
Andreas Schönberger, Oliver Kopp,

Niels Lohmann (eds.)

Services and their Composition

4th Central European Workshop on Services and their Composition

4. Zentral-europäischer Workshop über Services und ihre Komposition

ZEUS 2012, Bamberg, February 23.-24. 2012

Post-Workshop Proceedings

ZEUS 2012 is kindly supported by:

Senacor Technologies AG
www.senacor.com

Distributed Systems Group

Faculty Information Systems
and

Applied Computer Science

Editors:

Andreas Schönberger
University of Bamberg, Distributed Systems Group,
Feldkirchenstr. 21, 96052 Bamberg, Germany
andreas.schoenberger@uni-bamberg.de

Oliver Kopp
University of Stuttgart, Institute of Architecture of Application Systems
Universitätsstraße 38, 70569 Stuttgart, Germany
oliver.kopp@iaas.uni-stuttgart.de

Niels Lohmann
University of Rostock, Institute of Computer Science
18051 Rostock, Germany
niels.lohmann@informatik.uni-rostock.de

Copyright c© 2012 for the individual papers by the papers’ authors. Copying permit-
ted for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

Program Committee

Rafael Accorsi University of Freiburg
Daniel Beimborn University of Bamberg
Gero Decker signavio
Daniel Eichhorn Karlsruhe Institute of Technology
Dirk Fahland TU Eindhoven
Christian Gierds Humboldt-University of Berlin
Christian Huemer TU Vienna
Meiko Jensen Ruhr-University Bochum
Nils Joachim University of Bamberg
Oliver Kopp University of Stuttgart
Philipp Leitner TU Vienna
Niels Lohmann University of Rostock
Christoph M. Pflügler University of Augsburg
Stephan Reiff-Marganiec University of Leicester
Andreas Schönberger University of Bamberg
Jan Sürmeli Humboldt-University of Berlin
Robert Warschofsky Hasso Plattner Institute Potsdam
Matthias Weidlich Technion, Israel
Marco Zapletal TU Vienna

III

Additional Reviewers

Uwe Breitenbücher University of Stuttgart
Robert Engel TU Vienna
Andreas Lehmann University of Rostock
Dieter Mayrhofer TU Vienna
Richard Müller Humboldt-University of Berlin
Christian Pichler TU Vienna
Robert Prüfer Humboldt-University of Berlin
Steve Strauch University of Stuttgart
Jan Sürmeli Humboldt-University of Berlin
Tobias Unger University of Stuttgart
Christoph Wagner Humboldt-University of Berlin
Sebastian Wagner University of Stuttgart

IV

Table of Contents

Service Adaptation and Synthesis

Toward Deciding the Existence of Adaptable Services 1

Christian Gierds

Cost-minimal Adapters for Services . 9

Jan Sürmeli

Partner Synthesis for Data-Dependent Services . 17

Christoph Wagner

Service Composition

HarmonICS - a Tool for Composing Medical Services 25

Dariusz Doliwa, Wojciech Horzelski, Mariusz Jarocki, Artur
Niewiadomski, Wojciech Penczek, Agata Polrola, and Jaroslaw
Skaruz

Automated Composition of Timed Services by Planning as Model Checking 34

Daniel Stöhr and Sabine Glesner

Best Service Synthesis in the Weighted Roman Model 42

Diego Calvanese and Ario Santoso

Service Language Characteristics

Choreographies in BPMN 2.0: New Challenges and Open Questions 50

Mario Cortes-Cornax, Sophie Dupuy-Chessa, and Dominique Rieu

Building Orchestrations in B2Bi - The Case of BPEL 2.0 and BPMN 2.0 . 58

Jörg Lenhard and Guido Wirtz

A Survey on Approaches for Timed Services . 66

Kristian Duske and Richard Müller

Process Analysis

Weak Conformance of Process Models with respect to Data Objects 74

Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

Towards Verification of Process Merge Patterns with Allen’s Interval
Algebra . 81

Sebastian Wagner, Oliver Kopp, and Frank Leymann

Towards Automatic Generation of Process Architectures for Process
Collections . 89

Rami-Habib Eid-Sabbagh

Workflow Management

Towards Process Evaluation in Non-Automated Process Execution
Environments . 97

Nico Herzberg, Matthias Kunze, and Andreas Rogge-Solti

Towards a Human Task Management Reference Model 104
Daniel Schulte

Contextsensitive Online Adaption of Workflows . 112
Johannes Kretzschmar and Clemens Beckstein

Service Design

Six Strategies for Building High Performance SOA Applications 120
Uwe Breitenbücher, Oliver Kopp, Frank Leymann, Michael Reiter,
Dieter Roller, and Tobias Unger

Guided Control Flow Unfolding for Workflow Graphs Using Value Range
Information . 128

Thomas Heinze, Wolfram Amme, Simon Moser, and Kai Gebhardt

Model Support for Confidential Service-Oriented Business Processes 136
Andreas Lehmann and Niels Lohmann

Index of Authors . 144

VI

Toward Deciding the Existence of
Adaptable Services

Christian Gierds

Humboldt-Universität zu Berlin, Department of Computer Science,
Unter den Linden 6, 10099 Berlin, gierds@informatik.hu-berlin.de

Abstract. Service adaptation allows two services to interact properly
using a mediator or adapter. In service discovery one question is whether
an adaptable service exists for a given service, i. e. whether a service exists
which can be interacted with properly by using an adapter.
We look at a setting where this question boils down to deciding distributed
controllability, and we present an idea for changing an algorithm for
controller synthesis which answers this question.

1 Motivation

In recent years the idea of service adaptation gained momentum within the
scientific community. Services already are a wide-spread paradigm also used in
industry. Thus the pool of independently developed services is huge. As services
are made to be coupled, the question of service discovery (viz. does a service exist
that my service can interact with) plays an important role in Service-Oriented
Architectures [6]. However, as a service might be developed without knowledge
about existence of potential partners, it is likely that service discovery fails
because of incompatibilities. In this case an adapter [8] might overcome these
incompatibilities. As indicated in Fig. 1a, the adapter acts as mediator between
two services S1 and S2 ensuring semantically correct processing of messages and
proper termination of the services. In case service discovery fails, i. e. there does
not exist any service for direct interaction with, the question concerning service
discovery now can be extended to the adapter setting.

AdapterS1 S2

(a) Normal Adapter Setting

Adapter

S1 S2

Engine E

Controller C

(b) Discovery of an Adaptable
Service

Fig. 1. Two different perspectives (dark-gray means given, light-gray means wanted)

2 Christian Gierds

Existence of an Adaptable Service: Is there another service and an adapter, such
that my service can communicate correctly with this other service using the
adapter?

This question actually is not easy to answer. It appears, that we may simply
apply an algorithm for service selection in order to pick S2 and an adapter.
Service adaptation proposes to create, not to select a mediating service though.
As it mainly works on a semantical rather than a functional level adapters are
not meant to be stored and be publicly available. Thus the question above would
suggest trying to create an adapter for each candidate S2.

Setting. Many newer approaches [1–4] recommend to first describe the semantical
constraints of an adapter and then to ensure also behavioral correctness (viz.
proper termination by coordinated transformation of messages). Figure 1b shows
one possible solution [4]: Let the services S1 and S2 be given, as well as a set
of message transformation rules describing valid transformations of messages.
These transformations are implemented in an engine service E ensuring the
semantically correct exchange of messages. If we find a controller C triggering
transformations as they are actually needed, then the composition of E ⊕ C is
an adapter.

For this approach we may assume to have S1 and at least the transformation
rules and thus the engine E given, when looking for a service S2. Checking the
Existence of an Adaptable Service then asks for a service S2 for which a controller
C exists, such that the composition S1 ⊕ E ⊕ C ⊕ S2 properly terminates.

Contribution. We provide an algorithmic idea to abstract from C and then ask
for the existence of an S2 using existing work on partner synthesis. As to the
best of our knowledge the question for the Existence of an Adaptable Service
has not been answered so far. The idea proposed in this paper is a first step in
solving the problem.

The ultimate goal is the characterization of all adaptable services. Then,
given a candidate in a repository, we could decide, whether an adapter can be
computed for this candidate or not. However, this problem will remain for future
work. So far, we simply want to be able to check, whether it is possible to find
such a candidate, or if no such service exists as the transformation rules are not
sufficient for adaptation.

In the following we first introduce service adaptation on a formal level (Sec. 2).
Then we briefly discuss the problem of distributed controllability (Sec. 3)—our
main question relates to this problem—before giving an idea for solving the
problem in the special case of adapters (Sec. 4). Finally we give an outlook
(Sec. 5) on how to extend the solution to partially solve the more general case of
distributed controllability.

2 Service Adaptation

In the last couple of years many approaches [1–3] (among others) emerged for
the adaptation of independently developed services. Many of these approaches

Toward Deciding the Existence of Adaptable Services 3

describe the semantical level of an adapter independently of its control structure.
The semantical level is described by message transformation rules defining the
transformation of a message in order to meet semantical constraints imposed by its
content. Typical transformations range from simple renaming to the combination
of several message into one message (or vice-versa), or the creation/deletion of
protocol message (e. g., acknowledgments).

We use previous work [4] by colleagues and myself based on Petri nets
to formally describe the setting (as shown in Fig. 1b). Using Petri nets gives
some advantages: they allow to easily describe distributed models, and message
transformation rules can be directly translated into a net structure.1 We use the
typical definition of a Petri net N = (P, T, F,m0) with finite sets of places P ,
transitions T , a flow relation F ⊆ (P × T) ∪ (T × P), and an initial marking
m0. A marking m : P → N assigns to every place a number of tokens. The
firing semantics are as usual: a transition t ∈ T is enabled in a marking m,
when all places in the preset are marked appropriatly ((p, t) ∈ F ⇒ m(p) > 0),
and t may fire only, if it is enabled and thus changes the marking to m′(p) =
m(p)− F (p, t) + F (t, p) ∀p ∈ P .

An open net additionally uses transition labels to express communication via
some channel c: a transition may asynchronously send a message (!c), receive
a message (?c)—thus restricting firing if c contains no message—, or it may
synchronize (#c). Further we provide a set Ω of final markings, indicating in
which state a service is allowed to terminate.

The approach for adapter synthesis then can be summarized as follows: let us
assume to have given service models S1 and S2 (as open nets) as well as message
transformation rules, which can be canonically translated into an open net E
(the engine). Each transition of E is synchronously connected to a controller port,
thus allowing full control about the application of transformation rules. We then
use existing algorithms for controller synthesis for constructing a controller and
thus an adapter, if any exists. The controller’s role is to ensure proper termination
as transformation rules may not be applied arbitrarily. In the following proper
termination is used synonymously to weak termination (viz. it is always possible
to reach a final state).

Figure 2 shows our (technical) running example. We use the typical graphical
notation for Petri nets. Additionally the dashed line shows the boundary of one
open net, places indicating a proper final state are depicted using a double line.
Communication labels are written inside a transition (omitting the synchronous
labels used for communication in the adapter between the lower engine and the
upper controller part). Service S1 (Fig. 2a) receives an initial message (?e), waits
for an external choice (either ?b1 or ?b2), sends an appropriate answer (either !t
or !c), and returns to its initial state. Service S2 (Fig. 2c) simply sends a message
(!m) and waits for a reply (?k); or it may decide to terminate. Within the engine
part of the adapter (Fig. 2b) we see the communication with S1 and S2 as well
as the transformation rules (r1 to r5). In more detail the rules are: r1 : m 7→ e

1 N.B.: The whole theory could be canonically translated into state machines. However
we decided to use Petri nets.

4 Christian Gierds

?e

?b1 ?b2

!t !c

(a) S1

e m

b1

b2

c k

t s

?mr1!e

r2

r3

!b1

!b2

r4

r5

?c

?t

!k

controller part (controlling transitions below)

engine part (arcs to controller omitted)

(b) Adapter (focus on engine)

!m

?k

(c) S2

Fig. 2. Running example: Adapter for two services S1 and S2

!a #s

?a #s

(a) 2 nets to be composed

a s

(b) The composed net

Fig. 3. Composition of open nets

(rename m to e); r2 : 7→ b1 (create b1); r3 : 7→ b2 (create b2); r4 : c 7→ k (rename
c to k); and r5 : t 7→ s (rename t to s). As we can see, rules canonically translate
into Petri net transitions, where the channel names translate into places. Please
note, that there are additional arcs between the engine and controller part that
we omitted for sake of simplicity.

Composition of two open nets A and B is realized by introducing a buffer
place pc for each asynchronous channel c and adding an arc (t, pc) for each
transition t with label !c, an arc (pc, t) for each transition t with label ?c, and
each pair of transitions with the same synchronous label #c is merged while
preserving their individual presets and postsets (Figure 3 shows an example).

We now want to change the perspective in order to check the Existence of
an Adaptable Service: let us assume we only know about service S1 and some
transformation rules. Does any service S2 exist, such that S1 and S2 are adaptable
given the transformation rules? Regarding Fig. 1a we have given services S1 and
E and are looking for services S2 and C (where the latter is of minor importance).
Nevertheless in our setting we are actually looking for two services that are not

Toward Deciding the Existence of Adaptable Services 5

allowed to communicate with each other directly—as S2 and C only communicate
with the engine E—but that we can match during construction.

Let us rephrase the problem a bit: given S1 ⊕ E, we are looking for a service
S2, such that we can be sure, an appropriate C also exists.

3 The Problem of Distributed Controllability

The problem we want to solve in the adapter setting—checking for the Existence
of an Adaptable Service—relates to the problem of distributed controllability [7].
Given a service A (S1 ⊕ E) with two distinguished ports for communication, do
two services B1 (service S2) and B2 (controller C) exist, such that the composition
of B1⊕A⊕B2 describes a proper system. In this setting, B1 communicates with
A over one port, and B2 over the other. However, B1 and B2 are not allowed to
directly communicate with each other.

The described problem is known to be solvable for acyclic services [7]; however,
for cyclic services there exists strong suspicion, that the problem is in fact
undecidable.2

Although checking the Existence of an Adaptable Service thus relates to a
problem suspected to be undecidable, we present an idea for tackling this problem
in the special case of adapters. This is possible as the engine of an adapter has a
very special structure—every transitions within the engine is under control. The
decisions of any controller are very determined, which helps us in predicting a
controllers decisions. Thus even in case of cyclic services we can actually decide,
whether an adaptable service exists.

In the next section we exploit this fact by actually foretelling some of the
controllers decisions and then checking for the Existence of an Adaptable Service
using existing algorithms for partner synthesis.

4 Existence of Adaptable Services

In this section we shortly sketch the idea for answering the question, whether a
service S2 exists for a given service S1 and a set of transformation rules, such
that S1 and S2 are adaptable with respect to the transformation rules.

First of all we have to fix an interface for S2. Otherwise it is not clear, which
messages used within the transformation rules are actually meant to be sent or
received—which actually is not always clear from the rules. However, in many
cases the rules suggest a certain direction and we leave it to future work to find
heuristics for allowing more flexibility in choosing the interface.

When trying to find S2 we have to take care of certain points: first, building
a central controller (one serving both ports) can be misleading. There exists S1
and E which have a central controller, but no distributed one (e. g., when S2
would need to react on messages exchanged between E and C). An algorithm
working on the central controller must be aware of this. Second, as we are
2 Personal communication with Karsten Wolf. Unpublished result.

6 Christian Gierds

?m r1

r2

r1

r2 r2

r3 r3

r2,r3 r2,r3

r4

!k

... ...

?m

Fig. 4. Automaton derived from S1 ⊕ E with branches leading to deadlocks removed

mainly interested in S2 we could abstract from the interface (i. e. remove all
communication) between engine and controller. This would respect somehow the
independence of S2 and controller C. However, this does not take into account
the possibility for design-time coordination of S2 and C, thus failing in finding
any S2 in many cases, when actually one exists.

The approach we want to follow is a mixture of both ideas: abstract from
the communication between engine and controller, but use information about
transitions being part of the engine to decide, whether bad states could be avoided
by an yet unknown controller.

The algorithm [5] for constructing a controller in the adapter setting presented
above is based on communicating automata which can be canonically derived
from the reachability graph of S1 ⊕ E. In our setting there might be many
states, where avoiding a deadlock or livelock seems impossible for S2 alone. For
a transition of the engine a controller can however decide not to fire it if it leads
unavoidably to bad states.

Our algorithm for finding an adaptable service S2 (without generating a
corresponding controller part C) can be summarized as follows: Let us have
given a service S1 and an engine E representing message transformation rules.
Translate the reachability graph of S1 ⊕E into a communicating automaton. If
there is a transition with a controller label—a label for communication between
engine E and controller C—which results in a state, where reaching a bad state
is unavoidable for any S2, then remove this transition and all states becoming
unreachable. If no such further transitions exist, remove all controller labels
(making corresponding transitions communicating with the controller part of an
adapter internal) and run the algorithm for partner synthesis.

This way we exploit the possibility to rely on a correct decision of C in case
it is necessary. As we are only removing transitions where reaching a final state
cannot be enforced anymore—neither by S2 or any controller C—communication
between engine and controller is not determined and a level of uncertainty remains,
which S2 has to cope with (viz. S2 is still not aware of communication between
E and C).

Toward Deciding the Existence of Adaptable Services 7

Running example: Let us consider the example in Fig. 2. The transition r3
(creating b2) should fire once for every m received, but never a second time. As
we know that r3 is part of the engine, we know that a C can decide to fire r3 one
time (as a final state is reachable in the example), but never a second time, when
no further m was received (as a final state might not be reachable anymore in
the example). Thus we remove all transitions related to the second firing of r3.
We can see the (partial) result of this operation in Fig. 4. Arcs and labels related
to engine transitions are gray, an unavoidable deadlock is indicated by a cross,
the removal of arcs by prohibition signs. When we start partner synthesis on the
artifact depicted in Fig. 4, then we get as result a service corresponding to the
net initially depicted in Fig. 2c. Thus we are able to compute a witness to show
that S1 is adaptable provided the given transformation rules.

5 Conclusion and Outlook

The use of adapters extends the setting of Service-Oriented Architectures by
some challenging questions. In the case of service discovery we may not only
be interested a (compatible) partner service, but also a partner service usable
through an adapter would serve our purposes. Thus the question arises if any
adaptable service does exist. In case we regard an adapter as a union of semantical
constraints and control flow we have provided an algorithmic idea to answer this
question. We have omitted a proof for the correctness of this approach. Surely it
highly relies on the very special structure of the engine (unique communication
labeling, controller always has complete knowledge about the state of the engine,
thus decisions are determined, etc.).

If we want to lift this approach to decide distributed controllability in a
more general setting, certain pitfalls are ahead that do not allow to directly
apply the idea on arbitrary services. Some major issues are transitions with
equal communication labels, a higher degree of uncertainty, and asynchronous
communication labels on both ports (asynchronous communication normally
needs to be restricted due to undecidability results, what the algorithm is not
yet aware of).

Nevertheless we want to refine the algorithm in a way, that if we abstract
an arbitrary two-port service S from one port and find a controlling service for
the second port, then only because S is distributed controllable. For the adapter
setting we want to show on a formal level, that the algorithm actually decides
the problem. Thus if S1 ⊕ E is distributed controllable, then the algorithm finds
some S2.

Further, we would like to characterize all adaptable service. This would allow
us to actually do Service Discovery more efficiently without synthesizing an
adapter for each candidate service S2. We could simply match S2 against the
characterization.

8 Christian Gierds

References

1. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: Devel-
oping adapters for web services integration. In: CAiSE. pp. 415–429 (2005)

2. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: ICSOC. pp.
27–39 (2006)

3. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation for
service interface adaptation. In: Business Process Management. pp. 65–80 (2006)

4. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.
IEEE Transactions on Services Computing 99(PrePrints) (2010)

5. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for operat-
ing guidelines. Fundam. Inform. 108(1-2), 43–62 (2011)

6. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice Hall,
Essex (Jul 2007)

7. Wolf, K.: Does my service have partners? T. Petri Nets and Other Models of
Concurrency 2, 152–171 (2009)

8. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Cost-minimal adapters for services

Jan Sürmeli

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin

suermeli@informatik.hu-berlin.de

Abstract The composition of compatible services is central in service
orientation. Adapters resolve incompatibilities between services. Adapter
synthesis generates an adapter A for two given services N1 and N2.
Generally, there exist several different adapters for N1 and N2. In this
paper, we suggest a framework to express preference between those
adapters. Additionally, we sketch the synthesis of a cost-minimal adapter.

1 Introduction

We understand a service [6] as a component with an inner process and an interface
for message exchange with other services. The actions of the inner process may be
linked with the interface, declaring which actions receive and send which type of
messages. A central concept of service orientation is the composition of services.
Clearly, it is only feasible to compose compatible services. There exist four core
aspects [5]: Syntactical, behavioral, semantical, and non-functional. In this paper,
we concentrate on weak termination, a behavioral compatibility notion, similar to
soundness [10] in business processes. A set of services is compatible w.r.t. weak
termination, iff the composition of its elements is free of deadlocks and livelocks.
An adapter [12] solves the problem that two services N1 and N2 are incompatible
by mediating between them. An adapter A is a service, such that the set N1, N2,
and A of services is compatible. The idea of adapter synthesis is to automatically
generate an adapter for two services. Generally, there are different adapters
for two services N1 and N2. In this paper, we propose a framework to express
preference between such adapters by means of cost models and cost functions.
We discuss two cost models. For one cost model, we sketch the synthesis of a
cost-minimal adapter.

2 Running example

As a running example, we introduce two simple incompatible services, which are
depicted in Fig. 1 in a notion similar to BPMN: Boxes are tasks, diamonds are
splits and merges. Initialization and termination are represented by circles and
bold circles, respectively. The dashed line encapsulates a service. A rounded box
on the dashed line is a port, consisting of input and output message types. We
further explain syntax and semantics by describing the actual models.

10 Jan Sürmeli

Service N1 has one port with the input message types ANSWER and CANCEL,
and the output message types LOGIN, REQUEST, and DONE. Initially N1 sends
a LOGIN message. This is modeled as a task named !L, where ! stands for sending,
and L stands for LOGIN – we abbreviate the names of the message types. Then,
N1 enters a loop. In each iteration, it sends an R (resembled by !R) and waits
for an A or a C. If it receives a C, the loop is left. If it receives an A, it decides
internally between starting another iteration, or leaving the loop. In the latter
case, it sends a D to inform its environment that it is done sending requests. Upon
leaving the loop, it terminates. Service N2 serves its environment by receiving a
H followed by a P. It then returns a S followed by receiving a G. Initially and
after receiving a G, N2 can receive a Q to terminate.

!L

?A LOGIN

REQUEST

ANSWER

DONE

CANCEL

?C

!D

!R

(a) N1

?H

?P

!S

?G

HELLO

PROBLEM

SOLUTION

GOODBYE

QUIT

?Q

(b) N2

Figure 1: Running example: Two incompatible services N1 and N2

Obviously, N1 and N2 are incompatible. Even if one tries to map the interfaces
as far as possible (i.e. L 7→ H, R 7→ P, S 7→ A, D 7→ G), the composition deadlocks:
After one iteration of the loop, N2 waits for another H, and N1 waits for an A.

There exist different adapters for N1 and N2. Figure 2 depicts two adapters
A1 and A2 for our running example. Adapter A1 sends the missing H in each loop
iteration. Once N1 decides to be done, it quits N2. In contrast to the previously
studied models, A1 executes tasks neither starting with ? nor !, e.g. E1. Such a
task is internal, that is, neither sending nor receiving a message. The label E1
refers to a message transformation in Fig. 3(a). We explain this in more detail in
the next section. Adapter A2 resolves the incompatibility trivially by sending a C
to N1, and a Q to N2.

One might prefer one adapter over the other. For instance, A1 could be
preferable because it enforces both services to enter their main part. In contrast
to that, A2 simply quits both services, which does not seem very useful. However,
one could also prefer A2 over A1, because executing the main part of the services
requires many costly message transformations.

Cost-minimal Adapters for Services 11

?L

?R

!H

!P

?S

!A

!G

?R

?D

HELLO

PROBLEM

SOLUTION

GOODBYE

LOGIN

REQUEST

ANSWER

DONE

CANCEL QUIT!Q

E1

E2

E9

E3

(a) A1

!C HELLO

PROBLEM

SOLUTION

GOODBYE

LOGIN

REQUEST

ANSWER

DONE

CANCEL QUIT!Q

E7

E8

E5

E4

?L

?R

(b) A2

Figure 2: Running example: Two adapters A1 and A2

3 General synthesis approach

In this section, we propose a general approach to synthesize a cost-minimal
adapter. We first explain the approach in [2] to synthesize an arbitrary adapter.
Second, we explain how to extend this approach such that it yields a cost-minimal
adapter.

We synthesize an adapter for N1 and N2 based on a given specification of
elementary activities (SEA). Such an SEA contains all semantical activities an
adapter may perform. An elementary activity is a rule of the form x1, . . . , xm 7→
y1, . . . , yn, where x1, . . . , xm, y1, . . . , yn are message types. For each message type
xi, a message of that type is consumed, for each message type yj , a message of
this type is produced. Message transformations are performed on internal buffers.
That is, the adapter stores incoming and intermediate messages locally.

Continuing the running example, Fig. 3(a) shows an SEA {E1, . . . ,E9}. We
recognize all but one message type from the running example: Message type X is
a temporary message to remember that rule E2 has been applied. That is, that
at least one S has been translated to an A. Using such intermediate messages is a

12 Jan Sürmeli

mechanism to cope with dependencies between rules. We identify which adapter
uses which rules. Adapter A1 (Fig. 2(a)) executes E1, E2, E9, and E3. Adapter
A2 (Fig. 2(b)) executes E7, E8, E5, and E4. Finally, the adapter Amin (Fig. 3(b))
executes E1, E2, E3, E9, E8, E6, and E4.

One advantage of this approach is that adapter synthesis can be reduced to
partner synthesis. Intuitively, partner synthesis [11] solves the problem to find
a compatible service N2 for a given service N1, called partner of N1. First, we
create an engine E from the SEA. The engine has three ports, one for each N1
and N2, and one for a control service. We compose N1, E, and N2. We synthesize
a control service C. The composition of E and C serves as an adapter for N1 and
N2. We shortly discuss the limitations of this approach. It is possible to adapt
more than just two services at once, but only by a central adapter. Additionally,
this approach is adapts single instances of each service. If one desires to adapt n
instances of one service, it is required to treat them each as a different service,
instead. This is obviously infeasible if the number of instances is variable and
not known beforehand.

We propose to specify costs based on the SEA, because it contains all activities
which are known before synthesis. We then follow the above approach and reduce
the problem to synthesize a cost-minimal adapter to the problem to synthesize a
cost-minimal partner.

4 Cost models and cost functions

In this section, we introduce two formal constructs: Cost models and cost functions.
A cost model determines how costs are represented, aggregated, and compared.
A cost function specifies the costs for executing a rule of the SEA Σ. These cost
may resemble monetary costs, for calling a web service, or penalties. Given a cost
model and a cost function, the costs of an adapter are well-defined.

Formally, a cost model C = [D,S,≤] consists of a set D, called domain of C,
a function S : D∗ → D, called sequence aggregator function (SAF) of C, and a
partial order ≤ on 2D, called set ordering relation (SOR) of C.

A cost function F : Σ → D specifies the cost of executing a single rule
a ∈ Σ. We combine a cost function with a cost model to determine the costs
of a sequence of rules. Let σ = a1 . . . an ∈ Σ∗. We define the costs of σ as
〈F , C〉(σ) := S(F(a1) . . .F(an)). Let L,L′ ⊆ Σ∗ be sets of sequences. We define
〈F , C〉(L) := {〈F , C〉(σ) | σ ∈ L}. We define L ≤F L′ iff 〈F , C〉(L) ≤ 〈F , C〉(L′).

Let N1 and N2 be incompatible services. The costs of an adapter A w.r.t.
F , C, N1, and N2 are then determined by inspecting the terminating runs
of the composition of N1, N2, and A. A terminating run results in a com-
mon final state of all services. We define 〈F , C, N,Q〉(A) := {〈F , C〉(σ|Σ) |
σ is a terminating run of N ⊕ A ⊕ Q}, where σ|Σ denotes the restriction of σ
to alphabet Σ. For two adapters A,A′, we define A ≤F,N,Q A′ if and only if
〈F , C, N,Q〉(A) ≤F 〈F , C, N,Q〉(A′).

A general limitation of this approach is the fact that costs for a sequence of rule
executions are built from the costs of the executions of single rules. One may desire

Cost-minimal Adapters for Services 13

Rule name Rule body Costs
E1 L, R 7→ H, P, L 5
E2 S 7→ A, G, X 5
E3 D 7→ Q 0
E4 7→ Q 0
E5 7→ C 30
E6 X 7→ C 10
E7 L 7→ 0
E8 R 7→ 0
E9 X 7→ 0

(a) Cost function F

?R

!H!P?S

!A !G

?R?D

HELLO

PROBLEM

SOLUTION

GOODBYE

LOGIN

REQUEST

ANSWER

DONE

CANCEL QUIT

!Q
!C

!Q

E1

E2

E3

E9

E8

E4

E6

?L

(b) Cost-minimal adapter Amin

Figure 3: A cost function F, and a cost-minimal adapter Amin w.r.t. cost function
F, cost model T , and services N1 and N2

to express dependencies, for instance, executing rule E = x1, . . . , xm 7→ y1, . . . , yn
could be cheaper if a message X was received beforehand. This can be partly real-
ized by intermediate messages. For this case, one would introduce three new rules
R = X 7→ X, receivedX , R′ = receivedX 7→ , and E′ = receivedX , x1, . . . , xm 7→
receivedX , y1, . . . , yn. One would apply the appropriate lower costs to E′. An
open question is to find the class of dependencies one can express in this way.
For example, it is not possible to declare that the costs for executing a rule are
reduced by factor two each time.

In the remainder of this section, we discuss two cost models, and apply these
cost models to our running example. For that purpose, we define a cost function
F based on the SEA in Fig. 3(a). Most of the rules have costs of zero. However,
E1 and E1 have costs of 5, because the message content has to be translated to a
different format. Rule E5 has a penalty of 30, to symbolize that we do not prefer
to send a C to N1. Rule E6 has a lower penalty, because it may only be applied
after at least one request has been answered.

4.1 A cost model for worst case total costs

The idea of this cost model is to compute the total costs of each run, and select
the supremum to compare two adapters. Total costs are determined by addition.
We prefer an adapter A1 over an adapter A2 if the worst-case total costs of A1
are lower than the worst case total costs of A2. In order to enable analysis, we
choose the natural numbers as domain. The advantage is an inherent monotony.
We define the cost model T as the cost model with domain DT := N0, the SAF
ST (a1 . . . an) := a1 + . . .+an, and SOR X ≤T Y if and only if sup(X) ≤ sup(Y).
Thereby, N0 denotes the set of natural numbers, + denotes integer addition,

14 Jan Sürmeli

sup(X) ∈ N0 ∪ {∞} denotes the supremum (least upper bound) of X, and ≤
denotes the natural order on N0 ∪ {∞}.

Comparing the adapters of our running example, we find: A1 7→ {10, 20, 30, . . .},
A2 7→ {30}, Amin 7→ {10, 20}. We prefer Amin, because 20 ≤ 30 ≤ ∞. We believe
that it is obvious that Amin is the cost-minimal adapter w.r.t. F, T , N1 and N2.
It is impossible to adapt N1 and N2 with less costs, because N1 decides whether
it sends another request, or whether it is done.

4.2 A cost model for worst case average costs

The disadvantage of cost model T is that all adapers with unbounded worst
case total costs are equivalent. That is, we may not distinguish between them.
However, there might be services N1 and N2 which are not adaptable by a service
with bounded worst case costs. In this case, we would like to be able to distinguish
two adapters A1, A2 with unbounded costs. Intuitively, we compare the costs for
executing an additional rule in each adapter. We evaluate the average costs of
each run (instead of the total costs), and use again the supremum to compare.
We prefer an adapter A1 over an adapter A2 if the worst-case average costs of
A1 are lower than the worst case average costs of A2. Obviously, this cannot be
done in the natural numbers anymore. Hence, we select the non-negative rational
numbers as domain. We define the cost model A as the cost model with domain
DA := Q+

0 , the SAF SA(a1 . . . an) := a1+...+an

n , and SOR X ≤A Y if and only if
sup(X) ≤ sup(Y). Thereby, Q+

0 denotes the set of non-negative rational numbers,
+ denotes rational number addition, sup(X) ∈ Q+

0 ∪ {∞} denotes the supremum
(least upper bound) of X, and ≤ denotes the natural order on Q+

0 ∪ {∞}.
Comparing the adapters of our running example, we find: A1 7→ { 10

4 ,
20
7 ,

30
10 , . . .},

A2 7→ { 30
4 }, Amin 7→ { 10

4 ,
20
5 }. We prefer A1, because 3 ≤ 4 ≤ 7.5.

5 Synthesis of cost-minimal adapters

For the cost model T , we solved the problem to synthesize a cost-minimal partner
in [9]. We use the same mechanism to synthesize a cost-minimal adapter: Two
services N1, N2, an engine E, and a cost fumction F serve as input. The engine
E may be computed from an SEA by the tool Marlene1. We first compose N1,
N2, and E to the service N = N1 ⊕E ⊕N2. Then, we synthesize a cost-minimal
partner for N w.r.t. F .

