224 224 224
q2 Prexto-noDisj 256 144 64 48 32
q2 Prexto-full 224 126 106 42 28
q3 Presto+unfolding 2048 2048 2048 2048 2048
q3 TBox-min 2048 2048 2048 2048 2048
q3 Prexto-noEBox 1584 1584 1584 1584 1584
q3 Prexto-noDisj 2048 864 256 192 128
q3 Prexto-full 1584 708 188 141 94

Fig. 4. Comparison of query rewriting techniques on T , E and queries q0, q1, q2, q3.

5 Comparison

We now compare the optimizations introduced by Prexto with some of the current tech-
niques for query rewriting in DL-Lite. In particular, we consider the simple DL-LiteA
ontology of Example 2 and compare the size of the UCQ rewritings generated by the
original Presto algorithm, the rewriting based on the TBox minimization technique
TBox-min shown in [13], and the Prexto algorithm. To single out the impact of the dif-
ferent optimizations introduced by Prexto, we present three different execution modali-
ties for Prexto: without considering the EBox (we call this modality Prexto-noEBox);
(ii) without considering disjointness axioms and role functionality axioms in the TBox
(we call this modality Prexto-noDisj); (iii) and considering all axioms both in the TBox
and in the EBox (we call this modality Prexto-full). Moreover, we will consider differ-
ent EBoxes of increasing size, to better illustrate the impact of the EBox on the size of
the rewriting.

The table reported in Figure 4 shows the impact on rewriting queries q0, q1, q2 and
q3 of: (i) the disjointness axiom and the functional role axioms in T ; (ii) the EBoxes
E1, . . . , E4. In the table, we denote by Presto+unfolding the UCQ obtained by unfold-
ing the nonrecursive datalog program returned by the Presto algorithm, and denote by
TBox-min the execution of Presto+unfolding which takes as input the TBox mini-
mized by the technique presented in [13] using the extensional inclusions in the EBox.
These two rows can be considered as representative of the state of the art in query
rewriting in DL-Lite (with and without extensional constraints): indeed, due to the sim-
ple structure of the TBox and the queries, every existing UCQ query rewriting technique
for plain DL-Lite ontologies (i.e., ontologies without EBoxes) would generate UCQs of
size analogous to Presto+unfolding (of course, we are not considering the approaches
where the ABox is preprocessed, in which of course much more compact query rewrit-
ings can be defined [8, 13]). The third column of the table displays the results when the
empty EBox was considered, while the fourth, fifth, sixth, and seventh column respec-
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tively report the results when the EBox E1, E2, E3, E4, was considered. The numbers
in these columns represent the size of the UCQ generated when rewriting the query with
respect to the TBox T and the EBox E : more precisely, this number is the number of
CQs which constitute the generated UCQ. The results obtained in the case of query q1
have been explained in Example 2.

The results of Figure 4 clearly show that even a very small number of EBox ax-
ioms may have a dramatic impact on the size of the rewritten UCQ, and that this is
already the case for relatively short queries (like query q2): this behavior is even more
apparent for longer queries like q3. In particular, notice that, even when only two ex-
tensional inclusions are considered (case E = E2), the minimization of the UCQ is
already very significant. Moreover, for the queries under examination, extensional in-
clusions are more effective than disjointness axioms and role functionalily axioms on
the minimization of the rewriting size.

The results also show that the technique presented in [13] for exploiting extensional
inclusions does not produce any effect in this case. This is due to the fact that the
extensional inclusions considered in our experiment do not produce any minimization
of the TBox according to the condition expressed in [13]. Conversely, the technique
for exploiting extensional constraints of Prexto is indeed effective. For instance, notice
that this technique is able to use extensional constraints (like E2 and E3) which have
no counterpart in the TBox, in the sense that such concept inclusions are not entailed
by the TBox T .

Finally, we remark that the above simple example shows a situation which is actu-
ally not favourable for the algorithm, since there are very few extensional constraints
and short (or even very short) queries: nevertheless, the experimental results show that,
even in this setting, our algorithm is able to produce very significant optimizations. In-
deed, the ideas which led to the Prexto algorithm came out of a large OBDA project
that our research group is currently developing with an Italian Ministry. In this project,
several relevant user queries could not be executed by our ontology reasoner (Quonto
[3]) due to the very large size of the rewritings produced. For such queries, the min-
imization of the rewriting produced by the usage of the Prexto optimizations is even
more dramatic than the examples reported in the paper, because the queries are more
complex (at least ten atoms) and the number of extensional constraints is larger than in
the example.

6 Conclusions

In this paper we have presented a query rewriting technique for fully exploiting the pres-
ence of extensional constraints in a DL-LiteA ontology. Our technique clearly proves
that extensional constraints may produce a dramatic improvement of query rewriting,
and consequently of query answering over DL-LiteA ontologies.

We believe that the present approach can be extended in several directions. First, it
would be extremely interesting to generalize the Prexto technique to ontology-based
data access (OBDA), where the ABox is only virtually specified through declarative
mappings over external data sources: as already mentioned in the introduction, in this
scenario extensional constraints would be a very natural notion, since they could be
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automatically derived from the mapping specification. Then, it would be very interest-
ing to extend the usage of extensional constraints beyond DL-LiteA ontologies: in this
respect, a central question is whether existing query rewriting techniques for other de-
scription logics (e.g., [11, 14]) can be extended with optimizations analogous to the ones
of Prexto. Finally, we plan to fully implement our algorithm within the Quonto/Mastro
system [3] for DL-LiteA ontology management, and to further compare Prexto with
other query rewriting techniques for DL-Lite (e.g., [11, 5, 10]).
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Elimination of Complex RIAs without Automata

František Simančík

Department of Computer Science, University of Oxford, UK

Abstract. We present an algorithm that eliminates complex role inclusion ax-
ioms (RIAs) from a SROIQ ontology preserving all logical consequences not
involving non-simple roles. Unlike other existing methods, our algorithm does
not explicitly construct finite automata recognizing the languages generated by
the RIAs. Instead, it is formulated as a recursive expansion of universal restric-
tions, similar to well-known encodings of transitivity axioms.

1 Introduction

Complex role inclusion axioms (RIAs) R1 ◦ . . . ◦ Rn v R are an important feature
by which the web ontology language OWL 2 [2], based on the description logic (DL)
SROIQ [5], extends the earlier standard OWL DL. Unrestricted use of complex RIAs
causes undecidability of the basic reasoning tasks already in case of fairly inexpres-
sive DLs and modal logics such as ALC [1]; decidability is recovered by requiring that
RIAs, when viewed as context-free grammar rules R → R1 . . . Rn, generate regular
languages [3, 4, 7]. However, checking if a given set of RIAs has this property is already
difficult; this problem is related to checking regularity of pure context-free grammars
[10] (which do not distinguish terminal and non-terminal symbols) whose decidability
appears to have been long open [7]. To avoid this difficulty, a stronger syntactic regular-
ity condition that requires RIAs to be acyclic (apart from a few selected cases such as
transitivity axioms) is imposed in SROIQ. This condition is easy to check and allows
for an effective construction of the underlying finite automata [5].

The standard automata construction for SROIQ [5] is an inductive procedure that
performs non-trivial manipulations such as taking the mirrored copy and the disjoint
union of previously constructed automata. To implement the procedure directly, de-
velopers of OWL 2 reasoners have to either look for suitable third-party libraries that
support such operations, or resort to writing their own automata library. In this paper,
we present an algorithm that eliminates complex RIAs from a SROIQ ontology with-
out explicitly using finite automata. Instead, our algorithm is formulated as a simple
recursive expansion of universal restrictions, similar to well-known encodings of tran-
sitivity axioms, using acyclicity of RIAs directly to ensure termination. For this reason,
we believe that our method might be easier to implement in practice. Furthermore, we
illustrate that, by introducing new rules for handling universal restrictions, the tableau
algorithm for SROIQ [5] can be modified to apply our elimination on the fly. In that
case, no pre-construction due to complex RIAs is needed at all.

Our recursive expansion of universal restrictions is inspired by and directly simu-
lates the recursion in the standard automata construction. Therefore, for many purposes,
the result of our elimination algorithm can be regarded as equivalent to the standard
automata-based encoding [6].
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2 Preliminaries

2.1 The DL SROIQ
For a gentle introduction to DLs we refer the readers to the DL primer [8]. In this section
we merely recall the definition (syntax only) of SROIQ [5], together with the notions
of a regular RBox and of polarity of concept occurrence. We follow the approach of
Shearer [11] in assuming that the set of simple roles is given in the signature and calling
a RIA w v R complex iff R is non-simple (even if w is of length 1).

A signature Σ = 〈ΣS , ΣR, ΣC , ΣI〉 consists of mutually disjoint sets of atomic
roles ΣR, atomic concepts ΣC , and individuals ΣI , together with a distinguished sub-
set ΣS ⊆ ΣR of simple atomic roles. The set of roles (over Σ) is R := ΣR ∪
{R− | R ∈ ΣR}; the set of simple roles is S := ΣS ∪ {S− | S ∈ ΣS}. A role chain
is an expression of the form R1 · . . . ·Rn with n ≥ 1 and each Ri ∈ R. The function
inv(·) is defined on roles by inv(R) := R− and inv(R−) := R where R ∈ ΣR, and
extended to role chains by inv(R1 · . . . ·Rn) := inv(Rn) · . . . · inv(R1).

The set C of SROIQ concepts (over Σ) is defined recursively as follows:

C := ΣC |{ΣI}|(C uC) |(C tC) |¬C |∃R.C |∀R.C |>nS.C |6nS.C |∃S.Self .
A role inclusion axiom (RIA) is either a simple RIA of the form S1 v S2 where

S1, S2 ∈ S, or a complex RIA of the form w v R where w is a role chain and
R ∈ R \ S. A role assertion is an axiom of the form Ref(R) (reflexivity), Irr(S) (ir-
reflexivity), Uni(R) (universality), or Dis(S1, S2) (role disjointness), whereR ∈ R and
S(i) ∈ S. Transitivity and symmetry must be expressed as R ·R v R and inv(R) v R
respectively. An RBox is a finite set of RIAs and role assertions.

A regular order ≺ is an irreflexive transitive binary relation on the set of roles R
satisfying R1 ≺ R2 iff inv(R1) ≺ inv(R2). An RBoxR is ≺-regular if each RIA inR
is of one of the following forms:

(R1) R1 · . . . ·Rn v R with Ri ≺ R for all 1 ≤ i ≤ n;
(R2) R ·R1 · . . . ·Rn v R with Ri ≺ R for all 1 ≤ i ≤ n;
(R3) R1 · . . . ·Rn ·R v R with Ri ≺ R for all 1 ≤ i ≤ n;
(R4) R ·R v R;
(R5) inv(R) v R.

An RBox R is regular if it is ≺-regular for some regular order ≺. For a regular RBox
R, let ≺R be the intersection of all regular orders≺ such thatR is≺-regular; the depth
ofR is the maximal n for which there exists a sequence R1≺R . . .≺RRn. It is easy to
show that ifR is regular, then it is ≺R -regular.

A TBox is a finite set of general concepts inclusions (GCIs) of the form C v D
where C,D ∈ C. To keep the presentation simple, we do not allow ABox assertions;
these can be expressed as GCIs using nominals. A SROIQ ontology (over Σ) is a pair
O = 〈R, T 〉 whereR is a regular RBox and T a TBox.

Polarities of occurrences of SROIQ concepts in concepts and GCIs are defined in-
ductively as follows: C occurs positively in C. If C occurs positively (resp. negatively)
in C ′, then C occurs positively (resp. negatively) in C ′ uD, D u C ′, C ′ tD, D t C ′,
∃R.C ′, ∀R.C ′, >nR.C ′, and D v C ′, and C occurs negatively (resp. positively) in
¬C ′, 6nR.C ′, and C ′ v D.
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2.2 Conservative Encodings

We use the framework of conservative extensions [9] to prove correctness of our encod-
ing of RIAs. Let O be an ontology over a signature Σ = 〈ΣS , ΣR, ΣC , ΣI〉, and let Q
be an ontology over a (not necessarily strictly) larger signature. Then Q is a conserva-
tive encoding of O (also Q is conservative over O) if

(i) for every model I of O there exists a model J of Q such that I and J have the
same domain and coincide on the interpretation of ΣR, ΣC , and ΣI , and

(ii) for every model J of Q there exists a model I of O such that I and J have the
same domain and coincide on the interpretation of ΣR, ΣC , and ΣI .

Since this definition is sensitive to Σ, to avoid ambiguity, we will assume that each on-
tology carries its signature with it, so that each ontology is over only one signature. The
signature may, however, contain symbols not occurring in the ontology. Note that, un-
like the standard notion of a conservative extension, the above notion of a conservative
encoding does not require that Q contains all axioms from O.

We define a simple-conservative encoding analogously except that the models I
and J are only required to coincide on ΣS , ΣC , and ΣI . As observed by Lutz et al.
[9], this model-theoretic notion of conservativity implies that the two ontologies en-
tail the same consequences over ΣS , ΣC , and ΣI . We will prove that our encoding of
complex RIAs produces a simple-conservative encoding of the input ontology. Thus,
in particular, the two ontologies have the same classification (ignoring the extra atomic
concepts introduced in the encoding). Furthermore, by introducing new concept defini-
tions A ≡ C and B ≡ D in the original ontology, one can check subsumptions even
between concepts C and D which contain non-simple roles.

2.3 Languages Generated by RIAs

Each RIA w v R can be expressed equivalently as inv(w) v inv(R); to avoid having to
keep this in mind, letRc := R∪{inv(w) v inv(R) | w v R ∈ R} be the completion of
the RBoxR. Note thatR andRc are equivalent andR is ≺-regular iffRc is ≺-regular.

The languages LR(R) are defined inductively by (i) R ∈ LR(R) for each role
R, and (ii) if R1 · . . . · Rn v R ∈ Rc and wi ∈ LR(Ri) for all 1 ≤ i ≤ n, then
w1 · . . . ·wn ∈ LR(R). Intuitively, LR(R) is the language generated from the role R
by the grammar rules {R→ w | w v R ∈ Rc}. Horrocks et al. [5] showed that ifR is
regular, then each LR(R) is a regular language, the finite automata recognizing LR(R)
can be effectively constructed by induction over ≺R, and the size of these automata is
at most exponential in the depth ofR.

An interpretation function ·I is extended to the languages LR(R) as follows:

LR(R)I = {〈x, y〉 | there exists w ∈ LR(R) such that 〈x, y〉 ∈ wI}. (1)

One can easily prove by induction on the definition of LR(R) that w ∈ LR(R) implies
R |= w v R. The following proposition is a direct consequence of this fact.

Proposition 1. If I |= R, then LR(R)I = RI .

336



3 Motivation

In this section we motivate and present (first approximation of) our RIA-elimination
algorithm. For simplicity, we do not yet consider symmetry axioms (R5) in this section.

Many SROIQ constructors are restricted to simple roles and therefore do not in-
teract with complex RIAs. The key step in eliminating complex RIAs is to capture
the propagation of universal restrictions over non-simple roles. Consider the following
property:

if x ∈ (∀R.C)I and 〈x, y〉 ∈ LR(R)I , then y ∈ CI . (2)

Every model I of the RBox R satisfies (2) simply because LR(R)I = RI by Propo-
sition 1, in which case (2) coincides with semantics of universal restrictions. The main
idea behind all methods for dealing with complex RIAs (e.g., [4–6]) is to axiomatise
(using a finite number of GCIs) the property (2) for all ∀R.C occurring in the ontology,
and use this axiomatisation to simulate the presence of complex RIAs fromR.

In the simplest case, when all RIAs in R are of the form (R1), this can be achieved
by a simple recursive expansion of all universal restrictions occurring in the ontology.
To expand ∀R.C, for each RIA R1 · . . . ·Rn v R ∈ Rc introduce the axiom

∀R.C v ∀R1.∀R2 . . . ∀Rn.C, (3)

and recursively expand all the nested universal restrictions on the right-hand side of (3).
If all RIAs are of the form (R1), then Ri ≺R R for each role Ri in (3), so the depth of
the recursion is bounded by the depth ofR and the expansion terminates.

In case there are other forms of RIAs in R, e.g., transitivity axioms, the recursion
would never terminate. On the other hand, transitivity axioms can be eliminated using
several well-known encodings. For example, to capture (2) for the concept ∀R.C with
respect to the transitivity axiom R ·R v R, introduce two new atomic concepts I and
F not in the signature of the the ontology and assert

∀R.C v I, F v C, I v ∀R.F, F v I. (4)

This encoding is inspired by the fact that the RIA R · R v R generates the regular
language R+ which is recognised by the following finite automaton:

istart f
R

ε

The encoding simulates the run of this automaton from all instances of ∀R.C in a model
of (4). Concepts I and F respectively correspond to the initial state i and the final state
f , the first axiom initialises the automaton at all x ∈ (∀R.C)I , the second axiom
ensures that y ∈ CI for all y in the final state, and the last two axioms encode the tran-
sitions of the automaton. This method generalises easily to all cases when the language
LR(R) is given by a finite automaton [6].

We propose a RIA-elimination algorithm that does not assume that the automaton
is already fully constructed. Our method recursively expands all universal restrictions
similarly to (3), but uses a two-state automaton at each step to handle the cyclic forms
of RIAs similarly to (4). More specifically, to expand the universal restriction ∀R.C,
introduce two new atomic concepts I and F , assert
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(E0) ∀R.C v I , F v C, and I v ∀R.F ,
(E1) I v ∀R1. . . .∀Rn.F for each RIA R1 · . . . ·Rn v R ∈ Rc of form (R1);
(E2) F v ∀Rr1. . . .∀Rrn.F for each RIA R ·Rr1 · . . . ·Rrn v R ∈ Rc of form (R2),
(E3) I v ∀Rl1. . . .∀Rln.I for each RIA Rl1 · . . . ·Rln ·R v R ∈ Rc of form (R3),
(E4) F v I if R ·R v R ∈ Rc,

and recursively expand all the universal restrictions introduced in (E1)–(E3), but not
the ∀R.F introduced in (E0). Regularity ofR ensures that the depth of the recursion is
bounded by the depth of R. This encoding is inspired by the following automaton (the
ε-edge is present iff R ·R v R ∈ Rc) used in the construction by Horrocks et al. [5]
that recognises the language generated from R by the RIAs referred to in (E1)–(E4) :

istart f
R

Rl1 . . . R
l
n

Rr1 . . . R
r
n

ε

R1 . . . Rn

Example 1. We will now demonstrate the RIA-elimination algorithm on an example.
Let ΣS = {P,R}, ΣR = {P,R, S, T}, ΣC = {A,B,C,D}, ΣI = ∅, and let O =
〈R, T 〉 be the following ontology over the signature Σ = 〈ΣS , ΣR, ΣC , ΣI〉:

R = {T ·S v T, T ·T v T, R ·S v S, P v R}, (5)
T = {A v D t ∀T.¬C, B v ∃T.∃P.∃S.C}. (6)

Note that R is regular and P ≺R R ≺R S ≺R T . The RIA P v R is simple; the
remaining RIAs inR are complex. To expand the universal restriction ∀T.¬C occurring
in T , introduce new atomic concepts I1 and F1, and assert the following axioms:

∀T.¬C v I1, F1 v ¬C, I1 v ∀T.F1 by (E0) (7)
F1 v ∀S.F1 by (E2) for T ·S v T (8)
F1 v I1 by (E4) for T ·T v T (9)

Then, to recursively expand the new universal restriction ∀S.F1 occurring in (8), intro-
duce new atomic concepts I2 and F2, and assert the following axioms:

∀S.F1 v I2, F2 v F1, I2 v ∀S.F2 by (E0) (10)
I2 v ∀R.I2 by (E3) for R ·S v S (11)

Finally, since we intend to keep all simple RIAs in the RBox and the role R is sim-
ple, the new universal restriction ∀R.I2 introduced in (11) does not need to be further
expanded. Let U be the TBox consisting of the new axioms (7)–(11). The results of
the next section will establish that the ontology Q = 〈{P v R}, T ∪ U〉 is simple-
conservative over O, so, in particular, the two ontologies entail the same consequences
over ΣS , ΣC , and ΣI . For example, both O and Q entail P v R and A u B v D.
Note that this cannot be strengthened to all consequences over Σ since, for example,O
entails T ·P ·S v T and B v ∃T.C, but Q does not entail either of these axioms.
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4 The RIA-Elimination Algorithm

In this section we formally present our RIA-elimination algorithm and prove that it
produces a simple-conservative encoding of the input ontology. Some of the proofs are
rather technical, in those cases we present only brief sketches here. More detailed proofs
can be found in the appendix.

There are several important points about the algorithm that were omitted in the
previous section in favour of simplicity; this is amended in this section. Firstly, if R
is a symmetric role, i.e., inv(R) v R ∈ Rc, then the concept ∀R.C is additionally
expanded in the same way as ∀inv(R).C would be. Secondly, since we do not assume
that the ontology is in negation normal form, we have to treat negative occurrences of
existential restrictions similarly to positive occurrences of universal restrictions. Finally,
the expansion rule (E0) is inefficient because it introduces the axiom ∀R.C v I in
which ∀R.C occurs negatively. Negative occurrences of universal restrictions are not
Horn, i.e., they lead to non-determinism in reasoning. To avoid this problem, instead
of asserting ∀R.C v I , the algorithm replaces all positive occurrences of ∀R.C in the
original ontology by I . This way we obtain a Horn-preserving encoding.

To keep track of the progress of the algorithm, we label those concepts ∀R.C and
∃R.C that still need to be expanded withR as defined below.

Definition 1 (R-labelled concepts). Given an RBoxR, we introduce new concept con-
structors ∀RR.C and ∃RR.C called R-labelled universals and R-labelled existentials
respectively. Their semantics is defined as follows:

(∀RR.C)I = {x | ∀y : 〈x, y〉 ∈ LR(R)I → y ∈ CI},
(∃RR.C)I = {x | ∃y : 〈x, y〉 ∈ LR(R)I ∧ y ∈ CI}.

R-labelled concepts are SROIQ concepts that may additionally contain R-labelled
universals and existentials. To distinguish them from normal SROIQ concepts, we
sometimes call the latter unlabelled. Similarly, we speak of R-labelled (resp. unla-
belled) ontologies.

Note that the semantics ofR-labelled concepts is irrelevant for the execution of the
algorithm. It does, however, greatly simplify the proofs, since with this semantics we
can prove that each intermediate expansion step of the algorithm already produces a
simple-conservative encoding of the input ontology.

Given an input ontology O = 〈R, T 〉, the initial step of the algorithm is to remove
all complex RIAs fromO (keeping all simple RIAs and all role assertions) and label all
positive occurrences of universal restrictions and all negative occurrences of existential
restrictions inO withR to indicate that they need to be expanded. This is defined more
formally in the following two definitions.

Definition 2 (labelling). LetR be an RBox. For x an unlabelled concept or a TBox, let
σR(x) be the result of labelling each positive occurrence of each universal restriction
and each negative occurrence of each existential restriction in x with R. Dually, let
σ̄R(x) be the result of labelling each negative occurrence of each universal restriction
and each positive occurrence of each existential restriction in x withR.

339



Definition 3 (initialisation). Let O = 〈R, T 〉 be an unlabelled SROIQ ontology
over a signature Σ. Let Rs := R \ {w v R ∈ R | w v R is a complex RIA}. The ini-
tialisation of O is theR-labelled ontology 〈Rs, σR(T )〉 over the same signature Σ.

The next theorem proves that initialisation produces a simple-conservative encod-
ing of O. This captures the intuition that positive universal restrictions and negative
existential restrictions are the only SROIQ features that interact with complex RIAs.

Theorem 1. The initialisation of O is simple-conservative over O.

Proof (sketch). We must show that (i) for each model I of O there is a model J of
Q = 〈Rs, σR(T )〉 that agrees with I on ΣS , ΣC , and ΣI , and (ii) vice versa.

For (i), we show that each model I of O is already a model of Q. Trivially, I |=
R implies I |= Rs since Rs ⊆ R. By Proposition 1, we have LR(R)I = RI , so
(∀R.C)I = (∀RR.C)I and (∃R.C)I = (∃RR.C)I for all concepts ∀R.C and ∃R.C.
This means that R-labelling does not affect the interpretation of concepts in I, so I |=
T implies I |= σR(T ). Therefore I |= Q.

For (ii), each model J of Q can be transformed to a model I of O by extending
the interpretation of roles to RI = LR(R)J . From J |= Rs one proves that I and J
agree on simple roles. Checking that I |= R is routine. The key step to prove I |= T is
to show by structural induction for each unlabelled concept D that σR(D)J ⊆ DI ⊆
σ̄R(D)J ; since σR(T ) = {σ̄R(C) v σR(D) | C v D ∈ T }, we can then infer I |=
T from J |= σR(T ). Hence I |= O. ut

After initialisation, the algorithm repeatedly expands all R-labelled universals and
existentials until it arrives at an unlabelled ontology. Before we define these expansions,
in the next definition we first introduce an auxiliary function expand(I v ∀RR.F ) that
encodes the axiom I v ∀RR.C only using universals ∀RS.D with S≺RR. The func-
tion implements the transition function of the two-state automaton from the previous
section, and additionally deals with symmetric roles R by expanding I v ∀RR.C in
the same way as I v ∀Rinv(R).C. The correctness of this encoding is expressed in the
following Proposition 2. Its proof can be found in the appendix.

Definition 4 (expand). Let R be a regular RBox, R a role, and I and F atomic con-
cepts. We define expand′(I v ∀RR.F ) to be the set consisting of the following GCIs:

1. I v ∀R.F ,
2. I v ∀RR1 . . . ∀RRn.F for each R1 · . . . ·Rn v R ∈ Rc,
3. F v ∀RR1 . . . ∀RRn.F for each R ·R1 · . . . ·Rn v R ∈ Rc,
4. I v ∀RR1 . . . ∀RRn.I for each R1 · . . . ·Rn ·R v R ∈ Rc,
5. F v I if R ·R v R ∈ Rc,

where each Ri is distinct from R. Finally, we define expand(I v ∀RR.F ) to be
{
expand′(I v ∀RR.F ) ∪ expand′(I v ∀Rinv(R).F ) if inv(R) v R ∈ Rc,
expand′(I v ∀RR.F ) otherwise.

Proposition 2. If I |= expand(I v ∀RR.F ), then I |= I v ∀RR.F .
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We are now ready to define the expansions of R-labelled concepts. Similarly to
structural transformation, ∀R-expansion uses atomic concepts I and F as new names
for the concepts ∀RR.C andC respectively, replaces all positive occurrences of ∀RR.C
by I , adds F v C, and, instead of asserting I v ∀RR.F , it uses expand(I v ∀RR.F )
to encode the same property. ∃R-expansion works similarly but it additionally uses
the equivalence of ∃R.I v F with I v ∀inv(R).F ; it uses atomic concepts I and
F as new names for the concepts C and ∃RR.C respectively, adds C v I , replaces
all negative occurrences of ∃RR.C by F , and, instead of asserting ∃RR.I v F , it uses
expand(I v ∀Rinv(R).F ) to encode the same property. More formal definitions follow.

Definition 5 (substitution). For concepts Cold and Cnew, and x a concept or a TBox,
let ρ+[Cnew /Cold](x) resp. ρ−[Cnew /Cold](x) be the result of simultaneously replacing
each positive resp. negative occurrence of Cold in x by Cnew.

Definition 6 (∀R- and ∃R-expansions). LetR be a regular RBox and letO = 〈R′, T 〉
be anR-labelled ontology over a signature Σ = 〈ΣS , ΣR, ΣC , ΣI〉.
∀R-expansion:

Let ∀RR.C be an R-labelled universal occurring in O. Let I and F be two different
atomic concepts not in ΣC . The ∀RR.C-expansion of O is the ontology

〈R′, ρ+[I / ∀RR.C](T ) ∪ {F v C} ∪ expand(I v ∀RR.F ) 〉.

∃R-expansion:
Let ∃RR.C be an R-labelled existential occurring in O. Let I and F be two different
atomic concepts not in ΣC . The ∃RR.C-expansion of O is the ontology

〈R′, ρ−[F /∃RR.C](T ) ∪ {C v I} ∪ expand(I v ∀Rinv(R).F ) 〉.

In both cases, the resulting ontology is over the signature 〈ΣS , ΣR, ΣC ∪ {I, F}, ΣI〉.

Note that the initialisation of an ontology contains only positive occurrences of
R-labelled universals and only negative occurrences of R-labelled existentials. Fur-
thermore, both expansions introduce only positive occurrences of R-labelled univer-
sals. Therefore, when used in the context of the RIA-elimination algorithm, the above
expansions will actually eliminate all occurrences of ∀RR.C resp. ∃RR.C from the
ontology. The reason for making the substitutions polarity-sensitive was to make the
following theorem hold for arbitrary ontologies.

Theorem 2. LetR be a regular RBox, let O be anR-labelled ontology, and letQ be a
∀RR.C- or ∃RR.C-expansion of O. Then Q is conservative over O.

Proof (sketch). Let O = 〈R′, T1〉 be an R-labelled ontology over Σ and let Q =
〈R′, T2〉 be a ∀RR.C-expansion of O. We need to show that (i) for each model I of O
there exists a model J of Q that agrees with I on Σ, and (ii) vice versa.

For (i), each model I ofO can be extended to a model ofQ by interpreting the new
concepts II := (∀RR.C)I and F I := (∃Rinv(R).∀RR.C)I . The substitution merely
replaces some occurrences of ∀RR.C by I , and (∀RR.C)I = II , so I |= T1 implies
I |= ρ+[I / ∀RR.C](T1). To conclude that I is a model of Q, it remains to check that
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I satisfies each axiom in {F v C} ∪ expand(I v ∀RR.F ). This is done using the
definition of II and F I ; for example, I |= F v C holds because ∃Rinv(R).∀RR.C v
C is a tautology. The remaining axioms can be checked similarly.

For (ii), we show that each modelJ ofQ is already a model ofO. To proveJ |= T1,
the key step is to prove by structural induction for all concepts D over Σ that

ρ+[I / ∀RR.C](D)J ⊆ DJ ⊆ ρ−[I / ∀RR.C](D)J ; (12)

then J |= ρ+[I / ∀RR.C](T1) ⊆ T2 implies J |= T1. The only non-trivial case in
the induction is D = ∀RR.C, where (12) reduces to IJ ⊆ (∀RR.C)J ; to show this,
we apply Proposition 2 to J |= ({F v C} ∪ expand(I v ∀RR.F )) ⊆ T2 to infer
J |= I v ∀RR.C, which is equivalent to the required IJ ⊆ (∀RR.C)J .

The proof of the case whenQ is an ∃RR.C-expansion ofO, is similar: Each model
I of O can be extended to a model of Q by interpreting II := (∀Rinv(R).∃RR.C)I

and F I := (∃RR.C)I . The substitution merely replaces some occurrences of ∃RR.C
by F , and (∃RR.C)I = F I , so I |= T1 implies I |= ρ−[F /∃RR.C](T1). To conclude
that I is a model of Q, one can check that the definition of II and F I satisfies each
axiom in {C v I} ∪ expand(I v ∀Rinv(R).F ).

To show that each model J of Q is a model of O, prove by structural induction
for all concepts D over Σ that ρ−[F / ∃RR.C](D)J ⊆ DJ ⊆ ρ+[F / ∃RR.C](D)J .
This, in the only non-trivial case D = ∃RR.C, reduces to (∃RR.C)J ⊆ FJ ; to show
this, apply Proposition 2 to J |= ({C v I}∪ expand(I v ∀Rinv(R).F )) ⊆ T2 to infer
J |= C v ∀Rinv(R).F , which is equivalent to the required (∃RR.C)J ⊆ FJ . ut

The following theorem is our main result. It ensures that the RIA-elimination al-
gorithm produces a simple-conservative encoding of the input ontology, and that the
number of expansions is at most exponential in the depth of R. Therefore, since each
expansion is linear in the size of R, the algorithm can be implemented to run in time
exponential in the depth ofR, which is optimal since complex RIAs are known to incur
an exponential increase in the complexity of reasoning [6].

Theorem 3. Let O = 〈R, T 〉 be an unlabelled SROIQ ontology, let 〈Rs, T0〉 be the
initialisation of O, and let (Ti)ni=1 be any sequence of TBoxes such that 〈Rs, Ti+1〉 is
obtained from 〈Rs, Ti〉 by a ∀R- or ∃R-expansion. Then 〈Rs, Tn〉 is simple-conservative
over O. Moreover, n is bounded by ‖T ‖ · (2 · ‖R‖)d where d is the depth ofR.

Proof. The proof uses the observation that ifO1 is simple-conservative overO, andO2

is conservative over O1, then O2 is also simple-conservative over O, which follows di-
rectly from the respective definitions. With this, it is easy to prove by induction on i that
each 〈Rs, Ti〉 is simple-conservative over O: the base case is established in Theorem 1,
and the induction step follows from Theorem 2 and the above observation. Therefore,
in particular, 〈Rs, Tn〉 is simple-conservative over O.

To obtain the bound on n, let r = 2 · ‖R‖. As remarked earlier, each ∀RR.C- resp.
∃RR.C-expansion eliminates all occurrences of ∀RR.C resp. ∃RR.C from the ontol-
ogy, and introduces at most r new concepts ∀RS.D (the factor 2 is due to symmetric
roles) all satisfying S≺RR. Therefore, each ∀R.C and ∃R.C occurring inO (of which
there are at most ‖T ‖) can altogether generate at most 1 + r + r2 + . . .+ rd−1 < rd

R-labelled universals and existentials, which yields the required bound of ‖T ‖ ·rd. ut
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I-intro: if ∀R.C ∈ L(x),
then L(x) += I[∀R.C], and
L(x) += I[∀inv(R).C] if inv(R) v R ∈ Rc.

F -intro: if I[∀R.C] ∈ L(x) and ( R ∈ L(x, y) or inv(R) ∈ L(y, x) ),
then L(y) += F [∀R.C].

F -elim: if F [∀R.C] ∈ L(y),
then L(y) += C.

I-exp: if I[∀R.C] ∈ L(x),
then L(x) += ∀R1 . . .∀Rn.F [∀R.C] for each R1 · . . . ·Rn v R ∈ Rc, and
L(x) += ∀R1 . . .∀Rn.I[∀R.C] for each R ·R1 · . . . ·Rn v R ∈ Rc.

F -exp: if F [∀R.C] ∈ L(y),
then L(y) += ∀R1 . . .∀Rn.F [∀R.C] for each R1 · . . . ·Rn ·R v R ∈ Rc, and
L(y) += I[∀R.C] if R ·R v R ∈ Rc.

Fig. 1. Tableau rules for expansion of complex RIAs

Finally, as already observed in Example 1, the algorithm can be optimised by re-
placing all concepts ∀RS.C and ∃RS.C with a simple role S directly by ∀S.C and
∃S.C respectively, omitting their expansion. Interestingly, this makes the algorithm
work without further modifications even in the presence of arbitrary cyclic simple RIAs;
it is enough that complex RIAs are acyclic to ensure termination.

5 Elimination of Complex RIAs in the Tableau Algorithm

In this section we briefly sketch how the tableau algorithm for SROIQ [5] can be mod-
ified to perform our encoding of complex RIAs on the fly. We assume that the readers
are already familiar with the tableau algorithm. We use the standard notation L(x) and
L(x, y) for labels of nodes and edges in the completion graph. We assume that with
each concept ∀R.C we can uniquely associate new concepts I[∀R.C] and F [∀R.C];
these will be used in the expansion of ∀R.C. Since the tableau algorithm operates with
concepts in negation normal form, it can never encounter a negative occurrence of an
existential restriction, therefore expansion is only applicable to universal restrictions.

To obtain the modified tableau algorithm, replace all rules relating to universal re-
strictions (rules ∀1, ∀2, ∀3 in [5]) by the rules in Fig. 1, where L(x) += C is a shorthand
for L(x) := L(x) ∪ {C} and each Ri is implicitly distinct from R. These rules can be
readily compared to the expansion rules (E0)–(E4) from Section 3: rules I-intro, F -
intro, and F -elim implement the axioms ∀R.C v I , I v ∀R.F , and F v C of (E0),
rule I-exp implements the expansions (E1) and (E3), and rule F -exp implements the
expansions (E2) and (E4). The rules can be extended with blocking conditions as usual.

Note that the first three rules together subsume the standard ∀-rule, but additionally
introduce I[∀R.C] in L(x) and F [∀R.C] in L(y), even in case there are no complex
RIAs in the ontology at all. To eliminate this overhead, similarly to the optimisation
above, one can restrict rule I-intro to non-simple roles R, and apply the standard ∀-rule
to universal restrictions with simple roles.
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6 Conclusions

We presented an algorithm that encodes complex RIAs in SROIQ without construct-
ing finite automata. The algorithm can also be applied in weaker DLs: apart from GCIs
involving atomic concepts and concepts already occurring in the ontology, the algo-
rithm introduces only GCIs of the form I v ∀R.F where I and F are atomic concepts,
and R a possibly inverse role. Inverse roles are not strictly required either: if desired,
each I v ∀R−.F with an inverse roleR− can be replaced by the equivalent ∃R.I v F .

Our algorithm shares many theoretical properties of the traditional approaches based
on automata, e.g., it is Horn-preserving and runs in time exponential in the depth of the
RBox. On the other hand, a notable difference between the two approaches is that, in the
automata construction, one can apply standard techniques for minimising the number
of automata states and thus potentially reduce the number of new concepts introduced
in the encoding. While it might be difficult to provide similarly robust optimisation
for our algorithm, several simple optimisations, such as the one presented here that
restricts expansion of universal restrictions to non-simple roles, might already help in
many realistic cases. Experimental evaluation of the algorithm is left for future work.
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Abstract. In recent years modules have frequently been used for on-
tology development and understanding. This happens because a module
captures all the knowledge an ontology contains in a given area, and of-
ten is much smaller than the whole ontology. One useful modularisation
technique for expressive ontology languages is locality-based modulari-
sation, which allows for fast (polynomial) extraction of modules.
In order to better understand the modular structure of an ontology, a
technique called Atomic Decomposition can be used. It efficiently builds
a structure representing all possible modules for an ontology, regardless
of the modularisation algorithm adopted and without the need to com-
pute an exponential number of modules, as in a naive approach. This
structure may be used e.g., for quick extraction of modules, or to inves-
tigate dependencies between modules, and so on.
However, existing algorithms for both locality-based module extraction
and atomic decomposition do not scale well. This happens mainly be-
cause of their global nature: each iteration always explores the whole
ontology, even when it is not necessary.
We propose algorithms for locality-based module extraction and atomic
decomposition that work only on the relevant part of the ontology. This
improves performance of algorithms by avoiding unnecessary checks. Em-
pirical evaluation confirms a significant speed up on real-life ontologies.

1 Introduction

Following the great success of the OWL 2 family of ontology languages, they
have become widespread as a knowledge representation formalism. This success,
in particular, is based on reasoning facilities available for these languages, that
are provided by a number of tools. However, the tools (usually) do not scale
well. The worst-case computational complexity of the most expressive decidable
fragment of OWL, OWL 2 DL, is N2EXPTIME. So there is a need to deal with
large ontologies in an efficient manner.

One way of dealing with this issue during ontology development is to use
modules. A module is a subset of an ontology that captures all the knowledge
the ontology contains about a given set of terms. When reusing an existing
ontology, instead of importing all of it to use a few terms and axioms, one could
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extract a module based on a given set of terms, thus limiting the growth of the
ontology that will be fed to the reasoner.

To do so, a module extraction algorithm is necessary. The notion of conser-
vative extensions [3] allows one to define a module w.r.t. a signature Σ as a
minimal set that preserves all entailments over Σ. However, deciding whether
a subset of an ontology is a module in this sense is a non-trivial task. Even for
simple DL languages, it is double exponential in time, whereas for expressive
languages, like OWL 2 DL, this problem is undecidable.

Locality-based modules is an alternative solution for efficient module extrac-
tion in expressive logics. Intuitively, an axiom is local w.r.t. a signature if it does
not affect any entailment that uses only terms from that signature. So the ap-
proach is to keep in the module only those axioms that are non-local to a given
signature (while extending the signature as more axioms are added to the mod-
ule). The traditional modularisation algorithm follows this idea by traversing all
the axioms in the ontology, checking their locality and adding them to a module
if non-local, updating the signature accordingly and then repeating the traversal
until no new entities are added to a signature.

It is easy to see that this approach, while having polynomial (quadratic)
run-time, has some room for improvement. The addition of a single term to
a signature could lead to re-checking locality of every axiom in the ontology,
including those that have nothing to do with the change in the signature, i.e.,
are not touched by either the old or the new signature. In the approach proposed
in this paper only the axioms that might become non-local after a change of
signature are re-checked.

There might be cases where one wants to extract more than just a single
module from an ontology. In order to explore the modular structure of the on-
tology, the atomic decomposition approach has recently been investigated [1,
5]. Atomic decomposition can be viewed as a compact representation of all the
modules of an ontology. In this approach the notion of atom is introduced as a
subset of an ontology, whose axioms always co-occur in a module (i.e., for each
module, either all of the axioms are included in the module or none of them
occurs in it). A dependency between atoms, which mirrors the subset relation
between corresponding modules, is also described in the Atomic Decomposition
approach.

The algorithm for building the atomic decomposition of an ontology is also
rather straightforward. First, the module for a signature of every axiom is built.
Then axioms with equivalent modules are combined into a single atom. After
the set of atoms is known, their modules are explored to derive dependencies
between atoms.

As in the module extraction case, the atomic decomposition algorithm can be
improved. Taking account of the notion of a module in the atomic decomposition
structure, it is possible to significantly reduce the search space for modules, as
well as for dependency relation. Empirical evaluation on large real-life ontologies
shows an increase in performance of up to 50 times.
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The rest of this paper is organised as follows. In Section 2 some preliminary
notions are defined. Section 3 contains the definition of the original module ex-
traction algorithm, the analysis of its inefficiencies and the improved algorithm,
together with a proof of its correctness. Similarly, in Section 4 the original and
improved algorithms for the atomic decomposition are discussed. Results of the
evaluation of the algorithms involving several real-life ontologies are presented
in Section 5. Finally some conclusions are drawn in Section 6.

2 Preliminaries

We assume that the reader is familiar with the notion of OWL 2 axiom, ontology
and entailments. An entity is a named element of the signature of an ontology.
For an axiom α, we denote by α̃ the signature of that axiom, i.e. the set of all
entities in α. The same notation is also used for a set of axioms.

Definition 1 (Module). Let O be an ontology and Σ be a signature. A subset
M of the ontology is called a module of O w.r.t. Σ if M |= α ⇐⇒ O |= α, for
every axiom α with α̃ ⊆ Σ.

One of the ways to build modules is to use locality of axioms.

Definition 2 (Semantic Locality). An axiom α is called >(⊥)-local w.r.t a
signature Σ if replacing all named entities in α̃ \Σ with >(resp. ⊥) makes that
axiom a tautology. An axiom α is called a tautology if it is local w.r.t. α̃. An
axiom α is called global if it is non-local w.r.t. ∅.

Note that checking the tautology of an axiom α is done by checking the
entailment of α by the empty ontology, i.e., ∅ |= α. In order to avoid this check
(which involves reasoning and might be expensive) the notion of syntactic locality
was introduced in [2].

We are not giving a formal definition of syntactic locality here. This would be
an unnecessary complication, as the algorithms will use the locality checker as a
black box. The intuition behind the syntactic locality is that it tries to simulate
the entailment check by exploring the axiom structure and making decisions
about locality by propagating constant values through expressions.

Syntactic locality is sound in the sense that every syntactically local axiom
is also semantically local. The converse is not true, however: some syntactically
non-local axiom are semantically local. We assume that the locality checker
provides a method isNonLocal(α) that returns true iff the axiom α is non-
local.

Definition 3 (Atomic Decomposition). A set of axioms A is an atom of an
ontology O, if for every module M of O, either A ⊆M or A∩M = ∅. An atom
A is dependent on B (written B 4 A) if A ⊆ M implies B ⊆ M , for every
module M . An Atomic Decomposition of an ontology O is a graph G = 〈S,4〉,
where S is the set of all atoms of O.
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Algorithm 1 Original Modularity Algorithm [2]

1: function getModule(Σ, O)
2: M ← ∅, Σ0 ← ∅
3: repeat
4: Σ0 ← Σ
5: for α ∈ O do
6: if α /∈M and isNonLocal(α,Σ) then
7: M ←M ∪ α
8: Σ ← Σ ∪ α̃
9: end if

10: end for
11: until Σ 6= Σ0

12: return M
13: end function

3 Module Extraction Algorithms

The locality-based module extraction is based on the following theorem.

Theorem 1 (Locality-based Module [2]). Let M ⊆ O be two ontologies

such that all axioms in O \M are local w.r.t. Σ ∪ M̃ . Then M is a module of O
w.r.t Σ

This claim holds for all types of modules, as well as the locality checking
approach. The original algorithm, based on this theorem, is described here as an
Algorithm 1, and is implemented in, e.g., OWL API.1

3.1 Original Module Extraction Algorithm

The algorithm starts from the empty module and then goes through all the
axioms to check their locality. If an axiom α is non-local w.r.t. the current
signature, it is added to the module. In addition, the signature is extended with
the signature of α. The whole process is repeated until the signature reaches a
fixpoint (line 11).

While having a simple structure and being easily understandable, the tradi-
tional algorithm has some inefficiencies. The most obvious one comes from the
fact that it is necessary to check all the remaining axioms in the ontology if a
single entity is added to the signature. This leads to the worst-case complexity of
O(n2), where n is the number of axioms in the ontology. Indeed, if every run of
the loop in lines 3–11 adds a single axiom to a module, increasing the signature
on each step, the loop will be run n times and about n2/2 locality checks will
be made.

1 http://owlapi.sourceforge.org

348



Algorithm 2 Improved Modularity Algorithm

1: function getModule(Σ,O)
2: SA← ∅, Globals← ∅,M ← ∅
3: for all α ∈ O do . Initialize SA and Globals
4: if isNonLocal(α, ∅) then . global axiom
5: Globals← Globals ∪ {α}
6: else
7: for all σ ∈ α̃ do
8: SA(σ)← SA(σ) ∪ {α}
9: end for

10: end if
11: end for

12: S ← Σ . Initialise working set
13: for all γ ∈ Globals do . Global axioms are always in the module
14: addNonLocal(γ,Σ,M, S)
15: end for

16: for all σ ∈ S do
17: S = S \ {σ}
18: for all α ∈ SA(σ) do
19: addNonLocal(α,Σ,M, S)
20: end for
21: end for
22: return M
23: end function

24: procedure addNonLocal(α,Σ,M, S)
25: if α /∈M and isNonLocal(α,Σ) then
26: M ←M ∪ α
27: S ← S ∪ (α̃ \Σ)
28: Σ ← Σ ∪ α̃
29: end if
30: end procedure

3.2 Improved Modularity Algorithm

The approach we propose in this paper replaces the global search over all axioms
in the ontology with a search over a reduced set of possibly affected axioms.
When a new entity is added to the signature, the algorithm checks locality only
of the axioms that contain this entity in their signature. This is correct due to
the following fact:

Proposition 1. Let Σ be a signature, and α an axiom such that α is local w.r.t.
Σ. Then α is also local w.r.t. any signature Σ ∪Σ′ such that Σ′ ∩ α̃ = ∅.
Proof. Let α|cΣ denote the axiom α in which all entities not in Σ are replaced
with c, where c is either > or ⊥ depending on the locality type. Then the claim
of the proposition follows from two simple observations:

1. α|cΣ1∪Σ2
= (α|cΣ1

)|cΣ2
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2. α|cΣ\α̃ = α

Since α is local w.r.t. Σ, α|cΣ is a tautology. The, by the first item above,
α|cΣ∪Σ′ = (α|cΣ)|cΣ′ = (α|cΣ)|cΣ′\α̃, which, by the second item, equals to α|cΣ .

So, α|cΣ∪Σ′ coincides with α|cΣ , i.e., is a tautology. Thus, α is local w.r.t. Σ ∪Σ′.
ut

Algorithm 2 implements the proposed approach. In lines 3–11, the auxiliary
structures for the algorithms are initialised. One of these structures is a map SA
that associates each entity with the set of axioms containing it in their signature.
Another is a set of global axioms Globals. Global axioms should be treated in a
special way as they are part of every module independently of their signature.

After these structures are created, the algorithm initialises the working set
S with the initial signature Σ. Then, all the global axioms from the set Globals
are added to the module using the addNonLocal procedure.

In the main cycle (lines 16–21) an entity σ is taken from the set S, then the
set of affected axioms is retrieved using the map SA. Each of these axioms is
checked for locality and, if non-local, is added to the module by addNonLocal.

The addNonLocal procedure is defined in the lines 24–30 of the Algo-
rithm 2. If an axiom is found non-local, it is added to the module M , and its
signature is added to Σ. Moreover, every new entity is added to the working set
S (line 27) to allow further search for the axioms that are non-local w.r.t. the
extended signature.

The correctness of the algorithm can be proved by induction on the size of
the signature Σ. The basis of induction, for the empty signature: all that goes
to the module is the set of global axioms, which is done in the lines 13–15 of
the algorithm. Assume that for a given Σ all the necessary locality checks have
been performed for axioms in the ontology O. Let us now check the case when
a new entity σ is added to Σ. In this case all the axioms from O that contain
Σ in their signature, are re-checked for locality w.r.t. new signature. All other
axioms, according to Proposition 1, will keep their locality status, so there is no
need to re-check them.

Note that the computational complexity of the improved algorithm is differ-
ent from th eone of the original one. Now every axiom α is checked an most |α̃|
times, so the overall complexity is O(N × s), where N is the size of the ontology
O and s = maxα∈O(|α̃|).

It is also worth noting that the initialisation of auxiliary structures (lines 3–
11) can be done only once for every ontology, and then reused for consequent
module extraction queries.

4 Atomic Decomposition Algorithms

Now let us introduce the algorithms for the atomic decomposition of an ontology.
For the ease of explanation we assume that the ontology for the atomic decom-
position does not contain tautologies (i.e. axioms that are local w.r.t. their own
signature). They have no sense in the atomic decomposition, as they does not
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Algorithm 3 Original Atomic Decomposition [1]

1: procedure AtomicDecomp(O)
2: Gen← ∅,Module← ∅, Atom← ∅,4← ∅
3: for all α ∈ O do . build all atoms and modules
4: Module(α)← getModule(α̃, O)
5: if isNewModule(α,Gen) then
6: Atom(α)← {α}
7: Gen← Gen ∪ α
8: end if
9: end for

10: for all α ∈ Gen do . build all dependencies
11: for all β ∈ Gen do
12: if α ∈Module(β) then
13: 4←4 ∪〈Atom(α), Atom(β)〉
14: end if
15: end for
16: end for
17: end procedure

18: function isNewModule(α,Gen)
19: for all β ∈ Gen do
20: if Module(α) = Module(β) then
21: Atom(β)← Atom(β) ∪ {α}
22: return false
23: end if
24: return true
25: end for
26: end function

belong to any (locality-based) module of the ontology. In order to achieve this
one have to check all the axioms and remove the tautologies from the ontology.

4.1 The Original Atomic Decomposition Algorithm

The original atomic decomposition algorithm presented here was described by
Del Vescovo et al [1]. It contains two independent parts. The first part (lines 3–
9) builds all the atoms of the ontology. It is done by creating a module for a
signature of every axiom α (line 4), and by comparing this module to already
created modules. If such a module already exists in the ontology (which is checked
in the auxiliary procedure isNewModule, line 20), then the axiom is added to
the atom, represented by the already checked axiom β (line 21). If no module is
equivalent to the module for α, then α goes to a new atom (line 6).

The second part of the algorithm, lines 10–16, builds the dependency relation
4. It goes through all atoms and sets the dependency between atoms A and B
if an axiom from A is contained in the module built for axioms from the atom
B.
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4.2 Improved Atomic Decomposition Algorithm

As in the case of the module extraction algorithm, the traditional atomic de-
composition algorithm suffers from some inefficiencies. The first is independence
of module creation: all the modules are created, using the whole ontology as a
starting point. However, in many cases a module is included into another module
with a bigger signature. This is a consequence of the following observation.

Algorithm 4 Improved Atomic Decomposition

Require: An ontology O
Ensure: Set to atoms Atom, set of modules Module, dependency function 4
1: procedure BuildAD(O)
2: for all α ∈ O do
3: if Atom(α) = ∅ then
4: buildAtomsInModule(α, null) . Set Module(null) to be O
5: end if
6: end for
7: TransitiveClose(4)
8: end procedure

9: function buildAtomsInModule(α, β)
10: if Atom(α) 6= ∅ then . The atom for α is already known
11: return α
12: end if

13: δ ← getAtomSeed(α, β)
14: Atom(δ)← Atom(δ) ∪ {α}
15: if δ = β then
16: return β
17: end if

18: for all γ ∈Module(α) \ {α} do
19: δ ← buildAtomsInModule(γ, α)
20: 4←4 ∪〈Atom(δ), Atom(α)〉
21: end for
22: return α
23: end function

24: function getAtomSeed(α, β)
25: Module(α)← getModule(α̃,Module(β))
26: if Module(α) = Module(β) then
27: return β
28: else
29: return α
30: end if
31: end function
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Proposition 2. Let α, β be axioms in an ontology O. Let Module(γ,O) denote
the module of O w.r.t. γ̃. Then Module(β,O) ⊆ Module(α,O) whenever β ∈
Module(α,O).

In fact, this proposition follows from depleteness of the locality-based mod-
ules [1, Proposition 2.2, claim iii]. So in order to build a module for β it is enough
to explore only axioms in the module for α.

Another observation stems from the analysis of an dependency relation struc-
ture. Lines 12–13 of the Algorithm 3 imply that all atoms on which Atom(β)
depends are contained in Module(β). But in this case there is no need to look
outside that module for the dependencies. At the same time, the dependency
relation could be build during the atom creation process.

These two ideas lie at the foundation of the improved atomic decomposition
algorithm, presented as Algorithm 4. The main cycle (lines 2–6) ensures that
an atom is built for every axiom, using the whole ontology as a starting point.
After all atoms are created, the dependency relation is completed by using the
standard transitive closure algorithm (line 7).

The main ingredient of the algorithm is implemented as a recursive function
buildAtomsInModule. It takes two parameters: an axiom α, for which the
atom (and module) are going to be built; and an axiom β, which is a “parent”
of an α in the sense that Module(α) ⊆Module(β). For special case β = null, as
in line 4 of the code, we assume that Module(β) is the whole ontology O. The
function returns a representative of the Atom(α).

First, it checks whether an atom for α has been already created (lines 10–12).
In this case there is nothing to do and α is returned as a representative.

Then, using the module of a parent axiom as a starting point, the module
for α is created (line 25). Then, like in the function isNewModule from Al-
gorithm 3, the algorithm checks whether such module already exists. However,
unlike in function isNewModule, only one check is required here (line 26),
namely, to compare it with the parent module. Then axiom α is added to an
atom, obtained by function getAtomSeed (line 14) and, if the atom already
exists (i.e., is represented by the parent axiom β) then the parent is returned.

If the atom is new, i.e. Module(α) 6= Module(β), the algorithm recursively
builds all atoms inside Module(α) (lines 18–21): buildAtomsInModule is
called for all axioms in Module(α) with α as a parent. The dependency re-
lation is updated accordingly (line 20), as Atom(α) depends on every atom in
the Module(α). In the end, α as a representative of a new module, is returned.

5 Empirical Evaluation

The improved algorithms described in Sections 3.2 and 4.2 were implemented in
the FaCT++ Description Logic reasoner [4]. We have done some experiments,
which show considerable performance improvement over the original versions of
the algorithms.
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The first set of experiments shows the difference between original and im-
proved module extraction algorithms. As a test we perform an atomic decom-
position (improved algorithm) over several well-known ontologies, because it
intensively uses the module extraction procedure. The results are presented in
Table 1. Here the ontology size is given in the number of axioms, size of the
atomic decomposition (AD size) is given in number of atoms.

Table 1. Time and number of locality checks for some ontologies

Ontology Ont. size, AD size, Old algorithm New Algorithm Ratio
#axioms #atoms time, sec nLoc time, sec nLoc

NCI 85,685 54,332 2,282.0 17.3·109 521.2 330·106 52.4
GO 25,117 25,114 414.0 2.3·109 39.6 88·106 26.1
Galen (Full) 4,979 2,699 4.6 56.7·106 2.9 5.7·106 9.9
Wine 869 5 0.0 125·103 0.0 56·103 2.2

This table shows some general patterns of the performance improvement.
The first two ontologies represent the case of a large number of small atoms,
where the improved algorithm behaves in the best way. The full version of the
Galen ontology is very hard for reasoning. It contains one large atom (about 950
axioms), while all other atoms are rather small. Still, the improved algorithm
requires only 10% of the locality checks in the original one. The Wine ontology
represents the other end of the spectrum: a few very large atoms. This leads to
the smallest improvement of the new algorithm against the original one; however,
even in this case it uses 50% operations of the standard algorithm.

Fig. 1. Ratio between the improved and original atomic decomposition algorithms on
BioPortal ontologies

The second set of experiments compares two atomic decomposition algo-
rithms on a set of ontologies. We use the OWL API implementation as a refer-
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ence, and the FaCT++ implementation as an improved algorithm. The set of
test ontologies is a subset of BioPortal ontologies, described in [5].

The results of the tests are shown at Fig. 1. The graph shows the ratio
between the time needed to decompose ontologies by the original algorithm and
the improved algorithm. While the average ratio is about 7, in the extreme cases
the improved algorithm demonstrates 48 times better performance.

6 Conclusions

We propose new improved algorithms of the locality-based module extraction
and atomic decomposition of the ontologies. We prove their correctness and
compare them with the original algorithms. Provided empirical evaluation results
confirm that the proposed algorithms outperformed original ones on a set of real-
life ontologies.

We are planning to implement a semantic locality checker and compare re-
sults on real-life ontologies. We also are planning to implement labelled atomic
decomposition [5], which could be useful for the fast module extraction.
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1 Introduction

A key application of Description-Logic based ontologies is Ontology-Based Data
Access (OBDA) [9]. In such scenarios a TBox is used to describe the schema
of the application while answers to conjunctive queries reflect both the schema
and the data. Unfortunately, it is well-known that conjunctive query (CQ) an-
swering over expressive Description Logics (DLs) is of very high computational
complexity [7, 5].

The need for efficient query answering has motivated the development of
(families of) lightweight ontology languages, such as the DL-Lite family [3, 2].
Query answering in these languages is usually performed via a technique called
query rewriting. According to this technique, a query and a DL-Lite ontology are
transformed into a union of conjunctive queries (often called a UCQ rewriting)
such that, the answers of the union of conjunctive queries over the input data
and discarding the ontology are precisely the answers of the original query over
the data and the ontology.

In the last years a large number of different algorithms and systems for com-
puting rewritings for DL-Lite ontologies has been presented. Examples of such
systems are QuOnto [1], Requiem [8], Presto [10], Nyaya [6], and Rapid [4].
Roughly speaking, all systems apply a set of equivalence-preserving transforma-
tions over the input query and TBox producing new queries until a fix-point
is reached. In several previous approaches [3, 8, 6] this process is largely brute-
force, in the sense that the algorithm iterates over the currently computed set
of queries, over the atoms of the query and over the TBox axioms, and if some
of the rules of the algorithm applies then a new query is generated.

It was shown recently that given a query q, a TBox T and an atom α of q, a
UCQ rewriting for q, T can be computed by first computing a UCQ rewriting u−

for query q \{α} (i.e., q without the atom α) and then ‘extending’ this rewriting
with additional information from T that only regards α [11]. Using this idea
we present a novel algorithm for computing a UCQ rewriting for queries over
DL-LiteR-TBoxes1 incrementally. Roughly speaking, given a query q with atoms
α1, . . . , αn the algorithm first computes UCQ rewritings ui for ‘special’ queries
that contain only a single body atom αi. Finally, these UCQs are iteratively
‘combined’ until a UCQ rewriting for the input query has been computed.

Compared to several previous approaches our algorithm is significantly guided.
At each step all the knowledge of T that regards a single atom αi is ‘materialised’

1 DL-LiteR is a popular member of the DL-Lite family [3].
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into ui and is used to extend the currently computed UCQ. Our approach also
shows that the process of rewriting (at least for DL-Lite) can be largely per-
formed in parallel by ‘decomposing’ q into parts and processing them separately,
which to the best of our knowledge, was previously unknown.

Furthermore, to further increase the efficiency of the algorithm, we addition-
ally present a list of optimisations which considerably decrease its computation
time. Many of the optimisations are intended to increase the efficiency of our
final backward-subsumption (redundancy elimination) algorithm.

Finally, we have implemented the proposed algorithm and optimisations and
we have compared them against several available state-of-the-art systems. Our
results show that computing a UCQ rewriting incrementally is in the vast major-
ity of cases more efficient than all systems. More precisely, our algorithm requires
less time and computes the smallest UCQ rewriting in nearly all ontologies. In-
terestingly, when compared to the original DL-Lite algorithm [3], which also uses
the same technique to compile knowledge from T , our algorithm is several orders
of a magnitude faster, which shows the benefits of the more guided approach.

An extended version of the paper with detailed proofs of correctness can be
found online.2

2 Preliminaries

Let C, R, and I be countable, pairwise disjoint sets of atomic concepts, atomic
roles, and individuals. A DL-LiteR-role is either an atomic role P or its inverse
P−. DL-LiteR-concepts are defined inductively by the grammar B := A | ∃R,
where A ∈ C and R is a DL-LiteR-role. A DL-LiteR-TBox is a finite set of
axioms of the form B1 v B2 or B1 uB2 v ⊥, with B(i) DL-LiteR-concepts and
⊥ the bottom concept that is empty in all interpretations, or of the form R1 v R2

with R(i) DL-LiteR-roles. An ABox is a finite set of assertions of the form A(c)
or P (c, d) for A ∈ C, P ∈ R and c, d ∈ I. A DL-LiteR-ontology O = T ∪ A
consists of a TBox and an ABox.

A conjunctive query (CQ) q is an expression of the form {~x | {α1, . . . , αm}}
where {α1, . . . , αm} is called the body of the query with αi a concept or role
atom of the form A(t) or R(t, t′) (for t, t′ function-free terms and A,R atomic)
and ~x = (x1, . . . , xn) is a tuple of variables called the distinguished (or answer)
variables, each appearing in at-least some atom αi. The remaining variables of q
are called undistinguished. We use var(q) to denote all the variables appearing in
q and avar(q) to denote all its distinguished variables. We often abuse notation
and use q to refer to the set of its atoms, i.e., {α1, . . . , αm}. Hence, for β an
atom and q a CQ, q ∪ {β} denotes a new CQ that consists of the atoms of q
plus β and the same distinguished variables as q. For the rest of the paper, and
without loss of generality, we will assume that queries are connected [5]. Finally,
a union of conjunctive queries (UCQ) is a set of CQs.

Given CQs q1, q2 with distinguished variables ~x and ~y, respectively, we say
that q2 subsumes q1, if there exists a substitution θ from the variables of q2 to the

2 http://image.ece.ntua.gr/~gstoil/main.pdf
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variables of q1 such that the set [{Q(~y)}∪ q2]θ is a subset of the set {Q(~x)}∪ q1,
where Q is a predicate of the same arity as ~x and ~y that does not appear in q1
or q2. Finally, for a UCQ u and CQ q, we say that q is redundant in u if another
query in u exists that subsumes q; otherwise it is called non-redundant.

For a DL-LiteR-TBox, a UCQ rewriting u for q, T can be computed using the
perfect reformulation algorithm (PerfectRef) [3]. The algorithm applies exhaus-
tively a reformulation and a reduction step that generate new CQs; the process
terminates when no new CQ is generated. More precisely, in the reformulation
step the algorithm picks a CQ q, an atom α in the body of the CQ and an axiom
I in T and applies the axiom on α replacing it with a new atom. For example,
for the query q1 = {x | {R(x, y), A(y)}} and the axiom I1 = ∃R v A, applying
I1 on atom A(y) produces the new CQ q2 = {x | {R(x, y), R(z, y)}}, where z
is a ‘fresh’ variable. In the reduction step a new CQ is generated by applying
to some CQ q the most general unifier (mgu) of two of its atoms. For example,
applying reduction on query q2 above generates query q3 := {x | {R(x, y)}}.

Let G = 〈U,E〉 be a graph. For a, b ∈ U we say that b is reachable from
a, written a  G b, if c0, . . . , cn with n ≥ 0 exist where c0 = a, cn = b and
〈ci, ci+1〉 ∈ E for each 0 ≤ i < n. An element c ∈ U is called top in G if for each
c′ ∈ U we have c G c′.

3 Extending Query Rewritings

It has been shown in [11] that given a CQ q, a rewriting u for q, T and an
atom α, a UCQ rewriting for the query q′ = q ∪ {α}, T can be computed by
re-using the previously computed (given) information for q. Roughly speaking,
the algorithm computes a UCQ rewriting uα for a query qα that consists only
of the atom α and then extends the queries in u with atoms of the queries from
uα. The following example illustrates this idea.

Example 1. Consider the following DL-LiteR-TBox and CQ:

T = {Professor v ∃teaches, ∃teaches− v Student} q = {x | {teaches(x, y)}}

and the UCQ rewriting u = {q, q1} where q1 = {x | {Professor(x)}} for q, T
computed using PerfectRef. Assume now, that q is extended in order to retrieve
only those individuals that teach students—that is, q is extended to q′ = {x |
{teaches(x, y),Student(y)}}. In order to compute a UCQ rewriting for q′, T the
algorithm presented in [11] proceeds as follows.

First, it constructs the query qα = {y | {Student(y)}} that consists of the
single body atom α and its distinguished variables are the common variables
between α and q. Then, a UCQ rewriting uα = {qα, q′α} for qα, T is computed
using PerfectRef, where q′α = {y | {teaches(z, y)}} for z a fresh variable. Subse-
quently, the algorithm initialises an empty UCQ u′ and iterates over the sets u
and uα constructing and adding new queries to u′ as follows:

1. The atoms of qα are added to q; hence, query q′ is added to u′.
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2. The atoms of q′α are added to q; hence, query q′1 = q ∪ {teaches(z, y)} is
added to u′.

3. The algorithm identifies that the body atom of q′α can be unified into the
body of q; the result (i.e., CQ q) is added to u′. Additionally, since after this
unification CQ q is part of the target UCQ u′ all queries that are produced
in u due to q also need to be added; hence, query q1 is also added to u′.

4. No query is generated from q1 and qα (or q′α) since q1 does not contain all
the distinguished variables of qα (or q′α), i.e., avar(qα) * var(q1).

It can be verified that the set u′ = {q′, q′1, q, q1} is a UCQ rewriting for q′, T . ♦

Intuitively, the above approach is possible because the process of rewriting is
to a large extend ‘local’ with respect to the atoms of a query. For example,
the application of reformulation on some query atom is independent from the
other atoms of the query, hence the information from T that regards α can be
materialised and then used to extend the queries in u. The only exception is the
reduction step where two different atoms are unified. This step was introduced
in [3] because an axiom might only be applicable to a reduction of some query—
that is, after reduction the reformulation procedure can continue. To tackle these
cases the algorithm in [11] checks whether a query from uα can be ‘absorbed’
(‘merged’) into a query qi from u. Note, however, that the algorithm does not
apply exhaustively all possible unifications as done in the original reduction step.
In contrast, it unifies a query qα into a query q in such a way that the queries
that are (possibly) produced in u due to q can still be produced. This is similar
to the factorisation optimisation [6]. Our algorithm uses the following function.

Function mergeCQs: Let q, q′ be two queries. Then, function mergeCQs(q′, q)
returns a substitution σ defined as follows: (i) if there exists α ∈ q′ ∩ q, then
σ is the identity substitution; (ii) if there exist R(z, y) ∈ q′, R(x, y) ∈ q or
R(y, z) ∈ q′, R(y, x) ∈ q and x, y, z are pair-wise different, then σ = {z 7→ x};
otherwise, σ = ∅.

In Example 1, for q′α and q we have mergeCQs(q′α, q) = {z 7→ x}, hence q as
well as all queries that are produced in u due to q (i.e., q1) are added to the
result. To accomplish the latter, however, the algorithm needs to be aware of
the dependencies of the queries in the given (pre-computed) UCQ u. To capture
this information, instead of a UCQ, the algorithm accepts as input a graph G of
queries which encodes the dependencies between the queries in u.

Definition 1. Let q be a CQ and let T be a DL-LiteR-TBox. A rewriting graph
for q, T is a directed graph G = 〈u,H,m〉, where u is a UCQ rewriting for q, T ,
H is a binary relation over u, and each node qi ∈ u is labelled with a substitution
m(qi). Moreover, G satisfies the following properties: (i) If 〈q1, q2〉 ∈ H, then
q2 is produced from q1 by the application of a reformulation or reduction step,
and (ii) for each 〈q1, q2〉 ∈ H if q2 is produced by a reformulation step, then
m(q2) = m(q1), while if it is produced by a reduction step with σ the mgu, then
m(q2) = m(q1) ◦ σ.
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Algorithm 1 IncrementalRew(q, T )

input: A CQ q and a DL-LiteR-TBox T .

1: Let S be the set of body atoms in q
2: Remove an atom α from S s.t. var(α) ∩ avar(q) 6= ∅
3: Set av := var(α) ∩ avar(q) and cv := var(α)
4: Gi := ex-PerfectRef({av | {α}}, T )
5: while S 6= ∅ do
6: Remove an atom α′ from S s.t. var(α′) ∩ cv 6= ∅
7: jv := cv ∩ var(α′)
8: av := av ∪ (var(α′) ∩ avar(q))
9: Gα := ex-PerfectRef({jv | {α′}}, T )

10: G′ := 〈u′,H′,m′〉 for an empty UCQ u′, binary relation H′ and mapping m′

11: Let qi be a top CQ in Gi and qα a top CQ in Gα
12: joinGraphs(qi, qα,G′,Gi,Gα, av, jv)
13: cv := cv ∪ var(α′)
14: Gi := G′
15: return removeRedundant(G)

A rewriting graph for a query q over a DL-LiteR-TBox can be easily com-
puted by a straightforward extension of the PerfectRef algorithm, which we call
ex-PerfectRef. The details of the algorithm have been presented in [11].

4 An Incremental Query Rewriting Algorithm

The previous results show that a rewriting for a given (fixed) query over some
TBox can be computed incrementally by considering one of its atoms at a time.
For example, for query q′ = {x | {teaches(x, y),Student(y)}} of Example 1 we
can fist select atom α1 := teaches(x, y) compute a UCQ rewriting uα1 for qα1 =
{x | {teaches(x, y)}} (which consists of the set {q, q1} of the example) and then
pick the last atom, compute a UCQ uα2

for qα2
:= {y | {Student(y)}} and finally

extend uα1
with atoms of queries from uα2

as shown in Example 1. In general,
given a (fixed) query one can pick one of its atoms, compute a rewriting (graph)
for it, and then iteratively add the rest of its atoms by extending the previously
computed rewriting. When all the atoms have been processed a UCQ rewriting
for the given query would have been computed. In contrast to our previous work
[11], at each step this algorithm should produce a rewriting graph out of the
input rewriting graph instead of a UCQ in order to be able to iteratively process
all the atoms.

This idea is illustrated in Algorithm 1. The algorithm first selects some atom
α such that some of its variables appear as distinguished variables in q (line 2)
and computes a rewriting graph Gi for the query {var(α) ∩ avar(q) | {α}} (line
4). Hence, initially a rewriting graph for a query that contains only atom α of
q, variables cv := var(α) of q and distinguished variables av := var(α) ∩ avar(q)
of q have been computed. Then, the algorithm selects one-by-one the remaining
atoms and extends the previously computed rewriting graph (lines 5–14). More
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Algorithm 2 joinGraphs(qh, qα,G′,G,Gα, av, jv)

input: Rewriting graphs G′ = 〈u′,H′,m′〉, G = 〈u,H,m〉 and Gα = 〈uα,Hα,mα〉
and two sets of variables jv and av.

1: κ := m(qh)
2: if canBeJoined(qh, κ, jv) then
3: Create CQ qc := {av | qh ∪ (qα)κ}, set m′(qc) := κ and add qc to u′

4: Set σ := mergeCQs(qα, qh)
5: if σ 6= ∅ then
6: Add 〈qc, (qh)σ〉 to G′
7: for all q′ s.t. qh  G q

′ do
8: Set m′({av | q′}σ) := κ ◦ σ
9: for all 〈q′, q′′〉 ∈ G do Add 〈{av | q′}σ, {av | q′′}σ〉 to G′

10: for all 〈qα, q′〉 ∈ Gα do
11: Create CQ q′c := {av | qh ∪ (q′)κ}, set m′(q′c) := κ and add 〈qc, q′c〉 to G′
12: joinGraphs(qh, q

′,G′,G,Gα, av, jv)
13: for all 〈qh, q′〉 ∈ G do
14: if canBeJoined(q′,m(q′), jv) then
15: Create CQ q′c := {av | q′ ∪ (qα)κ}, set m′(q′c) := κ and add 〈qc, q′c〉 to G′
16: joinGraphs(q′, qα,G′,G,Gα, av, jv)

precisely, at the beginning of the i-th iteration the algorithm has computed a
rewriting graph Gi for a query qi that contains i atoms of q, cv contains the
variables of q that appear in qi, while av the distinguished variables of q that
appear in qi. Hence, it picks another atom α′ such that some of its variables also
appear in cv (line 6), it adds the variables of α′ that are distinguished in q to
av (line 8), it computes a rewriting graph Gα for the query {var(α′) ∩ cv | {α′}}
(line 9) and then, it joins G with Gα′ using function joinGraphs (line 12) storing
the result to G′. Finally, after processing all atoms of the query it uses the
well-known redundancy elimination algorithm proposed in [8] to remove the
redundant (subsumed) queries (line 15).

Function joinGraphs is shown in Algorithm 2. Intuitively, this algorithm com-
putes the Cartesian product of the two input rewriting graphs (modulo cases
where queries should be merged). The intuition is that if 〈q, q′〉 ∈ G (i.e., q′

is produced by q) and qα is a vertex in Gα, then the same step would also be
applicable to query q ∪ qα—that is, q ∪ qα will produce the CQ q′ ∪ qα (for-loop
in line 13). Similarly, for q a vertex in G and 〈qα, q′α〉 ∈ Gα (for-loop in line 10).
In addition the algorithm also checks whether a CQ from Gα can be merged into
some CQ qh from G (line 4). If this is the case then the queries that have been
produced in G due to qh are copied to the new rewriting graph (see lines 7–9).

Note that the graphs can be cyclic but standard graph-traversal algorithms
can be used to guarantee termination.

Example 2. Consider the TBox T and CQ q′ = {x | {teaches(x, y),Student(y)}}
of Example 1. A run of Algorithm 1 is the following:

(1.) First, it selects atom α s.t. var(α) ∩ avar(q′) 6= ∅ (line 2). The only
atom that satisfies this condition is α = teaches(x, y). Subsequently, algorithm
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ex-PerfectRef is executed for q = {x | {teaches(x, y)}} and T . This creates the
rewriting graph Gi = 〈u,H,m〉, where u = {q, q1} is as defined in Example 1,
H = {〈q, q1〉} and m(q) = m(q1) = ∅ (line 4). At this point cv = {x, y} and
av = {x}.

(2.) Next, the algorithm picks another atom α′ of q′ s.t. var(α′) ∩ cv 6= ∅.
One such atom is α′ = Student(y). Hence, using again algorithm ex-PerfectRef
it computes for qα = {y | {Student(y)}} and T (line 9) the rewriting graph
Gα = 〈uα,Hα,mα〉, where uα = {qα, q′α} is as defined in Example 1, H =
{〈qα, q′α〉} and m(qα) = m(q′α) = ∅. Subsequently, it calls algorithm joinGraphs
with parameters q, qα, G′, Gi (as computed in the previous step), Gα and the
variable sets av = {x} and jv = {y} in order for G′ to reflect the new graph.
This algorithm proceeds as follows: first, it selects q from Gi and qα from Gα and
creates the query q′ = {x | {teaches(x, y),Student(y)} (by adding atoms of qα to
q) (line 3). Then, it proceeds to the child of qα, (i.e., to q′α) and it creates the
CQ q′1 = {x | {teaches(x, y), teaches(z, y)}} (by adding atoms of q′α to q) (line
11). Moreover, it also adds the relation 〈q′, q′1〉 to G′. Subsequently, a recursive
call to joinGraphs is made with first two parameters q and q′α. In this call, in line
4, mergeCQs(q′α, q) returns {z 7→ x}, hence tuples 〈q′1, q〉 and 〈q, q1〉 are added
to G′, and m(q) = m(q1) = {z 7→ x}. (Note that qσ = q and q1σ = q1) Then, the
algorithm returns from the recursive call and proceeds in line 13 to the child of q
(i.e., q1) but canBeJoined(q1,m(q1), jv) returns false for the reasons explained in
Example 1 item 4. Hence, the algorithm terminates and we have G′ = 〈u′,H′,m′〉
where u′ = {q′, q′1, q, q1} (as defined in Example 1), H′ = {〈q′, q′1〉, 〈q′1, q〉〈q, q1〉}
and m(q′) = m(q′1) = ∅, m(q) = m(q1) = {z 7→ x}. ♦

5 Optimisations

5.1 Optimising the Last Iteration

As explained earlier, Algorithm 2 computes the cartesian product between two
rewriting graphs. The structure of the computed graph is important while pro-
cessing the atoms of the query, however, it is not important after processing the
last atom of the input query. Consequently, in the last iteration, Algorithm 1
can call a simplified version of Algorithm 2 that constructs a set of CQs rather
than a rewriting graph. Algorithm 3 depicts the simplified algorithm. Roughly
speaking, it is obtained from Algorithm 2 by, removing the for-loop starting in
line 13, computing for the last selected atom α a set uα rather than a rewriting
graph Gα, and adding the computed queries to a UCQ rather than a graph.

5.2 Optimising Redundancy Elimination

In line 15 Algorithm 1 applies the well-known redundancy elimination algorithm
from [8]. As it has been shown by several experimental evaluations [8, 4], this
method usually does not perform well in practice, because it consists of several
loops over the (potentially large) set of computed CQs. In order to improve the
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Algorithm 3 OptimisedExtensionStep(G, uα, jv, av)

Input: A rewriting graph G = 〈u,H,m〉, a UCQ uα, and two sets of variables.

1: Initialise a queue Q with a top element in G
2: Initialise a UCQ U := ∅
3: while Q 6= ∅ do
4: Remove the head q of Q and let κ := m(q)
5: if canBeJoined(q, κ, jv) then
6: Add {av | q ∪ (qα)κ} to U
7: for all qα ∈ uα do
8: σ := mergeCQs(qα, q)
9: if σ 6= ∅ then

10: for all q′ s.t. q  G q
′ do Add {av | q′}σ to U

11: else Add each q′ such that 〈q, q′〉 ∈ G to Q
12: return U

performance of this method our algorithm uses the following two approaches.
First, it tries to identify queries that, if added to the final rewriting, they are
going to be redundant. Clearly, such queries need not be added, hence reducing
the size of the set over which algorithm removeRedundant would be executed.
Secondly, it also tries to identify queries that are going to be non-redundant.
Such queries can then be excluded from the final check. Our algorithm identifies
such queries as follows.

In the last iteration and before calling Algorithm 3 it executes the standard
subsumption checking algorithm over G and stores all subsumption relations.
Note that, the size of G at this point is expected to be significantly smaller than
that of the final UCQ, hence the algorithm should behave well in practice. Then,
when executing Algorithm 3 it identifies redundant queries as follows:

– In line 10, it adds a query {av | q′}σ to U only if for q the subsumer of q′

(if it exists) {av | q} is not already in U .
– Let q selected in line 4. If a subsumer q′ of q exists such that, either {av | q′} is

already in U , or q′ ⊆ q, m(q′) = m(q), and canBeJoined(q′,m(q′), jv) = true,
then the algorithm ‘skips’ q—that is, it adds each q′′ such that 〈q, q′′〉 ∈ G
to Q and it continues with the next CQ.

Also, Algorithm 3 is modified to identify non-redundant queries as follows:

– At the beginning it initialises an empty set NR of non-redundant queries.
– In line 10, if {av | q′}σ = {av | q′} and q′ is non-redundant in u it adds
{av | q′}σ to NR.

– In line 6, it adds {av | q ∪ (qα)m(q)} to NR if none of the predicates in qα
appear in any CQ in u and if for each q′α ∈ uα we have mergeCQs(q′α, q) = ∅.

– Finally, it returns both the UCQ U and the set NR.

