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Abstract. This paper presents an extension of a framework for synthesizing a
composition of services, named Roman Model, such that it is able to model the
best service composition synthesis problem. In such extension, which we call
the Weighted Roman Model, the services are modeled as Weighted Transition
Systems so that one can capture the cost of operations executed by a service.
Within this setting, we can make a comparison among all possible compositions
of the available services by considering the total cost of operation execution
performed by each possible composition of services for each interaction between
the service and the client. Besides defining the notion of best composition, we
also propose an algorithm for synthesizing the best composition and show that it
is sound and complete.

1 Introduction

Services are modular applications that can be described, published, located, invoked,
and composed over a variety of networks (including the Internet): any piece of code and
any application component deployed on a system can be wrapped and transformed into
a network-available service, by using standard (XML-based) languages and protocols
(e.g., WSDL, SOAP, etc.). One of the interesting aspects is that this wrapping allows
each program to export a simplified description of itself, which abstracts from irrelevant
programming details. The promise of Web services is to enable the composition of new
distributed applications/solutions: when no available service can satisfy a client request,
(parts of) available services can be composed and orchestrated in order to satisfy the
request itself.

In reality, there could be several possible ways of composing the available services
for satisfying the requested service. However, not all compositions of services can be
considered as equally good. They might have different resource consumption (e.g.,
bandwidth, memory, etc). In this situation, one might be interested in finding the “best”
composition among all possible ones.

In this paper, we consider the framework for service composition adopted in
[2,5,13,10,3,4], sometimes referred to as the “Roman Model” [9]. In this work, we
extend the Roman Model to the Weighted Roman Model in such a way that it is able to
model the problem of synthesizing the best composition of services. Moreover, we also
describe a sound and complete algorithm for synthesizing the best composition.

The rest of the paper is structured as follows. The next section explains the Roman
Model and service composition in this setting. Section 3 presents the Weighted Roman
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Fig. 1. (a) Service S1 (b) Service S2 (c) Target Service St (d) Possible composition of services S1
and S2 that simulates the target service in (c)

Model and defines the notion of best service composition. Section 4 presents the tech-
nique for synthesizing the best service composition within the Weighted Roman Model.
Finally Section 5 concludes the paper.

2 Service Composition and The Roman Model

Services in the Roman Model (RM) represent software artifacts capable of performing
operations. A service interacts with the client through the following steps: (i) it offers to
its clients a choice of operations it can perform, (ii) based upon the service state; the client
chooses one of the offered operations, and (iii) the service executes it, changing its state
accordingly. Fig. 1 shows an example of services in the RM in the scenario of a simple
online shopping system. Intuitively, in the service S1 in Fig. 1(a), the interaction can be
started at the initial state s0, where the service offers the “searchItem” operation (i.e.,
the “searchItem” operation is executable in this state). After executing this operation, the
service’s state changes to s1. In s1 the interaction can be terminated since it’s a final state,
or the client can continue requesting the operation “payByCC” (i.e., to pay by credit
card). Similarly, in S2 after a finite sequence of item searches, the client can request a
payment by bank transfer (“payByBT”). Formally, a service in RM is a transition system
(TS) S = (S,O, δ, s0, F ), where: (i) S is the finite set of service’s states; (ii)O is the set
of possible operations that the service recognizes; (iii) δ ⊆ S ×O × S is the service’s
transition relation, which accounts for its state changes; (iv) s0 ∈ S is the initial state;
and (v) F ⊆ S is the set of final states, i.e., those states where the interaction with
the service can be legally terminated by the client. When 〈s, o, s′〉 ∈ δ, we say that
transition s o−→ s′ is in S. Given a state s ∈ S, if there exists a transition s o−→ s′ in S,
then operation o is said to be executable in s. A transition s o−→ s′ in S denotes that s′

is a possible successor state of s, when operation o is executed in s. In this work we
consider only deterministic services, i.e., there are no two distinct transitions s o−→ s′ and
s

o−→ s′′ with s′ 6= s′′. Such services are fully controllable by just selecting the operation
to perform next.