We sketch the synthesis approach. A central concept of the synthesis is the
minimal budget of a service N w.r.t. a cost function F . That is, the unique
costs of the cost-minimal partner. For T , the minimal budget is either a natural
number, or infinite.

In a first step, we find an upper bound b for the minimal budget with the
following property: b is infinite iff the minimal budget is infinite. The upper
1 Marlene is available at http://service-technology.org/marlene [Last accessed on 2012-
14-02]

Cost-minimal Adapters for Services 15

bound b is found by examining N together with its most-permissive partner.
Intuitively, the most-permissive partner simulates each other partner of N . The
most-permissive partner is computed with the tool Wendy [3]. If b is infinite,
every partner of N is cost-minimal.

If b is finite, we find the cost-minimal partner by iteration: For a given budget
k, it is possible to check whether there exists a partner with costs k. If such a
partner exists, it can be synthesized. This is realized by first transforming N to
a service Nk

F , and then synthesizing a partner for Nk
F . We find the lowest k ≤ b,

such that there exists a partner with costs k. This is implemented as a binary
search. The resulting partner is by construction cost-minimal.

We implemented this procedure prototypically in Tara2. For other cost models,
we do not have a solution yet.

6 Related work

Seguel et al. [8] study the problem to create minimal adapters to resolve deadlock
between services. Thereby, minimality is defined w.r.t. to the number of messages
considered. The resulting adapter resolves deadlocks and is minimal w.r.t. mes-
sages. We study the more general criterion of weak termination. We showed that
the minimal adapter is not necessarily cost-minimal. We reduced the synthesis
of a cost-minimal adapter to the synthesis of a cost-minimal partner. Zeng et
al. [13] use integer programming to find an optimal composite service. That is,
an optimal composition of atomic tasks each implemented by a web service. The
services do not communicate based on its state, whereas we consider stateful
services. De Paoli et al. [4] propose a similar approach for WS-BPEL [1] processes.
Both approaches work on well-structured services, whereas we support arbitrary
services. The CLAM framework, introduced by Zengin et al. [14], combines sev-
eral adaptation approaches of different layers in one tool to cope with different
concerns. It remains open how our approach fits into such a framework. In [9],
we presented our results utilizing the partner synthesis by Wolf [11] as a basis.
Instead, one could build our approach on top on other synthesis approaches, for
instance [7].

7 Conclusion

In this paper, we described the problem of cost-minimal adaptation. We suggested
a framework to express preference between different adapters based on cost models
and cost functions. We discussed two cost models: Worst-case total costs, and
worst-case average costs. We sketched the synthesis procedure for worst-case
total costs.

We stucture our intended future work as follows: (1) Identification and
classification of further cost models, (2) solving partner and thus adapter synthesis
for other cost models than T , (3) evaluating the complete approach. For (1) we
2 Tara is available at http://service-technology.org/tara [Last accessed on 2012-14-02]

16 Jan Sürmeli

plan to further investigate the literature on formalisms which cope with costs
in general, for instance, weighted automata. Additionally, we plan to consider
results from decision theory. To tackle (2), we will start to develop an algorithm
which decides whether one adapter is to be prefered over an other. Then, we
extend this result to synthesis of a partner. Part (3) could be realized by a case
study with our prototype on real world services.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
OASIS Standard, 11 April 2007, OASIS (Apr 2007)

2. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.
IEEE Transactions on Services Computing 99(PrePrints) (2010)

3. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In:
PETRI NETS 2010. pp. 297–307. LNCS 6128, Springer (2010), tool available at
http://service-technology.org/wendy [Last accessed on 2012-14-02].

4. Paoli, F.D., Lulli, G., Maurino, A.: Design of quality-based composite web services.
In: ICSOC. pp. 153–164 (2006)

5. Papazoglou, M.: What’s in a service? In: Oquendo, F. (ed.) Software Architec-
ture, Lecture Notes in Computer Science, vol. 4758, pp. 11–28. Springer Berlin /
Heidelberg (2007)

6. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (Jul 2007)

7. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated synthesis of composite
bpel4ws web services. In: Proceedings of the IEEE International Conference on
Web Services. pp. 293–301. ICWS ’05, IEEE Computer Society, Washington, DC,
USA (2005)

8. Seguel, R., Eshuis, R., Grefen, P.: Constructing minimal protocol adaptors for
service composition. In: Proceedings of the 4th Workshop on Emerging Web Services
Technology. pp. 29–38. WEWST ’09, ACM, New York, NY, USA (2009)

9. Sürmeli, J.: Synthesizing cost-minimal partners for services. Informatik-Berichte 239,
Humboldt-Universität zu Berlin (2012), http://u.hu-berlin.de/suermeli-techreport,
[Last accessed on 2012-14-02], in publication queue

10. Van Der Aalst, W.M.P.: The application of petri nets to workflow management.
The Journal of Circuits Systems and Computers 8(1), 21–66 (1998)

11. Wolf, K.: Does my service have partners? LNCS ToPNoC 5460(II), 152–171 (Mar
2009), special Issue on Concurrency in Process-Aware Information Systems

12. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19, 292–333 (March 1997)

13. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for web services composition. IEEE Trans. Software Eng.
30(5), 311–327 (2004)

14. Zengin, A., Marconi, A., Pistore, M.: Clam: cross-layer adaptation manager for
service-based applications. In: Proceedings of the International Workshop on Quality
Assurance for Service-Based Applications. pp. 21–27. QASBA ’11, ACM, New York,
NY, USA (2011)

Partner Synthesis for Data-Dependent Services

Christoph Wagner

Institut für Informatik, Humboldt Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

cwagner@informatik.hu-berlin.de

Abstract. A service is controllable, if there exists a service with which
it can interact properly. We sketch an approach to decide controllability
for a certain class of services. Controllability is decided by synthesizing
a service that controls the given service. For a class of services which
abstracts from data, the synthesis problem is already solved. In this
paper, we present an approach for a class of services that deals with data
explicitly.

1 Introduction

A service is designed with the goal that it can interact with another service. A
service may interact properly with one service but not interact properly with an
other service. For example, two services may end up blocking each other, making
any further interaction impossible. The possibility of the occurrence of an error
depends on both interacting services and in general can not be attributed to one
service alone. However, at the time of design of a service, the other services the
service will be interacting with typically are not known in advance. Nevertheless,
we can check a fundamental property called controllability [7] when considering
one service in isolation. A service is called controllable, if there is a least one
other service it can interact with properly. Controllability can be decided by
synthesizing a service that interacts with the given service properly.

The synthesis problem is solved for the finite automaton based service model
used in [3,7]. This service model abstracts from data, i. e. messages are not
distinguished by their content. For a more realistic model which takes data into
account, the synthesis problem is still open. The goal of our work is to solve the
synthesis problem for a service model that includes data.

In Sect. 2, we introduce the concept of a partner of a service. Section 3
presents an approach to synthesize a partner for a High-Level Petri net based
service model. Section 4 concludes our work.

2 Partners

We represent a service by an open net [3] (Fig. 1). An open net is a Petri net with
distinguished interface places that represent channels for asynchronous message
exchange. We use High-Level Petri nets [2] so that data can be represented by
coloured tokens.

18 Christoph Wagner

start

wait

final

o

d

order
pn(e)

•

e

use equip-
ment

e′
e

•

[e = e′]

(a) medic

start’

order

final’

o

d

receive
order

n
•

n

deliver
equipment

pn−1(n)
n

•

(b) supply center

start’

order

final’

o

d

receive
order

n
•

n

deliver
equipment

e

n

•

(c) supply center 2

Fig. 1: Some open nets

The following example illustrates the interaction of a medic with a medical
supply center from which the medic orders medical equipment. Both the medic
and the supply center are services represented by the open nets in Fig. 1a and
Fig. 1b. The composition (medic⊕supply center) of the open nets medic and supply
center is the Petri net we obtain by fusing the interface places o and d. The medic
orders medical equipment by firing the transition order. Thereby the token • is
removed from place start. The variable e is assigned the equipment the medic
orders, e. g., a syringe. Therefore, a token with value syringe is produced on place
wait. The term pn(e) evaluates to the product number of the syringe. A token
with that value is produced on the output place o. This corresponds to sending a
message to supply center.

The medic waits for an incoming delivery on place d. supply center receives
the order message from o by firing receive order and n is assigned the product
number of syringe. The transition deliver equipment takes the product number
from place order and produces the equipment corresponding to that number (in
this case syringe) on interface place d. Since the tokens on wait and d are equal,
the guard e = e′ of transition use equipment is fulfilled. Therefore use equipment
can fire and (medic⊕supply center) reaches its final marking, i. e. the marking in
which both places final and final’ are marked with the token •.

Two open nets N1 and N2 are called partners, if from each reachable marking
of N1⊕N2 a final marking of N1⊕N2 is reachable. The medic and supply center are
partners. The medic and supply center 2 are not partners: When deliver equipment
fires, any arbitrary equipment may be assigned to e which in general does not
correspond to the product number assigned to n. Therefore, there is a marking
reachable in (medic⊕supply center) with a token with value syringe on wait and
a token with another value (e. g. stethoscope) on d. This marking is a deadlock,
because e = e′ is not satisfied and use equipment can not fire. On acyclic open
nets, the reachability of a final marking is equivalent to deadlock freedom.

Partner Synthesis for Data-Dependent Services 19

An open net N1 is called controllable, if it has a least one partner. medic is
controllable. In this example, we assumed that function pn has an inverse pn−1.
However, if we replace pn by a function pn′ which is not bijective, medic becomes
uncontrollable. In that case, a supply center can not infer the equipment the
medic is waiting for from the product number. Therefore, it is not possible to
guarantee that e = e′ is always satisfied and the final marking will be reached.

In the next section, we sketch an approach to synthesize a partner for a
specific class of open nets.

3 Partner Synthesis

In this section, we sketch a partner synthesis algorithm for a given open net
N . We consider a class of Petri nets where the domain of the variables and the
colours of the tokens is infinitely large. The guards are denoted in a subset of
first order logic that contains boolean algebra and quantifiers. For computational
reasons, we assume that this subset is decidable (like e. g. Presbuger arithmetic
[5]). We also assume that N is acyclic and the number of tokens on each place
is at most one. Therefore, the length of each path in the state space of N is
bounded by some number k.

Due to infinitely many colours, the state space of N is infinitely large. There-
fore the synthesis algorithm for finite state services given in [7] can not be applied
to our service model. Nevertheless, conceptually, our synthesis algorithm follows
a similar approach. Therefore, we briefly outline the approach used for finite
state services: First, an over-approximation of the partner of N that will be
synthesized, i. e., a service that is guaranteed to contain a partner as a sub-
graph, is generated. Then certain states are removed from the over-approximation
iteratively. The iteration is repeated as long as the composition of the given
service and the over-approximation contains a deadlock. Eventually, two cases
may occur: 1. The composition is deadlock-free. Then the remaining sub-graph
of the over-approximation is a partner. 2. Every state has been removed. Then
N is not controllable.

Now we give an overview of our synthesis algorithm. The details will be
explained later by example. First, we construct an over-approximation S0 of the
partners of N . S0 is a prefix of depth k of an infinite tree-like open net U we call
universal environment. Then we iteratively add guards to S0. Adding a guard
corresponds to removing states from the over-approximation in the finite case.
The iteration is repeated until no deadlock is reachable in the composition of N
and S0. Each time a guard is added, some of the deadlocks of the composition
become unreachable. Each iteration step may also introduce new deadlocks which
will then be eliminated in the next iteration step. If (and only if) N is controllable,
the composition will eventually be deadlock free and the modified S0 is a partner.

Now we show the derivation of a partner of medic from Fig. 1a. We assume
that the colours of medic are integers and pn is the bijective function with
pn(x) = x + 1. Therefore, medic can be expressed with Presburger arithmetic.

20 Christoph Wagner

o

d

d

o

o

x0

•

x0

x1
x0

(x0, x1) x1

x0

(x0, x1)

x0

•

x0

x1

x0

(x0, x1)

x1

x0

(x0, x1)

x2

(x0, x1)

(x0, x1, x2)

(a) Universal environment U

o

d

d

o

q0

q1

q2

q3

q4

s0
x0

•

x0

s1
x1

x0

(x0, x1)

s2
x0

•

x0

s3
x1

x0

(x0, x1)

(b) Finite prefix S0 of U

Fig. 2: Universal environment and its prefix. Interface places o and d are depicted
multiple times to improve readability.

Fig. 2a shows the universal environment of medic. U is an infinite open net
that has the inverse interface of N . U has a regular tree-like structure and can
send and receive any (possibly infinite) sequence of messages. Therefore, U is
an over-approximation of every partner of N . U stores every message sent or
received from N . Each of the variables x0, x1, . . . corresponds to the value of a
message. These variables will be used in the guards which we will add later on.
Since U is infinitely large, it is not suited for computational methods. Due to the
acyclicity of N , the number of messages N can send and receive is bounded by a
number k. Therefore, the prefix of U of depth k is still an over-approximation of
the partners of N .

In the example, k is 2. In this particular case, we can even remove the branches
of U which send or receive two messages on the same interface place without
destroying the over-approximation property. This is possible because medic sends
or receives at most one message on each interface place. Thus, we get the prefix
S0 of U in Fig. 2b.

Now we iteratively derive a guard for each transition of S0. The transitions
are processed in bottom-up order. Thereby, we obtain a sequence S0, S1, S2, . . .
of open nets with successively smaller reachability graphs.

Intuitively, a guard forbids a transition s of S0 to fire in a certain firing mode
if there is the possibility to reach a deadlock after s has fired in that mode. That
way, deadlocks are successively removed from the composition.

Since a transition has infinitely many firing modes, we need a syntactical
representation of all firing modes that may not lead to a deadlock. We derive the
guard predicate that is assigned to each transition using a technique outlined in
[6]. The technique is based on the symbolic reachability graph (SRG) of a High-
Level Petri net. The symbolic reachability graph is a compact representation of
the reachability graph that allows to represent a possibly infinite set of markings
by a symbolic marking. Fig. 3 shows the SRG of the composition medic⊕ S0. In
a symbolic marking M , every value is represented by a term. Attached to M is a

Partner Synthesis for Data-Dependent Services 21

M0 = [start.•, q0.•]

M1 = [wait.v0, q0.•, o.pn(v0)]

order〈e = v0〉

M2 = [wait.v0, q1.pn(v0)]

s0〈x0 = pn(v0)〉

M3 = [wait.v0, q2.(pn(v0), v1), d.v1]

s1〈x0 = pn(v0), x1 = v1〉

M4 = [final.•, q2.(pn(v0), v1), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

M8 = [start.•, q3.v1, d.v1]

s2〈x0 = v1〉

M5 = [wait.v0, q3.v1, o.pn(v0), d.v1]

s2〈x0 = v1〉
order〈e = v0〉

M6 = [wait.v0, q4.(v1, pn(v0)), d.v1]

s3〈x0 = v1, x1 = pn(v0)〉

M7 = [final.•, q4.(v1, pn(v0)), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

Fig. 3: Symbolic reachability graph of medic⊕ S0

condition COND(M) which restricts the set of valid assignments to the variables
that occur in M . A marking m is reachable if and only if there is a symbolic
marking M that evaluates to m for an assignment that satisfies COND(M).
Technically, during the construction of the SRG, COND(M) is formed by the
conjunction of the effects of every guard on a path to M . Each edge of the SRG
is inscribed by a transition t and a symbolic firing mode. A symbolic firing mode
of t assigns a term to each variable of t.

In our example, the integer that is chosen non-deterministically by order for
e is represented by the variable v0 in marking M1. Analogously, the integer sent
by s1 on d is represented by v1. The effect of the guard e = e′ of use equipment
is represented by the condition v0 = v1 of the markings M4 and M7. Every other
symbolic marking has the condition true.

The method we use to derive the guard of a transition s of S0 is inspired
by Dijkstra’s predicate transformer semantics [1]. The guard predicate can be
regarded as the weakest pre-condition so that after firing of the transition s a
specific post-condition holds. Here, the post-condition describes the assignments
for which no subsequent symbolic marking evaluates to a deadlock. For each
symbolic marking M we define a predicate DF(M) that describes for which
assignments of the variables v0, v1, . . . of the SRG M does not evaluate to a
deadlock. DF(M) is formed by the disjunction of the conditions of the successors
of M . The SRG and the DF predicates are recalculated in each iteration step.
We denote the iteration step by a subscript.

M4 and M7 are final markings. Therefore, DF0(M4) ≡ DF0(M7) ≡ true.
Since M3 has a successor marking only for those assignments of v0 and v1 with
v0 = v1, we get DF0(M3) ≡ v0 = v1. Analogously, DF0(M6) ≡ v0 = v1. For
every other symbolic marking M we get DF0(M) ≡ true.

From every predicate DF(M), we derive a predicate DF ′(M) which expresses
the condition that M does not evaluate to a deadlock in terms of the variables
used by the transition s of S0 that precedes M in the SRG (s is unique because S0
is a tree). By assigning DF(M) as a guard to s, every evaluation of M which is a
deadlock becomes unreachable. The relationship between the variables x0, x1, . . .

22 Christoph Wagner

of S0 and the variables v0, v1, . . . of the SRG is established by the the symbolic
firing mode of s.

In the example, M3 is reachable via exactly one path of the SRG. The last
transition of S0 on this path is s1 with the symbolic firing mode 〈x0 = pn(v0), x1 =
v1〉. As stated above, DF0(M3) ≡ v0 = v1. With x0 = pn(v0), x1 = v1 and the
assumption that pn is injective follows that v0 = v1 is equivalent to pn−1(x0) = x1.
Formally, we express this transformation by universal quantification of v0, v1:

DF ′0(M3) ≡ ∀v0, v1 : x0 = pn(v0) ∧ x1 = v1 =⇒ v0 = v1

≡ x1 = pn−1(x0)

In words: DF ′0(M3) describes all assignments of x0, x1 for which the post-condition
v0 = v1 is guaranteed to hold after the firing of s1 in mode 〈x0 = pn(v0), x1 = v1〉,
regardless of which integers might have been non-deterministically chosen for
v0, v1.

The general form of a DF ′ predicate (for the special case that there is only
one path in the SRG to M) is

∀v0, . . . , vj : COND(M) ∧ x0 = T0 ∧ . . . xn = Tn =⇒ DF(M)

where 〈x0 = T0, . . . , xn = Tn〉 is the symbolic firing mode of the last transition s
of S0 on the path to M .

For M4, we obtain DF ′(M4) ≡ true. We add the conjunction DF ′(M3) ∧
DF ′(M4) as a guard to the transition s1 that precedes both M3 and M4 in the
SRG. After adding this guard x1 = pn−1(x0) to s1, every deadlock in which q2
is marked becomes unreachable.

We repeat this procedure for s3. M6 is reachable via two paths of the SRG
(which differ only insignificantly). The last transition of S0 on both paths is s3
with firing mode 〈x0 = v1, x1 = pn(v0)〉. Analogously, we get

DF ′0(M6) ≡ ∀v0, v1 : x0 = v1 ∧ x1 = pn(v0) =⇒ v0 = v1

≡ x1 = pn(x0)

In a more general case, we may get a different predicate for each path on which
a marking M is reachable. Then DF ′(M) is the conjunction of these predicates.
With DF ′0(M7) ≡ true we get the conjunction DF ′0(M6) ∧ DF ′0(M7) ≡ x1 =
pn(x0). After assigning x1 = pn(x0) to s3 as a guard, no deadlock is reachable in
which q4 is marked.

Let S1 be the open net derived from S0 by adding the two guards to s1 and
s3. These guards introduce new deadlocks in which q2 and q4 are not marked, e. g.
[wait.0, q3.3, o.1, d.3] is a deadlock in medic⊕S1 but not a deadlock of medic⊕S0.
These new deadlocks will become unreachable in the next iteration step. In the
SRG of medic ⊕ S1 (Fig. 4), M3 has the condition v0 = v1 and M6 has the
condition pn(v0) = pn(v1) due to the guards that were added. Therefore we
obtain the predicates

DF ′1(M2) ≡ ∀v0 : x0 = pn(v0) =⇒ ∃v1 : v0 = v1 ≡ true
DF ′1(M5) ≡ ∀v0, v1 : x0 = v1 =⇒ pn(v0) = pn(v1) ≡ false

Partner Synthesis for Data-Dependent Services 23

M0 = [start.•, q0.•]

M1 = [wait.v0, q0.•, o.pn(v0)]

order〈e = v0〉

M2 = [wait.v0, q1.pn(v0)]

s0〈x0 = pn(v0)〉

M3 = [wait.v0, q2.(pn(v0), v1), d.v1, v1 = v0]

s1〈x0 = pn(v0), x1 = v1〉

M4 = [final.•, q2.(pn(v0), v1), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

M8 = [start.•, q3.v1, d.v1]

s2〈x0 = v1〉

M5 = [wait.v0, q3.v1, o.pn(v0), d.v1]

s2〈x0 = v1〉
order〈e = v0〉

M6 = [wait.v0, q4.(v1, pn(v0)), d.v1, pn(v0) = pn(v1)]

s3〈x0 = v1, x1 = pn(v0)〉

M7 = [final.•, q4.(v1, pn(v0)), v0 = v1 ∧ pn(v0) = pn(v1)]

use eq.〈e = v0, e
′ = v1〉

Fig. 4: Symbolic reachability graph of medic⊕ S1.

Variable v1 is existentially quantified, because v1 is not yet defined in M2 but
will be created and chosen appropriately by s1 in the step from M2 to M3. Please
note that existential quantifiers may only appear as a part of a DF ′ predicate.

o

d

d

o

q0

q1

q2

q3

q4

s0
x0

•

x0

[true]

s1
x1

x0

(x0, x1)

[x1 = pn−1(x0)]

s2
x0

•

x0

[false]

s3
x1

x0

(x0, x1)

[x1 = pn(x0)]

(a) S2

M0 = [start.•, q0.•]

M1 = [wait.v0, q0.•, o.pn(v0)]

order〈e = v0〉

M2 = [wait.v0, q1.pn(v0)]

s0〈x0 = pn(v0)〉

M3 = [wait.v0, q2.(pn(v0), v1), d.v1, v1 = v0]

s1〈x0 = pn(v0), x1 = v1〉

M4 = [final.•, q2.(pn(v0), v1), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

(b) SRG of medic ⊕ S2

Fig. 5: Last iteration step of the partner synthesis

Eventually, by assigning the predicate DF ′1(M2) ≡ true to s0 and DF ′1(M5) ≡
false to s2, we obtain the open net S2 shown in Fig. 5a. By repeating our
calculation on the SRG of medic ⊕ S2 (Fig.5b), we obtain DF2(M0) ≡ true.
This indicates that no reachable marking in which q0 is marked is a deadlock.
Therefore, every deadlock has been eliminated from medic⊕S2 and S2 is a partner
of medic by definition. Please note that S2 is very similar to N2 from Fig. 1b.
In general, the last open net Si of the sequence is a partner of N iff for every
symbolic marking M in which the root place q0 is marked the predicate DF i(M)
is fulfilled for every assignment that fulfils CONDi(M).

24 Christoph Wagner

4 Conclusion

We sketched an algorithm to synthesize a partner of a service represented by a
High-Level Petri net. Currently, our approach is limited to acyclic services. We
show a systematic approach to derive the relations between the values of incoming
and outgoing messages that a service has to adhere to in order to be a partner
of the given service. Since relations are denoted in first-order logic which is
undecidable in the general case, we rely on an oracle to decide controllability. For
a decidable theory like presburger arithmetic [5], controllability can be effectively
computed. The technical details of the approach are not yet fully worked out.

Lohmann et al. [4] sketch a different approach to synthesize a partner for
a High-Level Petri net based service. They use a symbolic representation for
markings similar to ours. Their work focuses on the construction of the structure
of the partner and only briefly discusses the derivation of the predicates. They
give an ad-hoc explanation of the construction of the predicates for a particular
example but do not describe a general derivation method. In particular, values
that are non-deterministically chosen by the service are not treated.

In contrast to their approach, our approach does not consider structural
aspects of the partner synthesis at all. All information concerning the behaviour
of the partner is encoded by the guards. The structure of the partner is cho-
sen in a generic way. However, our approach can handle values that are non-
deterministically chosen by the service.

In our future work we aim at extending our approach to cyclic services. In this
scenario it may be advantageous to chose a specific structure for the synthesized
partner. E. g. case distinctions for specific values should result in a distinct node
for each case. With a structure reflecting the behaviour of the service, it will be
easier to identify isomorphic branches of the structure and nodes that can be
combined without changing the behaviour. In order to ensure termination of the
synthesis algorithm in the cyclic case, it is necessary to guarantee that there will
be only finitely many nodes after the nodes have been combined.

References
1. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Inc. (October 1976)
2. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of

Concurrent Systems. Springer (2009)
3. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.

In: ICATPN 2007, Siedlce, Poland, June 25-29, 2007, Proceedings. Lecture Notes in
Computer Science, vol. 4546, pp. 321–341. Springer-Verlag (2007)

4. Lohmann, N., Wolf, K.: Data under control. In: AWPN 2011 (Sep 2011)
5. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes
Rendus du Premier Congrès des Mathématicienes des Pays Slaves. Warsaw (1929)

6. Wagner, C.: A data-centric approach to deadlock elimination in business processes.
In: ZEUS 2011, Karlsruhe, Germany. CEUR-WS.org (2011)

7. Wolf, K.: Does my service have partners? LNCS ToPNoC 5460(II), 152–171 (Mar
2009), special Issue on Concurrency in Process-Aware Information Systems

HarmonICS - a Tool for Composing Medical Services ?

Dariusz Doliwa1, Wojciech Horzelski1, Mariusz Jarocki1, Artur Niewiadomski2,
Wojciech Penczek2,3, Agata Półrola1, and Jarosław Skaruz2

1 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
{doliwa,horzel,jarocki,polrola}@math.uni.lodz.pl

2 Siedlce University of Natural Sciences and Humanities, ICS,
3-go Maja 54, 08-110 Siedlce, Poland

{artur,jskaruz}@ii.uph.edu.pl
3 Institute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, Poland

penczek@ipipan.waw.pl

Abstract. The paper presents the tool HarmonICS designed for automated com-
position of medical services and implementing our approach to description and
composition of web services. HarmonICS enables arranging sequences of services
to satisfy a user’s request specified by a query. The query language is rich enough
to express requirements on the timing and the ordering of services used.

1 Introduction and Related Work

We present a new tool for automated composition of web services (WS) related to the
medical domain. The tool implements our original approach [7] to WS composition,
based on introducing a uniform semantic description of services, an object model for
the problem, and applying a multi-phase composition supported by model checking
methods. The planning process aims at satisfying a user’s goal, specified in a declar-
ative language, which enables not only to express features of the objects, but also re-
quirements on the timing and ordering of services occurring in the plan.

The WS composition problem is a very important subject of research for which
many various solutions exist. The simplest ones are based on explicit state space search
algorithms [16], while more advanced ones employ a graph-based planning [5], logic
programming [14], an AI planning [13, 11], model checking methods [10, 12], and ge-
netic algorithms [3]. Vitvar et al. [17] proposed a solution based on WSMO/WSML
[15] formalisms. While the fundamental ideas of their concepts seem similar to ours, it
is important to mention that our approach is simpler and thus much easier to implement.

Our considerations follow that of Ambroszkiewicz [1], which provides a specifi-
cation of an automatic composition system based on a multi-phase composition and
uniform semantic descriptions of services. However, several extensions like enriched
descriptions of services or a hierarchic organisation of services and objects they operate
on, have been additionally designed. Doing all that, we keep the semantic base as sim-
ple as possible, which aims at enabling a translation of the WS composition problem to
a problem solvable by means of eficient methods and tools from other domains.

? Partly supported by National Science Centre under the grant No. 2011/01/B/ST6/01477.

26 Dariusz Doliwa et al.

The first “general” implementation of our approach (system PlanICS) was described
by Doliwa et al. [8]. The tool HarmonICS to be presented here is, on one hand, an exten-
sion of PlanICS due to incorporating new theoretical solutions, while on the other hand
it is its specialization to a particular domain. In addition to the SAT-based planning
method inherited from PlanICS, HarmonICS offers also a new specialized SMT-based so-
lution. The SMT-based concrete planner has been developed in response to insufficient
performance of the previous solution in some particular cases. The bottleneck was a
translation of TADDPA1 to SAT in the presence of a large number of conditions im-
posed on the variables, especially these "expensive" ones, e.g., using modulo operator.

In addition to introducing the SMT-based planner, our contribution consists in de-
veloping several extensions of the underlying formalisms, which are discussed in the
next section together with the theoretical background of our approach. The rest of the
paper is organizes as follows. Sec. 3 introduces the main features of our solution, and
gives an overview of the system implementation. Finally, a summary and a comparison
between HarmonICS and PlanICS are provided in Sec. 4.

2 Theory behind HarmonICS

Our approach to automated composition of WSs is based on introducing a unified se-
mantics for functionalities offered by services. A service is understood as a function
which transforms a set of data into another set of data. The sets of data, i.e., inputs
and outputs of services, are described in terms taken from a “dictionary” of types, in-
troduced by an appropriate ontology. Each ontology follows the standard object model
with classes, objects as their instantiations, and attributes as their components. More
precisely, both the services and the items they operate on are organised into a multiple
inheritance hierarchy of types, the top of which is composed of the following classes:
Thing of no attributes and its descendants: Object, Service, and Trace.

Below we explain the meaning of the branches rooted at the three descendant classes
of Thing mentioned above. An example fragment of the ontology tree is presented in
Fig. 1, where the solid arrows stand for the inheritance relation. We embed our expla-
nation in the context of medical services considered in the paper. Therefore, we use the
names from Fig. 1 as examples, but, in fact, all the nodes below Object, Service, and
Trace are domain-dependent, and even for a “fixed” domain they can vary depending
on the modelling assumed.

The branch of classes rooted at Object introduces “types of beings”, Patient, Di-
agnosis, Therapy, that are necessary to specify what the services operate on, together
with the “features” of these beings expressed by their attributes. For example the class
Patient has the attributes First_name, Last_name, Address, Date_of_Birth, Diagnosis
etc. having a clear intuitive meaning.

The branch of classes rooted at Service introduces types of services - Visit, Treat-
ment, Registration. The attributes of the class Service, inherited by all its descendants,
are as follows : in, out, inout, preCondition, and postCondition. The first three of them
are aimed at listing objects (classified by names and types, similarly to subprogam pa-
rameters) which, respectively, are required to execute the service (in), are produced by

1 Timed Automata with Discrete Data and Parametric Assignments

HarmonICS - a Tool for Composing Medical Services 27

Fig. 1. A fragment of the ontology used by HarmonICS

the service (out), and are taken as an input and returned modified (inout). The aim of
preCondition and postCondition is to specify respectively the conditions which should
be satisfied by the “input” objects to have the service started and the conditions the “out-
put” object satisfy after the service has been executed. For example we can express that
the services of the type Visit modify an instance of Patient by placing p:Patient in the
inout list, and require a visit to result in a diagnosis by placing isSet(p.Diagnosis) in the
postCondition. The values of the attributes common for all the services of a given type
are specified in a special instance of the corresponding class, called an abstract service.
The concrete services of a given type (instances of the class representing this type) can
introduce their own extensions to the attributes above. For example, the concrete service
GeriatricianSmith of type GeriatricianVisit can require his patients to be older than 85
by extending the common preCondition by p.Date_of_Birth < "1927-12-31"). A more
detailed description of the above elements of ontologies can be found in [7].

A new concept introduced to HarmonICS is shown as the third branch (from the left)
of the inheritance tree in Fig. 1, i.e., the class Trace and its descendants. The instances
of the above classes, called Traces, are “virtual products” (not corresponding to real-
world beings). The out list of each service contains exactly one element corresponding
to a trace, e.g. t:Trace. The main motivation behind Traces is a need for dealing with
imperative queries, when the user precisely points out to the types of services to be exe-
cuted, just like in most of the considered medical scenarios. Moreover, Traces enable to
associate the services types (and also their concrete instances) with attributes like price,
duration, location or quality, without affecting the existing structure of the language.

The attributes of the class Trace are the following: level, block, serviceType, and
serviceName. The first two of them aim at storing an information about a position
of the service in the scenario generated, while the next two are used to identify the
service executed. For example, if the service GeriatricianSmith is the first of the sce-
nario, then the attributes of the trace t produced by this service are t.level=0, t.block=0,
t.serviceType="GeriatricianVisit", and t.ServiceName="GeriatricianSmith".

Traces enable to express certain requirements on sequences of services, both on
the level of service descriptions and while specifying users goals. For example, Sur-
geonVisit can require seeing a general practicioner earlier by including x:Trace in its in
and x.ServiceType="GPVisit" in its preCondition. The descendants of Trace can intro-

28 Dariusz Doliwa et al.

duce additional information. For example, a class TimedTrace with the attributes start
and stop brings in time of the service execution. PriceTrace with the attribute price
provides information about the service price, while LocationTrace with the attribute
location introduces the information about the place where the service operates.