Subsequently, the returned set NR is used by method removeRedundant as fol-
lows: All queries that are in the set NR are excluded from redundancy checking.
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Table 1: Comparison between PerfectRef, Nyaya, Rapid, and versions of IQAROS

O Q
Size of UCQ UCQ Computation Time Overall Rewriting Time

PR Nyaya Rapid Inc1 Inc2 Inc3 PR Nyaya Rapid Inc1 Inc2 Inc3 PR Nyaya Rapid Inc1 Inc2 Inc3

P5

1 6 6 6 6 6 6 1 14 7 1 1 2 1 14 7 1 2 2
2 11 10 10 10 10 10 15 128 14 7 3 3 17 128 15 8 4 4
3 22 13 13 13 13 13 256 726 22 76 19 19 261 726 23 78 21 21
4 45 15 15 15 15 15 1828 1889 33 288 173 166 1830 1889 36 291 178 169
5 90 16 16 16 16 16 32255 16062 75 838 306 308 32270 16062 77 841 310 310

P5X

1 14 14 14 14 14 14 0 12 10 0 0 1 1 12 10 0 1 1
2 86 66 25 81 25 25 2 130 23 2 3 1 13 170 26 6 4 3
3 530 374 127 413 133 74 36 540 92 24 6 12 150 1415 135 95 19 36
4 3476 2475 636 2070 670 393 656 1672 343 187 46 122 5876 3842 1181 313 283 445
5 23744 17584 3180 10352 3352 2057 41454 15095 2061 828 214 371 326400 142580 5252 2817 1078 1233

S

1 6 6 6 6 6 6 0 15 6 0 0 0 0 15 6 0 0 0
2 202 3 2 204 12 2 12 11 9 12 4 3 34 12 9 12 4 3
3 1005 7 4 864 96 4 190 46 14 60 8 7 677 48 14 65 9 7
4 1548 5 4 1428 84 4 254 34 14 104 9 6 889 34 14 116 10 7
5 8693 13 8 6048 672 8 8216 159 36 1018 227 93 54252 163 37 1146 236 93

U

1 2 2 2 2 2 2 0 25 9 1 1 2 1 25 9 1 1 2
2 189 1 1 190 5 1 24 7 19 12 3 4 32 7 19 12 3 4
3 296 4 4 300 20 4 112 172 13 77 5 7 144 172 14 79 5 7
4 1763 2 2 1688 45 2 826 15 17 253 8 10 1500 15 17 258 8 10
5 3418 11 10 3375 90 10 2680 107 18 527 17 20 5083 108 19 582 18 20

UX

1 5 5 5 5 5 5 0 24 11 1 1 2 0 24 11 1 2 2
2 286 1 1 287 7 1 14 6 13 10 4 4 31 6 13 11 4 4
3 1248 12 12 1260 84 12 118 166 20 80 10 11 534 166 21 104 21 11
4 5385 5 5 5137 129 5 829 15 17 201 11 13 6354 15 17 243 15 13
5 9220 26 25 8955 225 25 2625 115 26 427 31 53 19622 120 30 593 67 53

A

1 402 248 27 357 77 77 24 1231 18 17 5 10 55 1304 18 18 11 14
2 103 93 54 103 54 54 124 4928 43 39 12 16 127 4967 45 39 43 17
3 104 105 104 104 104 104 656 35451 97 173 103 106 661 35491 97 177 328 107
4 492 455 333 471 320 320 1237 17121 170 170 58 52 1297 17511 208 197 130 55
5 624 - 624 624 624 624 355571 - 383 3412 258 620 355872 384 3667 491 637

AX

1 783 556 41 794 431 431 30 1282 26 18 4 10 135 1649 26 24 8 13
2 1812 1738 1546 1812 1653 1545 141 4493 649 57 26 30 892 5588 1191 752 772 92
3 4763 4742 4466 4763 4466 4466 707 34032 1694 186 48 125 8244 51352 2225 10018 8006 491
4 7251 6565 4497 7229 6639 4479 1282 16569 1247 192 37 45 12782 36460 2785 4891 3579 304
5 78885 - 32956 78885 74025 32960 319681 - 3810 4361 665 1276 - - 60006 - - 26770

Note that, some of the conditions above might seem rather strict. However, as
shown by our experimental evaluation these are usually satisfied in practice and
they can indeed be very effective. Moreover, their implementation overhead can
be noticeable in some cases, however, their benefits in several difficult scenarios
greatly outperforms it.

6 Evaluation

We have implemented Algorithms 1–3 in a prototype tool called IQAROS3 and
have compared it against PerfectRef [3], Nyaya [6], Requiem [8], and Rapid [4].4

Regarding IQAROS we included three versions; the first one (Inc1) implements
Algorithms 1 and 2 without any optimisations; the second one (Inc2) uses Al-
gorithm 3 instead of Algorithm 2 when it adds the last atom of the query; the

3 http://code.google.com/p/iqaros/
4 We were not able to obtain Presto as it is not publicly available. We also do not

present Requiem due to space limitations and since Rapid outperforms it.
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third one (Inc3) refines Inc2 by also implementing the various optimisations de-
tailed in the previous section. For the evaluation we used the relatively standard
framework proposed in [8], however, we did not include results for ontologies V
and P1 since they are rather trivial for all systems. Experiments were conducted
on a MacBook Pro with a 2.66GHz processor and 4GB of RAM, with a time-out
of 600 seconds.

Table 1 presents the results for each system, where the columns annotated as
“Size of UCQ” present the size of the computed UCQ before the final redundancy
elimination (after redundancy elimination all systems return the same UCQ, as
the ones reported in [8]), while the rest present the computation time before and
after redundancy elimination (measured in milliseconds).

First we compare the different versions of IQAROS. We observe that the size
of the computed UCQs decreases from Inc1 to Inc3. The difference between Inc1
and Inc2 is justified by the fact that the latter uses the simpler algorithm (Al-
gorithm 3) which does not compute the Cartesian product between the graphs.
The benefits of using this algorithm are also reflected in the computation times
of Inc2 compared to Inc1. Inc3 computes the smallest UCQ of the three versions
due to its techniques for eliminating redundant queries. Regarding execution
time Inc3 performs similarly to Inc2 and sometimes slightly worse, due to the
overhead of implementing the various optimisations. However, when considering
the total time the benefits of the optimisations become apparent. Inc3 is signif-
icantly faster in ontologies A and AX and is actually the only configuration of
IQAROS that can process query 5 in AX in only 27 seconds. This is heavily due
to the optimisation of tracking non-redundant queries.

Compared to PerfectRef, and Nyaya, all versions of IQAROS (even Inc1) are
much faster, in some cases even for several orders of a magnitude. Moreover,
Inc2 and Inc3 compute significantly smaller UCQs. Since in their core all these
systems are based on the same approach for materialising knowledge from T , we
concluded that this improvement is due to the incremental rewriting strategy
that provides a much more guided and localised strategy compared to the blind
brute-force application of the reformulation and reduction steps. Also Nyaya
supports n-arry predicates and its factorisation step is significantly more involved
that our merge function.

Compared to Rapid, Inc3 (the fastest of the three configurations) computes
similarly small UCQs with some small exceptions (either against or in favor) in
queries 3–5 in ontology P5X, in queries 1 and 3 in ontology A and in queries 1, 2,
4 and 5 in ontology AX. Moreover, Rapid is notably faster5 only in queries 4 and
5 in P5 and 5 in S and A. However, even in these cases the difference between
the systems is rather marginal as it never exceeds 253 milliseconds. In all the
other cases Inc3 is faster with most notable cases queries 4 and 5 in P5X and
2–5 in AX. Moreover, we can also see that redundancy elimination algorithm of
Inc3 is much more efficient than that of Rapid with again notable case query 5
in ontology AX. Once more, this is justified by the optimisations used in Inc3.

5 We consider a system to be ‘notably faster’ if it is faster for more than 20 milliseconds.
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7 Conclusion

In the current paper we presented a novel algorithm for query rewriting over
DL-LiteR ontologies. The algorithm is based on a novel approach that processes
each atom separately and then combines the results to compute a final UCQ
rewriting. It is significantly guided and our experimental evaluation showed that
it is generally faster than all available systems known to us.

We feel that our techniques have several important practical and theoretical
consequences and give opportunities for future work. First, we strongly feel that
this approach can be used in other First-Order rewritable languages, like Linear-
Datalog± [6], and there is strong evidence that the resulting system would exhibit
good performance. Even in non-First-Order rewritable languages one could per-
haps still exploit parts of this technique to increase the efficiency of the rewriting
algorithms. Moreover, our results show that the rewriting process (at-least for
DL-Lite) can largely be performed in parallel and such techniques can be further
investigated.

Acknowledgments Work supported by project EUscreen (ECP-2008-DILI-
518002) within EU’s eContentplus Programme. Giorgos Stoilos is supported
by a Marie Curie FP7-Reintegration-Grants within European Union’s Seventh
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Abstract. We present a novel method of evaluating instance queries
over description logic knowledge bases that derives from binary absorp-
tion. The method is designed to work well for large ABoxes and where the
TBox is not necessarily Horn, e.g., where background knowledge requires
the use of disjunction and negation. The method significantly improves
the performance of instance checking, and particularly so in cases where
a large number of concrete feature values are included. We also report on
the results of a preliminary experimental evaluation that validates the
efficacy of the method.

1 Introduction

Two of the basic reasoning tasks over a DL knowledge base K = 〈T ,A〉 are to
determine if K is consistent, and so-called instance checking : to determine if a
given concept assertion a : C (stating that individual a occurring in A belongs
to concept C) is a logical consequence of a consistent K, written K |= a : C.

Usually, these tasks are combined in the sense that the latter is assumed
to include the former. However, we believe that typical workloads for a reason-
ing service will include far more instance checking tasks than knowledge base
consistency tasks. The resulting “separation of concerns” can therefore enable
technology that is far more efficient for such workloads, particularly so in the case
of non-Horn DL TBoxes T that preclude the possibility of computing so-called
canonical ABoxes A′ from A (e.g., when disjunction is used in T ). We contribute
to this development by introducing a novel adaptation of binary absorption for
DL knowledge bases and demonstrate that the technique is efficacious for work-
loads that contain many thousands of instance checking tasks.

To date, work on absorption has focused on the concept satisfaction problem,
a simple case of the instance checking problem for knowledge bases with an ABox
consisting of a single assertion a : >. Indeed, it has been known for some time
in this case that lazy unfolding is an important optimization technique in model
building algorithms for satisfiability [1]. It is also imperative for a large TBox to
be manipulated by an absorption generation procedure to maximize the benefits
of lazy unfolding in such algorithms, thereby reducing the combinatorial effects
of disjunction in underlying tableaux procedures [3].

To consider performance issues for instance checking in the context of absorp-
tion, we first consider how one can map instance checking problems to concept
satisfaction problems in which consistency is assumed, and then revisit absorp-
tion in this new setting. In particular, we present an absorption generation pro-
cedure that is an adaptation of an earlier procedure reported at the description
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logics workshop [6]. This earlier procedure was called binary absorption and was
itself a generalization of the absorption theory and algorithms developed by Hor-
rocks and Tobies [4, 5]. The generalization makes it possible for lazy unfolding to
be used for parts of terminologies not handled by earlier absorption algorithms
and theory.

Binary absorption combines two key ideas. The first makes it possible to
avoid internalizing (at least some of the) terminological axioms of the form
(A1uA2) v C, where the Ai denote primitive concepts and C a general concept.
The second is an idea relating to role absorptions developed by Tsarkov and
Horrocks [13]. To illustrate, binary absorption makes it possible to completely
absorb the inclusion dependency

A1 u (∃R−1 .A2) u (∃R2.(A3 tA4)) v A5.

In this case, the absorption would consist of a set of dependencies with a single
primitive concept on the left-hand-side

{A2 v ∀R1.A6, A3 v A7, A4 v A7, A7 v ∀R−2 .A8}
and a second set of dependencies with a conjunction of two primitive concepts
on the left-hand-side

{(A1 uA6) v A9, (A9 uA8) v A5},
in which A6, A7, A8 and A9 are fresh atomic concepts introduced by the binary
absorption procedure. (Hereon, we refer to an instance of the latter set as a
binary inclusion dependency.) A key insight and contribution of this paper is
that it is not necessary for both concepts occurring in the left-hand-side of such
a dependency to be atomic. In particular, we show that binary absorption raises
the possibility of reducing assertion membership problems to concept satisfaction
problems via the introduction of nominals in such dependencies, but without
suffering the consequent overhead that doing so would almost certainly entail
without binary absorption.

Note that there are other reasons that binary absorption is useful, beyond
the well-documented advantages of reducing the need for internalization of gen-
eral terminological axioms. In particular, it works very well for the parts of a
terminology that are Horn-like, as illustrated by the above example.

Our contributions are as follows:

1. We introduce the notion of role and concrete feature guards in the con-
text of a knowledge base for the DL dialect ALCIQ(D). In particular, we
show how instance checking tasks in this dialect can map to concept satis-
faction problems in the dialect ALCIOQ(D), but where binary absorption
in combination with guards can usefully avoid reasoning about irrelevant
ABox individuals and concrete facts with the assumption of knowledge base
consistency.

2. We propose a generalization of binary absorption. In particular, we now allow
nominals in place of one of the two left-hand-side concepts in an absorbed
binary inclusion dependency.

3. We report on the results of an experimental evaluation that validates the
efficacy of the proposed optimization.
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After some preliminary definitions, these contributions are the subject of succes-
sive sections, and are followed in turn by our summary comments. Finally, note
that a short earlier version of this paper is being presented simultaneously in a
poster session of KR 2012 [14].

2 Preliminaries

We consider instance checking problems in the context of knowledge bases ex-
pressed in terms of the DL dialect ALCIQ(D). However, such problems will be
mapped to concept satisfaction problems in the more general dialectALCIOQ(D).

Definition 1 (Description Logic ALCIOQ(D)).
ALCIOQ(D) is a DL dialect based on disjoint infinite sets of atomic concepts
NC, atomic roles NR, concrete features NF and nominals NI. Also, if A ∈ NC,
R ∈ NR, a ∈ NI, f, g ∈ NF, n is a non-negative integer and C1 and C2 are
concept descriptions, then A, ¬C1, C1 u C2, C1 t C2, >, ⊥, ∃R.C1, ∀R.C1,
∃R−.C1, ∀R−.C1, {a}, ∃≤nR.C1, ∃≥nR.C1, ∃≤nR−.C1, ∃≥nR−.C1, f < g and
f = k, where k is a finite string, are also concept descriptions.

An interpretation I is a pair I = (∆I]DI , ·I), where ∆I is a non-empty set,
DI a disjoint concrete domain of finite strings, and ·I is a function mapping each
feature f to a total function fI : ∆→ D, the “=” symbol to the equality relation
over D, the “<” symbol to the binary relation for an alphabetic ordering of D,
a finite string k to itself, NC to subsets of ∆I , NR to subsets of ∆I ×∆I , and
NI to elements of ∆I . The interpretation is extended to compound descriptions
in the standard way.

Concrete domain concepts such as f < k are considered to be a shorthand
for (f < g) u (g = k), which, together with f = k, may be generalized as
(t1 op t2), where t1 and t2 refer to either a concrete feature or a finite string,
and op ∈ {<,=}.
Definition 2 (TBox, ABox, and KB Satisfiability).
A TBox T is a finite set of axioms of the form C1 v C2 or C1

.
= C2. A TBox

T is called primitive iff it consists entirely of axioms of the form A
.
= C with

A ∈ NC, each A ∈ NC appears in at most one left hand side of an axiom, and
T is acyclic. A ∈ NC is defined in T if T contains A v C or A

.
= C. An ABox

A is a finite set of assertions of the form a : A, a : (f op k) and R(a, b).
Let K = (T ,A) be an ALCIOQ(D) knowledge base (KB). An interpretation

I is a model of K, written I |= T , iff CI1 ⊆ CI2 holds for each C1 v C2 ∈ T ,
CI1 = CI2 holds for each C1

.
= C2 ∈ T , aI ∈ AI for a : A ∈ A, (aI , bI) ∈ RI ,

and fI(aI) op k for a : (f op k) ∈ A. A concept C is satisfiable with respect
to a knowledge base K iff there is an I such that I |= K and such that CI 6= ∅.

3 On Absorbing an ABox

The absorption proceeds in two steps: first guards that allow us to prune the
exploration of the ABox during reasoning are added to the ABox assertions (in
turn converted into TBox axioms about nominals) and then the resulting TBox
is processed by an extended binary absorption algorithm.
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3.1 Mapping Instance Checking to Subsumption Testing

In this section we convert an ALCIQ(D) knowledge base K to a TBox by rep-
resenting individuals in K’s ABox by nominals (i.e., in a controlled fragment of
ALCIOQ(D)):

Definition 3 (ABox Conversion). Let K = (T ,A) be a knowledge base. We
define a TBox TA for the ABox of K:

TA = {{a} uDefa v A | a : A ∈ A}
∪{{a} uDeff v (f op k) | a : (f op k) ∈ A}
∪{{a} uDefR v ∃R.({b} uDefb), {a} uDefa v ∃R.>,
{b} uDefR− v ∃R−.({a} uDefa), {b} uDefb v ∃R−.> | R(a, b) ∈ A}

Note that all the axioms resulting from ABox assertions are guarded by auxiliary
primitive concepts of the form Defa, DefR, and Deff . Intuitively, these concepts,
when coupled with an appropriate absorption allow a reasoner to ignore parts
of the original ABox: all the constants for which Defa is not set, yielding con-
siderable performance gains. For this idea to work we need to require (without
loss of generality) that the TBox of K only uses qualified at-most number re-
strictions of the form A v ∃≤nR.B where A and B are atomic concepts or their
negations. Note that subsumptions of the form ∃≥nR.A v B are also considered
to be at-most number restrictions and have to be equivalently rewritten in the
above form and that nested restrictions must be unnested. It is easy to see that
every ALCIQ(D) TBox can be transformed to an equi-satisfiable TBox that
satisfies this restriction by introducing new auxiliary concept names. Then we
add the following assertions that manipulate the guards:

Definition 4 (TBox Conversion). Let K = (T ,A) be a knowledge base. We
define a TBox TT for the ABox of K as follows:

TT = {A v DefR,B v DefR− | A v ∃≤nR.B ∈ T }
∪ {(t1 op t2) v Deff | f appears in t1 or in t2, (t1 op t2) appears in T }.

In the following we use TK for T ∪ TT ∪ TA.

Theorem 1. Let K = (T ,A) be a consistent knowledge base. Then

K |= a : C if and only if TK |= {a} uD v C,

where D = Defa u(
d
f appears in C Deff ).

Proof. Assume that there is an interpretation I0 that satisfies TK such that
({a})I0 ⊆ (D)I0 but ({a})I0 ∩ (C)I0 = ∅ and an interpretation I1 that satisfies
K in which all at-least restrictions are fulfilled by anonymous objects. Hence, we
do not need to consider at-least restrictions, no matter how expressed, in the
construction below. Without loss of generality, we assume both I0 and I1 are tree-
shaped outside of the ABox (converted ABox). We construct an interpretation
J for K ∪ {a : ¬C} as follows: Let Γ I0 be the set of objects o ∈ ∆I0 such that
either o ∈ ({a})I0 and ({a})I0 ⊆ (Defa)I0 or o is an anonymous object in ∆I0

rooted by such an object. Similarly let Γ I1 be the set of objects o ∈ ∆I1 such
that either o ∈ ({a})I1 and ({a})I0 ∩ (Defa)I0 = ∅ or o is an anonymous object
in ∆I1 rooted by such an object. We set
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1. ∆J = Γ I0 ∪ Γ I1 ;
2. (a)J ∈ ({a})I0 for (a)J ∈ Γ I0 and (a)J = (a)I1 for (a)J ∈ Γ I1 ;
3. o ∈ AJ if o ∈ AI0 and o ∈ Γ I0 or if o ∈ AI1 and o ∈ Γ I1 for an atomic

concept A (similarly for concrete domain concepts of the form (t1 op t2));
4. (o1, o2) ∈ (R)J if

(a) (o1, o2) ∈ RI0 and o1, o2 ∈ Γ I0 , or (o1, o2) ∈ RI1 and o1, o2 ∈ Γ I1 ; or
(b) o1 ∈ ({a})I0 ∩ (Defa)I0 , o2 ∈ ({b})I1 and R(a, b) ∈ A (or vice versa).

We claim that ({a})J ∩ (C)J = ∅ (trivially) and J |= K: to show the latter part
we only need to consider those R edges of the form covered by the last case (4b):
the edges that cross between the two interpretations, i.e., when o1 ∈ ({a})I0 ,
o2 ∈ ({b})I1 and R(a, b) ∈ A. Now consider an inclusion dependency expressing
an at-most restriction A v ∃≤nR.B ∈ T . We can conclude that o1 6∈ (A)I0 as
otherwise o1 ∈ (DefR)I0 by Definition 4 and thus o2 ∈ (Defb)

I0 by Definition 3
which contradicts our assumption that ({b})I0∩(Defb)

I0 = ∅. Hence the inclusion
dependency is satisfied vacuously. The remaining edges, case (4a), satisfy all
dependencies in K as the remainder of the interpretation J is copied from one
of the two interpretations that satisfy K. Hence all inclusion dependencies in K
are satisfied by J .

The other direction of the proof follows by observing that if K ∪ {a : ¬C} is
satisfiable then the satisfying interpretation I can be extended to (Defa)I =
(Deff )I = (DefR)I = ∆I and ({a})I = {aI} for all individuals a, concrete
features f , and roles R. This extended interpretation then satisfies TK and
({a})I ⊆ (D)I ∩ (¬C)I . 2

Also, in ALCI(D) we do not need to rely explicitly on the unique name assump-
tion (UNA: the logic on its own cannot equate constants). However, we could
allow explicit equalities and inequalities to the ABox and then preprocess them
similarly to Definition 3, e.g., a ≈ b to {a} u Defa v {b} u Defb and vice versa
and so on. This is sufficient for the construction of the interpretation J in the
proof of Theorem 1 to go through. Note that the interpretations of constants
(nominals) for which Defa is not set in I0 are irrelevant for constructing the
interpretation J even though there could be assertions of the form > v C that
are applicable to such objects (one could even augment all such assertions by
adding guards to avoid this effect). Therefore those constants (nominals) can be
ignored completely by the reasoner and thus nodes corresponding to the constant
symbols can be generated lazily on demand driven by the Defa concept.

3.2 On Witnesses and Binary Absorption

Model building algorithms for checking the satisfaction of a concept C operate
by manipulating an internal data structure (e.g., in the form of a node and edge
labeled rooted tree with “back edges”). The data structure “encodes” a partial
description of (eventual) interpretations I for which CI will be non-empty. Such
a partial description will almost always abstract details on class membership for
hypothetical elements of ∆I and on details relating to the interpretation of roles.
To talk formally about absorption and lazy evaluation, it is necessary to codify
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{a} ∈ LW(x) and {a} ∈ LW(y) implies x = y
{{a}, A} ⊆ LW(x) , and ({a} uA) v C ∈ Tu implies C ∈ LW(x)

(x, y) ∈ RI and ∃R.> v C ∈ Tu implies C ∈ LW(x)
(x, y) ∈ RI and ∃R−.> v C ∈ Tu implies C ∈ LW(y)

{A1, A2} ⊆ LW(x) and (A1 uA2) v C ∈ Tu implies C ∈ LW(x)
A ∈ LW(x) and A v C ∈ Tu implies C ∈ LW(x)

¬A ∈ LW(x) and ¬A v C ∈ Tu implies C ∈ LW(x)
C1 v C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x)
C1

.
= C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x)

C1
.
= C2 ∈ Tg implies C1 t ¬C2 ∈ LW(x)

Fig. 1: Absorption witness conditions

the idea of a partial description. This has been done in [5] by introducing the
notion of a witness, of an interpretation that stems from a witness, and of what
it means for a witness to be admissible with respect to a given terminology.

Definition 5. (Witness) Let C be an ALCIOQ(D) concept.1 A witness W =
(∆W , ·W ,LW) for C consists of a non-empty set ∆W , a function ·W that maps
NR to subsets of ∆W × ∆W , and a function LW that maps ∆W to sets of
ALCIOQ(D) concepts such that:

(W1) there is some x ∈ ∆W with C ∈ LW(x),
(W2) there is an interpretation I that stems from W, and
(W3) for each I that stems from W, x ∈ CI if C ∈ LW(x).

An interpretation I = (∆I , ·I) is said to stem from W if ∆I = ∆W , ·I |NR =
·W , for each A ∈ NC, A ∈ LW(x) implies x ∈ AI and ¬A ∈ LW(x) implies
x /∈ AI , for each a ∈ NI, {a} ∈ LW(x) implies x ∈ {a}I and ¬{a} ∈ LW(x)
implies x /∈ {a}I , for each (f op k), (f op k) ∈ LW(x) implies x ∈ (f op k)I

and ¬(f op k) ∈ LW(x) implies x /∈ (f op k)I .
A witness W is called admissible with respect to a TBox T if there is an

interpretation I that stems from W with I |= T .

The properties satisfied by a witness have been captured by the original lemmas
2.6 and 2.7 in [5]. We further extend binary absorption [6] to accommodate the
absorbed ABox as shown in Section 3.

Definition 6. (Binary Absorption) Let K={T ,A} be a KB. A binary ab-
sorption of T is a pair of TBoxes (Tu, Tg) such that T ≡ Tu∪Tg and Tu contains
axioms of the form A1 v C, ¬A1 v C, ∃R.> v C (resp. ∃R−.> v C), and the
form (A1 uA2) v C and ({a} uA) v C, where {A,A1, A2} ⊆ NC and a ∈ NI.

A binary absorption (Tu, Tg) of T is called correct if it satisfies the follow-
ing condition: For each witness W and x ∈ ∆W , if all conditions in Figure 1
are satisfied, then W is admissible w.r.t. T . A witness that satisfies the above
property will be called unfolded.

1 The definition of witness can be abstracted for any DLs that have ALCIO as a
sublanguage and that satisfy some criteria on the interpretations stated in [5].
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The distinguishing feature of our extension of binary absorption is the addition
of the first four implications in Figure 1. Binary absorption itself allows addi-
tional axioms in Tu to be dealt with in a deterministic manner, as illustrated
in our introductory example. ABox absorption, treating assertions as axioms,
extends binary absorption to handle nominals in binary inclusion dependencies.
In addition, domain and range constraints are also absorbed in a manner that
resembles role absorption introduced in [13].

4 A Procedure for Indirect ABox Absorption

In this section, we present a procedure for ABox absorption, which extends
binary absorptions [6]. Our algorithm also includes the possibility of absorb-
ing domain and range constraints. The procedure prioritizes binary absorption
to keep guarding constraints through restricted uses of nominals, yet it avoids
guards for domain and range axioms by employing a variant of role absorption,

The algorithm is given a TK that consists of arbitrary axioms. It proceeds by
constructing five TBoxes Tg, Tprim, Tuinc,, Tbinc, and Trinc such that: T ≡ Tg ∪
Tprim∪Tuinc∪Tbinc∪Trinc, Tprim is primitive, Tuinc consists of axioms of the form
A1 v C, Tbinc consists of axioms of the form (A1 uA2) v C and ({a} uA) v C
and none of the above primitive concept are defined in Tprim, and Trinc consists
of axioms of the form ∃R.> v C (or ∃R−.> v C). Here, Tuinc contains unary
inclusion dependencies, Tbinc contains binary inclusion dependencies and Trinc
contains domain and range inclusion dependencies.

In the first phase, we move as many axioms as possible from T into Tprim.
We initialize Tprim = ∅ and process each axiom X ∈ T as follows.

1. If X is of the form A
.
= C, A is not defined in Tprim, and Tprim ∪ {X} is

primitive, then move X to Tprim.
2. If X is of the form A

.
= C, then remove X from T and replace it with axioms

A v C and ¬A v ¬C.
3. Otherwise, leave X in T .

In the second phase, we process axioms in T , either by simplifying them or
by placing absorbed components in Tuinc, Tbinc or Trinc. We place components
that cannot be absorbed in Tg. We let G = {C1, . . . , Cn} represent the axiom
> v (C1t. . .tCn). Axioms are automatically converted to (out of) set notation.
In addition, ∀R.C (resp. ∀R−.C) is considered a shorthand for ∃≤0R.¬C (resp.
∃≤0R−.¬C).

1. If T is empty, then return the binary absorption

({A v C,¬A v ¬C | A .
= C ∈ Tprim} ∪ Tuinc ∪ Tbinc ∪ Trinc, Tg).

Otherwise, remove an axiom G from T .
2. Simplify G.

(a) If there is some ¬C ∈ G such that C is not a primitive concept, then
add (G ∪ NNF(¬C) \ {¬C} to T , where the function NNF(·) converts
concepts to negation normal form. Return to Step 1.
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(b) If there is some C ∈ G such that C is of the form (C1 u C2), then add
both (G ∪ {C1}) \ {C} and (G ∪ {C2}) \ {C} to T . Return to Step 1.

(c) If there is some C ∈ G such that C is of the form C1 t C2, then apply
associativity by adding (G∪{C1, C2})\{C1tC2} to T . Return to Step 1.

3. Partially absorb G.

(a) If {¬{a},¬A} ⊂ G, and A is a guard, then do the following. If an axiom
of the form ({a} u A) v A′ is in Tbinc, add G ∪ {¬A′} \ {¬{a},¬A} to
T . Otherwise, introduce a new concept A′ ∈ NC, add (G ∪ {¬A′}) \
{¬{a},¬A} to T , and ({a} uA) v A′ to Tbinc. Return to Step 1.

(b) If {¬A1,¬A2} ⊂ G, and neither A1 nor A2 are defined in Tprim, then
do the following. If an axiom of the form (A1 u A2) v A′ is in Tbinc,
add G ∪ {¬A′} \ {¬A1,¬A2} to T . Otherwise, introduce a new concept
A′ ∈ NC, add (G ∪ {¬A′}) \ {¬A1,¬A2} to T , and (A1 u A2) v A′ to
Tbinc. Return to Step 1.

(c) If {∀R.C} = G (resp. {∀R−.C} = G), then do the following. Add
∃R−.> v C (resp. ∃R.> v C) to Trinc. Return to Step 1.

(d) If ∀R.¬A ( resp. ∀R−.¬A) ∈ G, then do the following. Introduce a new
internal primitive concept A′ and add both A v ∀R−.A′ ( resp. A v
∀R.A′) and (G∪{¬A′}) \ {∀R.¬A} (resp. \{∀R−.¬A}) to T . Return to
Step 1.

4. Unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is an axiom A
.
= C in

Tprim, then substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ¬C), and add
G to T . Return to Step 1.

5. Absorb G. If ¬A ∈ G and A is not defined in Tprim, add A v C to Tuinc
where C is the disjunction of G \ {¬A}. Return to Step 1.

6. If none of the above are possible (G cannot be absorbed), add G to Tg.
Return to Step 1.

Termination of our procedure can be established by a counting argument.

Theorem 2. For any TBox T , the ABox absorption algorithm computes a cor-
rect absorption of T .

Proof. The proof is by induction on iterations of our algorithm. We abbreviate
the pair ({Tprim ∪ Tuinc ∪ Tbinc ∪ Trinc, Tg ∪ T ) as T and claim that this pair is
always a correct binary absorption. Initially, Tuinc, Tbinc, Trinc and Tg are empty,
primitive axioms are in Tprim, and the remaining axioms are in T .

– In Step 3(a) or Step 3(b), T is a correct absorption that derives from [6].
– In Step 3(c), T is a correct absorption for domain and range constraints.

The correctness proof of this step follows from Lemma 4.3 and 4.4 in [6].
– In Step 3(d), T is a correct absorption by [6].
– In any of Steps 1, 2, 5-8, T is a correct ABox absorption as they use only

equivalence preserving operations.

Thus, T is a correct binary absorption by induction.
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5 Empirical Evaluation

The proposed absorption technique has been implemented in our CARE As-
sertion Retrieval Engine (CARE) with an underlying ALCI(D) DL reasoner.
The DL reasoner has no additional ABox reasoning optimizations other than
the technique presented here, and it has implemented only axiom absorption
and blocking for TBox reasoning. All experiments were conducted on a Mac-
Book with a 2.4GHz Intel Duo processor and 4GB RAM. All times, given in
seconds, were averaged out over three independent runs for all reasoners and a
reasoning timeout (denoted –) is set to 1500 seconds. Queries were posed over
a suite of datasets (KBs) describing digital cameras. The KBs consist of digi-
tal camera specifications extracted from DPreview.com and pricing information
from Amazon.com in which the seed KB, called DPC1, has one camera instance
for each price found through Amazon for a camera model. The other KBs were
generated from the seed KB by supplying n camera instances per price in DPCn.
These KBs share the same TBox, i.e., 15 axioms, but have different ABox data,
as shown in Figure 2a: it reports the number of individuals, concept, and role as-
sertions, and the number of instances retrieved by each query over these datasets.
Test queries are shown in Figure 3, which vary in query forms and selectivity.

Inds CAs RAs Q1 Q2 Q3 Q4

DPC1 5387 3225 7174 3 244 5 1426

DPC3 9711 3225 18672 9 732 11 1432

DPC5 14035 3225 30170 15 1220 17 1438

DPC7 18359 3225 41668 21 1708 23 1444

DPC10 24845 3225 58915 30 2440 32 1453

(a) Description of KBs

Q1 Q2 Q3 Q4

NG – – – –
PG 178.1 183.0 186.2 181.5
FG 6.5 6.0 6.1 6.1

(b) Guarding Strategies (DPC1)

Fig. 2: Summary of results

Q1: ∃hasInstance−.(Digital SLR u (user review = “5.00”))

Q2: ∃hasInstance−.(Digital SLR u ¬(user review = “5.00”))

Q3: ∃hasInstance−.(Digital SLR u (user review = “5.00”)) t (price = “01400.00”)

Q4: ∃hasInstance−.(Digital SLR u (user review = “5.00”)) t ¬(price = “01400.00”)

Fig. 3: Test queries

Query response times in Figure 2b compare different guarding strategies. Specifi-
cally, “No Guarding” (NG) is a straightforward implementation of the Tableaux
algorithm (without assuming the consistency of the KB), “Partial Guarding”
(PG) guards individuals so that only relevant individuals will be explored in
Tableaux expansions, and “Full Guarding” (FG), in addition to “Partial Guard-
ing,” further guards feature concepts that describe objects in the data so that
only query-relevant feature concepts participate in reasoning. Figure 2b shows
that CARE timed out under the NG strategy, while it managed to answer all
queries under the PG strategy and efficiency increased substantially under the
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(b) Query 2

DPC1 DPC3 DPC5 DPC7 DPC10

101

102

(c) Query 3

DPC1 DPC3 DPC5 DPC7 DPC10

101

102

103

(d) Query 4

Fig. 1: Query response time comparison (logarithmic scale)
Fig. 4: Query response time comparison (logarithmic scale)

FG strategy. As numerous other optimization techniques have been developed
(e.g., [2]) and implemented in most state-of-the-art reasoners, we juxtaposed
their performance with CARE to show the efficacy of our proposed technique
for ABox reasoning. All queries were posed via OWL API 3 for Pellet 2.3.0 and
FaCT++ 1.5.3, and via JRacer in the form of nRQL for RacerPro 2.0. The
query response time in Figure 4 does not consider the loading or preprocessing
time for other reasoners, yet it includes the ABox absorption time (cf. Sect. 3)
for CARE. The results show that CARE outperformed all other reasoners in all
queries except Q1 (we believe this is due to deterministic precomputing at KB
load time). Given that CARE is not as optimized as other reasoners, the results
are significant.

6 Summary

We show how, with the presumption that a knowledge base is consistent, one
can avoid considering irrelevant ABox individuals to the posed question while
preserving soundness and completeness of answers to instance checking tasks.
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Our experiments show that in realistic situations arising, e.g., in implementa-
tions of assertion retrieval [11] in which a number of instance checking queries
are needed to answer a single user query, or in the case of ontology-based query
answering [9, 7, 12, 8], when non-Horn DLs are used (and thus the above tech-
niques cannot be applied), our technique makes querying often feasible. The
experiments show, on relatively simple examples, that, while using the proposed
technique allows answers to be computed in a few seconds, attempting the same
tasks without the optimization is infeasible. To be effective, the technique relies
on absorption procedures that have at least the capabilities of binary absorption.
An interesting avenue of further work would be to explore how highly optimized
DL reasoning procedures with more powerful capabilities for absorption such as
procedures based on hypertableau [10] could further improve performance.
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A Parallel Reasoner for the Description Logic ALC

Kejia Wu and Volker Haarslev

Concordia University, Montreal, Canada

Abstract. Multi-processor/core systems have become ubiquitous but the vast
majority of OWL reasoners can process ontologies only sequentially. This ob-
servation motivates our work on the design and evaluation of Deslog, a parallel
tableau-based description logic reasoner forALC. A first empirical evaluation for
TBox classification demonstrates that Deslog’s architecture supports a speedup
factor that is linear to the number of utilized processors/cores.

1 Introduction

The popularity of multi-processor/core computing facilities makes Description Logic
(DL) reasoning feasible that scales w.r.t. the number of available cores.1 Modern many-
core architectures together with operating systems implementing symmetric multitask-
ing efficiently support thread-level parallelism (TLP), where smaller subtasks are imple-
mented as threads that are concurrently executed on available cores. In order to utilize
such hardware for making DL reasoning scalable to the number of available cores, one
has to develop new reasoning architectures efficiently supporting concurrency. More-
over, many well-known tableau optimization techniques need to be revised or adapted
in order to be applicable in a parallel context. In this paper we present a new DL rea-
soning framework that fully utilizes TLP on many-core systems. In principle, standard
tableau algorithms are well suited for parallelization because tableau completion rules
usually do not depend on a sequential execution but require shared access to common
data structures.

We consider the inherent non-determinism of DL tableaux as a feature of DL rea-
soning that naturally leads to parallel algorithms which are suitable for a shared-memory
setting. For instance, a source for such a non-determinism are disjunctions and qualified
cardinality restrictions for logics containing at leastALCQ. Many standard DL reason-
ing services, e.g. concept satisfiability testing, TBox classification, instance checking,
ABox realization, etc. might be amenable to be implemented in a non-deterministic
way supporting parallelism. However, the use of parallelism in DL reasoning has yet
to be explored systematically. Although it is advantageous to seek scalable solutions
by means of parallelism, little progress has been made in parallel DL reasoning dur-
ing the last decade [6]. Most DL reasoning algorithms and optimization techniques
have only been investigated in a sequential context, but how these methods should be
accommodated to parallelism remains mostly open. Besides these algorithmic and the-
oretical issues, the efficient implementation of a scalable parallel DL reasoner is also
worth to be investigated. Many practical issues on shared-memory parallelism need to

1 For ease of presentation we consider the terms processor and core as synonyms.
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be researched, e.g., selecting suitable parallel architectures, designating efficient data
structures and memory management, and exploring parallel algorithms.

In the remaining sections we introduce the design of Deslog, discuss related work,
and present an evaluation demonstrating a mostly (super)linear scalability of Deslog.

2 Architecture of Deslog

2.1 Framework

The shared-memory parallel reasonerDeslog consists of three layers: (i) pre-processing
layer, which converts the Web Ontology Language (OWL) representation of ontologies
to internal data structures; (ii) reasoning engine layer, which performs the standard
DL reasoning services and is composed of two key components, the service provider
and the tableau rule applier; (iii) post-processing layer, which collects, caches, and
saves reasoning results; (iv) infrastructure layer, which provides core components and
utilities, such as structures representing concepts and roles, and the object copy tool.
Figure 1 gives an overview of the framework.

First, OWL ontology data is read into the pre-processing layer. Various typical pre-
processing operations, such as transformation into negation normal form (NNF), axiom
re-writing, and axiom absorption, are executed in this layer. The reasoner’s run-time
options, such as service selection, maximum number of threads, and rule application
order, are also set up on this layer. We implemented this layer by using the OWL API
[14]. The pre-processed data is streamed to the reasoning engine.

The reasoning engine performs primarily inference computation. The first key com-
ponent of the reasoning engine is the service provider. As with popular DL reasoning
systems, Deslog provides standard reasoning services, such as testing TBox consis-
tency, concept satisfiability, etc. As we know, these services may depend on each other.
In Deslog, the classification service depends on subsumption, and the latter depends on
the satisfiability service. The service provider uses a suite of tableau-based algorithms
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to perform reasoning. The reasoner adopts tableaux as its primary reasoning method,
which is complemented by another key component, the tableau expansion rule applier.
The main function of this component is to execute tableau rules in some order to build
expansion forests. InDeslog, tableau expansion rules are designed as configurable plug-
ins, so what rule has to be applied in what application order can be specified flexibly.
At present, Deslog implements the standard ALC tableau expansion rules [4].

All three layers mentioned above use the facilities provided by the infrastructure
layer. All common purpose utilities are part of this layer. For example, the threads man-
ager, global counters, and the globally unique identifier (GUID) generator. In addition,
the key data structures representing DL elements and basic operations on them are pro-
vided by this layer.

2.2 Key Data Structures

In contrast to popular DL reasoning systems,Deslog aims to improve reasoning perfor-
mance by employing parallel computing, while data structures employed by sequential
DL reasoners are not always suitable for parallelism.

Tree structures have been adopted by many tableau-based reasoners. However, a
naive tree data structure introduces data races in a shared-memory parallel environment
and are not well suited in a concurrency setting. Therefore, we need to devise more ef-
ficient data structures in order to reduce the amount of shared data as much as possible.

The new data structures facilitating concurrency must support DL tableaux. One
important function of trees is to preserve non-deterministic branches generated during
tableau expansion. Non-deterministic branches are mainly produced by the disjunction
rule and the at-most number restriction rules. To separate non-deterministic branches
into independent data vessels, which are suited to be processed in parallel, we adopt a
list-based structure, called stage, to maintain a single non-deterministic branch, and a
queue-based structure, called stage pool, to buffer all branches in a tableau. Every stage
is composed of the essential elements of a DL ontology, concepts and roles.

As with any DL reasoner, the representation of concepts and roles are fundamental
design considerations. The core data structure ofDeslog is a four-slot list representing a
concept. A literal uniquely identifies a distinct concept. An operator indicates the dom-
inant DL constructor applied to a concept. Available constructors cover intersection,
disjunction, existential and value restriction, and so on, and this slot can also be empty.
The remaining two slots hold pointers to extend nested concept definitions, namely left
and right. Figure 2 illustrates a DL concept encoded with the Deslog protocol.
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Roles in Deslog are handled as a special type of concepts and have a similar struc-
ture as concepts. For instance, the encoding of the DL expression ∀R.(AuB) is shown
in Figure 3. Further properties needed for describing a role can be added to the generic
structure, e.g., the number restriction quantity. A role data structure is also associated
with a list recording instance pairs. With this design, DL concepts can be lined up seam-
lessly. Instances (i.e., labels in tableau expansions) are lists holding their typing data,
concepts. There are also helper facilities, such as a role pool and an instance pool, which
are useful to accelerate the indexing of objects.

A notable point on our encoding is how the complement of an atomic concept (i.e.,
concept name) is expressed (see Figures 4a and 4b).

A �

� �

(a) Atomic concept A

⇠ A ¬

⇤ �
A �

� �

(b) Atomic concept ¬A

Fig. 4: Deslog data structure—atomic concepts.
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A principle of Deslog’s design is to model objects and behaviours involved in DL
reasoning as independent abstractions as much as possible in order to facilitate concur-
rent processing. For instance, branches created during tableau expansion are encapsu-
lated into standalone objects. Thus, a whole tableau expansion forest is designed as a list
of branch objects. Tableau expansion rules and even some key optimization techniques
are also designed as independent components.
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2.3 Implementation

As aforementioned, multi-processor computers are becoming the main stream, it is ex-
pected that idle processors are utilized, and shared-memory TLP is quite suitable for
this purpose.

One significant aspect of this research is to investigate how well important DL rea-
soning optimization techniques are suited to be implemented in a parallel reasoner and
how they should be adapted if plausible.Deslog has adopted the following optimization
techniques.

1. Lazy-unfolding This technique enables a reasoner to unfold a concept only when
necessary [5].

2. Axiom absorption Disjunctive branches introduced by naively internalizing TBox-
axioms is one of the primary sources of reasoning inefficiency. With the axiom ab-
sorption technique, a TBox is separated into two parts, the general TBox and the
unfoldable TBox. Then, using internalization to process the general part and lazy-
unfolding to process the unfoldable part can reduce reasoning time dramatically
[15, 25].

3. Semantic branching This DPLL style technique prunes disjunctive branches by
avoiding to compute the same problem repeatedly [15].

Other primary optimization techniques, such as dependency directed backtracking
[4, Chapter 9] [15] and model merging [12] are currently being implemented. It is no-
ticeable that not all significant optimization techniques are suitable for concurrency.
Some of them still depend on complex shared data and may significantly degrade the
performance of a concurrent program. Based on these elemental techniques, we com-
pleted a suite of standard TBox reasoning services.

The current system implements a parallel ALC TBox classifier. It can concurrently
classify an ALC terminology. The parallelized classification service of Deslog com-
putes subsumptions in a brutal way [5]. It is obvious that the algorithm is sound and
complete and has order of n2 time complexity in a sequential context. In order to figure
out a terminology hierarchy, the algorithm calculates the subsumptions of all atomic
concepts pairs. A subsumption relationship only depends on the involved concepts pair,
and does not have any connections with the computation order. Therefore, the sub-
sumptions can be computed in parallel, and soundness and completeness are retained in
a concurrent context.

A rather difficult issue in implementing a parallel DL reasoner is managing over-
head. This issue is relatively easy for high level parallel reasoning, where multiple
threads mainly execute reading operations on some shared data, thus, we implemented
the parallel classification service first.

Besides the high-level parallelized service, classification, low level parallelized pro-
cessing is being developed. In the architecture of Deslog, the classification service uses
subsumption, and subsumption uses satisfiability. The low level parallel reasoning fo-
cuses on dealing with non-deterministic branches, which are represented as stages in
Deslog.

It might seems easy to process stages in parallel, but quite some effort is required
to achieve a satisfying scalability via concurrency. The first noticeable fact is that from
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a root stage every stage may generate new ones. At present, our strategy is using one
thread to process one stage. That means the stages buffer, the stage pool, is frequently
accessed by multiple threads. That accessing includes both writing and reading shared
data frequently. So, designing a high-performance stage buffer and efficient accessing
schemes is an essential condition for the enabling a of scalable performance improve-
ment. Otherwise, a parallel approach only causes overhead instead of performance im-
provement. We are currently working on efficient low-level parallel reasoning.

Although there are robust shared-memory concurrent libraries available, such as the
C++ Boost.Thread library and the Java concurrent package, according to our experi-
ence, using these libraries immoderately often degrades performance. Therefore, one
needs to design sophisticated structures which better avoid shared data, or which do not
access shared data frequently.

3 Evaluation

Deslog is implemented in Java 6 in conformity with the aforementioned design. The
parallelism of Deslog is based on a multi-threading model and aims at exploiting
symmetric multiprocessing (SMP) supported by multi-processor computing facilities.
The system is implemented in Java 6 for Java’s relatively mature parallel ecosystem.2

Specifically, the java.util.concurrent package of Java 6 is utilized.
In the following we report on experiments to demonstrate that a shared-memory

parallel tableau-based reasoner can achieve a scalable performance improvement.

3.1 Conducted Experiments

The classification service of Deslog can be executed concurrently by multiple threads.
We conducted a group of tests, and they show that Deslog has an obvious scalability.

All tests were conducted on a 16-core computer running Solaris OS and Sun Java
6. Many of the test cases were chosen from OWL Reasoner Evaluation Workshop 2012
(ORE 2012) data sets. We manually changed the expressivity of some test cases to
ALC so that Deslog could reason about them. Table 1 lists the metrics of the test cases.
The results are shown in Figures 5-7.

3.2 Discussion

The experimental results collected from testing ontologies show a scalable performance
improvement. The tests on more difficult ontologies demonstrate a better scalability due
to reduced overhead.

Because the computing time of the single thread configuration, T1, is rather small
for some ontologies, often smaller than ten seconds, the overhead introduced by main-
taining multiple threads can limit the scalability. For some of these ontology tests, the
reasoning times are reduced to several milliseconds, i.e., the whole work load assigned
to a single thread is around several milliseconds in these settings. According to our em-
pirical results, a small work load w.r.t. the overhead, which is produced by manipulating

2 All components and sources of the system are available at http://code.google.com/p/deslog/.
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Table 1: Characteristics of the used test onologies

Ontology DL expressivity Concept count Axiom count
bfo ALC 36 45
pharmacogenomics complex ALC 145 259
economy ALCH(D) 339 563
transportation ALCH(D) 445 489
mao ALE+ 167 167
yeast phenotype AL 281 276
loggerhead nesting ALE 311 347
spider anatomy ALE 454 607
pathway ALE 646 767
amphibian anatomy ALE+ 703 696
flybase vocab ALE+ 718 726
tick anatomy ALE+ 631 947
plant trait ALE 976 1140
evoc AL 1001 990
protein ALE+ 1055 1053
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Fig. 4: Deslog data structure—atomic concepts.
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threads as well as accessing shared data, counteracts the benefits gained from parallel
processing and the reasoning performance starts to degrade.

When testing ontologies that are big enough, the observed scalability is linear,
sometimes even superlinear. These bigger ontologies need longer single thread comput-
ing times (T1). The overhead introduced by maintaining a tolerable number of multiple
threads is very small and becomes insignificant. A tolerable number, Ni, should always
be smaller than or equal to the total number of available processors. In our conducted
tests due to the available hardware we have Ni ∈ [1, 16] but in order to stress multi-
threading we conducted all tests with up to 32 threads. In some cases, even though the
number of threads exceeds 16, the reasoning performance keeps stable in a rather long
run. This clearly supports our hypothesis that a further scalability improvement could
be achieved by adding more processors, and we will verify this hypothesis when better
experimental hardware becomes available.

Figure 7 shows the standard deviation of thread runtimes measured in the series of
tests (in the unit of milliseconds). Overall, the deviations are limited to an acceptable
range, i.e., below 140 milliseconds, which is relatively insignificant w.r.t. system over-
head. This implies that the work load is well balanced among threads. That is to say, all
threads are as much busy as possible. For the most part, when the number of threads is
smaller than the tolerable number, 16, deviations are normally close to 0. When threads
are added beyond 16, deviations become greater. This is because some processors ex-
ecute more than one thread, and hereby the thread contexts switching produces a lot
of overhead. In our original implementation, we had distributed all subsumption candi-
dates into independent lists, every of which mapped to a thread, but the deviations were
sometimes too large. So, theDeslog classification uses now a shared queue to buffer all
subsumption candidates, in order keep all threads busy.

We had conducted similar experiments on a high-performance computing cluster,
and the results were rather disappointing. The speedup factor gained on the cluster was
generally below 3 although we assigned at least 16 processors for each test. The most
plausible explanation we can give is that the complex hardware and software environ-
ment of the cluster degrades the performance of Deslog. The cluster consists of three
types of computing nodes with respect to the built-in processors: 4-core, 8-core, and
16-core. And the same type of computers may have heterogeneous architectures. A job
is scheduled on one or more computers randomly. It is normal that a job is assigned to
more than one computer, and the communication between computers results in a bot-
tleneck. Another possible reason is that the cluster does not guarantee exclusive usage,
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which means it is possible that more than one job is running on the same computer at
the same time.
Deslog can only deal withALC ontologies at present, and we expect that more inter-

esting results will be obtained by implementing more powerful tableau expansion rules
(e.g., see [16]). We already investigated the feasibility of several tableau optimization
techniques for a concurrency setting, but most of them are not yet fully implemented or
tested.

4 Related Work

Our research investigates the potential contribution of concurrent computing to tableau-
based DL reasoning. Tableau-based DL reasoning has been extensively researched in
sequential contexts. A large amount of literature is available for addressing sequential
DL reasoning (see [4]). Only a few approaches investigated parallel DL reasoning so
far.

The work in [19] reports on a parallel SHN reasoner. This reasoner implemented
parallel processing of disjunctions and at-most cardinality restrictions, as well as some
DL tableau optimization techniques. The experimental results show noticeable per-
formance improvement in comparison with sequential reasoners. This work mainly
showed the feasibility of parallelism for low level tableau-based reasoning, and did
not mention high level reasoning tasks, such as classification. Besides utilizing non-
determinism, this research also presented the potential of making use of and-parallelism,
and we plan to follow up on this idea.

The canonical top-search algorithm, as well as its dual bottom-search, can be exe-
cuted in parallel, but extra work is needed to preserve completeness. Such an approach
is presented in [1, 2] and the experimental results are very promising and demonstrate
the feasibility of parallelized DL reasoning.

In [17, 23] a consequence-based DL reasoning method was proposed, mainly deal-
ing with Horn ontologies. Based on consequence-based reasoning and the results of [3],
the work in [18] reports on a highly optimized reasoner that can classify EL ontologies
concurrently.

Two hypothesises on parallelized ontology reasoning were proposed in [6]: inde-
pendent ontology modules and a parallel reasoning algorithm. Independent ontology
modules strive for structuring ontologies as modules which naturally can be computed
in parallel. The idea of partitioning ontologies into modules is supported by [11, 9, 10].
According to the second hypothesis, extensive research on parallelized logic program-
ming does not contribute much to DL reasoning. Furthermore, some DL fragments,
without disjunction and at-most cardinality restriction constructors, do not profit much
from parallelizing non-deterministic branches in tableau expansion.

The research mentioned above is focusing on a shared-memory multi-threading en-
vironment. There is also quite some research proposing distributed solutions, and some
of these ideas are also worth being tried in a shared-memory environment.

In [21] the idea of applying a constraint programming solver, Mozart, was proposed
to ALC tableau reasoning in parallel, and the implementation was reported on in [20].
The experimental results show scalability to some extent.
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Recently, some research work focuses on how DL reasoning can be applied to Re-
source Description Framework (RDF) and OWL . This trend leads to research on rea-
soning about massive web ontologies in a scalable way. MapReduce [22], ontology
mapping [13], ontology partitioning [10], rule partitioning [24], distributed hash table
(DHT) [8], swarm intelligence [7], etc., are examples of these approaches. However,
we do not consider these approaches as relevant in our context.

5 Conclusion and Future Work

DL has been successfully applied in many domains, amongst which utilizing knowledge
on the Internet has become a research focus in recent years. Scalable solutions are
required for processing an enormous amount of structured information spreading over
the Internet. Meanwhile, multi-processor computing facilities are becoming the main
stream. Thus, we consider research on parallelism in DL reasoning as necessary to
utilize available processing power..

The objective of this research is to explore how parallelism plays a role in tableau-
based DL reasoning. A number of tableau-based DL reasoning optimization techniques
have been extensively researched, but most of them are investigated in sequential con-
texts, so adapting these methods to the parallel context is an important part of this
research.

We have partially shown that shared-memory parallel tableau-based DL reasoning
can contribute to scalable solutions. This paper introduced our reasoner, Deslog, of
which the architecture is devised specially for a shared-memory parallel environment.
We presented an aspect of the reasoner’s concurrency performance, and a good scala-
bility could be demonstrated for TBox classification.

In the near future, we will enhance Deslog so that it can reason about more expres-
sive DL languages. More powerful tableau expansion rules will be added. Concurrency-
suitable tableau optimization techniques will be implemented. Moreover, we plan to
investigate non-determinism more closely, and to design corresponding parallel algo-
rithms.
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7. Dentler, K., Guéret, C., Schlobach, S.: Semantic web reasoning by swarm intelligence.
In: The 5th International Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2009). p. 1 (2009)

8. Fang, Q., Zhao, Y., Yang, G., Zheng, W.: Scalable distributed ontology reasoning using DHT-
based partitioning. In: The semantic web: 3rd Asian Semantic Web Conference, ASWC
2008. pp. 91–105 (2008)

9. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of
ontologies. In: Proc. IJCAI. pp. 298–304 (2007)

10. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory and
practice. Journal of Artificial Intelligence Research 31(1), 273–318 (2008)

11. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularizing OWL ontologies. In: K-CAP
2005 Workshop on Ontology Management (2005)
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Introduction
The projection problem is an important reasoning task in AI. It is a prerequisite to
solving other computational problems including planning and high-level program ex-
ecution. Informally, the projection problem consists in finding whether a given logical
formula is true in a state that results from a sequence of transitions, when knowledge
about an initial state is incomplete. In description logics (DLs) and earlier termino-
logical systems, this problem was formulated using roles to represent transitions and
concept expressions to represent states. This line of research as well as earlier applica-
tions of DLs to planning and plan recognition are discussed and reviewed in [5, 11] to
mention a few only. Using a somewhat related approach, the projection problem and a
solution to the related frame problem (i.e., how to provide a concise axiomatization of
non-effects of actions) have been explored using propositional dynamic logic, e.g., see
[10, 9]. These papers discuss relations with the propositional fragment of the situation
calculus and review previous work. A more recent work explores decidable combina-
tions of several modal logics, or combining description logics with a modal logic of
time or with a propositional dynamic logic [1, 23, 7]. The resulting logics are somewhat
limited in terms of expressivity because to guarantee the decidability of the satisfiability
problem in the combined logic, only atomic actions can be allowed. In applications, it
is sometimes convenient to consider actions with arbitrary many arguments.

On the other hand, there are several proposals regarding the integration of DLs and
reasoning about actions [19, 4, 17, 6, 13]. In [13], it is shown that the projection problem
is decidable in a proposed fragment of the situation calculus (SC). However, the logical
languages developed in these papers are not expressive enough to represent some of
the action theories popular in AI or to solve the projection problem in a general case.
For example, Gu& Soutchanski propose a DL based situation calculus [13], where the
projection problem is reduced to the satisfiability problem in ALCO(U), a DL that adds
nominals O and the universal (global) role U to the well known description logic ALC.
(The universal role is interpreted as the binary relation that links any two domain ele-
ments.) They consider Reiter’s basic action theories (BATs) [22], but impose syntactic
constraints on the formulas that can appear in axioms by concentrating on a subset
FODL of FO2 formulas, where FO2 is a fragment of first order logic (FOL) with only
two variables. In the fragment of SC that they consider, action functions may have at
most two object arguments, the formulas in the precondition axioms (PA) and context
formulas in the successor state axioms (SSA) should be FODL formulas (if the situa-
tion argument is suppressed), where FODL formulas are those FO2 formulas, which
can be translated into a concept inALCO(U) using the standard translation between DLs
and fragments of FOL. They illustrate their proposal with several realistic examples of
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dynamic domains, but it turns out that some of the well-known examples, e.g., the Lo-
gistics domain from the first International Planning Competition (IPC) [20], cannot be
represented due to syntactic restrictions on the language they consider. Here and sub-
sequently, when we mention planning domain specifications, we consider them as FOL
theories without making the Domain Closure Assumption (DCA) common in planning,
i.e., without reducing them to purely propositional level. Later, [12] introduces a pos-
sible extension, where the syntactic restrictions on the class of formulas FODL are
relaxed, but stipulates SSAs for dynamic roles (fluents with two object arguments and
one situational argument) to be context-free. She conjectures, but does not prove, that
the projection problem in her extension can be reduced to satisfiability in ALCO(U).

In our paper, we consider an even more expressive fragment of SC, called P , where
all SSAs can be context dependent with context conditions formulated in a language
L that includes FODL as a proper fragment. Manual translations of planning specifi-
cations (from IPC) into our fragment P show that P has expressive power sufficient
to represent not only Blocks World and Logistics, but also many other domains. In
any case, reducing projection to satisfiability in ALCO(U) is justified by the fact that
there are several off-the-shelf OWL2 reasoners that can be employed to solve the latter
problem, since a DL SROIQ underlying the Web Ontology Language (OWL2) includes
ALCO(U) as a fragment [8]. In our paper, we concentrate on foundational work and ex-
plore the logical properties of P . Our paper contributes by formulating an expressive
fragment of SC where the projection problem is decidable without DCA and closed
world assumption (CWA), i.e., when an initial theory is incomplete and is not purely
propositional. We hope that research outlined in our paper will attract the description
logic community to interesting research issues on the boundary between DLs and rea-
soning about actions.

Definition of P
We assume that the reader is familiar with SC from [21, 22] and knows that a BAT
D = DAP ∪ DSS ∪UNA ∪ DS0

∪Σ consists of the precondition axioms (PAs) DAP
that use the binary predicate symbol Poss, successor state axioms (SSAs) DSS , a set
of unique name axioms UNA, an initial theory DS0 that specifies an incomplete theory
of the initial situation S0, and Σ - a set of domain independent foundational axioms
about the relation s1 � s2 of precedence between situations s1 and s2. In [22], axioms
Σ are formulated in second-order logic, all other axioms are formulated in FOL, so
we assume the usual definitions of sorts, terms, well-formed formulas, and so on. A
fluent is a predicate with the last argument s of sort situation. As usual, we say that
a situation calculus FOL formula ψ(s) is uniform in s, if s is the only situation term
mentioned in ψ(s), the formula ψ has no occurrences of the predicates Poss,≺, and
has no quantifiers over variables of sort situation. The formula ψ obtained by deleting
all arguments s from fluents in the formula ψ(s) uniform in s is called the formula with
suppressed situation argument; the interested reader can find details in [21].

Fluents with a single object argument, F (x, s), are called dynamic concepts, and
fluents with two object arguments, F (x, y, s), are called dynamic roles. In the signature
of a BAT D, any predicate that is not a fluent must have either one or two arguments,
and is called either a (static) concept, or a (static) role, respectively. Subsequently, we
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consider only BATs with relational fluents, and do not allow any other function symbols
except do(a, s) and action functionsA(x). In particular, terms of sort object can be only
constants or variables. Each action function can have any number of object arguments.

To specify syntactic constraints on Dap and Dssa, we consider a language L, that
has at most n+ 2 object variables x, y, z1, . . . , zn, for some integer n > 0. We assume
L has at least n constants bi, 1 ≤ n ≤ n. The purpose of the variables zi is to serve as
place-holders to be instantiated with constants bi that occur as named object arguments
of ground action terms. This language L consists of two related sets of formulas: Fx and
Fy . Formulas φ(x) from the set Fx can have as free variables either x, or some of the
place-holder variables zi, 1 ≤ i ≤ n, but cannot have free occurrences of y. Formulas
φ(y) from the set Fy can have free occurrences of either y, or some of the place holders
zi, 1 ≤ i ≤ n, but cannot have free occurrences of x. Note the formulas φmay have free
variables zi that are not shown explicitly, but it will be always clear from the context
which variables are free in the formulas. We use the symbol ·̃ to denote a bijection
between Fx and Fy . If φ(x) ∈ Fx, then φ̃(y) is the dual formula of φ(x), obtained
by renaming in φ(x) every occurrence of x (both free and bound) with y and every
bound occurrence of y with x. Similarly, if φ(y) ∈ Fy , then φ̃(x) is the dual formula
to φ(y) obtained by replacing every occurrence of y with variable x, and every bound
occurrence of xwith y. The sets Fx and Fy have a non-empty intersection. For example,
sentences that mention constants only, and Fx formulas that have only occurrences of z
variables belong to both Fx and to Fy . Each formula φ without x, y variables is mapped
by bijection φ̃ to itself. We are ready to give the following inductive definition.
Definition 1. Let L be the set of first-order logic formulas such that L = Fx ∪Fy , and
·̃ be a bijection between formulas in Fx and Fy as defined above, where the sets Fy

and Fx are minimal sets constructed as follows. (We focus on Fx, since Fy is similar.)
1. > and ⊥ are in Fx.
2. If AC is a unary predicate symbol, z is a variable distinct from x and y, and b is a

constant, then the formulas AC(x), AC(z), and AC(b) are in Fx.
3. If b is a constant, and z is a variable that is distinct from x and y, then the formulas
x=x, x=b, x=z are in Fx.

4. If R is a binary predicate symbol, b1 and b2 are constants, and z1 and z2 are vari-
ables that are distinct from x and y, thenR(z1, z2),R(b1, b2),R(b1, z2),R(z1, b2),
R(x, b2) and R(x, z2) are formulas in Fx.

5. If φ ∈ Fx, then also ¬φ ∈ Fx.
6. If φ, ψ ∈ Fx, then both (φ ∧ ψ) ∈ Fx and (φ ∨ ψ) ∈ Fx.
7. If φ(x)∈ Fx, R is a binary predicate symbol, b is any constant, z is any variable

distinct from x and y, and φ̃(y) is the formula dual to φ(x), then all of the fol-
lowing formulas with quantifiers guarded by R belong to Fx: ∃y.R(x, y) ∧ φ̃(y),
∃y.R(b, y)∧ φ̃(y), ∃y.R(z, y)∧ φ̃(y), as well as ∀y.R(x, y) ⊃ φ̃(y), ∀y.R(b, y) ⊃
φ̃(y), ∀y.R(z, y) ⊃ φ̃(y).

8. If φ ∈ Fx, φ̃ is the formula dual to φ, then [∃x].φ(x), [∀x].φ(x) as well as
[∃y.]φ̃(y), [∀y.]φ̃(y) belong to Fx, where [∃] ([∀], respectively) means that quanti-
fiers are optional and applied only when a formula has a free variable.

The intuition behind the definition ofL is that any variable z other than x and y has to be
free in a formula from L. The set of formulas FODL=FOxDL ∪FOyDL defined in [13]
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is a proper subset of L because the set of formulas FOxDL (FOyDL, respectively) is a
proper subset of Fx (Fy , respectively): no place holder variables z1, . . . , zn are allowed
in FOxDL and FOyDL. We say a formula φ ∈ L is a z-free L formula, if all occurrences
of variables z (if any), other than x and y, in φ are instantiated with constants.
Lemma 1. There are syntactic translations between the set of z-free formulas φ ∈
L and the concept expressions from the language ALCO(U) in both directions, i.e.,
they are equally expressive. Moreover, such translations lead to no more than a linear
increase in the size of the translated formula.

This lemma is proved using the standard translation between DLs and FOL; the
proof is similar to the proof of Lemma 1 in [13]. Using the fluents Loaded(box, s),
At(box, city, s), and In(box, vehicle, s) from Logistics as an example, after suppress-
ing s, a z-free L formula Loaded(B1) ∨ ∃x(Box(x) ∧ x 6=B1 ∧ In(x, T1)) is trans-
lated as ∃U.({B1} u Loaded) t ∃U.(Box u ¬{B1} u ∃In.{T1}, where {B1}, {T1}
are nominals (i.e., concepts interpreted as singleton sets), and ∀x(¬Box(x) ∨ x =
B1 ∨ At(x, Toronto)), all boxes distinct from B1 are in Toronto, is translated as
∀U.(¬Box t {B1} t ∃At.{Toronto}). Notice why nominals and U are important.
Subsequently, we consider BATs that use in axioms L-like formulas uniform in s. This
motivates the following requirements. For brevity, let a vector x of object variables de-
note either x, or y, or 〈x, y〉; also, let z denote a finite vector of place holder variables.
Action precondition axioms DAP : For each action function A(z), there is a single pre-
condition axiom uniform in s:

(∀z, s). Poss(A(z), s) ≡ ΠA(z, s), (1)

where ΠA(z, s) is uniform in s; it is an L formula with z as the only free variables,
if any, when s is suppressed. When object arguments of A(z) are instantiated with
constants, by Lemma 1, the RHS of each precondition axiom can be translated into a
concept in ALCO(U), when the situation variable s is suppressed.
Successor state axioms DSS : There is a single SSA for each fluent F (x, do(a, s)).
According to the general syntactic form of the SSAs provided in (Reiter 2001), without
loss of generality, we can assume that each axiom is as follows:

(∀x, s, a). F (x, do(a, s)) ≡ γ+F (x, a, s) ∨ F (x, s) ∧ ¬γ−F (x, a, s) (2)

where each of the γF ’s are disjunctions either of the form
[∃z].a = A(u)∧φ(x, z, s), /* a set of variables z ⊆ u; may be {x} ∈ u */

if (2) is a SSA for a dynamic concept F (x, s) with a single object argument x, or
[∃z].a = A(u)∧φ(x, z, s)∧φ(y,z, s), /* z ⊆ u, possibly {x, y}∩u 6= Ø */

if (2) is a SSA for a dynamic role F (x, y, s), where φ(x, z, s) is a context condition
uniform in s saying when an action A can have an effect on the fluent F . The formula
φ(x, z, s) ∈ Fx, the formula φ(y,z, s) ∈ Fy , when s is suppressed. A set of variables
z in a context condition φ(x, z, s) must be a subset of object variables u. If u in an
action function A(u) does not include any z variable, then there is no ∃z quantifier.

If not all variables from x are included in u, then it is said that A(u) has a global
effect, since the fluent F experiences changes beyond the objects explicitly named in
A(u) (e.g., driving a truck between two locations changes location of all boxes loaded
in the truck). When a vector of object variables u contains both x and z, we say that the
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actionA(u) has a local effect. A BAT is called a local-effect BAT if all of its actions have
only local effects. Observe that in a local-effect SSA, when one substitutes a ground ac-
tion termA(bx, bz) for a variable a in the formula [∃z].a=A(x, z)∧φ(x, z, s), apply-
ing UNA for action terms yields [∃z].x=bx∧z=bz∧φ(x, z, s), and applying ∃z(z=
b ∧ φ(z)) ≡ φ(b) repeatedly results in the equivalent formula x=bx ∧ φ(x, bz, s).

Initial Theory DS0
: The DS0

is an L sentence without z variables, i.e., it can be trans-
formed into an ALCO(U) concept.

A basic action theory D that satisfies all of the above requirements is called an
action theory P . We note that BATs proposed in [13] are less general than P , be-
cause their axioms should be written using formulas from FODL, but FODL is a
proper subset of L. Sometimes, for clarity, when we talk about P , we say that it is
an L-based BAT, in contrast to FODL-based BATs considered in [13]. The Blocks
World is an example of a FODL-based BAT, while Logistics is an example of P . Lo-
gistics cannot be formulated as a FODL-based BAT because it includes actions, e.g.,
drive(Truck, Loc1, Loc2, City), with more than 2 arguments, and the SSA for a dy-
namic role At(obj, loc, s) uses as a context condition an Fx formula, while in [13],
the SSAs for dynamic roles must be context-free. Subsequently, for brevity, instead of
saying that φ(s) is a SC formula uniform in s that becomes an L formula when s is
suppressed, we say simply that φ is an L formula.

Due to space limitations, we skip introduction to DLs, but the reader can find one in
[2]. Recall that the satisfiability problem of a concept and/or the consistency problem
of an ABox in the DL language ALCO(U) can be solved in EXPTIME.

Example 1. As an example of P , imagine searching for a given file in a depth-first
search (DFS) like manner through directories. An action forward(z1, z2, z3) makes
forward transition from a current directory z1 to its child directory z2 while searching
for a file z3. It is possible in situation s, if z2 has never been visited. This is represented
using the fluent vis(z2, z3, s). A backtrack(z1, z2, z3) transition from z1 back to its
parent z2 is possible only if all children of z1 had been visited while searching for a file
z3. P also includes situation independent unary predicates file(x), dir(x), and the bi-
nary predicate dirChild(x, y) meaning that x is a direct child of y in a file system. The
search for a file f in a directory d succeeds when find(d, f) is executed. This action is
possible when d actually contains f . This is represented using the fluent at(d, f, s). Us-
ing chmod(z1, z2) one can toggle in situation s permissions of a directory z1 between
z2 =on and z2 =off , if the current permission x for this directory z1, represented using
the fluent perm(z1, x, s), is such that the values of x and z2 are opposite. The following
are precondition axioms (PA) for all actions (the variables zi, s are ∀-quantified at front).

Poss(forward(z1, z2, z3), s) ≡ dir(z1) ∧ dir(z2) ∧ z1 6= z2 ∧ file(z3)∧
dirChild(z2, z1) ∧ ¬vis(z2, z3, s) ∧ at(z1, z3, s)

Poss(backtrack(z1, z2, z3), s)≡ dir(z1) ∧ dir(z2) ∧ file(z3) ∧ dirChild(z1, z2)∧
at(z1, z3, s) ∧ ¬∃y ( dirChild(y, z1) ∧ dir(y) ∧ ¬vis(y, z3, s) )

Poss(find(z1, z2), s) ≡ file(z1) ∧ dir(z2) ∧ dirChild(z1, z2) ∧ at(z2, z1, s)
Poss(chmod(z1, z2), s) ≡ dir(z1) ∧ (z2 =on ∨ z2 =off)∧

∃x.(perm(z1, x, s) ∧ x 6= z2).
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The direct effects of actions are formulated using successor state axioms (SSA).
The current DFS for a file y arrives at a directory x when either forward or backtrack-
ing transition leads to x; otherwise, if any other action is executed, it remains at x. Also,
the directory x becomes visited as soon as DFS arrives there following some forward
transition, but only if the current permission of x is on in situation s. Otherwise, for-
ward transition has no effect. Changing permission of a directory x to y has an effect
only when DFS for a file is currently located at x in situation s. A file f is found after
doing find(x, z1 in a directory z1 only if permission is on for this directory in s.

at(x, y, do(a, s)) ≡ ∃z1(a=forward(z1, x, y) ∧ perm(x, on, s)) ∨
∃z1(a=backtrack(z1, x, y)) ∨

at(x, y, s) ∧ ¬∃z1(a=forward(x, z1, y) ∧ perm(z1, on, s))∧
¬∃z1(a=backtrack(x, z1, y))

vis(x, y, do(a, s)) ≡ ∃z1(a=forward(z1, x, y) ∧ perm(x, on, s)) ∨ vis(x, y, s)
perm(x, y, do(a, s)) ≡ a=chmod(x, y) ∧ ∃y(at(x, y, s) ∧ y=y ) ∨

perm(x, y, s) ∧ ¬∃z1(a=chmod(x, z1) ∧ y 6= z1 ∧ ∃y.at(x, y, s) ∧ y=y )
found(x, do(a, s)) ≡ ∃z1(a=find(x, z1) ∧ perm(z1, on, s)) ∨ found(x, s).

These SSAs satisfy syntactic constraints in P , but they cannot be formulated as
FODL-based SSAs considered in [13] since SSAs for the dynamic roles at and perm
have context conditions and mention action functions with more than 2 arguments.
Clearly, neither PAs, nor SSAs can be translated to a DL, but nevertheless, there are
instances of the projection problem in this BAT that can be reduced to SAT in a DL.

The Projection Problem in P
Let D be a description logic based BAT defined in [13], α1, · · · , αn be a sequence of
ground action terms, and Goal(s) be a query formula uniform in s such that it can be
transformed into anALCO(U) concept, if s is suppressed. Subsequently, we call a query
Goal(S) a regressable formula, if S is a ground situation term. One of the most impor-
tant reasoning tasks in the SC is the projection problem, that is, to determine whether
D |= Goal(do([α1, · · · , αn], S0)). Another basic reasoning task is the executability
problem: whether all ground actions in α1, · · · , αn can be consecutively executed. This
can be reduced to the projection problem using the precondition axioms, and for this
reason we no longer consider it. Planning and high-level program execution are two im-
portant settings where the executability and projection problems arise naturally. Regres-
sion is a central computational mechanism that forms the basis of automated solutions
to the executability and projection tasks in the SC [22]. A recursive definition of the
modified regression operator R on any regressable formula Goal(S) is given in [13].
The modified regression operator makes sure that the only two available object variables
x, y are re-used when regressing a quantified formula in contrast to Reiter’s regression,
where new variables are introduced. For a regressable formula Goal(S), we use no-
tation R[Goal(S)] to denote the regressed formula uniform in S0 that results from
replacing repeatedly fluent atoms about do(α, s) by logically equivalent expressions
about s as given by the RHS of SSAs, until such replacements no longer can be made;
this is why the regressed formula is uniform in S0. For any static concept C(x) and role
R(x, y), by definition of regressionR[C(x)]=C(x) andR[R(x, y)]=R(x, y).
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The regression theorem (Theorem 8) proved in [13] shows that R[Goal(S)] is a
FODL formula, when S0 is suppressed and, as a consequence, one can reduce the
projection problem for a regressable sentence Goal(S) to the satisfiability problem in
ALCO(U) as long as a BAT D satisfies syntactic restrictions due to using FODL for-
mulas in axioms:

D |= Goal iff DS0 |= R[Goal(S)],

where it is assumed that DS0
includes UNA, unique name axioms for objects. (Unique

name axioms for actions are used by modified regression, and they are no longer re-
quired when regression terminates.) This statement is proved in [13] for an extended
BAT that additionally includes a set of axioms DT =DT,st ∪ DT,dyn, where the static
TBox DT,st is an acyclic set of concept definitions that mentions only situation inde-
pendent predicates (in [13], DS0

includes DT,st), while dynamic TBox DT,dyn is an
acyclic set of definitions such that it has occurrences of fluents, but defined fluents are
mentioned only in the RHS of SSAs, and they are eliminated by the modified regression
operator using lazy unfolding. For example, DT,st may include situation independent
static definitions such as “vehicle is a truck or an airplane”, while DT,dyn may include
convenient situation dependent abbreviations like Movable(x, s) ≡ Loaded(x, s) ∧
∃yIn(x, y, s). The previously mentioned acyclicity assumption originates in [4].

We would like to eliminate a previous assumption that DT,st is acyclic. For sim-
plicity, let us consider a case when DT,dyn = ∅. Let D be P such that its initial
theory DS0 is augmented with an arbitrary satisfiable static TBox DT,st that may in-
clude general concept inclusions between ALCO(U) concepts. (This TBox can be ex-
pressed as anALCO(U) concept.) Then, by the relative satisfiability theorem from [21],
Σ ∪ Dap ∪ Dssa ∪ UNA ∪ DS0

∪ DT,st is satisfiable iff UNA ∪ DS0
∪ DT,st is sat-

isfiable, i.e., the presence of a static satisfiable ontology is harmless. Moreover, since
regression does not affect the predicates without a situation term, in other words, since
axioms in DT,st are invariant wrt the regression operator, it can be used to answer
“static” queries and to reduce the projection problem to the satisfiability in ALCO(U):
Σ∪Dap∪Dssa∪UNA∪DS0

∪DT,st |= Goal iff UNA∪DS0
∪DT,st |= Goal, when

Goal is an L sentence without z-variables that has no occurrences of fluents (a “static”
query), and UNA includes unique name axioms only for objects. This simple observa-
tion is a consequence of Lemma 1 and the regression theorem from [21]. In addition, in
P we can prove that formulas from L remain to be in L after regression.

Theorem 1. LetD be anL-based BAT (a theoryP), φ be a regressableL formula, and
α a ground action. The result of regressing φ[(do(α, S0)], denoted by R[φ(do(α, S0)],
is a formula uniform in situation S0 that is an L-formula if S0 is suppressed.

This can be proved similarly to Lemma 2 from Section 5.4 in [13] that is proved for a
FODL-based BAT. However, this does not follow directly from [13, 12] because SSA
for dynamic roles may have context conditions in P , but in [13, 12] it was assumed that
SSA for dynamic roles are context free. Also, recall that FODL is a proper subset of
L. The proof is long and laborious because regression is a syntactic operation, and the
SSAs in P may have several different syntactic forms, but we have to show that if we
start with a DL-like formula, then after a single step of regression we get a formula that
remains DL-like. As a consequence, for the “dynamic” queries, we have the following.
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Theorem 2. LetD=Σ∪Dap∪Dssa∪UNA∪DS0
∪DT,st beP augmented with a (static)

general ALCO(U) TBox , φ(S) be a regressable z-free L sentence, and S be a ground
situation. Then the projection problem can be reduced to satisfiability in ALCO(U):

Σ ∪ Dap ∪ Dssa ∪UNA ∪ DS0
∪ DT,st |= φ(S) iff

UNA ∪ DS0
∪ DT,st |= R[φ(S)]

This follows from Theorem 1 by induction on the length of the situation term S, from
Lemma 1, and from the fact that UNA ∪ DS0

∪ DT,st can be transformed into an
ALCO(U) concept. This theorem is important because it shows that any staticALCO(U)
ontology can be seamlessly integrated with reasoning about actions in P . Also, one can
add an acyclic dynamic TBoxDT,dyn to P without any difficulties, as in [13]. However,
[4, 17, 6] and others argue that a general dynamic TBox leads to serious difficulties.
While [4] does not consider a general static TBox DT,st, it could be added, e.g., by
internalizing DT,st into anALCO(U) concept and including it as an ABox assertion wrt
a dummy individual. This trick was not considered in [4], because the universal role U
is required for this trick to work, but U was missing in [4].