A community C = 〈S1, . . . ,Sn〉 of available services consists of n available services
that share the same operationsO. A target service is a desired service that also shares the
operations in O. The goal of the composition in the RM is to maintain with the client the
same, possibly infinite, interaction that he would have with the (virtual) target service,
by suitably orchestrating the (concrete) available services. An orchestrator is a system
component that is able to activate, stop, and resume any of the available services, and
to instruct them to execute an operation among those executable in their current state.
Essentially, the orchestrator, at each step, will consider the operation chosen by the client



(according to the target service) and delegate it to one of the services that can execute it,
and so on, possibly at infinitum. The aim of the orchestrator is to maintain the interaction
with the client, as if it was interacting with the target service, without ever failing to
delegate an operation chosen by the client to one of the available services.

Formally, an orchestrator is a function from (i) the history of the whole system (which
includes the state trajectories of all available services and the trace of the operations
chosen by the client, and executed by the services), and (ii) the operation currently
chosen by the client, to the index i of the service Si to which the operation has to be
delegated. Intuitively, the orchestrator realizes a target service if and only if, at every step,
given the current history of the system, it is able to delegate every operation executable by
the target to one of the available services. Hence, the orchestrator controls the evolutions
of the services’ states in the community s.t. together they “mimic” the target service.

The goal of service composition is to synthesize an orchestrator that realizes the
target service by exploiting available services. In [12,3], the problem has been tackled
using a simulation-based approach. The idea is essentially checking if the target service
is simulated by the Community-TS, which is the asynchronous product of the services
in C. Intuitively, it checks if the Community-TS supports all possible interactions that
are supported by the target service (i.e., it checks if there is always a way to realize any
interaction that is possible between the client and the target service).

Going back to the running example in Fig. 1, suppose the community consists of
services S1 and S2. Taking the asynchronous product we obtain the Community-TS and
we can find a fragment of it that simulates the target service in Fig. 1(c). This fragment,
which encodes the specification of the orchestrator, is shown in Fig. 1(d). It says how
the requested operation can be delegated to the services in the community. For example
the execution of operation “payByCC is delegated to service S1 (denoted by the label
“payByCC/S1” in the transition).

3 Best Service Composition and the Weighted Roman Model

An extension of the RM into the Weighted Roman Model (WRM) is partly inspired by the
work on weighted automata [6]. The WRM framework aims at addressing the problem
of best service composition synthesis. The target service in the WRM is represented
using a transition system as in the RM, while the available services are represented
using weighted transition systems (WTS). Intuitively, a WTS is a TS augmented with a
semiring Ŝ = (Ĉ, +̂, ·̂, 0̂, 1̂)1[8]. We use the semiring elements in the set Ĉ to denote the
cost of service’s operation execution. Fig. 2 shows an example of services in the WRM.
Intuitively, in service S1 (Fig. 2(a)), the cost of executing operation “searchItem” is 4. We
use the semiring multiplication operator (̂·) for the aggregation of service’s operations
execution costs, and the semiring addition operator (+̂) for comparing the costs. As
a prominent example, consider the tropical semiring T̂ = (Z ∪ {∞},min,+,∞, 0),
whose elements are the integers together with positive infinity, whose multiplication
operator is addition over integers, and whose addition operator is the minimum operator.

1 A semiring is a structure Ŝ = (Ĉ, +̂, ·̂, 0̂, 1̂), where Ĉ is a nonempty set closed under a
binary, associative, and commutative semiring addition, +̂, and a binary, associative semiring
multiplication ·̂, respectively with 0̂ and 1̂ as neutral elements, and where ·̂ distributes over +̂.
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Fig. 2. Example of available services in the WRM: (a) Service S1 (b) Service S2 (c) Service S3
(d) Example of modeling cost dependencies inside a service in the WRM

In this setting, the total cost of service’s operations execution is aggregated by the
addition operator (i.e., just the sum over each cost of operations execution) and then we
can compare costs of service’s operations execution by using the minimum operator.