The user specifies its goal in the form of a user query, which defines what he “pos-
seses” (the initial world) and what he “wants to posses” (the effect world), together
with these of their features that are of his interest, using names of the classes from
the branch rooted at Object and names of their attributes to this aim. For example,
the user John Gold can specify that possessing “nothing”, he wants to possess the ob-
ject p:Patient with p.First_name="John" and p.Last_name="Gold", which means that
he wants to become a patient. The goals can be also specified in terms of traces (i.e.,
names of the classes from the branch rooted at Trace). This enables to express that the
user wants the scenario generated to contain a service ofcertain type (e.g., by specifying
that the effect world should contain t1:Trace such that t1.ServiceType="SurgeonVisit")
or a service of a concrete provider (e.g., by extending the above requirement by adding
t1.ServiceName="SurgeonSmith"). Traces enable also to require a given ordering of ser-
vices in a plan (by the use of the level attributes), or a given ordering of groups of servces
(by the use of the attribute block) - for example, one can require the effect world to con-
tain t1,t2:Trace such that t1.ServiceType="GPVisit", t2.ServiceType="SurgeonVisit" and
t2.level<t1.level, i.e., to see a GP after seeing a surgeon. Using other types of traces en-
ables to influence the cost of services proposed, their time, location etc.

Our project follows the idea of separating two phases of the planning process. The
first phase of searching for a sequence of services whose execution satisfies the user’s
goal is called the abstract planning. It involves searching for sequences of types of ser-
vices, which can transform the set of objects of the initial world into the set of objects
of the effect world. The user’s query is redefined to discard all the expressions involving
concrete values of the attributes. For example, p.Last_name="Gold" is replaced by the
requirement that the corresponding attribute is assigned a value - isSet(p.Last_name).
The abstract planning process is based on the bounded backward search algorithm,
which starts from the final world and matches abstract services (special instances of
service classes described before), which are capable to produce a desired set of objects
(with the appropriate attributes set), building this way a graph whose nodes are sets
of objects, and the edges are labelled with service types. This “preliminary” phase en-
ables to limit the number of concrete (real-world) services considered while creating
the final scenario as only these of appropriate types will be taken into account. Obvi-
ously, in the case of queries involving traces the role of the abstract planning phase is
limited. The user can specify fragments of the abstract plan “by hand”, using the appro-
priate attributes of traces. The next phase of the planning process, called the concrete
planning, aims at finding a sequence of instances of service types (concrete services)
corresponding to an abstract plan obtained from the previous phase. Contrary to the ab-
stract planning, this phase takes into account all the requirements specified in the query,
i.e., also these involving concrete values of attributes. The planning process exploits an
SMT-based model checking procedure, which is discussed in the next section.

HarmonICS - a Tool for Composing Medical Services 29

3 Main Features and Implementation of HarmonICS

HarmonICS is a scheduling system that has been implemented for the Rehabilitation
and Cosmetology Centre (CRiK) in Poland. The centre offers various types of medical
services for its direct clients as well as for other medical facilities. The definitions of
needs and possibilities of satisfying them are specified by a relatively complicated se-
mantics. Additionally, availability of certain resources in many cases can be determined
only dynamically, by querying external independent data sources. Before implement-
ing HarmonICS, due to the lack of IT solutions, the querying process was performed
in an “unformalised” way, i.e., by phone or by e-mails. The knowledge obtained this
way could not be processed automatically. The most important conclusions from the
analysis of the functioning of CRiK, and from the users’ expectations are as follows:

– The main goal of the system is to make the scheduling of treatments easier and
more convenient, and also to automate some internal procedures,

– The most common case is to schedule a series of treatments w.r.t. patient prefer-
ences and resources restrictions,

– The single steps of the whole process can be realized by various service providers
cooperating with CRiK,

– Some aspects of the abstract and concrete planning processes should be signifi-
cantly adapted to meet the specific CRiK requirements.

The implementation of HarmonICS, presented in the next part of this section, was de-
signed to satisfy the above requirements.

The overall view of the HarmonICS components is presented in Fig. 2. The ontology
designed for CRiK was discussed in Sec. 2. The main software components of the sys-
tem are as follows: the Repository, the Graphical User Interface (GUI), and the Planner.
The aim of the Repository is to store information about the available services and their
types (according to the ontology). Currently, it is implemented on the top of jUDDI -
a popular UDDI implementation. GUI is a GWT web application that enables the user

Fig. 2. The HarmonICS overview

30 Dariusz Doliwa et al.

Fig. 3. On the left: the query editor, on the right: a fragment of a concrete plan

interaction with the system components. The Planner is a set of tools (represented by
rectangles in the figure) for processing user queries (Query parser), creating plans (Ab-
stract and Concrete planners), and interacting with the repository and with the web
services (Querying and Execution modules). The rectangles with the right-bottom cor-
ner wrapped depicted in the figure correspond to the internal system objects. They are
labels of the solid arrows which stand for a flow of objects. The dashed lines represent
making use of some resource by a software component.

Let us now follow an example scenario, while giving more details concerning the
implementation of individual components. First, using the Query editor (see Fig. 2 and
Fig. 3), the user introduces a request, e.g., I want to take a partial massage, once a week,
for 10 weeks, and then a series of 5 diadynamics, every 2 days. The user drags arbitrary
services from the ontology tree at the right hand side and drops them to blocks of a plan
at the left. The blocks are intended to enforce the order of an execution of the services.
Each block of services is scheduled for execution when all of the services from the pre-
vious block have been completed. Putting some services in the same block means that
they can be executed in an arbitrary order. Each of the services choosen can be parame-
terized by assigning a set of constraints, e.g., repeat conditions or specific requirements
on the service date, time or location. The user should also specify an acceptable timing
interval, providing the earliest start date and the latest end date of the whole sequence
of services. The editor enables to hide the query language from the user offering a
friendly and intuitive interface instead. The query of a formal syntax is produced in
an automated way. For example, considering time interval from January, the 1st to the
end of March of the current year, the formal query is as follows: FROM null WHERE
null TO repeat(t0:TreatmentTrace, 10, every 1 weeks), repeat(t1:TreatmentTrace, 5, ev-
ery 2 days) WHERE _globalStart=“2012-01-01 00:00” and _globalStop=“2012-03-31
23:59” and t0.serviceType = “PartialMassage” and t0.block = 0 and t1.serviceType =
“Diadynamics” and t1.block = 1. As it is easy to see, the requirements on the service
types and their ordering are expressed in terms of traces.

It should be mentioned also that the repeat statement is one of the novelties (com-
paring with [7, 8]) introduced to respond to the specificity of the domain, where the
common case is to repeat some kind of treatment a number of times. Optionally, the
repeat period can be given, just like in the example above. This construct makes editing
of the query easier, as the user does not need to choose a service several times if he
wants to repeat it. The user query is then processed by the Query parser, transformed to

HarmonICS - a Tool for Composing Medical Services 31

the internal representation, and made available to the Abstract planner and the Concrete
planner (see Fig. 2).

The Abstract planner uses the knowledge from the OWL ontology and the query
(rebuilt by discarding the concrete values as described before) for generating abstract
plans, which are visualized and presented as sequences of service types. The user is
asked to choose one of them to be concretized. Due to the fact that specificity of the
area implies the queries to have a more imperative nature than in a typical case (the
users typically enumerate directly the services they want to use) the role of the abstract
planning is not so fundamental. However, using the knowledge from the ontology can
introduce to the plan services not required directly by the user. In our example, the
abstract planner returns the sequence of service types: Registration, 10 occurences of
PartialMassage, and 5 occurences of Diadynamics. The Registration service, although
not required directly by the user, is necessary in the plan as it “produces” a Patient,
required by all the treatment services but not existing in the initial world.

Next, basing on the abstract plan and the user query, the Repo & WS querying mod-
ule (RQM for short) examines the repository for the registered web services realising
the types of services from the abstract plan. In our example the repository will be asked:
“Give addresses of all the services of the type PartialMassage, and of the type Diady-
namics”. After getting an answer the RQM queries for offers the web services obtained
(where by an offer we mean a service’s declaration to execute under certain conditions).
In our example the services will be asked: “Give the dates and time, between 2012-01-
01 00:00 and 2012-03-31 23:59, when the treatment procedure can be performed” (the
query contains no other constraints than these on the time period to be considered).

The next step is to run the Concrete planner. Its input are as follows: the (original)
query, the abstract plan choosen to be concretised, and the offers collected for this plan
(a single offer corresponds to a possible realisation of a single step of the plan, i.e.,
executing one service of a given type). It is possible to run this planning using one of
the two methods. The first one, inherited from PlanICS [8], is based on a satisfiability
checking (SAT). The new one is realized by a translation to an instance of the SMT
[2] problem. An SMT-solver checks satisfiability of the formula which is the conjunc-
tion of the disjunctions representing particular offers, and an expression encoding the
conditions specified in the query (e.g., repeat period constraints) and resulting from the
abstract plan (e.g., the order of services). If this SMT instance is satisfiable, then a se-
quence of concrete services, whose execution satisfies the user’s goal is decoded from
the valuation returned by the solver. Going into more details, the attributes of the objects
and the traces are encoded as SMT variables, and their values are mapped into natural
numbers. For example, date-time values from our query are encoded as follows: the be-
ginning of the considered period of time, the _globalStart value, is mapped to 0. All the
date-time values are then related to the _globalStart value, according to a certain time
scale. Currently the time scale is 5 minutes, which means that the value 10 represents
the point in time 50 minutes after _globalStart. The SMT instance is encoded (using
our original library) in SMT-LIB2 [4] format, which enables to use any compatibile
SMT-solver. In the current version we make use of the Z3 [6] solver.

In the case of typical queries, involving from a few to several dozens of services,
and from several hundreds to about 20000 offers, the total time of computations can

32 Dariusz Doliwa et al.

Offers Time [s] Mem [MB] Offers Time [s] Mem [MB]
plain interval plain interval plain interval plain interval

5866 3.06 4.67 115.07 117.19 8281 2.38 5.18 90.13 91.31
10848 9.17 11.08 323.39 324.59 12697 5.09 8.92 187.42 188.48
13241 15.27 17.92 475.80 477.68 16561 8.33 19.60 289.37 291.95
17721 27.41 33.44 834.35 835.54 21253 12.54 19.21 448.32 449.90

Table 1. Time and memory consumption of the concrete planner. On the left - the plan of depth
16 for the scenario: registration, 10 massages, and then 5 diadynamics, on the right - the plan of
depth 24 for the scenario: registration and 23 bioptrons. The columns headed interval contain the
results with additional constraints on the repeat frequency.

vary from a few seconds to about 30 seconds. The concrete planning phase seems to be
the most time- and memory-consuming element. Table 1 displays some statistics of our
SMT-based solution. The columns headed interval of the left table contain the results
for the query being the working example of this section.

The concrete plan computed is visualized (see Fig. 3) and presented to the user. If
the user accepts it, the Execution module invokes the services. Again, the specificity
of the domain makes things simpler: an execution of a service consists in scheduling
an appointment only, so no execution engine is necessary. Obviously, always something
unexpected can happen. At the moment we follow the simple transactional policy: when
any step of the plan could not be successfully executed, we cancel all of the already
scheduled appointments, and the user can repeat either the WS querying and concrete
planning phases, or the whole planning procedure.

4 Final Remarks

HarmonICS is a specialized implementation of the concept which can be applied to var-
ious domains, enabling to build an integration system for distributed services of a com-
mon characteristic (e.g., transport, accomodation, reservation in time). More generally,
a similar system can be implemented in every domain in which we have to plan an
access to some resources with an independent management and optimize the plan by
customized quality measures.

Comparing HarmonICS to its ancestor PlanICS [8], we can point out to an easier and
more natural handling of relations between services thanks to the concept of Traces. An-
other advantage appears in translating semantics from different IOPR [9] services on-
tology - it is simpler and more natural. On the other hand, a modular architecture of the
system allows to take advantage of a new and more efficient planning solution based on
SMT-solvers. The efficiency follows not only from applying the SMT-based technique,
but also from the extended role of the querying module - the concrete planner deals now
only with these of the parameters whose exact values cannot be determined by query-
ing concrete services. Moreover, the planning mechanism related to the time have been
improved. A further contribution of HarmonICS is in an extended language of queries,
enabling to express more requirements ocurring is practice. Its new elements are not
only these which follow directly from introducing traces (like specifying requirements
on ordering of services or their groups, or time or price of particular services), but also
expressions enabling to require repetitions of services (the repeat statement) and sum-
mary constraints on the whole plan (e.g., _globalStart, _globalStop).

HarmonICS - a Tool for Composing Medical Services 33

References

1. S. Ambroszkiewicz. EnTish: An Approach to Service Description and Composition. ISBN
83-910948-7-1, ICS PAS, Ordona 21, 01-237 Warsaw, 2003.

2. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software using
SMT solvers instead of SAT solvers. Int. Journal on Software Tools for Technology Transfer,
11(1):69–83, 2009.

3. S. Bahadori, S. Kafi, K. Zamani far, and M. R. Khayyambashi. Optimal web service com-
position using hybrid GA-Tabu search. Journal of Theoretical and Applied Information
Technology, 9(1):10–15, 2005.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In Proc. of the
8th International Workshop on SMT, 2010.

5. A. Blum and M. L. Furst. Fast planning through planning graph analysis. Journal of Artificial
Intelligence, 90(1-2):281–300, 1997.

6. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS’08, volume
4963 of LNCS, pages 337–340. Springer-Verlag, 2008.

7. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola, and
M. Szreter. Web services composition - from ontology to plan by query. Control & Cy-
bernetics, 40(2):315–336, 2011.

8. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola, M. Szreter,
and A. Zbrzezny. PlanICS - a web service compositon toolset. Fundamenta Informaticae,
112(1):47–71, 2011.

9. A. Gómez-Pérez and J. Euzenat (Eds.). The semantic web: Research and applications. In
Proc. of the 2nd European Semantic Web Conference, volume 3532 of LNCS. Springer, 2005.

10. S. Hoelldobler and H. P. Stoerr. Solving the entailment problem in the fluent calculus using
binary decision diagrams. In Proc. of the Workshop on Model Theoretic Approaches to
Planning at AIPS2000, pages 18–25, 2000.

11. J. Hoffmann, I. Weber, J. Scicluna, T. Kaczmarek, and A. Ankolekar. Combining scalability
and expressivity in the automatic composition of semantic web services. In Proc. of the 8th
Int. Conf. on Web Engineering (ICWE’08), pages 98–107. IEEE Computer Society, 2008.

12. H. Kautz and B. Selman. Blackbox: A new approach to the application of theorem proving to
problem solving. In Working notes of the Workshop on Planning as Combinatorial Search,
held in conjunction with AIPS-98, 1998.

13. M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning with
OWLS-XPlan. In Proc. of the 1st Int. AAAI Fall Symposium on Agents and the Semantic
Web, pages 55–62. AAAI Press, 2005.

14. S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for web service composition. In
Proc. of the 11st Int. World Wide Web Conference (WWW’02), 2002.

15. D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, and D. Fensel.
WWW: WSMO, WSML, and WSMX in a nutshell. In Proc. of the 1st Asian Semantic Web
Conference (ASWC’06), volume 4185 of LNCS, pages 516–522. Springer-Verlag, 2006.

16. M. Sheshagiri, M. desJardins, and T. A. Finin. A planner for composing service described
in DAML-S. In Proc. of Workshop on Planning for Web Services, Int. Conf. on Automated
Planning and Scheduling, pages 28–35, 2003.

17. T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba, M. Zaremba, M. Moran, E. Cimpian,
T. Haselwanter, and D. Fensel. Semantically-enabled service oriented architecture : con-
cepts, technology and application. Service Oriented Computing and Applications, 1:129–
154, 2007.

Automated Composition of Timed Services by
Planning as Model Checking

Daniel Stöhr, Sabine Glesner

Technische Universität Berlin, Chair Software Engineering for Embedded Systems,
daniel.stoehr@tu-berlin.de, sabine.glesner@tu-berlin.de,

www.pes.tu-berlin.de

Abstract. Techniques of automated service composition can shorten
development time by generating a concrete service composition out of a
set of abstract composition requirements. However, no existing fully auto-
mated approach is able to deal with timed services and timed composition
requirements. In this work, we propose an approach for the automated
composition of timed services, represented as timed i/o automata, by
adapting the AI planning method Planning as Model Checking. Thus,
the concept of automated service composition can be used in domains
with real-time requirements. As case study, we model a system where
medical devices need synchronization during surgery.

Keywords: automated service composition, timed services, real-time,
timed i/o automata, planning as model checking

1 Introduction

Designing controller programs coordinating distributed components in a safety-
and time-critical environment, e.g., for synchronizing medical devices, is a very
complex and time-consuming task. While keeping development time short, the
software engineers have to assure that the overall system fulfills functional
and safety-critical requirements. These opposites yield the need for automated
and scalable tools supporting the development process. In our domain, such
tools have to produce correct results and have to deal with nondeterminism
and time as part of the service behavior. Speaking in terms of Service-oriented
Architectures (SOAs), which are an uprising paradigm in those domains, the
problem of designing a controller corresponds to the problem of finding a suitable
orchestrator to compose a given set of services.

Therefore, we propose an approach for the automated composition of timed
services including real-time properties as composition requirements. As to the
authors’ knowledge, no existing fully automated approach for service composition
is able to deal with those requirements. To realize our approach, we describe the
behavior of the services as timed i/o automata [VL92] and the orchestrator as
an automaton handling the input and output actions of the original automata.
Thus, we adapt the AI planning method planning as model checking [GT00] to

Automated Composition of Timed Services 35

realize the automated composition process, by bringing real-time into the existing
theory.

Moreover, as a part of future work, we want to implement a tool realizing
the resulting composition algorithms. Such a tool can be used to shorten the
development process for systems in our domain, because an initially correct
controller model is generated where a hand-made model had to be created before.
To discuss the requirements for our approach, we present a case study where
medical devices have to be synchronized during surgery.

The rest of this paper is structured as follows. In Section 2 we shortly outline
the concepts of automated service composition, timed i/o automata, and planning
as model checking. They form the basis for our approach. Afterwards, in Section 3
we present our case study, our proposed approach and what extensions to the
existing theory are required. In Section 4 we discuss related work. Finally, in
Section 5, we conclude this paper and give an outlook on future work.

2 Background

In this section we introduce works upon which our approach is based. In Sec-
tion 2.1, we shortly explain the concept of automated service composition and
the decision for the underlying theory of our approach. Afterwards, in Section 2.2,
we introduce timed i/o automata, used to formally represent the services to be
composed. Finally, in Section 2.3 we present planning as model checking, which
forms the basis for the composition process of our approach.

2.1 Automated Service Composition

In the context of our work, the term automated service composition denotes
the process of generating an orchestrator for a set of services out of a set of
composition requirements. An orchestrator is a central service within a service
composition that communicates with the other services and directs messages
between them in order to create the system behavior described through the
requirements.

In [BP10] an exhaustive overview is given on automated composition ap-
proaches for web services. They present 27 approaches realizing different forms
of automated service composition and compare them to each other with respect
to a certain set of properties. In the following we outline the properties, which
are relevant for our work.

Automation Describes the degree of automation, offered by an approach. We
need a high degree of automation. Besides of a formal description of the
composition requirements on a set of services, the user intervention shall be
reduced to a minimum.

Nondeterminism An action may produce different nondeterministic outcomes.
In our domain nondeterminism occures, e.g., as device alarms.

Scalability Our approach shall deal with large and complex sets of services.
Hence, we have to design our composition algorithms for high efficiency.

36 Daniel Stöhr and Sabine Glesner

Correctness Compositions are guaranteed to be correct w.r.t. the compostion
requirements. Because our approach shall generate compositions for safety-
critical domains, we have to assure the correctness of resulting compositions.

Based on the above-mentioned survey, we compared these properties to the
different composition approaches. We decided that model checking based methods
of automated service composition are most suitable to form the basis of our
approach. These approaches are the only ones, fulfilling all these properties at
once. However, none of the presented approaches includes real-time composition
requirements.

2.2 Timed I/O Automata (TIOA)

To realize our approach, we need a suiting formalization to describe the behavior
of the orchestrator and of the services to be composed. For that, we chose the
theory of timed i/o automata (TIOA [VL92]). These are finite automata, whose
actions are divided into input and output actions, so that we can describe the
interface of our services. Moreover, we can express timed behavior over a set of
clocks. Therefore, guards exist for transitions, and invariants for states.

In our case study (the synchronization of medical devices), we can model
each device as a distinct automaton. Messages between connected devices are
represented as input- and output-actions. With guards and invariants, we can
express timed conditions on the interaction of our devices, e.g. when a device
has to react within a certain timeframe.

An example for the graphical represention of TIOA is given in Section 3.1
where we present our case study.

2.3 Planning as Model Checking

In the following, we outline the AI planning method planning as model checking
[GT00]. The underlying idea of this technique is to generate plans for a given
planning domain by determining whether formulas are true in a model.

The planning domain is described through a model similar to finite automata.
The planning problem is described in temporal logics, as a CTL formula, con-
taining desired final states and constraints on the paths allowed in the planning
domain. Solving the planning problem for a planning domain means finding paths
leading from the initial state to the final states. Here, the problem is solved by
lifting it to a model checking problem. The planning problem is expressed as a
corresponding kripke structure and the plan is generated by checking whether
suitable temporal logic formulas are true within it. For this purpose, an itera-
tive algorithm checks paths in the structure against corresponding parts of the
formulas.

The algorithm is based on Binary Decision Diagrams a data structure that can
represent kripke structures as graphs representing boolean formulas (a common
technique for solving model checking problems). The plan is iteratively built
up as a BDD by comparing it to other BDDs (representing the domain and

Automated Composition of Timed Services 37

requirements) and by performing transformations on it. It has been implemented
within the Model Based Planner [MBP].

For our approach, we will translate the set of TIOA into a planning domain
by building up the crossproduct. Thus, we transform the problem of automated
composition into a planning problem.

3 Automated Service Composition with Real-Time
Requirements

In the first part of this section we present a case study, demonstrating how our
approach can be applied. In Section 3.2, we describe the workflow of our approach.
In Section 3.3 we outline problems we have to tackle when extending the existing
theory, by reffering to our case study.

3.1 Case Study

We have investigated the requirements for our approach by creating a TIOA
model of a use case where an x-ray device and an anesthesia machine ventilator
need synchronization during surgery. The use case is described in [AGWL09], a
work where the technical interoperability between medical devices is investigated.
In this scenario, an x-ray image of a patient’s chest had to be taken under general
anesthesia. When the x-ray is performed, it must be ensured that the patient’s
lungs are empty in order to receive a clear image. Therefore, parameters of the
anesthesia machine’s ventilator are accessed by the controller, to trigger the x-ray
exactly between two breaths. In Figure 1 we show a simplified version of the
system model we created.

X-Ray

Idle

take?
c1:=0

TakeXRay
c1<=2

c1>=2

Ventilator

Exsp
c3<=5 Insp

ExspPause
c3<=5

InspPause

next!
c3:=0

c3>=5
c3:=0 c3>=5

Controller

WaitNext

WaitPause
c2<=7

End

next?
c2:=0

take!
c2>=6

next

take

Fig. 1. synchronizing an x-ray and an anesthesia machine ventilator

The left automaton, X-Ray, describes the behavior of the x-ray device which,
if triggered, needs 2 time units for taking an image. In it’s initial state, Idle,
it awaits the reception of the input signal take. If the signal is triggered the
automaton changes to the state TakeXRay and resets the clock c1. The guard of
the transition back to Idle ensures that the x-ray stays in TakeXRay for at least
2 time units and the invariant ensures that the state is left after at most 2 time
units.

38 Daniel Stöhr and Sabine Glesner

The right automaton describes the ventilator machine which controls the
breathing, i.e., the respiration cycle of the patient. In its’ initial state Exsp
the ventilator lets the patient breath out. The invariant and transition guard
ensure, that the exspiration phase lasts exactly 5 time units. When the state
ExspPause is activated, the respiration pauses for 5 time units. Afterwards, the
inspiration phase and pause take place, analoguous to the exspiration phase (here,
we ommited the time constraints since they are not relevant for our use case).
When Exsp is entered again, the signal next is emmited. That signal is the only
possibility for other devices to synchronize with the ventilator.

Before describing the controller, we outline its behavior via CTL formulas
(these will be the composition requirements for our approach). Firstly, we have
a functional property (1)AFTakeXRay which says that the x-ray has to be
performed somewhere during the controllers execution. Secondly, theres a safety
property (2)AGTakeXRay→ExspPause which describes that whenever the x-ray
is exposed the ventilator has to be in the exspiration pause mode.

Based on these requirements we can model the Controller. In its initial
state WaitNext the controller waits for the signal next stating that a new
respiration cycle begins. In WaitPause the controller is ready to trigger the x-ray
(requirement 1) and waits for the right point in time to do so (requirement 2). The
corresponding transition takes place after at least 6 time units. This is the point
where the ventilator has entered ExspPause for sure. The invariant ensures that
the exposure time of the x-ray does not overlap with the ventilator’s inspiration
phase.

3.2 The Approach

In this section we present our approach for realizing the automated composition
of timed services. Therefore, we adapt the AI Planning method planning as model
checking (Section 2.3). As language for our service models we have chosen TIOA
(Section 2.2). We realize our approach by bringing real-time into the theory
and by building a framework to make the theory compatible with Timed i/o
Automata (inspired by the work discussed in Section 4). The workflow of our
proposed approach is visualized in Figure 2.

Planning
as

Model Checking

Timed CTL
Formulas

Σ1

Σ𝑛

 .
 .
 . Σ||

Σ𝐶

 x

Fig. 2. Workflow of our approach for the automated composition of timed services

Automated Composition of Timed Services 39

Initially, a set of TIOA Σ1, ..., Σn describes the communicational behavior
of our services, and a set of Timed CTL formulas [ACD93] describes functional
and real-time composition requirements. In a first step, the parallel product
Σ|| = Σ1|...|Σn is built. In the sense of planning as model checking, Σ|| leads to
the planning domain and the formulas to the planning problem. In our example
the crossproduct of the x-ray and ventilator automata are the planning domain
and the CTL formulas (1) and (2) are the planning problem.

Afterwards, the algorithms of planning as model checking are applied to solve
the planning problem by identifying all paths fulfilling our requirements. This
gives us the Control Automaton ΣC handling the inputs and outputs of the
original automata, so that the required overall behavior of the composition is
assured. By the means of service composition, ΣC is an orchestrator.

Since the existing theory and implementation of planning as model checking
can only deal with untimed domains and ’simple’ CTL formulas, we have to make
it capable of dealing with timed domains and Timed CTL formulas. We describe
the problems, we await for the extensions, in the next section.

3.3 Extending the Existing Theory
In this section we sketch the problems we have to tackle for extending the existing
planning theory, described in section 2.3. We identified three situations where
timed behavior has to be considered. In the following, we enlist these properties
and how they will affect the extensions.
Interaction of existing services Guards and Invariants can produce situa-

tions in which deadlocks may occur or where safety properties may be violated.
In our example that would happen in the controller state WaitPause if the
x-ray would be triggered too early or too late, so that condition (2) is violated.
In our hand-implemented controller we solved this through additional guards
and invariants.
To automate this step, the extended planning theory has to analyze the
behavior of the existing services for those situations. We can achieve this
by using an extended version of BDDs capable of representing timed au-
tomata (as used in the Rabbit Model Checker [Rab]). Here, several BDDs are
used to represent the functional and timed behavior of an automaton seper-
ately. Therefore, we need adapt the BDD based operations of the planning
algorithm.

Something has to happen in a specific moment This takes place, for in-
stance, if we want the x-ray to be triggered exactly 6 time units after next
has been received.
Here, we have to modify how the planning algorithms resolve single planning
goals because those now depend on time constraints. Moreover, we have to
find a way to express those requirements in Timed CTL.

Something has to happen iteratively within a specific interval This sit-
uation takes place, e.g., if we want an x-ray image to be taken every 100 time
units. Here, too, CTL is not sufficient to express those requirements. For this
situation we have to solve problems similiar to the point above.

40 Daniel Stöhr and Sabine Glesner

In the first part of this section we have presented a case study showing
that time constraints occur, when medical devices have to be synchronized over
a central controller. Since automated service composition can accelerate the
development of those controllers and no composition approach is able to deal
with time, we have proposed an approach for the automated composition of timed
services. In the last part we outlined the problems we have to solve to realize our
approach.

4 Related Work

In this section, we present works related to our approach. Firstly, we describe
an already existing approach for automated service composition of web services
that uses planning as model checking for the composition process (but does not
include real-time requirements). Afterwards, we outline works bringing together
(automated) service composition and real-time.

In [PTB05] a framework is described that uses planning as model checking to
automatically generate a BPEL composition out of a given set of web services and
composition requirements. The way how the planning theory was utilized to solve
the composition problem served as an inspiration for our proposed approach. In
contrast to our work, this tool cannot handle composition requirements expressing
real-time properties of the services to be composed. However, real-time capabilites
are one of the main characteristics of our proposed approach. Furthermore, this
approach was designed for the domain of bussiness processes and does not apply
to our domain of controlling distributed devices in a safety-critical environment.

Most (if not all) works that try to bring together non-automated service
composition and real-time consider time as measurement for communication
latency between world-wide distributed services [MGY+10] or telephone servers
[LL07]. In these cases, time is a part of the Quality of Service and helps choosing
a proper service instance during the composition process. These works do not
solve our problem because we need time as a part of the service’s behavior itself.

As to the authors’ knowledge, [KDM+09] is the only work where an apporach
for automated service composition with real-time requirements is realized. In
contrast to our approach, this work offers a very low degree of automation,
because the overall workflow of a BPEL composition has to exist before time
requirements can be specified. Our approach, on the other hand, offers a very
high degree of automation by generating the orchestrator from scratch.

5 Conclusion & Future Work

In this work we have proposed an approach for the automated composition
of services with real-time capabilities. The domain for our approach is the
generation of controller programs coordinating distributed services in a safety-
critical environment out of a set of functional and safety-critical composition
requirements. We presented a case study, where medical devices have to be
synchronized, and have used timed i/o automata as a formal description of

Automated Composition of Timed Services 41

the services’ communicational behavior. To realize the automated composition
process we currently adapt the AI planning method planning as model checking
and have outlined the extensions we will have to bring in to make it capable of
dealing with time.

In future work, we perform a larger case study than the one presented here,
where we model devices used during a specific diagnostic method (a PET/CT
scanner and an injection pump). We work on that case study in close cooperation
with the Charité Berlin.

By using our proposed approach, the development time for the above-men-
tioned controller programs can be shortened because certain development steps
can be performed automatically. Furthermore, the generated controller model is
correct with respect to the composition requirements due to the use of model
checking in the generation process. Thus, the iterative step of initially designing
and refining a controller model by hand can be skipped and development time
can be saved.

References
ACD93. Alur, R.; Courcoubetis, C.; Dill, D.: Model-Checking in Dense Real-time.

Information and Computation, vol.104, pp. 2-34, 1993.
AGWL09. Arney, D.; Goldman, J. M.; Whitehead, S. F.; Lee, I.: Synchronizing an

X-ray and Anesthesia Machine Ventilator: A Medical Device Interoperability
Case Study. International Conference on Biomedical Electronics and Devices, pp.
52-60, 2009.

BP10. Baryannis , G.; Plexousakis , D.: Automated Web Service Composition: State
of the Art and Research Challenges. Technical Report - Foundation for Research
& Technology - Hellas Institute of Computer Science, 2010.

GT00. Giunchiglia, F.; Traverso, P.: Planning as Model Checking. Recent Advances in
AI Planning, LNCS vol. 1809/2000, pp.1-20, Springer Berlin/Heidelberg, 2000.

KDM+09. Kallel, S.; Charfi, A.; Dinkelaker, T.; Mezini, M.; Jmaiel, M.: Specifying and
Monitoring Temporal Properties in Web Services Compositions. Seventh IEEE
European Conference on Web Services, pp.148-157, IEEE press, 2009.

LL07. Lin, L.; Lin, P.; Orchestration in Web Services and Real-Time Communications.
Communications Magazine vol.45, no.7, pp.44-50, IEEE press, 2007.

MBP. MBP: a Model Based Planner. http://mbp.fbk.eu/. Last visited: February 2012.
MGY+10. Moussa, H.; Gao, T.; Yen, I.; Bastani, F.; Jeng, J.: Toward effective service

composition for real-time SOA-based systems. Service Oriented Computing and
Applications Vol.4, pp.17-31, Springer London, 2010.

PTB05. Pistore , M.; Traverso , P.; Bertoli , P.: Automated Composition of Web
Services by Planning in Asynchronous Domains. Artificial Intelligence vol. 174,
pp.316-361, Elsevier Science Publishers, 2010.

Rab. Rabbit and Cottbus Timed Automata. http://www.sosy-lab.org/ dbeyer/Rabbit/.
Last visited: February 2012.

VL92. Vaandrager, F.; Lynch, N.: Action Transducers and Timed Automata. Proceed-
ings CONCUR’92, LNCS vol.630, pp.436-455. Springer-Verlag, 1992.

Best Service Synthesis in the Weighted Roman Model

Diego Calvanese and Ario Santoso

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

{calvanese,santoso}@inf.unibz.it

Abstract. This paper presents an extension of a framework for synthesizing a
composition of services, named Roman Model, such that it is able to model the
best service composition synthesis problem. In such extension, which we call
the Weighted Roman Model, the services are modeled as Weighted Transition
Systems so that one can capture the cost of operations executed by a service.
Within this setting, we can make a comparison among all possible compositions
of the available services by considering the total cost of operation execution
performed by each possible composition of services for each interaction between
the service and the client. Besides defining the notion of best composition, we
also propose an algorithm for synthesizing the best composition and show that it
is sound and complete.