Example 1 (cont.) We would like to adapt for our purposes an example of a general
TBox from the paper by Giuseppe De Giacomo, Maurizio Lenzerini “TBox and ABox
Reasoning in Expressive Description Logics”, KR 1996, pages 316-327). Suppose that
a static TBox has the following general concept inclusions:

dir v ∀dirChild−.(dir t file) u ≤ 1 dirChild.dir
file v ¬dir u ∀dirChild−.⊥

Let an initial DS0 be the following theory (written as L formula for brevity):
dir(home) ∧ dir(mes) ∧ dir(root) ∧ dir(wyehia) ∧ file(f1) ∧ file(f2)
dirChild(f1,mes) ∧ dirChild(f2, wyehia) ∧ dirChild(home, root)∧
dirChild(mes, home) ∧ dirChild(wyehia, home)∧
at(wyehia, f1, S0) ∧ ∀x.(¬(dir(x) ∨ file(x)) ∨ perm(x, on, S0))
The UNA for object constants (represented as nominals in ALCO(U)):
{f1} 6= {f2} 6= {home} 6= {mes} 6= {off} 6= {on} 6= {root} 6= {wyehia}

Let the projection query be whether D ∪ TBox |= found(f1, S), where S is
do([backtrack(wyehia, home, f1), forward(home,mes, f1), find(f1,mes)], S0)).
Then, it is easy to see that the regressed query is

( (f1 = f1 ∧ perm(mes, on, S0)) ∨ found(f1, S0) )
This example demonstrates that we managed to solve the projection problem in the
presence of a general expressive static TBox. This example has been implemented:
axioms are implemented in XML and regression of a query was computed using a C++
program, see details at http://www.scs.ryerson.ca/mes/dl2012.zip

Progression in P
In this section, we use the notion of forgetting about a sequence of ground atoms, the
notion of progression in SC, the fact about definability of progression in FOL for local
effect BATs, and notation introduced in [15, 16, 18]. Recall that P is any L-based BAT.
It is easy to give an example of P with global effect actions such that progression of
DS0

is not definable as a z-free L sentence. Subsequently, we consider only local-effect
P action theories, and we talk about z-free L sentences that can be transformed into
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an ALCO(U) concept. Below, we prove that progression of a z-free L sentence DS0

is still expressible as a z-free L sentence DSα
(here and subsequently, for brevity, we

talk about situation-suppressed sentences). This does not follow from Theorem 3.6 in
[18] about definability of progression in FOL for local-effect BATs, since our initial
theory DS0

is formulated in a strict subset of FO2 language, and it is not obvious at all
whether in P progression DSα

of DS0
can still be defined within our language. Since

progression involves forgetting about old values of fluents and computing new values,
we need a couple of intermediate lemmas. First, we show that new fluent values can be
expressed in L. Then, we prove that the result of forgetting about ground fluents inDS0

affected by a ground action α remains to be a z-free L sentence.
Lemma 2. LetD be a local effect P , α a ground action, andΩ(S0) be the characteris-
tic set of α with respect to D. Then DSS [Ω] is a set of L sentences without occurrences
of z-variables, when the situation terms are suppressed.

The characteristic set Ω(S0) is a set of ground fluents affected by α. Because they
change values, we have to forget their old values. To compute new values for them,
we instantiate DSS w.r.t. Ω(S0), do simplification and obtain the set of sentences
F (t, Sα) ≡ ΦF (t, α, S0), which are denoted as DSS [Ω], where Sα = do(α, S0), and
ΦF (t, α, S0) is a z-free L sentence representing the RHS of a SSA for the fluent F .
F (t, Sα) and ΦF (t, α, S0) mention different situation terms. However, F (t, Sα) can
never occur in ΦF or any RHS of SSA of other fluents because they are all uniform
in S0. Also, none of the ground fluents to be subsequently forgotten are relevant to
F (t, Sα) simply because it is the value of F in a different situation. Consequently, we
can replace F (t, Sα) temporarily by some atom Ft until forgetting of Ω(S0) is com-
pleted, and then put it back while preserving logical equivalence. The next lemma shows
that forgetting about ground atoms Ω(S0) in an L formula results in an L formula.
Lemma 3. Let φ be a Fx (or Fy) formula and θ a truth assignment to some of the
atoms P (tj) occurring in this formula (if any), then φ[θ] remains a Fx (Fy) formula.
Notation φ[θ] for forgetting about several ground atoms, introduced in [18], means the
result of replacing every occurrence of an atom P (x) in φ by

∨m
j=1(x= tj∧θ[P (tj)])∨

(
∧m
j=1 x 6= tj) ∧ P (x). This Lemma is proved by induction over structure of φ.

Theorem 3. Let D be a local-effect BAT based on L and α a ground action. Let Ω(s)
be the characteristic set of α. Then the following formula is a progression of DS0

w.r.t.
α and this formula is an L sentence:

∧
UNA ∧

∨

θ∈M(Ω(S0))

(
∧
DS0 ∧

∧
DSS [Ω])[θ] (Sα/S0) (3)

Proof : This is a consequence of Lemmas (2), (3) and Theorem 3.6 from [18]. Note that
the final formula is uniform in Sα. This theorem is important for our work because it
shows for P that if an initial theory DS0 is expressible as an ALCO(U)-like concept,
then progression DSα

is also expressible as an ALCO(U)-like concept.
Theorem 3 shows progression DSα can be translated to ALCO(U), but in a general

case, the size of progression can be much larger than the size of DS0
. If one wants to

solve the projection problem by computing progression for a sequence of action, then
one has to find special cases of an initial theory DS0

such that the size of progression
remains linear w.r.t. the size of DS0 . It turns out that progression is computationally
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tractable if an initial DS0
is in proper+ form [18], where proper+ theories generalize

databases by allowing incomplete disjunctive knowledge about some of the named el-
ements of the domain [14]. A proper+ knowledge base (KB) is more general than a
proper KB, which is equivalent to a possibly infinite consistent set of ground literals.
We show that in P , if DS0

is a set of proper+ formulas that can be translated into
ALCO(U), i.e., a boolean ALC ABox , then progression of DS0

in our normal form can
be computed efficiently, and the normal form can be maintained without introducing
any new variables. To achieve this, we introduce a new p+ normal form. We show that
a KB in our p+ normal form can be equivalently transformed into the same normal form
after forgetting about old values of fluents, and none of the intermediate logical transfor-
mations require introducing new variables to preserve logical equivalence. The fact that
forgetting in our normal form KB can be accomplished without introducing new vari-
ables is novelty that does not follow from [18]. Also, we show that after progression the
size of the progressed KB is linear wrt to the size of of the initial KB, i.e., progression
can be computed efficiently. Once an initial theory DS0 has been progressed to DSα ,
solving the projection problem can be done using any ALCO(U) satisfiability solver.

Due to lack of space we omit all technical details, but the interested readers can find
them in the longer version at http://www.scs.ryerson.ca/mes/dl2012.zip

Discussion and Future Work

Main contributions of our paper are as follows. First, we define a logical theory P in-
tegrating reasoning about action with DLs such that P is more expressive than theories
from [12, 13]. Second, Theorem 2 (regression in P) shouldn’t be underestimated. It
shows existing ontologies (with a general ALCO(U) static TBox) can be seamlessly in-
tegrated withP when solving the projection problem. To the best of our knowledge, this
seamless integration of DLs and reasoning about actions has never been proposed be-
fore. For example, [4, 13] allowed only acyclic dynamic TBox (that can be easily added
to P too). Third, Theorem 3 is a new non-trivial statement that doesn’t follow from
[18]. It is important because it guarantees that progression ofALCO(U) KBs can still be
formulated in the same language, and consequently, one can continue computing pro-
gression for subsequent actions. Fourth, theorems (not included in this version) about
maintaining our new p+ normal form after forgetting are proved using new techniques.
They don’t follow from [18], where progression was studied in FOL.

An approach to integrating DLs and reasoning about actions proposed in [4] inspired
a number of subsequent papers including [13], where the reader can find extensive com-
parison and discussion. The approach proposed in [4] is expressive, and it can be used
to represent many popular AI action theories. However, one can answer only ground
projection queries using their approach, but Theorem 2 shows we can use regression to
answer projection queries with quantifiers over object arguments in fluents. Also, our
regression can be used to solve the projection problem in a BAT where some actions
have global effects, but the approach proposed in [4] can answer projection queries only
in local effect BATs. In any case, it is important to compare our implementations with
an implementation based on [4] for the common classes of queries and theories. The
first step in this direction is taken in [3]. Due to lack of space we couldn’t discuss other
related work, but all related publications are very extensively discussed in [4, 6, 13, 17].
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Abstract. This paper describes our progress in developing algorithms for con-
current classification of OWL ontologies. We refactored the architecture of our re-
search prototype and its employed algorithms by integrating lock-free data struc-
tures and adopting various optimizations to reduce overhead. In comparison to
our earlier work we increased the size of classified ontologies by one order of
magnitude, i.e., the size of processed ontologies is now beyond a quarter mil-
lion of OWL classes. The main focus of this paper is an empirical evaluation
with huge ontologies that demonstrates an excellent speedup that almost directly
corresponds to the number of used processors or cores.

1 Introduction

Parallel algorithms for description logic (DL) reasoning were first explored in the FLEX
system [3] where various distributed message-passing schemes for rule execution were
evaluated. The reported results seemed to be promising but the research suffered from
severe limitations due to the hardware available for experiments at that time. The only
other work on parallelizing DL reasoning [9] reported promising results using multi-
core and multi-processor hardware, where the parallel treatment of disjunctions and
individual merging (due to number restrictions) is explored. In [11] an approach on
distributed reasoning for ALCHIQ is presented that is based on resolution techniques
but does not address optimizations for TBox classification.

Other work has studied concurrency in light-weight ontology languages. There is a
distributed Map Reduce approach algorithm for EL+, however no experiments had been
reported on the proposed algorithms [10]. Other work focuses on distributed reasoning,
and these approaches are different than ours as they manage large-scale data which is
beyond the memory of a single machine [11, 14, 6, 8, 12]. There also exists work on
parallel distributed RDF inferencing (e.g., [13]) and parallel reasoning in first-order
theorem proving but due to completely different proof techniques (resolution versus
tableaux) and reasoning architectures this is not considered as relevant here. Another
work presents an optimized consequence-based procedure for classification of ontolo-
gies but it only addresses the DL EL [7].

The work in this paper is an extension of our work on Parallel TBox classification
[1]. Compared to our previous work, this paper reports on an enhanced lock-free ver-
sion of algorithms utilizing concurrency in a multi-core environment, optimizations that
increase the performance, a performance evaluation with huge real-world ontologies in
the range of 300K OWL classes (DL concepts) such as SNOMED. Our prototype not
only addresses huge real-world ontologies but also does not compromise on DL com-
plexity. It can process much more complex DLs (e.g., at least SHIQ) than EL, and
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provides an excellent speedup considering that no particular DL related optimization
technique is used. The implemented prototype system performs concurrent TBox clas-
sification based on various parameters such as number of threads, size of partitions
assigned to threads, and number of processors. Our evaluation demonstrates impressive
performance improvements where the number of available processors almost linearly
decreases the processing time due to a small overhead. It is important to note that the
focus of this research is on exploring algorithms for concurrent TBox classification and
not on developing a highly optimized DL reasoner. We are currently only interested in
the speedup factor obtained from comparing sequential and parallel runs of our proto-
type.

2 The Concurrent TBox Classifier

This section describes the architecture of the implemented system and its underlying
sound and complete algorithm for concurrent classification of DL ontologies. To com-
pute the hierarchy in parallel, we developed a Java application using a multi-threaded
architecture providing control parameters such as number of threads, number of con-
cepts (also called partition size) to be inserted per thread, and number of processors. As
thoroughly explained in [1], the program reads an input file containing a list of concept
names to be classified and information about them which is generated by the OWL rea-
soner Racer [4]. Racer is only used for generating the input files for our prototype. The
per-concept information available in the file includes the concept name, its parents (in
the complete taxonomy), so-called told subsumers and disjoints, and pseudo model [5]
information. This architecture was deliberately designed to facilitate our experiments
by using existing OWL reasoners to generate auxiliary information and to make the
Concurrent TBox Classifier independent of particular DLs.

The preprocessing algorithm uses a topological sorting similar to [1] and the order
for processing concepts is based on the topologically sorted list. To manage concur-
rency and multi-threading in our system, as described in [1], a single-shared global tree
approach is used. Also, to classify the TBox, two symmetric tasks are employed, i.e.,
the so-called enhanced tree traversal method [2] using top (bottom) search to compute
the parents (children) of a concept to be inserted into the taxonomy.

In [1], we first introduced our algorithms for parallel classification and reported
considerable performance improvements but we could only process relatively small
ontologies. In this paper, we introduce the enhanced concurrent version of these algo-
rithms, i.e., Algorithms 2, 6 and 7. In order to make the paper self-contained we repeat
Algorithms 1, 3, 4 and 5 from [1].

The procedure parallel tbox classification is sketched in Algorithm 1. It is called
with a list of named concepts and sorts them in topological order with respect to the
initial taxonomy created from already known told ancestors and descendants of each
concept (using the told subsumer information). The classifier assigns in a round-robin
manner partitions with a fixed size from the concept list to idle threads and activates
these threads with their assigned partition using the procedure insert partition outlined
in Algorithm 2. All threads work in parallel with the goal to construct a global subsump-
tion tree (taxonomy). They also share a global array located concepts indexed by thread
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Algorithm 1 parallel tbox classification(concept list)
topological order list← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological order list
run thread ti with insert partition(pi, ti)

until all concepts in topological order list are inserted

identifications. Using the Concurrency package in Java, synchronization on the nodes
of the global tree as well as the entries in the global array have now been eliminated.

The procedure insert partition inserts all concepts of a given partition into the global
taxonomy. We use Concurrent collections from the java.util.concurrent package. This
package supplies Collection implementations which are thread-safe and designed for
use in multi-threaded contexts. Therefore, for updating a concept or its parents or chil-
dren, no locking mechanism for the affected nodes of the global tree is needed anymore.
Algorithm 2 first performs for each concept new the top-search phase (starting from the
top concept (>)) and possibly repeats the top-search phase for new if other threads up-
dated the list of children of its parents. Then, it sets the parents of new. Afterwards the
bottom-search phase (starting from the bottom concept (⊥)) is performed. Analogously
to the top-search phase, the bottom search is possibly repeated and sets the children of
new. After finishing the top and bottom search for new, the node new is added to the
entries in located concepts of all other busy threads; it is also checked whether other
threads updated the entry in located concepts for this thread. If this was the case, the
top and/or bottom search need to be repeated correspondingly.

To reduce overhead in re-running of top or bottom search, we only re-run twice. If
the concept new is still not ready to be inserted; e.g., there is any interaction between
new and a concept in located concepts; it will be added to the partition list of concepts
(to be located later), and also eliminated from the other busy threads’ located concepts
list, otherwise, new can be inserted into the taxonomy using Algorithm 7. In order to
avoid unnecessary tree traversals and tableau subsumption tests when computing the
subsumption hierarchy, the parallel classifier adapted the enhanced traversal method
[2], which is an algorithm that was designed for sequential execution. Algorithms 3 and
41 outline the traversal procedures for the top-search phase.

The possible incompleteness caused by parallel classification [1] can be character-
ized by the following two scenarios: Scenario I: In top search, as the new concept is
pushed downward, right after the children of the current concept have been processed,
at least one new child is added by another thread. In this scenario, the top search for
the concept new is not aware of the recent change and this might cause missing sub-
sumptions if there is any interaction between the concept new and the added children.
The same might happen in bottom search if the bottom search for the concept new is
not informed of the recent change to the list of parents of the current node. Scenario II:
Between the time that top search has been started to find the location of the concept
new in the taxonomy and the time that its location has been decided, another thread has

1 Algorithm found in ancestors(current,new) checks if current is an ancestor of new.
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Algorithm 2 insert partition(partition,id)
for all new ∈ partition do

rerun← 0
finish rerun← false
parents← top search(new,>)
while ¬ consistent in top search(parents,new) do

parents← top search(new,>)
predecessors(new)← parents
children← bottom search(new,⊥)
while ¬ consistent in bottom search(children,new) do

children← bottom search(new,⊥)
successors(new)← children
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) ∪ {new}
check ← check if concept has interaction(new , located concepts(id))
while (check 6= 0) and ¬finish rerun do

if rerun < 3 then
if check = 1 then

new predecessors← top search(new,>)
rerun← rerun + 1
predecessors(new)← new predecessors

if check = 2 then
new successors← bottom search(new,⊥)
rerun← rerun + 1
successors(new)← new successors

check ← check if concept has interaction(new , located concepts(id))
else

finish rerun← true
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) \ {new}
if ¬finish rerun then

insert concept in tbox(new, predecessors(new), successors(new))

placed at least one concept into the hierarchy which the concept new has an interaction
with. Again, this might cause missing subsumptions and is analogously also applicable
to bottom search.

Both scenarios are properly addressed in Algorithm 2 to ensure completeness. Every
time a thread locates a concept in the taxonomy, it notifies the other threads by adding
this concept name to their “located concepts” list. Therefore, as soon as a thread finds
the parents and children of the concept new by running top search and bottom search;
it checks if there is any interaction between concept new and the concepts located in the
“located concepts” list. Based on the interaction, top search or bottom search needs
to be repeated accordingly. If no possible situations for incompleteness are discovered
anymore, Algorithm 7 is called. To resolve the possible incompleteness we utilize Algo-

403



Algorithm 3 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
captured successors(new)(current)← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result

Algorithm 4 enhanced top subs(current,new)
if current marked as ‘positive’ then

return true
else if current marked as ‘negative’ then

return false
else if for all z ∈ predecessors(current)

enhanced top subs(z,new)
and found in ancestors(current,new) then

mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

rithms 5 and 6.2 The procedure consistent in bottom search is not shown here because
it mirrors consistent in top search.

3 Evaluation

In the previous section, we explained the algorithms used in our Concurrent TBox Clas-
sifier. In this section, we study the scalability and performance of our prototype. Here,
we would like to explain the behavior of our system when we run it in a (i) sequential or
(ii) parallel multi-processor environment. We also describe how the prototype performs
when we have huge real-world ontologies with different DL complexities. Therefore,
in the remaining of this section, we report on the conducted experiments.

We first provide a description of the used platform and the implemented prototype,
then we describe the test cases used to evaluate Concurrent TBox Classifier and provide

2 Algorithm interaction possible(new,concept) uses pseudo model merging [5] to decide
whether a subsumption is possible between new and concept.
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Algorithm 5 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if found in ancestors(child,new) then
return false

return true

Algorithm 6 check if concept has interaction(new,located concepts)
The return value indicates whether and what type of re-run needs to be done:
0 : No re-run in needed
1 : Re-run TopSearch because a possible parent could have been overlooked
2 : Re-run BottomSearch because a possible child could have been overlooked
if located concepts = ∅ then

return 0
else

for all concept ∈ located concepts do
if interaction possible(new,concept) then

if found in ancestors(new,concept) then
return 2

else
return 1

else if interaction possible(concept,new) then
if found in ancestors(new,concept) then

return 2
else

return 1
return 0

an overview of the parameters used in the experiments. Finally, we show the results
and discuss the performance of the classifier. In addition, the measured runtimes in the
figures are shown in seconds using a logarithmic scale.

Platform and implementation All the experiments were conducted on a high perfor-
mance parallel computing cluster. The nodes in the cluster run an HP-version of RedHat
Enterprise Linux for 64 bit processors, with HP’s own XC cluster software stack. To
evaluate our approach, Concurrent TBox Classifier has been implemented in Java using
lock-free data structures from the java.util.concurrent package with minimal synchro-
nization.

Test cases Table 1 shows a collection of 9 mostly publicly available real-world on-
tologies. Note that the chosen test cases exhibit different sizes, structure, and DL com-
plexities. The benchmark ontologies are characterized by their name, size in number of
named concepts or classes, and used DL.

Parameters used in experiments The parameters used in our empirical evaluation and
their meaning are described below (the default parameter value in shown in bold).
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Algorithm 7 insert concept in tbox(new,predecessors,successors)
for all pred ∈ predecessors do

successors(pred)← successors(pred) ∪ {new}
for all succ ∈ successors do

predecessors(succ)← predecessors(succ) ∪ {new}

Table 1. Characteristics of the used test ontologies (e.g., LH denotes the DL allowing only
conjunction and role hierarchies, and unfoldable TBoxes)

Ontology DL language No. of named concepts
Embassi-2 ALCHN 657

Galen1 ALCH 2,730
LargeTestOntology ELHR+ 5,584

Tambis-2a ELH 10,116
Cyc LHF 25,566

EClass-51En-1 LH 76,977
Snomed-2 ELH 182,869
Snomed-1 ELH 223,260
Snomed ELH 379,691

– Number of Threads: To measure the scalability of our system, we have performed
our experiments using different numbers of threads (1, 2, 4).

– Partition Size: The number of concepts (5, 25) that are assigned to every thread and
are expected to be inserted by the corresponding thread. Similar to the number of
threads, this parameter is also used to measure the scalability of our approach.

– Number of Processors: For the presented benchmarks we always had 8 processors
or cores3 available.

Performance In order to test the effect of these parameters in our system, the bench-
marks are run with different parameter values. The performance improvement is mea-
sured using the speedup factor which is defined as Speedupp = T1

Tp
, where Speedupp is

the speedup factor, and

– p is the number of threads. In the cluster environment we always had 8 cores avail-
able and never used more than 8 threads in our experiments, so, each thread can be
considered as mapped to one core exclusively;

– T1 is the CPU time for the sequential run using only one thread and one single
partition containing all concept names to be inserted;

– Tp is the CPU time for the parallel run with p threads.

Effect of changing only the number of threads To measure the performance of the
classifier in this case we selected EClass-51En-1 as our test case and ran the tests with
a fixed partition size (5 or 25) but a different number of threads (2 and 4), as shown
in Fig. 1. In the following we use Pthreads,partition size to indicate a parallel multi-core
setting where the subscripts give the number of cores available, the number of threads

3 For ease of presentation we use the terms core and processor as synonyms here.
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created, and the partitions size used (from left to right). In the test cases P2,5 and P4,5,
we get an ideal speedup proportional to the number of threads, as shown in Fig. 2. As we
can see, doubling the number of threads from S to P2,5 and to P4,5, each time doubles
the speedup, in other words, decreases the CPU time by the number of threads. This is
the ideal speedup that we were expecting to happen.

Comparing the test cases S, P2,25, and P4,25, we get an even better speedup, also
shown in Fig. 1 and 2. In this case, the CPU time decreases almost to 1

10 compared to
the sequential case (S). This speedup is due to a combination of the partition size as well
as the cache effect and results from the different memory hierarchies of a cluster with
modern computers. When we increase the number of threads to 4, the speedup is again
proportional to the number of threads and this is what we expected. Here, by doubling
the number of threads, the speedup doubles.

Effect of changing only partition sizes The performance of the classifier in this case
for EClass-51En-1 is also shown in Fig. 1 with a fixed number of threads (2 or 4) but
different partition sizes (5 or 25). When using 2 threads, compared to case S, we get
the ideal speedup for P2,5, as shown in Fig. 2. As we can see, doubling the number of
threads, doubles the speedup, in other words, decreases the CPU time by half. This is
the ideal case which is what we were expecting to happen. Again, compared to case S
if the partition size is increased to 25, it shows the same speedup as shown in Fig. 2. In
this case, the CPU time decreases almost to 1

5 compared to the previous case.
In the scenario with 4 threads, we get a corresponding speedup, as shown in Fig. 2.

In this case, the CPU time decreases to almost 1
10 compared to the sequential case. This

speedup again is due to a combination of the number of threads as well as the cache
effect. When we increase the partition size to 25, the speedup is what we expected.
Here, by multiplying the partition size by 5, the speedup is multiplied by five too.

Increasing the partition size, means that more concepts are assigned to one thread;
therefore, all the related concepts are inserted into the taxonomy by one thread. Hence,
increasing the partition size, reduces the number of corrections.
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Effect of increasing both the number of threads and the partition size In this sce-
nario, we measured the CPU time when increasing both the number of threads and the
partition size. In Fig. 3 and 4, our test suite includes the ontologies Embassi-2, Galen1,
LargeTestOntology, Tambis-2a, Cyc, and EClass-51En-1. The CPU time for each test
case is shown in Fig. 3 and the speedup factor for each experiment is depicted in Fig. 4.
As the results show, in the scenario with 2 threads and partition size 5, the speedup dou-
bles compared to the sequential case and is around 2 and this is what we were expecting.
When we increase the number of threads as well as the partition size, for the scenario
with 4 threads and partition size 25, the CPU time decreases dramatically and therefore
the speedup factor is above 20 for most test cases. This is more than a linear speedup,
and it is the result of increasing the thread number as well as partition size together with
the cache effect. The highest speedup factor is reported with test case Galen1.
Experiment on very large ontologies We selected 3 Snomed variants as very large on-
tologies with more than 150,000 concepts. Snomed-2 with 182,869 concepts, Snomed-1
with 223,260 concepts, and Snomed with 379,691 concepts were included in our tests.
Fig. 7 shows an excellent improvement of CPU time for the parallel over the sequential
case. In Fig. 8, the speedup factor is almost 2, which the expected behavior. The best
speedup factor is observed for test case Snomed.
Observation on the increase of size of ontologies We chose Cyc, EClass-51en-1,
Snomed-1, Snomed-2, and Snomed as test cases. Here, as shown in Fig. 5 and 7, in
a parallel setting with 2 threads, the CPU time is divided by 2 compared to the se-
quential case. The speedup, shown in Fig. 6 and 8, is linear and is consistent for our
benchmark ontologies even when the size of the ontologies increases.

Overall, the overhead is mostly determined by the quality of the told subsumers and
disjoints information, the imposed order of traversal within a partitioning, the division
of the ordered concept list into partitions, and the number of corrections which have
been taken place (varied between 0.5% and 3% of the ontology size; depends on the
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structure of ontology as well as the number of threads and partition size). In general,
one should try to insert nodes as close as possible to their final order in the tree using a
top to bottom strategy.

In Concurrent TBox Classifier no optimization techniques for classification have
been implemented. For instance, there are well-known optimizations which can avoid
subsumption tests or eliminate the bottom search for some DL languages or decrease
the number of bottom searches in general. Of course, our system is not competitive at
all compared to highly optimized DL reasoners or special-purpose reasoners designed
to take advantage of the characteristics of the EL fragment (e.g., see [7]). In our case,
we can easily classify ontologies that are outside of the EL fragment.
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4 Conclusion

In this paper, we have shown an excellent scalable technique for concurrent OWL on-
tology classification. The explained architecture, which proposes lock-free algorithms
with limited synchronization, utilizes concurrency in a multi-core environment. The
experimental results show the effectiveness of our algorithms. We can say that this
work appears to be the first which documents significant performance improvements
in a multi-core environment using real-world benchmarks for ontologies of various DL
complexities.
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Non-Gödel Negation Makes
Unwitnessed Consistency Undecidable?
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Abstract. Recent results show that ontology consistency is undecid-
able for a wide variety of fuzzy Description Logics (DLs). Most notably,
undecidability arises for a family of inexpressive fuzzy DLs using only
conjunction, existential restrictions, and residual negation, even if the
ontology itself is crisp. All those results depend on restricting reasoning
to witnessed models. In this paper, we show that ontology consistency for
inexpressive fuzzy DLs using any t-norm starting with the Łukasiewicz
t-norm is also undecidable w.r.t. general models.

1 Introduction

Fuzzy Description Logics (DLs) extend the semantics of classical DLs by allow-
ing a set of values, typically the real interval [0, 1], to serve as truth degrees.
They were introduced for representing and reasoning with vague or imprecise
knowledge in a formal way [14,15]. While several decision procedures for fuzzy
DLs exist, they usually rely on a restriction of the expressivity: either by allowing
only finitely-valued semantics [5,7] or by limiting the terminological knowledge
to be acyclic or unfoldable [11,9,4]. Indeed, the only algorithms for fuzzy ALC
with general ontologies are based on the very simple Gödel semantics [13,14,15].

It was recently shown that decision procedures for more expressive fuzzy DLs
cannot exist since consistency of fuzzy ALC ontologies becomes undecidable in
the presence of GCIs whenever any continuous t-norm different from the Gödel
t-norm is used [1,2,3,10,8]. Not all the constructors from ALC are needed for
proving undecidability. In particular, it was shown in [8] that for a family of
t-norms—those t-norms “starting” with the Łukasiewicz t-norm—consistency is
undecidable in the logic NEL, which allows only the constructors conjunction,
existential restriction, and (residual) negation, even if all the axioms are crisp.

The crux of these undecidability results is that they all depend on restricting
reasoning to the class of witnessed models. Since the existing reasoning algo-
rithms are based also on witnessed models,1 this semantics was a natural choice.
However, it could be the case that witnessed models are the cause of undecid-
ability and consistency w.r.t. general models is decidable.
? Partially supported by the DFG under grant BA 1122/17-1 and in the Collaborative
Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

1 In fact, witnessed models were introduced in [11] to correct the methods from [15].
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Although possible, such a scenario would be very surprising since for first-
order fuzzy logic, reasoning w.r.t. general models is typically harder than rea-
soning w.r.t. witnessed models [12]. In this paper we show that this is also the
case for the logic NEL over any t-norm starting with the Łukasiewicz t-norm:
consistency of crisp ontologies w.r.t. general models is undecidable.

2 Preliminaries

We briefly introduce the family of t-norms starting with the Łukasiewicz t-norm,
which will provide the semantics for the fuzzy DLs Ł(0,b)-NEL.

2.1 The Łukasiewicz t-norm

Mathematical fuzzy logic generalizes the classical logical operators to deal with
truth degrees from the interval [0, 1]. A t-norm is an associative and commutative
binary operator on [0, 1] that has 1 as its unit and is monotonic in both argu-
ments. If a t-norm ⊗ is continuous, then there is a unique binary operator ⇒,
called the residuum, that satisfies z ≤ x⇒ y iff x⊗z ≤ y for all x, y, z ∈ [0, 1]. In
that case, for all x, y ∈ [0, 1] we have (i) x⇒ y = 1 iff x ≤ y and (ii) 1⇒ y = y.
Another useful operator is the unary residual negation 	x := x⇒ 0.

We focus on the family of t-norms starting with the Łukasiewicz t-norm. The
Łukasiewicz t-norm, defined by x ⊗ y = max{0, x + y − 1}, has the residuum
x⇒ y = min{1, 1−x+ y} and residual negation 	x = 1−x. A t-norm ⊗ starts
with the Łukasiewicz t-norm if there is a b ∈ (0, 1] such that for all x, y ∈ [0, b]
we have x ⊗ y = max{0, x + y − b}. Intuitively, such a t-norm behaves like a
scaled-down version of the Łukasiewicz t-norm in the interval [0, b].

All continuous t-norms that do not start with the Łukasiewicz t-norm have
one characteristic in common: their residual negation is always the Gödel nega-
tion that simply maps 0 to 1 and every other truth degree to 0. In contrast, those
that do start with the Łukasiewicz t-norm do not have the Gödel negation, but
rather a scaled-down version of the Łukasiewicz negation, also known as the in-
volutive negation. To be more precise, the residuum and residual negation of a
t-norm starting with the Łukasiewicz t-norm satisfy x⇒ y = b−x+y whenever
0 ≤ y < x ≤ b, and

	x =





1 if x = 0

b− x if 0 < x ≤ b
0 otherwise.

For the rest of this paper, we assume that ⊗ is a t-norm starting with the
Łukasiewicz t-norm in the interval [0, b], for some arbitrary but fixed b ∈ (0, 1],
and ⇒, 	 are its residuum and residual negation, respectively.

2.2 The Fuzzy Description Logic Ł(0,b)-NEL
Syntactically, Ł(0,b)-NEL extends the DL EL with the unary residual nega-
tion constructor �. More precisely, concepts are built using the syntactic rule
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C ::= A | > | C u D | �C | ∃r.C. The semantics of Ł(0,b)-NEL is based
on interpretations I = (DI , ·I) consisting of a domain DI and an interpreta-
tion function that maps each concept name A to a function AI : DI → [0, 1],
each role name r to rI : DI × DI → [0, 1], and each individual name a to
an element aI of DI . This function is extended to complex concepts as fol-
lows: >I(x) = 1, (C u D)I(x) = CI(x) ⊗ DI(x), (�C)I(x) = 	CI(x), and
(∃r.C)I(x) = supy∈DI rI(x, y)⊗ CI(y) for all x ∈ DI .

In contrast to traditional semantics based on witnessed models, it is possible
to have an interpretation I such that (∃r.>)I(x) = 1 but where there is no
y ∈ DI with rI(x, y) = 1. It can only be guaranteed that x has r-successors with
degrees arbitrarily close to 1. This fact will produce some technical difficulties
for our undecidability proof, since we it is not possible to guarantee a specific
degree of membership for an r-successor of a given node (see Section 3.5).

We will use the following abbreviations: C0 := >, and Ck+1 := Ck u C
for any k ∈ N; C → D := �(C u �D); and C �D := (C u D) → D. It can
easily be verified that, whenever CI(x), DI(x) ∈ [0, b] for an interpretation I
and x ∈ DI , then we have (Ck)I(x) = max{0, k(CI(x)− b) + b} for every k > 0,
(C → D)I(x) = CI(x)⇒ DI(x), and (C �D)I(x) = min{CI(x), DI(x)}.

An ontology is a finite set of assertions of the form a : C or (a, b) : r and GCIs
of the form C v D, where a, b are individual names, and C,D are concepts. An
interpretation I satisfies the assertion a : C (resp. (a, b) : r) if CI(aI) = 1 (resp.
rI(aI , bI) = 1); it satisfies the GCI C v D if CI(x) ≤ DI(x) for every x ∈ DI .
The expression C ≡ D abbreviates the two GCIs C v D and D v C. It follows
that an interpretation I satisfies C ≡ D iff CI(x) = DI(x) for every x ∈ DI .
It is a model of an ontology O if it satisfies all the axioms in O. An ontology is
called consistent if it has a model.

Notice that we consider only crisp axioms; i.e. they contain no associated
fuzzy degree. We will show that reasoning with this restricted form of ontologies,
which is the same used for classical (crisp) DLs, is already undecidable.

To show the undecidability of ontology consistency in Ł(0,b)-NEL, we will
use a reduction from the Post Correspondence Problem (PCP). We first show
how to encode an instance of the PCP into an Ł(0,b)-NEL ontology, and then
describe how to use ontology consistency to solve the decision problem.

3 Encoding the PCP

We reduce a variant of the undecidable PCP to the consistency problem in
Ł(0,b)-NEL, using an idea that has been applied before to show undecidability of
fuzzy DLs. The goal is to construct an ontology OP whose models contain the
complete search tree for a solution to a given instance P of the PCP.

Definition 1 (PCP). An instance P of the Post Correspondence Problem is a
finite set of pairs {(v1, w1), . . . , (vn, wn)} of words over an alphabet Σ. A solution
for P is a sequence i1 · · · ik ∈ N ∗ such that v1vi1 · · · vik = w1wi1 · · ·wik .
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We assume w.l.o.g. that the alphabet Σ is of the form {1, . . . , s} for some natural
number s ≥ 4, and N denotes the index set {1, . . . , n}. For ν = i1 · · · ik ∈ N ∗,
we denote v1vi1 · · · vik by vν and w1wi1 · · ·wik by wν .

The search tree T of an instance P of the PCP is a tree over the domain N ∗,
in which each node ν ∈ N ∗ is labeled by vν and wν . In order to represent this
search tree in an Ł(0,b)-NEL-interpretation, we need an appropriate encoding of
words from Σ∗ into the interval [0, 1]. For technical reasons caused by the use of
general semantics, we cannot guarantee that a specific real number will be used
at a given node of the tree, but have to allow for a bounded error. Thus, a word
can be encoded by any number from a given interval, as described next.

For v = α1 · · ·αm with α1, . . . , αm ∈ Σ, ←−v denotes αm · · ·α1. The encoding
enc(v) of v is the number 0.←−v , in base β := s+ 2. In particular, enc(ε) := 0. For
p ∈ [0, 1), the interval Errn(p) contains all numbers of the form b(p+ e) ∈ [0, b)
with an error term e with |e| < β−n. The set Enc(v) of bounded-error encodings
of a word v ∈ Σ+ is defined as the intersection of Err|v|+2(enc(v)) with [0, b). The
idea of these bounded-error encodings is to keep the error small enough to avoid
overlapping. This way, we can decide whether two different real numbers are just
different encoding of the same word; this is the case whenever they belong to
the same error-bounded encoding.

Lemma 2. Let v, w ∈ Σ+, p ∈ Enc(v), q ∈ Enc(w), g ∈ Err|v|+4(β−(|v|+2)), and
h ∈ Err|w|+4(β−(|w|+2)). Then v = w iff |p− q| < 3 max{g, h}.

Proof. We can assume w.l.o.g. that |v| = l ≤ m = |w|. It then follows that
3 max{g, h} = 3bβ−(l+2) + e with |e| < 3bβ−(l+4) < bβ−(l+3). Additionally,
p = benc(v) + e1 and q = benc(w) + e2 with |e1| < bβ−(l+2) and |e2| < bβ−(m+2),
and thus |e1 − e2| < 2bβ−(l+2). If v = w, then

|p− q| = |e1 − e2| < 2bβ−(l+2) < 3bβ−(l+2) + e = 3 max{g, h}.

If v 6= w, then enc(v) and enc(w) must differ at least in the (l+1)-th digit. Thus,
|enc(v)− enc(w)| ≥ β−(l+1). This implies that

|p− q| ≥ b|enc(v)− enc(w)| − |e1 − e2| > (β − 2)bβ−(l+2) ≥ 4bβ−(l+2),

and hence |p− q| > 3bβ−(l+2) + e = 3 max{g, h}. ut

We now construct an ontology OP whose models encode the search tree of
P. More precisely, it ensures that the concept names V and W will have values
in Enc(vν) and Enc(wν), respectively, at every domain element that encodes the
node ν ∈ N ∗ of the search tree T . The concept name G will have a value in
Err|vν |+4(1 − β−(|vν |+2)), and similarly for H. These values provide a bound on
the difference of the encoding of two words of a given length, and will be used
to detect whether V and W encode the same word (see Lemma 2).

The search tree is encoded in the following way. First, we ensure that at
every element of the domain the concepts Vi and Wi are interpreted as the
encodings of the words vi, wi, respectively, without any error terms (Section 3.1).
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They will be used to generate the encodings of the successor words vνi = vνvi
from an encoding of vν , for every ν ∈ N ∗ and i ∈ N . We also use similar
constants to update the values of G and H, which encode the error bounds
introduced by the lack of witnessed models, from each node to its successor.
Afterwards, we initialize the interpretation of all the relevant concepts at the
root of the tree, identified by the individual name a0 (Section 3.2). We have to
ensure, e.g. that V I(aI0 ) is an encoding of the word vε = v1. We then describe
the concatenation of encoded constant words to given encodings (Section 3.3),
the creation of successors with large enough role degrees (Section 3.4), and the
transfer of the concatenated encodings to these successors (Section 3.5).

3.1 Encoding Global Constants

We use some auxiliary values that will be constant along the whole search tree;
these are helpful for producing the error-bounded encodings of the words vν and
wν . First, we store the encoding of the words v1, . . . , vn, w1, . . . , wn using the
concept names V1, . . . , Vn,W1, . . . ,Wn, respectively. More precisely, every model
I of OP should satisfy V Ii (x) = benc(vi) and W Ii (x) = benc(wi) for all x ∈ DI
and i ∈ N .

Let l be the length of the word vi. We use the axioms

Aβ
l

l ≡ �A
βl

l and �Vi ≡ A2←−vi
l ,

where Al is an auxiliary concept name. Let I be a model of these axioms and
x ∈ DI . If l = 0, the second axiom implies that V Ii (x) = benc(ε) = 0. If l > 0, the
first axiom enforces βl(AIl (x)−b)+b = −βl(AIl (x)−b); thus AIl (x) = b(1− 1

2βl
).

Using the second axiom, we derive that 	V Ii (x) = max{0, b − 2b←−vi
2βl
}. Since

←−vi
βl

= 0.←−vi < 1, we have V Ii (x) = benc(vi).
We also encode the constant words gi and hi that yield the numbers β|vi|−1

and β|wi| − 1, respectively, when read in base β = s + 2. That is, gi is the
concatenation of the symbol (s + 1) with itself |vi| times, and analogously for
hi. We store them in the concept names Gi and Hi, respectively. They will be
used to update the values of G and H in the search tree (see Section 3.5). The
axioms Aβ

|vi|

|vi| ≡ �A
β|vi|

|vi| and �Gi ≡ A2gi
|vi| force Gi to always be b(1−β−|vi|); an

analogous construction can be used for Hi. Using the same idea, we encode the
words g0 and h0 represented by the numbers β|v1|+2 − 1 and β|w1|+2 − 1 in the
concept names G0 and H0, respectively.

3.2 Initializing the Root

At the root of the search tree of P, designated by the individual name a0,
the values of V and W should be benc(v1) and benc(w1), respectively. The two
concept assertions a0 : (V → V1) u (V1 → V ) and a0 : (W → W1) u (W1 → W )
ensure this. The concept names G andH, storing the error bounds, are initialized
to b(1− β−(|v1|+2)) and b(1− β−(|w1|+2)) using a0 : (G→ G0) u (G0 → G) and
a0 : (H → H0) u (H0 → H); G0 and H0 were defined in the previous section.
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3.3 Concatenating Constants

We now describe how to express the concatenation of a given encoding with a
constant word vi. Assume that, for a given interpretation I and x ∈ DI , the
value V I(x) is an element of Enc(vν) for some ν ∈ N ∗. The goal is to ensure
that, for a given i ∈ N , the value V ′Ii (x) is an element of Enc(vνvi) = Enc(vνi).
We introduce the axioms

(�V ′′i )β
l ≡ �V and �V ′i ≡ (�V ′′i ) u (�Vi),

where l = |vi|, V ′′i is a new concept name, and V Ii (x) = benc(vi) (see Section 3.1).
Let I be an interpretation that satisfies the first axiom. If vν = ε, then

V I(x) = 0, and thus V ′′Ii (x) = 0 = β−lV I(x). If vν 6= ε, then 	V I(x) ∈ (0, b),
which implies that 	V ′′Ii (x) ∈ (0, b) and b−V I(x) = βl(−V ′′Ii (x))+b, and thus
V ′′Ii (x) = β−lV I(x). In both cases, V ′′Ii (x) equals V I(x) = b(0.←−vν + e), shifted
l digits to the right. By assumption, the error term e satisfies |e| < β−(|vν |+2).

Let now I also satisfy the second axiom. If either vν or vi is ε, then V ′Ii (x)
is V Ii (x) or V I(x), respectively. In both cases, this expresses the concatenation
of vν and vi. If both vν and vi are non-empty words, then

	V ′Ii (x) = bmax{0, 1− β−l(0.←−vν + e)− (0.←−vi )} = bmax{0, 1− (0.←−vνi + e′)}
with |e′| = β−l|e| < β−(|vνi|+2). Thus, 0.←−vνi + e′ < 1 and V ′Ii (x) ∈ Enc(vνi).

The values of the concept names G and H should also be updated. These
values also have an error term, which is two orders of magnitude smaller than the
encoding of the words from the search tree. Let GI(x) = b(1−β−(|vν |+2)+e) with
|e| < β−(|vν |+4), which corresponds to the word (s+1) · · · (s+1) of length |vν |+2.
We have to concatenate this to the word (s + 1) · · · (s + 1) of length l := |vi|,
stored in Gi. As above, the axioms (�G′′i )β

l ≡ �G and �G′i ≡ (�G′′i ) u (�Gi)
ensure that

G′Ii (x) = b− b(1− β−l(1− β−(|vν |+2) + e)− (1− β−l)) = b(1− β−(|vνi|+2) + e′)

with |e′| < β−(|vνi|+4).

3.4 Creating Successor Nodes

The axioms > v ∃ri.> for each i ∈ N enforce the existence of ri-successors to
each node of the search tree. This is the main difference to the proof of unde-
cidability for Ł(0,b)-NEL w.r.t. witnessed models in [8]. In fact, in any witnessed
model I of these axioms we have for each x ∈ DI a y ∈ DI such that rIi (x, y) = 1.
In the more general setting considered here, only the following holds.

Lemma 3. Let I satisfy > v ∃ri.>. Then for each x ∈ DI and every error
bound e > 0 there is a ye ∈ DI such that rIi (x, ye) > 1− e.
This is the main reason why we need to allow for bounded errors in the encodings
of the words. If we could always guarantee the existence of ri-successors with
degree 1, then the axioms presented in the next section could be used to transfer
all values exactly. However, since only Lemma 3 holds, the transfer might lead
to an additional error.
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3.5 Transferring Values

In Section 3.2, we have ensured that every interpretation contains an individual
that encodes the root of the search tree. We are also able to compute the values
needed in the successors using the constants from Section 3.1 and the concate-
nation from Section 3.3. Intuitively, these values should now be transfered to the
successors created in the previous section; however, in general this transfer of
values from a node of the search tree T to a successor node will incur an error
on the transferred value. Thus, we have to make sure that this error does not
grow beyond the bounds of our encoding.

We consider first the case that b = 1. We need to transfer the value of V ′i
at a node to the value of V at some ri-successor of this node. We show that, if
V ′Ii (x) = b(enc(vνi) + e′) is a bounded-error encoding of vνi, then the axioms

∃ri.(�V ) v �V ′i and ∃ri.V v V ′i
ensure that the value of V is also a bounded-error encoding of this word at all
ri-successors with large enough role degree since the incurred error stays below
e := b(β−(|vνi|+2) − |e′|) > 0.

Lemma 4. Let I satisfy ∃r.(�D) v �C and ∃r.D v C, b = 1, and 0 < e < 1
2 .

Then for all x, y ∈ DI with rI(x, y) > 1− e we have |CI(x)−DI(y)| < e.

Proof. Let x and y be as above. The axioms force I to satisfy

rI(x, y)⊗	DI(y) ≤ sup
y′∈DI

rI(x, y′)⊗	DI(y′) ≤ 	CI(x), and

rI(x, y)⊗DI(y) ≤ sup
y′∈DI

rI(x, y′)⊗DI(y′) ≤ CI(x).

This implies that rI(x, y)−DI(y) ≤ max{0, rI(x, y)−DI(y)} ≤ 1−CI(x) and
rI(x, y) + DI(y) − 1 ≤ max{0, rI(x, y) + DI(y) − 1} ≤ CI(x). From the first
inequality if follows that CI(x)−DI(y) ≤ 1− rI(x, y) < e and the second one
yields DI(y)−CI(x) ≤ 1−rI(x, y) < e. This shows that the absolute difference
between CI(x) and DI(y) is always smaller than e. ut

To transfer the value of G′i along ri to G, we use the axioms ∃ri.(�G) v �G′i
and ∃ri.G v G′i. The error bound e := b(β−(|vνi|+4) − |e′|) ensures that the
additional error to G′Ii (x) = b(1− β−(|vνi|+2) + e′) is small enough.

In order to simultaneously satisfy all the above-mentioned restrictions in the
ri-successors, we use only those y ∈ DI with rIi (x, y) > 1 − e, where e is the
minimum of the individual error bounds for V ′i , W ′i , G′i, and H ′i. This is not a
problem since Lemma 3 shows that such a successor y always exists.

In the case that b < 1, the transfer of values is considerably easier. In fact,
no error bounds are necessary in this case since encodings of words can be
transferred without additional errors through any ri-successor with degree > b.

Lemma 5. Let b < 1 and assume that I satisfies ∃r.(�D) v �C and ∃r.D v C.
If x, y ∈ DI with CI(x) ∈ [0, b) and rI(x, y) > b, then CI(x) = DI(y).
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Proof. We have rI(x, y) ⊗ 	DI(y) ≤ 	CI(x) and rI(x, y) ⊗DI(y) ≤ CI(x).
If CI(x) = 0, then rI(x, y)⊗DI(y) = 0, and thus DI(y) = 0. Consider now the
case that CI(x) ∈ (0, b). If DI(y) ≥ b, then CI(x) ≥ rI(x, y)⊗DI(y) ≥ b, con-
tradicting the assumption. Likewise, DI(y) = 0 implies b−CI(x) ≥ rI(x, y) > b,
which is also impossible. Thus, we must have DI(y) ∈ (0, b), which implies
b−DI(y) ≤ b− CI(x) and DI(y) ≤ CI(x), and hence CI(x) = DI(y). ut

As before, Lemma 3 ensures that a successor with degree strictly greater than b
always exists, which shows that we can always transfer all desired values exactly.

3.6 Canonical Model

From the constructions of Sections 3.1 to 3.5 we obtain the ontology OP :

OP := O0 ∪OG0:=g0 ∪ OH0:=h0

∪
n⋃

i=1

OVi:=vi ∪ OWi:=wi ∪ OGi:=gi ∪ OHi:=hi ∪ Ori

∪OV ′
i=V ◦vi ∪ OW ′

i=W◦wi ∪ OV ′
i

ri V ∪ OW ′
i

ri W
∪OG′

i=G◦gi ∪ OH′
i=H◦hi ∪ OG′

i

ri G ∪ OH′
i

ri H , where

O0 := {a0 : (V → V1) u (V1 → V ), a0 : (W →W1) u (W1 →W )}∪
{a0 : (G→ G0) u (G0 → G), a0 : (H → H0) u (H0 → H)},

OC:=u := {Cβ
|u|

|u| ≡ �C
β|u|

|u| , �C ≡ C2←−u
|u| },

OD′=C◦u := {(�D′′)β|u| ≡ �C, �D′ ≡ (�D′′) u (�D)},
Or := {> v ∃r.>},

O
C
r D := {∃r.(�D) v �C, ∃r.D v C}.

A model of this ontology is given by the interpretation IP = (N ∗, ·IP ), where
·IP is defined as follows:

– aIP0 = ε,
– V IP (ν) = benc(vν), V IPi (ν) = benc(vi), V ′IPi (ν) = benc(vνi),
– W IP (ν) = benc(wν), W IPi (ν) = benc(wi), W ′IPi (ν) = benc(wνi),
– GIP (ν) = b(1− β−(|vν |+2)), HIP (ν) = b(1− β−(|wν |+2)),
– GIPi (ν) = b(1− β−|vi|), HIPi (ν) = b(1− β−|wi|),
– rIPi (ν, νi) = 1 and rIPi (ν, ν′) = 0 if ν′ 6= νi.

Notice that the values of all the auxiliary concept names used in the construction
are fully determined by these concept names. Intuitively, IP is an encoding of
the search tree of P. We now show that every model I of OP encodes the search
tree T of P under the following notion of encoding.

Definition 6. Let I be an interpretation, x ∈ DI , and ν ∈ N ∗. We say that I
at x encodes T at ν if, for every i ∈ N ,
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a) V I(x) ∈ Enc(vν), W I(x) ∈ Enc(wν),
b) GI(x) ∈ Err|vν |+4(1− β−(|vν |+2)), HI(x) ∈ Err|wν |+4(1− β−(|wν |+2)).

In the following, whenever we talk about these properties, we will only consider
V and G since W and H can be treated in an analogous manner.

Lemma 7. For every model I of OP there is a function f : N ∗ → DI such that
for all ν ∈ N ∗, I at f(ν) encodes T at ν.

Proof. We construct the function f by induction on ν ∈ N ∗. For ν = ε, observe
that the values of V and G at aI0 are forced by O0 to be V I1 (ε) = benc(vε) and
GI0 (ε) = b(1 − β−(|vε|+2)), respectively. Thus, for f(ν) := aI0 the conditions are
satisfied even without any error terms.

Assume now that I at f(ν) encodes T at ν and let i ∈ N . As described in
Sections 3.4 and 3.5, one can find 0 < e < 1

2 such that the values of V ′i and G′i
are transferred to V and G, respectively, without increasing the error bounds on
the encoded values. Specifically, we can choose

e := min
i=1,...,n

{ 13 , b(β−(|vνi|+2) − |eV ′
i
|), b(β−(|vνi|+4) − |eG′

i
|), . . . }

if eV ′
i
and eG′

i
are the error terms of V ′i and G′i, respectively. Lemmata 4 and 5

show that V I(y) is a bounded-error encoding of vνi whenever rIi (x, y) > 1− e,
and similarly for GI(y). By Lemma 3, there is a yi ∈ DI such that I at yi
encodes T at νi. We can thus define f(νi) := yi to satisfy the condition. ut

Thus, in any model of OP we can find an encoding of the search tree T of P.
The canonical model IP is the special case in which all error terms are 0. In the
next section we use this encoding to solve the instance P of the PCP.

4 Finding a Solution

To decide whether P has a solution, we use the additional ontology O 6=, consist-
ing of the single axiom (V →W ) u (W → V ) v (G�H)3. Recall that G�H is
interpreted as the minimum of the values of G and H in the interval [0, b].

Lemma 8. P has a solution iff OP ∪ O 6= is inconsistent.

Proof. If this ontology has no model, then in particular the canonical model IP
of OP cannot satisfy O6=. We thus have

(V →W )IP (ν)⊗ (W → V )IP (ν) > ((G�H)3)IP (ν)

for some ν ∈ N ∗. If V IP (ν) = W IP (ν), then vν = wν , i.e. P has a solution. We
now assume without loss of generality that V IP (ν) < W IP (ν), and thus

b−W IP (ν) + V IP (ν) > ((G�H)3)IP (ν) = b− 3bmax{β−(|vν |+2), β−(|wν |+2)}.
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This implies that

|enc(wν)− enc(vν)| < 3bmax{β−(|vν |+2), β−(|wν |+2)},

and by Lemma 2 we again have vν = wν .
Assume now that OP ∪ O 6= has a model I and let f be the function con-

structed in Lemma 7 and ν ∈ N ∗. In particular, we have

((G�H)3)I(f(ν)) = b− 3 max{g, h} ∈ (0, b)

with g ∈ Err|vν |+4(β−(|vν |+2)) and h ∈ Err|wν |+4(β−(|wν |+2)). Since I satisfies
O6=, it holds that

((V →W ) u (W → V ))I(f(ν)) ≤ ((G�H)3)I(f(ν)).

If we assume w.l.o.g. that V I(f(ν)) ≤W I(f(ν)), then this implies

W I(f(ν))− V I(f(ν)) ≥ 3 max{g, h},

and by Lemma 2, vν 6= wν . Since this holds for all ν ∈ N ∗, P has no solution. ut

A direct consequence of this lemma is the undecidability of ontology consis-
tency in the fuzzy DL Ł(0,b)-NEL.

Theorem 9. Consistency of Ł(0,b)-NEL-ontologies is undecidable.

In particular, this shows that ontology consistency in Ł-ALC is undecidable
w.r.t. general models, even if the ontologies contain only crisp axioms.

5 Conclusions

We have shown that ontology consistency w.r.t. general models is undecidable in
fuzzy DLs based on t-norms starting with the Łukasiewicz t-norm using only the
constructors from EL and residual negation. This was achieved by a modification
of the undecidability proofs for these logics w.r.t. witnessed model semantics [8].
The main problem introduced by general semantics is that it is impossible to
ensure that values are transferred exactly from a node to its role successors. To
simulate the search tree for an instance of the PCP, we allow for a bounded error
in the represented value. The bounds are small enough to ensure that different
words can still be distinguished.

Ontology consistency is a central decision problem for DLs since other reason-
ing tasks like concept satisfiability or subsumption can be reduced to it. However,
the converse reduction does not hold. It is thus natural to ask whether these other
problems are also undecidable. Since our construction uses only crisp assertions
that involve only one individual name, it follows that also concept satisfiability
in Ł(0,b)-NEL is undecidable w.r.t. general models.

Together with the results from [6], this fully characterizes the decidability
of consistency and satisfiability w.r.t. general models in all fuzzy DLs between

420



⊗-NEL and ⊗-SHOI−∀:2 it is decidable (in ExpTime) iff the t-norm ⊗ does
not start with the Łukasiewicz t-norm, i.e. the fuzzy DL has Gödel negation.

In future work we plan to extend the study of fuzzy DLs with general se-
mantics, aiming towards a full characterization of their complexity properties, as
has been done for witnessed models. In particular, we think that the presented
approach using error bounds can be applied to modify other undecidability re-
sults for fuzzy DLs w.r.t. witnessed models, e.g. for Π-ALC [8]. We also plan to
generalize the framework presented in [8] to deal with general models.
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Abstract. The Object Role Modelling (ORM2) is a conceptual modelling ap-
proach combining both textual specifications and graphical language, similar to
UML and ER, and adopted by Visual Studio, the integrated development envi-
ronment designed by Microsoft. This paper introduces a new linear syntax and
corresponding complete set-theoretic semantics for a generalization of ORM2
language. A core fragment of ORM2 is defined, for which a provably correct en-
coding into ALCQI description logic is presented. Based on these results, an
extensive and systematic critique of alternative approaches to the formalisation
of ORM2 in (description) logics published so far is provided. A first prototype
has been implemented, which offers a back-end for the automated support of
consistency and entailment checks for ORM2 conceptual schemas along with its
translation intoALCQI knowledge bases.

1 Introduction

Automated support to enterprise modelling has increasingly become a subject of inter-
est for organisations seeking solutions for storage, distribution and analysis of knowl-
edge about business processes [6], and the main expectation from automated solutions
built upon these approaches is the ability to automatically determine consistency of a
business model. Despite existence of reasoning tools for Unified Modelling Language
(UML) [2], its known weakness with regard to verbalisation of facts and constraints
restricts its usage by domain experts [10]. Recently becoming popular ORM2 (‘Object
Role Modelling 2’) is a graphical fact-oriented approach for modelling, transforming,
and querying business domain information, which allows for a verbalisation in lan-
guage readily understandable by non-technical users. Being domain expert oriented,
the semantics of ORM2 differs from that of UML (e.g. permitting optionality of car-
dinality constraints) and thus makes ORM2 richer in its capacity to express business
constraints [10].

The NIAM language (‘Natural-language Information Analysis Method’), ancestor
ORM, has been equipped with an FOL-based semantics for the first time in 1989 [9].
Since then, despite the remarkable evolution in terms of expressivity and graphical no-
tation that ORM2 has experienced, much less attention has been paid in the consequent
development of appropriate formal foundations for the modelling language.

This paper addresses the main problem of providing a logic formalism, equipped
with sound and complete reasoning services, that captures the expressiveness of ORM2.
The first contribution of the paper is thus the introduction of a completely new linear
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syntax and a set-theoretic semantics for ORM2 matching the usage patterns in the com-
munity. The new syntax can be used to express the full set of ORM2 graphical symbols
introduced in [10]. The second contribution of the paper is driven by a practical ob-
jective. On the basis of well known results developed in the Description Logics (DLs)
community, we identified a ‘core’ fragment of ORM2 that can be translated in a sound
and complete way into the ExpTime-complete logic ALCQI [1], through n-ary rela-
tions reification. On the basis of the results presented in the paper, a first prototype, built
on top of available DL reasoners, has been implemented, which provides an automated
support for schema consistency, entity/relations consistency check, and entailment ver-
ification for user-defined ORM2 statements.

The rest of the paper is organised as follows: Section 2 is about the introduction,
through examples, of the ORM2 graphical notation and intended semantics in the frame-
work of the fact modelling approach; Section 3 introduces the new linear syntax by
means of expressing the example from the previous section in this syntax. The encod-
ing of the corresponding set-theoretic semantics into the DL logicALCQI is the main
topic of Section 4. Finally, Section 5 gives an overview of the implemented reasoning
support prototype, its interface and gives an example of its usage.

2 Fact-oriented Modelling in ORM2

Basic ORM2 objects are: entities (e.g. a house or a car) and values (e.g. character
string or number). Moreover, entities and values are described in terms of the types
they belong to: a type (e.g. House, Car) is a set of possible instances. In order to avoid
ambiguity among the possible instances of a given type, entities are identified also by
means of a particular reference mode and a value. The roles played by the entities in a
given domain are introduced by means of logical predicates; each predicate (or rela-
tion) has a given set of roles according to its arity. Each role is connected to exactly one
object type, indicating that the role is played only by possible instances of that type.

The first step of the ORM2 design procedure thus concerns the specification of
the relevant object types (i.e. entity and value types), predicates and reference modes.
All the subsequent steps in the procedure mostly deal with the specification of static
constraints. Let us consider the example in Fig. 1:

Fig. 1. A conceptual schema including an instantiation of most of the ORM2 constraints
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The schema includes:

1. Entity types: Enrollment, Student, Date, ... ;
2. Binary predicates: isBy, wasOn, worksFor, ... ;
3. A user-defined role name [lecturer], for the role played by Research&TeachingStaff;
4. Reference modes for each entity: .Id, .Nr, .Mdy, ... ;
5. Subtyping links (depicted as thick arrows) indicating ‘isa’ relationships among

types, and a constraint combination, called partition, made of an exclusive con-
straint (a circled ‘X’ for mutual disjointness), and a total constraint (a circled dot
for complete coverage of the common super-type).

6. Internal frequency occurrence constraint indicating that if an instance of Re-
search&TeachingStaff plays the role of being lecturer in the relation isGivenBy, it
plays the role at most 4 times.

7. An external frequency occurrence that applies to roles played by Student and
Course, meaning that ‘Students are allowed to enroll in the same course at most
twice’.

8. An external uniqueness constraint between the role played by Course in isIn and
the role played by Date in wasOn, saying that ‘For each combination of Course and
Date, at most one Enrollment isIn that Course and wasOn that Date’.

9. A disjunctive mandatory ‘circled dot’, called inclusive-or, linking the roles played
by AreaManager indicating that ‘Each area manager either works in or heads (or
both)’.

10. An object cardinality constraint forcing the number of the Admin instances to be
less or equal to 100.

11. An object type value constraint indicating which values are allowed in Credit.
12. An exclusion constraint (depicted as circled ‘X’) between the roles played by Stu-

dent in the relations worksFor and collaborates, expressing the fact that no student
can play both these roles.

13. A ring constraint expressing that the relation reportsTo is asymmetric.

3 Proposed Formalisation of ORM2

As mentioned before, the modelling activity in ORM2 is supported by several tools that
provide user friendly graphical interfaces to build complex conceptual schemas. How-
ever, none of the available design tools offers automated reasoning support on specific
combinations of ORM2 constraints. The automated verification of schema consistency
and consistency of an object type over a conceptual schema strictly depends on the pos-
sibility to perform reasoning and make inferences on it by means of a semantic-based
logic representation of the schema itself.

With this goal in mind, we propose a linear syntax that fully covers the set of graph-
ical symbols of ORM2. Table 1, using the example from previous section, shows how
a new introduced syntax can be used to encode conceptual schemas that have been
originally specified in graphical terms. For each construct φ in the syntax, its corre-
sponding set-theoretic semantics expressed in relational algebra is also introduced in
table 2 (where O denotes an object type).
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Table 1. Constraints C1-C7 below represent a fragment of the schema from Fig. 1.

ENTITYTYPES:{Enrollement,Student,...}
VALUETYPES:{Credit,Student-Nr,...}
RELATIONS:{isIn,isBy,collaborates,student-Nr,...}

C1.
TYPE(isBy.enrollment,Enrollment)
TYPE(isBy.student,Student)

C2. MAND({isBy.enrollment},Enrollment)

C3. FREQ({isBy.student,isIn.course},
{isBy.enrollment,isIn.enrollment},〈1, 2〉)

C4.
O-SETTot({R&TStaff,Student,Admin},UNI-Personnel)
O-SETEx({R&TStaff,Student,Admin},UNI-Personnel)

C5. RINGAsym(reportsTo.sub, reportsTo.obj)

C6. V-VAL(Credit)={[4,6,8,12]}

C7. O-CARD(Admin)=(0,100)

The signature S of the linear ORM2 syntax is made of:
– Disjoint sets E andV of entity type and value type symbols, respectively;
– a set R of relation symbols and a setA of corresponding role symbols;
– a setD of domain symbols, and a set Λ of pairwise disjoint sets of values;
– for each D ∈ D, an injective extension function Λ(·) : D → Λ associating each

domain symbol D to an extension ΛD;
– a binary relation % ⊆ R × A linking role symbols to relation symbols. We take the

pair R.a as the atomic elements of the syntax, and we call it localised role. Given a
relation symbol R, %R = {R.a|R.a ∈ %} is the set of localised roles with respect to R;

– for each relation symbol R, a bijection τR : %R → [1..|%R|] mapping each element in
%R to an element in the finite sequence of natural numbers [1..|%R|]. The mapping
τR guarantees a correspondence between role components and argument positions
in a relation.

Given the signature S, an ORM2 conceptual schema Σ over S includes a finite combi-
nation of the constructs in table 2.

4 Encoding inALCQI
With the main aim of relying on available reasoning tools to reason in an effective
way on ORM2 schemas, we present here the encoding in the logicALCQI, for which
tableaux-based reasoning algorithms with a tractable computational complexity have
been developed [8,12]. TheALCQI encoding has been devised through an intermedi-
ate translation step in the logic DLR, where arbitrary n-ary relations are allowed [3].
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ALCQI corresponds to the basic DLALC equipped with qualified cardinality restric-
tions and inverse roles, and it can also be viewed as a fragment ofDLR [4] where rela-
tions are restricted to be binary. The difficulty implied by the absence of n-ary relations
has been overcome by means of reification. Unfortunately, apart from the necessity of
introducing reified relations, the restricted expressive power ofALCQI does not allow
to fully capture the semantics of the ORM2 constraints. The analysis of correspond-
ing limitations thus led to identification of a fragment of ORM2, called ORM2zero, that
is maximal with respect to the expressiveness of ALCQI, and that is still expressive
enough to capture the most frequent usage pattern of the modelling community [5].

The ORM2zero fragment considers the following constraints:
ORM2zero = {TYPE,FREQ−,MAND,R-SET−,O-SETIsa,O-SETTot,O-SETEx,OBJ},
where: (i) FREQ− can be applied to only one role at time, and (ii) R-SET− applies
either to a pair of relations of the same arity or to two single roles. The encoding of the
semantics of ORM2zero is shown in table 3.

Table 3.ALCQI encoding

Background domain axioms: Ei v ¬(D1 t · · · t Dl) for each i = 1, . . . , n

Vi v D j for each i = 1, . . . ,m, and some j, with 1 ≤ j ≤ l

Di v �l
j=i+1 ¬D j for each i = 1, . . . , l

TYPE(R.a,O) ∃τ(R.a)−.AR v O

FREQ−(R.a, 〈min,max〉) ∃τ(R.a)−.AR v ≥ min τ(R.a)−.AR u ≤ max τ(R.a)−.AR

MAND({R1.a1, . . . ,R1.an, . . . ,Rk.a1, . . . ,Rk.am},O) O v ∃τ(R1.a1)−.AR1 t · · · t ∃τ(R1.an)−.AR1 t · · · t
∃τ(Rk.a1)−.ARk t · · · t ∃τ(Rk.am)−.ARk

• If A = {R.a1, . . . ,R.an}, B = {S .b1, . . . , S .bn} R-SET−Sub(A, B) AR v AS

and n = |%R| = |%S |: R-SET−Exc(A, B) AR v A>n u ¬AS

• If A = {R.ai}, B = {S .b j}: R-SET−Sub(A, B) ∃τ(R.ai)−.AR v ∃τ(S .b j)−.AS

R-SET−Exc(A, B) ∃τ(R.ai)−.AR v A>n u ¬∃τ(S .b j).AS

O-SETIsa({O1, . . . ,On},O) O1 t · · · t On v O

O-SETTot({O1, . . . ,On},O) O v O1 t · · · t On

O-SETEx({O1, . . . ,On},O) O1 t · · · t On v O

Oi v �n
j=i+1 ¬O j for each i = 1, . . . , n

OBJ(R,O) O ≡ AR

Given the encoding above, a fragment ofALCQI KB corresponding to the schema
from the Fig. 1 is the following (where reified relations have been prefixed with ‘R-’):

Example 1. ∃τ(reportsTo.sub)−.R-reportsTo vAdmin
∃τ(reportsTo.obj)−.R-reportsTo vAreaManager

Admin v∃τ(reportsTo.sub)−.R-reportsTo

The correctness of the introduced encoding is guaranteed by the following theorem:

Theorem 1. Let Σzero be an ORM2zero conceptual schema and ΣALCQI the ALCQI
knowledge base constructed as described above. Then an entity/value type O is consis-
tent in Σzero if and only if the concept O is satisfiable w.r.t. ΣALCQI.
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5 Prototype of Automated Reasoning Support Tool

The ORM2 automated reasoning support tool is implemented in Java and includes a
parser for ORM2 linear syntax, a set of Java classes representing the ORM2 knowl-
edge database, a translator into an OWL2 ontology and a modal reasoning engine using
HermiT or FaCT++ as an underlying reasoner. The graphical user interface of a tool
is introduced on Figure 2 and contains controls which allow to select an input file, un-
derlying reasoner, output file and output format for resulting ontology (if needed). The
consistency check for an input ORM2 schema is performed after loading the input file
and the result of the check is communicated by visual flag as well as by a detailed log
in the corresponding window.

Fig. 2. A conceptual schema including an instantiation of most of the ORM2 constraints

Let us now consider the following example in ORM2 linear syntax. This model de-
scribes a domain of university personnel, which is partitioned into three mutually exclu-
sive categories: research staff, administration and some lazy people. We then introduce
an entity type Student as a part of university personnel, which is claimed to be neither
researchers nor administration staff.

ENTITYTYPES: {UNI-Personnel,LazyPeople,Student,Admin,RTStaff}
O-SETtot({LazyPeople,RTStaff,Admin},UNI-Personnel)

O-SETex({LazyPeople,RTStaff,Admin},UNI-Personnel)

O-SETisa({Student},UNI-Personnel)

O-SETex({Student,RTStaff},UNI-Personnel)

O-SETex({Student,Admin},UNI-Personnel)
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The resulting encoding inALCQI will look like the following:

UNI-Personnel v RTStaff t Admin t LazyPeople
RTStaff v ¬Admin t ¬LazyPeople
Admin v ¬LazyPeople

Student v ¬RTStaff t ¬Admin
Student v UNI-Personnel

After loading the linear syntax input file, the corresponding conceptual schema is au-
tomatically checked for consistency (see Figure 2). As a result of the consistency check
we obtain the message ’The given ORM2 schema is internally consistent’, which confirms
the correctness of the schema.

Implemented entailment check functionality allows user to analyze the conceptual
schema and to discover interesting inferences. For example, let us analyze the entity
type Student, which is claimed to be part of the university personnel. However, since
the partition of UNI-Personnel described above is total, the only possibility for Student
to be non-empty is to be equivalent to the entity type LazyPeople. Which is indeed
confirmed by the inference engine of the implemented prototype when performing en-
tailment check for the following ORM2 statement (see Figure 2):

O-SETisa({Student},LazyPeople)

6 Related Works

In the last few years, several papers addressed the issue of encoding ORM2 concep-
tual schema into DL knowledge bases [15,14,13,11]. Among those proposals, [15] can
be taken as the only one going through the encoding with a formal perspective. In
particular, [15] pretends to start from the Halpin’s FOL semantics, and introduces an
encoding of a fragment of ORM2 into the logic DLRi f d [3]. In general, the paper suf-
fers from the presence of several imprecisions, redundancy, and syntactical mistakes
that makes the proposed mapping solutions not always clearly understandable. More-
over, the bottom-up approach that avoids the specification of a complete theoretical
framework for the mapping of the ORM2 semantics intoDLRi f d, makes some of these
solutions extremely questionable, such as in the case where ‘objectification’ is simply
treated as ‘relation reification’ in DL.

As regards to [14], we mostly rely here on the extensive review already made by
Keet in [15]. Starting from this, it should be also noticed that subsequent attempts,
focused on the possibilities of encoding ORM2 into the the web ontology language
OWL2 [13,11], suffer from the same formal inconsistencies and limitations of [14]. In
particular, [14] is misleading with respect to the underlying DL formalism: distinct DL
languages (e.g.DLR, plusDLR-Lite, plus SROIQ, plus ‘role composition’ operator)
are there arbitrary mixed together. No special semantics is provided by [14] in corre-
spondence with these combinations, nor theorems showing the complexity of reasoning
with them.

Another paper focused on the encoding of ORM2 in OWL has also been recently
published [16]. The paper introduces a set of informal ‘rules’ devoted to the mapping of
a subset of ORM2 constructs into OWL Manchester Syntax [7]. Unfortunately, the paper
is misleading in several respects (for instance: (i) the OWL EquivalentTo, instead of
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the SubClassOf, is erroneously introduced several times; (ii) optionality of uniqueness
constraints is definitively lost). In general, the paper covers a fragment that is smaller
than ORM2zero, and the proposed mapping mostly remains formally unjustified.

7 Concluding Remarks

In this paper we introduced a linear syntax and a complete set-theoretic semantics for
the ORM2 conceptual modelling language. A decidable, and computationally tractable,
fragment of ORM2 has been clearly identified and mapped into the DL logicALCQI.
Finally, a first reasoning support prototype for ORM2 has been implemented, which
enables consistency and entailment checks for the defined fragment of ORM2. Future
theoretic works will be mainly focused on the extension of the ORM2zero towards the
identification of a more expressive, still decidable, ‘object role’ modelling language.
The practical objectives of the research will be directed towards full integration of
the prototype into third-party solutions providing graphical user interface for design-
ing ORM2 conceptual schemas (e.g. NORMA plugin for Microsoft Visual Studio). In
particular, such integration will benefit from reasoning capabilities of the tool by pro-
viding the user with a list of all meaningful inferences entailed by the original schema.
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Abstract. We consider the problem of reasoning with ontologies where
every axiom is associated to a context, and contexts are related through a
total order. These contexts could represent, for example, a degree of trust
associated to the axiom, or a level of granularity for the knowledge pro-
vided. We describe an extension of tableaux-based decision procedures
into methods that compute the best-fitting context for the consequences
of an ontology, and apply it to the tableaux algorithm for ALC. We
also describe an execution strategy that preserves most of the standard
optimizations used in modern DL reasoners.

1 Introduction

Several non-standard reasoning tasks for DL ontologies can be described as re-
peated standard reasoning, over some of its sub-ontologies. This is the case, for
example, in axiom-pinpointing [14,12,3], where the tasks is to identify the class
of sub-ontologies entailing a consequence, or access control [2], where users are
assigned views to specific subontologies, and one wants to decide which users
can or cannot deduce some implicit consequence.

One can think of the sub-ontologies over which standard reasoning is per-
formed as contextual views to the whole ontology. The task is then to partition
the contexts into those that entail and those that do not entail the desired con-
sequence. An obvious way to solve this task is to test each of the potentially
exponentially many sub-ontologies for the consequence, and classify them ac-
cording to the result. However, it is possible to exploit the structure of the set
of contexts to obtain a more efficient method.

Notice that every set of sub-ontologies defines a partial ordering ≤ via the
superset relationship: O ≤ O′ iff O′ ⊆ O. This partial order can always be
extended to a lattice in which every context is join-prime [6]. It has been shown
that there is an element ν in this lattice, called the boundary, such that the
following holds for every context O represented by a label `O: O entails the
consequence iff `O ≤ ν [2]. If the lattice is distributive, then the boundary can
be computed in polynomial time on the size of the input ontology [3].

So far, all the methods implemented for computing boundaries are based on
a black-box approach, in which an unmodified reasoner is called repeatedly until
the boundary has been found. In fact, attempts to produce a glass-box approach
for e.g. axiom-pinpointing [4], where the reasoner is modified to directly compute
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the boundary, encounter the problem that most of the optimizations used in
implemented DL reasoners do not work in the modified procedures, making the
glass-box approaches much less efficient than black-box ones. Moreover, glass-
box extensions are not even guaranteed to terminate.

In this paper we focus on a special case in which the contexts are linearly or-
dered. That is, for every pair of sub-ontologies O,O′, either O ⊆ O′ or O′ ⊆ O.
This simple setting still covers a wide variety of applications, such as possibilis-
tic reasoning [13,11], trust management, or granularity reasoning. We develop a
glass-box approach for extending tableau-based decision algorithms into proce-
dures that compute the boundary for the consequence decided by the original
tableaux. A prioritization ordering of the rule applications of these procedures
ensures that the boundary-computation procedure behaves almost identically to
the original tableau. This entails not only termination of the algorithm, but also
that most of the optimization techniques used by modern DL reasoners are still
applicable to the extensions. An additional benefit of our method is that it can
deal with arbitrary blocking conditions, without losing its correctness.

The paper is divided as follows. We first introduce the basic reasoning prob-
lems we are interested in, followed by a general notion of tableaux. In Section 4
we describe the labeled extensions of tableaux, that output a boundary for the
desired property, and provide the prioritization ordering that ensures that these
extensions behave well. We wrap up by arguing that our approach can be seen as
a special case of incremental reasoning, and hence should be easy to implement
in modern DL reasoners.

2 Basic Definitions

We start by introducing the general notion of consequence properties that are
decided by general tableaux. To avoid unnecessary confusion, we present slightly
simplified versions of the notions of consequence properties and tableaux, which
suffice for the goals of this paper. We consider also a general notion of axioms,
which can e.g. be assertions, GCIs, or concept definitions.

Definition 1. Let O be a set of axioms, and let Pfin(O) denote the set of all
finite subsets of O. A consequence property (c-property) is a set P ⊆Pfin(O)
such that O ∈ P implies O′ ∈ P for every O ⊆ O′.

Intuitively, c-properties model consequence relations in logic that are monotonic;
i.e. they describe which sets of axioms have or entail a desired consequence. For
example, one can consider the set O of all concept- and role-assertions in the
DL ALC and Pexa the set of all inconsistent ALC ABoxes. If Oexa is the ABox
having the assertions

ax1 : ¬∃r.B(a) ax2 : (¬A uB)(b) ax3 : ∀r.A(a) ax4 : r(a, b) (1)

then Oexa ∈ Pexa; that is, Oexa is inconsistent. In general, we will call the sets
O ∈Pfin(O) ontologies.
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For several applications, axioms cannot be considered to have all equal im-
portance, but are provided with a label that represents the context to which they
belong. We consider only labels that come from a finite totally ordered set (L,≤).
For the rest of this paper, we will denote the elements of L as `0, `1, . . . , `k, with
the implicit ordering `i ≤ `j iff i ≤ j. In particular, `0 is the least- and `k is the
greatest-element of L.

We will use the elements of the set L to define different contexts of an on-
tology. Depending on the specific application at hand, these contexts can have
different meanings, such as access rights, level of expertise, trustworthiness, ne-
cessity degree, etc.

Every axiom t in an ontology O is assigned a label lab(t) ∈ L, which expresses
the contexts from which this axiom can be accessed. An ontology extended with
such a labeling function lab will be called a labelled ontology. Each element ` ∈ L
defines the context sub-ontology

O≥` := {t ∈ O | lab(t) ≥ `}.

Clearly, if ` ≤ `′, then O≥`′ ⊆ O≥`. Conversely, every ontology O defines an
element λO ∈ L (called the label of O), given by λO := min{lab(t) | t ∈ O}. It
follows from this definition that λO ≤ λO′ whenever O′ ⊆ O.

For a given labeled ontology, we want to compute the so-called boundary of
the c-property P. Intuitively, the boundary divides the contexts where P follows
from those where it does not follow.

Definition 2. Let O be a labeled ontology and P a c-property. An element ν ∈ L
is called a (O,P)-boundary if for every element ` ∈ L the following holds:

` ≤ ν iff O≥` ∈ P.

When it is clear from the context, we will usually omit the prefix (O,P), and
call this ν a boundary.

Continuing with our example, let the label of every axiom appearing in (1)
be lab(axi) = `i, 1 ≤ i ≤ 4. The (Oexa,Pexa)-boundary is then `2 since the sub-
ontology O≥`2 = {¬AuB(b),∀r.A(a), r(a, b)} is inconsistent, while the ontology
O≥`3 = {∀r.A(a), r(a, b)} is consistent, i.e. does not belong to Pexa.

It was shown in [2] that if O ∈ P, then the (O,P)-boundary always exists,
is unique, and can be computed using axiom-pinpointing techniques. Given an
ontology O that belongs to a c-property P, a minimal (w.r.t. set inclusion) sub-
ontology O′ ⊆ O that still belongs to P is called aMinA for O,P.1 If O1, . . . ,Om
are all the MinAs for O,P, then

ν = max{λOi | 1 ≤ i ≤ m} (2)

is the (O,P)-boundary. However, using this method for computing the boundary
may result in an unnecessary overhead. In our running example, we can see
that {ax1, ax2, ax4} and {ax2, ax3, ax4} are the MinAs for Oexa,Pexa. The second
1 These minimal sub-ontologies are also called justifications [9].
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MinA has label `2. If we happen to compute this second MinA first, then there is
no need to continue computing MinAs, as it is clear that any new MinA O′ must
contain the axiom ax1, and hence have label `1 < `2. This new MinA will have no
influence in the computation of the maximum from Equation (2). This problem
is in fact more pronounced than what the example shows, since a single ontology
can have exponentially many MinAs [5], and the boundary can be computed by
a black-box algorithm that calls a decision procedure for P at most k = |L|
times; namely, once for each ` ∈ L, to decide whether or not O≥` ∈ P.