To make the comparison meaningful, we restrict the usage of semirings by adding
the requirement that c1 +̂ c2 = c1 or c1 +̂ c2 = c2, where c1, c2 ∈ Ĉ (i.e., +̂ is an
operator for comparing two semiring elements). We call such semiring a comparison
semiring. Given two semiring elements c1 and c2 in a comparison semiring, we say
that c1 is better than c2 if c1 +̂ c2 = c1, and vice-versa. Consider again the tropical
semiring, where addition is the minimum operator. In this case c1 is better than c2 if
min(c1, c2) = c1 (i.e., if c1 is smaller than c2).

The usage of a semiring in our framework gives us flexibility in defining the notion
of “best”. For example, we can use the tropical semiring if we are interested in the
minimum cost, while we can use the arctic semiring Â = (Z ∪ {−∞},max,+,−∞, 0)
if we are interested in the maximum cost. Moreover, it gives us flexibility in defining the
domain of the cost, for example whether it ranges over integers, reals, positive integers,
etc. Another example is where one models the situation where the cost of operation
execution represents the probability of a service being successfully executed, in this case
the cost might range from 0 to 1. However, to make explanations more intuitive, from
now on we focus on the tropical semiring only.

Formally, a service in the WRM is a WTSWS = (S,O, T̂ , ν, s0, F ), where S, O,
s0, and F are as for a TS, T̂ = (Z ∪ {∞},min,+,∞, 0) is the tropical semiring, and
ν : S ×O × S × Ĉ is the service’s transition relation. When 〈s, o, s′, c〉 ∈ ν, we say
that transition s

o,c−−→ s′ is in S. Intuitively, the semiring element c in the transition
s

o,c−−→ s′, represents the cost of performing operation o in state s. In this case, the fact
that available services are deterministic means that there are no two distinct transitions
s

o,c−−→ s′ and s
o,c′

−−→ s′′ in S such that s′ 6= s′′ or c 6= c′. The notion of community of
available services in the WRM is similar to the one in the RM except that the services
are represented by WTSs. As for simulation checking in the RM, we can construct a
Community-WTS by taking the asynchronous product of all available services WTSs.

In the WRM, we can also model some scenarios in which the cost of executing an
operation depends on the execution of another operation. Fig. 2(d) shows an example
where the second execution of operation a is modeled as having a smaller cost than the
first execution of a. In general, we could represent the fact that an operation a executed
at some state where a has already been executed has smaller cost. However, there are
many scenarios that cannot be captured easily, for example when the cost of executing
an operation in a service depends on an operation execution by another service.

Now we introduce the notion of best composition in the WRM through our running
example. Suppose the community of available services consists of the service S1, S2,
and S3 in Fig. 2. The target service St is still the one in Fig. 1(c). Two possible fragments
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Fig. 3. Two possible composition of services S1, S2, and S3 for the target service St in Fig. 1(c)

of the Community-WTS that simulate St (i.e., serve as a composition for St) are shown
in Fig. 3. Intuitively, the first composition uses services S1 and S2 to “mimic” the
target service St and the other one uses S1 and S3. Considering the target service in
Fig. 1(c), suppose the client requests to execute operation “searchItem” twice, followed
by operation “payByBT”. Intuitively she searches for the item in the shop twice and then
purchases it by using a bank transfer. Formally, this is represented by the path

τ = t0
searchItem−−−−−−−→ t1

searchItem−−−−−−−→ t1
payByBT−−−−−−→ t3

in target service St. Notice that τ starts at the “initial state” and ends at a “final state”.
We call this an accepting path. To realize the request, an orchestrator must be able
to delegate the execution of the requested operations to the available services in the
community. An orchestrator D1 based on Composition 1 in Fig. 3(a) delegates the first
“searchItem” request to S1, the second one to S2, and the “payByBT” request to S2.
Formally, this delegation corresponds to the following path in the Community-WTS:

τ ′ = (s0, p0, q0) searchItem/S1 /4−−−−−−−−−−−→ (s1, p0, q0) searchItem/S2 /5−−−−−−−−−−−→
(s1, p0, q0) payByBT/S2 /6−−−−−−−−−−→ (s1, p1, q0)