1 Introduction

Services are modular applications that can be described, published, located, invoked,
and composed over a variety of networks (including the Internet): any piece of code and
any application component deployed on a system can be wrapped and transformed into
a network-available service, by using standard (XML-based) languages and protocols
(e.g., WSDL, SOAP, etc.). One of the interesting aspects is that this wrapping allows
each program to export a simplified description of itself, which abstracts from irrelevant
programming details. The promise of Web services is to enable the composition of new
distributed applications/solutions: when no available service can satisfy a client request,
(parts of) available services can be composed and orchestrated in order to satisfy the
request itself.

In reality, there could be several possible ways of composing the available services
for satisfying the requested service. However, not all compositions of services can be
considered as equally good. They might have different resource consumption (e.g.,
bandwidth, memory, etc). In this situation, one might be interested in finding the “best”
composition among all possible ones.

In this paper, we consider the framework for service composition adopted in
[2,5,13,10,3,4], sometimes referred to as the “Roman Model” [9]. In this work, we
extend the Roman Model to the Weighted Roman Model in such a way that it is able to
model the problem of synthesizing the best composition of services. Moreover, we also
describe a sound and complete algorithm for synthesizing the best composition.

The rest of the paper is structured as follows. The next section explains the Roman
Model and service composition in this setting. Section 3 presents the Weighted Roman

Best Service Synthesis in the Weighted Roman Model 43

0s searchItem
2s

payByCC

1p
payByBT

searchItem

0p

1s

0t 1t
searchItem

2t

3t

payByCC

payByBT

searchItem

(c)

(a)

(b)

)p,(s 00
searchItem/S1

payByCC/S1

payByBT/S2

searchItem/S2

),p(s 01

)p,(s 11

)p,(s 02

(d)

Fig. 1. (a) Service S1 (b) Service S2 (c) Target Service St (d) Possible composition of services S1
and S2 that simulates the target service in (c)

Model and defines the notion of best service composition. Section 4 presents the tech-
nique for synthesizing the best service composition within the Weighted Roman Model.
Finally Section 5 concludes the paper.

2 Service Composition and The Roman Model

Services in the Roman Model (RM) represent software artifacts capable of performing
operations. A service interacts with the client through the following steps: (i) it offers to
its clients a choice of operations it can perform, (ii) based upon the service state; the client
chooses one of the offered operations, and (iii) the service executes it, changing its state
accordingly. Fig. 1 shows an example of services in the RM in the scenario of a simple
online shopping system. Intuitively, in the service S1 in Fig. 1(a), the interaction can be
started at the initial state s0, where the service offers the “searchItem” operation (i.e.,
the “searchItem” operation is executable in this state). After executing this operation, the
service’s state changes to s1. In s1 the interaction can be terminated since it’s a final state,
or the client can continue requesting the operation “payByCC” (i.e., to pay by credit
card). Similarly, in S2 after a finite sequence of item searches, the client can request a
payment by bank transfer (“payByBT”). Formally, a service in RM is a transition system
(TS) S = (S,O, δ, s0, F), where: (i) S is the finite set of service’s states; (ii)O is the set
of possible operations that the service recognizes; (iii) δ ⊆ S ×O × S is the service’s
transition relation, which accounts for its state changes; (iv) s0 ∈ S is the initial state;
and (v) F ⊆ S is the set of final states, i.e., those states where the interaction with
the service can be legally terminated by the client. When 〈s, o, s′〉 ∈ δ, we say that
transition s o−→ s′ is in S. Given a state s ∈ S, if there exists a transition s o−→ s′ in S,
then operation o is said to be executable in s. A transition s o−→ s′ in S denotes that s′

is a possible successor state of s, when operation o is executed in s. In this work we
consider only deterministic services, i.e., there are no two distinct transitions s o−→ s′ and
s

o−→ s′′ with s′ 6= s′′. Such services are fully controllable by just selecting the operation
to perform next.

A community C = 〈S1, . . . ,Sn〉 of available services consists of n available services
that share the same operationsO. A target service is a desired service that also shares the
operations in O. The goal of the composition in the RM is to maintain with the client the
same, possibly infinite, interaction that he would have with the (virtual) target service,
by suitably orchestrating the (concrete) available services. An orchestrator is a system
component that is able to activate, stop, and resume any of the available services, and
to instruct them to execute an operation among those executable in their current state.
Essentially, the orchestrator, at each step, will consider the operation chosen by the client

44 Diego Calvanese and Ario Santoso

(according to the target service) and delegate it to one of the services that can execute it,
and so on, possibly at infinitum. The aim of the orchestrator is to maintain the interaction
with the client, as if it was interacting with the target service, without ever failing to
delegate an operation chosen by the client to one of the available services.

Formally, an orchestrator is a function from (i) the history of the whole system (which
includes the state trajectories of all available services and the trace of the operations
chosen by the client, and executed by the services), and (ii) the operation currently
chosen by the client, to the index i of the service Si to which the operation has to be
delegated. Intuitively, the orchestrator realizes a target service if and only if, at every step,
given the current history of the system, it is able to delegate every operation executable by
the target to one of the available services. Hence, the orchestrator controls the evolutions
of the services’ states in the community s.t. together they “mimic” the target service.

The goal of service composition is to synthesize an orchestrator that realizes the
target service by exploiting available services. In [12,3], the problem has been tackled
using a simulation-based approach. The idea is essentially checking if the target service
is simulated by the Community-TS, which is the asynchronous product of the services
in C. Intuitively, it checks if the Community-TS supports all possible interactions that
are supported by the target service (i.e., it checks if there is always a way to realize any
interaction that is possible between the client and the target service).

Going back to the running example in Fig. 1, suppose the community consists of
services S1 and S2. Taking the asynchronous product we obtain the Community-TS and
we can find a fragment of it that simulates the target service in Fig. 1(c). This fragment,
which encodes the specification of the orchestrator, is shown in Fig. 1(d). It says how
the requested operation can be delegated to the services in the community. For example
the execution of operation “payByCC is delegated to service S1 (denoted by the label
“payByCC/S1” in the transition).

3 Best Service Composition and the Weighted Roman Model

An extension of the RM into the Weighted Roman Model (WRM) is partly inspired by the
work on weighted automata [6]. The WRM framework aims at addressing the problem
of best service composition synthesis. The target service in the WRM is represented
using a transition system as in the RM, while the available services are represented
using weighted transition systems (WTS). Intuitively, a WTS is a TS augmented with a
semiring Ŝ = (Ĉ, +̂, ·̂, 0̂, 1̂)1[8]. We use the semiring elements in the set Ĉ to denote the
cost of service’s operation execution. Fig. 2 shows an example of services in the WRM.
Intuitively, in service S1 (Fig. 2(a)), the cost of executing operation “searchItem” is 4. We
use the semiring multiplication operator (̂·) for the aggregation of service’s operations
execution costs, and the semiring addition operator (+̂) for comparing the costs. As
a prominent example, consider the tropical semiring T̂ = (Z ∪ {∞},min,+,∞, 0),
whose elements are the integers together with positive infinity, whose multiplication
operator is addition over integers, and whose addition operator is the minimum operator.

1 A semiring is a structure Ŝ = (Ĉ, +̂, ·̂, 0̂, 1̂), where Ĉ is a nonempty set closed under a
binary, associative, and commutative semiring addition, +̂, and a binary, associative semiring
multiplication ·̂, respectively with 0̂ and 1̂ as neutral elements, and where ·̂ distributes over +̂.

Best Service Synthesis in the Weighted Roman Model 45

0s
searchItem/4

2s
payByCC/3

1q
payByBT/3

searchItem/51p
payByBT/61s 0q

0p
(a) (b) (c)

searchItem/5

0s a/6
1s
a/3

3s
(d)

Fig. 2. Example of available services in the WRM: (a) Service S1 (b) Service S2 (c) Service S3
(d) Example of modeling cost dependencies inside a service in the WRM

In this setting, the total cost of service’s operations execution is aggregated by the
addition operator (i.e., just the sum over each cost of operations execution) and then we
can compare costs of service’s operations execution by using the minimum operator.

To make the comparison meaningful, we restrict the usage of semirings by adding
the requirement that c1 +̂ c2 = c1 or c1 +̂ c2 = c2, where c1, c2 ∈ Ĉ (i.e., +̂ is an
operator for comparing two semiring elements). We call such semiring a comparison
semiring. Given two semiring elements c1 and c2 in a comparison semiring, we say
that c1 is better than c2 if c1 +̂ c2 = c1, and vice-versa. Consider again the tropical
semiring, where addition is the minimum operator. In this case c1 is better than c2 if
min(c1, c2) = c1 (i.e., if c1 is smaller than c2).

The usage of a semiring in our framework gives us flexibility in defining the notion
of “best”. For example, we can use the tropical semiring if we are interested in the
minimum cost, while we can use the arctic semiring Â = (Z ∪ {−∞},max,+,−∞, 0)
if we are interested in the maximum cost. Moreover, it gives us flexibility in defining the
domain of the cost, for example whether it ranges over integers, reals, positive integers,
etc. Another example is where one models the situation where the cost of operation
execution represents the probability of a service being successfully executed, in this case
the cost might range from 0 to 1. However, to make explanations more intuitive, from
now on we focus on the tropical semiring only.

Formally, a service in the WRM is a WTSWS = (S,O, T̂ , ν, s0, F), where S, O,
s0, and F are as for a TS, T̂ = (Z ∪ {∞},min,+,∞, 0) is the tropical semiring, and
ν : S ×O × S × Ĉ is the service’s transition relation. When 〈s, o, s′, c〉 ∈ ν, we say
that transition s

o,c−−→ s′ is in S. Intuitively, the semiring element c in the transition
s

o,c−−→ s′, represents the cost of performing operation o in state s. In this case, the fact
that available services are deterministic means that there are no two distinct transitions
s

o,c−−→ s′ and s
o,c′

−−→ s′′ in S such that s′ 6= s′′ or c 6= c′. The notion of community of
available services in the WRM is similar to the one in the RM except that the services
are represented by WTSs. As for simulation checking in the RM, we can construct a
Community-WTS by taking the asynchronous product of all available services WTSs.

In the WRM, we can also model some scenarios in which the cost of executing an
operation depends on the execution of another operation. Fig. 2(d) shows an example
where the second execution of operation a is modeled as having a smaller cost than the
first execution of a. In general, we could represent the fact that an operation a executed
at some state where a has already been executed has smaller cost. However, there are
many scenarios that cannot be captured easily, for example when the cost of executing
an operation in a service depends on an operation execution by another service.

Now we introduce the notion of best composition in the WRM through our running
example. Suppose the community of available services consists of the service S1, S2,
and S3 in Fig. 2. The target service St is still the one in Fig. 1(c). Two possible fragments

46 Diego Calvanese and Ario Santoso

)q,p,(s 000

searchItem/S1/4

payByCC/S1/3

payByBT/S2/6

searchItem/S2/5

)q,p,(s 001

)q,p,(s 011

)q,p,(s 002

)q,p,(s 000

searchItem/S1/4

payByCC/S1/3

payByBT/S3/3

searchItem/S3/5

)q,p,(s 001

)q,p,(s 101

)q,p,(s 002

(a) Composition 1 (b) Composition 2

Fig. 3. Two possible composition of services S1, S2, and S3 for the target service St in Fig. 1(c)

of the Community-WTS that simulate St (i.e., serve as a composition for St) are shown
in Fig. 3. Intuitively, the first composition uses services S1 and S2 to “mimic” the
target service St and the other one uses S1 and S3. Considering the target service in
Fig. 1(c), suppose the client requests to execute operation “searchItem” twice, followed
by operation “payByBT”. Intuitively she searches for the item in the shop twice and then
purchases it by using a bank transfer. Formally, this is represented by the path

τ = t0
searchItem−−−−−−−→ t1

searchItem−−−−−−−→ t1
payByBT−−−−−−→ t3

in target service St. Notice that τ starts at the “initial state” and ends at a “final state”.
We call this an accepting path. To realize the request, an orchestrator must be able
to delegate the execution of the requested operations to the available services in the
community. An orchestrator D1 based on Composition 1 in Fig. 3(a) delegates the first
“searchItem” request to S1, the second one to S2, and the “payByBT” request to S2.
Formally, this delegation corresponds to the following path in the Community-WTS:

τ ′ = (s0, p0, q0) searchItem/S1 /4−−−−−−−−−−−→ (s1, p0, q0) searchItem/S2 /5−−−−−−−−−−−→
(s1, p0, q0) payByBT/S2 /6−−−−−−−−−−→ (s1, p1, q0)

We call this a realization path. Since we use the tropical semiring, the weight of this
realization path is just a summation of the weights of all operations along the realization
path. In this case the weight of this realization path is 15. However, there might be
more than one possible way to realize a certain sequence of operations request. In our
examples, we might also delegate to S3 the execution of the second “searchItem” and of
the “payByBT” requests. Hence, there might be more than one corresponding realization
in the Community-WTS. Each of them has its own weight. To compare them and find
the best weight, since here we use the tropical semiring, we take the minimum among
all of them. Hence, in this case we get the best weight as the minimum weight among all
possible realizations. In our example one possible best weight is 12 (possibly obtained
by doing the delegation based on Composition 2).

The goal of the best composition synthesis is to synthesize the best orchestrator D,
which informally means that for all possible sequences of operations requested by the
client (which correspond to accepting paths in the target service), we have that for all
possible delegations of those operations execution to the available services done by D,
the total cost of this execution is the best among any other possible delegation done by
all possible orchestrators. Considering again the tropical semiring, intuitively we are
interested in finding the best orchestrator that minimizes the total cost of the realization
of all possible interactions between the target service and the client that started from the
initial state and end at a final state. It is not immediate to gain the decidability of this
problem, since once we have a loop in the target service, the client can make an infinite

Best Service Synthesis in the Weighted Roman Model 47

number of different sequences of operations request. Hence we can’t just enumerate
all possible sequences of operations executions and check if a certain orchestrator can
realize them all in the “best” way.

4 Best Composition Synthesis

Recall that given a Community-WTS WC and the target service St, it can be shown
that an orchestrator D for the givenWC and St corresponds to a certain fragment of the
WC that simulates St. We call such fragment a target service realization. Intuitively,
a target service realization encodes the specification for an orchestrator. Similarly, it
can also be shown that a best orchestrator corresponds to a certain fragment of WC,
which we call a best target service realization. More formally, a best target service
realization is a fragment SR ofWC s.t. for all accepting paths τ in St, the weight of
each possible realization path of τ in SR is the best. Intuitively, a best target service
realization encodes the specification of a best orchestrator. Knowing this fact, we can
reduce the problem of checking the existence of a best composition to the problem of
checking the existence of the best target service realization. Moreover, a best orchestrator
can be synthesized from a best target service realization, if it is exits.

Before presenting the algorithm for checking the existence and synthesizing a best
target service realization, we introduce some preliminary notions: (i) A simple cycle
path is a cycle path that has no state repetition in it, except for the first and the last
states, which coincide. In Fig. 1(c), the path t1

searchItem−−−−−−−→ t1 is a simple cycle while
t1

searchItem−−−−−−−→ t1
searchItem−−−−−−−→ t1 is not. (ii) A k-bounded accepting path is an accepting

path where the length of each cycle path in it is less than or equal to k. In our example,

for k = 2, the path π′ = t0
searchItem−−−−−−−→ t1

searchItem−−−−−−−→ t1
searchItem−−−−−−−→ t1

payByCC−−−−−−→ t2

is a k-bounded accepting path while the path π′′ = t0
searchItem−−−−−−−→ t1

searchItem−−−−−−−→
t1

searchItem−−−−−−−→ t1
searchItem−−−−−−−→ t1

payByCC−−−−−−→ t2 is not.
The algorithm for checking the existence and synthesizing the target service best

realization takes the target service and the community as input. We sketch it here briefly
(1) For each fragment SR ofWC, repeat the following steps. (2) Verify if SR simulates
the target service. (3) Verify if for each simple cycle path in the target service, we have
that the weight of all its possible realization paths in SR is the best among all its possible
realization paths inWC. (4) Verify if for each possible k-bounded accepting path in the
target service, the weight of all its possible realization paths in SR is the best among
all its possible realization paths inWC, where k is equal to the size of the community
transition system. (5) If SR fulfills the verification in Steps 2, 3, and 4, the algorithm
returns “yes” and SR is one possible target service best realization. Otherwise, go back
to Step 1 to and continue the check with the next fragment. If none of the fragments
fulfills the verification in Steps 2, 3,and 4 then the algorithm returns “no”. It can be
shown that the algorithm above is sound, complete, and always terminates, and that
its complexity is double exponential in the combined size of the target service and the
community of available services.

In our running example, suppose the target service is as in Fig. 1(c), and that for
simplicity of explanation there are only two possibles fragments of Community-WTS

48 Diego Calvanese and Ario Santoso

as in Fig. 3 (Note: In this example we might have more than these two fragments).
In the second step, it is easy to see that both fragments simulate the target service.
For the third step, there is only one simple cycle, namely t1

searchItem−−−−−−−→ t1 and either
in Fig. 3(a) or Fig. 3(b) there is only one possible realization path and both of them
have the same weight. In our example, the one which has a realization path with dif-

ferent weight is only t0
searchItem−−−−−−−→ t1

payByBT−−−−−−→ t3. The corresponding realization

path in Fig. 3(a) is (s0, p0, q0) searchItem/S1 /4−−−−−−−−−−−→ (s1, p0, q0) payByBT/S2 /6−−−−−−−−−−→ (s1, p1, q0)
with weight equal to 10, and the one in Fig. 3(b) is (s0, p0, q0) searchItem/S1 /4−−−−−−−−−−−→
(s1, p0, q0) payByBT/S3 /3−−−−−−−−−−→ (s1, p0, q1) with weight equal to 7. Due to space limita-
tion, we can’t give the full illustration, but one can check that in this case for all of the
possible k-bounded accepting paths in the target service, we have that the weight of each
possible corresponding realization path in the fragment in Fig. 3(b) is the best, while this
does not hold for the fragment in Fig. 3(a). Since the fragment in Fig. 3(b) satisfies the
checks in Step 2, 3, and 4, the algorithm return “yes”, and this fragment is one possible
target service best realization.

5 Related Work and Conclusions

In this work we have proposed a weighted extension of the Roman Model, named
Weighted Roman Model. It enhances the Roman Model with the capability to model
the cost of service’s operation execution and allows one to address the problem of
best composition synthesis. We have shown that the problem of checking the existence
and synthesizing the best composition can be addressed by checking the existence and
synthesizing the so called best target service realization (encoding the specification of the
best orchestrator). Relying on this result, we proposed a sound and complete algorithm
for checking the existence and synthesizing the best target service realization.

We provide here a brief overview of related work in the literature. In the SM4ALL
project [4], the Roman Model is used as the underlying framework for establishing
a collaboration of services, involving composition. The framework is applied to the
real world scenario studied in the project, namely that of private homes for users with
different abilities and needs. The Roman Model is adopted also in [7], which addresses
an optimization problem in the area of service composition. However, it considers finding
the best composition for an ad-hoc interaction, i.e., for a given sequence of requested
operations. Instead, we consider here all possible sequences of requested operations,
hence in general we do not know which might be the next operation requested by the
client. Also, the use of a semiring gives more flexibility in defining the meaning of
optimum cost. We mention also works where the quantitative aspect comes into play for
measuring similarity between transition system-like structures. [14] presents a similarity
measure on control flow graphs, which are formalized as labeled transition systems, that
is based on a weighted variant of simulation. The work in [11] proposes a technique for
matching statecharts that is motivated by model management in software engineering.
However, in both works, the transition system-like structures do not contain quantitative
information, as in our case.

Best Service Synthesis in the Weighted Roman Model 49

One interesting further direction of our work is to model the situation where we
consider the initial and final weights of a service. Intuitively, the initial weight can model
the cost of initializing the service and the final weight the cost of terminating it. Another
interesting direction is to analyze the intrinsic complexity of the best composition
synthesis problem, and check whether our upper bounds can be improved. Fully taking
into account data for verification and synthesis in the context of the Roman Model, or
other service-based frameworks, is a very challenging task that has been tackled only
recently, see, e.g., [1]. We are not aware of any work that addresses synthesis, fully
taking into account data, even in an unweighted setting. It is a very interesting research
direction, to tackle this problem, both for an unweighted and for a weighted setting.

References

1. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli. Foundations
of relational artifacts verification. In Proc. of the 9th Int. Conference on Business Process
Management (BPM 2011), volume 6896 of LNCS, pages 379–395. Springer, 2011.

2. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic service
composition based on behavioural descriptions. Int. J. of Cooperative Information Systems,
14(4):333–376, 2005.

3. D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella, and F. Patrizi. Automatic service
composition and synthesis: the Roman Model. Bull. of the IEEE Computer Society Technical
Committee on Data Engineering, 31(3):18–22, 2008.

4. T. Catarci, F. Cincotti, M. Leoni, M. Mecella, and G. Santucci. Smart homes for all: Collabo-
rating services in a for-all architecture for domotics. In Collaborative Computing: Networking,
Applications and Worksharing. Springer Berlin Heidelberg, 2009.

5. G. De Giacomo and S. Sardina. Automatic synthesis of new behaviors from a library of
available behaviors. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007),
2007.

6. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. Springer, 2009.

7. C. E. Gerede, O. H. Ibarra, B. Ravikumar, and J. Su. Minimum-cost delegation in service
composition. Theoretical Computer Science, 409(3):417–431, 2008.

8. J. Golan. Semirings and Their Applications. Kluwer Academic Publishers, 1999.
9. R. Hull. Web services composition: A story of models, automata, and logics. In Proc. of the

3rd IEEE Int. Conf. on Web Services (ICWS 2005), 2005.
10. A. Muscholl and I. Walukiewicz. A lower bound on web services composition. Logical

Methods in Computer Science, 4(2), 2008.
11. S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave. Matching and merging of

statecharts specifications. In Proc. of the 29th Int. Conf. on Software Engineering (ICSE 2007),
pages 54–64, 2007.

12. F. Patrizi. Simulation-based Techniques for Automated Service Composition. PhD thesis,
SAPIENZA Università di Roma, Dipartimento di Informatica e Sistemistica, 2009.

13. S. Sardina, F. Patrizi, and G. De Giacomo. Behavior composition in the presence of failure.
In Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2008), 2008.

14. O. Sokolsky, S. Kannan, and I. Lee. Simulation-based graph similarity. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 3920 of LNCS, pages
426–440. Springer, 2006.

Choreographies in BPMN 2.0: New Challenges
and Open Questions

Mario Cortes-Cornax, Sophie Dupuy-Chessa, and Dominique Rieu

University of Grenoble, CNRS, LIG
{Mario.Cortes-Cornax,Sophie.Dupuy,Dominique.Rieu}@imag.fr,

http://sigma.imag.fr/

Abstract. The concept of choreography has emerged over the past years
as a fundamental concept for capturing collaborative processes. The
latest version of the Business Process Modeling Notation (BPMN 2.0)
introduces the choreography diagram as a first-class citizen actor. After
having evaluated BPMN 2.0 in a previous work, we discuss here the
new challenges, future work and the open questions about the potential
choreography standard language. We also describe the ameliorations that
will be introduced in the evaluation framework.

Keywords: Choreography, Evaluation, BPMN 2.0, Quality Framework

1 Introduction

A choreography formalizes the way business participants coordinate their inter-
actions. In a choreography, the focus is not on the work performed internally
by each participant, but rather on the exchange of information (e.g. messages)
between participants. Another way to look at choreography is to consider it as a
type of business contract between two or more organizations.

Industry initiatives such as RosettaNet 1 aim at standardizing business to
business integration in a particular domain. However, these initiatives mostly
turned to textual descriptions of the overall choreographies, centered in providing
detailed message format descriptions [9]. W3C’s efforts within the context of
the Web Service Choreography Description Language proposal (WS-CDL [23])
did not achieve enough industry support and do not reach standardization. The
WS-CDL’s working work stopped the development of the language in July 2009.
Previously, major lacks were detected in [2]. Over the past years, several research
projects have proposed different languages for capturing choreographies such as
Lets’s Dance [24], BPEL4Chor [9] or Multi-Agent Protocols (MAP) [1]. However,
these proposals remain far to be adopted by the industry. Popular languages
as the Message Sequence Charts (MSC) [12] have also been used to capture
cross-organizational interactions. But the latter is not rich enough to capture
complex choreographies [8].
1 http://www. rosettanet.org/

http://sigma.imag.fr/

Choreographies in BPMN 2.0 51

In early 2011 the OMG [18] released the latest version of the Business Process
Model and Notation (BPMN version 2.0 [19]). Among other improvements, a
choreography diagram is introduced. In previous versions of BPMN, the only
way to represent choreographies was via collaboration diagrams. This new version
allows modelers describing both choreography and collaboration approaches
together or individually. Actually, a global view of interactions is represented
in addition to the participants’ view given by collaborations which enriches the
expressiveness of the language [19].

In a previous work [7], we evaluate the adequacy of the constructs for cho-
reography modeling introduced in BPMN 2.0. We also presented a catalogue of
identified requirements that represents a clear overview of possible criteria for
evaluating a choreography language as well as to better understand this increas-
ingly used concept. After the evaluation, we detect some important drawbacks in
the language.

The goal of this paper is to briefly resume the evaluation that we performed
[7] and then discuss the major challenges and the research agenda to short out
the problems detected. We also present several limitations that are identified in
our evaluation framework, and the necessary improvements in order to complete
it.

This paper is structured as follows. We resume our evaluation of choreographies
in BPMN 2.0 in Section 2. A detailed discussion about major challenges and future
work are presented in Section 3. Section 4 presents our research methodology.
Finally, Section 5 concludes the paper.

2 The Evaluation of BPMN 2.0 for Choreographies

We based our evaluation of BPMN 2.0 on a semiotic quality framework proposed
by Kogstie [14]. We extend it for the specific context of choreographies simi-
larly to [17] for Business Processes. We look at three axes that are the Domain
Appropriateness (D) (relates the language to the semantics of its domain), the
Comprehensibility Appropriateness (C) (relates the language to the social actor)
and the Technical Actor Interpretation Appropriateness (T) (relates the language
to tools). In order to organize and categorize the identified choreography require-
ments, we placed the requirements in the different dimensions of the framework
(Fig. 1). Most of this requirements were further refined in sub-requirements.

Domain requirements are mainly extracted from the Service Interaction
Patterns [3] and from the service choreography requirements identified by Decker
et al. in [9]. Looking at the refined notions of choreography presented in [21] that
are B2Bi Choreographies, Conceptual Choreographies and Service Choreographies
it could be argued that we are more focused in the two latter although we find
many common requirements within the three of them. A detailed study about
B2Bi requirements can be found in [20].

When analyzing comprehensibility requirements of the language, the major
interest is given to the graphical notation principles described by Moody in
[16]. We also analyzed other aspects such as the model and the meta-model

52 Mario Cortes-Cornax et al.

Fig. 1. The requirements axes extending the language quality framework

quality guided by researches as [22,10,4]. The necessity of taking into account
comprehensibility aspects for a choreography language is already cited in [13].
Technical requirements were mostly induced by the analysis of previous choreo-
graphy proposals. For further details about this evaluation, the reader can refer
to [7].

3 Discussion about Future Work and Open Questions

3.1 Domain Requirements Analysis

Major Challenges. As we already mentioned, the domain requirements were
mainly induced and based on the Service Interaction Patterns [3]. Lacks that will
prevent BPMN 2.0 to support all the patterns were detected. Unlike Participant
Multiplicity is supported in BPMN 2.0, Message Multiplicity (Service Commu-
nication sub-requirement), that is used to capture the definition of the number
of messages sent from one (or more) participant(s) to other(s) is not supported.
This lack will avoid fulfilling the so-called multi-transmission interaction patterns.

Another important detected problem is the weak support for Reference Pass-
ing (Service Communication sub-requirement) where participant A permits
participant C to communicate with participant B by passing the reference of
B to C. If the latter requirement is not supported, it will avoid fulfilling the
so-called routing patterns. The major challenge here is to give support to all the
interaction patterns. However one major issue for using BPMN 2.0 choreography
is that its semantics are not well defined. The standard provides just an indicative
idea of the semantics through local enforceability of different BPMN’s choreogra-
phy constructs and modeling situations. A preliminary work on clarifying the
semantics should be done.

Choreographies in BPMN 2.0 53

Future Work to Improve...

... The Language. Detecting major lacks within BPMN 2.0 for choreographies
has been a first step in our work that might be completed by proposing an
extension of the language. In [7], we suggest to recover the concept of channel
introduced in WS-CDL to support reference passing. These channels could
be explicitly captured with textual annotations in the diagram, following
the principle of Dual Coding [16]. An extension of the concept of message
to capture the Message Multiplicity is also suggested. These feature could
be easily captured with a graphical construct in the diagram following the
principle of Semiotic Clarity [16] that suggests one-to-one correspondence
between symbols and semantic concepts. This will help avoiding ambiguities
when defining it in a technical specification. However, these approach have
to be matured and formalized.

... The Evaluation. A precise analysis of the support of the 13 patterns
has to be considered as an important future work. The implementability of
the patterns could be done analyzing separately the two possible ways of
representing choreographies in BPMN 2.0 (i.e by means of collaboration dia-
grams and by the new choreography diagrams) but we could also think about
evaluating BPMN 2.0 as a whole, considering that the two diagrams represent
different views of choreography. Analyzing the service interaction patterns
will give us a more precise idea of the limitations of BPMN 2.0 concerning
choreographies. It will permit to perform an accurate comparison between
the different choreography languages regarding the domain dimension.

3.2 Comprehensibility Requirements Analysis

Major Challenges. Regarding at comprehensibility requirements, the aim is
to give more automation to our evaluation. Looking at the principles of graphical
notation, a detailed analysis in the different principles is done. However, the
great amount of graphical constructs difficult the work. Works like [11] where
authors evaluate the cognitive effectiveness of BPMN 2.0’s process models are a
good reference to be applied to choreographies. If valuable metrics are defined,
it will be much easier to compare the BPMN 2.0 features with other languages
automatically. The challenge is to automate the evaluation of comprehensibility
requirements.

We also detected a greater lack in the meta-model quality. A meta-model
should be a useful tool for communication besides a technical description of a
language. The way that meta-models are presented in BPMN 2.0 hinders the
understanding of choreographies because they are presented in a very technical
level. Therefore, another important challenge is to achieve a more comprehensible
language.

We have also noted some underspecification and a lack of examples con-
cerning choreographies that difficult an effective use of the language (e.g. the
ChoreographyLoopType2 construct).

2 http://www.omg.org/issues/bpmn2-rtf.open.html#Issue16554

http://www.omg.org/issues/bpmn2-rtf.open.html#Issue16554

54 Mario Cortes-Cornax et al.

Future Work to Improve...

... The Language. In [6], the use of different levels of abstraction and the
fact of clearly separate the structural and behavioral views in choreographies
is recommended. This approach could also help to adapt graphical notation
to different contexts similarly to Silver’s proposal in [22] for business process
models.

... The Evaluation. We consider essential to find concrete metrics to auto-
mate comprehensibility evaluation. Appropriate metrics could be found by
conducting specific experimental studies for the different notation principles.
In some cases as for example Semantic Transparency (visual representation
appearance should suggests its meaning) it is difficult to find appropriate
metrics that help evaluating this requirement. Although such evaluations
provide valuable insights, they are time-consuming and only allow one to
evaluate one or two specific aspects of a language (e.g. understandability
or readability). It will also be interesting to work on indicators to better
evaluate the meta-model readability and simplicity.

... The Understanding of BPMN 2.0. The standard should be illustrated
to permit practitioners to easily know all the capabilities of the language.
A set of examples, using the graphical constructors might be proposed. For
example, the use of intermediate events attached to choreography activities
are not clearly comprehensible as there are no examples in the standard. This
might improve the language’s pragmatic quality [15]. The introduction of
abstraction layers similar to the ones proposed by Silver for business process
models in [22] and the use of different views in the meta-model level will also
help to understand the language in a more natural and progressive way.

3.3 Technical Requirements Analysis

Major Challenges. In the technical evaluation, the weakest point is concern-
ing the underspecification of some requirements that leads to ambiguities in
the evaluation. For example, terms such as Formalism or Flexibility lead to
misunderstanding because there are not correctly defined.

It is also important to put forward the fact of having a completely new diagram
integrated in the standard. This provoke that implementers had difficulties to
support choreography conformance. Currently, there is an obvious preference
besides process models and their execution rather than using the choreography
approach. So we should still wait for implementers response to perform a detailed
tool support analysis. The challenge is to find adequate requirements to guide
proper tool support for choreographies.

Future Work to Improve...

... The Evaluation. An important limitation of our evaluation is the lack of
technical requirements. To mitigate this lack, we turned to B2B integration
requirements [20] and Rosetta Net project to complete this axis. Although

Choreographies in BPMN 2.0 55

we do not target B2Bi Choreographies[21] but Service Choreographies and
Conceptual Choreographies [21], many technical requirements are applicable
to the different notions of choreographies. For example, we will have to
introduce the Message Formating requirement [9] as RosettaNet show that
it is possible and fundamental to be considered. The detailed formatting of
messages should be captured in the technical specification. However, different
basic types of messages could be defined extending the notion of message.
The analysis of orchestration requirements may also be helpful to infer critical
choreography requirements.
We will also have to analyze carefully if all the the technical requirements are
so well supported by BPMN 2.0 as currently considered. For example, in [13]
authors argue that the choreography diagrams are tightly dependent on the
technical configuration while we considered that the fact that choreographies
do not need a technical configurations to be defined make them “flexible”
and reusable.