3 General Tableaux

In this section we recall some of the notions of general tableaux [4]. We use V
and D to denote two disjoint, countably infinite sets of variables and constants,
respectively. A signature Σ is a set of predicate symbols, where each predicate
P ∈ Σ is equipped with an arity. A Σ-assertion is of the form P (a1, . . . , an)
where P ∈ Σ is an n-ary predicate and a1, . . . , an ∈ D. Similarly, a Σ-pattern
is of the form P (x1, . . . , xn) where P ∈ Σ and x1, . . . , xn ∈ V. Whenever the
signature is clear from the context, we simply say pattern (assertion). Given a
set of assertions A (resp. patterns B), cons(A) (resp. var(B)) denotes the set of
constants (resp. variables) occurring in A (resp. B).

A substitution is a mapping σ : V → D, where V ∈ Pfin(V). In this case,
we say that σ is a substitution on V. The substitution θ on V ′ extends σ on V if
V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V . If B is a set of patterns with var(B) ⊆ V ,
then Bσ denotes the set of assertions obtained from B by replacing each variable
by its image over the substitution σ.

Definition 3. Let O be a set of axioms. A tableau for O is a tuple S = (Σ,R, C)
where

– Σ is a signature,
– R is a set of expansion rules of the form (B0,N ) → {B1, . . . , Bm}, where
B0, . . . , Bm are finite sets of Σ-patterns and N ∈Pfin(O), and input rules
of the form t→ B, where t ∈ O and B is a finite set of Σ-assertions, and

– C is a set of finite sets of Σ-patterns, called clashes.

Given an expansion rule R : (B0,N ) → {B1, . . . , Bm}, the variable y is a fresh
variable in R if it occurs in one of the sets B1, . . . , Bm but not in B0.

An S-state is a pair S = (A,O) where A is a finite set of assertions and O is
a finite set of axioms. The tableau algorithm works on sets of S-states. It starts
with the setM = {(∅,O)} and uses the rules in R to modify this set. Each rule
application picks an S-state S from M and replaces it by finitely many new
S-states that extend the first component of S. When no rules are applicable,
then it tests whether the resulting set of S-states contains a clash; in that case,
it accepts the ontology, and rejects it otherwise.

Definition 4. An input rule t→ B is applicable to an S-state (A,O) if t ∈ O
and B 6⊆ A. An expansion rule R : (B0,N )→ {B1, . . . , Bm} is applicable to an
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S-state (A,O) with substitution ρ on var(B0) if (i) N ⊆ O, (ii) B0ρ ⊆ A, and
(iii) for every 1 ≤ i ≤ m and every substitution ρ′ on var(B0 ∪ Bi) extending ρ
we have Biρ′ 6⊆ A.

Given a set of S-statesM, application of an input rule R to S = (A,O) ∈M
yields the setM′ = (M\{S})∪{(A∪B,O)}; application of an expansion rule R
to S = (A,O) ∈M with ρ yieldsM′ = (M\{S})∪{(A∪Biσ,O) | 1 ≤ i ≤ m},
where σ is a substitution that extends ρ and maps the fresh variables of R to
distinct new constants. IfM′ is obtained fromM by a rule application, we write
M→S M′.M is saturated if there is noM′ withM→S M′.

The S-state (A,O) contains a clash if there is a C ∈ C and a substitution ρ
on var(C) with Cρ ⊆ A.M is full of clashes if every S ∈M contains a clash.

A simple example of a tableau is the one for deciding inconsistency of ALC
ABoxes. Its clashes are all the sets {D,¬D}, where D is a concept name. It has
different expansion rules dealing with the constructors of ALC. For example, the
rules for existential restrictions and disjunction are as follows:

R∃ : ({∃r.C(x)}, ∅)→ {{r(x, y), C(y)}},
Rt : ({C tD(x)}, ∅)→ {{C(x)}, {D(x)}}.

It also has input rules, for dealing with the ABox axioms used. For example, for
concept assertions, we use

Ra : C(a)→ {C(a)},

where a is the constant representing the individual name a.
A tableau is correct for a c-property P if every chain of rule applications

starting with M0 = {(∅,O)} eventually reaches a saturated set of S-states M
(i.e. it terminates) and it holds that O ∈ P iffM is full of clashes.

In general, tableaux are not guaranteed to terminate, as their expansion rules
may trigger the applicability of new expansion rules. This happens, for instance,
in the tableaux algorithm for deciding inconsistency w.r.t. general TBoxes. To
avoid this problem, a blocking condition is usually introduced. Intuitively, block-
ing disallows the application of a rule, whenever its application would not lead
to the production of any new clashes; that is, when further expansions would not
change the acceptance status of the input ontology. Several blocking conditions—
like e.g. subset blocking [1], equality blocking [7], pairwise blocking [8], etc—have
been studied in the literature. Rather than trying to define and deal with each
of these conditions independently, we consider a general notion of blocking.

A blocking condition is simply a set of finite sets of Σ-assertions and Σ-
patterns, using only the variables from var(B0). Intuitively, these describe the
situations in which the rule should not be applied. Every expansion rule is then
extended with a blocking condition B, and the rule applicability condition is
restricted to satisfy additionally (iv) A /∈ Bρ. The notions of saturated sets of S-
states and correctness w.r.t. a c-property are adapted accordingly. For example,
the subset blocking condition disallowing the applicability of the existential rule
in ALC is described by the set of all finite sets of Σ-assertion and Σ-patterns B
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where the only variable used is x and such that there exist constants a1, . . . , an
and roles r1, . . . , rn such that ri(ai, ai + 1) for all i, 1 ≤ i < n, ri(an, x), and
{C | C(x) ∈ B} ⊆ {C | C(a1) ∈ B}.

In the next section, we show how to transform tableaux that are correct for
a c-property P into procedures that directly compute the (O,P)-behaviour, for
any given ontology O. We focus first on tableaux without any blocking condition,
which can be used for deciding consistency of ALC ABoxes. Later on, we show
how to extend this construction to tableaux with blocking conditions, allowing
us to reason w.r.t. general TBoxes also.

4 Boundary Extensions of General Tableaux

Given a tableau S that is correct for the c-property P, we show how to construct
an algorithm that computes the boundary for P. For the moment, we focus
on tableaux without blocking conditions, but later describe how to deal with
blocking also.

For an input labeled ontology O, the modified algorithm also works on sets of
S-states, but every assertion a occurring in the first component of an S-state is
also equipped with a label lab(a); we call this a labeled S-state. The application
of rules must take the labels of the assertions and axioms into account.

If A is a set of labeled assertions and ` ∈ L, then we say that an assertion
a is `-insertable into A if either (i) a /∈ A or (ii) a ∈ A but ` > lab(a). Given
a set B of (unlabeled) assertions and a set A of labeled assertions, the set of
`-insertable elements of B into A is

ins`(B,A) := {b ∈ B | b is `-insertable into A}.
The `-insertion of these elements into A yields the set of labeled assertions
A d` B := A ∪ ins`(B,A), where each assertion a ∈ A \ ins`(B,A) keeps its
old label lab(a), each assertion in ins`(B,A) \ A is labeled with `, and the label
of each assertion b ∈ A ∩ ins`(B,A) is updated to `.

Definition 5. The input rule t → B is labeled applicable to a labeled S-state
S = (A,O) if t ∈ O and inslab(t)(B,A) 6= ∅. An expansion rule of the form
R : (B0,N ) → {B1, . . . , Bm} is labeled applicable to a labeled S-state (A,O)
with substitution ρ on var(B0) if (i) N ⊆ O, (ii) B0ρ ⊆ A, and (iii) for every
1 ≤ i ≤ m and every substitution ρ′ on var(B0 ∪ Bi) extending ρ we have
ins`(Biρ

′, A) 6= ∅, where ` := min{lab(α) | α = bρ, b ∈ B0 or α = s, s ∈ N}. We
call this ` the degree of the rule application.

Given a set of labeled S-statesM, the labeled application of the input rule R
to S = (A,O) ∈M yields the setM′ = (M\ {S}) ∪ {(A dlab(t) B,O)}; labeled
application of the expansion rule R to S = (A,O) ∈M with ρ yields the new set
M′ = (M\{S})∪{(Ad`Biσ,O) | 1 ≤ i ≤ m}, where ` is the degree of the rule
application, defined above, and σ is a substitution that extends ρ and maps the
fresh variables of R to distinct new constants. If M′ is obtained from M by a
labeled rule application, we write M→S lab M′. M is labeled saturated if there
is noM′ withM→S lab M′.
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Consider a finite chain of labeled rule applications {(∅,O)} ∗−→S lab M such
thatM is labeled saturated. The label of an assertion appearing inM expresses
the contexts that can derive this assertion. A clash in an S-state depends on the
joint presence of possibly several assertions; thus, we need to find the contexts
from which all of these assertions can be derived: this is given by the minimum
of the labels of all these assertions. To decide the property P, it suffices to have
one clash per S-state S; hence, we are only interested in the maximum of the
labels of all the clashes in a given state. As every S-state in M is required to
have at least one clash, we again compute the minimum of the labels obtained
from each S-state. We formalize this next.

Definition 6. A set of assertions A′ is called a clash set in a labeled S-state
S = (A,O) if there is a clash C ∈ C and a substitution ρ on var(C) with A′ = Cρ.
The label of this clash set is `A′ = min{lab(a) | a ∈ A′}.

Given a set of labeled S-statesM = {S1, . . . ,Sn}, the clash degree induced
byM is `M := min{max{`A′ | A′ is a clash set in Si} | 1 ≤ i ≤ n}

It can be shown, using similar techniques to the ones developed in [4] for
pinpointing extensions of general tableaux that the clash degree is always the
boundary for the c-property decided by the original tableau.

Theorem 7. Let P be a c-property on O and S a correct tableau for P. For
every ontology O ∈Pfin(O) the following holds:

for every finite chain of rule applications {(∅,O)} ∗−→S lab M with M la-
beled saturated, the clash degree `M induced byM is a (O,P)-boundary.

Notice that this result does not depend on the order in which rules are applied.
From a given set of S-states, several rules could be applicable, but the correct-
ness of the labeled extension does not depend on which one is chosen first. This
is an important feature of tableaux and their extensions, as it allows optimiza-
tions based on the choice of an ordering that leads to shorter chains of rule
applications.

Unfortunately, this general approach for extending tableaux into boundary-
computation methods also inherits some of the negative properties of pinpointing
extensions of tableaux. In particular, (i) the labeled extension of a terminating
tableau is not guaranteed to terminate (see [4] for an example), and (ii) even if
it terminates, the labeled extension needs to run until saturation to guarantee
that the clash label computed is indeed the boundary. The second point is used
as an argument against glass-box approaches, as it disallows one of the most
basic optimizations for tableaux, namely stopping the application of expansion
rules on states where a clash has already been detected.

We now show that if we prioritize rule applications with a higher degree,
then both of these problems disappear. Moreover, the same approach will allow
us to deal with general blocking conditions in Section 4.2.
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4.1 Prioritized Rule Applications

By definition, the boundary is the largest context from which the c-property
can be derived. A simple idea to compute this boundary is then to try to first
produce all the assertions that can be derived from a context—that is, from all
the axioms having a label greater or equal to some `i—before applying rules that
use axioms with a smaller label. We implement this idea by prioritizing labeled
rule applications with a higher degree.

Definition 8. The ordered extension of a tableau S is the labeled extension of
S where, if several rules are applicable to a set of labeled S-states M, then one
rule application having the highest degree is applied.

We write M →Sord M′ if M′ is obtained from M by an ordered rule appli-
cation.M is ordered saturated if there is noM′ withM→Sord M′.

Several rule applications may have the same (highest) degree. In that case, it
is irrelevant which one of these is chosen. This prioritization ordering has the
consequence that the degree of successive rule applications is non-increasing.

Lemma 9. Let M0 →Sord M1 →Sord M2. If M2 is obtained by applying a rule
with degree ` to M1, and M1 is obtained by applying a rule with degree `′ to
M0, then ` ≤ `′.

Proof. M1 differs from M0 by having some S-states S1, . . . ,Sm that modify
the assertional component of a S-state S ∈M0 in the following way: some new
assertions labeled with `′ are added, and some existing assertions get their label
increased to `′. In any case, all assertions appearing in some S-state ofM1 with
label greater than `′ are also in an S-state ofM0. If ` > `′, then all the assertions
and axioms used to execute the ruleM1 →Sord M2 have a label strictly greater
than `′, and hence this rule was applicable also to an S-state inM0. But ` > `′

implies that `′ would not be applied, since it violates the prioritization ordering.
hence ` ≤ `′. ut

A simple consequence of this lemma is that the labels of assertions appearing
in the S-states are never modified by further ordered rule applications, as such
modification would imply a rule application with a higher degree than the rule
that originally created the assertion. This means that a rule is only ordered
applicable if it adds new assertions to the S-state, and thus, for any set of S-
states reachable from the initial set {(∅,O)} a rule is ordered applicable iff it
is applicable in the original sense of Definition 4, as described by the following
theorem.

Theorem 10. Let S be a tableau over O and O ∈ Pfin(O). For every set of
labeled S-statesM, it holds that

{(∅,O)} ∗−→Sord M iff {(∅,O≥`)} ∗−→S M,

where ` is the smallest label appearing inM.
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In particular, if S terminates in every input—as is the case for every tableau that
is correct for some c-property—then its ordered extension must also terminate.

Corollary 11. The ordered extension of any terminating tableau is terminating.

More interesting, the execution of the ordered extension can be stopped as
soon as the set of S-statesM is full of clashes, as further rule applications will
not modify the clash degree.

Corollary 12. LetM,M′ be sets of S-states such thatM is full of clashes and
{(∅,O)} ∗−→Sord M ∗−→Sord M′. Then `M = `M′ .

4.2 Dealing with Blocking

Consider now a tableau with blocking conditions associated to its rules, that
is correct for a property P. In general, the same blocking condition cannot be
used for restricting rule applications in its labeled extension. This would lead
to a clash degree that may be strictly smaller than the actual boundary that
this extension tries to compute, as can be seen by a simple adaptation from the
examples provided in [10] for subset blocking and in [4] for equality blocking.
The reason for this is that, since the blocking condition is independent of the
labels used, it might be that the assertions that trigger the blocking of a rule
application may depend on different contexts.

To solve this problem, a modification of the blocking condition that also takes
into account the labels was proposed in [10,4]. However, it is not clear whether
more complex blocking conditions would require a more elaborate labeled ex-
tension. Moreover, we want to produce a boundary-computing algorithm that
works for any kind of blocking condition that fits our very general framework.

Fortunately, if we consider the prioritized rule-application ordering of ordered
extensions of tableaux, we can use Theorem 10 and Corollary 12 to show that
the same blocking conditions yield a correct computation of the boundary.

To define the labeled extensions of tableaux with blocking, we adapt the
notion of labeled applicability of a rule to take into account the blocking condi-
tion. An expansion rule R with a blocking condition B is labeled applicable to a
labeled S-state (A,O) if it satisfies the three conditions from Definition 5 and
additionally (iv) A /∈ B.

If a tableau with blocking is correct for a c-property P, then it terminates on
every input and when it reaches a saturated set of S-states, this is full of clashes
iff the input ontology satisfied the property. We thus have the following result.

Theorem 13. Let P be a c-property on O and S a correct tableau (with block-
ing) for P. For every ontology O ∈Pfin(O) the following holds:

– the ordered extension of S terminates on O; that is, there is no infinite chain
of rule applications {(∅,O)} →Sord M1 →Sord M2 →Sord . . .;

– for every chain of rule applications {(∅,O)} ∗−→Sord M with M labeled satu-
rated, the clash degree `M induced byM is a (O,P)-boundary.
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5 Conclusions

We have presented a general approach for extending general tableaux algorithms
that can decide a c-property P, into methods that can compute the boundary
for P w.r.t. to a set of linearly ordered contexts. Our approach can be used for
extending the tableau-based algorithm for deciding consistency of ALC ABoxes
w.r.t. general TBoxes, but is not limited to this logic. In fact, adding transitive
and inverse roles, or considering more complex blocking conditions would not be
a problem for our framework. However, our notion of general tableaux requires a
monotonic extension of the consequences deduced, and cannot identify previously
introduced individuals in a clean way. In future work we will study whether we
can construct a tableau for reasoning in full SROIQ(D).

Our approach follows the lines of pinpointing extensions of tableaux, but has
several advantages over these, mainly due to the simplicity of the linear ordering.
By prioritizing the rule applications according to their degree—applying rules
with higher degree first—we obtained an algorithm that does not differ much
from the original tableau. The main intuition behind this prioritization of the
rule applications is that it deduces all the consequences from a context higher
in the ordering before testing contexts defined by a smaller label. Labeled rule
applications using this ordering never modify the label of a previously exist-
ing assertion, and always add new assertions with non-increasing labels. Thus,
chains of ordered rule applications correspond to rule applications of the original
tableau. This in particular ensures that termination of a tableau transfers to its
ordered extension, a property that is not shared by pinpointing extensions, or
extensions based on lattices that are not linearly ordered.

The execution of ordered extensions of tableaux can be seen as incremental
reasoning: given an ontology O, the ordered extension first saturates the tableau
using only the axioms having the greatest label `n. If this produces a set of S-
states that is full of clashes, then we know that `n is the boundary for (O,P).
Otherwise, it adds the axioms with label `n−1, and continues the tableau exe-
cution. Since several DL reasoners now implement incremental reasoning (e.g.
Pellet,2 FaCT++,3 or CEL4 ), we believe that an implementation of our glass-
box approach for reasoning in DLs with linearly ordered contexts will be a simple
step.
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Abstract. The formal definition of abduction asks what needs to be
added to a knowledge base to enable an observation to be entailed by the
knowledge base. An observation which is not entailed by the knowledge
base will result in open branches in a complete semantic tableau for the
entailment. The statements required to close these branches therefore
represent a solution to the abductive problem.
In this paper we describe how this idea can be implemented for ABox
abduction in the description logic ALC. We analyse the limitations of
our algorithm and propose refinements to improve the quality of results.

1 Introduction

Abduction is a form of non-standard reasoning where explanations are generated
for certain observations in the context of some background knowledge. This is
as opposed to deduction – the standard form of reasoning where the logical
consequences of some knowledge are determined.

A typical use of abduction is in the process of medical diagnosis. Say a pa-
tient displays some symptoms. A doctor uses abductive reasoning to generate
hypotheses about the possible ailment(s) causing the symptoms. These hypothe-
ses can then be tested by collecting corroborating evidence so that deduction can
be used to make a correct diagnosis.

Abductive reasoning is non-monotonic in that the solutions derived from
some background knowledge and an observation may no longer hold if we add
new statements to the background knowledge.

Different forms of abduction have been formally defined in different logics. In
their programmatic paper, Elsenbroich et al [6] define and describe various forms
of abduction in description logics (DLs). A number of researchers have taken up
the challenge and developed algorithms for some of these forms of abduction in
selected DLs ([4, 5]).

In particular, Klarman et al [8] have provided a resolution-based algorithm
and a tableau-based algorithm for performing ABox abduction in ALC. The
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tableau-based algorithm involves translating the knowledge base and the obser-
vation for an abductive problem from its DL specification to first-order logic
(FOL), then constructing a FOL connection tableau and harvesting abductive
solutions from open branches. These solutions are then translated back to a DL
notation.

In this paper, we describe a glass box algorithm for doing this directly by
means of a DL semantic tableau. We then show that this is a näıve algorithm
in that it fails to generate a number of solutions which could be desirable in
certain circumstances. We propose strategies to adapt the algorithm to address
these deficiencies. We also define the notion of semantic minimality as a means
to compare or rank solutions.

A potential advantage of this approach over Klarman’s is that it can utilise
optimisation techniques used in DL tableaux.

Section 2 highlights the relevant aspects of the syntax and semantics of ALC,
Section 3 includes a definition of ABox abduction in ALC (slightly more general
than Klarman et al [8]), and Section 4 gives a description of the standard seman-
tic tableau algorithm for ALC. Section 5 then describes how this algorithm can
be adapted to perform ABox abduction. Section 6 explains why the proposed
abduction algorithm is näıve and how this can be addressed. Finally, Section 7
discusses the prospects for future work.

2 The Description Logic ALC
Description Logics (DLs) are a family of fragments of first-order logic, suitable
as knowledge representation formalisms and amenable to the implementation of
efficient reasoners [1]. There is a trade-off between the expressivity of different
DLs and the efficiency of the algorithms that have been defined to reason over
them. ALC is a DL of medium expressivity.

Syntax: The reader is referred to the Description Logic Handbook [1] for the
syntax of ALC. We highlight the following terminology for our current purposes:

A knowledge base is a set of statements partitioned into an ABox and a TBox.
ABox assertions are statements of the form C(I) and R(I, J) (called concept
assertions and role assertions, respectively), and TBox axioms are statements
of the form C v D (sometimes called general concept inclusions, or GCIs).3

The following serves as a running example. Admittedly it is not very good knowl-
edge representation, but we have chosen the given formulation for the sake of
illustration.

Example 1: The following knowledge base is intended to express the ideas that
Influenza A is a form of influenza, Malaria vivax is a form of malaria (caused

3 In this and the following specifications, C and D represent arbitrary concept de-
scriptions, R represents an arbitrary role name, and I and J represent arbitrary
individual names.
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by Plasmodium vivax ), and someone infected with influenza or malaria will be
feverish:

Influenza(FLU A)
Malaria(MAL V)
∃infectedWith.Influenza t ∃infectedWith.Malaria v Feverish

Semantics: Once again, the reader is referred to the DL Handbook [1] for the
semantics of ALC. We highlight the following terminology for our purposes:

An interpretation I is a model of a knowledge base K if all the statements
of K are true in I. A concept description C is satisfiable with respect to a
knowledge base K if there is some model of K such that the interpretation of C
is not empty. A statement φ is entailed by a knowledge base K if φ is true in all
models of K, in which case we write K |= φ. In an abuse of notation, we often
write K |= Φ where Φ is a set of statements. By this we mean that K |= φ for all
φ ∈ Φ. A knowledge base K is consistent if it admits a model.

3 Abduction

An abduction problem is normally defined in terms of an observation (in the
form of one or more statements) which is not entailed by a theory (i.e. a set
of statements), and asks what needs to be added to the theory to entail the
observation.

Example 2: Using the knowledge base given in Example 1, say we observe that
John is feverish. An abduction problem would be to ask what should be added
to the knowledge base to allow us to infer Feverish(JOHN).

We expect abduction to allow us to hypothesize that John is infected with
influenza or he is infected with malaria, i.e. ∃infectedWith.Influenza(JOHN) or
∃infectedWith.Malaria(JOHN). In fact, more specific hypotheses would be that
he is infected with Influenza A, i.e. infectedWith(JOHN,FLU A), or that he is
infected with Malaria vivax, i.e. infectedWith(JOHN,MAL V). The reader might
like to check that adding any of these assertions to the knowledge base will allow
us to infer Feverish(JOHN).

One problem with a formal definition of abduction is how to narrow down the
possibly infinite number of solutions to an abduction problem. Various criteria
have been defined for this purpose. Like other authors [6, 8], we restrict our
attention to the following three:

i. Consistency: A solution should not create a contradiction with the back-
ground knowledge.

ii. Relevance: A solution should be expressed in terms of the background knowl-
edge; it shouldn’t introduce an independent theory.

iii. Minimality: A solution should not hypothesize more than necessary.
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Example 3: The solutions given in Example 2 are consistent, relevant and min-
imal (i.e. minimal at least in a syntactic sense). The following solutions do not
comply with these criteria:

i. {¬Malaria(MAL V)}. If this assertion were added to the knowledge base, it
would cause a contradiction, and would allow us to infer anything. But this
would not be a helpful solution.

ii. {∃infectedWith.ScarletFever v Feverish,∃infectedWith.ScarletFever(JOHN)}.
This is an abductive solution, since if both these statements were added to
the knowledge base, it would allow us to infer Feverish(JOHN). However, it
would also allow us to make this inference independently of the knowledge
base and is therefore not a relevant solution. (Incidentally, the observation
itself, in this case {Feverish(JOHN)}, is also always a non-relevant solution,
since adding it to the knowledge base would allow the observation to be
trivially inferred.)

iii. {∃infectedWith.Influenza(JOHN),∃infectedWith.Malaria(JOHN)}.
Although this is a valid solution, it is not minimal because it hypothesizes
too much, namely that John is infected with both influenza and malaria.

3.1 ABox Abduction in ALC
As stated in the introduction, attempts have been made to define abduction
and implement reasoners that can make abductive inferences in many logics,
including description logics. ABox abduction (as opposed to general or so-called
knowledge base abduction [6]) asks what ABox assertions need to be added to a
DL knowledge base to allow an observation (also in the form of ABox assertions)
to be inferred.

The astute reader will note that apart from not being relevant, Example 3 ii
is also not an ABox abduction solution, since it contains a TBox axiom.

Definition 1. Given a knowledge base K and a set of ABox assertions Φ (both
in ALC) such that K does not entail Φ and K ∪ Φ is consistent, then a set of
ABox assertions Θ is an abductive solution for (K, Φ) if K ∪Θ |= Φ.

We can narrow down the solutions in three ways:

i. Consistency : K ∪Θ is consistent.
ii. Relevance: Φ is not entailed by Θ.
iii. Minimality : We distinguish two kinds of minimality:

(a) Syntactic: No proper subset of Θ is a solution.
(b) Semantic: There is no non-equivalent solution Θ′ such that K ∪ Θ |=
K ∪Θ′.

Note that our definition of semantic minimality induces a partial ordering on the
set of solutions, and that there can be a number of semantically minimal (non-
equivalent) solutions to a particular abductive problem. We say that a solution
Θ is closer to semantic minimality than a solution Θ′ if K ∪ Θ′ |= K ∪ Θ and
K ∪Θ 6|= K ∪Θ′.
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4 The Semantic Tableau Algorithm for ALC
For a more detailed description of the semantic tableau algorithm for ALC,
the reader is referred to the Handbook of Knowledge Representation [2]. We
highlight the following terminology for our current purposes:

The standard semantic tableau algorithm for description logics (and for ALC
in particular) tries to find (i.e. construct) a model of the knowledge base by
applying so-called expansion rules to its statements.

The expansion rules only apply to ABox assertions, so before the algorithm
can commence, the TBox axioms in the knowledge base must be converted to
concept assertions by a process called internalisation.

In ALC, it is possible to specify a knowledge base that has infinite models
(by means of a so-called cyclic TBox). This issue is dealt with by a technique
called blocking, which essentially detects when more than one individual has the
same labelling in the current model.

If the algorithm detects a contradiction (or clash), i.e. the current set of as-
sertions contains a concept assertion and its negation, it backtracks and tries
another branch of its search. If it gets to a point where the current set of as-
sertions are saturated, i.e. no more expansion rules can be applied and there is
no contradiction, then a model has been found, the algorithm terminates and
reports that the original knowledge base is consistent.

The algorithm described above performs consistency checking of a knowledge
base. It can easily be adapted to perform the related reasoning task of instance
checking, i.e. deciding whether a concept assertion is entailed by a knowledge
base, as follows: The negation of the concept assertion being tested is added
to the knowledge base and the algorithm described above is executed. If the
resulting knowledge base is consistent, we conclude that the assertion is not
entailed by the knowledge base (and vice versa).

5 Adaption of the Semantic Tableau Algorithm for ABox
Abduction

For the purpose of ABox abduction, we perform instance checking of an obser-
vation by means of a so-called extended (or complete) semantic tableau, i.e. a
tableau that doesn’t terminate when the first open branch is attained. Every
time an open branch is attained, the current set of assertions (representing a
model of the original set of assertions) is stored, the algorithm backtracks and
continues its search. Reiter’s minimal hitting set algorithm [10] is then used to
generate abductive solutions from these models. Simply put, one unexpanded
concept assertion (involving a non-dummy individual) is chosen from each (ter-
minal) open branch. (Dummy individuals are introduced by the ∃-expansion
rule.) Each combination of the complements of such assertions forms an abduc-
tive solution. Finally the algorithm outputs all solutions that are consistent with
the knowledge base and that are relevant.

447



Input : ABox, TBox and Obs
Output: Näıve abduction solutions

1 A ← negNF(ABox) ∪ negNF(¬Obs);
2 internalise(TBox, U, A);
3 M ← {};
4 SSet ← {};
5 extendedST(A, U, M);
6 if M = {} then
7 print "The observation follows from the knowledge base";
8 return SSet

9 minimalHS(M, H);
10 foreach S in H do
11 if consistentST(A ∪ S, U) and relevantST(S, Obs) then
12 SSet ← SSet ∪ {S}

13 return SSet

Algorithm 1: Näıve ABox abduction algorithm for ALC

Function negNF transforms a set of concept assertions to negation normal form.
Procedure internalise takes a set of TBox axioms and transforms them into a
set of universal concepts U, each in negation normal form. (Note that in some
implementations of the tableau algorithm, all the TBox axioms are converted
into one long universal concept. We rather store them as separate concepts –
one per TBox axiom – to save having to repeatedly expand the long concept.)
The algorithm then applies each of these universal concepts to all the individual
names mentioned in the ABox, adding the assertions to A. U is returned via pa-
rameter to be used in extendedST whenever a dummy variable is created for the
∃-rule. M is a set of models (where each model is a set of unexpanded assertions
obtained from an open branch). Procedure extendedST performs the extended
semantic tableau algorithm explained above. Whenever an open branch is at-
tained, it adds the current set of unexpanded assertions to M and backtracks. If
the observation is entailed by the knowledge base, then all branches will close
and M will be empty. This means that we are not dealing with a proper ab-
duction problem. M is sent to procedure minimalHS to generate the minimal
hitting sets and store them in H. minimalHS ensures the syntactic minimality of
solutions. Functions consistentST and relevantST are like calls to the semantic
tableau procedure (described in Section 4). They determine whether the solution
is consistent with the original knowledge base, and whether the observation is
not entailed by the solution, respectively.

Although extendedST implements blocking, this is not used in any way for
the generation of solutions. The argument is as follows: Since ALC has the finite
model property [1], every knowledge base that has an infinite model (handled
by blocking) also has at least one finite model (represented by an open branch
of the tableau). Since our algorithm closes all open branches and so removes all
finite models, the infinite models will also be removed.
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5.1 Complexity

The complexity of the standard semantic tableau algorithm for consistency
checking with general TBoxes in ALC is ExpTime [2]. In our extended semantic
tableau (in procedure extendedST), the worst case involves maximal branching
where every branch is open, since we have to store all the assertion sets of all
open branches. Nevertheless, the maximum number of branches is linear in the
size of the initial assertion set, and the number of assertions in each such branch
is also linear in the size of the initial assertion set. This means that the space
required to store all the assertion sets in all the open branches is polynomial in
the size of the initial assertion set. This at least means that the space require-
ments don’t blow up to ExpSpace, which means that the extended semantic
tableau algorithm is at worst in ExpTime.

Reiter’s minimal hitting set algorithm (in general) is NP-complete [11]. In our
case (in procedure minimalHS), the number of sets and their size is polynomial
in the size of the initial assertion set. This means that the time required in our
case is also in NP.

Finally, the algorithm invokes the functions consistentST and relevantST twice
for each candidate solution. Although the space required for relevantST is only
polynomial (because it does not deal with the TBox), consistentST is in ExpTime
in the worst case because it must deal with the TBox. Since the number of
hitting sets is polynomial in the size of the initial assertion set, the total space
requirement for this process is in ExpTime.

The entire algorithm is therefore in ExpTime.

5.2 Soundness and Completeness

Taking Definition 1 as the standard for ABox abduction in ALC, Algorithm 1 is
sound but not complete.

It is sound because all solutions that it generates are proper abduction solu-
tions according to the definition. Consider the following argument: Each solution
is a set comprised of the complements of assertions in the open branches of the
extended semantic tableau, such that each open branch has a representative in
the solution. So if the assertions of such a solution were to be added to the knowl-
edge base (and the satisfiability test were to be performed again), all branches
would close, indicating that the observation is now entailed by the knowledge
base. This is precisely the definition of an abduction solution.

It is not complete due to the problems detailed in Section 6. One should not
be surprised at this because abductive inference is notoriously incomplete due to
the often infinite number of solutions to an abduction problem. Narrowing down
the spectrum of solutions by means of criteria such as consistency, relevance
and minimality only partially addresses this issue. Many solutions within these
criteria are difficult to obtain, particularly by means of the techniques described
here. In Section 6 we propose workarounds to make the algorithm more complete.
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6 Näıvety

The algorithm described in Section 5 is “näıve” in that it doesn’t deal with
all observations and it doesn’t generate all possible solutions allowed by our
definition. In particular, the algorithm has the following weaknesses:

1. The observation can only consist of a single concept assertion.
2. Solutions containing disjunctions are not generated.
3. Solutions involving role assertions are not generated.
4. Semantically minimal solutions are not always generated.

We discuss each of these problems in turn:

6.1 Single Concept Assertions

Contrary to Definition 1, our algorithm does not allow more than one concept
assertion in the observation. This is because an observation consisting of multiple
assertions is really a conjunction of assertions, and the first step of the algorithm
is to add the negation of the observation, which is in effect a disjunction of the
negations of its individual assertions. We cannot express such a disjunction of
assertions in DL syntax when the assertions involve different individuals. (This
is not a problem for multiple concept assertions about the same individual, e.g.
C(I) and D(I) can be negated as ¬C t ¬D(I).)

Furthermore, the observation may not contain any role assertions, because
ALC syntax doesn’t allow negated role assertions. So we cannot deal with obser-
vations such as hasSymptom(JOHN, INTERMITTENT FEVER). (It is true that
in many cases this situation could be handled by alternative modelling, e.g.
∃hasSymptom.IntermittentFever(JOHN), but there might be situations where this
is not practical or desirable.)

Neither of these situations are a problem for Klarman et al [8], since their
translation to FOL syntax allows disjunctions of concept assertions as well as
negated role assertions.

Proposed Workaround: A brute-force method of dealing with multiple asser-
tions in the observation would be to execute the algorithm once for each such
assertion, harvest all the models from all open branches of all executions, and
then process them as normal. This, however, would involve a lot of duplication
(processing the rest of the assertions repeatedly). One way to avoid such du-
plication would be to keep the complemented assertions of the observation in
a separate list from the other assertions. (The set of complemented assertions
would represent a disjunction of assertions, whereas the other set would repre-
sent a conjunction of assertions – as normal.) Then when no other expansion
rules can be applied to the normal set, the algorithm can branch for one of the
complemented assertions.

The negation of a role assertion R(I, J) can be accounted for by two asser-
tions: ∀R.A(I) and ¬A(J), where A is a dummy concept name not occurring in
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the knowledge base. Adding these two assertions to the initial set of assertions
will have the same effect as adding the negation of the role assertion. Assertions
involving such dummy concept names will need to be ignored for the purposes
of determining abductive solutions.

6.2 Disjunctions

Our algorithm suffers from the same problem as Klarman’s [8], namely that the
abductive solutions do not contain disjunctions, i.e. assertions of the form C t
D(I). For example, it does not generate the following solution to the problem de-
scribed in Example 2: (∃infectedWith.Influenza) t (∃infectedWith.Malaria)(JOHN).
Note that a solution with such a disjunction is closer to semantic minimality than
the corresponding two solutions with the individual disjuncts.

Proposed Workaround: One reason for this problem is that our algorithm only
considers unexpanded concept assertions for forming solutions. Allowing expand-
able concept assertions to be selected for solutions would allow some disjunctions,
but not all. For example, say we replaced the axiom of Example 1 with the two
axioms ∃infectedWith.Influenza v Feverish and ∃infectedWith.Malaria v Feverish.
In this case, the solution with the disjunction above would be a valid solution,
but would not be generated.

One could construct some such solutions from their constituent parts, e.g.
C tD(I) could be constructed from C(I) and D(I), but more complex solutions
involving disjunctions inside quantifiers would be more difficult, e.g. ∃R.(C t
D)(I) will not be generated when ∃R.C(I) and ∃R.D(I) are.

Klarman et al [8] get around the problem by defining it away. They define
ABox abduction in ALC as only providing solutions in ALE (a less expressive
DL than ALC, i.e. without disjunction and full negation).

6.3 Role Assertions

A more serious weakness is that the algorithm will never generate solutions
involving role assertions. So the more specific solutions mentioned in Exam-
ple 2, namely infectedWith(JOHN,FLU A) and infectedWith(JOHN,MAL V), are
unattainable with our algorithm.

Stated more generically: Consider a knowledge base containing the ABox
assertion ∀R.A(I), and say we want an abductive explanation of the observation
A(J). An obvious solution is R(I, J). But our abductive solutions are always
the complements of assertions needed to close the open branches of a semantic
tableau. Since the tableau algorithm does not infer negated role assertions, this
solution will not be generated.

Proposed Workaround: One way would be to add the assertion R(I, J) to
a solution whenever the “pattern” {∀R.A(I),¬A(J)} occurs in a open terminal
branch. However, although this will enable some role assertions to be included
in solutions, it will not generate all: Adding the role assertion R(I, J) to a
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knowledge base will cause an open branch containing {∀R.C(I),¬D(J)}, where
C is disjoint from D, to close, so it should form part of an abductive solution
whenever this pattern occurs. Such a pattern could be difficult to recognise, and
the easiest way to deal with this would probably be to allow nominals in the
language, since a negated role assertion ¬R(I, J) can then be expressed as a
concept assertion, namely ∀R.¬{J}(I) [7].

6.4 Semantic Minimality

This problem is best explained by means of an example. Say we add the axiom
∃bloodTestIndicates.Plasmodium v ∃infectedWith.Malaria to the knowledge base
of Example 1.

Using the observation of Example 2, the algorithm now generates the solu-
tions ∃infectedWith.Influenza(JOHN) and ∃bloodTestIndicates.Plasmodium(JOHN).
One of the solutions we got previously, namely ∃infectedWith.Malaria(JOHN) has
gone! In fact, a solution that is closer to semantic minimality has been lost.

Proposed Workaround: Many such solutions that are closer to semantic min-
imality can be obtained by allowing expanded concept assertions as part of so-
lutions (including the above example). However, this will not solve all problems:
Consider the knowledge base consisting of TBox = {A1tA2 v A3,∃R.A3 v A4}
and ABox = {R(I, J)}, and say we want abductive solutions for the observation
{A4(I)}. If we apply the algorithm to this problem, three solutions are gener-
ated: {A1(J)}, {A2(J)} and {A3(J)}. If we allow expandable assertions, we get
{A1 tA2(J)} and {∃R.A3(I)} as solutions, but not {∃R.A1(I)} or {∃R.A2(I)}.
These are closer to semantic minimality than {∃R.A3(I)}.

Whether we manage to find a way of generating all semantically minimal
solutions, or just those attainable by allowing expandable assertions, we imagine
that the user of a system implementing an abduction algorithm would want to
be able to explore a range of such solutions.

The notion of semantic minimality is related to the notion of weakest suffi-
cient conditions [9], although this work is restricted to propositional logic. It is
also reminiscent of work on least common subsumers [3], and we plan to inves-
tigate the possibility of applying those ideas to this situation.

7 Future Work

Algorithm 1 does not implement many of the optimizations (e.g. back-jumping
and caching) commonly used in DL tableau algorithms. Incorporating these into
our algorithm promises to give a real efficiency advantage over the FOL connec-
tion tableau used in Klarman’s algorithm [8].

This work also promises to be transferable to other more expressive DLs. As
stated in Section 6.3, the problem of dealing with role assertions will disappear
in languages that allow nominals.
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Languages that do not have the finite model property will need some means
of dealing with infinite models. (We imagine that the current assertion set at
the point of blocking could simply be added to the set of models collected by
extendedST so that it will be closed by all solutions.)

As stated in Section 6.4, we also intend to investigate the work on weak-
est sufficient conditions and least common subsumers for their applicability to
ranking solutions.
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Abstract. In this paper we present an approach for patent claim com-
parison based on the difference operator in description logics. The claims
are represented using ALEN . An algorithm computing the difference be-
tween two ALEN concept descriptions is proposed and its usefulness for
patent application valuation is described by means of some simple ex-
amples.

1 Introduction

More and more, patent material is made available in electronic format, and most
of the time in textual form. Examples of such services are the European patent
Office (EPO) [1] and the United States Patent and Trademark Office (USPTO)
[3]. The need for a formal specification of the patent content arose recently to
help retrieval, examination and classification of patent applications.

In this context one needs to evaluate the innovative degree of a patent appli-
cation. A claim is the part of a patent application where the inventor specifies
the invention attributes and its features, defining what can be protected by the
patent law. The aim is to show the non-obviousness to a person with basic do-
main skills and the novelty of the application compared to the state of the art.

Patent claims are described in natural language. Terms used in the claims
must find clear support in the preceding description part of the patent appli-
cation such that the meaning of a term is clearly specified. Previous work had
attempted to represent patent material using OWL ontologies [7, 15].

Statistical tools performing patent application evaluation are based on a set
of parameters provided by the user. Based on those parameters, the overall score
of a patent application is calculated.

In this paper we present a more formal approach for patent claim comparison
based on description logics1. Patent application claims are formally represented
as concept descriptions. When comparing two applications, the differences need
to be pinpointed in order to prove the novelty. We compute this difference by
using the difference operator and return the result to the user. The result must
be intuitive and easy to understand in order to help the user construct his
argumentation.

1 This work has been partially supported by the Fact Screening and Transformation
Project (FSTP) funded by the Teles Pri AG: www.fstp-expert-system.com
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The difference operator computes the part of a concept that is not contained
into another one. The difference operator has been defined in [14] as being the
most general description that can be added to the second operand to obtain
equivalence with the first. A second definition of the difference involving a syn-
tactic criteria for minimality has been introduced in [4].

In our context we need to describe existential, universal and numerical re-
strictions. The difference operator has been investigated for description logics al-
lowing either numerical restrictions [12] or existential restrictions [4]. We propose
an algorithm for ALEN based on the structural characterization of subsumption
for ALEN [10, 11].

The paper is organized as follows: in section 2, we give the formal definitions
of the difference operator and discuss the motivation for our choice. Section 3
recalls useful results for ALEN and introduces some notations. In section 4 we
provide an algorithm for computing the difference in ALEN . Some examples
of patent claims comparison are given in section 5 and Section 6 concludes the
paper.

2 Operator Choice

The need for providing parts of a description that are not contained in another
one has been motivated by different applications and different definitions exist
with their advantages and drawbacks.

Informally speaking, the difference between two concept descriptions is the
information contained in the first description and not in the second. The dif-
ference operator allows to remove from a given description all the information
contained in another description. The difference operation between two concept
descriptions was first introduced by Teege [14].

Definition 1. (semantic difference) The difference between two concept descrip-
tions C and D with C v D is given by

C −D := max{E | E uD ≡ C}

where max is defined with respect to subsumption.

Later, the work in [9, 4] proposed a refinement of this definition by allow-
ing the difference between incomparable descriptions (i.e. D is not required to
subsume C) and taking the syntactic minimum (w.r.t. a subdescription ordering
�d) instead of a semantic maximum.

Definition 2. (syntactic difference) The difference between two incomparable
concept descriptions C and D is defined as

C −D := min{E | E uD ≡ C uD}
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where min is defined with respect to a so-called subdescription ordering (de-
noted by �d), used to compare syntactical structures that we recall in the next
definition.

Definition 3. (Subdescriptions) Let C be an ALEN -concept description, Ĉ is

a subdescription of C ( Ĉ �d C) iff,

1. Ĉ = ⊥, or
2. Ĉ is obtained by removing from the top-level of C: >, concept names, num-

ber restrictions, value restrictions, existential restrictions. For the remaining
restrictions ∀r.E or ∃r.E, replace the concept description E with a subde-
scription of E.

As an example, consider the ALEN -concept description C:

P u P u ∀r.P u ∃r.(P u ∃r.Q)u ≤ 3r

A possible subdescription:

Ĉ = P u ∀r.P u ∃r.(∃r.Q)u ≤ 3r

is obtained from C by removing P from the top-level of C and P from the
subexpression ∃r.(P u ∃r.Q). Note that Ĉ is equivalent to C and there exists no

subdescription of Ĉ owning this property. Ĉ is the minimal subdescription which
is equivalent to C.

In [12], the authors defined a semantic difference forALN . They also compare
the semantic and syntactic variants and state that the two approaches differ
mainly on the bottom handling. Indeed, the bottom decomposition leads to more
than one result for the semantic difference. On the other hand, the syntactic
difference always generates a unique result that is a subdescription of the input
description and hence more intuitive and comprehensive for the user.

Another operator called “concept abduction“ has been introduced to provide
an explanation for matchmaking results in an e-marketplace. Abduction was first
defined for ALN [5] and has been recently extended to a more expressive DL
SH, using tableau calculus [13].

This operator does not require subsumption between the concept descriptions
neither and thus is more general than the semantic difference. As stated in [6],
the result of the difference is included in the set of solutions of a CAP.

In our context, we chose to use the syntactic difference for three reasons:

1. It does not require subsumption between the concept descriptions being
compared, which is more realistic in real world applications,

2. it generates a unique result which is a syntactic variation of the input and
hence more intuitive for the user,

3. when the inputs are free from insatisfiable subexpressions the result is equiv-
alent to the semantic difference.

456



3 Preliminaries

In this section we recall some results for subsumption in ALEN and define some
notations that will be useful to derive the difference algorithm.

The normal form of an ALEN concept description is obtained by applying
the following transformation rules:

– (≥ mr) u (≥ nr)→ (≥ nr) if n ≥ m,
– (≤ mr) u (≤ nr)→ (≤ nr) if n ≤ m, and
– ∀r.C u ∀r.D → ∀r.(C uD).

To access the different component of a concept description, we will use the
following notations:

– prim(C) denotes the set of concept names and the bottom concept occurring
on the top-level of C,

– infr(C) = (≤ nr) if there exists a number restriction of the form (≤ nr) on
the top-level of C, infr(C) = > otherwise,

– supr(C) = (≥ nr) if there exists a number restriction of the form (≥ nr) on
the top-level of C, supr(C) = > otherwise,

– minr(C) = max{k | C v (≥ kr)},
– maxr(C) = min{k | C v (≤ kr)},
– ∀r(C) = E if there exists a value restriction ∀r.E on the top-level of C;
∀r(C) = > otherwise,

– ∃r(C) = {C ′ | ∃r.C ′occurs on the top-level of C}.

For the sake of clarity, we will assume that the set NR is reduced to the role r.
The algorithm can be easily generalized to arbitrary sets of role names.

The difference algorithm is based on the structural characterization of sub-
sumption in ALEN given in [10]. In the sequel we present the intuitions used
to compute induced concept descriptions and recall the structural subsumption
characterization. We also introduce some notations that we will use in the dif-
ference algorithm.

The main issue when dealing with ALEN is to compute the ”non-trivial”
concept descriptions subsuming a concept description C; such concepts do not
appear in the top-level of C and are called ”induced”. Let us recall this process
by means of examples.
Number restrictions:
They can be induced if two existential restrictions involve disjoint concepts. For
example, if C := ∃r.P u ∃r.¬P then ≥ 2r is induced by C.
Let us note the induced number restrictions as follows: min∗r(C). Note that if
min∗r(C) = k, we have C v≥ kr which means that min∗r(C) is taken into account
in minr(C) defined above.
Existential restrictions:
Due to ≤-number restrictions, if the number of existential restrictions in the top-
level of a concept C is greater than the ≤-number restriction, those existential
restrictions must be merged.
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For example, if we have:

C := ∃r.(P uA) u ∃r.(P uB) u ∃r.(¬P uA) u ∃r.Q u ∃r.¬Qu ≤ 2r,

the merging process results in new concepts descriptions where the only con-
sistent ones are:

∃r.(P uQ uA uB) u ∃r.(¬P u ¬Q uA) ≤ 2r, and

∃r.(P u ¬Q uA uB) u ∃r.(¬P uQ uA) ≤ 2r.

In [10], each merging is represented by a mapping α leading to a concept Cα and
the set of mappings is denoted by Γr(C). The mappings in Γr(C) are required
to obey the following conditions:

1. α(i) 6= ∅ for all 1 ≤ i ≤ n;
2.

⋃
1≤i≤n α(i) = {1, ...,m} and α(i) ∩ α(j) = ∅ for all 1 ≤ i < j ≤ n;

3.
d
j∈α(i) Cj u ∀r(C) 6≡ ⊥ for all 1 ≤ i ≤ n,

where n := min{maxr(C), | ∃r(C) |} and m :=| ∃r(C) |.
In our example, this set consists of two mappings α1 and α2 leading to the

two concepts Cα1 and Cα2 above with C ≡ Cα1 t Cα2 .
The set of C ′ such that ∃r.C ′ in Cα for all mappings is noted as follows:

∃∗r(C) :=
⋃

α∈Γr(C)

∃r(Cα)

For our example we obtain:

∃∗r(C) := {P uQ uA uB,¬P u ¬Q uA,P u ¬Q uA uB,¬P uQ uA}
In case ∃r(C) = ∅ (there is no existential restriction on the top level of C)

one needs to take into account the ≥-restrictions together with value restrictions
to deduce non-trivial existential restrictions. Let us illustrate the case on the
following concept:

D := (≥ 2r) u ∀r.(A uB).

The instances of D have at least two r-successors and due to the value restriction
we can deduce that D v ∃r.(A uB).

This concludes the existential restrictions case.
Value restrictions:
It is clear from the former example that every instance of C has exactly two
r-successors, in that case one can deduce from the existential restrictions in Cα1

and Cα2 that all r-successors belong to A and thus that the value restriction
∀r.A is induced by C.

This deduction can be performed only when all r-successors are known and
it is represented by the condition:

maxr(C) = min∗r(C).

The second case where a value restriction can be induced is when maxr(C) =
0 then C v ∀r.⊥.
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4 Syntactic Difference between ALEN -Concept
Descriptions

The algorithm computing the difference between two ALEN -concept descrip-
tions C and D is depicted in figure 1. We extended the algorithm proposed in
[9] to compute the difference between two ALE-concept descriptions.

Before going into detail about the algorithm, and as it is based on the struc-
tural characterization of the subsumption [10], let us recall the conditions for
each kind of conjunct occurring on the top level of the concept descriptions.

Theorem 1. Let C, D be two ALEN -concept descriptions with
∃r(C) = {C1, ..., Cn}. Then C v D iff C ≡ ⊥, or D ≡ >, or the following
conditions hold:

1. prim(C) ⊆ prim(D),
2. maxr(C) ≤ maxr(D),
3. minr(C) ≥ minr(D),
4. for all D′ ∈ ∃r(D) it holds that

(a) ∃r(C) = ∅, minr(C) ≥ 1, and ∀r(C) v D′; or
(b) ∃r(C) 6= ∅, and for each α ∈ Γr(C), there exists C ′ ∈ ∃r(Cα) such that

C ′ u ∀r(C) v D′.
5. if ∀r(C) 6≡ >, then

(a) maxr(C) = 0; or
(b) minr(C) < maxr(C) and ∀r(C) v ∀r(D); or
(c) 0 < minr(C) = maxr(C) and ∀r(C) u C ′ v ∀r(D) for all C ′ ∈ ∃∗r(C).

According to the definition of the difference (c.f Definition 2), the output of
the algorithm must verify:

ComputeDiff(C,D) uD ≡ C uD

Let start with concept names and numerical restrictions. One can easily verify
conditions 1.−3. of Theorem 1:

• The set of primitive concepts prim(ComputeDiff(C,D) uD) is equal to
prim(ComputeDiff(C,D)) ∪ prim(D), which by definition is equal to
(prim(C)\prim(D)) ∪ prim(D). This is again equal to prim(C) ∪ prim(D), the
set of primitive concepts of (C uD).

• For maxr(ComputeDiff(C,D) u D), we distinguish two cases: it is equal to
maxr(D), when maxr(C) ≥ maxr(D) and to maxr(infr(C) uD), when
maxr(C) < maxr(D). Both cases are equal to maxr(C uD).

• Analogously to the precedent case, for minr(ComputeDiff(C,D)uD) we have
two cases: equal to minr(D) when minr(C) ≤ minr(D) and to minr(supr(C)u
D) when minr(C) > minr(D). Which again are equal to minr(C uD).
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Require: Two ALEN -concept descriptions C and D in ALEN -normal form
Ensure: ComputeDiff(C,D)
1: if C uD ≡ ⊥ then
2: ComputeDiff(C,D) := ⊥
3: else
4: ComputeDiff(C,D) := uA∈prim(C−D)A u infr(C−D) u supr(C−D) u

∀r.ComputeDiff(∀r(C), ∀r(D) u ∀∗r(C uD)) u d
E∈E′r

∃r.E,

where the value restriction is omitted in case ComputeDiff(∀r(C),∀r(D) u
∀∗r(C uD)) ≡ > and:

• prim(C-D) := prim(C)\prim(D);

• infr(C-D) =

{
>, maxr(C) ≥ maxr(D),
infr(C), maxr(C) < maxr(D);

• supr(C-D) =

{
>, minr(C) ≤ minr(D),
supr(C), minr(C) > minr(D);

• ∀∗r(E) =




>, min∗r(E) < maxr(E),
⊥, maxr(E) = 0,
lcs({∀r(E) u E′ | E′ ∈ ∃∗r(E)}), 0 < min∗r(E) = maxr(E);

• E ′r is computed as follows:

Let Er := ∃r(C) = {C1, ..., Cn} and we define C\E as being C without the
conjunct ∃r.E.

5: for i = 1 to n do
6: if (i) Γr(C

\Ci u D) 6= ∅ and there exists D′ ∈ ∃r((C\Ci u D)α) forall
α ∈ Γr(C\Ci uD) with ∀r(C) u ∀r(D) uD′ v Ci, or
(ii) Γr(C

\Ci u D) = ∅ and minr(C u D) ≥ 1 and ∀r(C) u ∀r(D) v Ci,
then

7: Er := Er\{Ci};
8: end if
9: end for

10: E ′r = {E∗ | E ∈ Er} where E∗ := ComputeDiff(E,∀r(C) u ∀r(D)).
11: end if

Fig. 1. The algorithm ComputeDiff

Let us now consider the value restrictions. In case 0 < min∗r(C uD) = maxr(C u
D), a value restriction ∀r(C uD) can be deduced from C uD, which is the least
common subsumer of all the existential restrictions appearing in ∃∗r(C uD).

Let us illustrate this case by an example.

Cex1 := ∃r.(P uA) u ∃r.(P uB) u ∃r.¬Q u ∀r.(A uB),

Dex1 := ∃r.(¬P uA) u ∃r.Q u (≤ 2r).

As demonstrated in section 3, the merging of existential restrictions in Cex1 u
Dex1 induces the value restriction ∀r.A. The value restriction of the difference
C−D is then
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ComputeDiff(∀r(C),∀r(D) u ∀∗r(C uD)) = ComputeDiff(A uB,A) = B

One can verify condition 5(c) of Theorem 1, namely that B uC ′ v AuB for all
C ′ in the set of merged existential restrictions ∃∗r(Cex1 uDex1) (c.f. the example
in Section 3).

Let us now illustrate the two cases for existential restrictions by means of exam-
ples.

◦ To illustrate case (i) let us take the following descriptions:

Cex2 := ∃r.(P uA uB)u ≤ 2r,

Dex2 := ∃r.(P uA) u ∃r.(P uB) u ∃r.(¬P uA) u ∃r.Q u ∃r.¬Q.

C1 = PuAuB subsumes PuQuAuB from (C
\C1

ex2 uDex2)α1 and Pu¬QuAuB
from (C

\C1

ex2 uDex2)α2. We then have

ComputeDiff(Cex2, Dex2) =≤ 2r.

◦ Finally we illustrate case (ii) with the following example

Cex3 := P u ∃r.(A1 uA2) u (≥ 3r),

Dex3 := ∀r.(A1 uA2 uA3).

ComputeDiff(Cex3, Dex3) = P u (≥ 3r)

While ∃r.(A1 u A2 u A3) can be induced from ∀r.(A1 u A2 u A3) u (≥ 3r),
one can verify that

ComputeDiff(Cex3, Dex3) uDex3 ≡ P u (≥ 3r) u ∀r.(A1 uA2 uA3)

v P u (≥ 3r) u ∃r.(A1 uA2 uA3) u ∀r.(A1 uA2 uA3)

v P u (≥ 3r) u ∃r.(A1 uA2) u ∀r.(A1 uA2 uA3)

≡ Cex3 uDex3

The case w is obvious.

The next lemma proves that the algorithm returns a difference that respects
the condition of the difference operator (Section 2). The proof can be found in
our technical report [8].

Lemma 1. Let C, D be two ALEN -concept descriptions in ALEN normal
form. Then, ComputeDiff(C,D) uD ≡ C uD.
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5 Application to Patent Claims Comparison

In this section we are going to illustrate the difference on some simple patent
examples.

Example 1. Suppose we have an application for a chair with only one leg having
a seat made only from a light material. The corresponding concept description
is the following:

= 1hasLeg u ∃hasSeat.(∀hasMaterial.Light),

that we need to compare to a previous patent describing a chair with three legs
and having one seat made of light wood, given by the description

= 3hasLeg u ∃hasSeat.(∀hasMaterial.(Wood u Light)).

The algorithm returns ≤ 1hasLeg which corresponds to the specific part of
the application.

Example 2. Let us consider a patent application for a watch with two types of
displays or more that are all bright. The corresponding description is:

>= 2hasDisplay u ∀hasDisplay.Bright,

to compare to a watch with an analogue and a non analogue display described
as:

∃hasDisplay.Analogical u ∃hasDisplay.¬Analogical.
The difference is ∀hasDisplay.Bright. Indeed, we can deduce the numeri-

cal restriction >= 2hasDisplay from the second concept description while the
existential restrictions involve disjoint concepts.

6 Conclusion

In this paper, we have investigated the problem of computing the syntactic dif-
ference in ALEN . This work was motivated by an application in the context of
patent applications valuation. In this context one needs to compare the claims
of the patent with previous patents solving a similar problem. The textual de-
scriptions of the claims can be described in a formal way using ALEN -concept
descriptions. The difference operator provides the user with the parts that are
contained in his application and not in the state of the art. Our aim is not to
provide a decision-making tool regarding the novelty of a patent application, but
rather a tool that can help in pinpointing the differences and assist the user in
constructing his argumentation.

We are implementing a prototype of the difference algorithm based on the DL
reasoner HermiT [2] for the subsumption test. A direction for Future work would
be to investigate the decision making process based on the results returned by
the difference and empirical rules derived from experts decisions.
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Abstract. Among the inferences studied in Description Logics (DLs),
induction has been paid increasing attention over the last decade. Indeed,
useful non-standard reasoning tasks can be based on the inductive infer-
ence. Among them, Concept Learning is about the automated induction of
a description for a given concept starting from classified instances of the
concept. In this paper we present a formal characterization of Concept
Learning in DLs which relies on recent results in Knowledge Representa-
tion and Machine Learning.

1 Introduction

Building and maintaining large ontologies pose several challenges to Knowledge
Representation (KR) because of their size. In DL ontologies, although stan-
dard inferences help structuring the knowledge base (KB), e.g., by automati-
cally building a concept hierarchy, they are, for example, not sufficient when it
comes to (automatically) generating new concept descriptions from given ones.
They also fail if the concepts are specified using different vocabularies (i.e. sets
of concept names and role names) or if they are described on different levels of
abstraction. Altogether it has turned out that for building and maintaining large
DL KBs, besides the standard inferences, additional so-called non-standard in-
ferences are required [27,19]. Among them, the first ones to be studied have been
the Least Common Subsumer (LCS) of a set concepts [3] and the Most Specific
Concept (MSC) of an individual [32,10,20,1]. Very recently, a unified framework
for non-standard reasoning services in DLs has been proposed [8]. It is based on
the use of second-order sentences in DLs [7] as the unifying definition model for
all those constructive reasoning tasks which rely on specific optimality criteria
to build up the objective concept. E.g., LCS is one of the cases considered for
one such reformulation in terms of optimal solution problems.

Since [27], much work has been done in DL reasoning to support the con-
struction and maintenance of DL KBs. This work has been more or less explicitly
related to induction. E.g., the notion of LCS has subsequently been used for the
bottom-up induction of Classic concept descriptions from examples [5,6]. In-
duction has been widely studied in Machine Learning (ML). Therefore it does
not come as a surprise that the problem of finding an appropriate concept de-
scription for given concept instances, reformulated as a problem of inductive

464



learning from examples, has been faced in ML, initially attacked by heuristic
means [6,18,14] and more recently in a formal manner [2,12,13,22] by adopting
the methods and the techniques of that ML approach known as Concept Learning.

In this paper, we present a formal characterization of Concept Learning in DLs
which relies on recent results in KR and ML. Notably, the proposed formulation
can be justified by observing that the inductive inference deals with finding -
or constructing - a concept. Therefore, non-standard reasoning services based
on induction can be considered as constructive reasoning tasks. Starting from
this assumption, and inspired by Colucci et al ’s framework, Concept Learning is
modeled as a second-order concept expression in DLs and reformulated in terms
that allow for a construction possibly subject to some optimality criteria.

The paper is structured as follows. Section 2 is devoted to preliminaries on
Concept Learning according to the ML tradition. Section 3 defines the Concept
Learning problem statement in the KR context. Section 4 proposes a reformu-
lation of Concept Learning as a constructive reasoning task in DLs. Section 5
concludes the paper with final remarks and directions of future work.

2 Preliminaries

2.1 Machine Learning

The goal of ML is the design and development of algorithms that allow computers
to evolve behaviors based on empirical data [30]. The automation of the inductive
inference plays a key role in ML algorithms, though other inferences such as
abduction and analogy are also considered. The effect of applying inductive
ML algorithms depends on whether the scope of induction is discrimination or
characterization [28]. Discriminant induction aims at inducing hypotheses with
discriminant power as required in tasks such as classification. In classification,
observations to learn from are labeled as positive or negative instances of a given
class. Characteristic induction is more suitable for finding regularities in a data
set. This corresponds to learning from positive examples only.

Ideally, the ML task is to discover an operational description of a target func-
tion f : X → Y which maps elements in the instance space X to the values of a
set Y . The target function is unknown, meaning that only a set D (the training
data) of points of the form (x, f(x)) is provided. However, it may be very difficult
in general to learn such a description of f perfectly. In fact, ML algorithms are
often expected to acquire only some approximation f̂ to f by searching a very
large space H of possible hypotheses (the hypothesis space) which depend on the
representation chosen for f (the language of hypotheses). The output approxi-
mation is the one that best fits D according to a scoring function score(f,D). It
is assumed that any hypothesis h ∈ H that approximates f well w.r.t. a large set
of training cases will also approximate it well for new unobserved cases. These
notions have been mathematically formalized in computational learning theory
within the Probably Approximately Correct (PAC) learning framework [36].

Summing up, given a hypothesis space H and a training data set D, ML
algorithms are designed to find an approximation f̂ of a target function f s.t.:
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1. f̂ ∈ H;
2. f̂(D) ≈ f(D); and/or

3. f̂ = argmaxf∈Hscore(f,D).

It has been recently stressed that the first two requirements impose constraints
on the possible hypotheses, thus defining a Constraint Satisfaction Problem
(CSP), whereas the third requirement involves the optimization step, thus turn-
ing the CSP into an Optimization Problem (OP) [9]. We shall refer to the ensem-
ble of constraints and optimization criterion as the model of the learning task.
Models are almost by definition declarative and it is useful to distinguish the
CSP, which is concerned with finding a solution that satisfies all the constraints
in the model, from the OP, where one also must guarantee that the found so-
lution be optimal w.r.t. the optimization function. Examples of typical CSPs in
the ML context include Concept Learning for reasons that will become clearer by
reading the following subsection.

2.2 Concept Learning

Concept Learning deals with inferring the general definition of a category based
on members (positive examples) and nonmembers (negative examples) of this
category. Here, the target is a boolean-valued function f : X → {0, 1}, i.e. a
concept. When examples of the target concept are available, the resulting ML
task is said supervised, otherwise it is called unsupervised. The positive examples
are those instances with f(x) = 1, and negative ones are those with f(x) = 0.

In Concept Learning, the key inferential mechanism for induction is general-
ization as search through a partially ordered space of inductive hypotheses [29].
Hypotheses may be ordered from the most general ones to the most specific
ones. We say that an instance x ∈ X satisfies a hypothesis h ∈ H if and only if
h(x) = 1. Given two hypotheses hi and hj , hi is more general than or equal to
hj (written hi �g hj , where �g denotes a generality relation) if and only if any
instance satisfying hj , also satisfies hi. Note that it may not be always possible
to compare two hypotheses with a generality relation: the instances satisfied by
the hypotheses may intersect, and not necessarily be subsumed by one another.
The relation �g defines a partial order (i.e., it is reflexive, antisymmetric, and
transitive) over the space of hypotheses.

A hypothesis h that correctly classifies all training examples is called consis-
tent with these examples. For a consistent hypothesis h it holds that h(x) = f(x)
for each instance x. The set of all hypotheses consistent with the training ex-
amples is called the version space with respect to H and D. Concept Learning
algorithms may use the hypothesis space structure to efficiently search for rel-
evant hypotheses. E.g., they may perform a specific-to-general search through
the hypothesis space along one branch of the partial ordering, to find the most
specific hypothesis consistent with the training examples. Another well known
approach, candidate elimination, consists of computing the version space by an
incremental computation of the sets of maximally specific and maximally gen-
eral hypotheses. An important issue in Concept Learning is associated with the
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so-called inductive bias, i.e. the set of assumptions that the learning algorithm
uses for prediction of outputs given previously unseen inputs. These assumptions
represent the nature of the target function, so the learning approach implicitly
makes assumptions on the correct output for unseen examples.

Inductive Logic Programming (ILP) was born at the intersection between
Concept Learning and the field of Logic Programming [31]. From Concept Learn-
ing it has inherited the inferential mechanisms for induction [33]. However, a
distinguishing feature of ILP with respect to other forms of Concept Learning is
the use of prior knowledge of the domain of interest, called background knowledge
(BK), during the search for hypotheses. Due to the roots in Logic Programming,
ILP was originally concerned with Concept Learning problems where both hy-
potheses, observations and BK are expressed with first-order Horn rules (usu-
ally Datalog for computational reasons). E.g., Foil is a popular ILP algorithm
for learning sets of Datalog rules for classification purposes [34]. It performs
a greedy search in order to maximize an information gain function. Therefore,
Foil implements an OP version of Concept Learning.

Over the last decade, ILP has widened its scope significantly, by consider-
ing, e.g., learning in DLs (see next section) as well as within those hybrid KR
frameworks integrating DLs and first-order clausal languages [35,17,25,26].

3 Learning Concepts in Description Logics

Early work on the application of ML to DLs essentially focused on demonstrating
the PAC-learnability for various terminological languages derived from Classic.
In particular, Cohen and Hirsh investigate the CoreClassic DL proving that it
is not PAC-learnable [4] as well as demonstrating the PAC-learnability of its sub-
languages, such as C-Classic [5], through the bottom-up LcsLearn algorithm.
It is also worth mentioning unsupervised learning methodologies for DL concept
descriptions, whose prototypical example is Kluster [18], a polynomial-time al-
gorithm for the induction of BACK terminologies. More recently, algorithms have
been proposed that follow the generalization as search approach by extending
the methodological apparatus of ILP to DL languages [2,11,12,21,22]. Supervised
(resp., unsupervised) learning systems, such as YinYang [16] and DL-Learner
[23], have been implemented. Based on a set of refinement operators borrowed
from YinYang and DL-Learner, a new version of the Foil algorithm, named
DL-Foil, has been proposed [13]. In DL-Foil, the information gain function
takes into account the Open World Assumption (OWA) holding in DLs. Indeed,
many instances may be available which cannot be ascribed to the target concept
nor to its negation. This requires a different setting to ensure a special treatment
of the unlabeled individuals.

3.1 The Problem Statement

In this section, the supervised Concept Learning problem in the DL setting is
formally defined. For the purpose, we denote:
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– T and A are the TBox and the ABox, respectively, of a DL KB K
– Ind(A) is the set of all individuals occurring in A
– RetrK(C) is the set of all individuals occurring in A that are an instance of

a given concept C w.r.t. T
– Ind+C(A) = {a ∈ Ind(A) | C(a) ∈ A} ⊆ RetrK(C)
– Ind−C(A) = {b ∈ Ind(A) | ¬C(b) ∈ A} ⊆ RetrK(¬C)

These sets can be easily computed by resorting to retrieval inference services
usually available in DL systems.

Definition 1 (Concept Learning). Let K = (T ,A) be a DL KB. Given:

– a (new) target concept name C
– a set of positive and negative examples Ind+C(A) ∪ Ind−C(A) ⊆ Ind(A) for C
– a concept description language DLH

the Concept Learning problem is to find a concept definition C ≡ D such that
D ∈ DLH satisfies the following conditions

Completeness K |= D(a) ∀a ∈ Ind+C(A) and
Consistency K |= ¬D(b) ∀b ∈ Ind−C(A)

Note that the definition given above provides the CSP version of the su-
pervised Concept Learning problem. However, as already mentioned, Concept
Learning can be regarded also as an OP. Algorithms such as DL-Foil testify
the existence of optimality criteria to be fulfilled in Concept Learning besides the
conditions of completeness and consistency.

3.2 The Solution Strategy

In Def. 1, we have considered a language of hypotheses DLH that allows for
the generation of concept definitions in any DL. These definitions can be orga-
nized according to the concept subsumption relationship v. Since v induces a
quasi-order (i.e., a reflexive and transitive relation) on DLH [2,11], the prob-
lem stated in Def. 1 can be cast as the search for a correct (i.e., complete and
consistent) concept definition in (DLH,v) according to the generalization as
search approach in Mitchell’s vision. In such a setting, one can define suitable
techniques (called refinement operators) to traverse (DLH,v) either top-down
or bottom-up.

Definition 2 (Refinement operator in DLs). Given a quasi-ordered search
space (DLH,v)

– a downward refinement operator is a mapping ρ : DLH → 2DLH such that

∀C ∈ DLH ρ(C) ⊆ {D ∈ DLH | D v C}
– an upward refinement operator is a mapping δ : DLH → 2DLH such that

∀C ∈ DLH δ(C) ⊆ {D ∈ DLH | C v D}
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Definition 3 (Refinement chain in DLs). Given a downward (resp., up-
ward) refinement operator ρ (resp., δ) for a quasi-ordered search space (DLH,v),
a refinement chain from C ∈ DLH to D ∈ DLH is a sequence

C = C0, C1, . . . , Cn = D

such that Ci ∈ ρ(Ci−1) (resp., Ci ∈ δ(Ci−1)) for every 1 ≤ i ≤ n.

Note that, given (DL,v), there is an infinite number of generalizations and
specializations. Usually one tries to define refinement operators that can tra-
verse efficiently throughout the hypothesis space in pursuit of one of the correct
definitions (w.r.t. the examples that have been provided).

Definition 4 (Properties of refinement operators in DLs). A downward
refinement operator ρ for a quasi-ordered search space (DLH,v) is

– (locally) finite iff ρ(C) is finite for all concepts C ∈ DLH.
– redundant iff there exists a refinement chain from a concept C ∈ DLH to a

concept D ∈ DLH, which does not go through some concept E ∈ DLH and a
refinement chain from C to a concept equal to D, which does go through E.

– proper iff for all concepts C,D ∈ DLH, D ∈ ρ(C) implies C 6≡ D.
– complete iff, for all concepts C,D ∈ DLH with C @ D, a concept E ∈ DLH

with E ≡ C can be reached from D by ρ.
– weakly complete iff, for all concepts C ∈ DLH with C @ >, a concept
E ∈ DLH with E ≡ C can be reached from > by ρ.

The corresponding notions for upward refinement operators are defined dually.

Designing a refinement operator needs to make decisions on which properties
are most useful in practice regarding the underlying learning algorithm. Consid-
ering the properties reported in Def. 4, it has been shown that the most feasible
property combination for Concept Learning in expressive DLs such as ALC is
{weakly complete, complete, proper} [21]. Only for less expressive DLs like EL,
ideal, i.e. complete, proper and finite, operators exist [24].

4 Concept Learning as Constructive Reasoning in DLs

In this section, we formally characterize Concept Learning in DLs by emphasizing
the constructive nature of the inductive inference.

4.1 Second-order Concept Expressions

We assume to start from the syntax of any Description Logic DL where Nc, Nr,
and No are the alphabet of concept names, role names and individual names,
respectively. In order to write second-order formulas, we introduce a set Nx =
X0, X1, X2, ... of concept variables, which we can quantify over. We denote by
DLX the language of concept terms obtained from DL by adding Nx.
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Definition 5 (Concept term). A concept term in DLX is a concept formed
according to the specific syntax rules of DL augmented with the additional rule
C −→ X for X ∈ Nx.

Since we are not interested in second-order DLs as themselves, we restrict our
language to particular existential second-order formulas of interest to this paper.
In particular, we allow formulas involving an ABox. By doing so, we can easily
model the computation of, e.g., the MSC, which was left out as future work
in Colucci et al.’s framework. This paves the way to the modeling of Concept
Learning as shown in the next subsection.

Definition 6 (Concept expression). Let a1, . . . , am ∈ DL be individuals,
C1, . . . , Cm, D1, . . . , Dm ∈ DLX be concept terms containing concept variables
X0, X1, . . . , Xn. A concept expression Γ in DLX is a conjunction

(C1 v D1) ∧ . . . ∧ (Cl v Dl) ∧ (Cl+1 6v Dl+1) ∧ . . . ∧ (Cm 6v Dm)∧
(a1 : D1) ∧ . . . ∧ (al : Dl) ∧ (al+1 : ¬Dl+1) ∧ . . . ∧ (am : ¬Dm)

(1)

of (negated or not) concept subsumptions and concept assertions with 1 ≤ l ≤ m.

We use General Semantics, also called Henkin semantics, for interpreting
concept variables [15]. In such a semantics, variables denoting unary predicates
can be interpreted only by some subsets among all the ones in the powerset of

the domain 2∆
I

- instead, in Standard Semantics a concept variable could be
interpreted as any subset of ∆I . Adapting General Semantics to our problem,
the structure we consider is exactly the sets interpreting concepts in DL. That
is, the interpretation XI of a concept variable X ∈ DLX must coincide with the
interpretation EI of some concept E ∈ DL. The interpretations we refer to in
the following definition are of this kind.

Definition 7 (Satisfiability). A concept expression Γ of the form (1) is sat-
isfiable in DL iff there exist n + 1 concepts E0, . . . , En ∈ DL such that, ex-
tending the semantics of DL for each interpretation I, with: (Xi)

I = (Ei)
I for

i = 0, . . . , n, it holds that

1. for each j = 1, . . . , l, and every interpretation I, (Cj)
I ⊆ (Dj)

I and (aj)
I ∈

(Dj)
I , and

2. for each j = l+ 1, . . . ,m, there exists an interpretation I s.t. (Cj)
I 6⊆ (Dj)

I

and (aj)
I 6∈ (Dj)

I

Otherwise, Γ is said to be unsatisfiable in DL.

Definition 8 (Solution). If a concept expression Γ of the form (1) is satisfiable
in DL, then 〈E0, . . . , En〉 is a solution for Γ . Moreover, we say that the formula

∃X0 · · · ∃Xn.Γ (2)

is true in DL if there exist at least a solution for Γ , otherwise it is false.
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4.2 Modeling Concept Learning with Second-Order DLs

It has been pointed out that the constructive reasoning tasks can be divided
into two main categories: tasks for which we just need to compute a concept
(or a set of concepts) and those for which we need to find a concept (or a set
of concepts) according to some minimality/maximality criteria [8]. In the first
case, we have a set of solutions while in the second one we also have a set of sub-
optimal solutions to the main problem. E.g., the set of sub-optimal solutions in
LCS is represented by the common subsumers. Both MSC and Concept Learning
belong to this second category of constructive reasoning tasks. We remind the
reader that MSC can be easily reduced to LCS for DLs that admit the one-of
concept constructor. However, this reduction is not trivial for the general case.
Hereafter, first, we show how to model MSC in terms of formula (2). This step
is to be considered as functional to the modeling of Concept Learning.

Most Specific Concept Intuitively, the MSC of individuals described in an
ABox is a concept description that represents all the properties of the individuals
including the concept assetions they occur in and their relationship to other in-
dividuals. Similar to the LCS, the MSC is uniquely determined up to equivalence.
More precisely, the set of most specific concepts of individuals a1, . . . , ak ∈ DL
forms an equivalence class, and if S is defined to be the set of all concept descrip-
tions that have a1, . . . , ak as their instance, then this class is the least element
in [S] w.r.t. a partial ordering � on equivalence classes induced by the quasi
ordering v. Analogously to the LCS, we refer to one of its representatives by
MSC(a1, . . . , ak). The MSC need not exist. Three different phenomena may cause
the non existence of a least element in [S], and thus, a MSC:

1. [S] might be empty, or
2. [S] might contain different minimal elements, or
3. [S] might contain an infinite decreasing chain [D1] � [D2] · · · .

A concept E is not the MSC of a1, . . . , ak iff the following formula is true in DL:

∃X.(a1 : X) ∧ . . . ∧ (ak : X) ∧ (X v E) ∧ (E 6v X) (3)

that is, E is not the MSC if there exists a concept X which is a most specific
concept, and is strictly more specific than E.

Concept Learning Following Def. 1, we assume that Ind+C(A) = {a1, . . . , am}
and Ind−C(A) = {b1, . . . , bn}. A concept D ∈ DLH is a correct concept definition
for the target concept name C w.r.t. Ind+C(A) and Ind−C(A) iff it is a solution for
the following second-order concept expression:

(C v X)∧ (X v C)∧ (a1 : X)∧ . . .∧ (am : X)∧ (b1 : ¬X)∧ . . .∧ (bn : ¬X) (4)

The CSP version of the task is therefore modeled with the following formula.

∃X.(C v X)∧(X v C)∧(a1 : X)∧. . .∧(am : X)∧(b1 : ¬X)∧. . .∧(bn : ¬X) (5)
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A simple OP version of the task could be modeled with the formula:

∃X.(C v X) ∧ (X v C) ∧ (X v E) ∧ (E 6v X)∧
(a1 : X) ∧ . . . ∧ (am : X) ∧ (b1 : ¬X) ∧ . . . ∧ (bn : ¬X)

(6)

which asks for solutions that are compliant with a minimality criterion involving
concept subsumption checks. Therefore, a concept E ∈ DLH is not a correct
concept definition for C w.r.t. Ind+C(A) and Ind−C(A) if there exists a concept X
which is a most specific concept, and is strictly more specific than E.

5 Conclusions

In this paper, we have provided a formal characterization of Concept Learning
in DLs according to a declarative modeling language which abstracts from the
specific algorithms used to solve the task. To this purpose, we have defined a
fragment of second-order logic under the general semantics which allows to ex-
press formulas involving concept assertions from an ABox. One such fragment
enables us to cover the general case of MSC as well. Also, as a minor contribu-
tion, we have suggested that the generalization as search approach to Concept
Learning in Mitchell’s vision is just that unifying framework necessary for accom-
panying the declarative modeling language proposed in this paper with a way of
computing solutions to the problems declaratively modeled with this language.
More precisely, the computational method we refer to in this paper is based on
the iterative application of suitable refinement operators. Since many refinement
operators for DLs are already available in the literature, the method can be de-
signed such that it can be instantiated with a refinement operator specifically
defined for the DL in hand.

The preliminary results reported in this paper open a promising direction
of research at the intersection of KR and ML. For this research we have taken
inspiration from recent results in both areas. On one hand, Colucci et al.’s work
provides a procedure which combines Tableaux calculi for DLs with rules for
the substitution of concept variables in second-order concept expressions [8]. On
the other hand, De Raedt et al.’s work shows that off-the-shelf constraint pro-
gramming techniques can be applied to various ML problems, once reformulated
as CSPs and OPs [9]. Interestingly, both works pursue a unified view on the
inferential problems of interest to the respective fields of research. This match
of research efforts in the two fields has motivated the work presented in this
paper which, therefore, moves a step towards bridging the gap between KR and
ML in areas such as the maintenance of KBs where the two fields have already
produced interesting results though mostly indipendently from each other. New
questions and challenges are raised by the cross-fertilization of these results. In
the future, we intend to investigate how to express optimality criteria such as
the information gain function within the second-order concept expressions and
how the generalization as search approach can be effectively integrated with
second-order calculus.
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Abstract. To support nonmonotonic reasoning we introduce the de-
scription logic of minimal knowledge and negation as failure (MKNF-DL)
as an extension of description logic with modal operators K and A. We
discuss the problems with representation of a model for an MKNF-DL
theory. For satisfiability checking of MKNF-DL theories, we introduce a
tableaux algorithm with blocking, where blocking works with the modal
part of an MKNF-DL theory. This blocking technique allows for reason-
ing about a larger class of MKNF-DL theories than previous approaches.