We call this a realization path. Since we use the tropical semiring, the weight of this
realization path is just a summation of the weights of all operations along the realization
path. In this case the weight of this realization path is 15. However, there might be
more than one possible way to realize a certain sequence of operations request. In our
examples, we might also delegate to S3 the execution of the second “searchItem” and of
the “payByBT” requests. Hence, there might be more than one corresponding realization
in the Community-WTS. Each of them has its own weight. To compare them and find
the best weight, since here we use the tropical semiring, we take the minimum among
all of them. Hence, in this case we get the best weight as the minimum weight among all
possible realizations. In our example one possible best weight is 12 (possibly obtained
by doing the delegation based on Composition 2).

The goal of the best composition synthesis is to synthesize the best orchestrator D,
which informally means that for all possible sequences of operations requested by the
client (which correspond to accepting paths in the target service), we have that for all
possible delegations of those operations execution to the available services done by D,
the total cost of this execution is the best among any other possible delegation done by
all possible orchestrators. Considering again the tropical semiring, intuitively we are
interested in finding the best orchestrator that minimizes the total cost of the realization
of all possible interactions between the target service and the client that started from the
initial state and end at a final state. It is not immediate to gain the decidability of this
problem, since once we have a loop in the target service, the client can make an infinite



number of different sequences of operations request. Hence we can’t just enumerate
all possible sequences of operations executions and check if a certain orchestrator can
realize them all in the “best” way.

4 Best Composition Synthesis

Recall that given a Community-WTS WC and the target service St, it can be shown
that an orchestrator D for the givenWC and St corresponds to a certain fragment of the
WC that simulates St. We call such fragment a target service realization. Intuitively,
a target service realization encodes the specification for an orchestrator. Similarly, it
can also be shown that a best orchestrator corresponds to a certain fragment of WC,
which we call a best target service realization. More formally, a best target service
realization is a fragment SR ofWC s.t. for all accepting paths τ in St, the weight of
each possible realization path of τ in SR is the best. Intuitively, a best target service
realization encodes the specification of a best orchestrator. Knowing this fact, we can
reduce the problem of checking the existence of a best composition to the problem of
checking the existence of the best target service realization. Moreover, a best orchestrator
can be synthesized from a best target service realization, if it is exits.

Before presenting the algorithm for checking the existence and synthesizing a best
target service realization, we introduce some preliminary notions: (i) A simple cycle
path is a cycle path that has no state repetition in it, except for the first and the last
states, which coincide. In Fig. 1(c), the path t1

searchItem−−−−−−−→ t1 is a simple cycle while
t1

searchItem−−−−−−−→ t1
searchItem−−−−−−−→ t1 is not. (ii) A k-bounded accepting path is an accepting

path where the length of each cycle path in it is less than or equal to k. In our example,

for k = 2, the path π′ = t0
searchItem−−−−−−−→ t1

searchItem−−−−−−−→ t1
searchItem−−−−−−−→ t1

payByCC−−−−−−→ t2

is a k-bounded accepting path while the path π′′ = t0
searchItem−−−−−−−→ t1

searchItem−−−−−−−→
t1

searchItem−−−−−−−→ t1
searchItem−−−−−−−→ t1

payByCC−−−−−−→ t2 is not.
The algorithm for checking the existence and synthesizing the target service best

realization takes the target service and the community as input. We sketch it here briefly
(1) For each fragment SR ofWC, repeat the following steps. (2) Verify if SR simulates
the target service. (3) Verify if for each simple cycle path in the target service, we have
that the weight of all its possible realization paths in SR is the best among all its possible
realization paths inWC. (4) Verify if for each possible k-bounded accepting path in the
target service, the weight of all its possible realization paths in SR is the best among
all its possible realization paths inWC, where k is equal to the size of the community
transition system. (5) If SR fulfills the verification in Steps 2, 3, and 4, the algorithm
returns “yes” and SR is one possible target service best realization. Otherwise, go back
to Step 1 to and continue the check with the next fragment. If none of the fragments
fulfills the verification in Steps 2, 3,and 4 then the algorithm returns “no”. It can be
shown that the algorithm above is sound, complete, and always terminates, and that
its complexity is double exponential in the combined size of the target service and the
community of available services.