4 Research Methodology

First, we identified the need of representing the choreography notion in a three-
level multi-view approach to effectively bridge the Business-IT gap in [6,5]. These
studies gave us an idea of the importance of abstraction levels and multi-views
when managing choreographies. We gathered general requirements that should be
supported by choreography languages basing our research on two main sources:

– Scientific studies dealing with choreography requirements such as [2,3,4,9].
– Choreography language proposals such as WS-CDL [23], Let’s Dance [24],

BPEL4Chor [9] or MAP [1].

One of the most detailed prior evaluations of choreography definition lan-
guages is based on the Service Interaction Patterns [3], but these patterns only
cover one perspective of the requirements for choreography definition languages.
Accordingly, we complemented this patterns-based evaluation framework with
other perspectives. Therefore, we categorized the choreography requirements with
the three axes illustrated in Section 2 to evaluate Domain, Comprehensibility and
Technical appropriateness for choreography languages. Special attention is given
to graphical notation (Comprehensibility sub-requirement), since the graphical
notation may be a key ingredient to bridge the gap between business world and
technical specification.

Our goal now is to merge both works in a multi-leveled evaluation framework.
It is obvious that we find different requirements depending on the level of
abstraction that we are working on. For example, a graphical notation is essential
in a higher level of abstraction (near the business world), while it might be less
critical when a technical specification has to be implemented. On the other hand,
message correlation is essential in a technical level while near the business level,
it may not be essential to be captured. We want to analyze for each level of
abstraction, what are the main requirements that have to be managed. Hence,

56 Mario Cortes-Cornax et al.

choreography requirements categorized in a three-leveled evaluation framework
will be the foundation of a new service choreography language (sketched in [5])
or an extension proposal for choreographies in BPMN 2.0. It will also leads to a
precise and useful guide for choreography language’s evaluation.

5 Conclusion

We have summarized the evaluation carried out in [7] where we evaluated
BPMN 2.0’s constructs for choreographies using an extended quality framework.
The major challenges are discussed and the main axis for future improvements
are presented.

We conclude that in the domain dimension, important lacks such as Refer-
ence Passing and Message Multiplicity will prevent a fully support of all the
requirements. A better evaluation of comprehensibility should be undertaken
based on metrics or specific studies. The technical axis will be completed taking
into account new requirements related to B2Bi requirements, industry initiatives
as Rosetta Net, and orchestrations. However, our major efforts will be centered
in Service Choreographies [21] and not B2B integration.

Having analyzing the necessity of defining the choreography notion in three
different abstraction levels in previous works, we will propose a three-leveled
evaluation framework keeping the Domain, Comprehensibility and Technical axes.
A new choreography language or extensions of BPMN 2.0 for choreographies will
be presented based on this updated framework.

References

1. Barker, A., Walton, C., Robertson, D.: Choreographing Web Services. IEEE
Transactions on Services Computing, IEEE Computer Society 2(2) (2009) 152–166

2. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreography
description language. BPTrends Newsletter 3 (2005)

3. Barros, A., Dumas, M., ter Hofstede, A.: Service interaction patterns. Business
Process Management, Springer (2005) 302–318

4. Barros, A., Decker, G., Dumas, M.: Multi-staged and multi-viewpoint service
choreography modelling. Technical report (2006)

5. Cortes-Cornax, M.: Service choreographies through a graphical notation based
on abstraction layers and viewpoints. Research Challenges in Information Science
(RCIS), 2011 Fifth International Conference on, IEEE (2011) 1–12

6. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D.: Bridging the gap between business
processes and service composition through service choreographies. Engineering
Methods in the Service-Oriented Context, Springer (2011) 190–203

7. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., Dumas, M.: Evaluating choreogra-
phies in bpmn 2.0 using an extended quality framework. Business Process Model
and Notation, Springer (2011) 103–117

8. Decker, G., Kopp, O., Barros, A.: An introduction to service choreographies.
Information Technology, Citiseer 50(2) (2008) 122–127

Choreographies in BPMN 2.0 57

9. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: from spec-
ification to execution. Data & Knowledge Engineering, Elsevier 68(10) (2009)
946–972

10. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
International Journal of Cooperative Information Systems 13 (2004) 337–368

11. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of
the BPMN 2.0 Visual Notation. Software Language Engineering, Springer (2011)
377–396

12. Harel, D., Thiagarajan, P.: Message sequence charts. UML for Real, Springer (2004)
77–105

13. Kopp, O., Leymann, F., Wagner, S.: Modeling Choreographies: BPMN 2.0 versus
BPEL-based Approaches. In: Enterprise Modelling and Information Systems
Architectures -EMISA 2011, Gesellschaft für Informatik e.V. (GI) (September 2011)

14. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for
action: a revised quality framework. European Journal of Information Systems,
Nature Publishing Group 15(1) (2006) 91–102

15. Lindland, O., Sindre, G., Solvberg, A.: Understanding quality in conceptual
modeling. Software, IEEE 11(2) (1994) 42–49

16. Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for Construct-
ing Visual Notations in Software Engineering. IEEE Transactions on Software
Engineering, IEEE Computer Society (2009) 756–779

17. Nysetvold, A., Krogstie, J.: Assessing business process modeling languages using a
generic quality framework. Advanced topics in database research 5 (2006) 79–93

18. OMG: Object management group. ”"http://www.omg.org/” (1989)
19. OMG: Business process model and notation (bpmn 2.0). ”http://www.omg.org/

spec/BPMN/2.0/” (2011)
20. Schönberger, A., Wilms, C., Wirtz, G.: A requirements analysis of integration

business to business integration. Technical report, Otto-Friedrich- Universität Bam-
berg, Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
(2009)

21. Schönberger, A.: Do we need a refined choreography notion? ZEUS. CEURWS. org
(2011)

22. Silver, B.: BPMN Method and Style: A levels-based methodology for BPM process
modeling and improvement using BPMN 2.0. Cody-Cassidy Press, US (2009)

23. W3C: Web services choreography description language version 1.0 (ws-cdl) - w3c
candidate recommendation (2005)

24. Zaha, J., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: A language for
service behavior modeling. On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, Springer (2006) 145–162

"http://www.omg.org/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Building Orchestrations in B2Bi – The Case of
BPEL 2.0 and BPMN 2.0

Jörg Lenhard and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg, Germany
{joerg.lenhard,guido.wirtz}@uni-bamberg.de

Abstract. Various approaches for service-oriented business-to-business
integration (B2Bi) rely on a top-down development methodology. The
starting point is a choreography model which is subsequently partitioned
into multiple orchestrations. Most current approaches use the Web Ser-
vices Business Process Execution Language (BPEL) for implementing
the latter. At the same time, a plethora of other languages, such as
Business Process Model and Notation (BPMN) 2.0 process diagrams, is
available. As integration partners are free to select the orchestration lan-
guage of their choice, it should be easy to integrate different orchestration
languages with current choreography technology. Language transforma-
tion, starting from a suitable format, is a means to achieve this. In this
paper, we assess BPEL 2.0 and BPMN 2.0 process diagrams for their
suitability for this transformation in a services-based B2Bi setting using
a requirements framework identified through a literature study.

Keywords: Orchestration, BPEL 2.0, BPMN 2.0, B2Bi

1 Introduction

Over the last years, the influence of service-orientation in the implementation
of interorganizational processes has grown rapidly. Many approaches1 for imple-
menting such processes employ a combination of choreography and orchestration
models [6, 19] to capture different viewpoints on an enterprise-crossing business
process. Top-down approaches refine the first into a set of the latter which there-
after is implemented at each partner’s side. A variety of languages has emerged,
and is continuing to do so, on both levels of abstraction. Integration among the
two types of languages and an easy translation from a choreography to a set of
orchestrations is seen as a core issue [4].

Although BPEL [16] is widely used in these approaches for implementing
orchestrations, it is facing rising competion by other languages, such as BPMN 2.0
process diagrams [17] or the Windows Workflow Foundation (WF) [3]. Conse-
quently, an integration partner may choose to implement her orchestration not in
BPEL, but in any other orchestration language, using the derived orchestration,
which with current approaches mostly is a BPEL process, only as blueprint.
1 Some examples, without claiming to be complete, are: [4, 8, 14,18,23,30]

Building Orchestrations in B2Bi 59

In this case, there is still a considerable gap between a BPEL process derived
from a choreography and the final running orchestration. For instance, target
languages may rely on a different (i.e., graph-based or block-structured [11]) exe-
cution model with a differing level of expressiveness. Bridging this gap manually,
which is the current option, it is easy to introduce problems that hinder later
execution. Behavioural incompatibilities that were eliminated using model check-
ing techniques may be reintroduced and adjustments to the original interfaces
and message definitions that arise from the limitations of the final execution
platforms may become necessary. Here, an automatic transformation from an
orchestration derived from a choreography model to orchestrations implemented
in other languages can help. The idea is to not to compile choreography models
to an executable artifact tailored to a specific execution platform in a single step,
but to provide an artifact that can be automatically transformed to a variety
of different types of languages and platforms, and also be executed directly. By
automating this transformation step, it would be possible to:

1. Use model checking and related techniques [27] to ensure that no behavioural
incompatibilites are introduced during the transformation.

2. Leverage the information of what execution platforms are ultimately used and
will be communicating with one another to avoid pitfalls and communication
problems known for these platforms2 and perform optimizations such as the
configuration of the most efficient communication binding known to exist
among the platforms.

The starting point of this functionality is a suitable format to which choreography
models are compiled and from which such a transformation is possible in the
first place. The aim of this paper is to deliminate criteria (requirements) that
are essential for such a format and which can be used to evaluate the suitability
of a language, as well as to use these criteria to assess two languages that are
natural candidates for this kind of task. BPEL could be seen as such a format
and most researchers use it because of its status as de-facto standard; A more
recent option is BPMN 2.0 process diagrams [13].

The requirements are identified through a literature study. Since the afor-
mentioned format is to be used for model transformation and optimization
in service-oriented top-down B2Bi, the requirements are derived from relevant
sources in the B2Bi domain, service composition languages and transformation
of process models that reside on the same level of abstraction3.

Furthermore, we assess the support of BPEL 2.0 and BPMN 2.0 process
diagrams for the identified requirements and discuss the evaluation. The outcome
suggests that BPMN 2.0 process diagrams are more suitable for this type of
application.

2 For example known problems among Java-based and .NET-based Web Services [25].
3 This is called horizontal transformation [15].

60 Jörg Lenhard and Guido Wirtz

2 Related Work

Approaches for service composition using choreography and orchestration tech-
nology have attracted considerable interest. Most of these approaches (e.g.
[4, 8, 14, 18, 23, 30]) rely on BPEL as the target language to which choreog-
raphy models are compiled. Although being widely supported, BPEL is more and
more rivaled by other languages [13], both based on standardization initiatives,
such as BPMN 2.0 [17], or proprietary environments, such as WF [3]. Just as for
BPEL, engines for executing orchestrations built in these languages are available.

There are many studies that explicitly specify and assess requirements for
service composition languages, B2Bi, or model transformation with varying
design goals. In the area of service composition, focus lies on choreography
languages [4, 23]. In this paper, we center on orchestration languages instead,
but take into account these studies, where requirements for choreographies and
orchestrations intersect. The requirements defined in [4] concentrate on language
expressiveness. [22,23] on the other hand, take B2Bi-related requirements into
account. General requirements for process languages and requirements related to
horizontal transformation of these languages can be found in [7,15,29]. In this
paper, we extract and unify the requirements from the preceding studies that
are relevant to horizontal transformation of orchestration languages in B2Bi.

An assessment of BPEL 2.0 and BPMN 1.1 for parts of these requirements can
be found in [4]. In [10], the requirements from [4] are used to assess BPMN 2.0 col-
laboration and choreography diagrams. Here instead, we concentrate on BPMN 2.0
process diagrams with the addition of participants, use an extended set of
requirements and a different design goal; that is the assessment of orchestration
instead of choreography capabilities.

3 Requirements for Orchestration Languages in B2Bi

Myriads of requirements could be taken into account when considering either
B2Bi, service composition or language transformation and a vast amount of
literature on these topics is available with varying design goals. We do not intent
to start from scratch and therefore extract common requirements from several
influential studies of recent years that did explicitly post such requirements and
which match well our domain and design focus. Like in any literature study, this
selection of sources is biased to some extent by our knowledge and we do not
claim the completeness of the requirements listed here.

The requirements are sorted in four groups: (i) General requirements, (ii)
B2Bi-related requirements (iii) interaction-related requirements and (iv) derived
requirements. The final group does not originate from the requirement sources,
but is derived in the context of this study.

I. General requirements:
R1 Support for common control-flow structures: An orchestration language must

include a suitable amount of control-flow structures to allow for a direct
implementation of domain relevant scenarios. This requirement is explicitly

Building Orchestrations in B2Bi 61

stated in [7, 15,22,23]. Assessing languages for their support for control-flow
patterns which describe such common structures can be used as benchmark
for this requirement [28].

R2 Mechanism for hierarchical decomposition: A key feature for dealing with
the complexity of realistic orchestrations is a mechanism for hierarchical
decomposition. The necessity of this feature is stated in [7, 15,22,23].

R3 Data handling mechanisms: Just as for control-flow structures, appropriate
mechanisms for defining, transfering, and manipulating data structures must
be in place [4, 7, 15,22,23]. This requirement can be evaluated by assessing
pattern support as well [20].

R4 Exception handling mechanisms: Being executable, orchestrations must not
only deal with best-case scenarios, but take into account erroneous circum-
stances that may arise during execution. This requirement is backed up by
[4,7, 22,23]. It can also be assessed using pattern-based analysis [21].

R5 Extensibility: An orchestration language should be extensible to allow for
an easy adaptation and the introduction of new or modified constructs to
support use cases with specific needs [7, 22,23].
II. B2Bi-related requirements:

R6 Transactions: An important primitive in enterprise computing is transactional
integrity of interactions. For instance, the reliable transmission of business
documents is crucial and a common means to this end are transactions. An
orchestration language should provide mechanisms to denote transactional
contexts during process execution [7, 22,23].

R7 Quality of service (QoS): Several nonfunctional properties, esp. QoS param-
eters, are vital in B2Bi. These are authentication, message encryption and
signatures, non-repudation of message exchanges and time constraints. An
orchestration language should provide explicit mechanisms to express these
properties [4, 22,23].

R8 Standards: In the B2Bi setting, it is not possible to enforce technologies on
different independent partners. A higher degree of interoperability is likely
by relying on essential standards [22,23].
III. Interaction-related requirements:

R9 Message correlation: During execution, multiple orchestration instances run
in parallel. To support a correct routing of messages by an engine, an orches-
tration language must provide mechanisms for message correlation [4, 22, 23].
As before, this aspect can be evaluated using patterns [1].

R10 Service selection and reference passing: In realistic interaction scenarios, not
all communicating parties may be known at design time. Instead, partner
references are transfered in messages and are bound at run-time [4].

R11 Multi-lateral interaction: Choreographies may consist of more than two part-
ners. Consequently, orchestrations must be able to represent and communicate
with multiple different parties [4].
IV. Derived requirements:

R12 Contract-first development and integration with choreography approaches:
It is a general engineering best practice to define interfaces or contracts

62 Jörg Lenhard and Guido Wirtz

before implementing them. This is inevitable in a top-down development
approach. Orchestration languages therefore must support contract-first
development4. [4,23] specify that choreography languages must easily integrate
with orchestration languages. Also the reverse is important: The applicability
of an orchestration language in top-down approaches should be demonstrated.

R13 Web Services and XML: Choreographies should be technology-independent
[4,23]. This does not apply to orchestrations, which need to be executable.
Consequently, they should work with contemporary communication and
integration technologies, most notably Web Services and SOAP. To allow
for easy processing and transformation of orchestration models, languages
should provide a XML serialization format [7, 15,22,23].

4 Assessment of BPEL 2.0 and BPMN 2.0

In the following, BPEL 2.0 and BPMN 2.0 process diagrams are assessed for
their support for the requirements. We state whether a requirement is supported
directly (+), partially (+/-) or not in a direct fashion (-). This trivalent measure
is relatively simplistic and subjective to a certain extent. Although enhanced
alternatives do exist [12], it is used extensively [4, 5, 10, 20, 21, 28, 31]. For that
reason and the space constraints of this paper, we use the above measure.

Assessment of BPEL 2.0: A detailed analysis of the control-flow capacity of
BPEL can be found in [12]. BPEL 2.0 supports a range of control-flow structures
and block-structured and graph-oriented control-flow definition. Given typical
B2Bi use cases5 generally only require simple control-flow constructs [24], we
consider this as evidence for the support of R1. BPEL 2.0 provides no explicit
construct for hierarchical decomposition; that is, no direct notion of a subprocess6.
It is possible to work around this requirement using nested scopes or Web Service
invocation of another BPEL 2.0 process, which qualifies as partial support for R2.
Compensation and try-catch constructs are present for exception handling and
XML Schema and XPath 1.0 for data definition and manipulation. Although closer
evaluations are only present for BPEL 1.1, we consider this as support for R3 and
R4. BPEL 2.0 allows to extend the language with new engine-specific activities
using extensionActivity and extensionAssignOperation, thereby fullfilling
R5. As for the B2Bi requirements, BPEL 2.0 has no built-in mechanisms for
scoping transactions, which must be implemented using additional standards such
as WS-Coordination and WS-AtomicTransaction. Policies using these standards
can be attached to operations at the WSDL-level. This policy-based approach
4 This may seem obvious. Nevertheless, there are languages, such as Windows Workflow

in its current revision 4 [3], that do not support contract-first development.
5 Examples of such use cases are the RosettaNet Implementation Guides:

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/
RosettaNetImplementationGuides/tabid/2985/Default.aspx

6 Such a structure is introduced by the BPEL-SPE specification [9], a BPEL extension
for subprocesses. However, this specification is not widely adopted and thus we limit
ourselfs to the BPEL specification [16] and related WS-standards in this evaluation.

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx

Building Orchestrations in B2Bi 63

enhances the flexibility and composability of the Web Services stack. However, in
the case of B2Bi, it would be reasonable to insert the notion of transactions into the
process itself7. BPEL 2.0 directly provides only quasi-atomic transactions through
compensation [2]. Altogether, we consider it to provide only partial support for
R6. The same applies to QoS requirements which cannot be represented directly,
but with the help of additional standards, such as WS-ReliableMessaging and
WS-Security. Moreover, BPEL’s support for time constraints is fairly limited
[12]. This results in partial support for R7. As BPEL is an OASIS standard, it
fullfills R8. BPEL 2.0 uses key-based correlation with correlationSets that can
be initialized and used by messaging activities, thus fullfilling R9. References can
be passed and set via WS-Addressing endpointReferences which are first-class
citizens of the specification. As this is only an implict way of service selection, it is
considered as partial support for R10 [4]. Multi-lateral interaction is possible using
multiple partnerLinks, fullfilling R11. The applicability of BPEL in top-down
approaches has been proven in multiple settings [8, 14,18,23,30], fullfilling R12.
Finally, the language is built on Web Services and provides a XML format (R13).

Assessment of BPMN 2.0: A discussion on control-flow pattern support
is part of the BPMN 2.0 specification [17], granting support for R1. This is not
the case for data or exception handling patterns, but here results from an older
revision are applicable [21, 31], fullfilling R3 and R4. R2 is directly supported
using subProcesses and callActivities which are considerably more powerful
than BPEL scopes as they allow for a reuse of process definitions without having
to resort to external Web Service invocation. BPMN 2.0 comes with an extension
mechanism, based on extension and extensionDefinition, that can be used
to define additional elements at the level of existing elements. For instance, by
extending a task with additional attributes, it is possible to provide new function-
ality. This mechanism fullfills R5. A special type of subProcess, transaction,
can be used to demark a transactional context in a process to provide a consistent
outcome to the execution of a set of activities and allows for the configuration
of the coordination protocol applied (typically WS-AtomicTransaction or WS-
BusinessActivity). Additionally, hazards mark events in a transaction that
enforce its immediate termination without compensation, but without termi-
nating the complete process. Such scope-termination is not possible in BPEL.
Altogether, this fullfills R6. Concerning QoS, BPMN processes are limited to
simple time constraints in the same fashion as BPEL. Although it would be
possible to annotate such configurations using properties, this only qualifies for
partial support with respect to R7. BPMN is an OMG standard, satisfying R8.
BPMN 2.0 supports key-based and, in contrast to BPEL 2.0, context-based corre-
lation. This is sufficient for R9. Participants can be used to represent interaction
partners of a process, thereby fullfilling R11. Service selection is no first-class
member of the BPMN 2.0 specification. However, BPMN 2.0 allows to define
endPoints, which may be comprised of WS-Addressing endpointReferences.
It is possible to reference these endPoints in a participant and reassign them

7 For instance, this is also the strategy followed by [26]. There, policies are introduced at
the level of scopes or partnerLinks, resulting in coordinated scopes / partnerLinks.

64 Jörg Lenhard and Guido Wirtz

during process execution. This resembles the solution of BPEL. Therefore, we
conclude that R10 is partially supported. The use of BPMN executable processes
as orchestrations is just in its start. Nevertheless, in the BPMN environment, they
are integrated into diagrams for modeling choreographies, so their applicability
in a top-down development approach seems given (R12). Finally, BPMN 2.0
comes with a XML serialization format and in the context of messaging ac-
tivities and tasks, Web Services are considered the default technology (R13).

Table 1. Assessment of Languages

Requirement BPEL 2.0 BPMN 2.0
R1 Control-flow structures + +
R2 hierarchical decomposition +/- +
R3 Data handling + +
R4 Exception handling + +
R5 Extensibility + +
R6 Transactions +/- +
R7 QoS +/- +/-
R8 Standards + +
R9 Correlation + +
R10 Reference passing +/- +/-
R11 Multi-lateral interaction + +
R12 Choreography integration + +
R13 XML, Web Services + +

5 Conclusion and
Future Work

The results are summarized in Ta-
ble 1. Both languages provide a
strong degree of support for the
requirements at hand, which is
not surprising and the reason they
were selected in the first place.
Here, nuances in the support are of
interest. As there is a more power-
ful mechanism for hierarchical de-
composition and a concept for de-
marking transactions in BPMN 2.0 processes, they are considered as more suitable
for the output of B2B-choreographies. To levitate existing deficiencies, it would
be helpful to extend process elements with explicit notions for QoS. Also, the
definition of mappings to further languages, such as WF, is promising.

References

1. A. P. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in
Service-Oriented Architectures. In FASE, pages 245–259, Braga, Portugal, 2007.

2. A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Service Interaction Patterns.
In BPM, pages 302–318, Nancy, France, September 2005.

3. B. Bukovics. Pro WF: Windows Workflow in .NET 4. Apress, June 2010. ISBN-13:
978-1-4302-2721-2.

4. G. Decker, O. Kopp, F. Leymann, and M. Weske. Interacting services: From
specification to execution. Data & Knowledge Engineering, Elsevier, 68(10):946–
972, 2009.

5. G. Decker, H. Overdick, and J. Zaha. On the Suitability of WS-CDL for Choreo-
graphy Modeling. In EMISA, pages 21–33, Hamburg, Germany, October 2006.

6. R. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems, 13:337–368, 2004.

7. S. I. Fernando, D. Creager, and A. Simpson. Towards Build-Time Interoperability
of Workflow Definition Languages. In SYNASC, Washington DC, USA, 2007.

8. B. Hofreiter and C. Huemer. A model-driven top-down approach to inter-
organizational systems: From global choreography models to executable BPEL. In
Join Conf CEC, EEE, 2008.

Building Orchestrations in B2Bi 65

9. IBM, SAP. WS-BPEL Extension for Sub-Processes – BPEL-SPE, September 2005.
10. O. Kopp, F. Leymann, and S. Wagner. Modeling Choreographies: BPMN 2.0 versus

BPEL-based Approaches. In EMISA, 2011.
11. O. Kopp, D. Martin, D. Wutke, and F. Leymann. The Difference Between Graph-

Based and Block-Structured Business Process Modelling Languages. Enterprise
Modelling and Information Systems Architecture, GI e.V., 4(1):3–13, 2009.

12. J. Lenhard, A. Schönberger, and G. Wirtz. Edit Distance-Based Pattern Support
Assessment of Orchestration Languages. In OTM Conferences, Hersonissos, 2011.

13. F. Leymann. BPEL vs. BPMN 2.0: Should You Care? In 2nd International
Workshop on BPMN, 2010.

14. J. Mendling and M. Hafner. From WS-CDL choreography to BPEL process
orchestration. JEIM, 21(5):525 – 542, 2008.

15. M. Murzek and G. Kramler. The Model Morphing Approach - Horizontal Transfor-
mations between Business Process Models. In BIR, pages 88 – 103, 2007.

16. OASIS. Web Services Business Process Execution Language, April 2007. v2.0.
17. OMG. Business Process Model and Notation (BPMN) Version 2.0, January 2011.
18. C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst. From

BPMN Process Models to BPEL Web Services. In ICWS, pages 285–292, 2006.
19. C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46–

52, October 2003.
20. N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.

Workflow Data Patterns: Identification, Representation and Tool Support. In ER,
LNCS, pages 353–368, Klagenfurt, Austria, October 2005. Springer, Heidelberg.

21. N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Workflow Exception
Patterns. In CAiSE, pages 288–302, Luxembourg, Luxembourg, June 2006. Springer.

22. A. Schönberger, C. Wilms, and G. Wirtz. A Requirements Analysis of Business-to-
Business Integration. Technical Report 83, Otto-Friedrich-Universität Bamberg,
December 2009. ISSN 0937-3349.

23. A. Schönberger. The CHORCH B2Bi approach: Performing ebBP choreographies
as distributed BPEL orchestrations. In SC4B2B, Miami, Florida, USA, July 2010.

24. A. Schönberger. Visualizing B2Bi choreographies. In 4th IEEE International
Conference on Service-Oriented Computing and Applications. IEEE, 2011.

25. S. Shetty and S. Vadivel. Interoperability issues seen in Web Services. International
Journal of Computer Science and Network Security, 9(8):160 – 168, 2009.

26. S. Tai, R. Khalaf, and T. Mikalsen. Composition of Coordinated Web Services. In
ACM/IFIP/USENIX International Middleware Conference, 2004.

27. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. From
Public Views to Private Views - Correctness-by-Design for Services. In Web Services
and Formal Methods, Fourth International Workshop (WS-FM), Brisbane, 2007.

28. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, Springer, 14(1):5–51, 2003.

29. D. Vanderhaeghen, S. Zang, A. Hofer, and O. Adam. XMLbased Transformation of
Business Process Models - Enabler for Collaborative Business Process Management.
In XML4BPM, pages 81 – 94, 2005.

30. I. Weber, J. Haller, and J. Mulle. Automated Derivation of Executable Business
Processes from Choreographies in Virtual Organisations. IJBPIM, 3:85–95, 2008.

31. P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, and N. Russell.
On the Suitability of BPMN for Business Process Modelling. In Business Process
Management, pages 161–176, Vienna, Austria, September 2006.

A Survey on Approaches for Timed Services

Kristian Duske1 and Richard Müller2

1 Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

kristian.duske@tu-berlin.de
2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany

richard.mueller@informatik.hu-berlin.de

Abstract. In the context of service-oriented computing, time has been extensively
studied in literature. We present a survey on possible problem statements for timed
services, and give an overview of state-of-the-art approaches. Thereby we identify
which problems are already thoroughly researched and which problems warrant
further research.

Keywords: SOC, timed services, behavior, quality of service, survey

1 Introduction

Service-oriented computing (SOC) [22] aims at building a complex system by composing
less complex, loosely coupled building blocks called services. A service is an autonomous
system providing its functionality via a well-defined interface. This interface is used
to communicate with other services. Consequently, the composition of services into
a new service is a key feature of SOC. Functional and non-functional correctness of
a service composition is critical [27]. We define functional correctness in terms of
the composition’s behavior, for example deadlock freedom or weak termination. Non-
functional properties refer to Quality of Service (QoS) dimensions like duration, response
time, capacity, or reliability [7].

Time is an abstract concept which is crucial for many real-world systems like workflow
systems [4], web services [3], or any kind of protocol [24]. The introduction of time to
SOC affects both the behavior and the QoS of a composition [15,28]. On the one hand,
timed constraints can limit the behavior of a composition. As an example, consider an
airline booking service where a travel agency service may reserve a ticket for at most
one hour. A travel agency service that always attempts to buy a ticket one day after
reservation will always encounter a timeout. Hence, the behavior of the composition
of these two services is limited to unsuccessful buying attempts. On the other hand, a
composition may have to additionally satisfy timed requirements. For example, a travel
agency service may prefer an airline booking service that takes less time to perform
a reservation than other functionally equivalent airline booking services. In this paper,
we investigate timed behavior and QoS of timed services, resp. of a timed service
composition.

Given the importance and influence of time for services, there exist many different
problem statements and approaches in the available literature. This makes it difficult
to gather a common view on timed services. This survey elaborates on the problem

A Survey on Approaches for Timed Services 67

statements found in literature and gives an overview of state-of-the-art approaches. More
precisely, the main contributions of this paper are as follows. The first step consists of
defining a problem space — that is, a set of possible problem statements related to timed
services. We present a problem space building upon five orthogonal problem dimensions
in Sect. 2. In the second step, we survey a selection of existing approaches according to
their corresponding problem statement in Sect. 3. Finally, we evaluate the state-of-the-art
for every problem statement: “Is it valid and relevant?” “Is it an open problem?” “If it is
solved, what is the quality of the applied approaches?”. Section 4 concludes the paper
with a discussion of future work and a conclusion.

2 Problem space

Most approaches for timed services deal with a specific problem statement. Instead of
classifying the approaches directly, we start by classifying the problem statements into
a problem space. This way, we gain a systematic overview on timed services: While a
classification of the approaches may deliver interesting results on its own, a classification
of the problem statements helps identifying problem classes that require further research.

Our problem space is a systematic collection of time-related challenges that arise
in SOC. Every point in the problem space represents a unique combination of certain
problem characteristics. It is spanned by five orthogonal dimensions: criterion, lifecycle
phase, time abstraction, timed constraint, and system (see Fig. 1 for an overview). The
selected dimensions and their characteristics are tailored towards the properties of the
problem statements that arise when timed services are considered.

Problem Space

Time AbstractionCriterion Lifecycle Phase

densediscretenon-
functional

functional design-time run-time

System

service in
isolation

closed
composition

Timed Constraint

absoluterelative both

Fig. 1. Problem dimensions and their characteristics

In the following, we explain each dimension and its possible characteristics in more
detail. For each, we give a description illustrated with some brief examples, explain its
origin, and justify its relevance for timed services.

Criterion When dealing with timed services, two types of correctness criteria are
relevant for a service-oriented system: functional and non-functional correctness.
Functional correctness corresponds to the question whether the system works cor-
rectly — that is, the system’s behavior. It covers for example deadlock freedom,
weak termination, or the satisfaction of a set of timed requirements. Functional
correctness is a precondition for non-functional correctness, which corresponds to
qualitative questions — that is, how well does the system work. Examples for non-
functional correctness are Quality of Service criteria — that is, duration, response
time, capacity (messages per time unit), reliability, or price.

68 Kristian Duske and Richard Müller

Lifecycle phase A lifecycle is a structure consisting of distinguishable phases that
is imposed on the development of a system. In this paper, we consider design-
time and run-time as characteristics. Design-time is the phase where the services
and compositions are defined and implemented. Here we consider preconceived
compositions, models and static service definitions. Run-time is the phase during
which the system is executed. At run-time, we may have different information at
our disposal, leading to new problems like monitoring, run-time adaption, instance
migration, or re-configuration.

The aforementioned problem dimensions — criterion and lifecycle phase — are
ubiquitous and inevitable, and concern any kind of information system [25,10].

Time abstraction There are two ways of introducing time into a system, distinguishable
by a different resolution. Discrete time uses a domain with countably many time
values, while dense time uses a domain with uncountably many time values. A
problem which is decidable in discrete time may become undecidable when regarded
with dense time.

Timed constraint We have two combinable ways of expressing timed constraints.
Firstly, timed constraints can be relative to some event like the occurrence of an
action or the entry of a state. Secondly, timed constraints can be absolute — that is,
referring to a commonly known point in time.

The problem dimensions time abstraction and timed constraint are inherent to any
kind of information system dealing with a notion of time. However, the last dimension —
system — is a direct result of our service-oriented setting.

System In SOC we distinguish between open and closed systems — that is, between
a service in isolation and a closed composition. Both systems elicit fundamentally
different questions. For a service in isolation, questions like well-formedness or
controllability arise. By contrast, questioning for example deadlock freedom is
meaningful for a closed composition only.

The combination of all problem characteristics yields 48 different classes. In the next
section, we present the survey and classify all examined approaches for timed services
according the defined problem space.

3 Survey

We conduct the survey following a three-step approach by Levy and Ellis [20]: Firstly, we
query Google Scholar1, Mendeley2, DBLP3, and IEEE Xplore4 by keywords (“service”,
“soc”, “time”, “timing”, “realtime”, “timed constraints”, “timed requirements”, “quality
of service”), and conduct both backward and forward search on the found literature. This
yields a total of 55 papers, 26 of which we find relevant to this survey. Secondly, we
analyze the approaches related to timed services. Finally, we classify them according to
their problem statements; see Table 1 for the result.