Recently, Description Logics (DL) are used to represent and reason about
knowledge bases (KBs). In practical applications, the monotonic property of
standard logics, which includes DLs, may be undesirable.

Hence, we introduce ALCKNF , the DL of minimal knowledge and negation
as failure (MKNF-DL) as an extension of description logic (DL) with modal op-
erators K and A. Advanced reasoning applications, including epistemic queries,
integrity constraints and default rules can be represented by ALCKNF [4].

Next, we introduce a reasoning technique for ALCKNF . To this end the
representation of ALCKNF models is crucial. The models of ALCKNF are not
first-order representable. Hence, we define subjectively quantified KBs which are
representable by ALC theory. However, this ALC theory may be infinite. Previ-
ous approaches [1, 3] defined simple KBs, a subset of subjectively quantified KBs,
which are representable by finite ALC theory. The intention of our research was
an effective reasoning method for subjectively quantified KB. We achieved this
by introducing a tableaux algorithm with blocking; however, for the algorithm to
be complete, a further restriction to minimality-proper KBs is neccessary. Still,
minimality-proper KBs include simple KBs.

1 Basic Formalism

We start with usual formalism of MKNF-DL, which roughly follow Donini [1].

1.1 Syntax

Definition 1 (ALCKNF Syntax) The ALCKNF syntax is defined as follows:

C ::= > | ⊥ | Ca | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C | KC | AC
R ::= Ra | KR | AR
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where Ca is an atomic concept, C,C1, C2 are concept expressions, Ra is an
atomic role, R is a role, and K and A are modal operators.

Definition 2 An ALCKNF concept C is subjective if each ALC atomic subcon-
cept of C is also a subconcept of a modal subconcept of C. An ALCKNF concept
C is objective if C does not contain a modal role or a modal subconcept. An
ALCKNF concept C is mixed if C is neither subjective nor objective.

Objective concepts are the ALC concepts. For example, concept ∃KR.C is
neither subjective nor objective.

The ALCKNF knowledge base (KB) is an extension of ALC KB to which we
add the modal formulae.

Definition 3 (ALCKNF Knowledge Base) The ALCKNF knowledge base Σ
is a triple 〈T , Γ,A〉, where TBox T is a set of objective axioms, MBox Γ is a
set of non-objective axioms, and ABox A is a set of (both objective and non-
objective) assertions.

In the remainder we consider the following simplification of notation. We
assume an ALCKNF KB Σ = 〈T , Γ,A〉. M denotes a modal operator, i.e.,
M ∈ {K,A}, N denotes a possibly negated modal operator, i.e., N ∈
{K,A,¬K,¬A}. Ra denotes an atomic ALC role, Ca, Da denote atomic ALC
concepts, A,B,C,D (possibly with indices or primes) denote arbitrary ALCKNF
concepts.

1.2 Semantics

Remind, that an ALC interpretation I = (∆, ·I) consists of domain ∆ and
interpretation function ·I which maps each atomic concept Ca to a subset of
domain: CIa ⊆ ∆, each atomic role Ra to a subset of cartesian product of domain:
RIa ⊆ ∆×∆, and each individual name x to an element of domain: xI ∈ ∆.

The semantics of ALCKNF considers sets of ALC interpretations with the
following properties:

(i) The domain ∆ is a countable (possibly infinite) set.
(ii) All ALC interpretations are defined over the same domain ∆.
(iii) Each individual name in every interpretation maps to the same domain ele-

ment.

Definition 4 (ALCKNF Semantics) An ALCKNF interpretation is a triple
(I,M,N ), where I is an ALC interpretation (∆, ·I), and M and N are sets of
ALC interpretations.

Atomic concepts Ca, roles Ra, and individuals a are interpreted in I as usual
in ALC:

(Ca)I,M,N = CIa
(Ra)I,M,N = RIa

(a)I,M,N = aI .
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The ALCKNF interpretation (I,M,N ) is extended to non-atomic and modal
concepts and modal roles as follows:

(>)I,M,N = ∆
(⊥)I,M,N = ∅

(¬C)I,M,N = ∆ \ (C)I,M,N

(C1 u C2)I,M,N = (C1)I,M,N ∩ (C2)I,M,N

(C1 t C2)I,M,N = (C1)I,M,N ∪ (C2)I,M,N

(∃R.C)I,M,N = {x ∈ ∆ | ∃y ∈ ∆ : (x, y) ∈ (R)I,M,N ∧ y ∈ (C)I,M,N }
(∀R.C)I,M,N = {x ∈ ∆ | ∀y ∈ ∆ : (x, y) ∈ (R)I,M,N ⇒ y ∈ (C)I,M,N }

(KC)I,M,N =
⋂
J∈M(C)J ,M,N

(AC)I,M,N =
⋂
J∈N (C)J ,M,N

(KRa)I,M,N =
⋂
J∈M(Ra)J ,M,N

(ARa)I,M,N =
⋂
J∈N (Ra)J ,M,N

Definition 5 (Satisfiability in (I, M, N )) A concept inclusion C v D is
satisfied in (I,M, N ), denoted as (I,M,N ) |= C v D, iff CI,M,N ⊆ DI,M,N .
A concept assertion C(a) is satisfied in (I, M, N ), denoted as (I,M,N ) |=
C(a), iff a ∈ CI,M,N . A role assertion R(a, b) is satisfied in (I,M, N ), denoted
as (I,M,N ) |= R(a, b), iff (a, b) ∈ RI,M,N .

Definition 6 (Satisfiability in (M, N )) A concept inclusion C v D is sat-
isfied in (M, N ), denoted as (M,N ) |= C v D, iff CI,M,N ⊆ DI,M,N for
each I ∈ M. A concept assertion C(a) is satisfied in (M, N ), denoted as
(M,N ) |= C(a), iff a ∈ CI,M,N for each I ∈ M. A role assertion R(a, b) is
satisfied in (M, N ), denoted as (M,N ) |= R(a, b), iff (a, b) ∈ RI,M,N for each
I ∈ M.

A TBox T is satisfied in (M, N ), denoted as (M,N ) |= T , iff all axioms
in T are satisfied in (M,N ). An MBox Γ is satisfied in (M, N ), denoted as
(M,N ) |= Γ , iff all axioms in Γ are satisfied in (M,N ). An ABox A is satisfied
in (M, N ), denoted as (M,N ) |= A, iff all assertions in A are satisfied in
(M,N ). A KB Σ is satisfied in (M, N ), denoted as (M,N ) |= Σ, iff all T , Γ
and A are satisfied in (M,N ).

Up to now, the definition of modal operators K and A were the same. Their
meaning is distinguished by imposing the maximality condition on K.

Definition 7 (ALCKNF Model) A set of ALC interpretations M is a model
for an ALCKNF KB Σ iff the following two conditions hold:

(i) the structure (M,M) satisfies Σ; and
(ii) for each set of ALC interpretations M′, if M′ ⊃ M then the structure

(M′,M) does not satisfy Σ.

Definition 8 (Entailment) A concept inclusion C v D is a consequence of
KB Σ, denoted as Σ |= C v D, iff (M,M) |= C v D for each model M
of Σ. A concept assertion C(a) is a consequence of KB Σ, denoted as Σ |=
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C(a), iff (M,M) |= C(a) for each model M of Σ. A role assertion R(a, b) is a
consequence of KB Σ, denoted as Σ |= R(a, b), iff (M,M) |= R(a, b) for each
model M of Σ.

Definition 9 (Satisfiability) A KB Σ is satisfiable if there is a model for Σ.
Two KBs Σ and Σ′ are equivalent, denoted as Σ ≡ Σ′, iff for every set of ALC
interpretations M, M is model for Σ iff M is model for Σ′. Two concepts C
and C ′ are equivalent in KB Σ, denoted as Σ |= C ≡ C ′, iff for every set of
ALC interpretations M of Σ, M |= C v C ′ and M |= C ′ v C.

2 Model Representation

Our intention is to introduce a reasoning technique for ALCKNF . This will be
attained in the next section. In this section, we discuss the representation of
ALCKNF models.

In our treatment of representing and reasoning in ALCKNF we follow several
approaches to reasoning in propositional modal logic [2, 5, 6].

The reasoning problem for ALCKNF is reduced to several reasoning prob-
lems in the underlying nonmodal logic ALC. Each model for an ALCKNF KB
Σ is characterized by an ALC KB. Therefore, the set of ALC KBs that repre-
sents all the models of Σ constitute a nonmodal representation of Σ. Such a
representation allows for using classical reasoning techniques for ALC to solve
the reasoning problems for ALCKNF .

Recall that an ALCKNF modelM is a set of ALC interpretations. The model
M is first-order representable if there exists a first-order theory (resp. ALC KB)
ΣM such that

M = {I : I |= ΣM}.
Therefore the set of interpretations belonging to M can be represented by a
first-order theory ΣM. Note that the theory ΣM may be either finite or infinite.

Following the motivation of this approach, we consider only the case when
the ALCKNF model M is ALC representable, i.e. there exists an ALC KB ΣM
such that M = {I : I |= ΣM}. Moreover, we consider only the case when the
corresponding ΣM is finite. Since ALC is a fragment of first-order logic, ifM is
ALC representable then M is also first-order representable.

To guarantee ALC representability of ALCKNF KB models, the KB is re-
stricted to a subjectively quantified KB. In previous publications [1, 3], a subjec-
tively quantified KB is further restricted to simple KB whose models admit a
representation in terms of finite ALC KB and guarantee decidability of reasoning
(specifically termination of the tableaux algorithm). This progress is depicted in
Figure 1.

The approach of subjectively quantified KBs and simple KBs was first intro-
duced and extensively analysed in Donini et al. [1]. A further research was done
by Ke et al. [3]. We now compare both papers and explain our approach.

First, Donini et al. [1] claim that the models of ALCKNF KBs cannot be
characterized by first-order theories.
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ALCKNF KBs
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to guarantee
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representation by finite ALC KBs

decidable

Fig. 1. The structure of work on ALCKNF model representation. In previous publi-
cations [1, 3], to obtain a reasoning algorithm, the language of KBs was syntactically
restricted to subjectively quantified and then to simple KB. In this thesis, we provide a
reasoning algorithm that works with subjectively quantified KBs. Since our approach
does not require the simple restriction, it allows reasoning over greater set of KBs.

Theorem 10 The models of ALCKNF are not first-order representable.

Briefly, the proof considers a carefully constructed ALCKNF KB Σ, shows
a model M for Σ, and shows that M cannot be characterized in terms of first-
order theory.

Second, they identify a subset of ALCKNF KBs whose models are first-
order representable by means of (either finite or infinite) first-order theories.
This is achieved by the notion of subjectively quantified KBs. We consider two
definitions from previous papers [1, 3].

Definition 11 (Subjectively Quantified KB) A subjectively quantified
ALCKNF KB is an ALCKNF KB Σ such that each concept C of the form
∃R.D or ∀R.D satisfies one of the following conditions:

(i) R is an ALC role and D is an ALC concept;
(ii) R is of the form MRa and D is subjective.

To summarize, the Definition 11 by [3] is more general than similar definition
by [1], and we use it for the rest of this paper. However the difference between the
definitions has no implications for the tableaux algorithm, since the algorithm
considers the flatten normal forms of formulae (created in preprocessing stage).

Theorem 12 A subjectively quantified ALCKNF KB is representable by an (ei-
ther finite or infinite) ALC theory.

Briefly, the proof shows that the models of a subjectively quantifiedALCKNF
KB can be characterized in terms of an ALC KB. The characterization relies on
the notion of modal atom: there is a one-to-one correspondence between certain
sets of modal atoms and the models of subjectively quantified ALCKNF KB.

2.1 Previous Work

In previous publications [1, 3], authors further restrict ALCKNF KBs to obtain
a finite characterization of models (that are also first-order representable). This
is achieved by the notion of simple KBs.
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In the following, we say that an ALCKNF concept is simple if C is sub-
jectively quantified and each quantified concept subexpression of the form
∃AR.ND, ∀AR.ND, where N ∈ {K,¬K,A,¬A}, occurring in C is such that
in D there are no occurrences of role expressions of the form KR.

Definition 13 (Simple KB) A simple ALCKNF KB Σ = 〈T , Γ,A〉 is an
ALCKNF KB that satisfies the following conditions:

(i) Γ is a set of ALCKNF simple inclusions, i.e. inclusions assertions of the
form KC v D, where C is an ALC-concept such that T 6|= > v C, and D is
a subjectively quantified concept expression in which there are no occurrences
of the operator K within the scope of quantifiers; and

(ii) A is a set of instance assertions such that all concept subexpressions occur-
ring in A are simple.

Ke et al. [3] significantly loosens the definition of a simple KB by allowing
more concept assertions in A. Both [1, 3] conclude with a proof of the following
theorem.

Theorem 14 A simple ALCKNF KB is representable by a finite ALC theory.

2.2 Our Approach

We present a reasoning algorithm for deciding the satisfiability of a subjectively
quantified ALCKNF KB. We use a novel tableaux algorithm with a blocking
technique to deal with modal part of ALCKNF theory.

In standard DLs, the tableaux algorithm tests satisfiability of a con-
cept description. The algorithm starts with a concept description and applies
consistency-preserving expansion rules that build a tree representing a model.
In the tree, the nodes correspond to individuals and are labelled with sets of DL
concept descriptions the individual belongs to.

The models of standard DL KBs can be infinite and therefore the tableaux
algorithm uses a blocking technique that identifies infinite branches. This allows
to represent the infinite models by finitely-representable models.

The main motivation of our approach is analogous: the the infinite models
of ALCKNF can be blocked and represented by finitely-representable ALCKNF
models.

3 Reasoning by Tableaux Algorithm with Blocking

In our approach, we reduce the reasoning problem for ALCKNF to several rea-
soning problems inALC. Since each model for a subjectively quantifiedALCKNF
KB Σ can be represented by a set of ALC KBs, this allows us to use classical
reasoning techniques for ALC to solve reasoning problems in ALCKNF .

In this section we define the tableaux algorithm that tests the satisfiability
of a subjectively quantified ALCKNF KB Σ = 〈T , Γ,A〉.
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The reader is referred to Malenko et al. [4] for detailed treatment and proofs
of theorems in this section.

Since every ALCKNF KB can be translated to flatten normal form, we as-
sume w.l.o.g. the Σ to be in flatten normal form.

The satisfiability problem for Σ is solved by a tableaux algorithm for Σ. The
tableaux algorithm is trying to construct a model for Σ by means of branches
which correspond to finite subsets of modal atoms. A branch satisfying certain
conditions corresponds to a model for Σ.

The ALCKNF tableaux algorithm is similar to a standard ALC tableaux
algorithm. However, the are differences: Only modal assertions are decomposed
by the ALCKNF tableaux algorithm, including the GCIs in Γ . An ALC reasoner
is used as an underlying reasoner, which considers T and ALC assertions through
the so-called objective knowledge of a branch. The ALC reasoner is called in the
conditions of trigger-rule and testing the conditions of models (open branch,
pre-preferred branch, minimality condition).

A branch B is a set of membership assertions of the form C(x), where C is
an ALCKNF concept description.

The tableaux starts with an initial branch B0 = {KC(x) | C(x) ∈ A}.
New branches are obtained from the current branch by applying the tableaux
expansion rules from Figure 2. We use ¬̇C to denote the negation normal form
of the ¬C. The set of individuals appearing in B is denoted by OB.

We now briefly describe the ALCKNF expansion rules and compare them
with standard DL tableaux rules [1]:

– The u-rule is analogous to the the corresponding DL tableaux rule.
– The t-rule adds both disjuncts (as they are or possibly negated) to the

tableaux, because they are needed in the minimality check. The for parts
of the rule consider all the cases that can happen; the part (d) detect and
inconsistency and enforces a clash in the underlying DL reasoner. In the cor-
responding DL tableaux rule, either of the conjunct is added to the tableaux.

– The ∃-rule is analogous to the the corresponding DL tableaux rule.
– The ∀-rule has two parts. The first part deals with modal roles and is anal-

ogous to DL tableaux rule. The second part deals with the relationship be-
tween KR(x, y) and AR(x, y). In the tableaux algorithm, the “value” of
AR(x, y) is by default “false” until the appearance of KR(x, y) supporting
it to be “true” (this is possible since AR(x, y) ∈ MA∆(Σ) it is supported
by ∀AR.C(x) ∈MA∆(Σ)).

– The trigger-rule takes Γ into account. The underlying DL reasoner is used
to check that C(a) is entailed in K-objective knowledge, which represents
“what is known so far” by T and B.

To employ a blocking technique, the algorithm keeps ordering of individual
names according to time of their introduction to tableaux algorithm. Moreover,
for each individual y that is introduced into the tableaux by application of the
∃-rule to individual x, the algorithm keeps track of the relationship and we define
parent(y) = x. Then, predcessor is transitive closure of parent.
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u-rule: If C uD(x) ∈ B,
and {C(x), D(x)} 6⊆ B,

then add C(x), D(x) to B.

t-rule: If C tD(x) ∈ B we distinguish the following four cases:
(a) if {C(x), ¬̇C(x), D(x), ¬̇D(x)} ∩ B = ∅,

then add either C(x), D(x) or C(x), ¬̇D(x) or ¬̇C(x), D(x) to B.
(b) if {C(x), ¬̇C(x)} ∩ B = ∅ and {D(x), ¬̇D(x)} ∩ B 6= ∅,

then add either C(x) or ¬̇C(x) to B.
(c) if {C(x), ¬̇C(x)} ∩ B 6= ∅ and {D(x), ¬̇D(x)} ∩ B = ∅,

then add either D(x) or ¬̇D(x) to B.
(d) if {¬̇C(x), ¬̇D(x)} ⊆ B,

then add C(x) to B.

∃-rule: If ∃MR.C(x) ∈ B,
and {MR(x, y), C(y)} 6⊆ B for any y ∈ OB,
and x is not blocked by some y ∈ OB,

then add MR(x, z), C(z) to B, for some z ∈ OB ∪ {i}, where i 6∈ OB.

∀-rule: We distinguish the following two cases:
(a) if ∀MR.C(x) ∈ B,

then for each MR(x, y) ∈ B, if C(y) 6∈ B then add C(y) to B.
(b) if ∀AR.C(x) ∈ B,

then for each KR(x, y) ∈ B, if AR(x, y) 6∈ B then add AR(x, y) to B.

trigger-rule: If KCa v D ∈ Γ, x ∈ OB, ObK(B) |= Ca(x),
and {KCa(x), D(x)} 6⊆ B,

then add KCa(x), D(x) to B.

Fig. 2. Expansion rules for the tableaux algorithm of ALCKNF

Definition 15 (Blocking) The application of an expansion rule to an individ-
ual x is blocked in a branch B if there is a predecessor y of x and a predecessor
z of y such that {C | C(y) ∈ B} = {C | C(z) ∈ B}.

The idea behind blocking is that the blocked individual x can use role suc-
cessors of y instead of generating new ones. The ordering of individual names
according to time of their introduction to tableaux algorithm is considered to
avoid cyclic blocking (of x by y and vice versa).

To guarantee termination of this blocking technique, the following strategy
for application of expansion rules to the individuals in a branch is used: all rules
are applied to the first introduced individual until no more rules apply, then all
rules are applied to the second introduced individual until no more rules apply,
etc. When a rule is successfully applied to an individual, the rule applications
start again from the first individual. When no expansion rules are applicable the
tableaux algorithm ends. An effective implementation of this strategy can be
achieved by keeping track of tableaux changes and proper backtracking (back-
jumping).

Definition 16 (Completed Branch) We say a branch B is completed if no
expansion rules from Figure 2 are applicable to B.
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Definition 17 ((PB, NB)) The partition (PB, NB) associated with a branch B
is defined as follows:

PB = {MC(x) | MC(x) ∈ B} ∪ {MR(x, y) | MR(x, y) ∈ B}
NB = {MC(x) | ¬MC(x) ∈ B}

Here, PB is a set of atoms which are true, NB is a set of atoms which are
false. Atoms not in PB ∪NB are assumed to be false.

Definition 18 (Objective Knowledge) Let B be a branch for Σ. The ALC
KB

ObK(B) = 〈T , {C(x) | KC(x) ∈ PB} ∪ {Ra(x, y) | KRa(x, y) ∈ PB}〉
ObA(B) = 〈T , {C(x) | AC(x) ∈ PB} ∪ {Ra(x, y) | ARa(x, y) ∈ PB}〉

is called K-objective, resp. A-objective, knowledge for B.

The objective knowledge is an ALC KB passed to an underlying ALC rea-
soner to check a certain set of conditions.

Definition 19 (Open Branch) A branch B is open if all of the following con-
ditions hold:

(i) ObK(B) is satisfiable;
(ii) ObA(B) is satisfiable;

(iii) ObK(B) 6|= C(x) for each KC(x) ∈ NB;
(iv) ObA(B) 6|= C(x) for each AC(x) ∈ NB.

If there is an open branch B for Σ, then there is an ALCKNF structure
(M,N ) that satisfies Σ.

Definition 20 (Pre-preferred Branch) A branch B is pre-preferred if all of
the following conditions hold:

(i) B is completed and open;
(ii) ObK(B) |= ObA(B);

(iii) ObK(B) 6|= C(x) for each AC(x) ∈ NB.

If there is a pre-preferred branch B for Σ, then there is an ALCKNF structure
(M,M) that satisfies Σ.

The minimality condition below checks whether the set of interpretations
M = {I | I |= ObK(B)} represents a model for Σ. The minimality condition
checks the minimality of a branch up to the renaming of individuals introduced
by the ∃-rule.

For a branch B and an injection f , the branch obtained from B by replacing
each occurrence of individual x by f(x) for each x ∈ OΣ \OB, is called a renamed
branch of B and denoted f(B).
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Definition 21 (Minimality Condition) Let B be a completed branch for Σ.
B satisfies the minimality condition if there does not exist a completed and open
branch B′ for Σ and an injection f : OB′ \OΣ → OB\OΣ such that |OB′ | ≤ |OB|
and all of the following conditions hold:

(i) ObK(B) |= ObK(f(B′));
(ii) ObK(f(B′)) 6|= ObK(B);

(iii) ObK(B) |= ObA(f(B′));
(iv) ObK(B) 6|= C(x) for each AC(x) ∈ Nf(B′).

If minimality condition does not hold, there exists a structure (M′,M) such
thatM′ ⊃M and (M′,M) satisfies Σ. This implies thatM is not a model for
Σ.

For the tableaux algorithm with this minimality condition to be complete
[3], KBs must be restricted according to the following definition.

Definition 22 (Minimality-proper KB) An ALCKNF KB is minimality-
proper if it satisfies the following condition: for each KC v D ∈ Γ and each
D(x) ∈ A

(i) D does not contain a subconcept of the form ∀AR.E; and
(ii) D does not contain a subconcept of the form ∃AR.E in a disjunction.

For example, KC v KD t ∃AR.C is not minimality-proper, while KC v
∃AR.C is.

The minimality-proper condition prevents ∀AR.C(x) to appear in B′ of the
minimality condition 21. The fact the branch B′ is open implies that (M′,M′′) |=
Σ, whereM′ = {I | I |= ObK(B′)) andM′′ = {I | I |= ObA(B′)). The purpose
of conditions (iii) and (iv) in Definition 21 is to imply that M = {I | I |=
ObK(B)) can replaceM′′ to ensure that (M′,M) |= Σ. This purpose would not
be achieved if there were assertions of the form ∀AR.C(x) ∈ B′ because there
could exist R(x, y) such that ObK(B) |= R(x, y) and ObA(f(B′)) 6|= R(x, y),
which does not meet the requirement of “assuming as much as we know from
B”. Because of the tableaux expansion rules, the branch B′ does not contain
AR(x, y), C(y) and all the assertions obtained from C(y). For analogous reason
the minimality-proper KBs forbid ∃AR.E in disjunctions. We prove later that
for the minimality-proper KBs, the minimality check is correct.

Definition 23 (Preferred Branch) A branch B is preferred if all of the fol-
lowing conditions hold:

(i) B is pre-preferred;
(ii) B satisfies the minimality condition.

If there is a preferred branch B for Σ, then there is an ALCKNF structure
(M,M) that satisfies Σ and for each set of interpretationsM′, ifM′ ⊃M then
(M′,M) does not satisfy Σ. We conclude that B is a model for Σ.
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Lemma 24 (Termination) Let Σ be a subjectively quantified and minimality-
proper ALCKNF KB. Then the tableaux algorithm for checking satisfiability of
Σ always terminates.

To state completeness we must define what it means for a branch to represent
a model. Let B be a completed branch for Σ and M a model for Σ. We define
that B represents M if B is preferred and there exists an injection f : OB\OΣ →
∆ \ OΣ such that M = {I | I |= ObK(f(B))} holds.

Theorem 25 (Soundness and completeness) Let Σ be a subjectively quan-
tified and minimality-proper ALCKNF KB. Then Σ is satisfiable if and only if
there exists a preferred branch B of the tableaux for Σ.

If B is a preferred branch for Σ, thenM = {I | I |= ObK(B)} is a model for
Σ. If M is a model for Σ, then there exists a completed branch B for Σ that
represents M.

Theorem 26 (Decidability) Let Σ be a subjectively quantified and
minimality-proper ALCKNF KB. Then the satisfiability problem of Σ is
decidable.

4 Conclusion

For reasoning in ALCKNF we presented a tableaux algorithm with blocking.
The blocking is employed to deal with modal part of MKNF-DL theory. This
technique allows for reasoning about KBs which are both subjectively quantified
and minimality-proper. This is a larger class of KBs than in previous approaches,
which further restricted to simple KBs.
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Abstract. We discuss two approaches for defeasible reasoning in Description
Logics that allow for the statement of defeasible subsumptions of the form “α
subsumed by β usually holds”. These approaches are known as prototypical rea-
soning and presumptive reasoning and are both rooted in the notion of Rational
Closure developed by Lehmann and Magidor for the propositional case. Here
we recast their definitions in a defeasible DL context and define algorithms for
prototypical and presumptive reasoning in defeasible DL knowledge bases. In
particular, we present a plug-in for the Protégé ontology editor which imple-
ments these algorithms for OWL ontologies. The plug-in is called RaMP and
allows the modeller to indicate defeasible information in OWL ontologies and
check entailment of defeasible subsumptions from defeasible knowledge bases.

1 Introduction

Entailment in standard DL reasoning systems is monotonic. Monotonicity is a prop-
erty of knowledge representation (KR) systems that are built upon classical logics. It
specifies that knowledge is always ‘incremental’. That is, adding to (or strengthening)
the information in a Knowledge Base (KB) cannot result in any previously known
conclusions being retracted from the KB. In classical logics, monotonic behaviour is
exhibited on two levels. Firstly, on the meta-level where if a statement ϕ follows log-
ically from a KB K then ϕ also follows from any superset of K and, secondly, on the
object level from α v β it follows that α u γ v β for any γ.

It turns out that there are applications in which monotonicity is undesirable, i.e.,
non-monotonic reasoning is required. A typical scenario is when one needs to model
exceptions in a domain. Let us consider an example. We select a domain which de-
scribes power plants (specifically nuclear power plants) and their safety under certain
conditions. The following concept and role names will be used: PP (power plants),
NPP (nuclear power plants), BrNPP (Brazilian nuclear power plants), SeismicArea
(tracts of land prone to seismic activity), DangerousPP (power plants which are un-
safe due to some conditions) and isLocIn (a property of an entity indicating where it is
located geographically). We specify a simple example using the vocabulary described
above. Consider the following DL knowledge base

K =
{
BrNPP v NPP,NPP v ¬DangerousPP

}
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From K we conclude classically that a Brazilian nuclear power plant is not a dan-
gerous power plant (BrNPP v ¬DangerousPP). This conclusion displays typical
monotonic reasoning behaviour. That is, enforcing that all Brazilian nuclear power
plants are nuclear power plants (BrNPP v NPP) and that all nuclear power plants are
not dangerous power plants (NPP v ¬DangerousPP), it is also implicitly enforced
that all Brazilian nuclear power plants are not dangerous power plants. ut

From an ontology modeller’s perspective, the type of reasoning behaviour exhib-
ited in the example may not be suitable always. This is because the modeller may want
to be able to cater for exceptions. We may not want to enforce that all nuclear power
plants are safe. Rather, we may want to represent something less rigid. For example,
one may want to express that in the most normal cases nuclear power plants are not
dangerous but that there may be some exceptional cases in which they are danger-
ous (defeasible information). The broad approach to reasoning with KBs that contain
defeasible information is known as defeasible reasoning and is a popular way to in-
troduce non-monotonic reasoning behaviour into knowledge representation systems.

Returning to the example above, we argue that one needs to develop a defeasible
reasoning approach to capture intuitions like: In general, nuclear power plants are not
dangerous but a specific type of nuclear power plant (e.g., a Brazilian nuclear power
plant located in a seismic area) may be dangerous. It would be useful to have a robust
system in the DL setting that is capable of implementing this kind of reasoning.

The goal of this paper is to present and demonstrate a preliminary version of the
software defeasible reasoning system that we have developed to be used with OWL
ontologies. This system, known as RaMP, has been packaged as a plug-in for the
popular Protégé ontology editor. The plug-in is discussed in more detail in Section 4.

2 Background

There are various approaches for introducing non-monotonic reasoning capabilities in
logic-based knowledge representation systems. Among these, the approach by Kraus,
Lehmann and Magidor (often called the KLM approach) [7,9] has been particularly
successful due to its elegance and robustness. They enrich propositional logic with a
defeasible ‘implication’ operator ( |∼ ). This operator allows one to write down defea-
sible implication statements (also called conditional assertions) of the form α |∼ β,
where α and β are propositional formulas. The sentence α |∼ β intuitively means that
in those situations where α is typically true, β is also true (for the precise semantics
the reader should consult the provided references). Many extensions of the KLM ap-
proach have been proposed in the literature recently [10,6,2,5,3,4]. The approach that
we use in our system is based on the KLM approach as well. Given a defeasible logic,
such as the KLM-extension of propositional logic or the aforementioned extensions
thereof and a conditional KB (a set of conditional assertions) it remains to be defined
what a valid inference from a conditional KB is.

Lehmann et al. characterize the notion of rational closure [9, Section 5] and mo-
tivate this notion to be a suitable answer to the above question. The name given to the
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reasoning approach that computes rational closure for conditional KBs is prototypi-
cal reasoning. Lehmann and colleagues also discuss similar forms of reasoning that
may be suitable for computing inferences from conditional KBs. One such type of
reasoning is known as presumptive reasoning [8]. Presumptive reasoning is actually
a venturous extension of prototypical reasoning. This means that any inference that
follows from a conditional KB using prototypical reasoning will also follow from the
KB using presumptive reasoning. The converse is not necessarily true.

Our approach to defeasible reasoning is based on the work by Britz et al. [4] in
which they propose a defeasible extension of the DL ALC. The defeasibility is intro-
duced through a defeasible subsumption operator ( @∼ ). This operator is ‘supraclassi-
cal’ to the classical subsumption operator (v). The semantics of defeasible subsump-
tion is similar to that for the |∼ operator given by Lehmann and colleagues. Intuitively
the semantics states that given a defeasible subsumption axiom α @∼ β (where α and
β may be complex ALC concepts), then this statement means that the most typical
α’s are also β’s (as opposed to all α’s being β’s in the classical case). As of writing,
only a semantics for defeasible subsumption is explicitly provided by the approach
(although defeasible equivalence follows trivially as well). Britz et al’s approach is
only applicable to DL TBoxes currently.

3 Prototypical and Presumptive Reasoning

Prototypical and presumptive reasoning are answers to the important question: given
a KB that contains defeasible subsumption statements like α @∼ β, what does it mean
for one to draw inferences from this KB and how do we compute these inferences?
Lehmann et al. have provided answers by developing the notions of prototypical and
presumptive reasoning (albeit in a propositional context) and also specifying algo-
rithms to compute these. It turns out that these notions are adaptable to the DL set-
ting [4] and to this end we have adapted the algorithms by Lehmann et al. [9] for com-
puting both prototypical and presumptive reasoning for a defeasible KB (an ALC KB
that may additionally contain defeasible subsumption statements of the form α @∼ β).

3.1 Prototypical Reasoning

Prototypical reasoning corresponds exactly to the propositional notion of rational clo-
sure, lifted to the DL case. Due to space constraints, we are not concerned with the se-
mantics here. Interested readers may consult the work of Lehmann and colleagues [9]
for the semantics for rational closure in a propositional context. For a characterization
of rational closure for the DL ALC one can consult the work of Britz et al. [4].

The algorithm for prototypical reasoning, takes as input a subsumption statement
(also called a query) which may be defeasible or classical and a defeasible KB. The
output of the algorithm is true if the query ϕ follows (prototypically) from the given
KB K (denoted K |=Prot ϕ). Queries and defeasible KBs are currently restricted to
subsumption statements for simplicity seeing that (in most cases) classicalALC TBox
axioms can be rewritten as classical ALC subsumption statements.
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The algorithm begins by performing a classical transformation of the input KB.
Essentially this amounts to rewriting all defeasible statements in the KB as their clas-
sical counterparts and all classical statements into a specific normal form. The reason
behind this transformation is two-fold: (i) It allows classical reasoning techniques to
be used on the transformed KB and (ii) The normal form of the classical statements
differentiates them (in the eyes of the algorithm) from the defeasible statements in the
KB. As we shall see later, this last point also makes the next sub-procedure of the
algorithm possible (the computation of a ranking of the statements in the KB). The
transformation procedure is given below:

Definition 1 (transformKB). Given a defeasible KB K:
transformKB(K) := {transform(ϕ)|ϕ ∈ K},
where transform(ϕ) :=

{
α u ¬β v ⊥, if ϕ = α v β
α v β, if ϕ = α @∼ β

Example 1. Let K be the input of the procedure in Definition 1:

K =





BrNPP v ∃hasFault,BrNPP v NPP,
BrNPP v ∃isLocIn.Brazil,NPP @∼ ¬∃hasFault,
NPP u ∃isLocIn.SeismicArea @∼ DangerousPP,
∃hasFault @∼ DangerousPP,DangerousPP @∼ ∃isLocIn.SeismicArea





If we execute the procedure in Definition 1 for K we get K′:

K′ =





BrNPP u ¬∃hasFault v ⊥,BrNPP u ¬NPP v ⊥,
BrNPP u ¬∃isLocIn.Brazil v ⊥,NPP v ¬∃hasFault,
NPP u ∃isLocIn.SeismicArea v DangerousPP,
∃hasFault v DangerousPP,DangerousPP v ∃isLocIn.SeismicArea





ut

The second procedure of the prototypical algorithm is the computation of a rank-
ing of sentences in the KB according to the notion of exceptionality [9]. This procedure
makes use of a sub-procedure exceptional which encodes the notion of exceptional-
ity into the computation of the ranking. Before we specify the pseudocode for the
complete procedure we define what we mean by the terms ranking and exceptionality.

Definition 2 (Ranking). Given a defeasible KBK, a ranking forK is a total preorder
on the elements (axioms) in K, with axioms higher up in the ordering interpreted as
having a higher preference/importance.

Note that a ranking can in practice be implemented as a collection where each ele-
ment of this collection is a set of sentences from the KB. Each sentence in a particular
set has the same magnitude of importance (we also call this a rank). In the prototypi-
cal reasoning algorithm, the ranking of a defeasible KB is computed according to the
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notion of exceptionality. Intuitively, a concept α is said to be exceptional w.r.t. a de-
feasible KB K, if it is the case that > v ¬α usually follows from K. That is, typically
everything is in ¬α, thereby making α an exception to this rule. In the context of our
algorithm, checking whether α is exceptional w.r.t K can be reduced to checking if K′
classically entails α v ⊥ where K′ is the classical transformation of K.

Definition 3 (Exceptionality). Let K be a defeasible KB and α, β concepts. Then:

- α is exceptional w.r.t. K iff K′ |= α v ⊥. Where K′ is the transformation of K.
- α @∼ β is exceptional w.r.t. K iff α is exceptional w.r.t. K.
- α v β is exceptional w.r.t. K iff α u ¬β is exceptional w.r.t. K.
- K′ ⊆ K, is exceptional w.r.t. K iff every element of K′ and only the elements of
K′ are exceptional w.r.t. K (we say that K′ is more exceptional than K).

The above notion of exceptionality is included in the computation of the ranking
for a defeasible KB as sub-procedure exceptional(E) := {α v β ∈ E | E |= α v ⊥}.

Now that we have detailed the sub-procedures and principles needed to describe
the computation of a ranking of the sentences in a defeasible KB, we specify the
complete procedure for implementing this:

Procedure computeRanking(K)
Input: Defeasible knowledge base K
Output: The ranking, D, for K

1 i := 0; K′ := transformKB(K); E0 := K′; E1 := exceptional(E0);
2 while Ei+1 6= Ei do
3 i := i + 1; Ei+1 := exceptional(Ei);
4 n := i; D∞ := En; D := {D∞};
5 for j := 1 to n do
6 Dj := Ej−1\Ej ; D := D ∪ {Dj};
7 return D;

Recall that the ranking of the KB is computed as a collection of sets of sentences
(D in Procedure computeRanking). Each element in any of such sets shares the same
level of importance in the algorithm.

Example 2. Consider the transformed KB from Example 1:

K′ =





BrNPP u ¬∃hasFault v ⊥,BrNPP u ¬NPP v ⊥,
BrNPP u ¬∃isLocIn.Brazil v ⊥,NPP v ¬∃hasFault,
NPP u ∃isLocIn.SeismicArea v DangerousPP,
∃hasFault v DangerousPP,DangerousPP v ∃isLocIn.SeismicArea





K′ (second statement on Line 1 of the computeRanking procedure) is calculated
as in Example 1. Lines 2 to 3 of the computeRanking procedure are responsible for
computing the different levels of exceptional sentences according to Definition 3. This
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segment of the procedure executes Procedure exceptional until Ei+1 = Ei (a fixed
point is reached). In the example when Line 1 of computeRanking is executed E0 :=
K′ and E1 := exceptional(E0). If we do the computation as detailed in exceptional
then we find: E1 = {BrNPP u ¬∃hasFault v ⊥,BrNPP u ¬NPP v ⊥,BrNPP u
¬∃isLocIn.Brazil v ⊥}.

We see that E1 6= E0 therefore we have to execute the while loop again to find E2.
The result of this computation shows us that E2 = E1 and we have thus reached a fixed
point. The while loop terminates and the final rankingD can be computed as specified
by Lines 4 to 6 of the procedure. The final ranking D is composed of:

D∞ =

{
BrNPP u ¬∃hasFault v ⊥,BrNPP u ¬NPP v ⊥,
BrNPP u ¬∃isLocIn.Brazil v ⊥

}

D1 =





NPP v ¬∃hasFault,∃hasFault v DangerousPP,
NPP u ∃isLocIn.SeismicArea v DangerousPP,
DangerousPP v ∃isLocIn.SeismicArea





ut
We now have a ranking for our original defeasible KB K (see Example 1). Once

this ranking is identified, then given a query, the core prototypical reasoning algorithm
(see Algorithm 1) can be executed to determine if this query follows from the original
defeasible KB. D∞ represents the infinite rank which contains the classical (non-
defeasible) statements from the KB.

Algorithm 1: Prototypical reasoning
Input: The ranking D for some KB, K and a query ϕ of the form α @∼ β (or α v β)
Output: true if K |=Prot α @∼ β (or K |=Prot α v β), false otherwise

1 n := 1;
2 if ϕ = α v β then
3 return D∞ |= α v β;

4 else if ϕ = α @∼ β then
5 while

⋃D |= α v ⊥ and D 6= ∅ do
6 D := D\{Dn};n := n+ 1;

7 return
⋃D |= α v β;

We give an example to illustrate the prototypical reasoning algorithm below:

Example 3. Consider the following defeasible KB K with six axioms:

K =





BrNPP v NPP,NPP v PP,∃isLocIn v PP,
∃isLocIn.SeismicArea v DangerousPP,NPP @∼ ¬DangerousPP,
BrNPP @∼ ∃isLocIn.SeismicArea





Considering higher indices to represent more exceptional sentences, the ranking
for this KB (computed using relevant procedures discussed) is the following:
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D∞ =

{
BrNPP u ¬NPP v ⊥,∃isLocIn u ¬PP v ⊥,
∃isLocIn.SeismicArea u ¬DangerousPP v ⊥,NPP u ¬PP v ⊥

}

D1 = {BrNPP v ∃isLocIn.SeismicArea}
D2 = {NPP v ¬DangerousPP}

If we compute prototypical reasoning (via Algorithm 1) for the following query
ϕ = BrNPP @∼ DangerousPP then we get the positive result K |=Prot ϕ. We find the
following motivation for this: the condition on Line 5 of the algorithm holds because
BrNPP v ⊥ follows from D (D∞ ∪ D1 ∪ D2) and D 6= ∅. Therefore we execute
the loop body and D becomes D∞ ∪D1. The loop condition no longer holds because⋃D 6|= BrNPP v ⊥ and therefore the loop terminates.

Last, the classical entailment check (
⋃D |= BrNPP v DangerousPP) on Line 7

is performed. This returns true in our example and therefore K |=Prot ϕ.
An intuitive reading of this result shows us that typically nuclear power plants

are not dangerous power plants (NPP @∼ ¬DangerousPP). If we examine the query
ϕ we see that we are not in a typical situation because we have a specific type of
nuclear power plant, i.e., A Brazilian nuclear power plant. Additionally, we know
that typical Brazilian nuclear power plants are located in seismic areas stated by
(BrNPP @∼ ∃isLocIn.SeismicArea) and typical power plants located in seismic areas
are dangerous (∃isLocIn v PP, ∃isLocIn.SeismicArea v DangerousPP). Given this
information, prototypical reasoning allows for the possibility that this type of nu-
clear power plant is dangerous, which represents an exception to the general rule that
NPP @∼ ¬DangerousPP. ut

Next we introduce an alternative defeasible reasoning algorithm to the prototypical
approach just described. This approach is known as presumptive reasoning.

3.2 Presumptive Reasoning

The presumptive reasoning algorithm is a venturous extension of the prototypical one.
Essentially the difference between them (from an algorithmic perspective) is that pre-
sumptive reasoning computes an extended version of the ranking that prototypical
reasoning does. Presumptive reasoning has a semantics for the propositional case [8]
which we shall not discuss here due to space constraints. The algorithm for com-
puting presumptive reasoning is more lenient than prototypical reasoning in allowing
sentences to follow from a defeasible KB, i.e., it presumes that some sentence follows
from the KB as long as there is no evidence it can find to the contrary. Both algo-
rithms are virtually the same barring one difference: the ranking of sentences in the
input KB is computed slightly differently in presumptive reasoning. Because a pre-
sumptive ranking is an extension of a prototypical ranking, we describe a procedure
for converting a prototypical ranking for a defeasible KB into a presumptive one.

We let D be a prototypical ranking for some defeasible KB K. Each element Di ∈
D (which we refer to as a rank) is a set of sentences from K. To convert D to a
presumptive ranking D′ we add |Di| − 1 ranks above each Di in D.
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Example 4. Let Di = {ϕ1, ϕ2, ϕ3} be a rank in some prototypical ranking D:
We recall that in order to extend D to a presumptive ranking we need to add |Di| − 1
ranks above eachDi inD. For our example, let us consider that we have a prototypical
ranking containing just one rank Di as defined above. We thus need to add two ranks
above Di in D. To understand what these two ‘presumptive’ ranks will look like we
have to explain how a prototypical ranking is used in the prototypical algorithm.

Recall that Lines 5-6 of Algorithm 1 essentially finds a maximal subset of the ax-
ioms inD in which the antecedent of the query is satisfiable. However, the prototypical
algorithm does this in a ‘clunky’ way by removing entire ranks at a time (Line 6). Pre-
sumptive reasoning is more thorough in finding a maximal subset of the axioms in D
because it first tries removing (all permutations of) one axiom from the highest rank,
instead of the entire rank. If this does not make the antecedent satisfiable then it tries
removing (all permutations of) two axioms from the same rank etc. until eventually
(all permutations of) |Di| − 1 axioms are removed. We now show an elegant way to
perform this fine-grained removal.

We start with the initial rank Di = {ϕ1, ϕ2, ϕ3}. We want to only remove Di
from D as a last resort but before that we want to try removing all permutations
of one axiom and then two. Instead of doing this in a naı̈ve way by computing all
these permutations, we use the fact that removing one axiom is the same as keep-
ing two in a set of three axioms as in the example. In other words we would like
to compute all instances of two axioms holding simultaneously in our Di. That is
(ϕ1andϕ2)or(ϕ1andϕ3)or(ϕ2andϕ3) in our example.

It turns out that there is a way to transform this ‘check’ or expression into a single
axiom according to the following rules for DL axioms:

and(αi v βi)ni=1 = > v uni=1(¬αi t βi) and,

or(αi v βi)ni=1 = uni=1αi v tni=1βi, where αi v βi = ϕi.

If removing all permutations of one axiom (keeping two) does not make the an-
tecedent satisfiable in our example then we try removing all permutations of two
(keeping one). Therefore for our example the expression to check to verify this is
ϕ1orϕ2orϕ3. Therefore the presumptive conversion D′i for the prototypical rank Di
is {((ϕ1andϕ2)or(ϕ1andϕ3)or(ϕ2andϕ3)), (ϕ1orϕ2orϕ3), {ϕ1, ϕ2, ϕ3}}. This
process is repeated on each Di in a prototypical ranking and the final presumptive
ranking D′ is computed as

⋃D′i. ut

It is important to note that other than the difference in the computation of the
ranking, the prototypical and presumptive reasoning algorithms are identical. There-
fore Algorithm 1 can be executed with a presumptive ranking as input to compute
presumptive reasoning for a given defeasible KB and query. We have developed a
Protégé plug-in that implements both prototypical and presumptive reasoning for DL-
based (and therefore OWL) ontologies. We present this plug-in in the next section.
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4 RaMP

We have developed a plug-in for Protégé which allows the ontology modeller to repre-
sent defeasible information in the ontology without explicitly extending the underly-
ing ontology language (OWL). This is possible through axiom annotations in Protégé
which do not affect the logical meaning of the ontology. Furthermore, this plug-in im-
plements the prototypical and presumptive reasoning algorithms. The plug-in is called
RaMP1 which stands for Rational Monotonicity Plug-in. Figure 1 depicts the control
panel of RaMP’s interface in Protégé 4.1.

Fig. 1: RaMP: Reasoning controller panel

This component of the RaMP interface is called the reasoning controller panel.
This panel provides a text input field for the user to enter an axiom (defeasible or
hard). The axiom can be verified to follow (or not follow) from the ontology, based
on the currently selected reasoning algorithm. This task is accomplished by clicking
the “check” button in the same panel. The reasoning algorithm can be selected from a
drop-down menu. Currently, only prototypical and presumptive reasoning algorithms
are available. There is also a checkbox for indicating if the axiom entered is defea-
sible or classical. If the axiom is classical, we also refer to it as a hard axiom. For
convenience, RaMP provides a window display (Figure 2) in Protégé to show the user
which axioms in the loaded ontology are indicated as defeasible axioms.

Fig. 2: RaMP: Defeasible axioms display

This brings us to the topic of how to assert that an axiom is defeasible in the loaded
ontology. RaMP indicates axioms as defeasible in the ontology through a “flagging”
process. In the Class Description window in Protégé, the superclasses and equivalent
classes of the selected class are indicated. Next to each of these classes there is a but-
ton, labelled “d” for defeasibility, which can be clicked to toggle whether that axiom
should be viewed as defeasible or not by RaMP. When an axiom is indicated as de-
feasible the button turns pink and an axiom annotation is added to the ontology which
stores this information (see Figure 3).

1 http://code.google.com/p/nomor/
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Fig. 3: RaMP: Toggling defeasibility of axioms

The reasoning algorithms implemented by RaMP work in a similar way. They
compute a ranking (ordering) of the axioms in the ontology and use this ranking to
determine which axioms are more important than others in the ontology. The details
of these algorithms will are provided in Sections 3.1 and 3.2 respectively. An exam-
ple ranking is depicted below in Figure 4. The axioms appearing on the light pink
background are defeasible axioms while the others are hard.

Fig. 4: RaMP: Axiom ranking display

As an added feature of RaMP, we have also included a rudimentary facility for the
user to fine-tune the computed ranking for the ontology. Adjacent to the defeasible
toggle switch in Protégé, there is a button labelled “r” to prompt the user to enter a
numerical value representing the rank of the selected axiom. The specific numerical
value chosen does not matter. What matters is the relative ordering between these
values. If axiom ϕ has rank 1 and it is necessary for axiom ϕ′ to have a higher rank
then it does not matter whether axiom ϕ has rank 2 or 200 as long as the rank of ϕ′ is
greater than 2 or 200 respectively. The axiom ranking feature is depicted in Figure 5.

Fig. 5: RaMP: Axiom ranking feature
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5 Conclusion

We have presented a description of a Protégé plug-in which implements a preliminary
version of non-monotonic reasoning for DL-based ontologies. The plug-in provides a
mechanism for indicating defeasible information in the ontology as well as an imple-
mentation of two defeasible reasoning algorithms adapted from the work of Lehmann
and colleagues [9] in a propositional setting. The plug-in is still in the early stages of
development. We would like to introduce a more elaborate interface to facilitate bet-
ter integration with Protégé, we are also investigating potential optimizations for the
defeasible reasoning algorithms. In the future we also plan to include: (i) ABox rea-
soning; (ii) Defeasibility in other OWL constructs such as disjointness, roles and role
properties; (iii) More sophisticated reasoning tasks available in standard monontonic
systems such as Classification, Instance checking etc [1] and (iv) Other versions of
defeasible reasoning (in addition to the ones discussed here). Currently we are evalu-
ating the results reported by the algorithms implemented in the tool. The results will
be evaluated in various application domains to identify where each algorithm is most
suitable as a reasoning tool.
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those of the author and are not necessarily to be attributed to the NRF. The work of
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1 Faculty of Mathematics and Natural Science, University of Montenegro, Podgorica,
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Abstract. This paper establishes the decidability of SR⊔IQ which has
composition-based role Inclusion axioms (RIAs) of the form R1 ◦ · · · ◦
Rn⊑̇T1 ⊔ · · · ⊔ Tm. Also the consistency of an Abox A of SR⊔IQ DL
w.r.t. Rbox R is established. Motivation for this kind of RIAs comes from
applications in the field of manufactured products as well as other con-
ceptual modeling applications such as family relationships. The solution
is based on a tableau algorithm.

Keywords: Description Logic, Manufacturing system,Tableau, Composition-
based Role Inclusion Axiom.

1 Introduction

Description logic (DL) [1] has focused on extending decidability results to DLs
with more complex RIAs [6, 7, 9]. However, the logic SROIQ DL which is logi-
cal basis for the standard Ontology Web Language OWL 2 [3], does not admit
assertions which have role unions on the right hand side of RIAs. Many applica-
tions involve RIAs with role unions on the right side. For example in modeling
an engine in a car that can power wheelInCar or oilPump or generator, or all
of these, at the same time [8, 2]. This model can be described in the following
composition-based RIAs [11]:

engineInCar ◦ powers ⊑ wheelInCar ⊔ generatorInCar ⊔ oilPunInCar (1)

One can conclude that for an individual car c1 and an individual p1: if p1 is
powered by an individual engine e1 in the car c1 then p1 is an individual wheel
or a generator or an oilpump in c1. The RIA of the form (1) ca be expressed
in an extension of ALC DL with composition-based RIAs [11], but SROIQ
DL does not support such composition-based RIAs. Modeling such RIAs in the
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extensions of ACL DL considered only two roles on the left hand side of the
RIAs. This paper introduces the SR⊔IQ DL that extends SRIQ DL [5] with
composition-based RIAs of the form (2). As noted in [11] the RIA of the form
(2) are not role value-maps [10]. The logic analyzed in this paper overcomes the
following shortcomings of the logics studied in [11]:

1. Finite automata handle composition-based RIAs of the form (2).
2. Does not require a Rbox to be admissible [11],
3. Does not require all roles to be disjoint [11],
4. Allows more than two roles on the left hand side of composition-based RIAs.

The rest of the paper is organized as follows. Next section gives definition of
SR⊔IQ DL. Section 3 defines tableau for SR⊔IQ and proves decidability of
the logic. The section also gives and example of tableau for RIA of the form (2).
The last section concludes the paper.

2 Preliminaries

The alphabet of SRIQ and SR⊔IQ DL consists of set of concept names NC ,
set of role names NR, set of simple role names NS ⊂ NR and finally, a set of
individual names NI . The set of roles is NR ∪ {R−|R ∈ NR} and on this set the
function Inv(·) is defined as Inv(R) = R− and Inv(R−) = R for R ∈ NR. A
role chain is a sequence of roles w = R1R2 . . . Rn.

SR⊔IQ language is an extension of SRIQ [5], by allowing new kinds of
RIAs in role hierarchy. The syntax of the SR⊔IQ DL concepts, Rbox, Tbox
and Abox are given in definitions 1, 2 and 3 following [5].

Definition 1. Set of SR⊔IQ concepts is a smallest set such that

– every concept name and ⊤, ⊥ are concepts, and,
– if C and D are concept and R is a role, S is simple role, n is non-negative

integer, then ¬C, C ⊓D, C ⊔D, ∀R.C, ∃R.C, ∃S.Self , (≤ nS.C), (≥ nS.C)
are concepts.

A general concept inclusion axiom (GCI) is an expression of the form C⊑̇D for
two SR⊔IQ-concepts C and D. A Tbox T is a finite set of GCIs.
An individual assertion has one of the following forms: a : C, (a, b) : R, (a, b) :
¬S, or a ˙̸=b, for a, b ∈ NI (the set of individual names), a (possibly inverse) role
R, a (possibly inverse) simple role S, and a SR⊔IQ-concept C. A SR⊔IQ-Abox
A is a finite set of individual assertions.

A (composition-based) RIA is a statement of the form [11]:

R1 · · ·Rn⊑̇T1 ⊔ · · · ⊔ Tm. (2)

Without additional restrictions on RIAs, some DLs [11] with composition-
based RIAs are undecidable.
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Definition 2. Strict partial order ≺ (irreflexive, transitive, and antisymmetric),
on the set of roles, provides acyclicity [5]. Allowed RIAs in SRIQ DL with
respect to ≺, are expressions of the form w⊑̇R, where [4, 5]:

1. R is a simple role name, w = S is a simple role, and S ≺ R or S = R− or
2. R ∈ NR\NS is a role name and

w = RR, or
w = R−, or
w = S1 · · · Sn and Si ≺ R, for 1 ≤ i ≤ n, or
w = RS1 · · · Sn and Si ≺ R, for 1 ≤ i ≤ n, or
w = S1 · · · SnR and Si ≺ R, for 1 ≤ i ≤ n

A SRIQ role hierarchy is a finite set R1
h of RIAs. A SRIQ role hierarchy R1

h is
regular if there exists strict partial order ≺ such that each RIA in R1

h is allowed
with respect to ≺ [4, 5].

Definition 3. A SR⊔IQ role hierarchy is a finite set Rh = R1
h ∪ R2

h, where
R1

h is SRIQ role hierarchy and R2
h is set of RIA Ri1 · · ·Rini ⊑ Ti1 ⊔ · · · ⊔ Timi ,

and Tij are not simple roles, for i = 1, . . . , k. A SR⊔IQ role hierarchy Rh is
regular if R1

h is regular and Tij does not appear on the left hand side of RIAs in
Rh. A SR⊔IQ set of role assertions is a finite set Ra of the assertions Ref(R),
Irr(S), Sym(R), Tra(V), and Dis(T, S), where R is a role, S, T are simple
roles and V is not simple role [5]. A SR⊔IQ Rbox R = Rh ∪ Ra, where Rh is
SR⊔IQ role hierarchy and Ra is a set of role assertions.

If R1
h is regular w.r.t strict partial order ≺ then we extend ≺ such that Rij ≺ Til

hold, i = 1, . . . , k and j = 1, . . . , ni, l = 1, . . . , mi. Further, we assume that
labels, such as k, ni, mi, Til, Rij , have the same meaning as defined in definition
3.

Definition 4. The semantics of the SR⊔IQ DL is defined by using interpre-
tation. An interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set,
called the domain of the interpretation. A valuation ·I associates: every con-
cept name C with a subset CI ⊆ ∆I ; every role name R with a binary relation
RI ⊆ ∆I × ∆I and, every individual name a with an element aI ∈ ∆I [1].

Definition 5. An interpretation I extends to SR⊔IQ complex concepts and
roles according to the following semantic rules:

– If R is a role name, then (R−)I = {⟨x, y⟩ : ⟨y, x⟩ ∈ RI},
– If R1, R2,. . . , Rn are roles then (R1R2 . . . Rn)I = (R1)

I ◦(R2)
I ◦· · ·◦(Rn)I

and (R1 ⊔ R2 ⊔ . . . ⊔ Rn)I = (R1)
I ∪ (R2)

I ∪ · · · ∪ (Rn)I , where sign ◦ is a
composition of binary relations,

– If C and D are concepts, R is a role, S is a simple role and n is a non-
negative integer, then 4

⊤I = ∆I , ⊥I = ∅, (¬C)I = ∆I\CI , (C ⊓ D)I = CI ∩ DI ,
(C ⊔ D)I = CI ∪ DI , (∃R.C)I = {x : ∃y. ⟨x, y⟩ ∈ RI ∧ y ∈ CI},

4 ♯M denotes cardinality of set M .
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(∃S.Self)I = {x : ⟨x, x⟩ ∈ SI}, (∀R.C)I = {x : ∀y. ⟨x, y⟩ ∈ RI ⇒ y ∈ CI},
(≥ nS.C)I = {x : ♯{y : ⟨x, y⟩ ∈ SI , y ∈ CI} ≥ n},
(≤ nS.C)I = {x : ♯{y : ⟨x, y⟩ ∈ SI , y ∈ CI} ≤ n}.

Inference problems for SR⊔IQ are defined in standard way [5].

Definition 6. An interpretation I satisfies a RIA R1 · · · Rn⊑̇T1 ⊔ · · · ⊔ Tm, if
RI

1 ◦ · · · ◦ RI
n ⊆ T I

1 ∪ · · · ∪ T I
m. An interpretation I is model of a

– Tbox T (written I |= T ) if CI ⊆ DI for each GCI C⊑̇D in T .
– role hierarchy Rh, if it satisfies all RIAs in Rh (written I |= Rh).
– role assertions Ra (written as I |= Ra) if I |= Φ holds for each role assertion

axiom Φ ∈ Ra, where is I |= Dis(S, R) if SI ∩ RI = ∅,
I |= Sym(R) if RI is symmetric relation , I |= Tra(R) if RI is transitive
relation ,

I |= Ref(R) if RI is reflexive relation, I |= Irr(S) if RI is irreflexive
relation.

– Rbox R = ⟨Rh, Ra⟩ (written as I |= R) if I |= Rh and I |= Ra.
– Abox A (I |= A) if for all individual assertions ϕ ∈ A we have I |= ϕ, where

I |= a : C if aI ∈ CI , I |= a ˙̸=b if aI ̸= bI ,
I |= (a, b) : R if

⟨
aI , bI⟩

∈ RI , I |= (a, b) : ¬R if
⟨
aI , bI⟩

/∈ RI .

For an interpretation I, an element x ∈ ∆I is called an instance of a concept
C if x ∈ CI . An Abox A is consistent with respect to a Rbox R and a Tbox T if
there is a model I for R and T such that I |= A.

Definition 7. A concept C is called satisfiable if there is an interpretation I
with CI ̸= ∅. A concept D subsumes a concept C (written C⊑̇D) if CI ⊆ DI

holds for each interpretation. Two concepts are equivalent (written C ≡ D) if
they are mutually subsuming.

All standard inference problems for SR⊔IQ-concepts and Abox can be re-
duced [5] to the problem of determining the consistency of a SR⊔IQ-Abox w.r.t.
a Rbox, where we can assume w.l.o.g. that all role assertions in the Rbox are of
the form Dis(S, R). We call such Rbox reduced.

3 The Extension of SRIQ Tableau

Let A be a SR⊔IQ-Abox and R a reduced SR⊔IQ-Rbox and let RA be a set
of role names appearing in A and R, including their inverse, and IA is the set of
individual names appearing in A. To check whether Abox A is consistent w.r.t.
Rbox R we transform SR⊔IQ-Rbox R to SRIQ-Rbox R′ as follows:

1. For each role name R ∈ RA we define equivalence class [R] = {R} and set
[R−] = [R]−, comp([R]) = {R}, comp([R−]) = {R−},

2. For each RIA of the form Ri1 · · · Rini ⊑ Ti1 ⊔ · · · ⊔ Timi ∈ R (1 ≤ i ≤ k) we
define equivalence class [Ti1⊔· · ·⊔Timi ] = {Tj1⊔· · ·⊔Tjmj | {Ti1, . . . , Timi} =
{Tj1, . . . , Tjmj }, 1 ≤ j ≤ k} and set comp([Ti1⊔· · ·⊔Timi ]) = {Ti1, . . . , Timi}
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Mary

{∀hGm.W,∀hGm.G, ∀hGf.M, ∀hGf.B} ⊆ L(Mary)

Mary{∀hP.∀hP.(Z1 ∨ Z2)}

Parent1Z1 = (hGm, {W,G}, ∅) Parent1

Z2 = (hGf, {M,B}, ∅)

xZ1 ∨ Z2 x

{W,G} ⊆{ W,G,B,¬M}

hP

hGm

hP

Fig. 1. A part of tableau for (3) and (4)

3. We consider equivalence classes [R], previously defined, as role names which
do not appear in RA. Set of the role names is denoted with R′

A. Let’s define
R′ = {[R1] · · · [Rn]⊑̇[T1 ⊔ · · · ⊔ Tm] | R1 · · · Rn⊑̇T1 ⊔ · · · ⊔ Tm ∈ R}.

If Rbox R is regular w.r.t order ≺ then Rbox R′ is regular w.r.t ≺′ defined
as follows [R] ≺′ [S] iff R ≺ S and [Tij ] ≺′ [Ti1 ⊔ · · · ⊔ Timi ], j = 1, ..., mi,
i = 1, ..., k. Equivalence classes and order ≺′ previously defined are using for
automata construction. For the following example of RIAs R1R2 ⊑ H1 ⊔ H−

2

and S1S2 ⊑ H−
2 ⊔ H1 one should construct a nondeterministic finite automaton

(NFA) for role [H1 ⊔H−
2 ]. The automaton should accept words R1R2 and S1S2.

Namely, for every role [R] we have kept the construction of NFA B[R] based on
R′, as same as defined in [5]. For B an NFA and q a state of B, Bq denotes the
NFA obtained from B by making q the (only) initial state of B [5]. The language
recognized by NFA B is denoted by L(B).

To illustrate main idea in this paper, we use the following simple example.

Example 1. In this example we use the following abbreviations: hP = hasPare-
nt, hGm = hasGrandMother, hGf = hasGrandFather,W = Woman, M =
Man, G = Gentle,B = Blabber. We defined the following RIA:

hP ◦ hP ⊑ hGm ⊔ hGf (3)

and the individual assertion:

Mary : ∀hGm.W ⊓ ∀hGf.M ⊓ ∀hGm.G ⊓ ∀hGf.B (4)

We should decide whether x (see Fig. 1) is instance of GrandMother or
GrandFather. If x ∈ GrandMotherI then x ∈ W I , x ∈ GI . In the case of
(Mary, x) ∈ hGmI , it does not break syntax rules. Similar to this one, if x ∈
GrandFatherI then x ∈ MI , x ∈ BI and (Mary, x) ∈ hGfI hold. Meta-
labels Z1 and Z2 are using to remember the (relevant) parts of the labels in the
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node Mary which should be transferred from the node to node x (see Fig. 1).
First component in Z1 is role. The second component is the set of the concepts
{C|Mary is instance of concept ∀hGm.C}. The third component is the set of
concepts, for which Mary is instance and should be superset of the set {C|x
is instance of concept ∀hGm−.C}. Because of inverse role we need first and
third component. To choose given meta-label, we note as Z1 ∨ Z2. To recognize
path hP ◦ hP from node Mary to x we use NFA B[hGm⊔hGf ] noted as follows
∀B[hGm⊔hGf ].(Z1 ∨ Z2). �

We assume that all concepts are in negation normal form (NNF). For given
concept C0, clos(C0) is the smallest set that contains C0 and that is closed under
sub-concepts and ¬̇. We use ¬̇C for NNF of ¬C [5]. We use two sets of the label
of nodes. First set is [5]: clos(A) := ∪a:C∈Aclos(C). The second set is:
NFAclos(A,R) := {∀Bq

[R].Z| [R] ∈ R′
A and q is state in NFA B[R] and

Z =
∨

T∈comp([R])(T,ZT , ẐT ), ZT ⊆ clos(A)|T , ẐT ⊆ clos(A)|T −}, where

clos(A)|Q = {C | ∀Q.C ∈ clos(A)}.

In the proofs of decidability we use set PL(B[R]) =
{
⟨w′, q⟩ |q is a state in

B[R], (∀w′′ ∈ L(Bq
[R]))

(
w′w′′ ∈ L(B[R])

)}
. Set PL(B[R]) contains pairs of the

form (w′, q). First component w′ is prefix of a word w ∈ L(B[R]), but the second
component q is a state of automaton B[R] which can be reached if input word
for the automaton has prefix w′.

Definition 8. T = (S,L,L, E , J ) is a tableau for A with respect to R iff a) S
is non-empty set, b) L : S → 2clos(A), c) L : S → 2NFAclos(A,R), d) J : IA → S,
e) E : RA → 2S×S.
Furthermore, for all C,C1, C2 ∈ clos(A); s, t ∈S; R, S ∈ RA, and a, b ∈ IA, the
tableau T satisfies:

– (P1a) If C ∈ L(s), then ¬ C /∈ L(s) (C is atomic, or ∃R.Self),
– (P1b) ⊤ ∈ L(s), and ⊥ /∈ L(s), for all s,
– (P1c) If ∃R.Self ∈ L(s), then ⟨s, s⟩ ∈ E(R),
– (P2) if (C1 ⊓ C2) ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
– (P3) if (C1 ⊔ C2) ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),
– (P5) if ∃S.C ∈ L(s), then there is some t with ⟨s, t⟩ ∈ E(S) and C ∈ L(t),
– (P7) ⟨x, y⟩ ∈ E(R) iff ⟨y, x⟩ ∈ E(Inv(R)),
– (P8) if (≤ nS.C) ∈ L(s), then ♯ST (s, C) ≤ n,
– (P9) if (≥ nS.C) ∈ L(s), then ♯ST (s, C) ≥ n,
– (P10) if (≤ nS.C) ∈ L(s) and ⟨s, t⟩ ∈ E(S), then C∈ L(t) or ¬̇C ∈ L(t),
– (P11) if a : C ∈ A, then C ∈ L(J (a))
– (P12) if (a, b) : R ∈ A, then (J (a), J (b)) ∈ E(R),
– (P13) if (a, b) : ¬R ∈ A, then (J (a),J (b)) /∈ E(R),
– (P14) if a ˙̸=b ∈ A, then J (a) ̸= J (b),
– (P15) if Dis(R, S) ∈ R, then E(R) ∩ E(S) = ∅,
– (P16) if ⟨s, t⟩ ∈ E(R) and R ⊑∗ S, then ⟨s, t⟩ ∈ E(S),5

5 ⊑∗ is the transitive closure of ⊑ [5]
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– (P6’) ∀B[R].Z ∈ L(s), where 6 Z =
∨

Q∈comp([R])(Q,ZQ, ẐQ), ZQ = L(s)|Q =

{C|∀Q.C ∈ L(s)} and ẐQ = L(s) ∩ clos(A)|Q− , for all s ∈ S and [R] ∈ R′
A,

– (P4a’) if ∀Bp.Z ∈ L(s), ⟨s, t⟩ ∈ E(S), and p
S→ q ∈ Bp, then ∀Bq.Z ∈ L(t),

– (P4b’) if ∀Bp.Z ∈ L(s), ε ∈ L(Bp), and Z =
∨l

j=1(Qj , Zj , Ẑj) then there is

j0, such that Zj0 ⊆ L(s), L(s)|Q−
j0

⊆ Ẑj0

where in (P8) and (P9),
ST (s, C) = {t ∈ S| ⟨s, t⟩ ∈ E(S

′
), for some S

′ ∈ L(BS) and C ∈ L(t)}�.

Lemma 1. SR⊔IQ-Abox A is consistent w.r.t. R iff there exists a tableau for
A w.r.t. R.

Proof. (⇐)Let T = (S, L, L, E ,J ) be a tableau for A with respect to R. An
interpretation I = (∆I , ·I) of A and R can be defined as follows: ∆I := S,
CI := {s|C ∈ L(s)}, for a concept name C ∈ clos(A), aI := J (a) for an
individual name a ∈ IA and for a role name [Q] ∈ R′

A, R ∈ RA, we set E([Q]) :=
{⟨s0, sn⟩ ∈ ∆I ×∆I | there are s1, · · · , sn−1 with ⟨si, si+1⟩ ∈ E(Si+1), for 0 ≤ i ≤
n − 1 and S1S2 · · ·Sn ∈ L(B[Q])}, RI := {⟨x, y⟩ ∈ ∪R∈comp([Q])E([Q])|L(x)|R ⊆
L(y) and L(y)|R− ⊆ L(x)}.

We have to show that I is a model for A and R.
Next, we show that I is model for R. I |= Ra can be proved by using the same
method as in [5]. Let’s consider a RIA of the form R1 · · ·Rn⊑̇T1 ⊔· · ·⊔Tm. Let’s
⟨x0, xn⟩ ∈ (R1 · · · Rn)I . According to semantic rules, there are x1, ..., xn−1 such
that ⟨xi, xi+1⟩ ∈ RI

i+1, for i = 0, 1, ..., n−1. As roles Tij do not appear on the left

hand side of RIAs then Ri ∈ comp([Q]) only for Q = Ri i.e. RI
i ⊆ E([Ri]). This

means that there are yi0 = xi, yi1,...,yili = xi+1 such that ⟨yij , yij+1⟩ ∈ E(Sij+1)
and Si1 · · · Sili ∈ L(B[Ri+1]). According to automata construction, we have the

following: S11 · · ·S1l1S21 · · ·Snln ∈ L(B[T1⊔···⊔Tm]) so ⟨x0, xn⟩ ∈ E([T1⊔· · ·⊔Tm]).

On the other side, according to rule (P6’), the following ∀B[T1⊔···⊔Tm].Z ∈ L(x0)

holds, where Z =
∨m

j=1(Tj , ZTj
, ẐTj

). By S11 · · · Snln ∈ L(B[T1⊔···⊔Tm]) and rule

(P4a’) we have ∀Bq
[T1⊔···⊔Tm].Z ∈ L(xn) and ε ∈ L(Bq

[T1⊔···⊔Tm]). From (P4b’) we

have that there is j such that L(x0)|Tj = ZTj ⊆ L(xn) and L(xn)|T −
j

⊆ ẐTj ⊆
L(x0), i.e. ⟨x0, xn⟩ ∈ T I

j . Therefore ⟨x0, xn⟩ ∈ (T1 ⊔ · · · ⊔ Tm)I .
Secondly, we prove that I is model for A. We show that C ∈ L(s) implies

s ∈ CI for each s ∈ S and each C ∈ clos(A). Together with (P11)-(P14), this
implies that I is a model for A [5]. Consider the case C ≡ ∀R.D. For the other
cases, see [5].
Let ∀R.D ∈ L(s) and ⟨s, t⟩ ∈ RI . If R is role name then according to definition
RI there exists [Q] such that R ∈ comp([Q]), ⟨s, t⟩ ∈ E([Q]) and L(s)|R ⊆ L(t). If
R = S−, where S role name, then according to definition SI there exists role [Q]
such that S ∈ comp([Q]), ⟨t, s⟩ ∈ E([Q]) and L(s)|S− ⊆ L(t) (i.e. L(s)|R ⊆ L(t)).
In both cases we have D ∈ L(t). By induction, t ∈ DI and thus s ∈ (∀R.D)I .

6 Rules (P6), (P4a) and (P4b) in [5] are changed with rules (P6’), (P4a’) and (P4b’).
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(⇒) For the converse, suppose I = (∆I , ·I) is a model for A w.r.t. R. We
define tableau T = (S,L,L, E , J ) as follows:
S := ∆I , J (a) := aI , E(R) := RI , L(s) := {C ∈ clos(A)}|s ∈ CI}
L(s) := {∀Bq

[R].Z|(∃t ∈ ∆I)(∃w′)∀B[R].Z ∈ L1(t), ⟨w′, q⟩ ∈ PL(B[R]) and ⟨t, s⟩ ∈
(w′)I}, where L1(s) := {∀B[R].Z|Z =

∨
Q∈comp([R])(Q,L(s)|Q, L(s)∩clos(A)|Q−)}.

We have to prove that T is tableau for A w.r.t R. We restrict our attention
to the only new cases. For the other cases, see [5].
The rule (P6’) follows immediately from the definition of L1(s) and L1(s) ⊆ L(s)
(for t = s and w′ = ε).
For (P4a′), let’s ∀Bp

[R].Z ∈ L(s), ⟨s, t⟩ ∈ E(S). Assume that there is a transition

p
S→ q ∈ Bp

[R]. From definition L(s) there exists v ∈ ∆I and w′ such that

∀B[R].Z ∈ L1(v), ⟨w′, p⟩ ∈ PL(B[R]) and ⟨v, s⟩ ∈ (w′)I . Let’s w′′ = w′S then

⟨w′′, q⟩ ∈ PL(B[R]) and ⟨v, t⟩ ∈ (w′′)I , so ∀Bq
[R].Z ∈ L(t).

For (P4b’), let’s ∀Bp
[R].Z ∈ L(s), ε ∈ L(Bp

[R]), and Z =
∨l

j=1(Qj , Zj , Ẑj). By

definition L(s) there exists x ∈ ∆I and w′ such that ∀B[R].Z ∈ L1(x), ⟨w′, q⟩ ∈
PL(B[R]) and ⟨x, s⟩ ∈ (w′)I . Further, we have [R] = [Q1 ⊔ · · · ⊔ Ql], Zj =

L(x)|Qj and Ẑj = L(x) ∩ clos(A)|Q−
j
. By ε ∈ Bp

[R] we have w′ ∈ L(B[R]), so

w′I ⊆ (Q1 ⊔ · · · ⊔ Ql)
I , i.e. ⟨x, s⟩ ∈ (Q1 ⊔ · · · ⊔ Ql)

I . This means that there is j
such that ⟨x, s⟩ ∈ QI

j . By the rules of semantics and the definition of L(s), we

have Zj = L(x)|Qj ⊆ L(s) and L(s)|Q−
j

⊆ L(x) ∩ clos(A)|Q−
j

= Ẑj �.

Tableau algorithm for SR⊔IQ DL works on the completion forest on similar
manner as described in [5].

Definition 9. (Completion forest) Completion forest for a SR⊔IQ-Abox A and
a Rbox R is a labeled collection of trees G = (V, E, L, L, ˙̸=) whose distinguished
root nodes can be connected arbitrarily, where each node x ∈ V is labeled with
two sets L(x) ⊆ clos(A) and L(x) ⊆ NFAclos(A, R). Each edge ⟨x, y⟩ ∈ E is
labeled with a set L(⟨x, y⟩) ⊆ RA. Additionally, we care of inequalities between
nodes in V , of the forest G, with a symmetric binary relation ˙̸=.
If ⟨x, y⟩ ∈ E, then y is called successor of the x, but x is called predecessor of y.
Ancestor is the transitive closure of predecessor, and descendant is the transitive
closure of successor. A node y is called an R-successor of a node x if, for some
R′ with R′ ⊑∗ R, R′ ∈ L(⟨x, y⟩). A node y is called a neighbor (R-neighbor) of
a node x if y is a successor (R-successor) of x or if x is a successor (Inv(R)-
successor) of y. For S ∈ RA, x ∈ V , C ∈ clos(A) we define set SG(x,C) = {y|y
is S − neighbour of x and C ∈ L(y)}

Definition 10. A completion forest G is said to contain a clash if there is a
node x such that:

– ⊥ ∈ L(x), or
– for a concept name A, {A,¬A} ⊆ L(x), or
– x is an S-neighbor of x and ¬∃S.Self ∈ L(x), or
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– x and y are root nodes, y is an R-neighbor of x, and ¬R ∈ L(⟨x, y⟩), or
– there is some Dis(R, S) ∈ Ra and y is an R and an S-neighbor of x, or
– there exists a concept (≤ nS.C) ∈ L(x) and {y0, . . . , yn} ⊆ SG(x,C) with

yi
˙̸=yj for all 0 ≤ i < j ≤ n,

– there is ∀Bp.Z ∈ L(x), with ε ∈ L(Bp), Z =
∨l

j=1(Qj , Zj , Ẑj) and there are

no j such that L(x)|Q−
j

⊆ Ẑj.

A completion forest that does not contain a clash is called clash-free. ⊓⊔

The blocking is employed in order to have termination [5].

Definition 11. A node is called blocked if it is either directly or indirectly
blocked [5]. A node x is directly blocked if none of its ancestors are blocked,
and it has ancestors x′, y and y′ such that [5]:

– none of x′, y and y′ is a root node,
– x is a successor of x′ and y is a successor of y′, and
– L(x) = L(y) and L(x′) = L(y′), and
– L(x) = L(y) and L(x′) = L(y′), and
– L(⟨x′, x⟩) = L(⟨y′, y⟩).

In this case we say that y blocks x. A node y is indirectly blocked if one of its
ancestors is blocked [5].

The non-deterministic tableau algorithm can be described as follows:

– Input: Non-empty SR⊔IQ-Abox A and a reduced Rbox R
– Output: ”Yes” if SR⊔IQ-Abox A is consistent w.r.t. Rbox R, otherwise

”No”
– Method:

1. step: Construct completion forest G = (V, E, L, L, ˙̸=) as follows:
• for each individual a occurring in A, V contains a root node xa,
• if (a, b) : R ∈ A or (a, b) : ¬R ∈ A, then E contains an edge ⟨xa, xb⟩,
• if a ˙̸=b ∈ A, then xa

˙̸=xb is in G,
• L(xa) := {C|a : C ∈ A},
• L(xa) := ∅,
• L(⟨xa, xb⟩) := {R|(a, b) : R ∈ A} ∪ {¬R|(a, b) : ¬R ∈ A}

Go to step 2.
2. step: Apply an expansion rule (see table 1) to the forest G, while it is

possible. Otherwise, go to step 3.
3. step: If the forest G does not contain clash return ”Yes”, otherwise return

”No”.

Lemma 2. Let A be a SR⊔IQ-Abox and R a reduced Rbox. The tableau algo-
rithm terminates when started for A and R.

Lemma 3. Let A be a SR⊔IQ-Abox and R a reduced Rbox. Tableau algorithm
returns answer ”Yes” if and only if there is a tableau for A w.r.t. R.
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Table 1. Expansion rules for SR⊔IQ tableau algorithm (updated from [5])

The rules ⊓, ⊔, ∃, Self, ≤r, ≥, ≤
are defined in [5], but only in rules that create new node y should set L(y) := ∅

ch′ If x is not indirectly blocked and
there is concept C ∈ clos(A) with {C, ¬̇C} ∩ L(x) = ∅
then L(x) → L(x) ∪ {E}, for some E ∈ {C, ¬̇C}

∀′
1 If x is not indirectly blocked and it is not possible to apply ch′-rule to L(x),

and ∀B[R].Z /∈ L(x), where Z =
∨

Q∈comp([R])(Q, L(x)|Q, L(x) ∩ clos(A)|Q−)

then L(x) → L(x) ∪{∀B[R].Z}
∀′

2 If ∀Bp.Z ∈ L(x), and x is not indirectly blocked, p
S→ q ∈ Bp and

there is S-neighbor y of x with ∀Bq.Z /∈ L(y)

then L(y) → L(y)∪ {∀Bq.Z}
∀′

3 If ∀Bp.Z ∈ L(y), and y is not indirectly blocked, ε ∈ L(Bp),

Z =
∨l

j=1(Qj , Zj , Ẑj) and there is no j such that Zj ⊆ L(y) and L(y)|
Q−

j
⊆ Ẑj

then choose j such that L(y)|
Q−

j
⊆ Ẑj and L(y) → L(y) ∪ Zj .

Proof. For the if direction, suppose that the algorithm returns ”Yes”. It means
that the algorithm generated completion forest G = (V, E, L, L, ˙̸=) without clash
and there are no expansion rules (see table 1) that can be applied.