In our running example, suppose the target service is as in Fig. 1(c), and that for
simplicity of explanation there are only two possibles fragments of Community-WTS



as in Fig. 3 (Note: In this example we might have more than these two fragments).
In the second step, it is easy to see that both fragments simulate the target service.
For the third step, there is only one simple cycle, namely t1

searchItem−−−−−−−→ t1 and either
in Fig. 3(a) or Fig. 3(b) there is only one possible realization path and both of them
have the same weight. In our example, the one which has a realization path with dif-

ferent weight is only t0
searchItem−−−−−−−→ t1

payByBT−−−−−−→ t3. The corresponding realization

path in Fig. 3(a) is (s0, p0, q0) searchItem/S1 /4−−−−−−−−−−−→ (s1, p0, q0) payByBT/S2 /6−−−−−−−−−−→ (s1, p1, q0)
with weight equal to 10, and the one in Fig. 3(b) is (s0, p0, q0) searchItem/S1 /4−−−−−−−−−−−→
(s1, p0, q0) payByBT/S3 /3−−−−−−−−−−→ (s1, p0, q1) with weight equal to 7. Due to space limita-
tion, we can’t give the full illustration, but one can check that in this case for all of the
possible k-bounded accepting paths in the target service, we have that the weight of each
possible corresponding realization path in the fragment in Fig. 3(b) is the best, while this
does not hold for the fragment in Fig. 3(a). Since the fragment in Fig. 3(b) satisfies the
checks in Step 2, 3, and 4, the algorithm return “yes”, and this fragment is one possible
target service best realization.

5 Related Work and Conclusions

In this work we have proposed a weighted extension of the Roman Model, named
Weighted Roman Model. It enhances the Roman Model with the capability to model
the cost of service’s operation execution and allows one to address the problem of
best composition synthesis. We have shown that the problem of checking the existence
and synthesizing the best composition can be addressed by checking the existence and
synthesizing the so called best target service realization (encoding the specification of the
best orchestrator). Relying on this result, we proposed a sound and complete algorithm
for checking the existence and synthesizing the best target service realization.

We provide here a brief overview of related work in the literature. In the SM4ALL
project [4], the Roman Model is used as the underlying framework for establishing
a collaboration of services, involving composition. The framework is applied to the
real world scenario studied in the project, namely that of private homes for users with
different abilities and needs. The Roman Model is adopted also in [7], which addresses
an optimization problem in the area of service composition. However, it considers finding
the best composition for an ad-hoc interaction, i.e., for a given sequence of requested
operations. Instead, we consider here all possible sequences of requested operations,
hence in general we do not know which might be the next operation requested by the
client. Also, the use of a semiring gives more flexibility in defining the meaning of
optimum cost. We mention also works where the quantitative aspect comes into play for
measuring similarity between transition system-like structures. [14] presents a similarity
measure on control flow graphs, which are formalized as labeled transition systems, that
is based on a weighted variant of simulation. The work in [11] proposes a technique for
matching statecharts that is motivated by model management in software engineering.
However, in both works, the transition system-like structures do not contain quantitative
information, as in our case.



One interesting further direction of our work is to model the situation where we
consider the initial and final weights of a service. Intuitively, the initial weight can model
the cost of initializing the service and the final weight the cost of terminating it. Another
interesting direction is to analyze the intrinsic complexity of the best composition
synthesis problem, and check whether our upper bounds can be improved. Fully taking
into account data for verification and synthesis in the context of the Roman Model, or
other service-based frameworks, is a very challenging task that has been tackled only
recently, see, e.g., [1]. We are not aware of any work that addresses synthesis, fully
taking into account data, even in an unweighted setting. It is a very interesting research
direction, to tackle this problem, both for an unweighted and for a weighted setting.
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