1 http://scholar.google.de/ 2 http://www.mendeley.com/
3 http://dblp.uni-trier.de/ 4 http://ieeexplore.ieee.org

http://scholar.google.de/
http://www.mendeley.com/
http://dblp.uni-trier.de/
http://ieeexplore.ieee.org

A Survey on Approaches for Timed Services 69

We now give a brief overview of the surveyed approaches, which we group into ap-
proaches focusing on functional correctness and approaches dealing with non-functional
correctness. Later, we summarize our findings.

3.1 Functional correctness

Most of the surveyed approaches focus on a service or a composition specified in BPEL.
The general approach consists of providing BPEL with a formal semantics for verification
purposes.

Mateescu et al. [21] propose a translation of BPEL to discrete-time labelled transi-
tion systems which handle activity durations and timeouts. Timed safety and liveness
properties are analyzed using model checking tools.

Kazhamiakin et al. [19] use web service timed transition systems (WSTTS) for the
analysis and verification of timing aspects of BPEL4WS compositions. WSTTS are a
variant of timed automata tailored towards web services. All time-related constructs of
BPEL4WS incl. absolute timeouts are supported. Timed requirements can be expressed
using a discrete subset of duration calculus. Additionally, the authors present an algorithm
to compute extremal bounds of the execution duration of a composition.

Guermouche et al. [14] propose the FIACRE verification language as their underlying
formalism. It supports a rich set of timed constraints (activity durations, message delays
and timeouts) which is further separated into local and global constraints. Due to this
distinction, the authors can formulate a well-formedness criterion for isolated services
and a compatibility criterion for service compositions. Furthermore, their approach
supports rich timed requirements using a timed leads to operator.

Similarly, Fares et al. [13] capture both the behavioral and the timing aspects of
all BPEL 2.0 constructs by mapping them to FIACRE. Timed requirements can be
formulated as LTL formulas and are verified against a service composition using the
ToolBox Tina.

Kallel et al. [18] employ XTUS-automata for the specification and verification of
relative and absolute timed constraints. The authors propose to use existing model
checking tools to verify functional correctness criteria such as deadlock freedom. In
addition, they present a translation of the formal specifications to AO4BPEL aspects
which enforce the temporal constraints at run-time.

The approach proposed by Song et al. [26] aims to verify timed requirements for a
BPEL composition with the goal of identifying other services suitable for composition
at run-time. It is based on a mapping to Time Petri-nets and an algorithm to compute the
extremal bounds of the time interval between two transitions. The approach only supports
the specification of simple timed requirements on a time interval between transitions.

Haddad et al. [15,16] treat functional correctness of isolated services. They introduce
an algorithm that either generates a correct interaction controller for a given BPEL
specification or detects whether the specification is ambiguous. The absence of ambiguity
can be regarded as a correctness criterion for isolated services.

Benatallah et al. [2] describe an extension for business protocols with timeouts on the
states of a protocol. Based on these timed business protocols, they formulate the notions
of time-dependent compatibility and replaceability.

70 Kristian Duske and Richard Müller

Ponge et al. [23,24] extend this approach by introducing richer timed constraints
and fine-grained classes of time dependent compatibility and replaceability properties.
These classes are characterized by a set of operators that manipulate and analyze timed
protocols. A mapping from timed protocols to a special class of timed automata allows
the authors to derive decidability results for these operators. These results come at the
cost of requiring deterministic service behavior.

The approach presented by Berardi et al. [3] employs timed finite state automata
to represent two types of relative timed constraints (timeouts and durations). Again,
deterministic behavior is a requirement for the services.

Čaušević et al. [9] extend the resource-aware, timed hierarchical language REMES for
behavioral service modeling. They focus on service capacity and time-to-serve as timed
requirements. The correctness of a service composition can be verified by employing
Dijkstra’s and Scholten’s strongest postcondition semantics. The approach is limited to
synchronous communication between the services.

Zahoor et al. [29] introduce a declarative approach for modeling web services based
on event calculus. Given the composition design with a timed properties representation,
an event calculus reasoner can be used to compute a solution satisfying associated timed
properties. The approach supports synchronous and asynchronous communication.

de Alfaro et al. [12] present an approach to check the compatibility of timed interfaces.
A timed interface is a specification of the input assumptions and output guarantees (incl.
timing) of a component. The authors develop a well-formedness and a compatibility
criterion for such timed interfaces and present algorithms to decide these properties.

Based on this work, Henzinger et al. [17] present an interface algebra for real-time
components. Here, an interface specifies guaranteed task latencies depending on assump-
tions about task arrival rates and allocated resource capacities. Interface compatibility
can be checked on partial designs. An interface is comparable to a stateless service.

3.2 Non-functional correctness

In the area of non-functional correctness, there are several approaches that deal with
the computation and optimization of the QoS of a service composition at runtime.
Cardoso et al. [7] propose a predictive QoS model that allows the computation of the
QoS of a workflow from the QoS values of the tasks. Task QoS values are updated at
runtime by monitoring the execution of the workflow, and the approach uses probability
estimates for workflow transitions during the computation of the overall QoS. Many of
the other approaches in the area cite this model or propose a similar one. Zhao et al.
[31] also present a QoS model that allows the computation of overall QoS of a service
choreography specified in the Chor language.

Based on the assumption that several functionally equivalent services exist for each
activity of the workflow, the QoS of a service composition can be optimized by computing
an optimal selection of participating services. Zeng et al., Canfora et al. and Aggarwal
et al. all propose similar approaches which only differ in the used QoS model and
optimization method [1,6,30]. Canfora et al. [5] present a method to handle expected
QoS violations by replacing services during the execution of a service composition.
Cardoso et al. [8] propose an approach to include QoS values to select services that do
not violate the QoS requirements of a composition.

A Survey on Approaches for Timed Services 71

3.3 Findings

Table 1 presents the classification of the surveyed approaches according to their respective
problem statements. Some approaches show up multiple times because they attack more
than one problem class. Notice that any approach which supports dense time naturally
also supports discrete time. However, in such cases a discrete time approach may exist
which has a lower computational complexity. Hence, we do not list dense time approaches
in the row of discrete time approaches. Only three approaches deal with both absolute
and relative timed constraints [13,18,19]. Since every other approach is limited to relative
constraints, we omit the timed constraint dimension in Table 1.

functional non-functional
open closed open closed

discrete design-time [21] [3], [23], [2], [29],
[19]

run-time [29]
dense design-time [16], [15], [12],

[14], [17]
[12], [24], [14], [18],
[9], [13]

[7], [31] [7], [31]

run-time [26] [30], [6], [1],
[5], [8]

[18], [30], [6], [1],
[5], [8], [11]

Table 1. Classification of the surveyed approaches

There are two clusters of approaches. Each cluster represents a problem which has been
treated by several authors with different formalisms. The largest cluster of approaches
deals with ensuring functional correctness of a service composition at design-time. Most
of the approaches in this cluster use dense time. Naturally, the approaches vary in their
expressiveness, but this is outside the scope of this paper. It should also be noted that
some approaches consider deterministic services only [2,3,12,23,24].

The second significant cluster is in the area of ensuring non-functional correctness
at run-time. Most authors propose similar approaches to optimize the overall QoS of a
workflow by computing an optimal selection of services. The underlying assumption is
that for each activity of the workflow there exist several functionally equivalent services.
They solve the resulting optimization problem with methods like linear programming
[1,30] or genetic algorithms [5,6]. Other approaches in this cluster deal with monitoring
temporal QoS constraints [18] or semantic service composition [8].

There are several sparsely populated spots in the problem space. Only two approaches
deal with functional correctness at run-time [26,29], both with limited expressiveness.
This may be due to the fact that the computational complexity of all approaches that
attack functional correctness is so high that their application at run-time is not feasible
in realistic scenarios [26].

Another area where we found little to no existing research is the problem of verifying
non-functional correctness at design-time. It can be argued that reasoning about non-
functional correctness criteria at design time is not very useful because QoS attributes
of service must be constantly updated and monitored at run-time and thus an optimal
selection of services for a composition can only be computed at run-time.

72 Kristian Duske and Richard Müller

4 Discussion and Conclusion

In this paper, we survey approaches for timed services. We define a problem space with
five dimensions and classify the surveyed approaches according to this problem space.
Thereby, we identify which problems are already thoroughly researched and which
problems warrant further research.

It could be debated that our problem space is inaccurate and that we should include
more dimensions. Indeed, it would be interesting to differentiate the surveyed approaches
further by their chosen formalism(s) or verification techniques. Nonetheless, such fea-
tures are not related to the problem space and should therefore be analyzed separately.
In any case, this could not be included in this paper due to space limitations.

Currently, we distinguish only between design-time and run-time. These phases of a
traditional software lifecycle may be insufficient to describe the lifecycle of a service-
oriented system. We are going to investigate whether the lookup and composition phase
should be separated from the run-time phase.

We identify two areas in the domain of timed services which warrant further research:
functional correctness at run-time and non-functional correctness at design-time. We in-
tend to focus on the former problem class in the future. Hence, our future work is divided
into three areas. Firstly, we will extend this survey by including more approaches and by
classifying the approaches by their features — that is, their formalism and verification
technique. Secondly, we will research correctness criteria for isolated timed services.
We are particularly interested in the properties of well-formedness and controllability of
non-deterministic, asynchronously communicating timed services. Thirdly, we plan to
investigate methods for verifying functional correctness at run-time, specifically during
the composition phase we mentioned above. Due to the dynamic nature of service-
oriented systems, it is not sufficient to ensure functional correctness at design time.
However, the existing approaches cannot be easily employed at run-time because of their
computational complexity.

References

1. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint Driven Web Service Composition
in METEOR-S. In: IEEE International Conference on Services Computing (2004)

2. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On Temporal Abstractions of Web Service
Protocols. In: Proceedings of the CAiSE Forum (2005)

3. Berardi, D., De Rosa, F., De Santis, L., Mecelia, M.: Finite state automata as conceptual
model for e-services. Contract (2003)

4. Bettini, C., Wang, X., Jajodia, S.: Temporal reasoning in workflow systems. Distributed and
Parallel Databases 11(3) (2002)

5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of Composite
Web Services. IEEE (2005)

6. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware service
composition based on genetic algorithms. Genetic And Evolutionary Computation Conference
(2005)

7. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling Quality of Service for Workflows and
Web Service Processes. Tech. rep. (2004)

A Survey on Approaches for Timed Services 73

8. Cardoso, J., Sheth, A.: Semantic E-Workflow Composition. Journal of Intelligent Information
Systems (2003)

9. Causevic, A., Seceleanu, C., Pettersson, P.: Modeling and Reasoning about Service Behaviors
and Their Compositions. Lecture Notes in Computer Science (2010)

10. Chung, L., do Prado Leite, J.: On non-functional requirements in software engineering.
Conceptual modeling: Foundations and applications (2009)

11. Cristian, F., Fetzer, C.: The timed asynchronous distributed system model. Parallel and
Distributed Systems, IEEE Transactions on (1999)

12. De Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed Interfaces. International Conference on
Embedded Software (2002)

13. Fares, E., Bodeveix, J.P., Filali, M.: Verification of Timed BPEL 2.0 Models. Tech. rep. (2011)
14. Guermouche, N., Zilio, S.D.: Formal Requirement Verification for Timed Choreographies.

Tech. rep. (2011)
15. Haddad, S., Melliti, T., Moreaux, P.: Modelling web services interoperability. International

Conference on Enterprise Information Systems (2004)
16. Haddad, S., Moreaux, P., Rampacek, S.: Client Synthesis for Web Services by way of a Timed

Semantics. International Conference on Enterprise Information Systems (2006)
17. Henzinger, T.A., Matic, S.: An Interface Algebra for Real-Time Components. IEEE RealTime

and Embedded Technology and Applications Symposium (2006)
18. Kallel, S., Charfi, A., Dinkelaker, T., Mezini, M., Jmaiel, M.: Specifying and Monitoring

Temporal Properties in Web Services Compositions. IEEE European Conference on Web
Services (2009)

19. Kazhamiakin, R., Pandya, P., Pistore, M.: Representation, verification, and computation of
timed properties in web service compositions. IEEE International Conference on Web Services
(2006)

20. Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support
of information systems research. Informing Science Journal 9 (2006)

21. Mateescu, R., Rampacek, S.: Formal modelling and discrete-time analysis of BPEL web
services. International Journal of Simulation and Process Modelling (2008)

22. Papazoglou, M.: Web Services - Principles and Technology. Prentice Hall (2008)
23. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and replaceability

analysis of timed web service protocols. In: International Conference on Conceptual Modeling
(2007)

24. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service
protocols. ACM Transactions on Software Engineering and Methodology (2010)

25. Ramamoorthy, C.V., Prakash, A., Tsai, W.T., Usuda, Y.: Software Engineering: Problems and
Perspectives. Computer (1985)

26. Song, W., Ma, X., Ye, C., Dou, W., Lü, J.: Timed Modeling and Verification of BPEL Processes
Using Time Petri Nets. International Conference on Quality Software (2009)

27. Ter Beek, M., Bucchiarone, A., Gnesi, S.: Formal methods for service composition. Annals of
Mathematics, Computing & Teleinformatics (2007)

28. Tsai, W.T., Lee, Y.h., Cao, Z., Chen, Y., Xiao, B.: RTSOA: Real-Time Service-Oriented
Architecture. IEEE International Symposium on ServiceOriented System Engineering (2006)

29. Zahoor, E., Perrin, O., Godart, C.: A declarative approach to timed-properties aware Web
services composition. Event (2010)

30. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web
services composition. International World Wide Web Conference (2003)

31. Zhao, X., Cai, C., Yang, H., Qiu, Z.: A QoS View of Web Service Choreography. IEEE
International Conference on e-Business Engineering (2007)

Weak Conformance of Process Models
with respect to Data Objects

Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2–3, D-14482 Potsdam, Germany
{Andreas.Meyer,Artem.Polyvyanyy,Mathias.Weske}@hpi.uni-potsdam.de

Abstract. Process models specify behavioral aspects by describing or-
dering constraints between tasks which must be accomplished to achieve
envisioned goals. Tasks usually exchange information by means of data
objects, i.e., by writing information to and reading information from data
objects. A data object can be characterized by its states and allowed state
transitions. In this paper, we propose a notion which checks conformance
of a process model with respect to data objects that its tasks access. This
new notion can be used to tell whether in every execution of a process
model each time a task needs to access a data object in a particular state,
it is ensured that the data object is in the expected state or can reach
the expected state and, hence, the process model can achieve its goals.

1 Introduction
Process modeling usually comprises two aspects: The control flow perspective and
the data flow perspective [1]. Control flow defines possible execution sequences
of tasks, whereas data flow provides means for exchanging information between
the tasks. Information gets passed between tasks of a process model by writing
to and reading from data objects. A data object can be formalized as a set of
data states and transitions between the data states, i.e., as a labeled transition
system, which is usually referred to as an object life cycle. An object life cycle
can be used to identify the current data state of the data object and the set of its
reachable data states from the current one [2]. Similarly, the execution semantics
of process models is often defined by employing the notion of a process state that
defines a set of tasks which can be performed. A process state changes once a
task gets accomplished. A process state together with all data states (one for
each data object) collectively define a state of a process instance. It is usually
accepted that control flow drives execution of process models, i.e., a change in a
state of a process instance is triggered by a change of a process state, which in
turn may activate changes of data states.

In order to achieve safe execution of a process model, it must be ensured that
every time a task attempts to access a data object, the data object is in a certain
expected data state or is able to reach the expected data state from the current
one, i.e., object life cycles of data objects must conform to the process model;
otherwise, the execution of a process model may deadlock, i.e., terminate prior to

mailto:Andreas.Meyer@hpi.uni-potsdam.de;Artem.Polyvyanyy@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de

Weak Conformance of Process Models 75

reaching the goal state. In this paper, we propose a notion of weak conformance
which allows for a precise characterization of the above described intuition, where
“weak” reflects the fact that data states are required to be reachable via arbitrary
number of data state transitions and not necessarily via a single one.

In a process model which satisfies weak conformance with respect to its data
objects, it is assumed that implicit data state transitions get realized by an
external entity or by detailed implementations of process model tasks. Relevance
for the new notion is based on the need to check for conformance of underspecified
process models where, e.g., external events, not captured in the process model,
change states of data objects. Events and tasks, being part of but not modeled in
the process model, may also change the states of data objects. These modeling
artifacts are, for instance, hidden in subprocess structures, so that process models
and object life cycles are specified at different levels of detail. Practically, process
models still conform to their used data objects if the hidden state changes do
not contradict against data object life cycles.

The remainder of the paper proceeds as follows: The next section describes
process scenarios – a formalism which integrates control flow and data flow aspects
of process modeling. In Section 3, we define the notion of weak conformance of
the process model from a process scenario with respect to data objects it operates
with. Section 4 is devoted to related works. Finally, Section 5 draws conclusion.

2 Process Scenarios

In this section, we propose process scenarios – a formalism for designing concurrent
systems which integrates control flow and data flow perspectives. A process
scenario consists of two parts: (i) a process model which orchestrates the execution
of tasks, and (ii) data objects which describe what information do tasks require to
be executed and/or what information do tasks produce. We start the discussion
with the definition of the first part – a process model.
Definition 1 (Process model).
A process model is a tuple M = (A,G,D,R,C,F, type,A, µ), where A is a finite
set of tasks, G is a finite set of gateways, D is a finite set of data objects, R is
a finite set of data states, C ⊆ (A ∪ G) × (A ∪ G) is the control flow relation,
F ⊆ (A× (D×R))∪ ((D×R)×A) is the data flow relation, type ∶ G→ {xor ,and}
assigns to each gateway a type, A is a finite set of names such that τ ∈ A (A, G,
D, R, and A are pairwise disjoint), and µ ∶ A→ A assigns to each task a name.
We use subscripts, e.g., AM , GM , and µM , to denote the relation of the sets and
functions to process model M , and omit subscripts where the context is clear.
We refer to the set A ∪G as nodes of process model M . If µ(a) ≠ τ , a ∈ A, then
a is observable in M ; otherwise a is silent in M . We expect that every process
model M fulfills basic structural correctness requirements: (i) every task of M
has at most one incoming and at most one outgoing control flow edge, (ii) every
gateway has at least three incident control flow edges, (iii) M has exactly one
source task and at least one sink task (the source has exactly one outgoing and
no incoming control flow edges, while each sink has exactly one incoming and no

76 Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

Order Process (vertical space minimized) 2

Analyze
order

Check
stock

Purchase
raw

material

Make
product ion

plan

Manu-
facture

products

Ship
products Send bill Receive

payment

Order
[confirmed]

Product
[created]

Product
[in stock]

Product
[shipped]

Order
[accepted]

Order
[billed]

Order
[paid]

Order
[received] Product

[not in
stock]

Andreas Meyer 1 of 1 20.02.2012

Fig. 1. A simple “order delivery and payment” process model

outgoing control flow edges), (iv) the source and all sinks of M are silent tasks,
whereas all other tasks are observable, (v) every node of M is on a path from
the source to some sink, and (vi) there exist no data flow edges which involve
silent tasks, i.e., ∄(a, (d, r)) ∈ F ∶ µ(a) = τ and ∄((d, r), a) ∈ F ∶ µ(a) = τ .

We adapt the notation similar to BPMN [3] for visualization of process models.
An observable task is drawn as a rectangle that has rounded corners with its
name inside. Source and sink tasks are visualized as start and end BPMN events,
respectively. Gateways are drawn as diamonds. We call a gateway g ∈ GM of M
an xor (an and) gateway, if typeM(g) = xor (typeM(g) = and). An xor (an and)
gateway uses a marker which is shaped like “×” (“+”) inside the diamond shape.
A data object (in a particular data state) is visualized as a BPMN data object. A
data object d ∈DM can appear multiple times in the visualization of the process
model (also when in a particular data state r ∈ RM). Control flow and data flow
edges are drawn as solid and dashed directed edges, respectively.

The semantics of a process model is defined as a token game. A marking of a
process model is represented by tokens on its control flow edges. Given process
model M , a marking (or a process state) of M is a mapping m ∶ CM → N0 (N0 is
the set of natural numbers including zero). Fig. 1 shows a process model in its
initial process state – a process state which puts one token on the only outgoing
control flow edge of the source and no tokens elsewhere. Every node of a process
model (except silent tasks) can be executed. The execution of an observable
task removes one token from its only incoming and adds one token on its only
outgoing control flow edge. The execution of an and gateway removes one token
from each of its incoming control flow edges and then adds one token on each of
its outgoing control flow edges. The execution of an xor gateway removes one
token from one of its incoming control flow edges and afterwards adds one token
on one of its outgoing control flow edges; the choice of the incoming edge as well
as of the outgoing edge is done nondeterministically. Observe that we abstract
from data-based decisions that are usually used to control the semantics of xor
gateways. Let m and m′ be two markings of M . We write m xÐ→m′ to denote
that m changes to m′ by executing node x of M . If σ = a1a2 . . . an, n ∈ N0, is a
sequence of nodes of M , m σÐ→m′ denotes the fact that there exists a sequence of
process states m1m2 . . .mn−1 such that m a1Ð→ m1

a2Ð→ . . .mn−1
anÐ→ m′. We call

Weak Conformance of Process Models 77

Order OLC

received

accepted

rejected

confirmed

archived

shipped billed paid

Andreas Meyer 1 of 1 20.02.2012

(a)

Product OLC

in stock

not in
stock

shipped

created

Andreas Meyer 1 of 1 20.02.2012

(b)

Fig. 2. Object life cycles of (a) “Order” and (b) “Product” data objects

σ an execution sequence of M which starts with m. Let a and a′ be two nodes of
M . With a⇒M a′ we denote the predicate which evaluates to true if a = a′ or
there exists an execution sequence of M which starts with the initial marking
and executes a before a′; otherwise a⇒M a′ evaluates to false.

Next, we proceed with the definition of an object life cycle.

Definition 2 (Object life cycle).
An object life cycle is a tuple L = (S,Σ,↦, i), where S is a finite set of data states,
Σ is a finite set of actions (S and Σ are disjoint), ↦ ⊆ S ×Σ ×S is the data state
transition relation, and i ∈ S is the initial data state.

We use subscripts SL, ΣL, ↦L, and iL, to denote the relation of the elements
to the object life cycle L. Note that we omit subscripts where the context is
clear. For s, s′ ∈ S and a ∈ Σ we denote by s az→ s′ the fact that (s, a, s′) ∈↦. If
σ = a1a2 . . . an, n ∈ N0, is a sequence of actions, s σz→ s′ denotes the fact that there
exists a sequence of data states s1s2 . . . sn−1 such that s a1z→ s1

a2z→ . . . sn−1
anz→ s′.

We call σ an execution sequence of L which starts with s, and s′ is a reachable
data state from data state s via σ. With s⇒L s

′ we denote the predicate which
evaluates to true if s = s′ or there exists an execution sequence of L which starts
with iL and reaches s before s′; otherwise s⇒L s

′ evaluates to false.
Finally, a process scenario is defined as follows.

Definition 3 (Process scenario).
A process scenario is a tuple H = (M,L, ω), where M is a process model, L is a
finite set of object life cycles, and ω ∶DM → L assigns to each data object of M
an object life cycle.

Note that we assume that for a process scenario H = (M,L, ω) it holds that ω is
injective and ⋃L∈ω(DM) SL ⊆ RM . Fig. 1 and Fig. 2 visualize a process scenario.
The process model of the scenario is given in Fig. 1. It contains two data objects:
“Order” and “Product”. The life cycles of these data objects are shown in Fig. 2(a)
and Fig. 2(b), respectively.

3 Weak Conformance
Prior to proceeding with the definition of weak conformance, we define several
notions for convenience considerations. Let f ∈ FM be a data flow edge of process
model M . With fA, fD, and fR we denote the task, data object, and data
state component of f , respectively. For instance, if f is equal to (a, (d, r)) or to
((d, r), a), then (in both cases) fA = a, fD = d, and fR = r. We call f an input data
flow edge if f ∈ ((D ×R)×A), and an output data flow edge if f ∈ (A× (D ×R)).

78 Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

Definition 4 (Weak data object conformance).
Given process scenario H = (M,L, ω), M = (A,G,D,R,C,F, type,A, µ), M
satisfies weak conformance with respect to data object d ∈ D if for all f, f ′ ∈ F
such that fD = d = f ′D holds fA ⇒M f ′A implies fR ⇒ω(d) f ′R, and fA = f ′A implies
f is an input edge and f ′ is an output edge.

Given a process scenario, we say that the process model satisfies weak conformance,
if it satisfies weak conformance with respect to each of its data objects. Weak
data object conformance is satisfied if for each two succeeding data states of a
data object there exists an execution sequence from the first to the second data
state in the corresponding object life cycle. Two data states are succeeding in
the process model if either (i) they are accessed by the same task with one being
part of an input and one being part of an output data flow edge, or (ii) there
exists an execution sequence in the process model in which two different tasks
access the same data object in two data states.

The process model in Fig. 1 satisfies weak conformance with respect to data
object “Product” and does not satisfy weak conformance with respect to data
object “Order”. Indeed, there exists an execution sequence which visits task
“Analyze order” before task “Send bill”, which access data object “Order” in data
states “confirmed” and “accepted”, respectively. However, data state “accepted”
is not reachable in the object life cycle in Fig. 2(a) via data state “confirmed”.
One can fix this flaw, for instance, by changing the data state of the only input
data flow of “Send bill” task from “accepted” to “confirmed”, which also modifies
the process model to satisfy weak conformance.

Comparing the proposed notion of weak conformance to the one introduced
in [4], the given process model would not satisfy conformance with respect to
data object “Product”. In [4], the authors rely on process models with fully
specified data information. For instance, task “Ship products” reads data object
“Product” in data state “in stock”. However, in [4], it is required that there exists
a preceding task which writes “Product” in that state. As such task does not
exist, conformance is not satisfied.

4 Related Work

Process models which follow on the imperative design paradigm have been studied
extensively [1]. The increasing interest in the development of process models for
execution has shifted the focus from control flow to data flow perspective. The
first step in this regard are artifact-centric processes introduced in [5]. Artifact-
centric processes connect data objects with the control flow of process models by
specifying object life cycles which represent data dependencies and based thereon,
the order of task execution. In [6,4], the authors present an approach which
connects object life cycles with process models by determining commonalities
between both representations and transforming one into the other. In [7], a
rule-based approach is described; it allows to connect control flow with data flow
and, thus, to automatically create data-driven executable process models. In
terms of data-driven execution, case handling [8] plays a major role, as in case

Weak Conformance of Process Models 79

handling data dependencies solely determine the order of task execution. In this
paper, we also concentrate on the integrated scenarios which incorporate process
models and object life cycles. However, we remove the assumption that all the
approaches mentioned above follow, i.e., both representations must completely
correspond to each other. Instead, we set object life cycles of data objects as
references that describe what can be utilized by process models.

Compliance, or correctness, in process models mostly refers to checks of
the process model with respect to a defined rule set containing, for instance,
business policies. The field of compliance is well researched [9,10,11,12] and has
already been tackled for artifact centric processes, e.g., [13]. A different type of
compliance is introduced in [4]. There, compliance between a process model and
an object life cycle of one data object used in the process model is defined as the
combination of object life cycle conformance (all data state transitions induced
in the process model must occur in the object life cycle) and coverage (opposite
containment relation). In this paper, we proposed the definition of a similar type
of compliance. As we set object life cycles to be the reference, we assume them
to be correct and, therefore, we can restrict the compliance check to conformance
only. For conformance, instead of working with direct data state transitions we
rely on data state reachability.

5 Conclusion
In this paper, we proposed a notion to check for weak conformance between a
process model and object life cycles of its utilized data objects. A process model
satisfies weak conformance if every time it is allowed to access states of a data
object in a specific order (in the process model), these data states can also be
reached in an object life cycle of the data object in the very same order.

In future works, we plan to propose an algorithm to perform analysis checks
based on the notion of weak conformance introduced in this paper. For process
models which do not satisfy weak conformance, one can suggest, whenever
applicable, changes to the process model so that the resulting model conforms to
its data objects. Process model modifications may also be applicable to already
conforming process models in order to simplify their structure while preserving
the conformance property. Furthermore, in process scenarios with “large” object
life cycles, a conforming process model can determine the relevant aspects so that
the object life cycles get tailored towards the specific needs of process scenarios
and, in this way, become better understandable.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2007)

2. Booch, G.: Object-Oriented Analysis and Design with Applications (3rd Edition).
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (2004)

3. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
http://www.omg.org/spec/BPMN/2.0/ accessed March 1, 2012.

http://www.omg.org/spec/BPMN/2.0/

80 Andreas Meyer, Artem Polyvyanyy, and Mathias Weske

4. Küster, J., Ryndina, K., Gall: Generation of Business Process Models for Object
Life Cycle Compliance. In: Business Process Management, Springer (2007) 165–181

5. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3) (2003) 428–445

6. Ryndina, K., Küster, J., Gall: Consistency of Business Process Models and Object
Life Cycles. In: MoDELS Workshops, Springer (2006) 80–90

7. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and
Dynamic Adaptation of Data-driven Process Structures. In: Advanced Information
Systems Engineering, Springer (2008) 48–63

8. van der Aalst, W., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data and Knowledge Engineering 53(2) (2005) 129–162

9. Awad, A.: A Compliance Management Framework for Business Process Models.
PhD thesis, Hasso Plattner Institute (2011)

10. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with
Obligations and Permissions. In: BPM Workshops, Springer (2006) 5–14

11. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: EDOC, IEEE (2006) 221–232

12. Agrawal, R., Johnson, C., Kiernan, J., Leymann, F.: Taming Compliance with
Sarbanes-Oxley Internal Controls Using Database Technology. In: International
Conference on Data Engineering, IEEE (2006) 92–101

13. Lohmann, N.: Compliance by design for artifact-centric business processes. In:
Business Process Management, Springer (2011) 99–115

Towards Verification of Process Merge Patterns with
Allen’s Interval Algebra

Sebastian Wagner, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract Choreographies present how parties collaborate to achieve an agreed
business objective. When companies are bought, their processes have to be in-
sourced. Thereby, their part in a choreography has to be merged with the part of
their acquiring business partner. Merging patterns may be applied to merge reoc-
curring activity combinations, such as send/receive. It has to be proven that each
merge patterns keeps the relations of the original activities of the choreography.
As a first step, we show by an example how the relations between activities may be
expressed using the Allen calculus. We show for merging a synchronous message
exchange, which relations have to be considered for validating an implementation
of that merge.

1 Introduction

In today’s business scenarios enterprises often have to collaborate to achieve an agreed
business objective. This is especially true if sophisticated goods such as planes, cars,
engines, etc. have to be developed. The steps that have to be performed by each company
are usually defined by the respective business process model or orchestrations. To reach
the overall business objective, the collaboration behavior between these different process
models can be modeled by a choreography that describes the interaction behavior be-
tween the activities of the involved processes usually in form of message exchanges [13].
Choreographies may be modeled using interaction models or interconnection models [3].
In the following, we focus on interconnection models, where the publicly observable
behavior of each participant in a choreography is modeled as process and where the
communication activities are wired together.

As in-sourcing or back-sourcing becomes more and more common nowadays, the
process models of the outsourced partner have to be reintegrated into the choreography.
To accomplish that we introduced an approach to consolidate (merge) process models that
are part of a choreography [16]: Pairs of sending and receiving activities are transformed
to value-assignment activities. In ongoing work, we extend the approach to use merge
patterns describing merges of structures such as while loops or a one-to-many send.
Thereby, we want to show that the patterns keep the control flow dependencies between
the activities. In other words, the control-flow dependencies between the activities in the
merged choreography have to be the same as the dependencies between the activities
in the original choreography. We plan to show that by using the Allen Calculus that is
also referred to as interval algebra [1]. This paper presents a first informal mapping of a

82 Sebastian Wagner, Oliver Kopp, and Frank Leymann

subset of BPEL’s constructs to the Allen calculus. For one merge pattern, the properties
to be considered are described.

Consequently, the reminder of this paper is structured as follows: Section 2 provides
a brief overview about the choreography notation BPEL4Chor and the Allen calculus.
Section 3 provides an overview on the merge approach and a rendering of the choreogra-
phy using the Allen calculus. Section 4 presents the properties to be kept when applying
the merge pattern for asynchronous communication. After discussing related work in
Sect. 5, Sect. 6 concludes the work and provides an outlook.

2 Preliminaries

The consolidation approach that is described here is designed for BPEL process mod-
els [12] that are part of a BPEL4Chor [4] choreography as BPEL is still the de-facto
standard for describing and enacting processes. Even if BPEL is not formalized, we
use the understanding of one of its inventors to capture the relations between activities
formally. If we use a formal meta model, the mapping of BPEL to a meta model still is
subjective.

BPEL offers the invoke activity to send messages. In its synchronous form, it
also waits until a reply message is received. In the asynchronous form, it solely sends a
message. Messages may be received by receive activities. A reply to a synchronous call
is realized by a reply activity. The terms “synchronous” and “asynchronous” do not state
anything about the underlying messaging transport used. For instance, if Java Messaging
Service [15] is used, the transport is always asynchronous even if the operation invoked
at the partner is a request/response operation.

To model a choreography BPEL4Chor provides message links to interconnect the
activities of the involved process models. For asynchronous invoke/receive commu-
nication between two processes BPEL4Chor requires that one message link has to be
modeled between the two activities. In a synchronous communication scenario two mes-
sage links have to be modeled, one from invoke to receive activity and another one
from the reply to the invoke activity. BPEL offers a rich set of control-flow constructs.
It offers block-structured constructs (such as while for while loops) and graph-based
constructs (such as flow with links to model acyclic graphs) [6]. We use the graph-based
part using a flow activity. We assume that BPEL’s dead path elimination is activated
and the default join condition is used. This causes an activity to be executed if at least
one of its incoming links is “not dead”.