Let’s b(x) = x, if x is not blocked and b(x) = y, if y blocks node x.
A path [6] is a sequence of pairs nodes of G of the form

p = ⟨(x0, x
′
0), . . . , (xn, x′

n)⟩ . (5)

For such a path, we define Tail(p) = xn and Tail′(p) = x′
n. We denote the path

⟨
(x0, x

′
0), (x1, x

′
1), . . . , (xn, x′

n), (xn+1, x
′
n+1)

⟩
(6)

with
⟨
p|(xn+1, x

′
n+1)

⟩
. The set of Paths(G) can be defined inductively as follows:

– if x0 is root node then ⟨x0, x0⟩ ∈ Paths(G)
– if p ∈ Paths(G), z ∈ V and z is not indirectly blocked, such that ⟨Tail(p), z⟩ ∈

E, then (p, ⟨b(z), z⟩) ∈ Paths(G)

We define structure T = (S,L, L, E , J ) as follows S := Paths(G), L(p) :=
L(Tail(p)), L(p) := L(Tail(p)), if root node xa denotes individual a then J (a) =
(⟨xa, xa⟩) and E(R) := {⟨s, t⟩ ∈ S × S|t = (s, ⟨b(y), y⟩) and y is an R −
successor of Tail(s) or s = (t, ⟨b(y), y⟩) and y is an Inv(R)−successor of Tail(t)}
∪{⟨J (a), J (b)⟩ |xb is an R-neighbour of xa}.

Thus defined structure T is a tableau. New rules (P6’), (P4a’) directly follows
from ∀′

1 and ∀′
2 rule, but (P4b’) follows from ∀′

3 and definition of clash (see
definition (10)). For the other cases, see [6].

For the only-if direction, the proof is the same as proof in [4, 5] (i.e., we take
a tableau and use it to steer the application of the non-deterministic rules).�

From Theorem 1 in [5] and Lemmas 1, 2 and 3, we thus have the following
theorem:
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Theorem 1. The tableau algorithm decides satisfiability and subsumption of
SR⊔IQ-concepts with respect to Aboxes, Rboxes, and Tboxes.

4 Conclusion

It is important to note that original idea of extension ALC DL with composition-
based RIAs is presented in [11]. We introduce more expressive formalism that
allows composition-based RIAs and relaxed restrictions defined in [11]. Moti-
vated by practical applications in manufacturing engineering we define tableau
algorithm in order to check satisfiability of SR⊔IQ DL. Future research will be
focused on how to extend regularity conditions for SROIQ DL in order to sup-
port composition-based RIAs as well as at the same time support RIAs proposed
in [9]. We use the algorithm proposed in this paper for modeling the regulations
of capital adequacy of credit institutions.
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Optimising Parallel ABox Reasoning of EL Ontologies⋆
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Abstract. The success of modern multi-core processors makes it possible to de-
velop parallel ABox reasoning algorithms to facilitate efficient reasoning on large
scale ontological data sets. In this paper, we extend a parallel TBox reasoning
algorithm for ELHR+ to a parallel ABox reasoning algorithm for ELH⊥,R+,
which also supports the bottom concept so as to model disjointness and incon-
sistency. In design of algorithms, we exploit the characteristic of ABox reason-
ing in ELH⊥,R+ to improve parallelisation and reduce unnecessary resource
cost. Particularly, we separate the TBox reasoning, ABox reasoning on types and
ABox reasoning on relations. Our evaluation shows that a naive implementation
of our approach can compute all ABox entailments of a Not-Galen− ontology
with about 1 million individuals and 9 million axioms in about 3 minutes.

1 Introduction

Optimisation of reasoning algorithms is one of the core research topics in description
logic (DL) study. In the last decades, highly-efficient DL reasoning systems have been
implemented with different optimisation technologies. So far, these systems are de-
signed for a single computation core. Reasoning is performed sequentially and can not
be parallelised. With the development of modern computing hardware, it is possible and
also desired to parallelise reasoning procedures to improve efficiency and scalability.

One direction of parallel reasoning is to use a cluster of multiple computer nodes
(or simply, peers). In Marvin [9], peers use a divide-conquer-swap strategy for RDFS
inference. Weaver and Handler propose a parallel RDFS inference engine [18], in which
peers use an ABox partitioning approach. In SAOR [2], peers use optimised template
rules for join-free inference in pD* [3]. In DRAGO [13], peers perform OWL DL rea-
soning under the setting of Distributed Description Logics. A distributed resolution
algorithm for ALC was proposed by Schlicht and Stuckenschmidt [11] and further im-
proved and extended to ALCHIQ [12]. MapReduce has also been adopted to support
ABox reasoning in RDFS [17], pD* [16] as well as justifications in pD* [19], and TBox
reasoning in EL+ [7] (there is no implementation for the EL+ case yet).

Another direction of parallel reasoning is to use multiple computation cores (or
simply, workers) in a single computer. Soma and Prasanna [14] propose to use data-
partitioning and rule-partitioning in their parallel algorithms for pD*. Liebig and Müller
exploit the non-determinism introduced by disjunctions or number restrictions in the
SHN tableau algorithm [6], so that multiple workers can apply expansion rules on

⋆ This paper is an extended version of “Parallel ABox Reasoning of EL Ontologies” [10].
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independent alternatives. Similarly, Meissner [8] proposes parallel expansions of inde-
pendent branchings in an ALC tableau and experimented with 3 different strategies.
Aslani and Haarslev [1] propose a parallel algorithm for OWL DL classification. Re-
cently, Kazakov et al. [4] present a lock-free parallel completion-based TBox classifi-
cation algorithm for ELHR+. They later extend this work to support nominals [5] but
the impact on parallelisation has not been reported.

In this paper, we extend the parallel TBox reasoning algorithm [4] for ELHR+ to
a parallel and lock-free ABox reasoning algorithm for ELH⊥,R+, which also supports
the bottom concept so as to model disjointness and inconsistency. We will optimise the
parallelisation by separating TBox classification, the computation of types and relations
for individuals. We show that our completion rules and algorithms are complete and
sound. Our evaluation shows that a naive implementation of our approach can achieve
high performance and scalability. Comparing to the original version [10], this paper
extends with new optimisations (particularly, Sect. 4.2 and Sect. 4.3) and evaluation
regarding ABox reasoning.

The remainder of the paper is organised as follows: In Sect. 2 we introduce back-
ground knowledge of DLs ELHR+ and ELH⊥,R+, and the parallel ELHR+ TBox
classification algorithm [4]. In Sect. 3 we explain the technical challenges , before pre-
senting the completion rules and parallel ABox reasoning algorithms for ELH⊥,R+ in
Sect. 4. We evaluate our approach in Sect. 5, before we conclude the paper in Sect. 6.

The proof of all lemmas and theorems are included in our online tech report at
http://www.box.com/s/3636a703614b65f6cdba.

2 Preliminary

2.1 DL ELHR+ and ELH⊥,R+

A signature of an ontologyO is a triple ΣO = (CNO,RNO, INO) consisting of three
mutually disjoint finite sets of atomic concepts CNO, atomic rolesRNO and individu-
als INO. Given a signature, complex concepts in ELH⊥,R+ can be defined inductively
using the ELH⊥,R+ constructors as in Table 1. ELHR+ supports all ELH⊥,R+ con-
structors except ⊥. Two concepts C and D are equivalent if they mutually include each
other, denoted by C ≡ D. An ontologyO = (T ,A) consists of a TBox T and an ABox
A, which are finite sets of TBox axioms and ABox axioms, respectively. ELH⊥,R+ al-
lows all axioms listed in Table 1. ELHR+ allows all except individual inequalities. The
semantics of constructors and axioms are also listed in Table 1. Given an ontology O,
we use ⊑∗

O to represent the reflexive transitive closure of RIs. It is easy to see that in
an ELHR+/ ELH⊥,R+ ontologyO, all of such⊑∗

O relations can be computed in poly-
nomial time w.r.t. the size of O. In ABox reasoning, we are particularly interested in
ABox materialisation, i.e. finding all A(a) s.t. a ∈ INO, A ∈ CNO, O |= A(a) and
all r(a, b) s.t. a, b ∈ INO, r ∈ RNO andO |= r(a, b). Such results can be very useful
for efficient on-line instance retrieval and/or query answering.

2.2 Parallel TBox Classification of ELHR+ Ontologies
Given an ontology O, TBox classification is a reasoning task that computes all inclu-
sions over atomic concepts in O. Kazakov et. al [4] proposed an approach to parallel
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Table 1. ELH⊥,R+ syntax and semantics

Concepts:
atomic concept A AI

top ⊤ ∆I

bottom ⊥ ∅
conjunction C ⊓ D CI ∩ DI

existential restriction ∃r.C {x|∃y.⟨x, y⟩ ∈ rI and y ∈ CI}
Roles:

atomic role r rI

TBox Axioms:
general concept inclusion (GCI): C ⊑ D CI ⊆ DI

role inclusion (RI): r ⊑ s rI ⊑ sI

role transitivity: Trans(t) tI × tI ⊆ tI

ABox Axioms:
class assertion: A(a) aI ∈ AI

role assertion: r(a, b) ⟨aI , bI⟩ ∈ rI

individual equality: a
.
= b aI = bI

individual inequality: a ˙̸=b aI ̸= bI

TBox classification for ELHR+. They devise a set of completion rules as follows.

R⊑
C ⊑ D

C ⊑ E
: D ⊑ E ∈ O R−

⊓
C ⊑ D1 ⊓D2

C ⊑ D1; C ⊑ D2

R+
⊤

C ⊑ C

C ⊑ ⊤ : ⊤ occurs in O R−
∃

C ⊑ ∃R.D

D ⊑ D

R+
⊓

C ⊑ D1, C ⊑ D2

C ⊑ D1 ⊓D2
: D1 ⊓D2 occurs in O

R+
∃

C ⊑ D

∃s.C → ∃s.D : ∃s.D occurs in O

RH
D ⊑ ∃r.C, ∃s.C → E

D ⊑ E
: r ⊑∗

O s

RT
D ⊑ ∃r.C, ∃s.C → E

∃t.D → E
: r ⊑∗

O t ⊑∗
O s, Trans(t) ∈ O

In the above rules, D → E denotes the special form of GCIs where D and E are
both existential restrictions. Given an ELHR+ ontology O that has no ABox, these
rules infer C ⊑ D iffO |= C ⊑ D for all C and D such that C ⊑ C ∈ S and D occurs
in O [4, Theorem 1], where S is the set of axioms closed under the above rules. The
completion rules are designed in a way that all premises of each rule have a common
concept (the concept C in each rule), which is called a context of the corresponding
premise axiom(s). Each context maintains a queue of axioms called scheduled, on which
some completion rule can be applied, and a set of axioms called processed, on which
some completion rule has already been applied. An axiom can only be included in the
scheduled queues and/or processed sets of its own contexts. To ensure that multiple
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workers can share the queues and sets without locking them, they further devised a
concurrency mechanism, in which: (i) each worker will process a single context at a
time and vice versa; (ii) the processing of all axioms in the scheduled queue of a context
requires no axioms from the processed sets of other contexts. To realise all these, all
contexts with non-empty schedules are arranged in a queue called activeContexts. A
context can be added into the activeContexts queue only if it is not already in the queue.

Here are the key steps of the parallel TBox algorithm:

1. Tautology axiom A ⊑ A for each A ∈ CNO is added to the scheduled queue of A.
All active contexts are added into the queue of activeContexts.

2. Every idle worker always looks for the next context in the activeContexts queue
and processes axioms in its scheduled queue.
(a) Pop an axiom from the scheduled queue, add it into the processed set of the

context.
(b) Apply completion rules to derive conclusions.
(c) Add each derived conclusion into the scheduled queue of its corresponding

context(s), which will be activated if possible.

Before we extend the parallel TBox reasoning algorithm to support ABox reasoning
in Sect. 4, we first discuss the challenges to deal with in parallel ABox reasoning.

3 Technical Challenges: Parallel ABox Reasoning

A naive approach to ABox materialisation is to internalise the entire ABox into TBox
(i.e., converting assertions of form C(a) into {a} ⊑ C, and R(a, b) into {a} ⊑ ∃R.{b})
and treat the internalised “nominals” as atomic concepts with TBox classification rules.
This is inefficient due to unnecessary computation and maintenance costs. For example,
axiom {a} ⊑ ∃r.C has C as a context. Thus once derived, it will be maintained in
the processed set of C, as a possible left premise of Rule RH and/or RT . However,
ELH⊥,R+ does not support nominals, meaning that any corresponding right premise
∃s.C → E can always be computed independently from (or before) the derivation of
{a} ⊑ ∃r.C. Therefore it is unnecessary to maintain {a} ⊑ ∃r.C in context C because
with all possible right premises pre-computed, it can be directly used to trigger all rules.

Even with TBox and ABox reasoning separated, performance and scalability can
still be improved: (1) The computation of relations in ELH⊥,R+ is independent from
the computation of types (Lemma 2). Thus when crafting type reasoning rules, rela-
tions can be used as side conditions instead of premises. (2) Among all the relations
that can be entailed by an ELH⊥,R+ ontology, some can be trivially computed and
do not contribute to type computation. These relations can be easily recovered in re-
trieval (Lemma 3). (3) Without individual equality, the computation of relations in
ELH⊥,R+ can be perfectly parallelised on an individual basis. This indicates that when
computing relations, the concurrency mechanism can be simplified. As we will show,
we no longer need to maintain the scheduled queue and this improves scalability and
performance.

The above optimisations are related to the design of completion rules. For further
optimisation on the execution of algorithms, we refer readers to our original paper [10].
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4 Approach

4.1 TBox Completion Rules

We first extend the ELHR+ TBox completion rules to support the bottom concept:

R⊥
D ⊑ ∃r.C,C ⊑ ⊥

D ⊑ ⊥

In what follows, we call the set containing the above rule and the ELHR+ rules in
Sect. 2.2 the R rule set, which is sound and complete for ELH⊥,R+ classification:

Lemma 1. For an ELHR+ TBox O, let S be any set of TBox axioms closed under the
R rule set, using O axioms as side conditions, and ⊥ ⊑ ⊥ ∈ S if ⊥ occurs in O. Then
for any C and D such that C ⊑ C ∈ S, D occurs in O, we have O |= C ⊑ D iff
C ⊑ D ∈ S or C ⊑ ⊥ ∈ S.

The← direction is trivial. The→ direction can be proved with contrapositive. As-
suming there are X ⊑ X ∈ S and Y occurs in O s.t. X ⊑ Y /∈ S and X ⊑ ⊥ /∈ S, we
construct a model of O based on S and shows that this model does not satisfy X ⊑ Y .

With the R rules we can perform TBox reasoning:

Definition 1. (TBox Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontology,
its TBox completion closure, denoted by ST , is the smallest set of axioms closed under
rule set R, using O axioms as side conditions, such that: for all A ∈ CNO, A ⊑ A ∈
ST ; ⊥ ⊑ ⊥ ∈ ST if ⊥ occurs in O.

According to Lemma 1, we have A ⊑ C ∈ ST or A ⊑ ⊥ ∈ ST for any A and C
where A is an atomic concept and C occurs in T . This realises TBox classification.

4.2 Relation Completion Rules

As we pointed out in Sect. 3, relations can be computed independently from types. This
is characterised by the following lemma.

Lemma 2. Let O = (T ,A) be an ELH⊥,R+ ontology and At ⊆ A be the set of all
class assertions. Then O is inconsistent, or for all r ∈ RNO, a, b ∈ INR, we have
O |= r(a, b) iff O \ At |= r(a, b).

Now we present the ABox completion rules for ELH⊥,R+. Although ELH⊥,R+

does not support nominals ({a}), we still denote individuals with nominals since this
helps simplify the presentation: (i) ABox rules are more readable, as they have similar
syntactic forms to the TBox ones, and (ii) some of the ABox rules can be unified. More
precisely, we establish the following mappings as syntactic sugar:

C(a)⇔ {a} ⊑ C, a
.
= b⇔ {a} ≡ {b},

a ˙̸=b⇔ {a} ⊓ {b} ⊑ ⊥, r(a, b)⇔ {a} ⊑ ∃r.{b},
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Obviously, these mappings are semantically equivalent. In the rest of the paper,
without further explanation, we treat the LHS and RHS of each of the above mappings
as a syntactic variation of each other.

We first present the relation completion rules as follows:

ARR
H
{b} ⊑ ∃r.{a}
{d} ⊑ ∃r.{c} : {a} ⊑ {c}, {d} ⊑ {b} ∈ A

ARR
T
{b} ⊑ ∃r.{a}
{c} ⊑ ∃s.{a} : {c} ⊑ ∃t.{b} ∈ A, r, t ⊑∗

O s, Trans(s) ∈ O

It is worth noting that (1) without individual equality, the ARR
H rule is not needed,

rendering the ARR
T rule perfectly parallelisable. This is an important property because

in ELH⊥,R+ ontologies, individual equality can be easily eliminated by pre-computing
equal individuals and using one of them as a representative; (2) relation computation is
also independent from TBox completion. We call the reasoning results with the above
rules the relation completion closure:

Definition 2. (Relation Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontol-
ogy, its relation completion closure, denoted by SR, is the smallest set of axioms closed
under the rules ARR

H and ARR
T , usingO axioms as side conditions, such that ST ⊆ SR

and A \ At ⊆ SR (axioms mapped as elaborated before), where At ⊆ A is the set of
all class assertions.

The soundness and tractability of relation completion closure is quite obvious. Its com-
pleteness can be characterised by the following lemma.

Lemma 3. For any ELH⊥,R+ ontology O, let SR be its relation completion closure,
then O is inconsistent, or O |= r(a, b) only if {a} ⊑ ∃s.{b}, s ⊑∗

O r ∈ SR for
r ∈ RNO.

4.3 Type Completion Rules

Now we present the other ABox completion rules as follows, which should be applied
after a complete closure SR is constructed. In contrast to the R rules, the following
rules contain concepts D(i) and E that can take multiple forms including nominals.
Thus the mapping between ABox and TBox axioms allows us to describe the rules in a
more compact manner. Together with the above two relation completion rules, we call
all the ABox completion rules the AR rules.

The AR rules deserve some explanations: There are clear correspondences between
the R rules and AR rules. For example, AR⊑ is an ABox counterpart of R⊑ except that
the context is explicitly a nominal, and TBox results are used as side conditions. Note
that directly applying the R rules together with the AR rules could introduce unnec-
essary performance overheads such as axiom scheduling, processing and maintenance
as we discussed in Sect. 3. In our approach, we separate TBox reasoning, ABox rela-
tion computation and ABox type computation. This helps reduce memory usage and
computation time.
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AR⊑
{a} ⊑ D

{a} ⊑ E
: D ⊑ E ∈ SR ∪ A

AR∗
H
{a} ⊑ ∃r.D
{a} ⊑ E

: ∃s.D → E ∈ SR, r ⊑∗
O s

AR∗
T

{a} ⊑ ∃r.D
∃t.{a} → E

: ∃s.D → E ∈ SR, r ⊑∗
O t ⊑∗

O s, Trans(t) ∈ O

AR−
⊓
{a} ⊑ D1 ⊓D2

{a} ⊑ D1; {a} ⊑ D2

AR+
⊓
{a} ⊑ D1, {a} ⊑ D2

{a} ⊑ D1 ⊓D2
: D1 ⊓D2 occurs in O

AR+
∃

{a} ⊑ D

∃s.{a} → ∃s.D : r ⊑∗
O s,∃r.D occurs in O

AR⊥
{a} ⊑ ⊥
{b} ⊑ ⊥ : {b} ⊑ ∃r.{a} ∈ SR

AR∗
⊥
{a} ⊑ ∃r.D
{a} ⊑ ⊥ : D ⊑ ⊥ ∈ SR

ARH
∃s.{a} → E

{b} ⊑ E
: r ⊑∗

O s, {b} ⊑ ∃r.{a} ∈ SR

ART
∃s.{a} → E

∃t.{b} → E
: r ⊑∗

O t ⊑∗
O s, Trans(t) ∈ O, {b} ⊑ ∃r.{a} ∈ SR,

Now we defined the closure of applying all the rules:

Definition 3. (Ontology Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontol-
ogy, its ontology completion closure, denoted by S, is the smallest set of axioms closed
under the AR rule set, withO axioms as side conditions, such thatSR ⊆ S;A ⊆ S (ax-
ioms mapped as elaborated at the beginning of this section); and for all a ∈ INO,
{a} ⊑ {a} ∈ XO, and {a} ⊑ ⊤ if ⊤ occurs in O.

Together the AR rules are also complete, sound and tractable. The soundness and
tractability of rules are quite obvious. The completeness on ABox materialisation can
be shown by the following Theorem:

Theorem 1. For any ELH⊥,R+ ontology O = (T ,A), we have either there is some
{x} ⊑ ⊥ ∈ S, or

1. O |= D(a) only if {a} ⊑ D ∈ S for D occurs in O;
2. O |= r(a, b) only if {a} ⊑ ∃s.{b}, s ⊑∗

O r ∈ S for r ∈ RNO.

The result regarding roles is quite obvious due to Lemma 3 and item 1 in Def. 3.
The type part can be proved by contrapositive. Assuming there is no {x} ⊑ ⊥ ∈ S, it’s
obvious that the TBox T has a model. We can construct such a model based on ST and
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shows that it can be extended to a model of O based on S, such that this model entails
a said class assertion only if it is in S. Full proof can be found in our technical report.

As we can see, the AR rules also preserve the feature that all premises of each rule
have a same common part as the context. Therefore, they still enjoy the lock-free feature
in reasoning. In later sections, we will further elaborate this point.

4.4 Parallel Algorithms

In this section, we present the parallel algorithm corresponding to the ELH⊥,R+ com-
pletion rules. We reuse some notions such as context, activeContexts queue, scheduled
queue and processed set from the original TBox algorithm for ELHR+ [4] to realise
the lock-free mechanism. Axioms are indexed w.r.t. corresponding contexts.

The revised saturation algorithm (Algorithm 1) is presented as follows. The satura-
tion of an ontology is realised by first performing saturation of the non-class assertion
axioms, the output of which (i.e., SR) is then used in the saturation of the class asser-
tions. This yields S, which satisfies Theorem 1. This result contains all entailed class
assertions, and all role assertions can be easily retrieved. All necessary tautology axioms
must be added to the input prior to saturation. For TBox, we add axioms of the form
C ⊑ C for all concepts C such that C ∈ CNO ∪ {⊥}. Similarly, for type computation
we add {a} ⊑ {a} for all individuals a ∈ INO.

Algorithm 1: saturate(input): saturation of axioms under inference rules
Input: input (the set of input axioms)
Result: the saturation of input is computed in context.processed

1 activeContexts← ∅;
2 axiomQueue.addAll(input);
3 loop
4 axiom← axiomQueue.pop();
5 if axiom = null then break;
6 for context ∈ getContexts(axiom) do
7 context.scheduled.add(axiom);
8 activeContexts.activate(context);

9 loop
10 context← activeContexts.pop();
11 if context = null then break;
12 loop
13 axiom← context.scheduled.pop();
14 if axiom = null then break;
15 process (axiom);

16 context.isActive← false;
17 if context.scheduled ̸= ∅ then activeContexts.activate(context);

In the saturation (Algorithm 1), the activeContexts queue is initialised with an
empty set (line 1), and then all input axioms are added into an axiomQueue (line 2).
After that, two main loops (lines 3-8 and lines 9-17) are sequentially parallelised.
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In the first main loop, multiple workers independently retrieve axioms from the ax-
iomQueue (line 4), then get the contexts of the axioms (line 6), add the axioms into cor-
responding scheduled queues (line 7) and activate the contexts. In the second main loop,
multiple workers independently retrieve contexts from the activeContexts queue (line
10) and process its scheduled axioms (line 15). Once context.scheduled is empty,
context.isActive is set to false (line 16). A re-activation checking is performed (line
17) in case other workers have added new axioms into context.scheduled while the last
axiom is being processed (between line 14 and line 16). This procedure will continue
until the activeContexts queue is empty.

The getContext() method returns the context of an axiom, depending on the form
of the axiom. In the following list, the concept C or {a} is the context.

C ⊑ D | D ⊑ ∃r.C | ∃s.C → E | D ⊑ ∃r.{a} | {a} ⊑ D

To activate a context, an atomic boolean value isActive is associated with each
context to indicate whether the context is already active. A context is added into the
activeContexts queue only if this value is false, which will be changed to true at the
time of activation. The process() method covers items 2.(a), 2.(b), 2.(c) shown at the
end of Sect. 2.2. We match the form of input axiom and check whether it has been pro-
cessed before; if not it will be added into the processed set of the context. Based on the
form of axiom, applicable completion rules can be determined. Meanwhile, checking
if the conclusion is already in corresponding context’s processed set can be performed.
Once a completion rule has been applied, the conclusion axioms and their forms are
determined. Once a conclusion is derived, its contexts and whether they are definitely
the same as the current context are determined. The conclusion axioms can directly be
added into corresponding scheduled queues.

5 Evaluation

We implemented our algorithms in our PEL reasoner (written in JAVA). To evaluate
its performance we use the Amazon Elastic Computer Cloud (EC2) High-Memory
Quadruple Extra Large Instance. It has 8 virtual cores with 3.25 EC2 units each, where
each EC2 unit “provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor”. The instance has 60 GB memory allocated to JVM. Our
test cases include a real world TBox NotGalen with generated ABox. NotGalen− is
extracted from an earlier version of Galen (http://www.opengalen.org/) by removing
functional role assertions. It contains a moderate-size TBox with 2748 classes, 413
roles and no ABox. To populate the ontology we use the SyGENiA system [15] to gen-
erate ABoxes for a small part of the Galen ontology and combine the generated ABoxes
of different sizes with the NotGalen− TBox. In this way, we have test ontologies with
larger and larger number of individuals, denoted by NGS-1, NGS-5, NGS-10 etc. Such
ABoxes are not completely random because, as generated by SyGENiA, they cover ax-
ioms that can lead to all possible sources of incompleteness w.r.t. a TBox and certain
query (in our evaluation, we query for instances of PlateletCountProcedure). Being
able to handle such ABoxes means that the reasoner won’t miss any result when dealing
with any real-world ABoxes.
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For each ontology, we perform ABox materialisation. Note that not all the relations
have to be computed in reasoning, but only the necessary ones as indicated in Theo-
rem 1. Nevertheless all relations can be retrieved very easily if needed. Results of our
implementation PEL are presented in Table 2. The time shown in our evaluation is the
overall computation time. Time unit is second.

Table 2. Results of PEL (in sec) for scalability tests

Ontology |IN | |A| 1 worker 2 workers 4 workers 6 workers
NGS-1 4309 8000 1.378 0.931 0.789 0.733
NGS-5 62639 119852 4.97 4.108 3.746 3.709
NGS-10 211244 437542 16.276 14.196 7.867 6.634
NGS-20 596616 1642664 60.314 52.381 53.559 36.599
NGS-30 865790 3541822 127.517 87.141 83.855 81.964
NGS-40 970925 6036497 180.494 148.802 101.614 105.231
NGS-50 995932 9024356 247.547 204.713 192.055 201.127

From the comparison between different numbers of workers in Table 2 we can see
that multiple parallel workers can indeed improve the reasoning performance, even
when the ontology contains complex TBox and very large number of individuals. In
general, the performance improves when more and more workers are used. With more
than 4 workers, the performance may decrease on very large ABoxes. We believe one
of the potential reasons is that although the CPU cores can work in parallel, the RAM
bandwidth is limited and RAM access is still sequential. In relatively “light-weight”
ABox reasoning with large ABox, the RAM access will be enormous and very often so
that multiple workers will have to compete for RAM access. This makes memory I/O
a potential bottleneck of parallelisation and wastes CPU cycles. Another potential rea-
soner is that with such a large Jave heapsize, the memory management of the JVM will
take quite some time. A better management of memory will be an important direction
of our future work.

6 Conclusion

In this paper we extended early related work to present a parallel ABox reasoning ap-
proach to ELH⊥,R+ ontologies. We proposed new completion rules to improve effi-
ciency and scalability of parallel ABox reasoning, and showed that they are complete
and sound for ABox reasoning. Our evaluation shows that ABox reasoning can benefit
from parallelisation, even for very large ABoxes. In future, We would like to continue
the work in two directions. One is to develop distributed algorithms so that the memory
cost can also be distributed. The other is to develop target-driven materialisation instead
of full materialisation to reduce memory cost.
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Abstract. We apply the distribution semantics for probabilistic ontolo-
gies (named DISPONTE) to the Datalog+/- language. In DISPONTE
the formulas of a probabilistic ontology can be annotated with an epis-
temic or a statistical probability. The epistemic probability represents a
degree of confidence in the formula, while the statistical probability con-
siders the populations to which the formula is applied. The probability of
a query is defined in terms of finite set of finite explanations for the query,
where an explanation is a set of possibly instantiated formulas that is
sufficient for entailing the query. The probability of a query is computed
from the set of explanations by making them mutually exclusive.
We also compare the DISPONTE approach for Datalog+/- ontologies
with that of Probabilistic Datalog+/-, where an ontology is composed of
a Datalog+/- theory whose formulas are associated to an assignment of
values for the random variables of a companion Markov Logic Network.

1 Introduction

Many authors recognize that representing uncertain information is important
for the Semantic Web [18, 12] and recently this was also the topic for a series
of workshops [6]. Ontologies are a fundamental component of the Semantic Web
and Description Logics (DLs) are often the languages of choice for modeling
ontologies. Lately much work has focused on developing tractable DLs, such as
the DL-Lite family [5], for which answering conjunctive queries is in AC0 in data
complexity.

In a related research direction Cal̀ı et al. [3] proposed Datalog+/-, a variant
of Datalog for defining ontologies. Datalog+/- is able to express the languages
of the DL-Lite family [2]. Probabilistic Datalog+/- [9, 8] has been proposed for
representing uncertainty in Datalog+/-. In this approach an ontology is com-
posed of a Datalog+/- theory and a Markov Logic Network (MLN) [15] and
each Datalog+/- formula is associated to an assignment of values to (a subset
of) the random variables that are modeled by the MLN. This assignment, called
scenario, controls the activation of the formulas: they hold only in worlds where
the scenario is satisfied.

In the field of logic programming, the distribution semantics [17] has emerged
as one of the most effective approaches for integrating logic and probability and
underlies many languages such as PRISM [17], ICL [14], Logic Programs with
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Annotated Disjunctions [19] and ProbLog [7]. In this semantics the clauses of a
probabilistic logic program contain alternative choices annotated with probabil-
ities. Each grounding of a probabilistic clause represents a random variable that
can assume a value from the finite set of alternatives. In order to compute the
probability of a query, its explanations have to be found, where an explanation is
a set of choices that ensure the entailment of the query. The set of explanations
must be covering, i.e., it must represent all possible ways of entailing the query.
The probability is computed from a covering set of explanations by solving a
disjoint sum problem, either using an iterative splitting algorithm [14] or Binary
Decision Diagrams [11, 16].

In this paper we apply the distribution semantics to ontological languages
and, in particular, to Datalog+/-. We call the approach DISPONTE for “DIs-
tribution Semantics for Probabilistic ONTologiEs” (Spanish for “get ready”).
The idea is to annotate formulas of a theory with a probability. We consider two
types of probabilistic annotation, an epistemic type, that represents a degree
of belief in the formula as a whole, and a statistical type, that considers the
populations to which the formula is applied. While in the first case the choice
is whether to include or not a formula in an explanation, in the latter case the
choice is whether to include instantiations of the formula for specific individuals.
The probability of a query is again computed from a covering set of explanations
by solving the disjoint sum problem.

The paper is organized as follows. Section 2 provides some preliminaries on
Datalog+/-. Section 3 presents DISPONTE while Section 4 describes related
work. Section 5 concludes the paper.

2 Datalog+/-

Let us assume (i) an infinite set of data constants ∆, (ii) an infinite set of labeled
nulls ∆N (used as “fresh” Skolem terms) and (iii) an infinite set of variables ∆V .
Different constants represent different values (unique name assumption), while
different nulls may represent the same value. We assume a lexicographic order
on ∆∪∆N , with every symbol in ∆N following all symbols in ∆. We denote by
X vectors of variables X1, . . . , Xk with k ≥ 0. A relational schema R is a finite
set of relation names (or predicates). A term t is a constant, null or variable. An
atomic formula (or atom) has the form p(t1, . . . , tn), where p is an n-ary predicate
and t1, . . . , tn are terms. A database D for R is a possibly infinite set of atoms
with predicates from R and arguments from ∆∪∆N . A conjunctive query (CQ)
over R has the form q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of
atoms having as arguments variables X and Y and constants (but no nulls). A
Boolean CQ (BCQ) over R is a CQ having head predicate q of arity 0 (i.e., no
variables in X).

We often write a BCQ omitting the quantifiers. Answers to CQs and BCQs
are defined via homomorphisms, which are mappings µ : ∆ ∪∆N ∪∆V → ∆ ∪
∆N∪∆V such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆∪∆N ,
and (iii) µ is naturally extended to term vectors, atoms, sets of atoms, and
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conjunctions of atoms. The set of all answers to a CQ q(X) = ∃YΦ(X,Y) over
a database D, denoted q(D), is the set of all tuples t over ∆ for which there
exists a homomorphism µ : X ∪Y → ∆ ∪∆N such that µ(Φ(X,Y)) ⊆ D and
µ(X) = t. The answer to a BCQ q over a database D is Yes, denoted D |= q, iff
q(D) 6= ∅.

A tuple-generating dependency (or TGD) F is a first-order formula of the form
∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are conjunctions of
atoms over R, called the body and the head of F , respectively. Such F is satisfied
in a database D for R iff, whenever there exists a homomorphism h such that
h(Φ(X,Y)) ⊆ D, there exists an extension h′ of h such that h′(Ψ(X,Z)) ⊆ D.
We usually omit the universal quantifiers in TGDs. A TGD is guarded iff it
contains an atom in its body that involves all variables appearing in the body.

Query answering under TGDs is defined as follows. For a set of TGDs T on
R and a database D for R, the set of models of D given T , denoted mods(D,T ),
is the set of all (possibly infinite) databases B such that D ⊆ B and every
F ∈ T is satisfied in B. The set of answers to a CQ q on D given T , denoted
ans(q,D, T ), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,T ).
The answer to a BCQ q over D given T is Yes, denoted D ∪ T |= q, iff B |= q
for all B ∈ mods(D,T ).

A Datalog+/- theory may contain also negative constraints (or NC), which
are first-order formulas of the form ∀XΦ(X)→ ⊥, where Φ(X) is a conjunction
of atoms (not necessarily guarded). The universal quantifiers are usually left
implicit.

Equality-generating dependencies (or EGDs) are the third component of a
Datalog+/- theory. An EGD F is a first-order formula of the form ∀XΦ(X) →
Xi = Xj , where Φ(X), called the body of F and denoted body(F ), is a conjunction
of atoms, and Xi and Xj are variables from X. We call Xi = Xj the head of F ,
denoted head(F ). Such F is satisfied in a database D for R iff, whenever there
exists a homomorphism h such that h(Φ(X)) ⊆ D, it holds that h(Xi) = h(Xj).
We usually omit the universal quantifiers in EGDs. An EGD F on R of the
form Φ(X) → Xi = Xj is applicable to a database D for R iff there exists a
homomorphism η : Φ(X)→ D such that η(Xi) and η(Xj) are different and not
both constants. If η(Xi) and η(Xj) are different constants in ∆, then there is
a hard violation of F . Otherwise, the result of the application of F to D is the
database h(D) obtained from D by replacing every occurrence of a non-constant
element e ∈ {η(Xi), η(Xj)} in D by the other element e′ (if e and e′ are both
nulls, then e precedes e′ in the lexicographic order).

Example 1. Let us consider the following ontology for a real estate information
extraction system, a slight modification of the one presented in [9]:

F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)
If X is annotated as a label, as a price, and is visible, then it is a price element.

F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)
If X is annotated as a label, as a price range, and is visible, then it is a price
element.

F3 = priceElem(E), group(E,X)→ forSale(X)
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If E is a price element and is grouped with X, then X is for sale.

F4 = forSale(X)→ ∃Pprice(X,P )

If X is for sale, then there exists a price for X.

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)

If X has postal code C, and C’s location is L, then X’s location is L.

F6 = hasCode(X,C)→ ∃LcodeLoc(C,L), loc(X,L)

If X has postal code C, then there exists L such that C has location L and so
does X.

F7 = loc(X,L1), loc(X,L2)→ L1 = L2

If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X,L)→ advertised(X)

If X has a location L then X is advertised.

Suppose we are given the database

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown)

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)

The atomic BCQs priceElem(e1), forSale(prop1) and advertised(prop1) eval-
uate to true, while the CQ loc(prop1, L) has answers q(L) = {summertown}.
In fact, even if loc(prop1, z1) with z1 ∈ ∆N is entailed by formula F5, for-
mula F7 imposes that summertown = z1. If F7 were absent, then q(L) =
{summertown, z1}.

The chase is a bottom-up procedure for repairing a database relative to a
Datalog+/- theory and can be used for deriving atoms entailed by the database
and the theory. If such a theory contains only TGDs, the chase consists of an
exhaustive application of the TGD chase rule in a breadth-first fashion. The
TGD chase rule consists in adding to the database the head of a TGD if there is
an homomorphism between the body and the current database. In order to fill
the arguments of the head occupied by existentially quantified variables, “fresh”
null values are used.

A BCQ can be answered by performing the chase and checking whether the
query is entailed by the extended database that is obtained.

Answering BCQs q over databases, guarded TGDs and NC can be done by, for
each constraint ∀XΦ(X) → ⊥, checking that the BCQ Φ(X) evaluates to false;
if one of these checks fails, then the answer to the original BCQ q is positive,
otherwise the negative constraints can be simply ignored when answering the
original BCQ q.

The chase in the presence of both TGDs and EGDs is computed by itera-
tively applying (1) a single TGD once and (2) the EGDs, as long as they are
applicable (i.e., until a fix point is reached). EGDs are assumed to be separable
[4]. Intuitively, separability holds whenever: (i) if there is a hard violation of an
EGD in the chase, then there is also one on the database w.r.t. the set of EGDs
alone (i.e., without considering the TGDs); and (ii) if there is no hard violation,
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then the answers to a BCQ w.r.t. the entire set of dependencies equals those
w.r.t. the TGDs alone (i.e., without the EGDs).

A guarded Datalog+/- ontology consists of a database D, a finite set of
guarded TGDs TT , a finite set of negative constraints TC and a finite set of
EGDs TE that are separable from TT . The data complexity (i.e., the complexity
where both the query and the theory are fixed) of evaluating BCQs relative to
a guarded Datalog+/- theory is polynomial [1].

3 The DISPONTE Semantics for Probabilistic Ontologies

A probabilistic ontology (D,T ) consists of a database D and a set T of certain
formulas, that take the form of a Datalog+/- TGD, NC or EGD, of epistemic
probabilistic formulas of the form

pi ::e Fi (1)

where pi is a real number in [0, 1] and Fi is a TGD, NC or EGD, and of statistical
probabilistic formulas of the form

pi ::s Fi (2)

where pi is a real number in [0, 1] and Fi is a TGD.
In formulas of the form (1), pi is interpreted as an epistemic probability,

i.e., as the degree of our belief in formula Fi, while in formulas of the form
(2), pi is interpreted as a statistical probability, i.e., as information regarding
random individuals from certain populations. These two types of statements
can be related to the work of Halpern [10]: an epistemic statement is a Type 2
statement and a statistical statement is a Type 1 statement.

For example, an epistemic probabilistic concept inclusion TGD of the form

p ::e c(X)→ d(X) (3)

represents the fact that we believe in the truth of c ⊆ d, where c and d are
interpreted as sets of individuals, with probability p. A statistical probabilistic
concept inclusion TGD of the form

p ::s c(X)→ d(X) (4)

instead means that a random individual of class c has probability p of belonging
to d, thus representing the statistical information that a fraction p of the indi-
viduals of c belongs to d. In this way, the overlap between c and d is quantified.
The difference between the two formulas is that, if two individuals belong to
class c, the probability that they both belong to d according to (3) is p while
according to (4) is p× p.

The idea of DISPONTE is to associate independent Boolean random vari-
ables to (instantiations of) the formulas. By assigning values to every random
variable we obtain a world, the set of logic formulas whose random variable is
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assigned to 1. Note that the assumption of independence of the random variables
does not limit the set of distributions over the ground logical atoms that can
be represented: by possibly introducing extra atoms, any distribution over the
atoms that can be represented with a Bayesian network can be represented with
a probabilistic ontology.

To clarify what we mean by instantiations, we now define substitutions. Given
a formula F , a substitution θ is a set of couples X/x where X is a variable
universally quantified in the outermost quantifier in F and x ∈ ∆ ∪ ∆N . The
application of θ to F , indicated by Fθ, is obtained by replacing X with x in F
and by removing X from the external quantification for every couple X/x in θ.
An instantiation of a formula F is the result of applying a substitution to F .

To obtain a world w of a probabilistic ontology T , we include every certain
formula in w. For each axiom of the form (1), we decide whether or not to
include it in w. For each axiom of the form (2), we generate all the substitutions
for the variables universally quantified in the outermost quantifier and for each
instantiation we decide whether or not to include it in w.

There may be an infinite number of instantiations. For each instantiated
formula, we decide whether or not to include it in w. In this way we obtain a
Datalog+/- theory which can be assigned a semantics as seen in Section 2.

To formally define the semantics of a probabilistic ontology we follow the
approach of Poole [14]. An atomic choice in this context is a triple (Fi, θj , k)
where Fi is the i-th formula, θj is a substitution and k ∈ {0, 1}. If Fi is obtained
from a certain formula, then θj = ∅ and k = 1. If Fi is obtained from a formula of
the form (1), then θj = ∅. If Fi is obtained from a formula of the form (2), then
θj instantiates the variables universally quantified in the outermost quantifier.

A composite choice κ is a consistent set of atomic choices, i.e., (Fi, θj , k) ∈
κ, (Fi, θj ,m) ∈ κ⇒ k = m (only one decision for each formula). The probability
of composite choice κ is P (κ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi). A selection

σ is a total composite choice, i.e., it contains one atomic choice (Fi, θj , k) for
every instantiation Fiθj of formulas of the theory. Since the domain is infinite,
every selection is, too. Let us indicate with ST the set of all selections. ST is
infinite as well. A selection σ identifies a theory wσ called a world in this way:
wσ = {Fiθj |(Fi, θj , 1) ∈ σ}. Let us indicate with WT the set of all worlds. A
composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. We define
the set of worlds identified by a set of composite choices K as ωK =

⋃
κ∈K ωκ.

A composite choice κ is an explanation for a BCG query q if q is entailed by
the database and every world of ωκ. A set of composite choices K is covering
with respect to q if every world wσ in which q is entailed is such that wσ ∈ ωK .
Two composite choices κ1 and κ2 are incompatible if their union is inconsistent.
A set K of composite choices is mutually incompatible if for all κ1 ∈ K,κ2 ∈
K,κ1 6= κ2 ⇒ κ1 and κ2 are incompatible.

Explanations can be found by keeping track of the formulas that were used
for adding atoms to the database in the chase procedure.

Kolmogorov defined probability functions (or measures) as real-valued func-
tions over an algebra Ω of subsets of a set W called the sample space. The
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set Ω is an algebra of W iff (1) W ∈ Ω, (2) Ω is closed under complementa-
tion, i.e., ω ∈ Ω → (W \ ω) ∈ Ω and (3) Ω is closed under finite union, i.e.,
ω1 ∈ Ω,ω2 ∈ Ω → (ω1 ∪ ω2) ∈ Ω. The elements of Ω are called measurable sets.
Not every subset of W need be present in Ω.

Given a sample space W and an algebra Ω of subsets of W, a probability
measure is a function µ : Ω → R that satisfies the following axioms: (1) µ(ω) ≥ 0
for all ω ∈ Ω, (2) µ(W) = 1, (3) ω1 ∩ ω2 = ∅ → µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) for
all ω1 ∈ Ω,ω2 ∈ Ω.

Poole [14] proposed an algorithm, called splitting algorithm, to obtain a set of
mutually incompatible K ′ composite choices from any set of composite choices K
such that ωK = ωK′ . Moreover, he proved that if K1 and K2 are both mutually
incompatible finite sets of finite composite choices such that ωK1

= ωK2
then∑

κ∈K1
P (κ) =

∑
κ∈K2

P (κ).
These results also hold for the probabilistic ontologies we consider, so we

can define a unique probability measure µ : ΩT → [0, 1] where ΩT is defined
as the set of sets of worlds identified by finite sets of finite composite choices:
ΩT = {ωK |K is a finite set of finite composite choices}. It is easy to see that
ΩT is an algebra over WT .

Then µ is defined by µ(ωK) =
∑
κ∈K′ P (κ) where K ′ is a finite mutually

incompatible set of finite composite choices such that ωK = ωK′ . 〈WT , ΩT , µ〉 is
a probability space according to Kolmogorov’s definition.

The probability of a BCQ query q is given by P (q) = µ({w|w ∈ WT ∧D∪w |=
q}). If q has a finite set K of finite explanations such that K is covering then
{w|w ∈ WT ∧D ∪ w |= q} ∈ ΩT and P (q) is well-defined.

Example 2. Let us consider the following probabilistic ontology, obtained from
the one presented in Example 1 by adding probabilistic annotations:

0.4 ::s F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)

0.5 ::s F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)

0.6 ::s F3 = priceElem(E), group(E,X)→ forSale(X)

F4 = forSale(X)→ ∃Pprice(X,P )

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)

F6 = hasCode(X,C)→ ∃LcodeLoc(C,L), loc(X,L)

0.8 ::e F7 = loc(X,L1), loc(X,L2)→ L1 = L2

0.7 ::s F8 = loc(X,L)→ advertised(X)

and the database of Example 1:

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown),

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)

A covering set of explanations for the query q = priceElem(e1) is K = {κ1}
where κ1 = {(F1, {X/e1}, 1)}. K is also mutually exclusive so P (q) = 0.4.
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A covering set of explanations for the query q = forSale(prop1) is K =
{κ1, κ2} where κ1 = {(F1, {X/prop1}, 1), (F3, {X/prop1}, 1)} and κ2 = {(F2,
{X/prop1}, 1), (F3, {X/prop1}, 1)}.

An equivalent mutually exclusive set of explanations obtained by applying
the splitting algorithm is K ′ = {κ′1, κ′2} where κ′1 = {(F1, {X/prop1}, 1), (F3,
{X/prop1}, 1), (F2, {X/prop1}, 0)} and κ′2 = {(F2, {X/prop1}, 1),
(F3, {X/prop1} , 1)} so P (q) = 0.4 · 0.6 · 0.5 + 0.5 · 0.6 = 0.42.

A covering set of explanations for the query q = advertised(prop1) is K =
{κ1, κ2, κ3} with

κ1 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 1)}
κ2 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 0)}
κ3 = {(F8, {X/prop1, L/z1}, 1), (F7, ∅, 0)}

where z1 ∈ ∆N . A mutually exclusive set of explanations is K ′ = {κ′1, κ′2, κ′3}
where

κ′1 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 1)}
κ′2 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 0), (F8, {X/prop1, L/z1}, 0)}
κ′3 = {(F8, {X/prop1, L/z1}, 1), (F7, ∅, 0)}
so P (q) = 0.7 · 0.8 + 0.7 · 0.2 · 0.3 + 0.7 · 0.2 = 0.742

Example 3. Let us consider the following ontology, inspired by the people+pets
ontology proposed in Patel-Schneider et al. [13]:

0.5 ::s F1 = hasAnimal(X,Y ), pet(Y )→ petOwner(X)

0.6 ::s F2 = cat(X)→ pet(X)

and the database hasAnimal(kevin,fluffy), hasAnimal(kevin, tom), cat(fluffy),
cat(tom). A covering set of explanations for the query q = petOwner(kevin)
is K = {κ1, κ2} where κ1 = {(F1, {X/kevin}, 1), (F2, {X/fluffy}, 1)} and κ2 =
{(F1, {X/kevin}, 1), (F2, {X/tom}, 1)}. An equivalent mutually exclusive set of
explanations is K ′ = {κ′1, κ′2} where:

κ′1 = {(F1, {X/kevin}, 1), (F2, {X/fluffy}, 1), (F2, {X/tom}, 0)}
κ′2 = {(F1, {X/kevin}, 1), (F2, {X/tom}, 1)}

so P (q) = 0.5 · 0.6 · 0.4 + 0.5 · 0.6 = 0.42

Example 4. Let us consider the following ontology:

F1 = ∃Y hasAnimal(X,Y ), pet(Y )→ petOwner(X)

0.6 ::s F2 = cat(X)→ pet(X)

0.4 ::e F3 = cat(fluffy)

0.3 ::e F4 = cat(tom)
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and the database hasAnimal(kevin,fluffy), hasAnimal(kevin, tom). A covering
set of explanations for the query axiom q = petOwner(kevin) is K = {κ1, κ2}
where

κ1 = {(F3, ∅, 1), (F2, {X/fluffy}, 1)}
κ2 = {(F4, ∅, 1), (F2, {X/tom}, 1)}

which, after splitting, becomes K ′ = {κ′1, κ′2, κ′3}:

κ′1 = {(F3, ∅, 1), (F2, {X/fluffy}, 1), (F4, ∅, 1), (F2, {X/tom}, 0)}
κ′2 = {(F3, ∅, 1), (F2, {X/fluffy}, 1), (F4, ∅, 0)}
κ′3 = {(F4, ∅, 1), (F2, {X/tom}, 1)}

so P (q) = 0.4 · 0.6 · 0.3 · 0.4 + 0.4 · 0.6 · 0.7 + 0.3 · 0.6 = 0.3768

4 Related Work

Gottlob et al. [9, 8] present probabilistic Datalog+/-, a version of Datalog+/-
that allows the representation of probabilistic information by combining Markov
Logic Networks with Datalog+/-. Each Datalog+/- formula F is annotated with
a probabilistic scenario λ, an assignment of values to a set of random variables
from the MLN associated to the ontology. A full probabilistic scenario assigns a
value to all the random variables of the MLN. A probabilistic scenario represents
an event that happens when the random variables described by the MLN assume
the values indicate in the scenario. Probabilistic formulas then take the form
F : λ.

A probabilistic Datalog+/- is of the form Φ = (O,M) where O is a set of
annotated formulas and M is a MLN. An annotated formula holds when the
event associated with its probabilistic annotation holds.

If a is a ground atom, its probability in a probabilistic Datalog+/- ontology
Φ = (O,M), denoted Pr(a), is obtained by summing the probabilities according
to M of all full scenarios such that the atom is entailed by the annotated formulas
that hold in the scenario.

Example 5. Let us consider the following probabilistic Datalog+/- ontology from
[8]:

F1 = visible(X)→ priceElem(X) : {ann(X, label), ann(X, price)}
F2 = visible(X)→ priceElem(X) : {ann(X, label), ann(X, priceRange)}
F3 = priceElem(E), group(E,X)→ forSale(X) : {sale}
F4 = forSale(E)→ ∃Pprice(X,P )

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)

F6 = hasCode(X,C)→ ∃LcodeLoc(C,L), loc(X,L)

F7 = loc(X,L1), loc(X,L2)→ L1 = L2 : {uniqueLoc}

527



and the MLN

0.3 ann(X, label) ∧ ann(X, price)

0.4 ann(X, label) ∧ ann(X, priceRange)

0.8 sale

1.1 uniqueLoc

Suppose that this network is grounded with respect to the only constant e1. The
resulting ground network has 5 Boolean random variables, each correspond-
ing to a logical atom. Therefore, there are 25 full scenarios. In this theory
Pr(priceElem(e1)) = 0.492 and Pr(forSale(prop1)) = 0.339.

5 Conclusions

We have presented the application of the distribution semantics for probabilis-
tic ontologies (named DISPONTE) to the Datalog+/- language. DISPONTE is
inspired by the distribution semantics of probabilistic logic programming and is
a minimal extension of the underlying ontology semantics to allow to represent
and reason with uncertain knowledge.

DISPONTE differs from Probabilistic Datalog+/- because the probabilistic
interactions among the atoms are modeled directly by means of Datalog+/- for-
mulas rather than by a separate entity. The parameters of DISPONTE
Datalog+/- are easier to interpret as they are probabilities (statistical or epis-
temic) while MLN parameters are weights not directly interpretable as prob-
abilities. Moreover, DISPONTE does not require the prior grounding of the
probabilistic atoms, for which the set of constants has to be defined by the user,
but allows an on demand grounding on the basis of the terms that are used for
inference.

In the future we plan to design inference algorithms for probabilistic
Datalog+/- under the DISPONTE semantics.
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Algebraic Reasoning for SHIQ

Laleh Roosta Pour and Volker Haarslev

Concordia University, Montreal, Quebec, Canada

Abstract. We present a hybrid tableau calculus for the description logic SHIQ
that decides ABox consistency and uses an algebraic approach for more informed
reasoning about qualified number restrictions (QNRs). Benefiting from integer
linear programming and several optimization techniques to deal with the interac-
tion of QNRs and inverse roles, our approach provides a more informed calculus.
A prototype reasoner based on the hybrid calculus has been implemented that de-
cides concept satisfiability for ALCHIQ. We provide a set of benchmarks that
demonstrate the effectiveness of our hybrid reasoner.

1 Introduction
It is well known that standard tableau calculi for reasoning with qualified number re-
strictions (QNRs) in description logics (DLs) have no explicit knowledge about set car-
dinalities implied by QNRs. This lack of information causes significant performance
degradations for DL reasoners if the numbers occurring in QNRs are increased. Over
the last years a family of hybrid tableau calculi has been developed that address this
inefficiency by integrating integer linear programming (ILP) with DL tableau methods,
where ILP is used to reason about these set cardinalities. We developed hybrid calculi
for the DLs ALCQ [3], SHQ [5], and SHOQ [4, 2]. In this paper we present a new
calculus that decides ABox consistency for the DL SHIQ, which extends SHQ with
inverse roles. This new calculus is a substantial extension of the one for SHQ [5] since
the interaction between inverse roles and QNRs results in back propagation of infor-
mation possibly adding new back-propagated QNRs, which, in turn, possibly require a
conservative extension of solutions obtained by using ILP.

Informally speaking this line of research is based on several principles: (i) role suc-
cessors are semantically partitioned into disjoint sets such that all members of one set
are indistinguishable w.r.t. to their restrictions; (ii) cardinalities of partitions are de-
noted by non-negative integer variables and the cardinality of a union of partitions can
be expressed by the sum of the corresponding partition variables; (iii) all members of
a non-empty partition are represented by a proxy element [6] associated with the cor-
responding partition variable; (iv) cardinality restrictions on a set of role successors
imposed by QNRs are encoded as a set of linear inequations; (v) the satisfiability of
a set of QNRs is mapped to the problem whether the corresponding system of linear
inequations has a non-negative integer solution and the involved proxy elements do not
lead to a logical contradiction. This approach is better informed than traditional tableau
methods because (i) (implied) set cardinalities are represented using ILP that is inde-
pendent of the values occurring in QNRs; (ii) the tableau part of the hybrid calculus
becomes more efficient because a set of indistinguishable role successors is represented
by one proxy; (iii) the partitioning of role successors supports semantic branching on
partition cardinalities and more refined dependency-directed backtracking.
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2 Preliminaries
In this section we briefly describe syntax and semantics of SHIQ and its basic infer-
ences services. Furthermore, we define a rewriting that reduces SHIQ to SHIN \ in
order to apply the atomic decomposition technique [10], which is a basic foundation of
our calculus. Let NC be a set of concept names, NR a set of role names, NTR ⊆ NR
a set of transitive role names, NSR ⊆ NR a set of non-transitive role names with
NSR ∩NTR = ∅. The set of roles is defined as NRS = NR ∪ {R− |R ∈ NR}. We de-
fine a function Inv such that Inv(R) = R− if R ∈ NR, and Inv(R) = S if R = S−.
For a set of roles RO = {R1, . . . , Rn}, Inv(RO) = {Inv(R1), . . . , Inv(Rn)}. A
role hierarchy R is a set of axioms of the form R v S where R,S ∈ NRS and v∗
is transitive-reflexive closure of v over R ∪ {Inv(R) v Inv(S) |R v S ∈ R}. R is
called a sub-role of S and S a super-role of R if R v∗ S. A role R ∈ NSR is called
simple if R is neither transitive nor has a transitive sub-role. The set of SHIQ con-
cepts is the smallest set such that (i) every concept name is a concept, and (ii) if A is a
concept name, C and D are concepts, R is a role, S is a simple role, n,m ∈ N, n ≥ 1,
then C uD, C tD, ¬C, ∀R.C, ∃R.C, > nS.C, and 6 mS.C are also concepts. We
consider > (⊥) as abbreviations for A t ¬A (A u ¬A). A general concept inclusion
axiom (GCI) is an expression of the form C v D with C,D concepts. A SHIQ TBox
T w.r.t. a role hierarchyR is a set of GCIs.

Let I be a set of individual names. A SHIQ ABox A w.r.t. a role hierarchy R
is a finite set of assertions of the form of a : C, 〈a, b〉 : R, and a 6 .= b with IA ⊆
I the set of individuals occurring in A and a, b ∈ IA and R a role. We assume an
interpretation I = (∆I , .I), where the non-empty set ∆I is the domain of I and .I is
an interpretation function which maps each concept to a subset of ∆I and each role to
a subset of ∆I ×∆I . Semantics and syntax of the DL SHIQ are presented in [8].

An interpretation I holds for a role hierarchyR iff RI ⊆ SI for each R v S ∈ R.
An interpretation I satisfies a TBox T iff CI ⊆ DI for every GCI C v D ∈ T . An
interpretation I satisfies an ABox A if it satisfies T andR and all assertions in A such
that aI ∈ CI if a : C ∈ A, 〈aI , bI〉 ∈ RI if 〈a, b〉 : R ∈ A, and aI 6= bI if a 6 .= b ∈ A.
Such an interpretation is called a model of A. An ABox A is consistent iff there exists
a model I of A. A concept description C is satisfiable iff CI 6= ∅.

Let E be a concept expression, then clos(E) defines the usual closure of all con-
cept names occurring in E. Therefore, for a TBox T if C v D ∈ T , then clos(C) ⊆
clos(T ) and clos(D) ⊆ clos(T ). Likewise for an ABox A, if (a : C) ∈ A then
clos(C) ⊆ clos(A). Inspired by [10] we use a satisfiability-preserving rewriting to
replace QNRs with unqualified ones. This rewriting uses a new role-set difference op-
erator ∀(R \R′).C for which (∀(R \R′).C)I = {x | ∀y : 〈x, y〉 ∈ RI \R′I implies
y ∈ CI}. We name the new language SHIN \. We have (> nR)I = (> nR.>)I and
(6 nR)I = (6 nR.>)I . Considering ¬̇C as the standard negation normal form (NNF)
of ¬C we define a recursive function unQ which rewrites SHIQ concept descriptions
and assertions into SHIN \.
Definition 1 (unQ). Let R′ be a new role in NR with R := R ∪ {R′ v R} for
each transformation. unQ rewrites the axioms as follows: unQ(C) := C if C ∈ NC ,
unQ(¬C) := ¬C if C ∈ NC otherwise unQ(¬̇C), unQ(∀R.C) := ∀R.unQ(C),
unQ(C uD) := unQ(C) u unQ(D), unQ(C tD) := unQ(C) t unQ(D),
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P1

S

P2

R

P3

SR

P4

T

P5

ST

P6

RT

P7

STR

α(v001) = P1, α(v010) = P2, α(v100) = P4,
α(v011) = P3, α(v110) = P6, α(v101) = P5,

α(v111) = P7

v001 + v011 + v101 + v111 6 2
v010 + v011 + v110 + v111 > 1
v100 + v110 + v101 + v111 6 2
v100 + v110 + v101 + v111 > 3

Fig. 1. Atomic decomposition for 6 2S u> 1R u6 2T u> 3T

unQ(> nR.C) := > nR′ u ∀R′.unQ(C), unQ(6 nR.C) := 6 nR′ u ∀(R \R′).
unQ(¬̇C), unQ(a : C) := a : unQ(C), unQ(〈a, b〉 : R) := 〈a, b〉 : R,
unQ(a 6 .= b) := a 6 .= b.

Note that this rewriting generates a unique new role for each QNR. For instance,
unQ(> nR.C u 6 mR.C u > kR−.D) is rewritten to > nR1 u ∀R1.C u 6 mR2 u
∀(R \R2).¬C u> kR3 u ∀R3.D and {R1 v R,R2 v R,R3 v R−} ⊆ R. SHIN \
is not closed under negation due to the fact that unQ(6 nR.C) itself creates a nega-
tion which must be in NNF before further applying unQ. In order to avoid the whole
negating problem for the concept description generated by unQ(6 nR.C) and unQ(>
nR.C) the calculus makes sure that the application of unQ starts from the innermost
part of an axiom, therefore such concept descriptions will never be negated.
Atomic decomposition A so-called atomic decomposition for reasoning about sets was
proposed in [10] and later applied to DLs for reasoning about sets of role fillers (see
Def. 3 for role fillers). For instance, for the concept description6 2Su> 1Ru6 2T u
> 3T we get 7 disjoint partitions shown in the left part of Fig. 1, where partition P1

represents S-fillers that are neither R nor T fillers and P5 represents fillers in the in-
tersection of S and T that are not R-fillers, etc. For example, due to the disjointness of
Pi, 1 ≤ i ≤ 7, the cardinality of all S-fillers can be expressed as |P1|+|P3|+|P5|+|P7|
(| · | denotes the cardinality of a set). The satisfiability of the above-mentioned concept
descriptions can now be defined by finding a non-negative integer solution for the in-
equations shown at the bottom-right part of Fig. 1, where vi denotes the cardinality of
Pi with i in unary encoding.

3 SHIQ ABox Calculus
In this section we introduce our calculus and the tableau completion rules for SHIQ.
Definition 2 (Completion forest). The algorithm generates a model consisting of a set
of arbitrarily connected individuals in IA as the roots of completion trees. Ignoring the
connections between roots, the created model is a forest F = (V,E,L,LE ,LI) for a
SHIQ ABox A. Every node x ∈ V is labeled by L(x) ⊆ clos(A) and LE(x) as a set
of inequations of the form

∑
i∈N vi ./ n with n ∈ N and ./∈ {>,6} and variables

vi ∈ V . Each edge 〈x, y〉 ∈ E is labeled by the set L(〈x, y〉) ⊆ NR. For each node
x, LI(x) is defined to keep an implied back edge for x equivalent to Inv(L(〈y, x〉)),
where y is a parent of x (see Def. 4). For the nodes with no parents (root nodes) LI will
be the empty set.

Definition 3 (-successor, -predecessor, -neighbour, -filler). Given a completion tree,
for nodes x and y with R ∈ L(〈x, y〉) and R v∗ S, y is called S-successor of x and
x is Inv(S)-predecessor of y. If y is an S-successor or an Inv(S)-predecessor of x
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then y is called and S-neighbor of x. In addition, if R ∈ L(〈x, y〉) then y is an R-filler
(role-filler) for x. The R-fillers of x are defined as Fil(x,R) = {y | 〈xI , yI〉 ∈ RI}.
Definition 4 (Precedence). Due to the existence of inverse roles for each pair of indi-
viduals x, y, R ∈ L(〈x, y〉) imposes Inv(R) ∈ L(〈y, x〉). A global counter PR keeps
the number of nodes and is increased by one when a new node x is created, setting
PRx = PR. Hence, each node is ranked with a PR. A successor of x with the lowest
PR is called parent (parent successor) of x and others are called its children. Accord-
ingly, a node x has a lower precedence than a node y if x has a lower rank compared
to y. Also, each node has a unique rank and no two nodes have the same rank.
Definition 5 (ξ). Assuming a set of variables V , a unique variable v ∈ V is associated
with a set of role names RV v . Let VR = {v ∈ V |R ∈ RV v} be the set of all variables
which are related to a role R. The function ξ maps number restrictions to inequations
such that ξ(R, ./,n) := (

∑
vi∈VR vi) ./ n.

Definition 6 (Distinct partitions). Rx is defined as the set of related roles for x such
that Rx = {S | {ξ(S,>,n), ξ(S,6,m)} ∩ LE(x) 6= ∅}. A partitioning Px is defined
as Px =

⋃
P⊆Rx

{P} \ {∅}. For a partition Px ∈ Px, P Ix = (
⋂
S∈Px

FilI(x, S)) \
(
⋃
S∈(Rx\Px)

FilI(x, S)) withFilI(x, S) = {yI | y ∈ Fil(x, S)}. Let α be a mapping
α : V ↔ Px for a node x, each variable v ∈ V is assigned to a partition Px ∈ Px such
that α(v) = Px.
The definition clearly demonstrates that the fillers of x related to the roles of partition
Px are not the fillers of the roles in Rx \ P (other partitions). Therefore, by definition
the fillers of x associated with the partitions in Px are mutually disjoint w.r.t. the inter-
pretation I. An arithmetic solution is defined using the function σ : V → N mapping
each variable in V to a non-negative integer. Let Vx be the set of all variables assigned
to a node x such that Vx = {vi ∈ V | vi ∈ LE(x)}, a solution Ω for a node x is
Ω(x) := {σ(v) = n |n ∈ N, v ∈ Vx}. The inequation solver uses an objective func-
tion to determine whether to minimize the solution or maximize it. We minimize the
solution in order to keep the size of the forest small.

The example in Fig. 1 depicts the process of finding an arithmetic solution in more
detail. Let L(x) = {6 2S,> 1R,6 2T ,> 3T} be the label of node x. Applying the
atomic decomposition for the related roles Rx = {S,R, T} results in seven disjoint
partitions such that Px = {Pi | 1 6 i 6 7} where P1 = {S}, P2 = {R}, P4 = {T},
P3 = {S,R}, P5 = {S, T}, P6 = {R, T}, P7 = {R,S, T} as shown in Fig. 1. In order
to simplify the mapping between variables and partitions, each bit in the binary coding
of a variable index represents a specific role in Rx. Therefore, in this example the first
bit from right represents S, the secondR, and the last T . Since |Rx| = 3, the number of
variables in Vx becomes 23 − 1. The mapping of variables and the resulting inequations
in LE(x) are also shown in Fig. 1.
Definition 7 (Node Cardinality). The cardinality associated with proxy nodes is de-
fined by the mapping card : V → N.
Since the hybrid algorithm requires to have all numerical restrictions encoded as a set of
inequations, three functions are defined to map number restrictions (NRs) to inequations
and/or further constrain variables. Function ξ (see Def. 5) is used in the >-Rule and 6-
Rule as shown in Fig. 2. Function ζ and ς also add new inequations to the label LE
of a node and modify the variables. The functions ζ and ς are respectively used in the
IBE-Rule and resetIBE-Rule as shown in Fig. 2.
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Definition 8 (ζ). For a set of rolesRO and k ∈ N, the function ζ(RO, k) maps number
restrictions to inequations via the function ξ for each Rj ∈ RO. ζ(RO, k) returns a set
of inequations such that ζ(RO, k) = {ξ(Rj ,>, k) |Rj ∈ RO} ∪ {ξ(Rj ,6, k) |Rj ∈
RO}. For v ∈ VRj , if Rj ∈ α(v) ∧ α(v) * RO then v 6 0 is also returned.

Definition 9 (ς). For a set of rolesRO and k ∈ N, the function ς(RO, k) maps number
restrictions to inequations via the function ξ for each Rj ∈ RO. ς(RO, k) returns a set
of inequations such that ς(RO, k) = {ξ(Rj ,>, k) |Rj ∈ RO} ∪ {ξ(Rj ,6, k) |Rj ∈
RO}. For v ∈ VRj , if RO = α(v) then v = k is also returned.

Definition 10 (Proper Sub-Role). For each role in existing number restrictions a set
will be assigned which contains a specific type of sub-role called proper sub-role. A
proper sub-role <(R) for a role R is defined as <(R) = {Ri | (R ∈ NR ∪ Inv(R)) ∧
Ri v R}.
This makes specializing the edges between nodes possible. Therefore, in our algorithm
when a role set is assigned to L(〈x, y〉) a new proper sub-role Si will be created for
each role S ∈ L(〈x, y〉), where <(S) = <(S) ∪ {Si}, and will be assigned to the edge
label. A role in <(S) cannot have any proper sub-role. Only roles that occur in number
restrictions and their inverses can have proper sub-roles. Since these proper sub-roles
do not appear in the logical label of nodes, they do not violate the correctness of our
algorithm.
Definition 11 (Blocked Node). Since SHIQ does not have the finite model property
pair-wise blocking [7] is used. Node y is blocked by node x, also called witness,
if L(x) = L(y) and for their successors y′, x′, L(y′) = L(x′) and L(〈x, x′〉) =
L(〈y, y′〉). Also, unreachable nodes which were discarded from the forest (due to the
application of the reset-Rule or resetIBE-Rule) are called blocked. In order to detect
blocked nodes, all roles in a proper sub-role of role R are considered equivalent to R.

Definition 12 (Clash Triggers). A node x contains a clash if {A,¬A} ⊆ L(x) (logical
clash) or LE(x) does not have a non-negative integer solution (arithmetic clash).

The interaction between the tableau rules and the inequation solver is similar to the clash
triggers. No particular rule is needed to invoke the inequation solver. For each LE(x),
there is always a solution (if there exists any) otherwise a clash occurs. If a variable
changes or LE(x) is extended, a new solution will be calculated automatically. The
completion rules for a SHIQ ABox are shown in Fig. 2, listed in decreasing priority
from top to bottom. Rules in the same cell have the same priority. Rules with lower
priorities cannot be applied to a node x, which is not blocked, if there exists any rule
with a higher priority still applicable to it. Among the completion rules in Fig. 2, the u-
Rule, t-Rule, ∀-Rule, ∀+-Rule are the same as in standard tableaux. The merge-Rule,
∀\-Rule, ch-Rule, >-Rule, 6-Rule are similar to [5].
>-Rule and 6-Rule: all number restrictions from L(x) are collected via these two

rules. The function ξ maps them to inequations according to the proper atomic decom-
position and adds them to LE(x).

IBE-Rule: this rule considers the implied back edge as a set of NRs, maps them to
a set of inequations, add the inequations to the LE , and determines potential variables
that can represent the IBE through elimination of the non-related variables. Assume that
for a node x a successor y has been created with L(〈x, y〉). This implies a back edge for
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reset-Rule if {(≤ nR), (≥ nR)} ∩ L(x) 6= ∅ and ∀v ∈ Vx : R /∈ α(v)
then set LE(x) := ∅ and

for every successor y of x set L(〈x, y〉) := ∅ and,
if y in not parent of x set L(〈y, x〉) := ∅

resetIBE-Rule if Inv(R) ∈ L(〈y, x〉) but R /∈ L(〈x, y〉)
then set LE(x) := LE(x) ∪ {ζ(L(〈x, y〉), card(y))} and,

for every successor y of x set L(〈x, y〉) := ∅ and,
if y is not parent of x set L(〈y, x〉) := ∅

merge-Rule if there exist root nodes za, zb, zc for a, b, c ∈ IA such that
R′ v∗ Rab, R

′ ∈ L(〈za, zc〉)
then merge the node zb, zc and their labels and,

replace every occurrence of zb in the completion graph by zc
u-Rule if (C1 u C2) ∈ L(x) and {C1, C2} * L(x)

then set L(x) = L(x) ∪ {C1, C2}
t-Rule if (C1 t C2) ∈ L(x) and {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {X} for some X ∈ {C1, C2}
∀-Rule if ∀S.C ∈ L(x) and there is an S-neighbour y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}
∀\-Rule if ∀R \ S.C ∈ L(x) and there is an R-neighbour y of x with C /∈ L(y)

and y is not S-neighbour of x
then set L(y) = L(y) ∪ {C}

∀+-Rule if ∀S.C ∈ L(x) and there is some R with Trans(R) and R v∗ S
and there is R-neighbour y of x with ∀R.C /∈ L(y)

then set L(y) = L(y) ∪ {∀R.C}
ch-Rule if there occurs v in LE(x) with {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅

then set L(x) = L(x) ∪ {X} for some X ∈ {v ≥ 1, v ≤ 0}
≥-Rule if (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)

then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}
≤-Rule if (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)

then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}
IBE-Rule if LI(x) 6= ∅ and {ς(LI(x), 1)} ∩ LE(x) = ∅

then set LE(x) = LE(x) ∪ {ς(LI(x), 1)}
BE-Rule if there exists v occurring in LE(x) such that σ(v) = 1, R ∈ α(v),

R ∈ LI(x) and y is parent of x with L(〈x, y〉) = ∅
then set L(〈x, y〉) := α(v)

RE-Rule if there exists v occurring in LE(za)
such that σ(v) = 1, za, zb root nodes,
Rab ∈ α(v) with x, b ∈ IA and L(〈za, zb〉) = ∅

then set L(〈za, zb〉) := α(v),LI(zb) := Inv(α(v))

fil-Rule if there exists v occurring in LE(x)
such that σ(v) = n with n > 0,
x is not blocked and ¬∃y : L(〈x, y〉) = α(v)

then create a new node y and set L(〈x, y〉) := α(v),
LI(y) := Inv(α(v)) and card(y) = n

Fig. 2. The complete tableaux expansion rules for SHIQ-ABox
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y with a label LI(y) = Inv(L(〈x, y〉)). This back edge is considered as a set of NRs
of the form > 1Ri,6 1Ri where Ri ∈ Inv(L(〈x, y〉)). The IBE-Rule transforms the
implied back edge into a set of inequations in LE(y) of the form (

∑
vj∈VRi vj) > 1

and (
∑
vj∈VRi vj) 6 1 using the function ς . Since the inequations representing the back

edge are restricted to the value one, only one common variable vk in these inequations
will be σ(vk) = 1. In addition, ς ensures that the potential variables for IBE include all
the roles in LI(y) (see Def. 9).

resetIBE-Rule: this rule extends LE as follows. If for a node y and its parent node
x, L(〈x, y〉) 6= Inv(L(〈y, x〉)), then it implies that a new role should be considered in
LE(x) due to the restrictions of its child y. Therefore, the resetIBE-Rule fires for x
where ζ extends LE(x) to consider Inv(L(〈y, x〉)) and ensures that the specific vari-
able representing it is included in the solution as in Def. 8.

reset-Rule: if a new number restriction with a new role R is added to the logical
label of a node x, all its children are discarded from the tree and LE(x) = ∅.

BE-Rule: this rule fills a label of the back edge a node to its parent due to the
solution of the inequation solver. If a variable v in a solution exists such that σ(v) = 1
and LI(y) ⊆ α(v), then v represents the back edge and the BE-Rule fires and fills the
edge label.

We adjust the edges between a pair of nodes to satisfy the nature of the inverse roles
between them. Interactions of IBE-Rule, BE-Rule, and resetIBE-Rule maintain this
characteristic.

RE-Rule: this rule sets the edge between two root nodes. For nodes a, b ∈ IA,
(a, b) : R is considered as a : > 1Rab, a : 6 1Rab, b : > 1Inv(Rab), b : 6 1Inv(Rab)
with Rab v R and Inv(Rab) v Inv(R). Therefore, a variable with the value of 1,
σ(v) = 1, for node a that contains Rab represents this edge. The RE-Rule fires and
fills the edge label.

merge-Rule: themerge-Rule merges root nodes. Assume three root nodes a, b, c ∈
IA where b, c are respectively R-successor and S-successor of a. These assertions will
be translated such that we have a : > 1Rab, a : 6 1Rab, a : > 1Sac, a : 6 1Sac with
Rab v R and Sac v S. If there exists a variable v in an arithmetic solution of node a
withRab, Sac ∈ α(v), it means that c and b need to be merged. Themerge-Rule merges
b and c and w.l.o.g replaces every occurrence of b with c and all outgoing/incoming
edges of b become outgoing/incoming edges of c.

ch-Rule: this rule is necessary to ensure the completeness of the algorithm. The
partitions of the atomic decomposition represent all possible combinations of the suc-
cessors of a particular node. The inequation solver has no knowledge about logical
reasons that can force a partition to be empty. Thus, from a semantic branching point of
view we need to distinguish between the two cases v 6 0 and v > 1, where v denotes
the cardinality of a partition.

fil-Rule: the fil-Rule has the lowest priority among the completion rules. This rule
is the only one that generates new nodes, called proxy nodes. For example, if a solution
Ω for a node x includes a variable v with σ(v) = 2, the fil-Rule creates a proxy node y
with cardinality of 2 and sets the edge label andLI(y) as shown in Fig. 2. Since this rule
generates proxy nodes based on an arithmetic solution that satisfies all the inequations,
there is no need to merge the generated proxy nodes later.
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The algorithm preserves role hierarchies in its pre-processing phase. If there occurs
a variable v ∈ LE(x), where R ∈ α(v) and S /∈ α(v) and R v∗ S, then v 6 0.
Therefore, the variables that violate the role hierarchy are set to zero. Due to the space
limitations, we refer for the proof to [12].

4 Practical Reasoning
In this section, we discuss the complexity of our algorithm and evaluate its behavior in
practical reasoning. Let k be the number of all roles occurring in NRs in a TBox after
pre-processing and transforming all QNRs to unqualified ones considering inverse roles.
The search space of the hybrid algorithm depends on the number of variables occurring
in LE labels. Since there are k roles, the number of partitions and their associated
variables is bounded by 2k−1. The ch-Rule creates two branches for each variable: v >
1 or v 6 0. Consequently, 22

k

cases could be examined by the inequation solver and the
worst-case complexity of the algorithm is double exponential. Moreover, the Simplex
method which is used in the hybrid algorithm is NP in the worst case. However, in [11] it
is shown that integer programming is in P in the worst case, if the number of variables
is bounded. The implemented inequation solver (using Simplex method presented in
[1]) minimizes the sum of all variables occurring in the inequations. In addition, we use
several optimization techniques and heuristics that can eliminate branches in the search
space, therefore, avoiding unnecessary invocations of the ch-Rule. These techniques
dramatically improve the average complexity of the hybrid algorithm over the worst
case of 22

k

.

4.1 Optimization Techniques
In most cases, in order to utilize these theoretical algorithms in practice, optimization
techniques are required. Due to the complexity of the algorithm, achieving a good per-
formance may seem infeasible. However, optimization techniques can dramatically de-
crease the size of the search space by pruning many branches. For instance, a stan-
dard technique such as axiom absorption [9] often improves reasoning by reducing the
number disjunctions. Here we explain some of the optimization techniques used in our
hybrid algorithm.

Variable initialization: the inequation solver starts with the default v 6 0 for all
variables and later sets some to v > 1 to satisfy the inequations according to at-least
restrictions. Since the ch-Rule is invoked 22

k

times in the worst case to check variables
for v 6 0 or v > 1, default zero setting of variables prevents unnecessary invocations of
the ch-Rule. Moreover, the boundary value of some of the variables can be determined
from the beginning according to the occurrence of the numbers in at-most or/and at-
least restrictions. For example, if a variable occurs in an at-least restriction but not in an
at-most restriction, then it does not have any arithmetic restriction and is called a don’t
care variable [5]. In addition, the resetIBE-Rule specifically determines the value of
a single variable and sets some of the rest to zero. Similarly, the IBE-Rule sets the
value of some variables to zero and enforces some of the others to be the potential
choices for the answer, therefore, reducing the solution space. Moreover, in order to
avoid unnecessary applications of the resetIBE-Rule additional heuristics are applied.
For a node x, if a role occurs in an at-least restriction but not in any at-most restriction

537



Algebraic Reasoning for SHIQ 9

22 23 24 25 26 27 28 29 210
100

103

106

Value of k = 2i, 2  i  10

R
un

tim
e

(i
n

m
ill

is
ec

on
ds

) Hermit
Pellet

FaCT++
Hybrid

Fig. 3. Runtimes for satisfiable concept
Test1 (log-log scale; timeout of 106 msecs).

1 3 5 7 9 11 13

102

104

106

Number of QNRs

R
un

tim
e

(i
n

m
ill

is
ec

on
ds

)

at-least
at-most

Fig. 4. Runtimes for concept Test2 (using a
log scale for the y-axis).

and it is not a sub-role of any role R in a concept of the form 8(R \ S).C 2 L(x), then
it cannot be in ↵(v) where v represents a back edge for node x.

Dependency-directed backtracking: we use backtracking techniques to find sources
of logical clashes and then consider the cause of a clash in setting the boundaries of
variables in new solutions. This results in pruning branches which would lead to the
same clash. If a clash occurs in node x, which was created due to a variable v with
�(v) = k and k 2 N, k � 1, then v must be set to zero. This is called simple backtrack-
ing. The previous technique can be improved: if a logical clash is encountered due to
{A, ¬A} 2 L(x), then the source for propagation of these two concepts to L(x) could
be the roles occurring in 8 or 8\ constructs. In this case, the variables which contain
all these roles are set to zero. This is called complex backtracking. These techniques
eliminate many branches in the search space and consequently improving the average
complexity of the algorithm.

4.2 A First Evaluation Using Synthetic Benchmarks
In order to evaluate our hybrid algorithm, a prototype reasoner has been implemented
in Java using the Web Ontology Language API. The reasoner decides satisfiability of
ALCHIQ concepts.

We show the performance of the hybrid reasoner by a set of three benchmarks.
Fig. 3 demonstrates the performance of different DL reasoners for testing the satisfia-
bility of the concept Test1 defined as C u > 2kRu8R.(> kR�.Cu 6 kR�.C), where
k = 2i, 2  i  10. Fig. 3 compares the reasoning time of our hybrid reasoner with
Pellet, FaCT++, and Hermit.1 All reasoners determine the satisfiability of the concept
in less than ⇠100 ms before reaching k = 24. While our hybrid reasoner maintains its
reasoning time (constantly under 100 ms), Pellet, Hermit, and FaCT++ start exhibiting
exponential growth in the reasoning time for values higher than k = 24. For exam-
ple, for k = 29 Pellet’s reasoning time is more than 18 minutes and for k = 210 it
did not finish within the time limit of 1000 seconds. This example demonstrates the
independent behavior of our hybrid calculus in the presence of higher values in QNRs
interacting with inverse roles.

1 We used an AMD 3.4GHz quad core CPU with 16 GB of RAM.
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and it is not a sub-role of any role R in a concept of the form 8(R \ S).C 2 L(x), then
it cannot be in ↵(v) where v represents a back edge for node x.

Dependency-directed backtracking: we use backtracking techniques to find sources
of logical clashes and then consider the cause of a clash in setting the boundaries of
variables in new solutions. This results in pruning branches which would lead to the
same clash. If a clash occurs in node x, which was created due to a variable v with
�(v) = k and k 2 N, k � 1, then v must be set to zero. This is called simple backtrack-
ing. The previous technique can be improved: if a logical clash is encountered due to
{A, ¬A} 2 L(x), then the source for propagation of these two concepts to L(x) could
be the roles occurring in 8 or 8\ constructs. In this case, the variables which contain
all these roles are set to zero. This is called complex backtracking. These techniques
eliminate many branches in the search space and consequently improving the average
complexity of the algorithm.

4.2 A First Evaluation Using Synthetic Benchmarks
In order to evaluate our hybrid algorithm, a prototype reasoner has been implemented
in Java using the Web Ontology Language API. The reasoner decides satisfiability of
ALCHIQ concepts.

We show the performance of the hybrid reasoner by a set of three benchmarks.
Fig. 3 demonstrates the performance of different DL reasoners for testing the satisfia-
bility of the concept Test1 defined as C u > 2kRu8R.(> kR�.Cu 6 kR�.C), where
k = 2i, 2  i  10. Fig. 3 compares the reasoning time of our hybrid reasoner with
Pellet, FaCT++, and Hermit.1 All reasoners determine the satisfiability of the concept
in less than ⇠100 ms before reaching k = 24. While our hybrid reasoner maintains its
reasoning time (constantly under 100 ms), Pellet, Hermit, and FaCT++ start exhibiting
exponential growth in the reasoning time for values higher than k = 24. For exam-
ple, for k = 29 Pellet’s reasoning time is more than 18 minutes and for k = 210 it
did not finish within the time limit of 1000 seconds. This example demonstrates the
independent behavior of our hybrid calculus in the presence of higher values in QNRs
interacting with inverse roles.

1 We used an AMD 3.4GHz quad core CPU with 16 GB of RAM.
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and it is not a sub-role of any role R in a concept of the form ∀(R \ S).C ∈ L(x), then
it cannot be in α(v) where v represents a back edge for node x.

Dependency-directed backtracking: we use backtracking to find sources of logi-
cal clashes and then consider the cause of a clash in setting the boundaries of variables
in new solutions. This results in pruning branches which would lead to the same clash.
If a clash occurs in node x, which was created due to a variable v with σ(v) = k
and k ∈ N, k ≥ 1, then v must be set to zero. This is called simple backtrack-
ing. The previous technique can be improved: if a logical clash is encountered due to
{A,¬A} ∈ L(x), then the source for propagation of these two concepts to L(x) could
be the roles occurring in ∀ or ∀\ constructs. In this case, the variables which contain
all these roles are set to zero. This is called complex backtracking. These techniques
eliminate many branches in the search space and consequently improving the average
complexity of the algorithm.

4.2 A First Evaluation Using Synthetic Benchmarks
In order to evaluate our hybrid algorithm, a prototype reasoner has been implemented
in Java using the Web Ontology Language API. The reasoner decides satisfiability of
ALCHIQ concepts.

We show the performance of the hybrid reasoner by a set of three benchmarks.
Fig. 3 demonstrates the performance of different DL reasoners for testing the satisfia-
bility of the concept Test1 defined asC u > 2kRu∀R.(> kR−.Cu 6 kR−.C), where
k = 2i, 2 ≤ i ≤ 10. Fig. 3 compares the reasoning time of our hybrid reasoner with
Pellet, FaCT++, and Hermit.1 All reasoners determine the satisfiability of the concept
in less than ∼100 ms before reaching k = 24. While our hybrid reasoner maintains its
reasoning time (constantly under 100 ms), Pellet, Hermit, and FaCT++ start exhibiting
exponential growth in the reasoning time for values higher than k = 24. For exam-
ple, for k = 29 Pellet’s reasoning time is more than 18 minutes and for k = 210 it
did not finish within the time limit of 1000 seconds. This example demonstrates the
independent behavior of our hybrid calculus in the presence of higher values in QNRs
interacting with inverse roles.

1 We used an AMD 3.4GHz quad core CPU with 16 GB of RAM.
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Fig. 5. Linear increase of k (using a log scale for the y-axis).

The second test defines concept Test2 as > 1S.A u 8S. > 1R.B u 8S.8R.8R�.P
with P defined as {u ./ 1Mi.Ci | 1  i  k}. Fig. 4 shows the effect of increasing the
number of at-least and at-most restrictions in reasoning for Test2. In a model for the
concept Test2, the concept expression P is propagated back and will be added to the
label of a node which already has > 1R.B, therefore, we have (k + 1) QNRs. Since
for each node which has a parent, an IBE will be considered as a set of two inequations
in the LE of the node. As shown in Fig. 4, increasing the number of QNRs decreases
the performance of the hybrid reasoner. This is due to the fact that a large number of
roles in the QNRs increases the number of variables and the size of the search space.
Comparing the two diagrams in Fig. 4a and 4b shows that by increasing the number
of at-most QNRs the reasoning time for the arithmetic reasoner increases faster than
for at-least restrictions. The reason is the heuristic that we explained in Section 4.1. By
means of this heuristic, if a role occurs in an at-least restriction and not in any at-most
restriction and satisfies the pre-conditions that are mentioned in Section 4.1, then the
potential variables for IBE which contain this role are set to zero. Therefore, the number
of variables in the search space is decreased.

For the third benchmark we consider the concept Test3 defined as> 8S.Au6 9S.A
u8S.(> kR.C u 6 6T.D u > 5T.D) u 8S.8R.(> 2T.D u 6 3T.D) u 8S.8R.8T.
8T�.8R�.P with {R v M} 2 R and k 2 {100, . . . , 1000}. Fig. 5a displays the
runtimes for Test3, where P is defined as 6 (k � 2)M.(C tD). In this example P is
propagated back and causes the unsatisfiability of Test3. Fig. 5b shows the runtimes for
Test3 where P is defined as6 (k+1)M.(CtD). In this example P is also propagated
back but does not result in the unsatisfiability of Test3. As expected the hybrid reasoner
remains stable while the execution times of the other reasoners increase according to
the values occurring in the QNRs. As shown in Fig. 5a and 5b, Hermit’s behavior is
the worst among all the reasoners. Hermit and Pellet show a rapid exponential growth
in their reasoning times as a function of k. For k > 400, Hermit did not finish within
the time limit of 1000 seconds. FaCT++ solves the problem in a more reasonable time,
however, it demonstrates its dependency on the value of k as its runtime increases. In
addition, Fig. 5 shows the behavior of our hybrid algorithm using simple (Hybrid-S)

10 Roosta Pour & Haarslev

Hermit Pellet FaCT++ Hybrid-S Hybrid-C

200 400 600 800 1,000
100

102

104

106

Value of k in steps of 100

R
un

tim
e

(i
n

m
ill

is
ec

on
ds

)

(a) Unsatisfiable version of Test3

200 400 600 800 1,000
100

102

104

106

Value of k in steps of 100

R
un

tim
e

(i
n

m
ill

is
ec

on
ds

)

(b) Satisfiable version of Test3

Fig. 5. Linear increase of k (using a log scale for the y-axis).

The second test defines concept Test2 as > 1S.A u 8S. > 1R.B u 8S.8R.8R�.P
with P defined as {u ./ 1Mi.Ci | 1  i  k}. Fig. 4 shows the effect of increasing the
number of at-least and at-most restrictions in reasoning for Test2. In a model for the
concept Test2, the concept expression P is propagated back and will be added to the
label of a node which already has > 1R.B, therefore, we have (k + 1) QNRs. Since
for each node which has a parent, an IBE will be considered as a set of two inequations
in the LE of the node. As shown in Fig. 4, increasing the number of QNRs decreases
the performance of the hybrid reasoner. This is due to the fact that a large number of
roles in the QNRs increases the number of variables and the size of the search space.
Comparing the two diagrams in Fig. 4a and 4b shows that by increasing the number
of at-most QNRs the reasoning time for the arithmetic reasoner increases faster than
for at-least restrictions. The reason is the heuristic that we explained in Section 4.1. By
means of this heuristic, if a role occurs in an at-least restriction and not in any at-most
restriction and satisfies the pre-conditions that are mentioned in Section 4.1, then the
potential variables for IBE which contain this role are set to zero. Therefore, the number
of variables in the search space is decreased.
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back but does not result in the unsatisfiability of Test3. As expected the hybrid reasoner
remains stable while the execution times of the other reasoners increase according to
the values occurring in the QNRs. As shown in Fig. 5a and 5b, Hermit’s behavior is
the worst among all the reasoners. Hermit and Pellet show a rapid exponential growth
in their reasoning times as a function of k. For k > 400, Hermit did not finish within
the time limit of 1000 seconds. FaCT++ solves the problem in a more reasonable time,
however, it demonstrates its dependency on the value of k as its runtime increases. In
addition, Fig. 5 shows the behavior of our hybrid algorithm using simple (Hybrid-S)
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and complex (Hybrid-C) dependency-directed backtracking. The complex backtrack-
ing outperforms simple backtracking since it prunes more branches that would lead to
the same sort of clash. In addition to improving the performance of the reasoner the
optimization techniques used in hybrid reasoner can make its performance more stable.

5 Conclusion and Future Work
The hybrid calculus presented in this paper decides SHIQ ABox satisfiability. The
implemented prototype demonstrates the improvement on reasoning time for selected
benchmarks featuring QNRs and inverse roles. Utilizing algebraic reasoning and ap-
plying optimization techniques, the hybrid calculus would be a good solution in case
of large numbers occurring in QNRs. In [2] a hybrid algorithm for SHOQ using alge-
braic reasoning has been proposed and extensively analyzed in an empirical evaluation.
Due to the nature of nominals, [2] needs to use a global partitioning in contrast to the
local partition used in our approach. Several novel techniques to optimize reasoning for
SHOQ have been designed and evaluated in [2]. Some of these techniques are not ex-
clusively dedicated to nominals and could be applied to our hybrid calculus for SHIQ
too. For instance, the exponential number of partitions was addressed using a so-called
lazy partitioning technique which only generates partitions and their associated vari-
ables on demand. We are currently developing a new hybrid prototype for SHIQ that
integrates suitable optimizations techniques from [2]. We are planning to combine our
work on both SHIQ and SHOQ in order to design a hybrid algebraic calculus for
SHOIQ.
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Small Datalog Query Rewritings for EL?
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1 Introduction

Description Logics are a key technology in data management scenarios such as
Ontology-Based Data Access (OBDA), a paradigm in which a DL ontology is
used to provide a conceptual view of the data [1]. An OBDA system transforms
a conjunctive query over the ontology into a query over the data sources [2]. This
transformation is independent of the data, so the OBDA approach can thus be
used in settings where the data sources provide read-only access to the data, and
where the data changes frequently.

Most existing OBDA systems are based on the DL-Lite family of lightweight
Description Logics [1], which is also the basis for the QL profile of the OWL 2
ontology language. Logics in this family have been designed to allow a conjunc-
tive query posed over the ontology to be rewritten as a first order query over
the data sources—that is, queries are first-order rewritable. The query rewriting
procedure is independent of the data, and the resulting queries can be evaluated
using highly scalable relational database technology. To achieve this, however,
the expressive power of DL-Lite is very restrictive. This prevents the OBDA
approach from being applied in the life science domain, where many ontologies
use DLs from the EL family [3, 4]. This family provides the basis for the EL
profile of OWL2, and many prominent ontologies, such as SNOMED-CT, were
developed using this language.

The problem of answering conjunctive queries in EL has already been studied
in the literature, and two orthogonal approaches have been proposed. First,
Rosati proposed a pure query rewriting technique which transforms an EL TBox
T and a conjunctive query q into a Datalog program PT ,q [5]. Second, Lutz
et al. introduced a “combined” approach [6, 7]. This technique first materializes
certain facts entailed by the ontology in a precomputation step. Then, each user
query is rewritten into a polynomial first-order query that, when evaluated over
the materialized facts, computes the answers to the user’s query.

Unfortunately, these two approaches exhibit several shortcomings when ap-
plied in the context of OBDA. In particular, Rosati’s rewriting technique com-
putes for each user query a fresh Datalog program whose size depends on both
the query and the terminology, which could be very inefficient when dealing with
large scale ontologies. The approach by Lutz et al. produces smaller first order
rewritings, but the use of materialization means that the technique is only appli-
cable when the data sources provide read/write access to the data; furthermore,
materialization can be inefficient if the data changes frequently.

? This work was supported by EPSRC and Alcatel-Lucent.
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In this paper, we present a pure query rewriting technique to query answering
in EL. Our approach reinterprets the combined approach proposed by Lutz and
colleagues in terms of Datalog. Our rewriting procedure consists of two distinct
steps. The first step rewrites a TBox T into a Datalog program PT , whose size
depends linearly on the size of T . Then, at query time, the conjunctive query q
is rewritten into a Datalog query 〈QP , QC〉, whose size depends polynomially
on q. The two rewriting steps are such that, given an ABox A, deciding whether
QP (a1, . . . , ak) follows from PT ∪ QC ∪ A is equivalent to deciding whether
〈a1, . . . , ak〉 is a certain answer to q over a knowledge base 〈T ,A〉.

At last, we summarize our main contributions. First, our rewriting approach,
unlike Rosati’s, separates the rewriting of the TBox and the query into two dis-
tinct steps, thus reducing inefficiency when dealing with large ontologies. Second,
our technique does not require the materialization of entailed facts, hence our
solution is in the spirit of OBDA and it avoids the problems associated with
the materialization of large models. Finally, we set the stage for assessing the
utility and the applicability to PT ∪QC ∪ A of optimized Datalog evaluation
techniques, such as magic sets and SLG resolution [8, 9]. Indeed, heuristic-based
evaluation strategies significantly reduce the number of facts needed to answer
a query, thus potentially improving the performance of our rewriting approach.
In this paper we provide only proof sketches, and refer the reader to [10] for full
proofs.

2 Preliminaries

Description Logic EL

LetNC ,NR,NI be pairwise disjoint infinite sets of atomic concepts, atomic roles,
and individuals. Together, the sets NC , NR, and NI form the signature of an EL
language. Whenever the distinction between atomic concepts and atomic roles
is immaterial, we call an element of NC ∪NR a predicate. The set of EL concept
expressions is inductively defined starting from atomic concepts A ∈ NC and
atomic roles R ∈ NR according to the syntax rule: C → A | C1 uC2 | ∃R.C | >.

An EL TBox T is a finite set of concept inclusions of the form C v D; an
EL ABox A is a finite set of assertions of the form A(a) or R(a, b) with a and
b individuals; and an EL knowledge base (KB) is a tuple K = 〈T ,A〉, where
T is an EL TBox and A is an EL ABox. We denote with Ind(A) the set of all
individuals occurring in the ABox A. Furthermore, for E either a TBox or an
ABox, Pred(E) is the set of all predicates occurring in E .

Semantics is given as usual in terms of first-order interpretations I = 〈∆I , ·I〉,
where ∆I is a nonempty domain and ·I is an interpretation function; please re-
fer to [3] for details. In the following, we will extensively use the notion of an
unraveling of an interpretation w.r.t. an ABox. Consider an interpretation I and
an ABox A over an arbitrary EL signature. A path p in I w.r.t. A is a nonempty
finite sequence c1 ·R2 · c2 · · ·Rn−1 · cn−1 ·Rn · cn such that c1 ∈ {aI | a ∈ Ind(A)}
and for all 1 ≤ i ≤ n− 1 we have that 〈ci, ci+1〉 ∈ RIi+1 for Ri+1 ∈ NR. We say
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that a path p has depth n and we write dep(p) = n; furthermore, tail(p) is the
last domain element cn in p. Let pathsA(I) denote the set of all paths w.r.t. A
occurring in I. The unraveling J of I w.r.t. A is the following interpretation.

∆J = pathsA(I)
aJ = aI

AJ = {p ∈ pathsA(I) | tail(p) ∈ AI}
RJ = {〈aJ , bJ 〉 | R(a, b) ∈ A} ∪ {〈p, p ·R · c〉 | {p, p ·R · c} ⊆ pathsA(I)}

In this paper, we deal only with normalized EL TBoxes. Let A1, A, and B be
arbitrary concepts from NC ∪ {>}. We say that an EL TBox T is in normal
form if each axiom in T is in one of the following forms: A v B,A u A1 v B,
A v ∃R.B, or ∃R.A v B. Given an arbitrary EL TBox T , we can compute a
normalized TBox Tnorm of T in linear time [3].

Querying EL KBs

LetNV be an infinite set of variables disjoint fromNI . Together,NV andNI form
the set NT of terms. A first-order query q is a first-order formula constructed
from the terms in NT and the predicates from NC ∪ NR [8]. In general, we
write q = ψ(~x) to express that q is the FO formula ψ whose answer variables are
~x = {x1, . . . , xk}. A query with k answer variables is a k-ary query. A conjunctive
query (CQ) is a FO query of the form q = ∃~y.ψ(~x, ~y), where ψ is a conjunction
of unary atoms A(s) and binary atoms R(s, t) with s and t terms. The variables
~y are the quantified variables of q. In the following, avar(q) is the set of answer
variables of q, and qvar(q) is the set of quantified variables. Finally, NV (q) is the
set of all variables occurring in q, and NT (q) is the set of all terms occurring
in q. Let q = ψ(~x) be a k-ary FO query with ~x = 〈x1, . . . , xk〉 and let I be an
interpretation. We say that a k-ary tuple of individuals 〈a1, . . . , ak〉 is an answer
to q in I, written I |= q[a1, . . . , ak], if I satisfies q under the mapping π which
sets π(xi) = ai for all 1 ≤ i ≤ k. We call π a match for q in I witnessing
〈a1, . . . , ak〉, written I |=π q. We say that 〈a1, . . . , ak〉 is a certain answer to
q over K if I |= q[a1, . . . , ak], for all models I of K. We denote the set of all
certain answers to q over K with cert(q,K). Rosati in [5] showed that deciding
whether a tuple of individuals is a certain answer to q over K is Ptime-complete
w.r.t. data-complexity (i.e., w.r.t. the size of the ABox); Ptime-complete w.r.t.
KB complexity (i.e., w.r.t. the size of K); and, NP-complete w.r.t. combined
complexity (i.e., w.r.t. the size of both K and q).

Datalog

Let NB be a nonempty set of built-in predicates [11]. Then, a Datalog rule r
is an expression of the form

S(~u)← S1(~u1), . . . , Sn(~un), Bn+1(~un+1) . . . , Bm(~um),
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where n,m ≥ 0, {S, S1, . . . , Sn} ⊆ NC ∪NR, {Bn+1, . . . , Bm} ⊆ NB , and ~u and
~ui are tuples of terms of suitable length. A rule is safe if each variable occurring
in ~u ∪ ~un+1 ∪ . . . ∪ ~um also occurs in ~u1 ∪ . . . ∪ ~un. Atom S(~u) is the head of the
rule, and atoms S1(~u1), . . . , Bm(~um) constitute the body of the rule. Whenever
the body of a rule r is empty, we call r a fact, and we write the rule as S(~u). A
Datalog program P is a set of safe Datalog rules. Finally, sch(P ) is the set
of predicates occurring in P .

Next, we define the semantics of a Datalog program P using Herbrand
interpretations [8]. The Herbrand Universe of P is the set of all individuals
occurring in P . The Herbrand Base of P is the set of all facts that can be
constructed from the predicates in NC ∪NR and the individuals in the universe
of P . A Herbrand interpretation I of P is a subset of the Herbrand Base of P .
Note that I does not interpret built-in predicates. As usual, we assume that these
predicates are evaluated over a fixed, possibly infinite Herbrand interpretation
B [12]. Then I is a model of P w.r.t. B if, for all the rules r in P , we have that

I ∪ B |= ∀~x(Bm(~un) ∧ . . . ∧Bn+1(~un+1) ∧ Sn(~un) ∧ . . . ∧ S1(~u1)→ S(~u)),

where ~x is a tuple consisting of all variables occurring in the rule. The semantics
of a Datalog program P is defined as the minimal Herbrand interpretation I
satisfying P w.r.t. B, written MB(P ). Whenever the program does not contain
built-in predicates, we do not consider the interpretation B and we simply write
M(P ). The semantics of Datalog programs can be defined also by means of a
fixpoint construction. Then, TP is the immediate consequence operator that maps
instances I over sch(P ) to instances over sch(P ) as follows. For each rule r in P ,
if there exists a match π for S1(~u1)∧ . . .∧ Sn(~un)∧Bn+1(~un+1)∧ . . .∧Bm(~um)
in I∪B, then S(a1, . . . , ak) is contained in TP (I) with ai = π(ui) for each ui ∈ ~u.
One can prove that TP has a minimum fixpoint TωP such that TωP = MB(P ) [8].

Finally, a Datalog query is a tuple 〈QP , QC〉 whereQP is a predicate symbol
and QC is a Datalog program. A tuple of individuals 〈a1, . . . , ak〉 is an answer
to 〈QP , QC〉 over Datalog program P if P ∪QC |= QP (a1, . . . , ak).

3 Datalog Rewriting for EL TBoxes

In this section, we show how to transform an EL TBox T into a Datalog
program PT whose size depends linearly on T . The transformation is such that,
for an arbitrary EL ABox A, we can use the unraveling of M(PT ∪A) to compute
the answers to conjunctive queries over 〈T ,A〉. Let T be a TBox over an arbitrary
EL signature. Intuitively, for each axiom α occurring in T , the program PT
contains a set of Datalog rules which encode the constraint imposed by α. To
achieve this, we have to overcome two issues.

First, EL concept inclusions of the form A v ∃R.B require the use of either
existential quantifications or Skolem terms in rule heads; however, Datalog
does not allow neither of the two. In order to solve this issue, we use a technique
that has been introduced for representing canonical models of EL knowledge
bases [3]. That is, for each atomic concept B occurring in T we introduce a fresh
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Axiom α Set of rules Θ(α)

A v B  B(X)← A(X)

A1 uA2 v B  B(X)← A1(X), A2(X)

∃R.A v B  B(X)← R(X,Y ), A(Y )

A v ∃R.B  R(X, oB)← A(X)

B(oB)← A(X)

Fig. 1. Transformation of EL Axioms into Rules.

auxiliary individual oB , which represents the class of existentially quantified
individuals of type B. Then, for each axiom of the above form, the program PT
contains the following two rules:

R(X, oB)← A(X); B(oB)← A(X).

Second, EL allows for > to occur in concept expressions. Hence, we need to
define in PT a unary predicate >, whose extension—given an ABox A—coincides
with the Herbrand universe of PT ∪ A. To achieve this, we restrict our study
to a subset of all EL ABoxes. In particular, we consider only those ABoxes A
such that Pred(A) ⊆ Pred(T ). That is, each predicate occurring in the ABox A
must occur also in the TBox T . Then, in our Datalog program, for each atomic
concept A and for each atomic role R occurring in T , we add the following rules:

>(X)← A(X); >(X)← R(X,Y ); >(Y )← R(X,Y ).

This is only one of the several ways in which we can encode such a predicate.
In fact, another possibility would be—as suggested by Rosati in [5]—to assume
that each ABox A contains an assertion >(a) for each individual a ∈ Ind(A). We
believe that in the context of OBDA—where the focus is to provide access to
arbitrary data-sources—it is important to make as few assumptions as possible
on the physical realization of the ABox. For this reason, we prefer the option
presented above.

Next, we formalize the transformation of a TBox T into a Datalog program
PT . Let Aux = {oA | A ∈ NC} ∪ {o>} be a set of auxiliary individuals distinct
from NI . Then, the program PT is constructed from terms in NT ∪ Aux and
predicates in NC ∪ NR ∪ {>} as follows. The transformation uses the function
Θ, shown in Figure 1, to transform each axiom in the (normalized) TBox T into
a set of Datalog rules. The Datalog program PT is then defined as follows.

PT =
⋃
α∈T Θ(α)⋃
A∈Pred(T )∩NC >(X)← A(X)⋃
R∈Pred(T )∩NR >(X)← R(X,Y ), >(Y )← R(X,Y )

The following result readily follows from the definition of the program.

Proposition 1. For an arbitrary EL TBox T , Datalog program PT can be
computed in time linear in the size of T .
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Consider an arbitrary EL ABox A. Next, we prove that the unraveling U
w.r.t. A of M(PT ∪A) can be used to answer conjunctive queries over K = 〈T ,A〉.
We do so in two distinct steps. First, we introduce the notion of chase of an EL
knowledge base K. Second, we show that the chase of K is isomorphic to U .

The chase of an EL knowledge base K = 〈T ,A〉, written chase(K), is a
possibly infinite Herbrand interpretation defined inductively by starting from A
and then applying axioms occurring in the TBox to assertions occurring in the
ABox. In our definition of the chase, we use function terms to denote existentially
quantified individuals. Hence, the definition of ABox assertion is extended in a
natural way to accommodate for assertions over function terms. We denote with
u and w terms that can be either individuals or function terms. Next, we define
an operator ΓT that chases an ABox by applying the axioms occurring in the
TBox T . In the definition, we use assertions of the form >(u) to assert that u is
a member of the EL concept expression >. For S an arbitrary ABox, ΓT (S) is
the smallest ABox containing S and closed under the following chasing rules.

(cr1) If {A(u)} ⊆ S and A v B ∈ T , then {B(u)} ⊆ ΓT (S).
(cr2) If {A1(u), A2(u)} ⊆ S and A1 uA2 v B ∈ T , then {B(u)} ⊆ ΓT (S).
(cr3) If {R(u,w), A(w)} ⊆ S and ∃R.A v B ∈ T , then {B(u)} ⊆ ΓT (S).
(cr4) If {A(u)} ⊆ S and A v ∃R.B ∈ T , then

{R(u, f(u,R,B)), B(f(u,R,B))} ⊆ ΓT (S).

(cr5) If u occurs in S, then {>(u)} ⊆ ΓT (S).

We now define an infinite sequence of finite ABoxes Ai for i ∈ N.

A0 = A
Ai+1 = ΓT (Ai)

Finally, the chase of K is the infinite union of all such ABoxes Ai.

chase(K) =
⋃

i∈N
Ai

It is clear that our construction of the chase of K is fair. In fact, for each i ∈ N we
have that Ai+1 is the result of exhaustively applying—to all possible assertions
occurring in Ai—all applicable axioms in T . At last, we want to point out that
chase(K) can be used to compute the certain answers to a CQ q over K.

Proposition 2 ([5]). Let K be an EL knowledge base. Further, let q be a k-ary
conjunctive query. Then, for each k-ary tuple of individuals 〈a1, . . . , ak〉, we have

〈a1, . . . , ak〉 ∈ cert(q,K) if and only if chase(K) |= q[a1, . . . , ak].

So, by proving that the unraveling U of M(PT ∪A) is isomorphic to chase(K),
we establish that U can be used to answer conjunctive queries over K. To prove
the structural equivalence of U and chase(K), we define a function h mapping
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paths occurring in U to terms in chase(K). We define h by induction on the
depth of paths occurring in U as follows.

Base Case. Consider an arbitrary p ∈ ∆U with dep(p) = 1. We set h(p) := p.
Inductive Step. Let p = t1 · R2 · t2 · · · tn−1 · Rn · tn be a path occurring

in U such that h(p) has not been defined yet, but h(t1 · · ·Rn−1 · tn−1) = u. We
distinguish between two cases depending on the type of the individual tn.
1. If tn occurs in the ABox, we set h(p) := tn.
2. If tn is of the form oB , we set h(p) := f(u,Rn, B).

Theorem 1 shows that h is an isomorphism between the two structures. In-
tuitively, for the only-if direction, we show that h is an injective homomorphism
from U to chase(K) by induction on the depth of paths occurring in U ; for the
if-direction, by induction on the construction of chase(K) we prove that h is a
surjective function and that it is a homomorphism from chase(K) to U .

Theorem 1. Function h is an isomorphism from U to chase(K).

Since the unraveling of M(PT ∪A) is generally infinite, this result alone does
not provide us with an algorithm for answering queries in EL. In the next section,
we show how to rewrite a user query q into a Datalog query 〈QP , QC〉 such
that PT ∪ A ∪QC |= QP (a1, . . . , ak) if and only if 〈a1, . . . , ak〉 ∈ cert(q,K) and
thus solve the problem.

4 Polynomial Query Rewriting in Datalog

In the previous section, we have seen that for an arbitrary EL KB K = 〈T ,A〉
evaluating a conjunctive query q over the unraveling of the Herbrand model
of PT ∪ A is equivalent to computing the certain answers to q over K. In this
section, we develop a query rewriting procedure that reduces the computation of
cert(q,K) to the problem of evaluating a suitably constructed Datalog query
over PT ∪ A. We achieve this in two steps. First, we present an interesting
property of a certain class of interpretations. Second, we show how this result
can be used to develop a query rewriting procedure in our Datalog setting.

We use the notions of A-connected and split interpretations from [6, 13]. Let
I be an interpretation and let A be an ABox over an arbitrary EL signature.
We say that I is A-connected if, for each domain element c ∈ ∆I , there exists a
path p ∈ pathsA(I) such that tail(p) = c. Furthermore, I is a split interpretation
if, for all domain elements c, c′ ∈ ∆I , we have that c 6∈ {aI | a ∈ Ind(A)}
and 〈c, c′〉 ∈ RI imply c′ 6∈ {aI | a ∈ Ind(A)}. Intuitively, in an A-connected
interpretation I, for each domain element cn it is always possible to find a path
aI ·R2 · c2 · · ·Rn · cn such that a ∈ Ind(A). Furthermore, if I is split, then each
domain element that is not the image of an individual can be related by a role
only with elements that themselves do not interpret individuals.

Then, let J be the unraveling w.r.t. A of a split and A-connected interpre-
tation I and let q be a conjunctive query. Lutz et al. in [6, 13] showed that it is
possible to reduce the problem of answering q in J to evaluating a first-order
query rewriting q∗ of q over I. Roughly speaking, the query rewriting q∗ rules
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out some spurious answers for q in I that cannot be reproduced in J . More
specifically, we have to ensure that the answer variables of q, the variables of
q mapped to cyclic portions of I, and the variables of q mapped to nontree
portions of I are all matched only to the domain elements in {aI | a ∈ Ind(A)}.

We now briefly outline how we can construct such an FO rewriting q∗ for
q [6]. Let ∼q be the smallest equivalence relation over NT (q) that is closed under
the following rule: if R(s, t) and R(s′, t′) occur in q and t ∼q t′, then s ∼q s′.
Then, for each equivalence class ζ of ∼q, we let tζ ∈ ζ be an arbitrary, but fixed,
representative of the class. Also, for each such equivalence class ζ and for each
atomic role R occurring in q, we let Pred(ζ,R) be the following set.

Pred(ζ,R) = {t ∈ NT (q) | R(t, t′) occurs in q with t′ ∈ ζ}
Next, we define three sets of terms that correspond to the above mentioned cases.
– Fork= is the set of all pairs 〈Pred(ζ,R), tζ〉 such that ζ is an equivalence class

of ∼q and |Pred(ζ,R)| > 1.
– Fork6= is the set of all quantified variables v ∈ qvar(q) for which atoms R(s, v)

and S(s′, t) exist in q such that R 6= S and v ∼q t.
– Cyc is the set of all variables v ∈ qvar(q) for which atoms

R0(t0, t
′
0), . . . , Rm(tm, t

′
m), . . . , Rn(tn, t

′
n)

exist in q such that m,n ≥ 0; for some i ≤ n we have that ti ∼q v; for each
j < n we have that t′j ∼q tj+1; and t′n ∼q tm.

We are now ready to formally specify the FO query rewriting q∗. In the definition,
we assume that Aux is a fresh predicate not occurring in q and K and that every
interpretation I interprets Aux as ∆I \{aI | a ∈ Ind(A)}. Then, formulae q1 and
q2 are defined as follows.

q1 =
∧

v∈avar(q)∪Fork6=∪Cyc
¬Aux(v)

q2 =
∧

〈Pred(ζ,R),tζ〉∈Fork=
¬Aux(tζ) ∨

∧

t,t′∈Pred(ζ,R)

(t = t′)

Finally, we set q∗ = q∧q1∧q2. It turns out that q∗ can be computed in polynomial
time w.r.t. q [6]. In the same paper, Lutz et al. prove the following result.

Proposition 3. Let A be an arbitrary EL ABox, let I be a split and A-connected
interpretation, and let J be the unraveling of I w.r.t. A. Then, for every k-tuple
of individuals 〈a1, . . . , ak〉, we have that

I |= q∗[a1 . . . , ak] if and only if J |= q[a1 . . . , ak].

This result applies to our Datalog rewriting of EL TBoxes. Indeed, for an
arbitrary EL KB K = 〈T ,A〉, we have that M(PT ∪A) is a split and A-connected
interpretation. The intuition behind the argument is as follows. We show that
M(PT ∪ A) is split by noticing that rules encoded in PT do not allow for the
derivation of facts of the form R(oB , a) for a ∈ Ind(A) and oB ∈ Aux. To see
that M(PT ∪A) is A-connected, we just recall that M(PT ∪A) is minimal and,
hence, all the derived facts must be “grounded” w.r.t. the facts in A.
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Theorem 2. Let K = 〈T ,A〉 be an EL knowledge base. Then, M(PT ∪ A) is a
split and A-connected interpretation.

Hence, for an arbitrary k-ary CQ q and for each k-tuple of individuals 〈a1, . . . , ak〉,
we have that M(PT ∪ A) |= q∗[a1 . . . , ak] if and only if 〈a1, . . . , ak〉 ∈ cert(q,K).

Note that q∗ is a first-order query, and we are unaware of systems capa-
ble of evaluating first-order queries over Datalog programs. Therefore, we
next show how to transform q∗ into a Datalog query 〈QP , QC〉 such that
〈a1, . . . , ak〉 ∈ cert(q,K) if and only if PT ∪ A ∪ QC |= QP (a1 . . . , ak). We con-
struct such a Datalog query 〈QP , QC〉 by applying to q∗ a simplified version
of the Lloyd-Topor transformation [14, 15].

Definition 1 (Datalog Rewriting). Let q(~x) be a k-ary CQ whose quanti-
fied variables are among ~y; let Cyc, Fork6=, and Fork= be as specified above; let
〈Pred(ζ1, R1), t1ζ〉, . . ., 〈Pred(ζn, Rn), tnζ 〉 be an arbitrary enumeration of Fork=;
let p0, p1, . . . , pn be fresh predicates; and let Named be a built-in with a prede-
termined, possibly infinite Herbrand interpretation N = {Named(a) | a ∈ NI}.
Query QC then contains the following safe Datalog rules:

p0(~x, ~y)← q,
∧

v∈avar(q)∪Fork6=∪Cyc
Named(v) (1)

pi(~x, ~y)← pi−1(~x, ~y),Named(tiζ) for 1 ≤ i ≤ n (2)

pi(~x, ~y)← pi−1(~x, ~y),
∧

t,t′∈Pred(ζi,Ri)
t = t′ for 1 ≤ i ≤ n (3)

QP (~x)← pn(~x, ~y) (4)

One may think that the recursive definition of predicates pi for 1 ≤ i ≤ n could
be simplified by writing QP (~x)← p0(~x, ~y) . . . pn(~x, ~y) and by defining each pi as:

pi(~x, ~y)← Named(tiζ) pi(~x, ~y)← ∧
t,t′∈Pred(ζi,Ri) t = t′

Unfortunately, these rules are not safe. Safe rules, on the one hand, provide
us with a clear and unambiguous semantics. On the other hand, unsafe rules
are also computationally more expensive for bottom-up computation, since each
variable in the head may be bound to an arbitrary individual in the universe of
the program. For this reason, we prefer our, slightly more involved, solution.

Proposition 4. For an arbitrary k-ary conjunctive query q, query 〈QP , QC〉
can be computed in polynomial time w.r.t. the size of q.

Proof. We note that ∼q can be computed in polynomial time w.r.t. the size of
q [6] and, therefore, also the sets Cyc, Fork 6=, and Fork= can be computed in poly-
nomial time w.r.t. q. Furthermore, the size of the body of rule p0(~x, ~y) depends
linearly on the size of q, Cyc, and Fork 6=. Also, for each pair 〈Pred(ζ,R), tζ〉 in
Fork=, the program QC contains exactly two rules. The size of these two rules
depends linearly on the size of 〈Pred(ζ,R), tζ〉. Thus, we conclude that 〈QP , QC〉
can be computed in polynomial time with respect to the size of q. ut
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In [10], we prove that our rewriting is correct—that is, that answering 〈QP , QC〉
over PT ∪ A is equivalent to computing cert(q, T ,A). This follows from Propo-
sition 3 and the fact that our Datalog query is the result of transforming the
FO rewriting q∗ along the lines of the Lloyd-Topor transformation.

Theorem 3. Let K be an EL knowledge base and let q be a k-ary CQ over K.
Then, for every k-tuple of individuals 〈a1, . . . , ak〉, we have that

〈a1, . . . , ak〉 ∈ cert(q,K) if and only if PT ∪ A ∪QC |= QP (a1, . . . , ak).

Finally, we investigate the complexity of our rewriting procedure.

Theorem 4. Let K = 〈T ,A〉 be an EL KB, let q be a k-ary CQ, and let
〈a1, . . . , ak〉 be a tuple of individuals. We can decide PT ∪A∪QC |= QP (a1, . . . , ak)
in polynomial time w.r.t. the size of K and in non-deterministic polynomial time
with respect to the size of both K and q.

Proof. We have already argued that the size of Datalog program PT depends
linearly on the size of the TBox T and that the Datalog rewriting 〈QP , QC〉
can be computed in Ptime w.r.t. q. Also, we note that the arity of predicates
and the number of variables occurring in PT ∪ A ∪ QC do not depend on K.
Finally, from an implementation point-of-view (as suggested in [12]), the built-in
predicate Named can be considered as an assertion in the ABoxA with a different
physical realization: it is not directly stored in the ABox but it is implemented
as a procedure which is evaluated during the execution of the program. Clearly,
such a procedure can be implemented to run in time polynomial in K. It follows
that we can compute the minimal Herbrand model of PT ∪ A ∪ QC in time
polynomial in the size of K [8]. The membership in NP follows directly from
the considerations above and from the fact that we can guess and check in
nondeterministic polynomial time a match π for QP in M(PT ∪ A ∪QC). ut

5 Conclusions

In this paper, we introduce a query rewriting approach to query answering in EL.
In our approach, the process of computing the certain answers to a CQ q over an
EL KB K = 〈T ,A〉 is divided into two distinct steps. A first preprocessing step
in which the TBox T is transformed into a Datalog program PT , whose size
is linear in T . Then, at query time, the query q is independently rewritten into
a Datalog query 〈QP , QC〉, whose size is polynomial in q. Finally, computing
cert(q,K) amounts to evaluating the Datalog query 〈QP , QC〉 over PT ∪ A.

In future, we plan to extend our approach to deal with ELHdr⊥ . Lutz et al.
have already proposed a combined approach for query answering in this DL [13].
However, differently from their solution, we would like the Datalog rewriting
〈QP , QC〉 to be independent from the role inclusions contained in the TBox.
Additionally, we plan to extend our work to cover nominals, which raises the
question on how to efficiently handle equality in Datalog [2].
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1 Motivation

Due to the wide range of modelling constructs supported by the expressive DLSROIQ,
the typically used tableau algorithms in competitive reasoning systems such as FaCT++

[16], HermiT,3 or Pellet [14] have a very high worst-case complexity. The development
of tableau optimisations that help to achieve practical efficiency is, therefore, a long-
standing challenge in DL research (see, e.g., [11, 17]). A very effective and widely im-
plemented optimisation technique is “caching”, where one caches, for a set of concepts,
whether they are known to be, or can safely be assumed to be, satisfiable or unsatisfi-
able [4]. If the set of concepts appears again in a model abstraction, then a cache-lookup
allows for skipping further applications of tableau rules. Unfortunately, with increasing
expressivity naively caching become unsound, for instance, due to the possible interac-
tion of inverse roles with universal restrictions [1, Chapter 9].

With this contribution we push the boundary of the caching optimisation to the
expressive DL SROIQ. The developed unsatisfiability caching method is based on a
sophisticated dependency management, which further enables better informed tableau
backtracking and more efficient pruning (Section 3). Our techniques are grounded in the
widely implemented tableau calculus for SROIQ [9], which makes it easy to transfer
our results into existing implementations. The optimisations are integrated within a
novel reasoning system, called Konclude [13]. Our empirical evaluation shows that the
proposed optimisations result in significant performance improvements (Section 4).

2 Preliminaries

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”. A completion graph G is a tuple (V, E,L, ,̇), where each node x ∈ V represents
one or more individuals, and is labelled with a set of concepts, L(x), which the individ-
uals represented by x are instances of; each edge 〈x, y〉 represents one or more pairs of
individuals, and is labelled with a set of roles, L(〈x, y〉), which the pairs of individuals
represented by 〈x, y〉 are instances of. The relation ,̇ records inequalities, which must
hold between nodes, e.g., due to at-least cardinality restrictions.

3 http://www.hermit-reasoner.com
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The algorithm works by initialising the graph with one node for each Abox in-
dividual/nominal in the input KB, and using a set of expansion rules to syntactically
decompose concepts in node labels. Each such rule application can add new concepts
to node labels and/or new nodes and edges to the completion graph, thereby explicat-
ing the structure of a model. The rules are repeatedly applied until either the graph is
fully expanded (no more rules are applicable), in which case the graph can be used to
construct a model that is a witness to the consistency of K , or an obvious contradiction
(called a clash) is discovered (e.g., both C and ¬C in a node label), proving that the
completion graph does not correspond to a model. The input knowledge baseK is con-
sistent if the rules (some of which are non-deterministic) can be applied such that they
build a fully expanded, clash free completion graph. A cycle detection technique called
blocking ensures the termination of the algorithm.

2.1 Dependency Tracking

Dependency tracking keeps track of all dependencies that cause the existence of con-
cepts in node labels, roles in edge labels as well as accompanying constrains such as
inequalities that must hold between nodes. Dependencies are associated with so-called
facts, defined as follows:

Definition 1 (Fact) We say that G contains a concept fact C(x) if x ∈ V and C ∈ L(x),
G contains a role fact r(x, y) if 〈x, y〉 ∈ E and r ∈ L(〈x, y〉), and G contains an inequality
fact x ,̇ y if x, y ∈ V and (x, y) ∈ ,̇. We denote the set of all (concept, role, or inequality)
facts in G as FactsG.

Dependencies now relate facts in a completion graph to the facts that caused their exis-
tence. Additionally, we annotate these relations with a running index, called dependency
number, and a branching tag to track non-deterministic expansions:

Definition 2 (Dependency) Let d be a pair in FactsG ×FactsG. A dependency is of the
form dn,b with n ∈ IN0 a dependency number and b ∈ IN0 a branching tag.

We inductively define the dependencies DepG for G: If G is an initial completion
graph, then DepG = ∅. We initialise the beginning for the next dependency numbers nm

with 1 if DepG = ∅; otherwise, nm = 1 + max{n | dn,b ∈ DepG}. Let R be a tableau rule
applicable to a completion graph G. If R is non-deterministic, the next non-deterministic
branching tag bR for R is 1 + max{{0} ∪ {b | dn,b ∈ DepG}}; for R deterministic, bR = 0.
Let G′ be the completion graph obtained from G by applying R with c0, . . . , ck the facts
to satisfy the preconditions of R and c′0, . . . , c

′
` the newly added facts in G′, then

DepG′ = DepG ∪ {(c′j, ci)n,b | 0 ≤ i ≤ k, 0 ≤ j ≤ `, n = nm + ( j ∗ k) + i,
b = max{{bR} ∪ {b′ | (ci, c)n′,b′ ∈ DepG}}}.

The branching tag indicates which facts were added non-deterministically:

Definition 3 (Non-deterministic Dependency) For dn,b ∈ DepG with d = (c1, c2), let
Dd = {(c2, c3)n′,b′ | (c2, c3)n′,b′ ∈ DepG}. The dependency dn,b is a non-deterministic
dependency in G if b > 0 and either Dd = ∅ or max{b′ | (c, c′)n′,b′ ∈ Dd} < b.
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a0

x1

x2

L(a0) = {

L(x1) = {

L(x2) = {

(∃r.(A u (∃r.(∀r−.B)))) , (∀r.¬B) , (C t D) , C }

r }

(A u (∃r.(∀r−.B))) , ¬B , A , (∃r.(∀r−.B)) , B }

r }

(∀r−.B) }

L(〈a0, x1〉) = {

L(〈x1, x2〉) = {

b2,0

c3,0

f 6,0
g7,0

d4,0
e5,0

a1,1

h8,0

i9,0

j10,0

k11,0

Fig. 1. Tracked dependencies for all facts in the generated completion graph

Figure 1 illustrates a completion graph obtained in the course of testing the consis-
tency of a knowledge base with three concept assertions:

a0 : (∃r.(A u (∃r.(∀r−.B)))) a0 : (∀r.¬B) a0 : (C t D).
Thus, the completion graph is initialised with the node a0, which has the three con-
cepts in its label. Initially, the set of dependencies is empty. For the concepts and roles
added by the application of tableau rules, the dependencies are shown with dotted lines,
labelled with the dependency. The dependency number increases with every new de-
pendency. The branching tag is only non-zero for the non-deterministic addition of C to
the label of a0 in order to satisfy the disjunction (C t D). Note the presence of a clash
due to B and ¬B in the label of x1.

3 Extended Caching and Backtracking

In the following we introduce improvements to caching and backjumping by present-
ing a more informed dependency directed backtracking strategy that also allows for
extracting precise unsatisfiability cache entries.

3.1 Dependency Directed Backtracking

Dependency directed backtracking is an optimisation that can effectively prune irrele-
vant alternatives of non-deterministic branching decisions. If branching points are not
involved in clashes, it will not be necessary to compute any more alternatives of these
branching points, because the other alternatives cannot eliminate the cause of the clash.
To identify involved non-deterministic branching points, all facts in a completion graph
are labelled with information about the branching points they depend on. Thus, the
united information of all clashed facts can be used to identify involved branching points.
A typical realisation of dependency directed backtracking is backjumping [1, 17], where
the dependent branching points are collected in the dependency sets for all facts.
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3.2 Unsatisfiability Caching

Another widely used technique to increase the performance of a tableau implementation
is caching. For unsatisfiability caching, one caches sets of concepts that are known to
be unsatisfiable. For such a cache entry, it holds that any superset is also unsatisfiable.
Thus, if, in a future tableau expansion, one encounters a node label that is a superset of
a cache entry, one can stop expanding the branch.

Analogously to unsatisfiability caching, one can define satisfiability caching and
many systems combine both caches. We focus here, however, on unsatisfiability caching
since the two problems are quite different in nature and the required data structures for
an efficient cache retrieval can differ significantly. Before we define how and when we
create cache entries, we formalise our notion of an unsatisfiability cache.

Definition 4 (Unsatisfiability Cache) Let K be a knowledge base and ConK the set
of (sub-)concepts that occur in K . An unsatisfiability cache UCK for K is a subset of
2ConK such that each cache entry S ∈ UCK is unsatisfiable w.r.t. K . An unsatisfiability
retrieval for UCK and a completion graph G for K takes a set of concepts S ⊆ ConK
from a node label of G as input. If UCK contains a set S⊥ ⊆ S , then S⊥ is returned;
otherwise, the empty set is returned.

Although node labels can have many concepts that are not involved in any clashes,
most implementations cache complete node labels. One reason for this might be that
the often used backjumping [1, 17] only allows the identification of all branching points
involved in a clash, but there is no information about how the clash is exactly caused. We
refer to this form of caching as label caching. Systems that use label caching typically
also only check whether the exact node label from the current tableau is in the cache.

The creation of cache entries rapidly becomes difficult with increasing expressivity
of the used DL. Already with blocking for the DLALC, one can easily generate invalid
cache entries [6]. Apart from a node x with a clash in its label, the question is which
other node labels are also unsatisfiable. For ALC, this is the case for all labels from
x up to the ancestor y with the last non-deterministic expansion. With ALCI, a non-
deterministic rule application on a descendant node of x can be involved in the clash,
which makes it difficult to determine node labels that can be cached. Nevertheless,
caching techniques for ALCI have been proposed [2, 3, 5], but the difficulty further
increases in the presence of nominals and, to the best of our knowledge, the problem
of caching with inverses and nominals has not yet been addressed in the literature. In
order to avoid unsound results, current systems often deactivate caching in presence of
inverse roles or at least in presence of nominals, especially with combined satisfiability
and unsatisfiability caching [14, 17].

The extraction of a small still unsatisfiable subset of a node label would yield better
cache entries. The use of subset retrieval methods for the cache further increases the
number of cache hits. We call such a technique precise caching. Although techniques
to realise efficient subset retrieval exist [8], unsatisfiability caches that use such subset
retrieval are only implemented in very few DL reasoners [7].

Going back to the example in Figure 1, for the node x1 the set {¬B, (∃r.(∀r−.B))}
could be inserted into the cache as well as {¬B, (Au(∃r.(∀r−.B)))}. The number of cache
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entries should, however, be kept small, because the performance of the retrieval de-
creases with an increasing number of entries. Thus, the insertion of concepts for which
the rule application is cheap (e.g., concept conjunction) should be avoided. Concepts
that require the application of non-deterministic or generating rules are more suitable,
because the extra effort of querying the unsatisfiability cache before the rule applica-
tion can be worth the effort. Optimising cache retrievals for incremental changes further
helps to efficiently handle multiple retrievals for the same node with identical or slightly
extended concept labels.

The creation of new unsatisfiability cache entries based on dependency tracking
can be done during backtracing, which is also coupled with the dependency directed
backtracking as described next.

3.3 Dependency Backtracing

The dependency tracking defined in Section 2.1 completely retains all necessary infor-
mation to exactly trace back the cause of the clash. Thus, this backtracing is qualified
to identify all involved non-deterministic branching points for the dependency directed
backtracking and also to identify small unsatisfiable sets of concepts that can be used
to create new unsatisfiability cache entries.

Algorithm 1 performs the backtracing of facts and their tracked dependencies in the
presence of inverse roles and nominals. If all facts and their dependencies are collected
on the same node while backtracing, an unsatisfiability cache entry with these facts can
be generated, assuming all facts are concept facts. As long as no nominal or Abox indi-
vidual occurs in the backtracing, the unsatisfiability cache entries can also be generated
while all concept facts have the same node depth. Thus, an important task of the back-
tracing algorithm is to hold as many facts as possible within the same node depth to
allow for the generation of many cache entries. To realise the backtracing, we introduce
the following data structure:

Definition 5 (Fact Dependency Node Tuple) A fact dependency node tuple for G is a
triple 〈c, dn,b, x〉 with c ∈ FactsG, dn,b ∈ DepG and x ∈ V. As abbreviation we also write
〈C, dn,b, x〉 if c is the concept fact C(x).

If a clash is discovered in the completion graph, a set of fact dependency node tuples
is generated for the backtracing. Each tuple consists of a fact involved in the clash, an
associated dependency and the node where the clash occurred. The algorithm gets this
set T of tuples as input and incrementally traces the facts back from the node with the
clash to nodes with depth 0 (Abox individuals or root nodes).

In each loop round (line 3) some tuples of T are exchanged with tuples, whose facts
are the cause of the exchanged one. To identify which tuple has to be traced back first,
the current minimum node depth (line 4) and the maximum branching tag (line 5) are
extracted from the tuples of T . All tuples, whose facts are located on a deeper node and
whose dependencies are deterministic, are collected in the set A. Such tuples will be
directly traced back until their facts reach the current minimum node depth (line 10-
12). If there are no more tuples on deeper nodes with deterministic dependencies, i.e.,
A = ∅, the remaining tuples from deeper nodes with non-deterministic dependencies
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Algorithm 1 Backtracing Algorithm
Require: A set of fact dependency node tuples T obtained from clashes
1: procedure dependencyBacktracing(T )
2: pendingUnsatCaching← f alse
3: loop
4: minD ←minimumNodeDepth(T )
5: maxB ←maximumBranchingTag(T )
6: A← {t ∈ T | nodeDepth(t)> minD ∧ hasDeterministicDependency(t)}
7: C ← ∅
8: if A , ∅ then
9: pendingUnsatCaching← true

10: for all t ∈ A do
11: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
12: end for
13: else
14: B← {t ∈ T | nodeDepth(t)> minD ∧ branchingTag(t)= maxB}
15: if B = ∅ then
16: if pendingUnsatCaching = true then
17: pendingUnsatCaching←tryCreateUnsatCacheEntry(T )
18: end if
19: if hasNoDependency(t) for all t ∈ T then
20: pendingUnsatCaching←tryCreateUnsatCacheEntry(T )
21: return
22: end if
23: C ← {t ∈ T | branchingTag(t)= maxB}
24: end if
25: t ←anyElement(B ∪C)
26: if hasDeterministicDependency(t) then
27: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
28: else
29: b←getNonDeterministicBranchingPoint(t)
30: if allAlternativesOfNonDetBranchingPointProcessed(b) then
31: T ← T ∪ loadTuplesFromNonDetBranchingPoint(b)
32: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
33: T ←backtraceTuplesBeforeBranchingPoint(T, b)
34: pendingUnsatCaching←tryCreateUnsatCacheEntry(T )
35: else
36: T ←backtraceTuplesBeforeBranchingPoint(T, b)
37: saveTuplesToNonDetBranchingPoint(T, b)
38: jumpBackTo(maxB)
39: return
40: end if
41: end if
42: end if
43: end loop
44: end procedure
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and the current branching tag are copied into B (line 14) in the next round. If B is not
empty, one of these tuples (line 25) and the corresponding non-deterministic branching
point (line 29) are processed. The backtracing is only continued, if all alternatives of
the branching point are computed as unsatisfiable. In this case, all tuples, saved from
the backtracing of other unsatisfiable alternatives, are added to T (line 31). Moreover,
for c the concept fact in the tuple t, t can be replaced with tuples for the fact on which
c non-deterministically depends (line 32).

For a possible unsatisfiability cache entry all remaining tuples, which also depend
on the non-deterministic branching point, have to be traced back until there are no tuples
with facts of some alternatives of this branching point left (line 33). An unsatisfiability
cache entry is only generated (line 34), if all facts in T are concept facts for the same
node or on the same node depth.

Unprocessed alternatives of a non-deterministic branching point have to be com-
puted before the backtracing can be continued. It is, therefore, ensured that tuples do
not consist of facts and dependencies from this alternative, which also allows for re-
leasing memory (line 36). The tuples are saved to the branching point (line 37) and the
algorithm jumps back to an unprocessed alternative (line 38).

If B is also empty, but there are still dependencies to previous facts, some tuples
based on the current branching tag have to remain on the current minimum node depth.
These tuples are collected in the set C (line 23) and are processed separately one per
loop round, similar to the tuples of B, because the minimum node depth or maximum
branching tag may change. The tuples of C can have deterministic dependencies, which
are processed like the tuples of A (line 27). If all tuples have no more dependencies to
previous facts, the algorithm terminates (line 21).

Besides the creation of unsatisfiability cache entries after non-deterministic depen-
dencies (line 34), cache entries may also be generated when switching from a deeper
node to the current minimum node depth in the backtracing (line 9 and 17) or when the
backtracing finishes (line 20). The function that tries to create new unsatisfiability cache
entries (line 17, 20, and 34) returns a Boolean flag that indicates whether the attempt
has failed, so that the attempt can be repeated later.

For an example, we consider the clash {¬B, B} in the completion graph of Figure 1.
The initial set of tuples for the backtracing is T1 (see Figure 2). Thus, the minimum node
depth for T1 is 1 and the maximum branching tag is 0. Because there are no tuples on a
deeper node, the sets A and B are empty for T1. Since all clashed facts are generated de-
terministically, the dependencies of the tuples have the current maximum branching tag
0 and are all collected into the set C. The backtracing continues with one tuple t from
C, say t = 〈B, k11,0, x1〉. The dependency k of t relates to the fact (∀r−.B)(x2), which is a
part of the cause and replaces the backtraced tuple t in T1. The resulting set T2 is used in
the next loop round. The minimum node depth and the maximum branching tag remain
unchanged, but the new tuple has a deeper node depth and is traced back with a higher
priority to enable unsatisfiability caching again. Thus, 〈(∀r−.B), i9,0, x2〉 is added to the
set A and then replaced by its cause, leading to T3. Additionally, a pending creation
of an unsatisfiability cache entry is noted, which is attempted in the third loop round
since A and B are empty. The creation of a cache entry is, however, not yet sensible
and deferred since T3 still contains an atomic clash. Let t = 〈B, j10,0, x1〉 ∈ C be the
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T1 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈B, k11,0, x1〉}↓
T2 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∀r−.B), i9,0, x2〉}↓
T3 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}↓
T4 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈r(x1, x2), h8,0, x1〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}↓
T5 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}↓
T6 = {〈¬B, d4,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}↓
T7 = {〈r(a0, x1), b2,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(A u (∃r.(∀r−.B))), c3,0, x1〉}↓
T8 = {〈(∃r.(A u (∃r.(∀r−.B))))−, a0〉, 〈(∀r.¬B),−, a0〉}

Fig. 2. Backtracing sequence of tuples as triggered by the clash of Figure 1

tuple from T3 that is traced back next. In the fourth round, the creation of a cache entry
is attempted again, but fails because not all facts are concepts facts. The backtracing
of 〈r(x1, x2), h8,0, x1〉 then leads to T5. In the following round an unsatisfiability cache
entry is successfully created for the set {¬B, (∃r.(∀r−.B))}. Assuming that now the tuple
〈¬B, e5,0, x1〉 is traced back, we obtain T6, which includes the node a0. Thus, the mini-
mum node depth changes from 1 to 0. Two more rounds are required until T8 is reached.
Since all remaining facts in T8 are concept assertions, no further backtracing is possible
and an additional cache entry is generated for the set {(∃r.(Au (∃r.(∀r−.B)))), (∀r.¬B)}.

If a tuple with a dependency to node a0 had been traced back first, it would have
been possible that the first unsatisfiability cache entry for the set {¬B, (∃r.(∀r−.B))}
was not generated. In general, it is not guaranteed that an unsatisfiability cache entry
is generated for the node where the clash is discovered if there is no non-deterministic
rule application and if the node is not a root node or an Abox individual. Furthermore,
if there are facts that are not concept facts, these can be backtraced with higher priority,
analogous to the elements of the set A, to make unsatisfiability cache entries possible
again. To reduce the repeated backtracing of identical tuples in different rounds, an
additional set can be used to store processed tuples for the alternative for which the
backtracing is performed.

The backtracing can also be performed over nominal and Abox individual nodes.
However, since Abox and absorbed nominal assertions such as {a} v C have no previous
dependencies, this can lead to a distributed backtracing stuck on different nodes. In this
case, no unsatisfiability cache entries are possible.

A less precise caching can lead to an adverse interaction with dependency directed
backtracking. Consider the example of Figure 3, where the satisfiability of the combina-
tion of the concepts (∃r.(∃s.(AuB))), ((C1u∀r.C)t(C2u∀r.C)), and ((D1u∀r.(∀s.¬A))t
(D2u∀r.(∀s.¬A))) is tested. Note that, in order to keep the figure readable, we no longer
show complete dependencies, but only the branching points for non-deterministic deci-
sions. First, the two disjunctions are processed. Assuming that the alternative with the
disjuncts (C1 u ∀r.C) and (D1 u ∀r.(∀s.¬A)) is considered first (shown on the left-hand
side of Figure 3), an r-successor x1 with label {(∃s.(A u B)),C1, (∀s.¬A)2} is gener-
ated. The branching points indicate which concepts depend on which non-deterministic
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L(x0) = {(∃r.(∃s.(A u B))), ((C1 u ∀r.C) t (C2 u ∀r.C)),
((D1 u ∀r.(∀s.¬A)) t (D2 u ∀r.(∀s.¬A)))}

x0

x0
L(x0) ∪ {(C1 u ∀r.C)1} x0

x0 L(x0) ∪ {(D1 u ∀r.(∀s.¬A))2} x0
L(x0) ∪ {(D2u
∀r.(∀s.¬A))2}

x1 L(x1) = {(∃s.(A u B)),C1, (∀s.¬A)2} x1
a. entire label cached,

dependency set {1, 2}
b. concepts precisely cached,

dependency set {2}x2 L(x2) = {(A u B), A, B,¬A2}
clash {A,¬A}, dependency set {2}

t1 t1

t2 t2

r r

s backjumping

a. backjumping

b. backjumping

Fig. 3. More pruned alternatives due to dependency directed backtracking and precise caching
(case b.) in contrast to label caching (case a.)

decision. For example, C is in L(x1) due to the disjunct (C1 u ∀r.C) of the first non-
deterministic branching decision (illustrated in Figure 3 with the superscript 1). In
the further generated s-successor x2 a clash is discovered. For the only involved non-
deterministic branching point 2, we have to compute the second alternative. Thus, an
identical r-successor x1 is generated again for which we can discover the unsatisfia-
bility with a cache retrieval. If the entire label of x1 was inserted to the cache, the
dependent branching points of all concepts in the newly generated node x1 would have
to be considered for further dependency directed backtracking. Thus, the second alter-
native of the first branching decision also has to be evaluated (c.f. Figure 3, case a.,
label caching). In contrast, if the caching was more precise and only the combination of
the concepts (∃s.(A u B)) and (∀s.¬A) was inserted into the unsatisfiability cache, the
cache retrieval for the label of node x1 would return the inserted subset. Thus, only the
dependencies associated to the concepts of the subset could be used for further back-
jumping, whereby it would not be necessary to evaluate the remaining alternatives (c.f.
Figure 3, case b., precise caching).

4 Evaluation

Our Konclude reasoning system implements the enhanced optimisation techniques for
SROIQ described above. We evaluate dependency directed backtracking and unsatis-
fiability caching with the help of concept satisfiability tests from the well-known DL
98 benchmark suite [10] and spot tests from [12]. An extended evaluation and a com-
parison of Konclude with other reasoners can be found in the accompanying technical
report [15]. From the DL 98 suite we selected satisfiable and unsatisfiable test cases
(with _n resp. _p postfixes) and omitted those for which unsatisfiability caching is ir-
relevant and tests that were too easy to serve as meaningful and reproducible sample.
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Fig. 4. Log scale comparison of processed alternatives for different caching methods

We distinguish between precise caching and label caching as described in Sec-
tion 3.2. To recall, precise caching stores precise cache entries consisting of only those
backtraced sets of concepts that are explicitly known to cause an unsatisfiability in com-
bination with subset retrieval, while label caching stores and returns only entire node
labels.

Konclude implements precise unsatisfiability caching based on hash data struc-
tures [8] in order to efficiently facilitate subset cache retrieval. Figure 4 shows the total
number of processed non-deterministic alternatives for precise caching, label caching
and without caching for a selection of test cases solvable within one minute.

Note that runtime is not a reasonable basis of comparison since the label caching
has been implemented (just for the purpose of evaluation) on top of the built-in and
computationally more costly precise caching approach. System profiling information,
however, strongly indicate that building and querying the precise unsatisfiability cache
within Konclude is negligible in terms of execution time compared to the saved pro-
cessing time for disregarded alternatives. However, we have experienced an increase of
memory usage by a worst-case factor of two in case of dependency tracking in compar-
ison to no dependency handling.

Figure 4 reveals that precise caching can, for some test cases, reduce the number
of non-deterministic alternatives by two orders of magnitude in comparison to label
caching. Particularly the test cases k_path_n/p are practically solvable for Konclude
only with precise caching for larger available problem sizes.

5 Conclusions

We have presented an unsatisfiability caching technique that can be used in conjunction
with the very expressive DL SROIQ. The presented dependency management allows
for more informed backjumping, while also supporting the creation of precise cache
unsatisfiability entries. In particular the precise caching approach can reduce the num-
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ber of tested non-deterministic branches by up to two orders of magnitude compared
to standard caching techniques. The optimisations are well-suited for the integration
into existing tableau implementations for SROIQ and play well with other commonly
implemented optimisation techniques.
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From EL to Tractable Existential Rules with Complex
Role Inclusions

Michaël Thomazo

University Montpellier 2

Abstract. Ontology-based data access consists in using ontologies while query-
ing data. Due to the high complexity of this problem, considering lightweight
description logics like EL is especially relevant. Another strand of research is
based on existential rules. In this paper, we use this latter formalism in order to
cover EL with the same complexity of reasoning while allowing any predicate
arity and some cycles on variables. We then add complex role inclusions to en-
hance expressivity, while staying polynomial in data complexity and generalizing
existing results. In particular, we consider transitivity and right/left identity rules,
which do not behave well with respect to usual decidability paradigms.

1 Introduction

Ontology-based data access (OBDA) recently received a lot of attention both from
knowledge representation and database communities. This problem can be stated as
follows: given a set of facts and an ontology (the knowledge base), one wants to eval-
uate a conjunctive query against this knowledge base. The ontology can be represented
in several ways. Traditional ontology languages are description logics (DLs,[4]). The
original focus of DL research was the ontology in itself, with problems like satisfiabil-
ity or subsumption between concepts. The conjunctive query answering problem has
been considered more recently. Classical DLs appeared to be highly complex for that
reasoning problem, and lightweight description logics (such as EL and DL-Lite) are
thus very relevant.

A parallel approach relies on existential rules [5, 6], also known as TGDs [1] that
form the basis of Datalog± [8]. Existential rules are logical formulas of the form B→ H,
where B and H are conjunctions of atoms and where H might contain existentially
quantified variables. In contrast to DLs, they allow for any predicate arity (which in
particular eases the integration with database systems in which relations are naturally
translated into n-ary predicates) and can express some cyclic dependencies on variables.
On the other hand, neither disjunction nor negation is expressible with existential rules.
Interestingly, the two main families of DLs that have been designed for conjunctive
query answering can be translated into existential rules. The associated ontology-based
conjunctive query answering problem (CQA) is formalized as follows: given a set of
facts (in their logical form an existentially closed conjunction of atoms) F, a set of
rules R, and a conjunctive query Q, check whether F,R |= Q hold. This problem is
undecidable, and numerous restrictions on R have been proposed recently in order to
ensure decidability (see [12] for a survey), which is usually proven by means of one
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of the two following mechanisms, or a combination of both. The first one is forward
chaining: rules are iteratively applied to F, until either no new information is added,
or the query is entailed. If a set of rules is such that for any fact, this process halts in
finite time or generates a set of facts of bounded treewidth (which is defined on a graph
naturally associated with the facts, see e.g. [6]), then the CQA problem is decidable ([7,
5]). The second mechanism is backward chaining: a query Q is rewritten into a set of
conjunctive queries (which can be seen as a union of conjunctive queries), such that
Q is entailed by F and R if and only if one its rewritings is entailed by F. The CQA
problem is decidable if the set of rewritings is finite for any query.
EL [2, 11] is one of the description logics that have a reasonable complexity for

CQA: NP-complete in combined complexity and Ptime-complete in data complexity.
As pointed out before, any EL TBox can be translated into existential rules. However,
the smallest known Datalog± decidable class covering such rules is a class for which
CQA complexity is much higher than the original one (2-Exptime-complete in com-
bined complexity). Finally, it is known that one can add to EL inclusions a special kind
of complex role inclusions while keeping polynomial data complexity [10]. As far as
we know, such results have no counter-part in the rule framework. Moreover, one of
the most used complex role inclusion, namely transitivity, is out of the scope of known
decidability criteria when combined with decidable classes of existential rules.

The contribution of this paper is two-fold:

– first, it presents a class of existential rules, namely orientable fr1, that covers EL
ontologies while keeping the same (data or combined) complexity for CQA (The-
orem 1). The proposed class allows for predicates of arbitrary arity and a form of
cyclic dependencies between variables;

– second, it generalizes this class by adding complex role inclusions while staying
polynomial in data complexity (Theorem 2); it allows for left and right identity
rules, which have been proven useful for modeling purposes [3]. The syntactic reg-
ularity condition enforced is close from the one imposed in Horn-SROIQ ([9]).

In Section 2, basic definitions about EL and existential rules are recalled. In Section
3, orientable fr1 rules are introduced. Section 4 adapts the algorithm presented in [13]
and designed for a more general existential rule class, yielding an easier and worst-case
optimal algorithm for orientable fr1 rules. This algorithm is further modified in Section
5 in order to take some complex role inclusions into account. Section 6 concludes the
paper.

In this paper, we will avoid technical definitions and rely on examples, to provide
an intuition about the main techniques.

2 Preliminaries

We briefly recall the preliminary definitions presented in [6]. An atom is of the form
p(t1, . . . , tk) where p is a predicate with arity k, and the ti are terms, i.e., variable or
constants. A fact is the existential closure of a conjunction of atoms.1 An existential rule

1 Note that this notion generalizes the usual definition of fact by taking existential variables
generated by rules into account.
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(or simply a rule when not ambiguous) is a formula R = ∀x∀y(B[x, y]→ (∃zH[y, z]))2

where B = body(R) and H = head(R) are finite conjunctions of atoms, called the body
and the head of R, respectively. The frontier of R, denoted by fr(R), is the set of variables
vars(B) ∩ vars(H) = y. A rule R is applicable to a fact F if there is a homomorphism π
from body(R) to F; the result of the application of R on F w.r.t. π is a fact α(F,R, π) =

F ∪ πsafe(head(R)) where πsafe is a substitution of head(R), that replaces each x ∈ fr(R)
with π(x), and each other variable with a “fresh” variable, i.e., not introduced before.
The direct saturation of F with R is defined as α(F,R) = F ∪(R=(H,C),π)∈Π(F,R) π

safe(C),
where Π(F,R) = {(R, π) | R = (B,H) ∈ R and π is a homomorphism from H to F}. The
k saturation of F with R is denoted by αk(F,R) and is such that: α0(F,R) = F, and
for i > 0, αi(F,R) = α(αi−1(F,R),R). The universal model of F and R is the union of
αk(F,R) for k ∈ N. Q is entailed by F and R iff it is entailed by αk(F,R) for some k ∈ N
(i.e., by the universal model of F and R).

An EL TBox contains concept inclusions C1 v C2, where C1 and C2 are concepts
built as follows:

C := > | A | C1 uC2 | ∃R.C

Any EL ontology can be translated into a set of existential rules (which are called
EL-rules), where C1 v C2 is translated into φ(C1)(x) → φ(C2)(x), with φ inductively
built as explained Table 1. The smallest known decidable class covering rules needed
for the translation of an arbitrary EL TBox is the set of frontier-1 (fr1) rules, i.e., the
set of rules whose body and head share exactly one variable.

Table 1. Translation of an EL ontology

EL concept Logical translation φ
A A(x)

C1 uC2 φ(C1)(x) ∧ φ(C2)(x)
∃R.C r(x, y) ∧ φ(C)(y)

3 Orientable fr1 Rules

However, the combined complexity of reasoning with fr1 rules and EL is quite different:
2-Exptime-complete in the former case, and NP-complete in the latter – though both are
in Ptime for data complexity. In this section, we present a class of rules that covers EL
while keeping the same combined and data complexities.
EL-rules have the following idiosyncrasy: they add information “below” the fron-

tier of the rule, as pictured in Figure 1. Any EL-rule mapping its frontier to x1 will map
its body to dashed atoms, and will create atoms that are also below x1. This is due to the
fact that information about a term “above” x1 is not even expressible, since no inverse
role is possible. Orientable fr1 rules generalize this idea.

We define for every predicate r of arity k a strict total order on its positions r1, . . . , rk.
We denote by < the union of all these relations. Given such a strict partial order, we can
associate a directed graph with each set of atoms.

2 We can now omit quantifiers since there is no ambiguity.
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•a

• • y1

• •

x1

x2 x3

Fig. 1. An arc is directed from the first to the second argument of an atom.

Definition 1 (<-graph associated with a set of atoms). Let A be a set of atoms. The
<-graph associated with A is the directed graph defined as follows:

– to each term x appearing in A, we assign a vertex vx,
– for any x, y such that x , y and x and y appear in the same atom with position

px < py, there is an arc from vx to vy (note that no loop can occur).

Intuitively, a rule is oriented for an order < if the atoms needed to trigger it as well
as the atoms created by it are situated both in the same right direction according to <.

Definition 2 (<-oriented fr1 rule). Let R be a rule and < a strict total order on the
position of its predicates. R is <-oriented fr1 if it is fr1 and if the <-graph associated
with body(R) ∪ head(R) is a directed acyclic graph such that there is a path from fr(R)
to any other node.

Given this notion of rule orientation, we naturally define the notion of orientable fr1
set of rules.

Definition 3 (Orientable fr1 set of rules). A set of rules R is orientable fr1 (or simply
orientable when not ambiguous) if there exists an order < such that every rule of R is
<-oriented fr1.

Example 1 (Orientable fr1 set of rules). Let us take R = {r(x, y) ∧ p(y) → q(x, z, t) ∧
s(z, t); q(x, y, z) ∧ s(y, z) → r(x, t) ∧ r(t, t) ∧ p(t)}. By taking r1 < r2, s1 < s2 and
q1 < q2 < q3, we can easily check that this set of rules is <-oriented. Note that these
rules are not translatable in EL because of the predicate of arity 3 and of cycles.

Property 1 (Recognizability problem) The problem of deciding whether a set of rules
R is orientable is NP-complete.

The hardness result comes from a reduction of 3-SAT. NP-hardness of the recogniz-
ability problem might impede the practical applicability of following results. However,
this complexity remains quite small compared to the combined complexity of CQA
with a lot of known classes, and, more importantly, even strongly restricted sets of ori-
entable rules are still of interest. Indeed, the next property shows that rules translating
EL ontologies are very naturally oriented (with R1 < R2 for any role R).

Property 2 (Generalization of EL) Any set of EL-rules is orientable.

In the next examples, we assume for all predicate p that pi < p j if and only if i < j.
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4 An Algorithm for CQA with Orientable Rules

In this section, we present a forward chaining algorithm which is a simplified version of
the algorithm introduced in [13] for a class of rules called greedy bounded treewidth set,
which includes fr1. While performing forward chaining, a greedy tree decomposition
(of bounded width) of the currently generated fact is maintained. We call bags the nodes
of this tree, which is built as follows: the root of this tree contains all atoms in F, and
each time a rule with frontier f is applied by means of a homomorphism π, we create a
new bag that contains the newly generated atoms, and choose as its pBarent the root of
the tree if π( f ) is a constant or a variable of F, otherwise the bag in which the variable
π( f ) has been generated.

Example 2 (Greedy tree decomposition). Let F = {p(a), q(a)} and R = {R1 : p(x) →
r(x, y) ∧ q(y); R2 : q(x) → t(x, y) ∧ p(y)}. We show the greedy tree decomposition of
α4(F,R) in Figure 2.

p(a), q(a)

r(a, x1), q(x1) t(a, y1), p(y1)

t(x1, x2), p(x2) r(y1, y2), q(y2)

r(x2, x3), q(x3)

t(x3, x4), p(x4)

r(y2, y3), q(y3)

t(y3, y4), p(y4)

B0

L1

L2

D1

D2

L3

L4

D3

D4

R1 R2

R2 R1

R1

R2

R2

R1

Fig. 2. The greedy tree decomposition of α4(F,R) (Example 2)

Maintaining this tree decomposition is not sufficient by itself to ensure the termina-
tion of the algorithm, since the universal model can be infinite. The main notion used in
[13] to ensure the finiteness of the built tree is the equivalence between bags: two bags
B and B′ are said equivalent when every fact that will eventually be mapped “under
B” (i.e., using at least one term generated below B) can be mapped similarly (i.e., up
to a bijection between terms of B and B′)“under B′”, and conversely. If two bags are
equivalent, it is only necessary to apply rules below one of them, and the other one will
be said “blocked”. When no more rule is applicable on a non-blocked bag, we obtain
the full blocked tree.

This equivalence as well as rule applications are computed in the original algorithm
by means of patterns, that are attached to each bag. The complexity of the original
algorithm is due to the high number of relevant patterns. In the remaining of this section,
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we explain how to compute the equivalence relation as well as new rule applications
without using patterns – and thus we do not present patterns here.

First, we can simplify equivalence between bags: with orientable fr1 rules, two bags
are equivalent if they have been created by the same rule, as stated by the following
property.

Property 3 Let R be a set of orientable fr1 rules, R ∈ R,R′ ∈ R, and F be a fact. Let
B1 and B2 be two bags of T ∗ (the tree decomposition of the universal model of F and
R) created by the same rule R. Let z be an existential variable of R, z1 and z2 be the
corresponding fresh variables in B1 and B2. B1 has a child created by a rule application
of R′ mapping fr(R′) to z1 if and only if B2 has a child created by a rule application of
R′ mapping fr(R′) to z2.

Example 2 (contd.). A full blocked tree of F and R is represented in Figure 3. L2 is
equivalent to D1, D2 to L1; L2 and D2 are blocked and no new rule application can be
done on B0, L1 or D1 – this is checked by existence of a ∗-homomorphism, see below.

Second, we check rule applicability by means of ∗-homomorphism. This tool is
introduced in [13] to evaluate a conjunctive query. Suppose that, at some step of the
algorithm, we have generated a blocked tree T . We want to check if there is a homo-
morphism from Q to the possibly infinite fact encoded by T . This fact can be obtained
from T by a possibly infinite sequence of completions, that iteratively copies under
blocked bags the atoms found under their equivalent bag (up to variable renaming).
Such a homomorphism induces a partition of Q (two atoms are in the same set if they
are mapped to the same – initial or added – bag) and a tree structure for this partition
(mimicking the tree structure of the image bags). Finally, [13] shows that if there ex-
ists such a homomorphism, there exists one requiring only a completion sequence of
bounded length. To encode the homomorphism, we thus only need the tree decompo-
sition of Q, homomorphisms from each subset of Q to a bag of T , and the required
bounded number of completions: this is the structure called a ∗-homomorphism.

p(a), q(a)

r(a, x1), q(x1) t(a, y1), p(y1)

t(x1, x2), p(x2) r(y1, y2), q(y2)

B0

L1

L2

D1

D2

R1 R2

R2 R1

Fig. 3. The full blocked tree of F and R (Example 2)

Example 3 (∗-homomorphism). Let Q = {r(z, z1), t(z1, z2), r(z2, z3), t(z3, z4), t(z, z′1)}. Let
π = {(z, a), (z1, x1), (z2, x2), (z3, x3)(z4, x4), (z′1, y1)} from Q to the fact associated with the
tree drawn in Figure 2. The corresponding ∗-homomorphism is pictured in Figure 4.
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∅

r(z, z1) t(z, z′1)

t(z1, z2)

r(z2, z3)

t(z3, z4)

Q0 → B0

z→ a

Q1 → L1

z→ a, z1 → x1

Q2 → L2

z1 → x1, z2 → x2

Q3 → D2

z2 → y1, z3 → y2

Q4 → L2

z3 → x1, z4 → x2

Q6 → D1

Fig. 4. A ∗-homomorphism from Q = {r(z, z1), t(z1, z2), r(z2, z3), t(z3, z4), t(z, z′1)} to the structure
of Figure 3.

Given a tree decomposition of Q and homomorphisms from bags of this decom-
position to corresponding bags of T (as in Figure 4), we check if it is actually a ∗-
homomorphism. We check for any pair of adjacent nodes that the associated mappings
are compatible, i.e., the image of any term is unique. In the given example, for Q1,
{(z, a), (z1, x1)} is a homomorphism from r(z, z1) to r(a, x1), q(x1), which is consistent
with Q0 since z is mapped to a in both cases. An interesting consistency check occurs
for Q2 and Q3: since Q2 has been mapped to a bag having no child, z2 has image x2
when considering Q2, and y1 when considering Q3. However, this is consistent since
when copying D2 under L2, we rename y1 by x2.