In this paper we present the idea to use the Allen’s interval algebra to verify the
correctness of a merge pattern. Currently, there is no merge pattern for BPEL’s scopes and
loops. Therefore, we omit loops, event handling, fault handling, termination handling,
and compensation handling in this paper.

To verify merge patterns, the control flow relations between the activities of the
BPEL4Chor choreography are captured using Allen’s interval algebra [1]. This algebra
defines 13 distinct basic relations that can be defined between two intervals a and b that
are depicted in Fig. 1. Using these basic relations, more complex relations between two
intervals can be defined, e. g., the relation a{<,d}b denotes that A exists either before or
during B. The composition operation R′⊗R′′ of two intervals R′ and R′′ is provided to

Towards Verification of Process Merge Patterns 83

calculate the transitive relations between the intervals a and c, where aR′b and bR′′c. To
derive the composition of two relations, their basic relations are pairwise composed, i. e.,
R′⊗R′′ = {r′⊗ r′′|r′ ∈ R′,r′′ ∈ R′′}. The result of a composition of the basic relations is
defined by the composition table that is provided by Allen [1]. For the intervals a{<}b
and b{<}c the composition operation is R′⊗R′′ =<, i. e., a before c.

A before B: A<B
B f A B A

A meets B: AmB
B b A A iB

A overlaps B: AoB
B l d b A A iB

A starts B: AsB
B d b A A iB

A finishes B:AfB
A fi i h d b B AfiB

A during B: AdB
B i AdiB

A equals B:AeB
B after A: B>A B met‐by A: AmiB B overlapped‐by A: AoiB B started‐by A: AsiB A finished‐by B:AfiB B contains AdiB

A B A B
A

B
A
B

A
B

A
B

A
B

Figure 1. Allen’s Interval Relations

In the approach described in this work we use the Allen calculus to determine
the relations between activities instead of intervals. The advantage of using the Allen
calculus is that it is a full algebra providing a set of operations for determining transitive
relationships between activities. The graph-based part of BPEL defines predecessor
and successor relationships. The block-structure of BPEL defines relations between
composite activities (e. g., while) and their children. Allen’s calculus is capable to
capture both the graph-based and the block-structured part of BPEL. The during relation
can for instance be used if we want to model the relation between a BPEL loop or a BPEL
scope and its child activities. Using an equivalence notion of the linear time/branching
time spectrum [5] is no option. It is not possible to express a during relationship as the
notions treat state machines only. There are no nested states in state machines.

3 Choreography-based Process Consolidation

The approach of choreography-based process consolidation was introduced in [16].
Figure 2 presents an example choreography to illustrate the description using the Allen
calculus. Process A sends a message to process B or process C. Process B synchronously
calls a process D. A result message is sent from process B or process C to process
A. The choreography has been merged into a single business process: All pairs of
communication activities have been merged.

Message links in the choreography imply control flow relations between the in-
volved processes. For instance, message link m1 implies that activities C1 and C2 are
always performed after A1 was executed. The consolidation approach replaces these
implicit relations by an explicit control flow. Different interaction scenarios between the
collaborating processes define different control flow relations between their activities.
For instance, an asynchronous send/receive has different implications on the control
flow relations between the activities of the involved processes than a synchronous send.
Hence, different merge operations have to be applied. To goal is to merge process models
into a single process model in a way that the explicit and implicit control flow relations
specified by the choreography are kept. Consequently, the relations that exist between
all activity pairs of the choreography have to be same in the new process model. Table 1

84 Sebastian Wagner, Oliver Kopp, and Frank Leymann

A1

xor

Process AProcess C Process B Process D

A1

xor

Merged Process

SendA2 ReceiveB

B1 ReceiveD

ReceiveC

C1

SendA1
m1 m2

SynchA2

B1
C1

SynchA1

xorxor
and

A2 SendB1 D1

Reply

C2

ReceiveSend Send
m5 m6

A2
SynchB1

D1

C2

Synch

xor

Merge

ReplyDReceiveASendC SendB2

A3

SynchC

SynchB2D

A3

xor

Figure 2. Example Choreography

depicts the pairwise relationships between the activities of the example choreography.
The send and receive activities are omitted in the table as they are removed during the
consolidation.

A1 A2 A3 B1 C1 C2 D1
A1 /0 < < < < < <
A2 > /0 < R R R R
A3 > > /0 > > > >
B1 > R < /0 R R <
C1 > R < R /0 < R
C2 > R < R > /0 R
D1 > R < > R R /0

Legend:

– Rows list the left part of relation relation
– Columns list the right part each relation
– <: set consisting of the single relation “before”
– >: set consisting of the single relation “after”
– /0: no relation
– R: all relations hold

Table 1. Relations between activities in the example choreography

The actual merge operation consists of several steps that are described informally in
following. To simplify the description, we describe the merge of all participant behavior
descriptions of a choreography into a single orchestration.

First, a new process model is created with a flow activity as top level element. All
participant behavior descriptions of the choreography are copied into this flow activity
to reflect the parallel execution of the orchestrations that exist in the choreography. Then,
on each single interaction between two or more participant behavior descriptions a merge
pattern is applied to replace the message links by control flow links. The type of pattern
that is applied depends on the interaction type.

To validate the merge patterns, it has to be shown that the relation set R of the new
orchestration models equals the relation set RC of the original choreography: All atomic
activities contained in the new orchestration and the original choreography have the

Towards Verification of Process Merge Patterns 85

same relations. That means, the relations of all activities not removed or inserted remain
the same.

4 Properties of Synchronous Communication

In the following section, we treat the properties a merge pattern for merging synchronous
communication has to keep. In the context of BPEL, synchronous communication
denotes that the activity sending the request also receives the response message. The
synchronous communication pattern is implemented in BPEL4Chor by a synchronous
invoke activity that is related to a receive activity via a message link m. The receive
is directly or indirectly followed by a single logical reply activity that is also connected
to the invoke via a message link m′. “Single logical reply activity” describes that
there may be multiple reply activities belonging to the receive activity, but that
there may only be one of them executed after the invoke has been executed. In this
paper, we assume that there is exactly one reply activity given for a receive activity.
Furthermore, we assume that there is exactly one invoke activity for the receive

activity. BPEL4Chor allows multiple invoke activities for one receive as long as the
invoke activities are mutually exclusive.

An example of a synchronous interaction is given in Fig. 2 where SendB1 is con-
nected to ReceiveD via m3 and ReplyD is connected to SendB1 via m4. One important
characteristic of synchronous communication is that the sender blocks until it receives
the response. Technically spoken, this means that the invoke does not complete until it
receives a message from the reply. This behavior has implications on the control flow
relations between the activities that are depicted in Table 2.

For the proof, we require that there are no consecutive interactions between two
partners. If there are, we regard that part of the process as a sequence of the first
interaction, followed by an empty at each partner, followed by the second interaction.
An empty activity does nothing. In short, this rewrite is necessary as we regard the direct
predecessors of the communication activities and want to assume that they can happen
in any order.

•s s• •rc rc•rp rc•rp •rp rp•
•s /0 < R < < < <
s• > /0 > > R > R
•rc R < /0 < < < <

rc•rp > < > /0 R < <
rc•rp > R > R /0 R R
•rp > < > > R /0 <
rp• > R > > R > /0

Legend:

– •a – the set of all directly pre-
ceding activities of a

– a• – the set of all directly suc-
ceeding activities of a

– s – the invoke activity
– rc – the receive activity
– rp – the reply activity
– rc•rp – all direct successors of

rc being on a path to rp.
– rc•rp – all direct successors of

rc not being on a path to rp.

Table 2. Relations in a synchronous scenario

86 Sebastian Wagner, Oliver Kopp, and Frank Leymann

No statement about the relations between the direct predecessor and successor
activities of s and rp can be made if just the direct predecessors and successors of s,rc,
or rp are considered. However, it is clear that dependencies must exist between •s and
•rc, because they are transitively connected via prior control links or message links. The
predecessor and successor relation within one participant behavior description (e. g.,
rc•rp {<}s•) are trivial as they are only defined by the control links.

Concerning the relations of the successor activities of rc two kinds of successor
activities have to be distinguished, namely rc•rp and rc•rp. The successor activity rc•rp is
no direct or indirect predecessor of rp. Hence, it has no explicit relation to the successor
of the send activity, i. e., rc•rp {R}s•. For the successor activity rc•rp that resides on the
path to the reply activity rp exists a direct relation rc•rp {<}s•. This relation is implicitly
defined by the message link. As s• can be only performed after s completed and s can
only complete after it got a response from rp which in turn is not completed before rc•rp.
For instance, in the scenario presented in Fig. 2 D1 has to be performed before SendB2
and after SendB1. This is only the case if we make the assumption that the reply activity
rp completes immediately after it sent the response to the send activity s, thus rp{<}s.
In an asynchronous communication, however, the relation rc•rp {R}s• would exist. This
is because of the operational semantics of BPEL: s sends a message to rc and completes
even if rc or •rc are not activated yet.

Concerning the reply activity rp, we make the assumption that it completes imme-
diately after it sent the response to the send activity s, thus rp{<}s.

Merged Fragment ABFragment BFragment A

•send

send

•receive

receive
m

•send •receive

synch

send• receive•rp

•reply

receive•

•reply

receive•rp receive•rp
and andMerge

reply

reply• send• reply•

synch'… …

Figure 3. Merge of Synchronous Interactions

Fig. 3 depicts the merge of two process fragments that are communicating syn-
chronously. The new orchestration at the right side of Fig. 3 keeps all control flow
relations of the choreography that are sketched in Table 2. The sending activity s and the
receiving activity rc are combined to a synchronization activity synch. This synchroniza-

Towards Verification of Process Merge Patterns 87

tion activity is used to assign the values that were transported by the message m in the
choreography. Likewise, synch′ is inserted to assign the values that were transported in
the message m′ from the reply activity rp to s.

5 Related Work

In contrast to techniques that merge processes that are semantically equivalent we aim
to merge collaborating processes. An approach for process merging is the work by
Mendling and Simon [11] where semantically equivalent events and functions of Event
Driven Process Chains [14] are merged. An approach to merge processes that origin
from the same process using change logs is described by Küster [7].

Instead of directly generating a BPEL orchestration out of a BPEL4Chor choreogra-
phy, an intermediate format may be used. There is currently no approach keeping the
structure of the generated orchestration close to the structure of the original choreography.
For instance, Lohmann and Kleine [9] do not generate BPEL scopes out of Petri nets,
even if the formal model of Lohmann [8] generates a Petri net representation of BPEL
scopes.

An overview of existing BPEL formalizations and verification approaches is provided
by Breugel [2]. There is no verification approach using Allen’s calculus. Lohmann et
al. [10] showed how BPEL4Chor can be verified using a Petri Net representation. It is not
yet shown how that mapping may be used to show equivalence between a choreography
and the merged orchestration. In our work, we want to keep the ordering of the internal
activities, which is more than behavioral equivalence.

Weidlich et al. [17] use behavioral profiles to capture the relations between activities
in process models for compliance checking. In contrast to our approach the work does not
consider the relations between activities in choreographies. Moreover, only predecessor
and successor relations can be captured there. Hence, it is not possible to capture the
relations between parent and child activities (block-structure) which can be accomplished
with the Allen calculus.

6 Conclusion and Outlook

This paper presented how relations between activities may be expressed using Allen’s
calculus. The derivation from choreographies and orchestration has been outlined by
using an example. We used the relations to show that a merge of a choreography model
into an orchestration model does not change the relations of the non-merged activities.

The capturing of interval relations has been done manually. This procedure will be
kept when verifying other merge patterns. This especially includes merging BPEL’s
scope and loop activities. To verify such patterns, we surely will have to use the during
relation of Allen’s calculus. In our future work we will investigate if we need all relations
of Allen’s calculus or if the subset consisting of before, after, and during is sufficient.

Acknowledgments This work was partially funded by the BMWi project Migrate!
(01ME11055) and the BMWi project CloudCycle (01MD11023).

88 Sebastian Wagner, Oliver Kopp, and Frank Leymann

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Commun. ACM 26(11), 832–
843 (1983)

2. van Breugel, F., Koshkina, M.: Models and Verification of BPEL (2006), http://www.cse.
yorku.ca/~franck/research/drafts/tutorial.pdf

3. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies. Information
Technology 50(2), 122–127 (Feb 2008)

4. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: From specification to
execution. Data & Knowledge Engineering 68(10), 946–972 (Apr 2009)

5. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Abstract). In:
CONCUR. pp. 278–297 (1990)

6. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-Based and
Block-Structured Business Process Modelling Languages. Enterprise Modelling and Informa-
tion Systems 4(1), 3–13 (June 2009)

7. Küster, J., Gerth, C., Förster, A., Engels, G.: A Tool for Process Merging in Business-Driven
Development. In: Proceedings of the Forum at the CAiSE (2008)

8. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In: Dumas, M.,
Heckel, R. (eds.) WS-FM’07: Web Services and Formal Methods, 4th International Workshop.
Lecture Notes in Computer Science, vol. 4937, pp. 77–91. Springer (2007)

9. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Models into
Simple Abstract BPEL Processes. In: Modellierung. Lecture Notes in Informatics, vol. P-127.
Gesellschaft für Informatik e. V. (2008)

10. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verification and
Participant Synthesis. In: WS-FM 2007: Forth International Workshop on Web Services and
Formal Methods. Springer-Verlag (2007)

11. Mendling, J., Simon, C.: Business Process Design by View Integration. In: BPM Workshops.
Springer (2006)

12. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS Standard
(2007)

13. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10), 46–52
(2003)

14. Scheer, A.W., Thomas, O., Adam, O.: Process Aware Information Systems: Bridging People
and Software Through Process Technology, chap. Process Modeling Using Event-Driven
Process Chains. Wiley-Interscience (2005)

15. Sun microsystems: JSR-000914 JavaTM Message Service (JMS) API (2002), version 1.1
April 12

16. Wagner, S., Kopp, O., Leymann, F.: Towards Choreography-based Process Distribution In
The Cloud. In: Proceedings of the 2011 IEEE International Conference on Cloud Computing
and Intelligence Systems (2011)

17. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based on Behav-
ioral Profiles of Process Models. IEEE Trans. Software Eng. 37(3), 410–429 (2011)

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

Towards Automatic Generation of Process
Architectures for Process Collections

Rami-Habib Eid-Sabbagh

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

rami.eidsabbagh@hpi.uni-potsdam.de

Abstract. With the prevalence of business process management in the
private and public sector, large process collections are created and shift
into focus. To be able to harvest the underlying information, process
collections need to be made easily accessible providing intuitive navigation
and search.
Process collections are often structured into folders that are labeled along
functional, organizational or goal-based lines. As those structures are
tediously created manually, they often offer only a single view on the
underlying data. However, users use such process collections with different
intentions.
This paper presents a generic approach for automatically creating process
architectures from unstructured process collection to offer browsing and
user centered navigation structures, as well as reduce time of creation. The
approach uses the characteristics of clustering algorithms to group pro-
cesses and label them accordingly. Improvements for further development
in the near future will be investigated and outlined as well.

1 Introduction
In recent years BPM has gained momentum in the private and public sector. As
a result, process collections of different size, quality, and purpose have emerged.
Especially for large collections, the need for an inherent and intuitive structure
and navigation is of importance for the retrieval of process models. The knowledge
stored in process collections is often not treasured to the best possible extent.
The lack of consistent ordering poses strong challenges for the retrieval of process
models. According to Baeza-Yates and Ribeiro-Neto [1] providing browsing
capabilities on large repositories allows for efficient retrieval of large data sets,
especially when users explore information collections without specific intent in
mind.

Offering structured overview of business processes in a process collection is
one of the aims of process architectures according to Dijkman et al. [2]. They
define a process architecture as the relations between processes within a process
collection, as well as the guidelines for organizing them. A process architecture
shall ensure consistent and integrated process collections; hence enable navigation
and easier information retrieval from the process collection.

90 Rami-Habib Eid-Sabbagh

In well-organized projects, the process elicitation process follows guidelines
for structuring process models according to a process architecture. However, in
many cases, process architectures have not been developed before the modeling
phase. As a result, many process collections are semi- or unstructured.

(Re-) structuring already existing process collections becomes a strenuous
manual task, starting with the design of a process architecture. Later, processes
need to be classified manually into specific categories. For collections of hun-
dreds or several thousand process models, e.g., SAP Reference Model, Dutch
administration, or China CNR Corporation Limited [13], this is not efficient. The
manual selection of categories bears possibilities of wrong subjective categoriza-
tion. Defining crisp and unambiguous rules for classifying process models into
categories is rather difficult.

This paper will not focus on defining process architectures in the beginning
of business process modeling projects in regard to modeling responsibilities,
guidelines, undocumented processes or other issues of process architecture design.
It rather presents a generic system design and algorithm architecture along with a
concrete example that creates a process architecture based on syntactic similarity
of process names. This approach shall provide better navigation through process
knowledge, as well as improve efficiency and adequacy over the manual creation
of process collection structures. It may even bear the possibility to create process
architectures with different focus according to the users’ interest.

The paper is structured as follows, Sect. 2 will introduce current research
on the structuring of process collections, process architectures and hierarchical
clustering, Sect. 4 presents a conceptual system architecture, Sect. 5 sketches
an algorithm for creating process architectures, followed by Sect. 6 which will
elaborate on future work and improvements of the presented ideas.

2 Related Work
Different approaches to structuring process collections or creating process archi-
tectures have been developed and proposed. Most of them are based on manual
classification techniques. Weske [17] presents a hierarchy consisting of strategic
level, organizational level, operational level and implemented business processes
in which business process can be classified according their scope. In contrast to
that, Leymann and Roller [7] define a classification of business processes along
the dimensions of structure and repetition.

Dijkman et al. [2] present a wide overview of different approaches of designing
process architectures. They classify them into five categories; goal-based, action-
based, object-based, reference-based and function-based approaches. Each concept
shows a different view on a process collection focusing on different aspects of
process models.

Scheer et al. [14] design a process architecture consisting of four levels; process
engineering, process planning and control, workflow control, and application
systems. However, this is rather a classification about the usage of process models
in operational activities. Having a different focus, Fettke et al. [4] classify business
process reference model approaches according to domain independent and domain
dependent characteristics that are functional area and economic activity.

Towards Automatic Generation of Process Architectures 91

In Smirnov et al. [16] the need for a fast overview of a process’s main
characteristics is highlighted based on an empirical survey of health insurance
workers and validated by BPM consultants. Process architectures have similar
aims, e.g. offering information and an overview of the main characteristics of
processes in a particular category. Similarly, Melcher and Seese [10] aim to provide
more abstract information on process models. They visualize process metrics of
process models in a heatmap based on hierarchical clustering methods and a
cosine similarity function.

Coming from a different domain but facing similar problems in large multi-
media collections Lew et al. [6] emphasize two main necessities, searching for a
single item, and browsing and summarizing the information covered by a media
collection. Summarizing process information in process architecture categories
and providing navigation capabilities are aims of the approach presented in the
following sections.

Qiao et al. [11] present a highly effective technique for similarity search of
business processes by using clustering algorithms that use structure matching
and language modeling. They point out that the clusters found, consist of similar
processes as well as provide information about their common characteristics.

Jung et al. [5] propose another technique to find structurally similar process
models by adapting a cosine similarity measure to match activity and transition
elements of process models. They use an agglomerative clustering algorithm to
find similar processes and to create new, or re-engineer business processes in an
organization.

Most of the approaches use similarity measure and clustering algorithms to
find similar process models or similar process elements focusing on structural [11,
5, 10], semantic aspects within a process model [15], or selected characteristics of
process models [10]. However, these approaches only focus on a single process
model, or result in displaying only a subset of a process collection.

The reduction of complexity and the visualization of the most important
characteristics of process models is the aim of many approaches. Abstraction,
as well as providing browsing and summarization of process information can
be achieved by creating process architectures. According to Baeza-Yates and
Ribeiro-Neto [1] providing browsing capabilities leverages information about the
information collection by putting information into context with its environment.
So far most approaches for creating process architectures lack automatic support
which can be overcome by using hierarchical clustering algorithms for designing
process architectures.

3 Hierarchical Clustering
Most of the process architecture styles presented in [2] share hierarchical character-
istics to organize their processes whereas they differ according their categorization
functions. Hierarchical clustering provides these functionalities and results in a
hierarchy according to a selected group of features. In this regard hierarchical
clustering seems promising for constructing hierarchical process architectures.

Hierarchical clustering algorithms can be distinguished into agglomerative
clustering (bottom-up) and divisive clustering (top-down). Agglomerative clus-

92 Rami-Habib Eid-Sabbagh

tering algorithms are single-link, average-link, complete-link and centroid-based
which differ on their similarity measures. Divisive clustering (top-down) starts
with one cluster that iteratively becomes split into smaller clusters. In contrary
to agglomerative clustering, divisive clustering is more complex and uses flat
clustering algorithms, like k-means clustering in its subroutine [8].

In van Rijsbergen [12] three adequacy requirements for clustering are named,
stable clusters for an increasing set of items, tolerability of small errors in the data
set, and independence from initial ordering of the items to be clustered. According
to van Rijsbergen [12] hierarchical single-link clustering satisfies those require-
ments. The advantages of this clustering method are efficient search strategies and
fast construction of hierarchies in comparison with less efficient search strategies
of non-hierarchic structures. Creating hierarchical cluster structures is of high
complexity in contrast to K-means clustering and EM-clustering algorithms with
low complexity.

Despite that, the use of agglomerative single link clustering (hierarchical clus-
tering) is promising for automatically creating process architectures considering
its simplicity and robustness. It fulfills the adequacy requirements making it
easily applicable to heterogeneous as well as different process collections. The
drawback of exponential computational complexity can be disregarded as creating
process architectures is not an everyday task.

4 Conceptual Architecture
Fig. 1 depicts a conceptual system for creating process architectures. It shall

provide the flexibility to create different kinds of process architectures by using
different similarity measures, cluster algorithms, and different approaches for
the labeling of clusters. It consists of four main components, the preprocessor,
the clusterer, the label analyzer, and a GUI. The preprocessor takes the process
collection as input and formats the attributes, labels, and elements of process
models for clustering. The cluster module clusters the preprocessed data according

Fig. 1. Process Architecture Generator

to the selected cluster algorithm. This shall allow exploring the ability of relating
clustering algorithms to particular user views. The results of the clustering process

Towards Automatic Generation of Process Architectures 93

are clusters arranged in a hierarchical tree structure. The resulting hierarchy tree
diagram is depicted as dendogram [9], see Fig. 4.

After the clustering process, the label analyzer module analyzes each member
of a cluster and chooses a label for the cluster considering common characteristics
of process models e.g. metadata, labels, or input and output. Algorithms for
selecting adequate labels for clusters using semantic approaches from the field of
natural language processing will be part of future work.

5 Sketch of Algorithm
The general approach for creating process architectures from process collections,
shown in Fig. 2, consists of three steps; preprocessing, clustering, and labeling
of clusters, which will be presented along with a concrete example Fig. 3. The
approach takes a model collection as input and creates a process architecture
with labeled clusters as output. In the preprocessing step, process models and

Fig. 2. General algorithm for creating process architectures from process collections

their metadata are cleansed. Metadata values are normalized and missing data is
dealt with. String values are converted into numerical values. There are different
approaches that can be applied to deal with missing data and string values of
metadata. In the example algorithm the preprocessing step consists of extracting

Fig. 3. Example Algorithm for creating a process architecture from a process collection

the process names from the process models and converting the strings into
numerical values by calculating the string edit distance. The output of the step
is multidimensional vectors representing the process models. In future research
this step could be improved by using natural language processing techniques for
dealing with semantics of process names, or labels of control flow elements. For
example synonyms could be detected and given the same value. Analyzing the

94 Rami-Habib Eid-Sabbagh

semantic similarity of labels of control flow elements, structural, or behavioral
aspects of process models bears many possibilities for exploration. Particular
process model elements shall be aligned to styles of process architectures and
form the input for generating those automatically; e.g. activities could be used
to generate action-based process architectures. The cluster function takes the

Function PreprocessProcessModels;
Input ProcessCollection PC, List SelectionOfMetadata;
Output ListPreprocessedModels PM ;
Function Cluster;
Input PreprocessedModels PM, ClusterAlgorithm CA, SimFunction SF ;
Output Dendogram D, SetClusters C ;
Function ClusterLabeling;
Input Dendogram D, SetClusters C, AnalysisAlgorithm AA ;
Output LabeledDendogram LD, SetOfLabeledClusters LC ;
Example: Function PreprocessProcessModels;
Input SAPReferenceModel, Processname;
Output multVectors
Example: Function HierarchicalBottomUpCluster;
Input multVectors, HierachicalSLBottomUp, EuclideanDistance ;
Output (see Fig. 4(a)) Dendogram, Clusters
Example: Function ClusterLabeling;
Input Dendogram, Clusters, SimNamePartsAndCountEvents ;
Output (see Fig. 4(b)) LabeledDendogram, labeledClusters

Function General and Example Function Interface Descriptions

preprocessed process models, e.g., a multidimensional vector as input as well
as the clustering algorithm of interest and a similarity function to calculate the
similarity between the different processes in the process collection. The output is
a dendogram and a set of clusters.

The input of the example algorithm is a list of multi-dimensional vectors
representing the process models, the bottom-up single-link clustering algorithm
and the Euclidean distance function. A hierarchical clustering algorithm is
chosen due to the hierarchical nature of most process architectures and the
good characteristics of hierarchical clustering algorithms. The Euclidean distance
function is used to calculate the similarity matrix for the process models. In
future, this step can be realized with more sophisticated similarity functions.
Considering each process model as one cluster in the beginning, the hierarchical
cluster algorithm will join the two clusters with the minimal distance between
any two items pi and pj with pi in cluster i and pj in cluster j until only one
cluster exists containing all other clusters and the inherent process models. After
each iteration, the distance matrix must be updated with the similarity value
of the newly created cluster. The clustering process results in a dendogram, a
hierarchical structure tree that links all the clusters generated.

In the future also flat clustering algorithm can be used with presented frame-
work. The next step defines the labeling process of the clusters. The general

Towards Automatic Generation of Process Architectures 95

algorithm takes the dendogram, the set of clusters and an analysis algorithm
as input. Here different strategies that need further elaboration can be applied.
E.g. only the input and output labels of each member in the cluster could be
extracted and counted.

In the example, the analysis algorithm examines the names of each member
of cluster and figures out a word that describes the processes in the cluster. It
also counts the number of activities, start events, and end events of each process.
The label is put together from a word that is common for each process model
in the cluster as well as the range of start events, end events and activities as
displayed in Fig. 4(b). In this way context information on the process models in
each cluster is provided while browsing. The technique described in the example
is rather a simple technique for identifying labels which also leaves room for
improvement in the future.

An example output of the clustering algorithm with five process models from
the sap reference model collection is depicted in Fig. 4(a) and Fig. 4(b). The

(a) (b)

Fig. 4. Example of an unlabeled dendogram (a) and a labeled dendogram (b)

implementation of the algorithm has not been fully realized and first results with
large process collections can only be presented in the near future.

Empirical surveys can be used to validate both the automatically created
process architectures in regard to their improvement of browsing capabilities and
the labels chosen for the different clusters. The architectures can be replicated
in process collections and tested with users to investigate the quality of their
browsing capabilities. In a similar way, the quality of labels representing the
process clusters can be assessed by users in an empirical survey. A current
research project, the national process library (npl), offers a suitable use case for
this purpose [3]. The process architectures generated could be integrated into
the npl and used for browsing. This way browsing capabilities of the process
architecture could also be compared to the already existing filter mechanism and
search engine in the npl.

6 Conclusion and Future Work
This paper presented a conceptual framework for automatically generating process
architectures from process collections. A general and exemplary algorithm as
well as the input and output of the different steps were presented to depict the
process of generating process architectures for process collections. Suggestions for
improvements of the quality of clustering and labeling of clusters were mentioned

96 Rami-Habib Eid-Sabbagh

as future research agenda. Using more sophisticated similarity measures for
clustering as well as natural language processing techniques for analyzing semantic
information from control flow labels may bear the most potential here. Also, the
preprocessing step can be varied in respect to semantics which likely improves
results, e.g. only nouns will be extracted. In general the presented approach is
very flexible and lays the foundation for future exploration of process collections
and the interdependencies of its process models.

References
1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley

(1999)
2. Dijkman, R.M., Vanderfeesten, I., Reijers, H.A.: The Road to a Business

Process Architecture: An Overview of Approaches and their Use (2011),
http://cms.ieis.tue.nl/Beta/Files/WorkingPapers/wp 350.pdf

3. Eid-Sabbagh, R.H., Kunze, M., Weske, M.: An Open Process Model Library. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops. LNCS, vol. 100, pp.
26–38. Springer, Berlin, Heidelberg (2012)

4. Fettke, P., Loos, P.: Classification of reference models: a methodology and its
application. Information Systems and e-Business Management 1(1), 35–53 (Jan
2003)

5. Jung, J.y., Bae, J., Liu, L.: Hierarchical Business Process Clustering. 2008 IEEE
International Conference on Services Computing 2, 613–616 (2008)

6. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information
retrieval. ACM Transactions on Multimedia Computing, Communications, and
Applications 2(1), 1–19 (Feb 2006)

7. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall (2000)

8. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

9. Manning, C.D., Schuetze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press (1999)

10. Melcher, J., Seese, D.: Visualization and Clustering of Business Process Collections
Based on Process Metric Values. In: 2008 10th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing. pp. 572–575. IEEE (Sep 2008)

11. Qiao, M., Akkiraju, R., Rembert, A.: Towards efficient business process clustering
and retrieval: combining language modeling and structure matching. In: Business
Process Management. pp. 199–214. LNCS, Springer (2011)

12. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)
13. Rosa, L., Arthur, H.M., Efficient, L., Jin, T., Wang, J., La, M.: Efficient and

Accurate Retrieval of Business Process Models through Indexing. Computers in
Industry (2010)

14. Scheer, A.W., Nüttgens, M., van der Aalst, W., Desel, J., Oberweis, A.: BPM,
LNCS, vol. 1806. Springer, Berlin, Heidelberg (Mar 2000)

15. Smirnov, S., Reijers, H., Weske, M.: A semantic approach for business process
model abstraction. In: AISE. pp. 497–511. Springer (2011)

16. Smirnov, S., Reijers, H.A., Nugteren, T., Weske, M.: Business process model
abstraction: theory and practice. Universitätsverlag Potsdam (2010)

17. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer; 1 edition, 1 edn. (2007)

Towards Process Evaluation in Non-automated Process
Execution Environments?

Nico Herzberg, Matthias Kunze, Andreas Rogge-Solti

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

{nico.herzberg, matthias.kunze, andreas.rogge-solti}@hpi.uni-potsdam.de

Abstract. Process models gained more and more significance to carry out an
organization’s operations. Besides documentation purposes, organizations strive
to evaluate their executed processes in terms of performance and conformance.
However, this is far from trivial: As most processes are still carried out manually,
only few effects can be tracked and are typically not related to process instances.
In this paper, we propose an architecture that defines event monitoring points:
Elementary state transitions of a process instance that are bound to a configuration
to discover events from a process agnostic technical environment. We discuss
applications of this architecture, towards monitoring, performance measurement,
and execution conformance.

1 Introduction

Central to managing an organization in a process-oriented fashion are process models,
as they explicitly capture the operations carried out and are used, among others, for
documentation, certification, and enactment. There is a large body of work that ad-
dresses automatic orchestration of business processes through process-aware information
systems (PAIS), while the majority of processes are still carried out manually.

In the latter case, it is difficult to track the execution of a process for different
reasons: (a) Tasks cannot be tracked, if they have no observable side effect in IT systems,
e.g., examining a patient on a ward round, and thus would need to be recorded by
hand, which is time consuming and prone to errors. (b) In the absence of a PAIS, there
is no central system to collect information about process advancements and thus, (c)
valuable information about progress is contained in various systems, such as ERP or
CRM systems, but cannot easily be related to a process model. As a result, process
execution information is scattered among the IT landscape and only few events of a
process can be captured at all. Reconstruction of these events requires explicitly defined
methods to access systems, combine relevant information, and correlate it with a process
instance. Approaches towards monitoring, performance measurement, and conformance
verification assume the presence of a complete event log, which is not the case according
to the above discussion. Hence, they cannot be properly applied.

? This work is supported and funded by the German Federal Ministry of Education and Research
(01IS10039B)

98 Nico Herzberg, Matthias Kunze, and Andreas Rogge-Solti

In an ongoing research project, PIGE1—Process Intelligence in Health Care—we
encountered above obstacles in the University Hospital of Jena, where the performance
of clinical pathways, i.e., disease treatment processes, shall be measured and evaluated
against key performance indicators.

In this paper, we present a basic architecture that explicitly addresses these issues,
and propose a solution, where so-called event monitoring points are defined at particular
points of a process. An event monitoring point is bound to a certain state transition in the
process and contains information, how this event can be discovered in a heterogeneous
IT landscape. We further discuss, how this can be used to monitor process instances,
apply key performance indicators for performance measurement and examine running
processes for their conformance to given models.

2 Architecture

As our approach towards process evaluation is tightly coupled with process models and
state transitions, we first introduce these concepts and then illustrate how this manifests
in a system overview.