Theorem 1. The conjunctive query answering problem with a set of orientable fr1 rules
is Ptime-complete for data complexity and NP-complete for combined complexity.

Proof. The Ptime membership comes from similar result for fr1 rules in [13]. The NP-
membership is due to the fact that the structure we build is of polynomial size in F and
R. The hardness holds because it generalizes EL.

It is interesting to note that our algorithm, when further restricted to EL ontologies,
becomes similar to the algorithm presented in [11]. The main difference is that, while
our algorithm maintains equivalence classes, the algorithm in [11] merges equivalent
bags. These merges result in the finiteness of the process, but also in the loss of ho-
momorphism soundness with respect to first-order semantics. Soundness is regained by
modifying homomorphism check, in a way both based on the orientation of EL and on
its tree-model property.

5 Adding Complex Role Inclusions

Complex role inclusions are arguably useful in practice. However, this kind of rules
does not behave well with respect to both forward chaining and backward chaining, as
illustrated with Example 4.
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Example 4. Let R = {p(x) → r(x, y) ∧ p(y); r(x, y) ∧ r(y, z) → r(x, z)}. The query Q =

{q(x), r(x, y), q(y)} is not rewritable w.r.t. R into a finite union of conjunctive queries,
and R does not generate facts of bounded treewidth either: a clique of arbitrary size can
be built by performing forward chaining on the fact p(a).

In order to stay as close as possible to the algorithm of previous section, we split any
fact generated during the chase into two parts: atoms generated by fr1 rules (the back-
bone), and those generated by role inclusions. The first part is of bounded treewidth,
and can be managed in the same way as before. The second part will be dealt with in
a different fashion: we restrict the set of allowed role inclusions in order to deal with
them by means of automata, as it was already done in [10]. In the following, we de-
fine an abstract condition of regularity for so-called oriented join rules, and an easily
checkable syntactic condition that generalizes existing results. We then illustrate the
algorithm with Example 5.

Definition 4 (Join rule). A join rule is a rule of the following shape: r(x, y)∧ s(y, z)→
t(x, z). Transitivity rules are the case where r = s = t, left-identity rules where r = t.

Definition 5 (Backbone). Let F be a fact, R = Ro ∪ R j where Ro is a set of fr1 rules
and R j is a set of join rules. The backbone associated with F and R is the subset of
atoms of the universal model of F and R that have been created by a fr1 rule.

The backbone is of bounded treewidth, and a tree decomposition can be built greed-
ily. In order to have a counter-part of Property 3 on bag equivalence, we consider only
orientable join rules.

Definition 6 (<-oriented join rules). Let R be the following join rule: r(x, y)∧s(y, z)→
t(x, z). R is a <-oriented join rule if:

– either r1 < r2, s1 < s2 and t1 < t2,
– or r1 > r2, s1 > s2 and t1 > t2.

The following property allows us to keep a trivial equivalence relation on bags.
Indeed, it ensures that the criterion used in the previous section to check equivalence
between bags remains valid when adding <-oriented join rules to our framework.

Property 4 Let Ro be a set of <-oriented fr1 rules, R j be a set of <-oriented join rules
(for the same order <), R,R′ ∈ Ro, F be a fact. Let B1 and B2 two bags of T ∗ (the greedy
tree decomposition of the backbone associated with F and Ro∪R j) created by the same
rule R ∈ Ro. Let z be an existential variable of R, z1 and z2 be the corresponding fresh
variables of B1 and B2. B1 has a child created by a rule application of R′ mapping fr(R′)
to z1 if and only if B2 has a child created by a rule application of R′ mapping fr(R′) to
z2.

Having a finite representation of the backbone, we use regularity in order to manage
join rules. Given a fact F and x and y two terms of F, we denote by PF(x, y) the set of
words that describe a finite elementary path from x to y. For instance, in the query Q of
Figure 4, PF(z, z3) = {rtr}.

570



Definition 7 (Regularity of a set of join rules). Let P be a set of binary predicates,
and Rc be a set of join rules over P. Rc is regular if for any predicate p ∈ P, there exists
a regular language Lp such that, for any fact F , for any x, y ∈ terms(F), the following
holds:

F,Rc |= p(x, y)⇔ PF(x, y) ∩ Lp , ∅
Similarly to a ∗-homomorphism, a ∗ j-homomorphism is a labeled tree structure,

together with a mapping from its bags to the bags of the full blocked tree. In the ∗-
homomorphism case, the consistency check consists only in checking that each term
of the query has a well-defined image. In the ∗ j-homomorphism case, we also have to
check that atoms generated by complex role inclusions can be effectively generated. Let
us consider Example 5 and Figure 5. In order to have w(a, x) entailed by the universal
model, not only should x be mapped to t1 in a bag B equivalent to B3, but there should
also be a path from a to the image of the frontier of the rule creating B, such that Aw

(Figure 5) ends in s3 when reading the word associated with that path. It is worth to
note that this is not the case for B3 and B5, but it holds for B7, even though B3, B5 and
B7 are equivalent. We thus add this information about states in the ∗ j-homomorphism.

Compared to the orientable fr1 case, the size of a completion needed to map a query
can be bigger up to a factor which is exponential in the query and in the automaton used
to recognize regular predicates. This does not increase the data complexity of CQA
with the union of a <-oriented fr1 set of rules and a <-oriented and regular set of join
rules, which remains Ptime-complete. However further work is required to determine
the combined complexity of the problem.

Example 5. Let R = Ro ∪ R j with Ro = {p(x) → r(x, y) ∧ r(y, z) ∧ q(z) ∧ p(z), q(x) →
w(x, y)} and R j = {r(x, y)∧ r(y, z)→ s(x, z), s(x, y)∧ r(y, z)→ t(x, z), t(x, y)∧w(y, z)→
w(x, z)}. We take a fact F = {p(a)} and a query Q = {w(a, x)}. The regular expressions
associated with r, s, t and w are r, rr + s, rrr + sr + t, and (rrr + sr + t)∗w.

There exists a homomorphism π from Q to the completion represented in Figure 6,
mapping x to t3. We represent this homomorphism by the structure represented Figure 7.

s0 s1 s2 s3 s4
r r r w

t
s

ε

Fig. 5.Aw, an automaton recognizing Lw (Example 5)

Last, we present a syntactic condition that ensures that a set of join rules is regular.
In particular, this condition generalizes the condition proposed in [10].

Definition 8 (Stratified set of join rules). A set of join rules is stratified if the directed
graph G built as follows is acyclic. For every predicate p, there exists a vertex vp in V.
There is an arc from vp to vq where p , q if there exists a rule r(x, y) ∧ s(y, z)→ t(x, z),
where p = r or p = s and q = t.
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p(a)

r(a, y1), r(y1, z1), q(z1), p(z1)

r(z1, y2), r(y2, z2), q(z2), p(z2)

r(z2, y2), r(y3, z3), q(z3), p(z3)

w(z1, t1)

w(z3, t3)

w(z2, t2)

B1

B2

B4

B3

B7

B5

Fig. 6. In plain, the full blocked tree; in dashed, a completion (Example 5). By additionally using
(only) role inclusions, Q = w(a, x) can be mapped, mapping x to t3.

a

x

B0 → F

B1 → B3,w(a, x) : s3

x→ t1

Fig. 7. A ∗ j-homomorphism of Q = {w(a, x)} in the full blocked tree of Example 5

Property 5 (Regularity of a stratified set of join rules) A stratified set of join rules is
regular.

Proof (sketch). By induction on the structure of G. A predicate p whose vertex does not
have an incoming arc is associated with the regular expression p. For any q, if we have
a regular expression for any p such that (vp, vq) is an arc of G, we can build one for q.

Theorem 2. The CQA problem with rules being the union of of <-oriented fr1 rules
and <-oriented regular join rules (for the same order <) is Ptime in data complexity.

6 Conclusion

In this preliminary work, we identified a class of existential rules, namely fr1 orientable
rules, covering EL ontologies while keeping the same complexity for CQA. Rules allow
to easily use predicates of any arity and some cycles between variables. We exploited
the simplicity of orientable fr1 rules to simplify the very recent algorithm from [13].
We then investigated how to add some expressive power that could be useful in prac-
tice, while staying polynomial in data complexity: we showed how to add transitivity
axioms and left- and right-identity rules. Although adding these rules does not fulfill the
usual decidability criteria, we adapted the algorithm for orientable rules by using finite
automata. Some follow-up naturally come to mind: can we generalize our approach to
cover Horn-SROIQ? What is the combined complexity of CQA with the considered
rules? What are interesting classes of rules with predicate of any arity that could be
added to this basis, while staying polynomial in data complexity? How does the algo-
rithm behave in practice? Moreover, compared to the algorithm presented in [11], the
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representation of the universal model uses more space, since equivalent nodes are not
merged. Can we adapt our algorithm in order to reduce the space requirements?
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Abstract Most ontology development environments (ODEs) are term oriented
and take a frame-based view of the information in an ontology about a given
term. Even tools, such as Protégé 4, designed for axiom oriented development
preserve the frame-based view as the central mode of interaction with the ontol-
ogy. The frame-based approach has a number of advantages—most prominently
that it is comfortable to people familiar with object oriented programming lan-
guages. However, in expressive languages the frame-based views suffer from be-
ing only sensitive to syntactic relations between axioms and terms, thus possibly
missing key logical relations.
In this paper, we first introduce a semantic notion of relevance between a term and
axioms in an ontology, and we investigate the relation of this concept with the
inseparability relation based on model Conservative Extensions. Unfortunately,
we cannot use model conservativity to detect relevance since it is hard, or even
impossible, to decide. Hence, we approximate model conservativity using two
notions of modules based on locality, that can be efficiently computed, and pro-
vide logical guarantees, e.g. they preserve entailments over a given signature. In
particular, we define relevance via Atomic Decomposition, that is a dependency
graph showing the logical relations enforced by the two notions of modules be-
tween the axioms. We define a suitable labelling that allows us to locate axioms
that are relevant for a term in the AD dependency structure. Finally, we describe
an interesting consequence of such a view in terms of the models of an ontology.

1 Introduction

Most ontology development environments (ODEs) are term oriented and take a frame-
based view of the information in an ontology about a given term.1 Even tools, such as
Protégé 4, designed for axiom oriented syntaxes (such as the functional syntax of OWL
2) preserve the frame-based view as the central mode of interaction with the ontology.
The frame-based approach has a number of advantages—most prominently that it is
comfortable to people familiar with object oriented programming languages.

However, in expressive languages the frame-based view is prone to present a mis-
leading view of what is relevant for a given term in an ontology: in particular, axioms
which are relevant for the meaning of the term are excluded from such a view, and some
extraneous ones may creep in. The main reason for this problem to occur is that frame-
based views are generally only sensitive to syntactic relations between an axiom and a
term, and thus they can miss key logical relations.

1 We use term to mean any individual, concept, or role name belonging to the signature of the
ontology.
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Given an axiom α, it is easy to check whether it is logically relevant for a term t:
if it constrains the meaning of t. As an example, let us consider the axiom α = ‘A v
Bu(Ct¬C)’. Then, α is clearly relevant for both A and B, because it states a subsumption
relation between the two concept names. However, α “does not say anything” about C,
since for any interpretation CI , the expression C t ¬C is equivalent to >, and can be
discarded from the axiom obtaining an axiom α′ = ‘A v B’ logically equivalent to
α. Hence, axioms irrelevant for t can easily sneak into the usage view. Tautologies as
t v >, which are automatically generated when a new top class name is entered in an
OWL ontology using Protégé 4, are a quite common example.

Another logical relation that we want to preserve concerns the consequences that
sets of axioms can impose on a term. An issue in the detection of what contributes to
the meaning of a term is the fact that a given term t does not even need to occur in
an axiom’s signature for being constrained by it. As an example let us consider the
set of axioms {αi = ‘Ai−1 v Ai’}i=1...n. Then, it is easy to see that, for n ≥ 2 and
i = 2, . . . , n − 2, both axioms α1 and αn are logically relevant for Ai even though
their signatures do not contain it. Note that a complex logical interaction can occur also
within ontologies with limited expressivity. However, logical relevance is clearly more
interesting for more complex ontologies than taxonomies.

This paper is a preliminary investigation of the notion of relevance of axioms for
a term under a model-theoretic perspective. The major aim of our future work con-
sists of identifying an efficiently computable way to reveal the logical interactions be-
tween axioms and terms. The main applications of this study can be found in the areas
for improving reasoners performance, and in supporting ontology engineers during the
modelling process.

2 Preliminaries

We assume the reader to be familiar with Description Logics [1]. As usual in this con-
text, we use O for ontologies, i.e. finite sets of axioms based on a Description Logic,
e.g., SHIQ, and (∆I , ·I) for interpretations of O over the domain ∆I . We use α̃ for
the signature of an axiom α, i.e., the set of concept, role, and individual names used in
α. A generic term t is any non logical atomic symbol of the signature Õ of the ontol-
ogy. Given a signature Σ ⊆ Õ, we denote by I|Σ the restriction of the interpretation
function I over the symbols in Σ.

In this section we briefly summarize the key concepts used in the paper, as model
conservativity [8], locality-based modules [3], Atomic Decompositions (ADs) [6] and
their labelled versions (LADs) [4], plus some notions inherited by the algebraic order
theory.

Model inseparability Two ontologies O1,O2 are model-inseparable w.r.t. a signature
Σ—denoted O1 ≡mCEΣ O2—if {I|Σ | I |= O1} = {J |Σ | J |= O2}. We can then
define an mCE-module w.r.t. a signature Σ to be a minimal set of axiomsM⊆ O such
that, for each model I ofM, there is a model J of O such that J |Σ = I|Σ . Another
notion we use is the t-variant of an interpretation I, defined as an interpretation J such
that, for each symbol s ∈ Õ \ t, we have sI = sJ .
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Locality-based modules Unfortunately, deciding if a set of axioms is an mCE module
is hard or even impossible for expressive DLs [8,12]. Thus, efficiently computable ap-
proximations have been devised, as those defined via the notion of syntactic locality. A
locality-based moduleM for a signatureΣ is an approximation of the mCE-module for
Σ, in the sense that it is a (not minimal, but generally small) set of axioms that preserves
all models over Σ. Interestingly,M also preserves all entailments over Σ, even though
possibly not only those. Locality-based modules are particularly interesting because the
extraction of a module can be performed in polynomial time. We give an intuition of the
definition in what follows, and refer the interested reader to [3] for a deeper discussion.

Intuitively, an axiom α is (syntactically) local w.r.t. a signature Σ if there is no
axiom over Σ that is entailed by α. Locality is anti-monotonic, that is, if an axiom is
non local w.r.t. Σ, then it is non local also w.r.t. any Σ′ that contains Σ. So we can
define a minimal seed signature for an axiom α to be a signature Σ such that α is non
local w.r.t. Σ but it is local w.r.t. any proper subset of Σ.

Locality comes in two flavours: ⊥ and >. Intuitively, an axiom is ⊥-local w.r.t. a
term when it fails to constrain it “from above”. As an example, let us consider α = ‘A v
B’; then, α is local w.r.t. B because, for any interpretation I over {A}, I can be extended
by interpreting B as ∆I and still I |= α. Similarly, α is >-local w.r.t. A because it fails
to constrain A “from below”.

Locality-based modules then inherit a similar intuition: roughly speaking, a ⊥-
module for Σ (denoted ⊥-mod(Σ,O)), when non empty, gives a view “from above”
because it contains all subconcepts of concept names in Σ; a >-module for Σ (denoted
>-mod(Σ,O)) gives a view “from below” since it contains all superconcepts of con-
cept names in Σ. Please note thatM is not simply the union of all non-local axioms
w.r.t. Σ. The extraction algorithm is described in [3], and a module extractor based on
syntactic locality is available in the OWL API.2

(Labelled) Atomic Decomposition The number of modules of an ontology O can be
exponential in the minumum amongst the number of axioms of O and the size of its
signature [14]. However we can focus on genuine modules, i.e. modules that are not the
union of two “⊆”-uncomparable modules. Such modules define a base for all modules,
and interestingly the size of the family of genuine modules for O is linearly dependent
on its size [6].

Some sets of axioms never split across two modules [6], revealing a strong logical
interrelation. The notion of Atomic Decomposition provided next is central to our paper.

Definition 1. For x ∈ {>,⊥}, we call x-atom a maximal set ax ⊆ O such that, for
each x-moduleMx, either ax ⊆Mx, or ax ∩Mx = ∅. The family of x-atoms of O is
denoted by A(O) and is called x-Atomic Decomposition (x-AD).
If the module notion x is clear from the context, or irrelevant, we drop it.

Since every atom is a set of axioms, and atoms are pairwise disjoint, the AD is a
partition of the ontology, and its size is at most linear w.r.t. the size of the ontology. In
particular, each axiom3 α belongs to one and only one atom, denoted aα.

2 http://owlapi.sourceforge.net
3 Syntactic tautologies do not occur in any atom; however, since they do not impose any con-

straint on the terms of an ontologyO because they are always true, we can safely remove them
from O and only consider the case where O does not contain any such axioms.
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Interestingly, there is a 1-1 correspondence between atoms and genuine modules:
for each atom a we denote byMa the corresponding genuine module, that is also the
smallest module containing a. Then we can define a second logical relation between
atoms: an atom a is dependent on a distinct atom b (written a � b) ifMb ⊆Ma. Note
that this property then holds for all modules containing a. The dependence relation �
on AD is a poset (i.e., transitive, reflexive, and antisymmetric), thus can be represented
by means of a Hasse diagram. Moreover, it is computable in polynomial time [6]. To
easy the understanding of what an AD of an ontology is, the Example 1 illustrates a
small ontology and its ⊥-AD.

Example 1. Consider the following toy ontology and its ⊥-AD:

O = {(α1) Animal v ∃hasGender.Thing,
(α2) Animal v≥ 1hasHabitat.Thing,
(α3) Person v Animal,
(α4) Vegan ≡ Person u ∀eats.(Vegetable t Mushroom),
(α5) Student v Person u ∃hasHabitat.University,
(α6) GraduateStudent ≡ Student u ∃hasDegree.({BA, BS}),
(α7) Car v Vehicle,
(α8) Truck v Vehicle,
(α9) Car v ¬Truck}

a1

a2

a4a3

a5

a6 a7

a8

Here the ⊥-atoms in the AD contain the following axioms respectively:
a1 = {α1, α2}, a2 = {α3}, a3 = {α4}, a4 = {α5}, a5 = {α6}, a6 = {α7}, a7 =
{α8}, and a8 = {α9}.

Atoms can be seen as building blocks for modules: for each x-moduleM of an ontology
O, there are atoms a1, . . . , aκ in A(O) such thatM =

⋃n
i=1 ai. The converse does not

hold, since not all combinations of atoms are modules. However, in [5] we studied and
implemented an algorithm to extract modules of ontologies directly from their ADs, that
is without loading the ontology. We use an enriched version of the ADs, called Labelled
Atomic Decomposition (LAD), where each atom a is mapped to the set minimal sets Σ
of terms that make a be included in the module forΣ. Depending on the task we want to
use LADs for, different labels can be defined. A first investigation of tasks and suitable
labels can be found in [4].

Order theory The poset structure induced over the atoms of an ontology allows us
to take advantage of some useful algebraic notions. Given an atom a, we define its
principal ideal ↓a to be the set union of a with all atoms b such that a � b.4 Similarly,
we can define the principal filter ↑a of a as the set union of all atoms c such that c � a.
More in general, given a set S of atoms {a1 . . . , a`} we can define its ideal (filter) to
be the union of the principal ideals (filters) of the atoms in S. The usefulness of these
algebraic notions for ADs is proven by the ease of getting the genuine module of an
atom a ⊆ O from the AD of O: we can just extract the principal ideal ↓a.

4 Slightly abusing the notation, we define ideals as the union over poset elements rather than
sets of poset elements. This choice allows ideals to be set of axioms, hence ontologies.
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3 Semantic-based Relevance

While the semantic of the terminology of an ontology defines the objects that the ontol-
ogy deals with, it does not say how these objects are related. The relationship between
terms is defined by the axioms of the ontology, that constrain which interpretations are
allowed, and which are not. For this reason, we are interested in looking for a semantic
notion of relevance of an axiom for a term. In particular, the interpretations of two dis-
tinct terms can be conflicting only if some axioms are then violated. In this perspective,
the natural choice is to investigate the notion of relevance of an axiom for a term, rather
than relevance between terms. First, we introduce the following useful notions.

Definition 2. Given a consistent ontology O and a signature Σ ⊆ Õ, we define a Σ-
model w.r.t. O to be an interpretation I over Σ such that, there exists a model J for O
such that J |Σ = I. In this case, we say that I is extendable to a model J for O, and
any such J is called an O-extension of I.
IfO is clear from the context, we simply drop it and say Σ-model. Please also note that
Def. 2 is also valid in the case of O being a single axiom.

A first very basic notion of relevance is introduced in the following example: let α
be the axiom A v Bu(Ct¬C). Then, in order for an interpretation I to be a model of α,
it needs to satisfy the relation AI ⊆ BI . In other words, the acceptable interpretations of
both A and of B are constrained. On the contrary, the interpretation of C is not constrained
by α, and we can even rewrite the axiom into the equivalent A v B that does not even
mention C. This case of relevance provided by a single axiom is described in the next
definition.

Definition 3. An axiom α is directly relevant to a term t if there exists a model I of α
and a {t}-variant I ′ of I such that I ′ 6|= α.

Note that if an axiom α does not contain a term t in its signature, then it does not
directly constrain it. However, the inverse implication does not hold as we saw before.

An interesting strong relation between the notion of direct relevance and the notion
of model conservativity is discussed in Prop. 1.

Proposition 1. Let α be a consistent axiom and t ∈ α̃ a term. If there exists a signature
Σ ⊆ α̃ such that Σ 3 t, α 6≡mCE

Σ ∅, and α ≡mCE
Σ\{t} ∅, then α is directly relevant for t.

Proof. Let α be an axiom and t be a term such that there exists a signature Σ ⊆ α̃
satisfying the hypothesis. Since α 6≡mCE

Σ ∅, we know that there exists an interpretation
J over Σ that cannot be extended to a model for α. In contrast, since α ≡mCE

Σ\{t} ∅,
we have that J |Σ\{t} can be extended to a model I for α. Let us now consider the
interpretation J ′ that interprets all symbols in α \ {t} as I does, whilst it interprets t
as J does. Then, J ′ is not a model for α, and it is a t-variant for I. Hence, α is directly
relevant for t. ut

The inverse implication in Prop. 1 does not hold in general. For example, let us
consider the axiom {a} v A. Then, there is no model that interprets the symbol A as
the empty set. In particular, α 6≡mCE∅ ∅. However, the inverse implication can still hold
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for less expressive DL than SHROIQ. An investigation on the characterization of the
languages for which the inverse of Prop. 1 is part of our future work.

Let us now recall the trivial example in the introduction, whereO = {αi}i=1...n and
the i-th axiom is Ai−1 v Ai. If n ≥ 2 then the axiom αn does not contain A0. However,
αn does indirectly constrain A0 because in any model I of O where AIn−1 = ∅ (and αn
is then satisfied for any interpretation of An) we have that AI0 is forced to be empty. In
other words, in order to define irrelevance between a term and an axiom we need then
to look at their interpretations in the context of the ontology. Intuitively, an axiom α is
irrelevant for t w.r.t. the ontology O if the interpretation of t and the interpretation of
symbols in α̃\t can be chosen independently from each other, even though we still have
to take into account the constraints provided by O. This idea is formalised in Def. 4.

Definition 4. LetO be an ontology, t ∈ Õ a term, and α ∈ O an axiom. We say that α
isO-irrelevant for t if, for any {t}-model (∆I1 , I1) w.r.t.O\α and any {α̃\t}-model
(∆I2 , I2) w.r.t. O, there exists a model J which is an O-extension of both I1 and I2.
We say that α is O-relevant for t if it is not O-irrelevant.

In many cases, if an axiom α ∈ O is directly relevant for a term t, then α is also
O-relevant for t. However, this condition fails to hold when both α and O \ α imply
that there is only one valid {t}-model w.r.t. O. Such a peculiar case is described in the
following example: let us consider the ontology O = {t v ⊥, t v Au¬A}. Now, both
axioms are clearly directly relevant for t. However, both of them are not O-relevant
for t, because we cannot find any {t}-model w.r.t.O where t is interpreted differently.
Hence, we need the following unifying notion of relevance.

Definition 5. An axiom α ∈ O is said to be relevant for a term t ∈ Õ if α is either
directly relevant or O-relevant for t. Otherwise, α is said to be irrelevant for t.

Note that this notion of relevance is still defined in the context of the ontology O.
In the following, we denote:

1. the set of (semantically) directly relevant axioms w.r.t. a term t by semDRO(t) =
{α ∈ O |α is directly relevant for t}

2. the set of (semantically) relevant axioms w.r.t. t by semRelO(t) = {α ∈ O |
α is relevant for t}.
In this paper we are not interested in investigating the complexity for deciding rel-

evance of an axiom to a term. Our aim is to use modules based on syntactic locality to
efficiently get the two approximations DCO(t) for the set semRelO(t), and CO(t)
for semDRO(t). By approximation we mean that all relevant axioms are preserved,
even if some irrelevant axiom can sneak into such sets. This is still ongoing research,
and from this point on the reader will find only definitions, examples, and conjectures.
Proving these results is included in our future work.

4 Locality-based Relevance

In [7] we have analysed several forms of modularity to detect logically coherent subsets
of an ontology (and more in general of a logical theory). The idea behind that paper
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is that each kind of module determines a granular structure in the ontology, and this
identifies clusters of axioms that stick together and axioms that can be separated from
those clusters. Some of these notions of modularity relate also each cluster of axioms
to a subset of the vocabulary used—hence relating axioms to terms. However, all these
kinds of modularity suffer from inducing a coarse notion of internal coherence, and in
some notable examples the ontology cannot be decomposed into smaller bits, even if it
seems to be well structured.

In the same paper, we also analyse the partitioning of an ontology provided by one of
its ADs. Atoms are generally very small bits, as discussed in [5], hence in principle such
bits do not suffer from aggregating together (too many) unrelated axioms. However,
ADs did not come with a semantically-based notion of relevance between the atoms
and the terms of an ontology.

In what follows we define two labelling functions, the first mapping each axiom
to relevant terms, and the second mapping each atom to the set of relevant terms.
Then, we describe and conjecture the relations of the resulting LAD with the two sets
semRelO(t) and semDRO(t), defined in the previous paragraph, that contain the rel-
evant and the directly relevant axioms to a term.

Definition 6. Let α be an axiom, and let t be a term such that t ∈ α̃. We say that:

1. α constrains t from above if there exists a minimal seed signature containing t that
makes α non ⊥-local

2. α constrains t from below if there exists a minimal seed signature containing t that
makes α non >-local

3. α constrains t if α constrains t either from above, or from below.

We denote:

- by C⊥O(t) the set of axioms in O constraining a term t from above
- by C>O(t) the set of axioms in O constraining a term t from below
- by CO(t) the set of axioms in O constraining a term t.

We conjecture that the notion of constraining a term is an approximation of the notion
of direct relevance.

Conjecture 1. Let t be a term in the signature of the ontology O. Then,

semDRO(t) ⊆ CO(t).

5 LADs and the Double Cones of Relevance

The next step is to relate the set semRelO(t) to a suitable efficiently computable ap-
proximation. The idea is to identify in the ADs of the ontology the axioms constraining
a term, and then follow along the ADs how the consequences logically “span” across the
whole ontology. Specifically, we define the following labelling functions, and we con-
jecture that the resulting LADs are able to keep track of the logical relations between
the axioms of an ontology O and the terms in Õ.

Definition 7. Let α be an axiom in the ontology O. We define the following labelling
functions:
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1. lab⊥ : O → ℘(Õ) that maps each axiom to the set of all terms that are constrained
by α from above

2. lab> : O → ℘(Õ) that maps each axiom to the set of all terms that are constrained
by α from below

3. for any notion of module x ∈ {⊥,>}, Labx : Ax(O)→ ℘(Õ) that maps each atom
a to the set

⋃
α∈a labx(α).

By Def. 7.3 we can define a LAD that is able to keep track of the logical relevance
throughout the whole ontology. Before proceeding further, we want to include an ex-
ample to support the understanding of what follows.

Example 2. Consider the toy ontology as in Example 1. Then, the labelling function
Lab⊥ is defined as follows:
a1 7→ {Animal},
a2 7→ {Person},
a3 7→ {Vegan, Person, eats},
a4 7→ {Student},
a5 7→ {GraduateStudent, Student, hasHabitat},
a6 7→ {Car},
a7 7→ {Truck},
a8 7→ {Car, Truck}.
The corresponding⊥-LAD is represented in Fig. 1. The terms hasGender, hasHabitat,

Animal

Person

eats

Person

Vegan
Student

hasHabitat

GraduateStudent

Student

Car Truck

Car, Truck

Figure 1. ⊥-LAD of our example ontology

Vegetable, Mushroom, University, BA, and BS are not shown in this LAD, since
they are not constrained from the above in this ontology.

In order to obtain functions that map each term to the set of logically related atoms,
rather than axioms, we can invert the labelling functions just defined.

Definition 8. Given a notion x ∈ {⊥,>}, we define the set of home atoms of t to be
hxO(t) = {a | ∃α ∈ a, t ∈ labx(α)}.
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As an example, we then have that in our toy ontology h⊥O(Student) = {a5, a6}.

Definition 9. Given an ontology O, a notion of locality x ∈ {⊥,>}, the x-LAD of O
(A(O),�, Labx), and a term t ∈ Õ, we define the double cone of x-relevance for t to
be the set

DCx
O(t) =

⋃

a∈hx
O(t)

(↓a ∪ ↑a).

We conjecture that the LADs described in this paper allows us to identify which
axioms are logically relevant for a term in an ontology.

Conjecture 2. If an axiom α is relevant for a term t, then α ∈ DC⊥O(t) ∪DC>O(t).

6 A Consequence of ADs on Models

Finally, we want to look closer at the inseparability relation between two ontologies
O1 ( O2 such that O1 ≡mCEeO O2. Then, we have by definition that:

{I | I |= O1} = {J |fO1
| J |= O2}.

Intuitively, we can think of O2 as extending O1 without spoiling the models already
identified for O1. This notion can be formalised as in what follows.

Definition 10. A chain of mCEs in O is a family of ontologies O1 ( . . . ( O` = O
such that Oi ≡mCEfOi

Oi+1 for i ∈ {1, . . . , `}.

Our aim is to identify a chain of mCEs in an ontology O by using a x-AD. In the
following proposition we are going to use the notion of a join ∨(a1, . . . , aκ) of κ atoms,
defined as the minimal module that contains all the atoms in {a, . . . , aκ}.

Conjecture 3. Let O be an ontology, (A(O),�) be its x-AD, with x ∈ {⊥,>}. Then,
each chain of ontologies O1 ( . . . ( O` = O that respects the following criteria is a
chain of mCEs in O.
1. if Oj ⊇ a and a � b, then Oj ⊇ b
2. if Oj ⊇ a ∪ b, then Oj ⊇ ∨(a, b).

Definition 11. Let x ∈ {⊥,>} be a notion of module and O be an ontology. Then, a
chain O1 ( . . . ( O` = O of mCEs in O defined via the x-LAD of O is called x-chain
of mCEs in O.

To make the discussion clearer, let us consider the ⊥-LAD as in Fig. 1 and refer
to Example 1 for the axioms in each atom. Set O1 = {α7}, O2 = {α7, α8}, and
O3 = {α7, α8, α9}. Then, O1 ( O3 ( O is a chain of mCEs, whilst O1 ( O2 ( O is
not. Moreover, if we want to preserve everything that constrains the term Person from
above, we see that we have to consider the principal ideal ↓a3.

Please note that for different ontologies we can still have that including the join
of some set of atoms is not necessary to have a chain of mCEs, as described in the
following example.
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Example 3. Consider the following ontology O′ and its ⊥-LAD:
{(β1) Bicycle v NonMotorVehicle u TwoWheelsVehicle,
(β2) NonMotorVehicle v ¬∃hasPart.Engine,
(β3) TwoWheelsVehicle v=2hasWheel.Wheel}.

b1

b2 b3

We see that the ⊥-AD of this ontology consists of 3 atoms: bi = {βi} for i = 1, 2, 3,
and the inherited poset structure is b1 � b2, b1 � b3. In this case, the following is a
chain of mCEs: O′1 = {β2} ( O′2 = {β2, β3} ( O′, even if O′2 does not contain the
join ∨(b2, b3).

7 Conclusion and Future Work

In this paper we have introduced a notion of logical relevance in ontologies. Moreover,
we have shown a promising way to reveal the relevance relations between the axioms
and the terms of an ontology with a suitable LAD. Finally, we have described an inter-
esting conjecture relating the models of an ontology and the LAD of an ontology.

Future work are 4-fold, and include:

1. the completion of the theoretical investigation, that misses the proofs for many
conjectured results.

2. an experimental analysis of how on average the double cone of relevance of a term
spans across an ontology. The experiment will take as an input some large datasets
of diverse ontologies, for example the NCBO BioPortal ontology repository.

3. an experimental comparison between the notions C⊥O and C>O of direct relevance
based on LADs, and some frame-based notions, as the description and the usage
views in Protégé 4. Chances are that these sets will not differ much. However,
such a result would provide the frame-based views with a semantic foundation.
Moreover, we will be able to analyze which kinds of logically related axioms are
missed, or logically unrelated axioms are included, when we rely on a syntax-based
approach to logical relevance.

4. an investigation on possible applications of the notions introduced in this paper. A
preliminary idea consists of considering x-chains of mCEs when it comes to reason
over an ontology. In fact, we know that, for any non-empty ⊥-moduleM, and for
any concept A ∈ M̃, then M̃ contains also all the subsumees of A. This means that
we can use the ⊥-LAD to predict which concepts can be a subsumee of A.
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Abstract. In the reasoning about actions community, one of the most
basic reasoning problems is the projection problem: the question whether
a certain assertion holds after executing a sequence of actions. While un-
decidable for general action theories based on the situation calculus, the
projection problem was shown to be decidable in two different restric-
tions of the situation calculus to theories formulated using description
logics.
In this paper, we compare our implementations of projection procedures
for these two approaches on random testing data for several realistic
application domains. Important contributions of this work are not only
the obtained experimental results, but also the approach for generating
test cases. By using patterns extracted from the respective application
domains, we ensure that the randomly generated input data make sense
and are not inconsistent.

1 Introduction

The situation calculus (SC) [7] is a popular many-sorted language for repre-
senting action theories. The projection problem is one of the most basic reason-
ing problems for action formalisms such as the SC. It deals with the question
whether a certain formula holds after executing a sequence of actions from an
initial state. Since the situation calculus encompasses full first-order logic, the
projection problem for action theories formulated with it is in general undecid-
able. One possibility to restrict SC such that the projection problem becomes
decidable is to use a decidable fragment of first-order logic instead of full first-
order logic as underlying base logic [3, 5, 8]. Description Logics (DLs) [1] are
well-suited for this purpose since they are well-investigated decidable fragments
of first-order logic that have been used as knowledge representation formalisms
in various application domains.
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For the DL-based action formalism introduced in [3], it could indeed be shown
that, in this restricted setting, the projection problem is decidable. Basically, the
procedure for solving the projection problem developed in [3] works as follows.
Using time-stamped copies of all relevant concept and role names in the input,
one can describe the initial state and the subsequent states (obtained by execut-
ing the actions of a given sequence of actions one after the other) in an ABox and
an (acyclic) TBox. Solving the projection problem is thus reduced to checking
whether an appropriately time-stamped version of the assertion to be checked is
entailed by this ABox w.r.t. this TBox.

For the SC-based action formalism introduced in [5, 8], the projection prob-
lem is solved by regression, as usual in situation calculus. In this approach, one
transforms a query formula and an action sequence into a regressed formula. It
is then checked whether the regressed formula is entailed from an incomplete de-
scription of the initial state and the unique name axioms. To obtain decidability,
it is thus not sufficient to restrict the base logic (in which the initial state, the
axioms, and the query formula are written) to a decidable fragment of first-order
logic. One must also show, as done in [5, 8], that regression can be realised within
this fragment, i.e., that the regressed formula belongs to this fragment.

Both approaches for solving the projection problem have been implemented.
In this paper, we compare these implementations on random testing data for
several realistic application domains. In addition to describing the obtained ex-
perimental results, this paper also sketches our approach for generating the test
cases. By using typical patterns extracted from the respective application do-
mains, we ensure that the randomly generated input data make sense and are
not inconsistent.

The rest of the paper is organised as follows. After a short presentation
of the two action formalisms and their respective approaches for solving the
projection problem, the test case set-up is explained and the experimental results
are presented. The paper concludes with a discussion of the results obtained and
possible future work.

2 DL-Based Action Formalisms

In this section, we explain the two approaches for deciding the projection problem
on an intuitive level. More details on the directly DL-based action formalism can
be found in [3] and on the SC-based action formalism restricted to DLs in [5, 8].
We also discuss the differences between the two approaches.

We assume the reader to be familiar with basic notions of Description Logics
(DLs), which can e.g. be found in [1]. In the following, we use action formalisms
that are based on the Description Logic ALCOU , which extends the basic DL
ALC with nominals, i.e., concepts interpreted as singleton sets (letter O), and
the universal role, which is interpreted as the binary relation that links any two
domain elements (superscript U). In the following, the universal role will be
denoted by the letter U .
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Formulated for DL-based action formalisms, the projection problem deals
with the following question: Given an initial ABox describing the initial state, a
TBox describing the domain constraints, and a sequence of actions, does a query,
i.e., an assertion, hold after executing the action sequence from the initial state?
In the following, we call the approach for solving the projection problem intro-
duced in [3] the reduction approach and the approach for solving the progression
problem introduced in [5, 8] the regression approach.

In this paper, we will use examples from the logistics domain [4]. The domain
represents a simplified version of logistics planning. Various objects, e.g. boxes,
packages and luggage, can be transported by vehicles, such as airplanes and
trucks, from one location to another. Locations, such as airports and warehouses,
are located in cities.

2.1 The Reduction Approach

The action formalism [3] to which this approach applies, describes the possible
initial states by an ALCOU -ABox and the domain constraints by an acyclic
TBox. The restriction to acyclic TBoxes avoids anomalies caused by the so-called
ramification problem (see [2, 6] for approaches that can deal with more general
TBoxes). It remains to describe how actions are formalised. In contrast to the
general setting introduced in [3], the actions used here are without occlusions,4
which can be omitted since they are not required for the application domains
used in our experiments. Basically, an action consists of a set of pre-conditions
and a set of post-conditions. Both are given as ABox assertions. Pre-conditions
must be satisfied for the action to execute and post-conditions describe what new
assertions must be satisfied after the application of the action. Post-conditions
can be conditional, i.e., the required change is only made in case the condition is
satisfied. The following action, for instance, causes the airplane OurBoeing777 to
fly from AirportJFK to AirportSIN transporting Box42, which is the only cargo:

fly1 := ({at(OurBoeing777,AirportJFK)},
{{loaded(Box42,OurBoeing777)}/¬at(Box42,NYC),

{loaded(Box42,OurBoeing777)}/at(Box42,Singapore)}).

The pre-condition at(OurBoeing777,AirportJFK) ensures that this action is only
applicable if OurBoeing777 is indeed at AirportJFK. The effect of this action,
described by two conditional post-conditions, is that the box Box42 is no longer
at NYC but at Singapore if it was loaded to OurBoeing777. This action is a
simplified version of an action used in our experiments.

According to the semantics of DL actions defined in [3], nothing should
change that is not explicitly required to change by some post-condition. It was
shown in [3] that this action formalism can be seen as an instance of Reiter’s
situation calculus, i.e., there is a translation to SC.
4 Occlusions describe which parts of the domain can change arbitrarily when an action
is applied. Details about occlusions can be found in [3].
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In [3], the projection problem for this action formalism is reduced to the
consistency problem of an ABox w.r.t. an acyclic TBox. The central idea of
the reduction is to create time-stamped copies of all concept, role, and indi-
vidual names. Intuitively, A0 is the concept A before executing any action, A1

after executing the first action, A2, after subsequently executing the second one,
etc. Using such time-stamped copies, the effect that executing the actions has
on named individuals, i.e., domain elements that correspond to an individual
name, can be described using ABox assertions. Since post-conditions only state
changes for named individuals, nothing should change for unnamed ones. This
is expressed using an acyclic TBox.

Note that the reduction in [3] does not deal with the universal role, but
integrating it into the reduction is not hard. In fact, its interpretation never
changes, and it is not allowed to occur in post-conditions. We also applied some
simple optimisations to the original reduction, which however proved to be quite
valuable w.r.t. the time and memory consumption of our implementation.

2.2 The Regression Approach

This approach is based on Basic Action Theories (BATs) in the Situation Cal-
culus (SC) [7]. In general, a BAT consists of pre-condition axioms (PAs) and
successor state axioms (SSAs), which describe the effects and non-effects of ac-
tions; an initial theory, which describe the possible initial states; an situation
independent acyclic terminology describing convenient definitions of the appli-
cation domain; a set of domain independent foundational axioms; and axioms
for the unique-name assumption (UNA). In SC, a sequence of actions is called
a situation, and the empty sequence the initial situation. Applying actions can
change the interpretations of certain predicates, which are called fluents. Flu-
ents have an additional argument position to express the situation in which the
fluent is considered. Given the initial theory, the situation determines which are
the possible current states, i.e., how the fluents have been changed by executing
the sequence of actions. A fundamental problem in reasoning about actions is
the frame problem, i.e., how one compactly represents numerous non-effects of
actions. Reiter’s approach [7] for solving this problem is based on quantifying
over action variables in SSAs. This approach is adapted to the context of BATs
based on decidable description logics in [5, 8].

In the context of BATs in SC, regression is the act of converting the query
formula (which should hold after executing the action sequence) to a formula
that should hold in the initial situation by making use of the SSAs and the
domain constraints. In the regression approach used in this paper, solving the
projection problem in certain BATs based on a restricted first-order language,
called L, is reduced to solving the satisfiability problem in the Description Logic
ALCOU . This is done by imposing precise syntactic constraints on Reiter’s SSAs
to guarantee that after doing the logically equivalent transformations required by
regression, the resulting regressed formula remains in L, if the projection query
formula is in L. Instead of defining this approach in detail, which is not possible

588



due to space constraints, we illustrate it on an example. Detailed definitions can
be found in [5, 8].

There is a PA axiom for each action that describes the pre-conditions for
executing the action. For instance, the PA of the action fly looks as follows:

Poss(fly(z1, z2, z3), S) = airplane(z1) ∧ airport(z2) ∧ airport(z3)∧
at(z1, z2, S) ∧ (z2 6= z3)

Similarly, there is one SSA per fluent that describes the conditions under which
actions make the fluent true or false. This is the SSA of the fluent loaded:

loaded(x, y, do(a, S)) =
(
∃z1.a = load(x, y, z1) ∧ ready(x, S)

)
∨

(
loaded(x, y, S) ∧ ¬(∃z1.a = unload(x, y, z1))

)

The domain constraints are basically acyclic TBox axioms, but written in the
language L. An example would be the following:

object(x) ≡ box(x) ∨ luggage(x)

The initial theory and the query are L sentences that are restricted such that
they can be transformed into ALCOU -assertions. The following is an example
of an initial theory DS0 and a query W .

DS0 = truck(T1) ∧ box(B1) ∧ location(L1) ∧ ∀x.(box(x) ⊃ loaded(x, T1))
W = loaded(B1, T1, do([load(B1, T1, L1), unload(B1, T2, L1)], S0))

Note that the action sequence is here viewed to be part of the query, whereas
for the reduction approach it is given separately.

2.3 Comparison of the Two Approaches and Restrictions

Both approaches solve the projection problem for an action formalism that is
based on the DL ALCOU . The action sequence is in both cases a list of ground
actions, i.e., they do not contain free variables. However, the actions considered
in the regression approach are more general than the ones in the reduction
approach. In fact, the actions of the latter approach are so-called local-effect
actions, which can only effect changes for named individual (i.e., ones that are
explicitly named by a constant symbol), whereas global-effect actions, which are
allowed in the former approach, can also effect changes for unnamed individuals.
For example, the action fly in the regression approach moves all objects loaded
to the airplane from one city to the other, independent of whether these objects
have a name or not. Its approximation in the reduction approach moves only
objects that are explicitly mentioned by their name in the description of the
action. Though this approximation may in principle lead to different answers for
the projection problem, this never happened in our experiments.

Another difference are the languages in which the queries are formulated. In
the reduction approach, only instance queries are considered, whereas the other
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approach formulates queries in a restricted first-order language, with explicit
variables and (unguarded) quantification. However, for the queries considered in
our experiments, we were able to use the universal role to bridge this gap.

Regarding the complexity of the projection problem, regression may take up
to double exponential time and space, whereas the reduction approach takes
polynomial space. However, this is the worst-case complexity of the approaches.
The more expressive regression approach is assumed to hit this bound only in
non-practical cases.

In the next section, we show how these approaches behave in practice by
evaluating them on randomly generated input data that are modelled on patterns
occurring in applications.

3 Test Case Generation and Experimental Results

In order to evaluate the two approaches for solving the projection problem, we
generated testing data inspired by several application domains. Of course, the
representation of the input data is different for the two approaches. Basically, we
generated the data for the regression approach, and then translated them into
the format required by the reduction approach. As already mentioned, global-
effect actions are approximated by local effect actions that make changes to all
the named individuals. Otherwise, the translation preserves the semantics of the
action theory. To increase readability for DL-literate readers, we describe the
translated input data rather than the SC-based ones. Also, we use the size of
the translated input data as size of the input.

In general, a test case is divided into a fixed part and a varying part. The
fixed part consists of descriptions of all available actions and an acyclic TBox
describing the domain. The varying part consisting of the initial ABox, the query
to be asked, and the action sequence.

Subsequently, we sketch one domain, the logistics domain, to give an impres-
sion about what kind of projection problems can be expressed and solved by the
formalisms.5 The examples used above already gave an impression of how the
domain looks like. It represents a simplified version of logistics planning. Various
objects, e.g. boxes and luggage, can be transported by vehicles, such as airplanes
and trucks, from one location to another.

More precisely, the fixed part is as follows. The acyclic TBox describes general
facts about the domain. It contains the following axioms:

Object ≡ Box t Luggage
Vehicle ≡ Truck t Airplane

Truck ≡ TransportTruck tMailTruck t RecyclingTruck
Location ≡ Airport t Garage t Street tWarehouse

5 See http://www.cse.yorku.ca/~w2yehia/dl2012_results.html for further do-
mains.
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The initial ABox contains incomplete knowledge about the initial state. It
states static facts like Airplane(OurBoeing777), Airport(AirportJFK), Box(Box42),
Truck(OurTruck), City(NYC), inCity(OurGarage,NYC), etc. In addition, the initial
ABox contains dynamical knowledge like at(OurTruck,AirportJFK), Ready(Box42),
loaded(Box127,OurBoeing777), which means that OurTruck is at AirportJFK,
Box42 is ready to be loaded, and Box127 is loaded into OurBoeing777.

The action sequences are built using the atomic actions load, unload, fly, and
driveTruck, instantiated with appropriate individuals. The action load loads an
object into a vehicle at a location, e.g. load(Box42,OurBoeing777,AirportJFK)
is an instance of this action. It is executable if both Box42 and OurBoeing777
are at AirportJFK, i.e., at(Box42,AirportJFK) and at(OurBoeing777,AirportJFK)
hold, and Box42 is ready to be loaded, i.e., we have Ready(Box42). The action
unload is defined analogously for unloading an object from a vehicle at a location.
Executing the action fly means that an airplane flies from one airport to another
one, e.g. fly(OurBoeing777,AirportJFK,AirportSIN). This action is executable if
we have at(OurBoeing777,AirportJFK), and the two airports are not the same,
which is the case in the example. The action driveTruck is similar. It is used to
drive a truck from one location to another one. An example for such an action
would be driveTruck(OurTruck,OurGarage,AirportJFK). Executing the action is
only possible if OurGarage and AirportJFK are at the same city.

On the DL side, queries are instance queries, i.e., concept assertions of the
form C(a) where C is a ALCOU -concept description built using the concept
names and role names introduced above and a is an individual name such as
Box42, AirportJFK, OurBoeing777, etc.

To properly test our implementations, we obviously need some sort of auto-
mated generation of input data, but due to the non-trivial expressivity of the
language at hand, it is hard to generate useful test cases. We could not find
any precedence for such an attempt, i.e., generating random projection prob-
lem test cases, in the literature. For planning domains [4] there are some people
working on test case generation, but they are dealing with STRIPS or some of
its extensions, which are mostly at the propositional level. For such inexpres-
sive formalisms, it easier to generate input data that make sense. Generating
purely random ALCOU -ABoxes and instance queries usually yields meaningless
queries or initial theories that are inconsistent or action sequences that are not
executable.

We describe now more precisely how we generate the testing data. The TBox
contains the axioms above plus some auxiliary axioms described below. The ini-
tial ABox contains both static knowledge and dynamical knowledge. For the
static knowledge, it makes no sense to add incompleteness, because usually we
know, for instance, that Box42 is a box. We omit, however, axioms stating facts
like Box42 is not an airplane, i.e., ¬Airplane(Box42). The real incompleteness
concerns the dynamical knowledge. We found it useful to generate more or less
complete knowledge by generating a number of boxes, trucks, airplanes, air-
ports, and cities together with static knowledge like in which city airports are
located. We generate also assertions for the role names at, loaded and Ready

591



for all individuals of the respective type. We add more incompleteness by re-
moving assertions from the ABox and adding new assertions using the following
transformation rules: a t-rule, and an ∃-rule. Applying the t-rule means to take
two assertions A(a), B(a) and replacing them with the assertion (AtB)(a). For
reasons of simplicity and interchangeability of the formats read by our implemen-
tations, we introduce a new concept name Aux, and add the concept definition
Aux ≡ A t B to the TBox, and the assertion Aux(a) to the ABox.6 Applying
the ∃-rule means to take a role assertion r(a, b) and to replace it with (∃r.>)(a).
For example, at(Box127,AirportSIN) could be replaced with (∃at.>)(Box127). In-
stead of knowing that Box127 is at AirportSIN, we now just know that Box127
is somewhere, i.e., at a location. Again, we introduce a new concept name for
∃at.>, and add its definition to the TBox. Of course, it makes no sense to ap-
ply the rules too often since then the resulting ABox would be too incomplete.
For this reason, we use them rather sparingly: roughly there are ten-times more
individuals than the number of times these rules are applied.

The query and the action sequence are generated using (domain-specific) pat-
terns. Building formulas from hand-made patterns occurring in real applications
is one step towards generating realistic test cases, but it suffers from the fact
that the generated formulas might be too similar, and thus the test cases do
not provide the extensive coverage that random formula generation does. Thus,
we mixed patterns with a bit of randomness. We developed ten patterns for the
logistics domain. Some of these patterns can take input, and generate a ran-
dom input if none is given. For example, a pattern might describe whether there
are any boxes on a truck in some location. The input could be any combina-
tion of box, truck or location constants. If necessary, a missing constant can be
randomly generated, or it could remain as a variable otherwise. The following
formula Φ was generated from such a pattern, where the input was boxi and
locationj . The generated formula is translated to the ALCOU -assertion α with
aux being a dummy individual.

Φ = ∃y.(loaded(boxi, y) ∧ truck(y) ∧ at(y, locationj))
α = (∃U.({boxi} u ∃loaded.(Truck u ∃at.{locationj})))(aux)

We use those simple but versatile patterns to generate formulas that replace the
propositions in a randomly generated satisfiable formula of propositional logic
in disjunctive normal form in order to obtain the query. Using this approach,
it is ensured that we have more randomness at the propositional level and less
randomness at the FOL level.

Finally, to generate random but executable action sequences, we used pat-
terns again. But now a pattern is a generic description of a sequence of actions
necessary to satisfy a goal. For instance, one action sequence in the logistics
domain describes the process of gathering all known boxes in a particular city
and transporting them to another city. The choice of the cities is random, and
6 Thus, the TBox contains also abbreviations for concepts, where the abbreviation
occurs only once in the ABox.
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picking the transportation vehicle is random as well. On top of that, we com-
pute this action sequence based on a random initial ABox. Of course, we could
have tried to pick purely random actions, but then most of the generated action
sequences would not have been executable (i.e., not all pre-conditions would be
satisfied). Testing randomly generated action sequences for executability takes
time and would result in having to throw away most of the generated sequences.

We now present the testing results we obtained for the logistics domain. The
results were obtained on an Intel R© CoreTM 2 Duo E8400 CPU with a clock
frequency of 3.00 GHz, and 4 GB of RAM. We used JVM version 1.7.0. Both
implementations use HermiT 1.3.6 as underlying DL reasoner.

To make the results better comparable, we generated a couple of initial the-
ories, and then manually removed individuals from them to create new smaller
initial theories. Then, we generated a set of queries and action sequences for each
initial theory. This way, we can measure the running time for solving the projec-
tion problem as the ABox varies in size, while the query and action sequence stay
the same. Some of the testing results for about 700 test cases that we obtained
can be found in Tab. 1. These results give an impression of the performance of
the two approaches. We sketched how the action sequences and the queries look
like. Empty cells in Tab. 1 mean that the program could not finish within two
minutes, which was our cut-off time. To be useful in practice, an answer within
two minutes is preferred. For the regression approach, we also measured the time
for computing the regressed formula only, which is usually quite small (about
0.01 s). Thus, the main time for the regression approach is used for checking the
consistency of the generated knowledge base using HermiT. One can observe that
the running times very much depend on the action sequence and the query that
is asked. For action sequences of length 5 or more, both approaches seem to be
struggling due to overhead taken by HermiT. Thus, improving DL-systems will
improve the running time of our approaches significantly. Note that the last test
case in Tab. 1 describes a rather simple scenario, which is still too complex for
both approaches. One can observe also that the size of the initial ABox affects
the running time. Note that the length of the regressed formula is not affected
by these variations. Also, in most cases, a query involving a value restriction on
U causes a longer running time for the reduction approach.

All in all, the testing done in this paper should be considered as a first step.
More testing and a careful inspection of the structure of the input is needed to
give an answer to the question which approach performs better on which inputs.

4 Conclusion and Future Work

We have compared the implementations of two approaches for solving the pro-
jection problem for DL-based action formalisms. The main result of this compar-
ison is twofold. First, it is clear that both approaches seem to be struggling when
dealing with action sequences longer than five. It turned out that computing the
regression formula can be done very quickly, and most of the time for the regres-
sion approach is consumed by the DL-reasoner. For the reduction approach, it is
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Table 1. Testing results for the logistics domain

Action sequence/ Number of Time for Time for
query individuals reduction regression

in ABox approach approach

load 12 0.57 s 8.51 s
(∃U.(∃loaded.(∃at.{`1} u ∃at.{`2} u 13 0.58 s 17.07 s

Truck) u Box))(aux) 14 0.58 s 34.51 s
15 0.69 s 68.98 s
16 0.59 s —
17 0.59 s —
40 0.64 s —

driveTruck 7 0.64 s 1.36 s
(∃U.(∃loaded.(∃at.{`} u Truck)) u 8 0.58 s 8.50 s

Box)(aux) 9 0.82 s 2.14 s
10 0.55 s 4.75 s
11 0.55 s 12.09 s
12 0.56 s 15.15 s
13 0.90 s 16.21 s

fly, fly 13 2.24 s 1.6 s
(∀U.(¬(Box u ∃at.{`}) t Ready))(aux)

unload, load, unload 13 0.92 s 1.69 s
(∃U.(Box u ∃loaded.Truck))(aux) 14 1.04 s 1.68 s

15 0.96 s 1.64 s

unload, load, fly 12 1.75 s 4.66 s
(∃U.({b} u ∃loaded.Truck))(aux) 13 1.76 s 8.51 s

14 1.85 s 18.57 s
34 6.63 s 2.72 s

load, load, load, fly 30 — 70.98 s
(∀U.(¬(∃at.{`} u Box) t

(∃loaded.{a})))(aux)

unload, load, load, unload, unload 8 — 23.04 s
(∀U.(¬(∃at.{`}) u Box) t Ready)(aux) 9 0.56 s —

10 0.57 s —
11 — —
12 — —

unload, load, load, load, fly, unload, 26 — —
unload, unload

(∃U.({b} u ∃loaded.Truck))(aux)
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also clear that long action sequences cannot be handled efficiently since, in the
worst case, the initial ABox is copied for each point in time. Also, we observed
that the length of the action sequence is not the only metric that affects the run-
ning time. The size of the initial ABox as well as the form of the query are also
important. We expect that more testing will give a more accurate description on
what what are the weak points of the approaches. Maybe also the actions, i.e.,
the size and structure of the pre-conditions and the post-conditions, need to be
considered in more detail. For the reduction approach, the pre-conditions affect
the runtime in our experiments, while for regression they do not. As a result
of these investigations, we hope to locate the parts of the implementations that
need to be optimised.

The second main result is that we gained some experience in automatically
generating testing data for the projection problem. It is clear that generating
good test cases is not a trivial task (comparable to generating good test cases in
programming languages). Randomly generating test cases on a purely syntactic
level without taking the semantics of action formalisms into account is prob-
lematic since the resulting initial ABoxes can easily be inconsistent, the action
sequences not executable, etc. In these cases, projection does not make sense.
To take the semantics into account, we followed a domain specific approach, and
used patterns found in applications to generate data that make sense from a
semantic point of view. Nevertheless, these are only first step towards seman-
tically well-founded test case generation. More versatile approaches need to be
developed as future work.
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1 Introduction

In recent years, there has been a growing interest in the problem of conjunctive
query answering over description logic (DL) ontologies and large scale data sets.
This problem is central to many applications, which often involve managing data
sets consisting of hundreds of millions, or even billions of data assertions.

Meeting the scalability requirements of such applications is, however, a very
challenging problem. Answering conjunctive queries over ontologies in expres-
sive DLs is of high computational complexity; in fact, decidability is still an
open problem for SROIQ [14] —the DL that underpins the standard ontol-
ogy language OWL 2 [6]. Although small restriction on the ontology or query
language can ensure decidability [26], worst case complexity is still very high
(at least 2NExpTime) [15]. Several OWL/SROIQ reasoners, including Her-
miT [20], FaCT++ [28] and Racer [12], support query answering for restricted
classes of conjunctive queries, but in spite of intensive efforts at optimisation,
they can still only deal with small to medium size data sets [17, 13].

Scalability of query answering can be ensured by restricting the expressive
power of the ontology language to the level that makes reasoning tractable.
This has led to the development of three profiles of OWL 2, namely OWL 2
RL, OWL 2 EL, and OWL 2 QL [21]; these profiles are based on (families of)
“lightweight” description logics, notably the DLP [10], DL-Lite [4], and the EL
families of DLs [2], respectively. Query answering in all these lightweight DLs
can be implemented in polynomial time w.r.t. the size of data (and even in
LogSpace in the case of DL-Lite). Such appealing theoretical properties have
spurred the development of specialised reasoning techniques [24, 22, 18, 4, 16].

Although allowing for efficient query answering, these lightweight DLs impose
severe restrictions on the expressive power of the ontology language. In order to
provide scalable query answering w.r.t. ontologies that cannot be captured by
such lightweight DLs, Semantic Web researchers have developed reasoners that
can process arbitrary OWL/SROIQ ontologies, but that guarantee complete-
ness only for ontologies that fall within the fragment defined by the OWL 2
RL profile. Given the close connection between OWL 2 RL and datalog, these
reasoners typically implement (deductive) database algorithms based on data
materialisation. Examples of such systems include Jena [19] and OWLim [16].

All such materialisation-based reasoners are sound ; that is, the answers they
compute can be seen as a lower bound on the complete set of query answers.
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For ontologies outside the OWL 2 RL profile, however, these reasoners are in-
complete, and hence they are not guaranteed to compute all query answers. A
possible approach to this problem is to investigate the behaviour of the reasoner
on a given query Q and ontology T in an effort to show that it behaves as
a complete reasoner w.r.t. Q, T and an arbitrary data set [7]. Providing such
guarantees is, however, not always possible.

An alternative approach, which we investigate in this paper, is to devise a
scalable procedure for computing complete but possibly unsound query answers.
Such answers provide an upper bound to the set of all answers, which can com-
plement the lower bounds efficiently computed by incomplete reasoners. The
combined use of such lower and upper bounds has many interesting implica-
tions. First, the difference between the upper and lower bounds can be used as
an optimisation for reducing the number of candidate answers; furthermore, it
also provides a measure of the degree of incompleteness of a reasoner for a given
input; finally, if both bounds match, we can efficiently compute all query answers
without relying on potentially very expensive entailment tests.

In order to be useful, upper bounds should clearly be as tight as possible,
and should also be efficiently computable. Obtaining such an upper bound is,
however, not straightforward. The technique we use is to approximate T to give
an ontology T ′ that is strictly “stronger” that T (i.e., T ′ |= T ), and that is
within a fragment for which query answers can be efficiently computed.

Knowledge approximation has been extensively studied in the literature, al-
though mostly in the direction of weakening the ontology/theory [8, 23]. There
has also been some work on strengthening approximations. For propositional
logic, Horn theories can be used to both strengthen and weaken the original
theory [27]; these Horn approximations can then be used to optimise reasoning
by exploting the more efficient inference in the Horn theories. Finally, approxi-
mation is also related to the computation of least common subsumers [1].

Our technique exploits recent work on chase termination for existential rules,
which introduces a so called Models-Summarising Acyclicity (MSA) check [5].
MSA is an approximation of existential rules (datalog± ) into datalog. As most
SROIQ TBoxes can be translated into existential rules extended with disjunc-
tion (datalog±,∨ ) using model-preserving transformations, we can adapt MSA
to produce a datalog approximation of a SROIQ TBox. Moreover, the result-
ing datalog rules can be translated back into an OWL 2 RL TBox for which
complete query answers can be computed using materialisation based reasoners.

We have implemented our approach, and conducted preliminary experiments
using LUBM [11]. Our preliminary results suggest that our bound could be tight
for many queries, and it can be computed efficiently (or at least with similar
efficiency to computing the lower bound).

2 Preliminaries

We assume basic familiarity with the DLs underpinning the ontology language
OWL 2 and its profiles. We next introduce datalog±,∨ and datalog languages,

597



and define the syntax and semantics of conjunctive queries. In our definitions, we
adopt standard first-order logic notions of variable, constant, term, substitution,
atom, formula, and sentence. We assume all formulas to be function-free. We
denote with ⊥ the special atom evaluated as false in all interpretations, and we
use ≈ to denote the special equality predicate in first-order logic. Finally, we
also adopt the standard notions of satisfiability, unsatisfiability, and entailment.

Datalog Languages. A datalog±,∨ rule r is a formula of the form (1), where
each Bj is an atom different from ⊥ whose free variables are contained in x, and

– m = 1 and ϕ1(x,y1) = ⊥, or
– m ≥ 1 and, for each 1 ≤ i ≤ m, formula ϕi(x,yi) is a conjunction atoms

different from ⊥ whose free variables are contained in x ∪ yi.

∀x.[B1 ∧ ... ∧Bn]→
m∨

i=1

∃yi.ϕi(x,yi) (1)

A rule is safe if each variable in x also occurs in some Bj , and we consider
only safe rules. For brevity, the quantifier ∀x is left implicit. The body of r is
the set body(r) = {B1, . . . , Bn}, and the head of r is the formula head(r) =∨m
i=1 ∃yi.ϕ(x,yi). A datalog±,∨ rule r is datalog± if m = 1 [3], and it is datalog

if it is datalog± and the head is a single atom without existential quantifiers.
A fact is a ground atom, and an instance I is a finite set of facts. We denote

with ind(I) the set of all individuals occurring in I.
For Σ a set of datalog rules and I an instance, the saturation of Σ w.r.t. I

is the instance I ′ consisting of all facts entailed by Σ ∪ I.
Most DL ontologies can be transformed into a set of datalog±,∨ rules and an

instance by means of standard transformations. The rules and facts obtained via
such transformations involve only unary and binary predicates; thus, we define
an ABox A as an instance containing only unary and binary atoms.

Queries. A conjunctive query (CQ), or simply a query, is a formula Q(x) of the
form ∃y.ϕ(x,y), where ϕ(x,y) is a conjunction of atoms. A tuple of individuals
a is a certain answer to a query Q(x) w.r.t. a set of first-order sentences F and
an instance I if F ∪ I |= Q(a). The set of answers of Q(x) w.r.t. F and I is
denoted as cert(Q,F , I), where the free variables of Q(x) are omitted for brevity.

3 Technical Approach

3.1 Overview

Given a TBox T , an ABox A and a query Q, our goal is to compute a (hopefully
tight) upper bound to the set cert(Q, T ,A) of answers. We poceed as follows:

1. Transform T into a set ΣT of datalog±,∨ rules such that ΣT is a conservative
extension of T .

2. Transform ΣT into a set approx(ΣT ) of datalog rules s.t. approx(ΣT ) |= ΣT .
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Student v Person  Student(x)→ Person(x)
RA v Student  RA(x)→ Student(x)

RA v ∃works.Group  RA(x)→ ∃y.[works(x, y) ∧ Group(y)]
Group v Org  Group(x)→ Org(x)

Emp(x)→ Person(x)
Emp ≡ Person u ∃works.Org  Emp(x)→ ∃y.[works(x, y) ∧ Org(y)]

Person(x) ∧ works(x, y) ∧ Org(y)→ Emp(x)
works v memberOf  works(x, y)→ memberOf(x, y)

Student v Grad t Undergrad  Student(x)→ Grad(x) ∨ Undergrad(x)
func(works)  works(x, y) ∧ works(x, z)→ y ≈ z

Fig. 1. Transforming Tex into datalog±,∨ rules ΣTex

3. Transform approx(ΣT ) into an OWL 2 RL TBox T ′ for which we have
cert(Q, approx(ΣT ),A) = cert(Q, T ′,A) for every query Q and ABox A.

Our transformation depends only on T , and satisfies the following property:

cert(Q, T ,A) ⊆ cert(Q, T ′,A) for every query Q and ABox A
Given the OWL 2 RL TBox T ′ we can then use T and T ′ with a materialisation
based reasoner rl that is sound for OWL 2 and complete for OWL 2 RL (such as
OWLim) to respectively compute a lower and an upper bound to query answers
for the given Q and A. More precisely, we have:

rl(Q, T ,A) ⊆ cert(Q, T ,A) ⊆ rl(Q, T ′,A) for every Q and A

3.2 Computing the Upper Bound

We next describe in detail the transformations in Steps 1-3. As a running exam-
ple, we use the TBox Tex in Figure 1.

From DL TBoxes to Datalog±,∨ Rules. The first step is to transform the
DL TBox T into a set ΣT of datalog±,∨ rules such that ΣT is a conservative
extension of T . For a wide range of DLs, this can be achieved by first using
the well-known correspondence between DL axioms and first-order logic for-
mulas and then applying standard structural transformation rules, which may
involve introducing new predicates. The transformation of our example Tex into
datalog±,∨ rules ΣTex is also shown in Figure 1; here, Tex and ΣTex are equivalent.

From Datalog±,∨ to Datalog. Next, we approximate the datalog±,∨ rules
ΣT by a datalog program approx(ΣT ) that entails ΣT . Intuitively, this transfor-
mation can be described in two steps:

– Rewrite each datalog±,∨ rule r into a set of datalog± rules by transforming
disjunctions in the head of r into conjunctions and splitting the conjunctions
into different datalog± rules. Such a way to eliminate disjunction in the head
has been used in OWL reasoning with logic program [25].
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RA(x)→ ∃y.[works(x, y) ∧ Group(y)]  RA(x)→ works(x, c1) ∧ Group(c1)
Emp(x)→ ∃y.[works(x, y) ∧ Org(y)]  Emp(x)→ works(x, c2) ∧ Org(c2)

Student(x)→ Grad(x) ∨ Undergrad(x)  Student(x)→ Grad(x) ∧ Undergrad(x)

Fig. 2. Transforming ΣTex into approx(ΣTex)

– Transform the resulting datalog± rules into datalog using fresh individuals
to skolemise existentially quantified variables.

Figure 2 illustrates this process for our example. The figure shows only the rules
in ΣTex that need changing; note that c1 and c2 are fresh individuals used to
skolemise existentially quantified variables.1

Definition 1. For each datalog±,∨ rule r of the form (1) and each variable
yij ∈ yi, let crij be a fresh individual unique for r and yij. Then, approx(r) is the
following set of rules, where for each 1 ≤ i ≤ m, θri is a substitution mapping
each variable yij ∈ yi to crij:

approx(r) = {B1 ∧ ... ∧Bn → ϕi(x, θ
r
i (yi)) | 1 ≤ i ≤ m} (2)

For Σ a set of datalog±,∨ rules, approx(Σ) is the smallest set that contains
approx(r) for each rule r ∈ Σ.

We next show that approx(ΣT ) entails ΣT . The following proposition pro-
vides sufficient and necessary conditions for a datalog±,∨ rule to be entailed by
an arbitrary set of first-order sentences (the proof is rather straightforward and
can be found in [7]).

Proposition 1. Let F be a set of first-order sentences and r be a datalog±,∨

rule of the form (1). Then, for each substitution σ mapping the free variables of
r to distinct individuals not occurring in F or r, we have F |= r if and only if

F ∪ {σ(B1), . . . , σ(Bn)} |=
m∨

i=1

∃yi.ϕi(σ(x),yi)

Proposition 1 can be used to show that each datalog±,∨ rule r in ΣT is entailed
by approx(r), and hence approx(ΣT ) strengthens ΣT .

Proposition 2. For Σ a set of datalog±,∨ rules, we have approx(Σ) |= Σ.

Proof. It suffices to show that, for each rule r ∈ Σ of the form (1) and each
ri ∈ approx(r), we have ri |= r. Let σ be a substitution mapping the free variables
in r to fresh individuals; by Proposition 1, we have

ri |= r ⇔ ri ∪ {σ(B1), . . . , σ(Bn)} |=
m∨

i=1

∃yi.ϕi(σ(x),yi) (3)

1 Note that, although approx(ΣTex) is strictly speaking not datalog (we have conjunc-
tion of atoms in the head), it is trivially equivalent to a set of datalog rules.
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Since ri and r have the same body atoms, the definition of ri in (2) implies

ri ∪ {σ(B1), . . . , σ(Bn)} |= ϕi(σ(x), θri (yi)) (4)

Since substitution θri maps variables to constants, the following conditions clearly
hold by the semantics of first-order logic:

ϕi(σ(x), θri (yi)) |= ∃yi.ϕi(σ(x),yi) |=
m∨

i=1

∃yi.ϕi(σ(x),yi) (5)

But then, conditions (3), (4) and (5) immediately imply ri |= r, as required. ut
The fact that approx(Σ) entails Σ implies that query answers w.r.t. approx(Σ)
are an upper bound to those w.r.t. Σ.

Proposition 3. For each set of datalog±,∨ rules Σ, each ABox A and each
query Q, we have cert(Q,Σ,A) ⊆ cert(Q, approx(Σ),A).

From Datalog to OWL 2 RL. The last step is to transform approx(ΣT ) into
an OWL 2 RL TBox T ′. Although arbitrary datalog rules cannot be transformed
into OWL 2 RL, the rules in approx(ΣT ) have been obtained from a DL TBox
and are therefore tree-shaped, which makes this transformation possible.

There is, however, a technical consideration related to the fresh skolem con-
stants in approx(ΣT ). In particular, the following rule in our running example
(see Figure 2) does not directly correspond to an OWL 2 RL axiom:

RA(x)→ works(x, c1) ∧ Group(c1) (6)

This issue can be easily addressed by introducing fresh atomic roles. More pre-
cisely, rule (6) can be transformed into the following three OWL 2 RL axioms,
where R′ is a fresh atomic role:

RA v ∃R′.{c1} > v ∀R′.Group R′ v works

3.3 Additional Considerations

Transformation of Disjunctive Rules. The proof of Proposition 2 suggests
that we can easily weaken approx(ΣT ) given in Definition 1 such that ΣT is still
entailed. In particular, when transforming a disjunctive rule in ΣT into datalog
by replacing disjunctions with conjunctions, it suffices to keep only one of the
conjuncts. For example, given the transformation

Student(x)→ Grad(x) ∨ Undergrad(x) Student(x)→ Grad(x) ∧ Undergrad(x)

we can replace in approx(ΣT ) the rule Student(x) → Grad(x) ∧ Undergrad(x)
with either Student(x) → Grad(x), or Student(x) → Undergrad(x). Any of these
choices will lead to a (different) upper bound. In practice, one can choose to
process any number of such different options, or simply devise suitable heuristics
to choose the most promising one.
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Unsatisfiability Issues. For given TBox T and ABox A, it might be the case
that approx(ΣT ) ∪ A is unsatisfiable, whereas ΣT ∪ A is satisfiable. Then, the
upper bound we obtain is the trivial one for each query. For example, if we extend
Tex in Figure 1 with the axiom Grad u Undergrad v ⊥, we obtain a rule with ⊥
in the head in ΣT , namely Grad(x) ∧Undergrad(x)→ ⊥. For Aex = {RA(a)} we
then have that Tex ∪ Aex is satisfiable, but approx(ΣTex) ∪ Aex is unsatisfiable;
thus, for a given Q, any tuple of individuals of the appropriate arity must be
included in the upper bound.

A way to address this issue is to remove from approx(ΣT ) all rules with ⊥ in
the head. Although it is then no longer the case that approx(ΣT ) |= ΣT , we can
still guarantee completeness provided that ΣT ∪ A is satisfiable.

Proposition 4. Let Σ be a set of datalog±,∨ rules and let Σ′ the result of re-
moving from approx(Σ) all rules containing ⊥ in the head. Then, the following
condition holds for each ABox A and each query Q: if Σ ∪A is satisfiable, then
cert(Q,Σ,A) ⊆ cert(Q,Σ′,A).

In practice, checking the satisfiability of T ∪A, which is equisatisfiable with ΣT ∪
A, is easier than (and a prerrequisite for) query answering. Even if satisfiability
of T ∪A cannot be checked in practice using a complete reasoner for a very large
A, we can still compute an upper bound “modulo satisfiability”.

Why Translating Back into OWL 2 RL? Our last step was to transform
approx(ΣT ) into OWL 2 RL TBox T ′. Note, however, that one could obtain the
upper bound directly from approx(ΣT ) by first computing the saturation A′ of
approx(ΣT ) w.r.t. A and then computing cert(Q, ∅,A′).

The saturation A′ can be computed in polynomial time [5]; indeed, the rules
in approx(ΣT ) are tree-shaped, which can be exploited to obtain a polynomial
time saturation procedure. This could lead to better performance in the compu-
tation of our upper bound —an interesting topic for future work.

Our current approach, however, does have some advantages. In particular,
one can use the same off-the-shelf RL reasoner (such as OWLim) to compute
both the lower and upper bound, which is convenient in practice. Furthermore,
as suggested by our experiments, reasoners such as OWLim are quite efficient
for large data sets.

4 Experiments

We have implemented our approach in Java and used the latest version of
OWLim-Lite as an OWL 2 RL reasoner. All experiments have been performed
on a desktop computer with 4Gb of RAM, of which 3000Mb were assigned as
maximum heap size in Java.

In our experiments, we have used LUBM extended with additional synthet-
ically generated queries. The LUBM ontology contains 93 TBox axioms, out of
which 8 contain existential quantification, and 39 are domain and range axioms.
The LUBM ontology, however, does not contain disjunction or negation; thus,
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Table 1. Number of answers for the 14 LUBM queries

Query 1 2 3 4 5 6 7

Lower Bound 4 0 6 34 719 7356 67

Upper Bound 4 0 6 34 719 7356 67

Query 8 9 10 11 12 13 14

Lower Bound 7356 194 4 212 14 1 5594

Upper Bound 7356 194 4 212 14 1 5594

Table 2. Synthetic queries for which OWLim is incomplete

Query Lower Bound Upper Bound HermiT’s answers

3 540 1087 1087

51 0 547 547

67 540 1087 1087

69 0 547 547

the corresponding issues discussed in Section 3.3 do not apply to our experi-
ments. To test how tight our upper bounds are for different queries, we have
used LUBM(1,0), the smallest data set in the benchmark, since the complete
DL reasoner HermiT can answer all test queries for this data set. LUBM(1,0)
contains data for one university and 14 departments, with a total of 100, 543
ABox assertions about 17, 174 different individuals.

4.1 Results for LUBM(1,0)

Standard Queries. LUBM provides 14 queries. As shown in Table 1, the lower
and upper bounds computed using OWLim coincide, which allows us to conclude
that OWLim is complete for all these queries and the LUBM(1,0) data set.
Hence, in these cases, one wouldn’t need to use a complete DL reasoner at all.

Additional Synthetic Queries. We have used a synthetic query generation
tool [9] to compute 78 additional queries for LUBM. For all these queries, except
those in Table 2, lower and upper bounds also coincide. Furthermore, for all
queries in Table 2 the upper bound is tight.

Observe, however, that the lower bound is missing those answers which re-
quire taking into account LUBM’s axioms with existential quantifiers, for which
OWLim is not complete. For example, consider the following query

Q51(x) = ∃y.(memberOf(x, y) ∧ Group(y))

LUBM’s ontology contains all the axioms in Tex, except for the last two axioms in
Figure 1; furthermore, LUBM(1,0) contains many instances of RA. Since LUBM’s
ontology implies that each RA works for (and hence is a member of) some group,
all these instances are answers to Q51, which are not computed by OWLim.
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Additional Query. For all previous test queries, we have obtained a tight upper
bound. To show that this is not always the case, we have manually created the
additional query given next.

Q(x1, x2) = ∃y.works(x1, y) ∧ works(x2, y) ∧ Group(y)

Since this query is not tree-like, it cannot be answered using HermiT. To obtain
the complete answers, we have used REQUIEM2 to compute a (complete) UCQ
rewriting U of Q w.r.t. LUBM’s ontology; then, we used OWLim to compute
the answers to U w.r.t. the LUBM(1,0) data. For this query, the lower and
upper bounds contained zero and 299, 209 answers, respectively; in contrast, we
obtained 547 answers using REQUIEM and hence the upper bound is not tight.

As shown in Figure 2, our transformation implies that all RAs work for the
same group (represented by the skolem constant c1); since there are many in-
stances of RA in LUBM(1,0), all pairs of RA instances will be included in the
upper bound. Clearly, however, many of these RAs work for different groups.

Note, however, that even for this query we managed to reduce the number
of candidate answers from 17, 1742 ∼ 3× 108 to 299, 209.

4.2 Scalability Tests

To test scalability of upper bound computation, we have performed additional
experiments using LUBM data sets of increasing size (from 1 to 10 universities).
For each data set and each of the 78 synthetic queries, we have computed lower
and upper bounds (using OWLim) and the complete answers (using HermiT).
The results are summarised in Figure 4.2, where the time refers to the total
query answering time for all test queries.

We can observe similar query answering times and scalability behaviour for
lower and upper bound computation. Furthermore, we can observe that Her-
miT’s performance is similar to OWLim’s for relatively small data sets. HermiT,
however, does not scale well for the largest LUBM data sets. In particular, it
takes 178s to complete the tests for 9 universities and runs out of memory for
10 universities; in contrast, OWLim computation times increase more regularly.

5 Conclusion and Future Work

In this paper, we have proposed a novel technique for efficiently computing
an upper bound to CQ answers for ontologies given in a expressive DL. Our
preliminary experiments on LUBM show that this upper bound might be tight
in many cases. Furthermore, we identified cases were lower and upper bounds
coincide and hence it is not necessary to use a fully-fledged DL reasoner such as
HermiT to compute query answers (HermiT is able to answer rollable queries).

Our work so far, however, is only very preliminary, and there are plenty of
possibilities for future work. We are planning to perform experiments with on-
tologies involving disjunction and negation, and address the issues discussed in

2 http://www.cs.ox.ac.uk/isg/tools/Requiem/
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Section 3.3. Furthermore, we will implement a dedicated datalog engine that can
compute the saturation in polynomial time for tree-shaped datalog rules; this
might allow us to improve performance as well as to simultaneously compute
lower and upper bounds. We will also develop techniques for identifying during
upper bound computation the fragments of the ABox and TBox that are suffi-
cient to determine, using a complete reasoner, which of the answers in the upper
bound are actual answers; we expect that these techniques will provide addi-
tional room for optimisation. As a result, we can integrate all these techniques
in HermiT to optimise query answering.
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