2.1 Fundamentals

Our definition of a process model subsumes a connected graph consisting of nodes N and
edges F. This covers commonly used process modeling languages, such as BPMN [8]
and EPC [4].

Definition 1 (Process Model). A process model is a tuple P = (N, F), where N is the
set of control flow nodes and F ⊆ N × N is the flow relation that captures ordering
constraints of the process execution.

Note, that other modeling notations, such as value chains, where N represents coarse
grained units of work and F represents the execution order of these work units is also
covered by this generic definition. In BPMN, N is partitioned into activities, gateways,
and events, whereas F represents sequence flow among these nodes, for an example refer
to Fig. 1. For each of these node types, we envision a state-based life cycle model, where
we reserve the flexibility, to assign a unique life cycle model to any node. Life cycles of
process nodes have been exhaustively discussed in literature [11,9]. Thus, we employ a
generic life cycle model.

Definition 2 (Life Cycle Model). A life cycle model L = (Σ, S ,T) consists of an event
alphabet Σ, states S and state transitions T . L is the universe of life cycle models.

Let P = (N, F) be a process model. There exists a function lc : N → L that assigns
a life cycle model to every node n ∈ N of P.

State transitions are the most elementary facts that can be leveraged to monitor progress
during process enactment. The set of all state transitions of a process model is com-
prised by

⋃
n∈N
{(n, t)|t ∈ Tlc(n)}, each of which could be potentially captured. However, as

1 http://pige-projekt.de

http://pige-projekt.de

Towards Process Evaluation 99

explained in Section 1, only a subset of those can or shall actually be monitored. We
refer to these state transitions of interest as event monitoring points.

Definition 3 (Event Class, Event Monitoring Point). C is a set of event classes indi-
cating the nature of an event. Let P = (N, F) be a process model. An event monitoring
point is a tuple M = (n, t, c), where n ∈ N is a node, t ∈ Tlc(n) is a state transition within
the life cycle of node n, and c ∈ C is the event class to be monitored.

Event monitoring points of a process model are selected state transitions, for which
information can be retrieved from the process environment and they can be bound to an
implementation. Event classes are used to specify the measurement an event monitoring
point shall provide, e.g., time, counters, or cost.

Definition 4 (Binding, Implementation). LetM be the set of defined event monitoring
points of a process model P. A binding is a function bind : M → I assigning an
implementation to an event monitoring point, where I is the universe of implementations,
i.e., rules and methods to capture an event in the process execution environment.

This definition allows to implement event monitoring points in several ways, e.g., as a
database query, as a service request, a calculation method, as a stream processing filter, or
reading a log entry. An important aspect of the binding is correlation, i.e., identification
of process instances and events that refer to this process instance. As we assume no
central process orchestration control, an implementation needs to account for correlation
by combining data retrieved from accessed systems.

2.2 System Overview

Our example illustrates a sample business process that describes the admission and
examination of a patient, who needs a liver transplant. If the patient is eligible for
transplantation, she is enlisted to a European-wide register, Eurotransplant.

Handle
patient for
admission

Examine
patient and
assess risk

Explain
transplantation
procedure to

patient

List patient
at Euro-

transplant

Release
patient

Liver transplantation not possible

Process
Model

Life Cycle
Model

Event
Monitoring

Points

IT Systems

Binding

M1 M3M2

e b t e b t e b te b t e b tex ex

Fig. 1. Infrastructure: Example Process with life cycles 〈enable, begin, terminate〉 for
activities and 〈execute〉 for gateways, selected event monitoring points, and bindings to
process environment.

100 Nico Herzberg, Matthias Kunze, and Andreas Rogge-Solti

As explained in Section 1, we assume a process model that is the basis for process
execution, which takes place in a certain environment. Part of this environment are
IT systems that do not necessarily log events of process enactment, but capture the
effects of activities nonetheless. These data are produced as a side effect while using IT
systems to record information and are very valuable to describe the progress of a process
execution. In the example, the information about the patient admission is stored in a
hospital information system, the information about the confirmation of Eurotransplant
listing is stored in a spread sheet file, and the patient release information is stored in a
separate database.

Based on the available information, state-transitions of interest are chosen and
defined as event monitoring points with the corresponding event class. In the example in
Fig. 1, we keep matters simple and consider only event monitoring points of class time.
Nevertheless, it is possible to have more than one event monitoring point defined for a
certain state-transition, when it is necessary to monitor multiple event classes. In the
example, we identified three event monitoring points:

– M1 is the state-transition begin of activity Handle patient for admission
– M2 is the state transition terminate of activity List patient at Eurotransplant
– M3 is the state-transition terminate of activity Release patient

The other activities do not have observable side effects in IT systems, and hence cannot
be tracked.

Once the event monitoring points are defined, they can be bound to an implementa-
tion. In the example shown in Fig. 1 the implementation of

– M1 is the call of a web service provided by the hospital information system,
– M2 is the content of a certain cell in a spread sheet file, and
– M3 is an SQL query to retrieve data from a relational database.

In the given context, correlation of events to process instances is possible through a
unique treatment case id that is stored consistently across all IT systems and can be
matched to a patient.

This implementation will be used during the enactment of any instance of the
process to access the IT systems and discover the occurrence of events defined in event
monitoring points. Once events are extracted and correlated with process instances, they
can be used to visualize the data in a monitoring user interface or to set the stage for
measurements and KPIs. The causal dependencies between event monitoring points are
defined by the process model and the life cycle model of its nodes. This can be leveraged
for conformance checking and notification, if a deviation from the process model is
detected.

During runtime, the monitoring system based on the discussed architecture is query-
ing the process execution data, resp. event data, online from the IT systems. The method
of querying the data is encapsulated in the implementations that are bound to the event
monitoring points. There is no notification from the IT systems shown in Fig. 1. Thus,
the architecture is following a pull approach, not a push mechanism. Pulling is neces-
sary because in this real-world scenario the IT landscape is not enabled for pushing
messages/events most times to interested listeners. In addition the running systems
should not be extended by introducing a process monitoring system. Nevertheless, if
the IT landscape supports pushing events to the monitoring platform, that would be the

Towards Process Evaluation 101

preferable way to reduce bandwidth usage in the network. This implementation detail is
not affected by the proposed architecture.

While the proposed architecture and its application are rather generic, we resorted to
a simple process consisting of activities and alternative (XOR) gateways, each having
brief life cycle models, in the example in Fig. 1. In practice, the architecture could be
easily extended to data objects, control and data flow relations, for instance, if a transition
from one activity to another would explicitly be manifested in a state change of a central
data artifact. Also, every single node could have its own unique life cycle model.

2.3 Case Study

In the hospital setting that we encounter in our research project PIGE, we face the issue
that the records about events during a treatment are distributed over several IT systems.
Depending on the available systems, some of the steps during treatment are logged in a
spread sheet file, some in a SAP Healthcare system and others in separate databases. The
University Hospital of Jena elicited detailed process models for the clinical pathways
of the liver transplant surgery and the colorectal carcinoma, along with milestones
that resemble event monitoring points. The goal of the project is to provide process
intelligence and enrich the process models with runtime information about the treatment
cases. Process intelligence is enabled by answering analytical questions such as:

– How long does it take from the initial contact with the patient until evaluation for
the liver transplant is finished?

– How many emergency patients were treated?
– Which treatment methods were applied?

First, we wanted to enable monitoring [5] of a process. One major application of
monitoring is the definition of target performance values, which are key performance
indicators (KPIs) if they are relevant for success, in the model. This allows the detection
of deviations from planned time and cost limits in a process. The monitoring system
can raise alerts and reminders to inform the responsible process owners and the process
participants about delays or exceeding costs. In addition, there is a huge gain of trans-
parency, as it becomes visible at which stage a current process instance is in a process
model. Note that, while process models can be quite detailed, in the given setting only
few event monitoring points can be defined. Thus, there exist unmonitored blank spots in
the process model, where KPIs cannot be attached to. Second, the prediction of time and
cost of an instance becomes much more accurate, when real-time execution information
of a process is available and bound to a model. It can be used for improving efficiency
by planning resources more accurately. Third, conformance checking helps to detect
deviations, e.g., missing necessary steps, or the absence of recording them in specified IT
systems. Reacting to deviations is very important, as reminders for drug administration
and other treatment steps are beneficial to increase quality of care.

In the PIGE research project, we want to assess existing process evaluation methods
and tailor them for this specific setting, where execution information for only few
activities in the process model is available.

102 Nico Herzberg, Matthias Kunze, and Andreas Rogge-Solti

3 Related Work

One problem that has to be addressed when different event sources for a process exist
is correlation of events to one process instance. Motahari-Nezhad et al. [7] provide
algorithms to determine correlation sets on different attributes of events for distributed
environments. They use methods of atomic, conjunctive, and disjunctive correlation
conditions and heuristics to find correlating groups. The aspects of correlation are also
relevant for this paper, while the focus is on how to map correlated information from
different sources to a process model in a flexible architecture.

Process mining [10] is a discipline that can be used on top of correlated information
merged in an event log to extract all kinds of process information, e.g., process models
generated from real-life event data, execution times and conformance checks to existing
models. The main difference to the architecture presented in this paper is that we utilize
a top-down approach of connecting (detailed) process models to process information,
while process mining is a bottom-up approach based on logs.

Closely related to process monitoring is the topic of process performance measure-
ment, or business process intelligence, that addresses “managing process execution
quality by providing several features, such as analysis, prediction, monitoring, control,
and optimization” [3]. There is a considerable body of work that addresses means to
capture and store process execution data and offer it for evaluation purposes [3,6,1]. Del-
Río-Ortega et al. [2] present a comprehensive ontology to define process performance
indicators that measure execution time, occurrence, and costs of processes. However,
the majority of such approaches rely on a complete log, i.e., a protocol of every state
transition of a process instance. In contrast, the architecture we presented lays the ground
work for these approaches in the absence of a complete log.

4 Discussion and Future Work

This paper shows a general and flexible architecture to monitoring and performance
evaluation for non-automated process execution environments. In practice, manually
executed processes are common, because automation is not always profitable or feasible
depending on the process and domain. However, some process information is often
available in IT systems and can be exploited for process monitoring. With the described
architecture it is possible to define event monitoring points in a process model and bind
them to respective implementations. During runtime, these implementations are used to
pull events from the IT systems updating the process model for monitoring purposes.

This setting raises additional questions for future work that includes dealing with
observed deviations from the modeled process, e.g., missing events, duplicate events, or
violation of ordering constraints imposed by the process model.

A complex model of many activities that only has few event monitoring points may
not be well suited to display the state of a process instance, as it lacks information for
most of the activities. A better representation would merge fragments of a process model,
based on the available monitoring data. The result would be an abstraction, where a node
represents a precisely measurable entity of work. On the other hand, it may be useful to
abstract the process into a very coarse grained representation, e.g., to communicate it to

Towards Process Evaluation 103

external stakeholders, which in turn requires aggregating and adjusting event monitoring
points.

In a separate stream of work, we aim at implementation strategies for this approach.
Currently, the binding of an event monitoring point is laborious work on the edge between
business requirements, e.g., KPI definitions, and technical capabilities. Therefore, we
envision decoupling the work of process experts and implementers by means of a service-
based bindings. An additional layer decouples the IT systems from event monitoring
points and can provide a flexible event distribution model, e.g. publish-subscribe, or
caching. These services can be used by the by process modelers to configure event
monitoring points. An adequate language for event monitoring point configuration is
required to ease the currently laborious implementation process.

References

1. B. Azvine, Z. Cui, DD Nauck, and B. Majeed. Real time business intelligence for the adaptive
enterprise. In IEEE-CEC, 2006., pages 29–29. IEEE, 2006.

2. A. Del-Río-Ortega, M. Resinas, and A. Ruiz-Cortés. Defining process performance indicators:
an ontological approach. OTM 2010, pages 555–572, 2010.

3. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business process
intelligence. Computers in Industry, 53(3):321–343, April 2004.

4. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozessmodellierung auf der Grundlage
"ereignisgesteuerter Prozessketten (epk)". Veröffentlichungen des Instituts für Wirtschaftsin-
formatik, 89, 1992.

5. D.W. McCoy. Business activity monitoring: Calm before the storm. Gartner Research, ID:
LE-15-9727, 2002.

6. F. Melchert, R. Winter, M. Klesse, and N.C.Jr. Romano. Aligning process automation and
business intelligence to support corporate performance management. In AMCIS’2004, pages
4053–4063, New York, 2004. Association for Information Systems.

7. H.R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event correlation for
process discovery from web service interaction logs. VLDB Journal, 20(3):417–444, 2011.

8. OMG. Business Process Model and Notation (BPMN) 2.0 Specification, January 2011.
http://www.omg.org/spec/BPMN/2.0/PDF.

9. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow resource
patterns: Identification, representation and tool support. In Advanced Information Systems
Engineering, pages 216–232. Springer, 2005.

10. W.M.P. Van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer-Verlag New York Inc, 2011.

11. M. Weske. Business process management: concepts, languages, architectures. Springer-
Verlag New York Inc, 2007.

http://www.omg.org/spec/BPMN/2.0/PDF

Towards a Human Task Management Reference
Model

Daniel Schulte

FernUniversität in Hagen, 58084 Hagen, Germany,
Daniel.Schulte@FernUni-Hagen.de

Abstract. Business process engines and workflow engines (but also
web applications and emails) provide information about human tasks to
people. Although many of these systems support some kind of human
task management, no extensive analysis of involved components has been
undertaken.
This paper discusses some of these systems exemplarily and defines a
first human task reference model to stimulate debates on ways how to
manage human tasks crossing system and organization boundaries.

1 Introduction

A workflow is the “computerised facilitation or automation of a business pro-
cess” [8] and may contain automated and manual activities, also referred to
as human tasks. As business processes are often considered as “enacted by a
single organization” [19], the business process instances “can be controlled by a
business process management system as a centralized software component” [19].
Interorganizational processes are realized as process choreographies where several
process instances interact with each other via message exchanges.

The management of human tasks comprises, among others, the assignment
of tasks to potential workers and personal task management. Some of these
management facilities are integrated into Workflow Management Systems (WfMS)
and Business Process Management Systems (BPMS) [18, 19].

Today, many process automations with different characteristics are offered,
e. g., control flow-driven BPMSs and data-driven Scientific WfMSs, WS-* and
REST oriented solutions, processes deployed locally or in the cloud, and engines
supporting unstructured, knowledge-intensive business processes [15]. At the
same time, people are working in parallel in different virtual, cross-company and
interdepartmental teams [12]. Hence, different process automations may be used
in parallel within departments and organizations and humans may be working
with different process automations in different virtual teams. Hereby, they will
be confronted with different human task management solutions, too.

To support humans better —esp. those who are engaged in virtual teams— a
platform- and process-independent personal task management is required. This
personal task management system needs to collect all tasks of a human spread over
different process engines (and other “task-aware” applications) and provide task

Towards a Human Task Management Reference Model 105

management facilities. A step towards this vision is a human task management
reference model that allows us to

– identify all affected components and their relations to each other,
– understand possible invocation patterns between the components, and to
– determine data that needs to be potentially exchanged.

These insights will support the independent development of components for human
task management and provide the potential to use process engines optimized for
their application scenarios in parallel. It may foster distributed orchestrations and
reuse of process engines as organizational affiliations of humans do not restrict
process execution. Since not only WfMS and BPMS are aware of tasks but (web)
applications like Teambox [16], too, the discussion will take a broader look at
human task management.

Section 2 introduces basic terms. Section 3 discusses some systems that
contain and manage human tasks and shows their diversity, Sec. 4 introduces
a first reference model for human task management. Section 5 discusses this
reference model and Sec. 6 concludes this paper.

2 Human Tasks and their Management

Van der Aalst and van Hee define a task as “a logical unit of work” and differentiate
between manual, automatic and semi-automatic tasks [1]. In the area of human
task management, we look at manual tasks that are “entirely performed by one or
more people, without any application” [1] and semi-automatic tasks that involve
persons and applications.

The management of human tasks considers questions like:

– How can the execution of human tasks be supported?
– How can human tasks be assigned to (potential) workers?
– How can workers be informed about their tasks?
– How can workers manage their tasks, e. g., keep track of their tasks, schedule

them or delegate them?

Thus, the management of human tasks comprises, among others, the assign-
ment of tasks to potential workers, called staff resolution [18], claiming of tasks
by potential workers, which may remove the item of other potential workers’
worklists [18], and also personal task management with “reminding [. . .] of current
tasks, tracking task status, and maintaining relevant information” [21].

3 Systems touching Human Task Management

Many different systems cover (at least some aspects of) the management of
human tasks. Due to lack of space we will only introduce selected systems and
discuss their approach to human task management briefly.

106 Daniel Schulte

Fig. 1. Workflow Reference Model [8]

The workflow reference
model [8] focuses on workflows
and identifies interfaces to en-
able interoperable workflow
products. It discusses, inter
alia, workitem handling that
allows users to fetch and filter
their workitems “irrespective
of the nature of actual product
implementation” [8].

The central component of
the reference model in [8] (see
Fig. 1) is the workflow enact-
ment service with its workflow
engines that provide the exe-
cution environment for workflow instances. This component offers interfaces

– for process definition tools to exchange process definitions that can be ana-
lyzed and modeled with external tools,

– for workflow client applications to access worklists and workitems but also to
instantiate and control processes,

– for invoked applications that can be used by the workflow for automated
executions of tasks,

– for other workflow enactment services to invoke activities and sub-processes
or to transfer data, and

– for administration & monitoring tools to manage users and roles, among
others.

The workflow enactment service and the workflow client applications provide
some human task management facilities jointly: Human tasks are controlled
by the workflow engines within the workflow enactment services incl. some
information about them. Workflow client applications can access workitems
using the ‘Interface 2’ of the workflow enactment service and can mark them as
completed or change their states. They can also instantiate and control workflows
(and consequently initiate human task). Hence, workflow client applications allow
users to fetch and work on tasks as task workers as well as to initiate them.

The business process community has developed WS-BPEL as an executable
language for business processes. For human tasks, the complementary specifica-
tions BPEL4People [3] and WS-HumanTask [2] were added.

The WS-HumanTask specification defines an XML-based description of human
tasks assuring portability as the task can be deployed in different environments. A
lifecycle specification for tasks and a programming interface assure interoperability.
The programming interface, for example, can be used by task list clients to display
information about tasks to users. Requesting applications can use a callable WSDL
interface to initiate human tasks and —with deeper integration— use WS-HT
protocol messages to influence the lifecycle of tasks.

Towards a Human Task Management Reference Model 107

The BPEL4People specification is based on the WS-HumanTask specification
and adds people activities to BPEL processes to use human tasks as activity
implementations. Human tasks can be defined as part of the BPEL processes and
thus executed by BPEL engines that implement BPEL4People. Alternatively, the
processes can invoke human tasks from other environments using web services
protocols.

The assignment of people to human tasks can be defined by logical people
groups, literals or via expressions. The staff resolution is done by the task
infrastructure which manages information about the tasks.

Teambox is one of many different collaboration tools provided as web appli-
cations that offers online project management facilities including task manage-
ment [16]. Teambox allows the organization of tasks and artifacts in projects as
well as the invitation of other users to these projects for collaboration. Tasks can
be defined manually, added to projects, and provide a simple lifecycle that is also
managed manually. Tasks can be assigned to people and commented, and files
can be attached to tasks. All task management facilities are contained within
the application but information about tasks can also be sent to users by email.

Many other web applications rely on email as a tool for notification about
human tasks. Individuals and groups of individuals may use tools like Easy-
Chair [6] or ConfTool [5] for conference management, Google Docs [7] for word
processing and Moodle [11] in lifelong learning scenarios. Especially small teams
collaborating over limited periods of time may benefit from these applications
(regardless of whether provided by individual team members or by third parties).

Often, processes are firmly implemented in these web applications and contain
human tasks. The humans concerned are informed by email, and email applications
are regularly used for the management of these tasks [20, 21] incl. management
facilities like the delegation of tasks to other humans by forwarding emails. In
addition, emails allow the direct information and assignment of tasks to users.

Although these applications and systems have very different characteristics,
there are some common but also individual components and facilities regard-
ing human task management. Section 4 introduces a human task management
reference model to create a shared understanding of important aspects.

4 Human Task Management Reference Model

A first version of a conceptual reference model for human task management is
depicted in Fig. 2. In the following we explain the model’s core elements and
their relationships.

The central component of a human task management solution is a personal
task manager that allows a human to overview all his current tasks, track their
states, and maintain relevant information [21] (also called worklist or task list; it
is provided by all systems analyzed in Sec. 3 except email; in the case of email,
inboxes are used for it regularly [21]). Analogously, groups of people can use a
shared task manager that

108 Daniel Schulte

Artifact Human Task

Offline Artifact Online Artifact Task Description Access Right

Task Engine Task Manager User

Worker

Observer

Initiator

Shared Task Manager Personal Task Manager

manages

comprises

informs & updates

informs & updates

uses

has

performs

defines

describesreferences

is related
to

uses

affects

controls

allows
access to

Fig. 2. Human Task Management Reference Model

– can provide direct access to personal task management facilities (the workflow
reference model discusses this option briefly), but

– can also act as a simple distributor that passes on information about tasks
to other task managers, i. e. personal or shared task manager (Teambox may
be used this way if users receive their tasks by email; mailing lists may also
serve this purpose), and

– can provide staff resolution facilities and passes on information about tasks
to task managers of selected individuals (as done by the task infrastructure).

The execution of a task is controlled by a task engine that defines in which
steps a task is executed (the workflow engine and the task infrastructure provide
such functions). The task engine provides information about tasks as well as
updates of this information to task managers (the workflow engine and the task
infrastructure allow clients to fetch this information). The definition as well as the
goal and scope of a human task are part of the task engines realization (defined
by the deployed process or task, for example).

Task managers manage the information received from task engines and other
task managers as task descriptions, which describe human tasks and contain
information about them such as name, status, description, priority, expiration,
and progress. They can comprise subtasks and formulate relations to other tasks,
e. g., predecessor or successor relations. If real world artifacts —offline artifacts
such as a certain punching machine or a certain car— or online artifacts —e. g.,
an online document or a web application— are affected by a task —e. g., needed
to perform it—, they could be referenced. For the latter, hyperlinks may be
appropriate.

Towards a Human Task Management Reference Model 109

Access Rights to artifacts are held by users, for instance, in form of a front
door key for a machine hall or credentials for a web application, but may also be
contained in task descriptions, e. g., as credentials, code of a combination lock,
or a description where to find the keys (the described systems focus mainly on
displaying tasks but the responsible clients are not described in detail).

Users —especially as (potential) worker or observer of a task— use task
managers (usually personal task managers) to overview and manage their tasks.
Initiators of tasks use task engines to initiate and, if necessary, to influence and
manipulate task instances.

5 Discussion

The reference model provides terms for components and relations between them
for the human task management area to allow the discussion and comparison
of different solutions. The relation between task engines and task managers
is, for example, implemented very differently: The workflow reference model
discussed in Sec. 3 defines a pull model, where workflow enactment services (in
the role of task engines) define an interface to retrieve and manipulate work items,
whereas the email based solutions use a push model, where task descriptions
are sent to the email applications (in the role of task managers). The informs
and updates concept between task engines and task managers should therefore
not be understood as a directed information flow but as a logical relationship.
It shall promote the discussion of advantages and disadvantages of the different
implementations dependent of different use cases.

Because of the different perspectives of the WfMSs and BPMSs on the one
side and the human task management reference model on the other side, they
have only few elements in common. Most process automation functionalities
(incl. portable specifications) are subsumed in the task engine component of the
human task management reference model whereas many human task management
aspects are not explicitly identified in the other models and systems.

The reference model focuses on the management of human tasks. The analysis
of tasks in real world processes and the design of tasks for humans are not covered.
These aspects are, among other things, discussed by industrial and organizational
psychology that examines the task design to improve work conditions towards
health and personality-enhancing working conditions [17] and by the user interface
design that uses task models to understand and develop user interfaces for
interactive systems [10].

The human task reference model is inspired by the systems discussed in Sec. 3.
But many other systems provide support for human task management, e. g.,
Outlook, Bugzilla [4] and Remember the Milk [13], which focus on specialized ap-
plication areas (software development or manual managed to-do lists). Additional
concepts have also been developed to improve the current state of human task
management, especially for the human task management based on emails [9, 20,
21]. Therefore, further systems need to be analyzed to refine the model and get
empirical evidence that the model is complete and consistent. Additionally, the

110 Daniel Schulte

analysis of the discussed systems has to be deepened to work out their similarities
and differences.

The findings of these analyses will be used to support the development of a
web-scale human task management [14], which applies the insights to real world
cases.

6 Conclusion

Different systems contain human task management facilities. They consist of
very different components and support human task management in various ways.
To develop a common understanding of human task management and stimulate
debates on ways to manage human tasks crossing system and organization
boundaries we introduced a first human task reference model.

Therefore, the proposed reference model pursues three targets: (1) foster the
discussion of human task management, (2) provide a framework to analyze and
compare existing human task management solutions and approaches, and (3) sup-
port the development of distributed and decentralized human task management
solutions independent of concrete process automation systems and web applica-
tions (it shall allow humans —especially those involved in multiple projects—
to overview and manage their tasks efficiently although the information about
outstanding tasks may be distributed over different systems).

To improve the reference model and our understanding of human task man-
agement, additional solutions like simple to-do list tools, PIMs incl. Outlook, and
CSCW workspaces will be discussed and used to refine the model in future work.
In addition to components, interaction patterns as well as interfaces need to be
analyzed. The usage of different process automation systems and task-aware web
applications in parallel and the choice of humans to work on human tasks beyond
company boundaries may be a long-term goal.

References

1. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA (2002)

2. Agrawal, A. et al: Web Services Human Task (WS-HumanTask), Version 1.0. Tech-
nical Report, Active Endpoints Inc. et al (2007)

3. Agrawal, A. et al: WS-BPEL Extension for People (BPEL4People), Version 1.0.
Technical Report, Active Endpoints Inc. et al (2007)

4. Bugzilla, http://www.bugzilla.org/
5. ConfTool, http://www.conftool.net
6. EasyChair, http://www.easychair.org
7. Google Docs, https://docs.google.com/
8. Hollingsworth, D.: The Workflow Reference Model. Technical report, Workflow

Management Coalition (1995)
9. Li, W., Zhong, N., Yao, Y., Liu, J.: An Operable Email Based Intelligent Personal

Assistant. World Wide Web 12(2), 125–147 (2009)

Towards a Human Task Management Reference Model 111

10. Limbourg, Q., Pribeanu, C., Vanderdonckt, J.: Towards Uniformed Task Models in
a Model-Based Approach. In: Johnson, C. (eds.) DSV-IS 2001. LNCS, vol. 2220, pp.
164–182. Springer, Berlin (2001)

11. Moodle, http://moodle.org
12. Powell, A., Piccoli, G., Ives, B.: Virtual teams: a review of current literature and

directions for future research. ACM SIGMIS Database, 35, 6-36 (2004)
13. Remember the milk, http://www.rememberthemilk.com/
14. Schulte, D.: Web-scale Human Task Management. ECSA 2011. LNCS, vol. 6903,

pp. 190–193. Springer, Berlin (2011)
15. Stoitsev, T., Scheidl, S., Spahn, M.: A Framework for Light-Weight Composition and

Management of Ad-Hoc Business Processes. In:Winckler, M., Johnson, H., Palanque,
P.A. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 213–226. Springer, Berlin (2007)

16. Teambox : Collaboration Software - Online project management tool for teams,
http://teambox.com/

17. Ulich, Eberhard: Arbeitspsychologie (German). 7th ed. Schäffer-Poeschel, Stuttgart
(2011)

18. Unger, T., Roller, D.: Applying Processes for User-Driven Refinement of Peo-
ple Activities. 14th IEEE International Enterprise Distributed Object Computing
Conference Workshops, pp. 9–14. IEEE Computer Society, Los Alamitos (2010)

19. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Berlin (2007)

20. Whittaker, S., Sidner, C.: Email Overload: Exploring Personal Information Man-
agement of Email. Tauber, M.J. (eds.): SIGCHI Conference on Human Factors in
Computing Systems (CHI 1996), pp. 276–283. ACM Press, New York (1996)

21. Whittaker, S., Bellotti, V., Gwizdka, J.: Email in personal information management.
Communications of the ACM 49, 68–73 (2006)

Contextsensitive Online Adaption of Workflows

Johannes Kretzschmar, Clemens Beckstein

johannes.kretzschmar@uni-jena.de

clemens.beckstein@uni-jena.de

Friedrich Schiller University, Jena, Germany

Abstract. A dynamic and complex process environment forces the au-
tomated execution and monitoring of processes to face a lot of hard
problems. This paper shows how the execution of agile workflows can be
assisted by AI planning techniques. In contrast to previous approaches,
this method allows for an online adaption of simple process models to
changes in the process environment. It can handle a manifold of unex-
pected events and guarantees the soundness and completeness of the
adapted workflow.

1 Introduction

Business processes today are commonly automated by formalizing and instanti-
ating them to workflows. Established comprehensive industry standards support
modeling, processing and monitoring of these workflow instances by a workflow
management system [8]. The inclusion of more dynamic and complex processes
and process environments, demands an extended support for agile workflows [17].
Agility allows the adaption of workflows to face a dynamic environment. The
classical distinction between modeling and execution of workflows is progres-
sively given up in order to adjust to changes and new demands at runtime. The
adjusting procedure should be fully automated, efficient, correct and able to
process expected as well as unexpected events. Workflow elements that are not
affected by events should be executable during the adaption and not prolong the
execution time of the underlaying business process. In order to guarantee the
correctness of the adapted workflows a comprehensive formal semantic annota-
tion of the process and its environment is needed. A more expressive model of
business processes on the one hand and a formal process semantic on the other
one suggest to combine AI planning techniques and workflow modeling for a
solution of the adaption problem.

Here, we will present and discuss an approach to workflow adaption via plan
repair. First, we will formally define how processes based on a simple plan model
can fail, i.e. the corresponding failure model. Next, we will give a sketch and an
example for adapting a plan by fragmentation and partial plan repair. Having
related our work to previous approaches we will then conclude with a short
summary and an outlook on future work.

Contextsensitive Online Adaption of Workflows 113

2 Planning and Failing

For our approach, we assume a very basic workflow model. It consists of se-
mantically annotated real world operations and allows parallel and sequential
processing of (sub)workflows. This simple model can easily be transformed to a
partial order plan and vice versa.

A partial order plan in set theoretically representation is a tuple π = (Aπ ,≺)
consisting of a set Aπ of partially ordered actions [14]. The corresponding plan-
ning domain Σ = (S,A, γ) is defined by a set of states S ⊆ 2L over a finite
set L of propositional symbols (so called fluents), a set of actions A ⊇ Aπ
and a state-transition function γ, which defines the effect of an applied ac-
tion. An action a = (precond(a), effect+(a), effect−(a)) ∈ A is applicable in a
state s ∈ S, if precond(a) ⊆ s. The application of a in s results in a state
s′ = γ(a, s) = (s∪effect+(a))\effect−(a)). In the following Γ ∗((A,≺), s0) denotes
the set of states, which result from processing all linearizations of a plan (A,≺)
in s0. A linearization of (A,≺) is a sequential order of all actions a ∈ A that is
compatible with ≺. A partial order plan π is a solution for a planning problem
P = (Σ, s0, g) with a set of goal fluents g, if for all send ∈ Γ ∗(π, s0) : g ⊆ send.

Although there is the assumption of a static world in classical planning, we
have to handle the dynamics of real life scenarios as they are typical for workflow
applications. Plan execution therefore has to deal with a wide range of events,
which were not considered at the time of planning. These can affect all aspects
of a plan and the planning domain: states, sets of actions and goals. In the fol-
lowing we assume that the actions of a partial order plan π are processed one
after the other. As a consequence, the execution state sπ′ that results from the
linear plan fragment π′ ⊆ π of already executed actions is uniquely defined. An
unexpected event can influence this state by implicitly adding or deleting flu-
ents. Therefor we can define an (unexpected) external event as a pseudo action
ǫ = (∅, effect+(ǫ), effect−(ǫ)) which transforms sπ′ to the new state s′ = γ(ǫ, sπ′).
Internal unexpected events (planned actions that failed) can be formally treated
in the same way. Process dynamics can also unexpectedly influence the set of ac-
tions available for planning thus changing Σ to the new domain Σ′ = (S,A′, γ′).
Our approach also allows for (unexpectedly) changing the goals from g to g′

during plan execution. We assume, that an event or goal change always occur
in between the processing of two actions and that the plan domain is fully ob-
servable. In real world scenarios unexpected events of the mentioned types can
happen in combination.

Once an unexpected event eu is recognized in state s′ after execution of
the plan fragment π′ its impact on the overall plan π has to be assessed. If
the remaining plan πR = π \ π′ is not a solution for the planning problem
P ′ = (Σ′, s′, g′) the plan π failed. One way to fix the plan would be to find a
solution for P ′ that is to fix π by re-planning. The fix we propose is to repair

π by isolating and partially replanning only that part of πR which is affected
by eu. A plan fragment is called affected by eu, if it contains failed actions. An
action a ∈ πR is failed, if a 6∈ A′ or if there is a linearization of πR, where a is
not applicable.

114 Johannes Kretzschmar and Clemens Beckstein

3 Fragmentation and Replanning

In order to affect the plan or workflow execution as little as possible we identify
minimal parts of πR that fail and try to find alternatives for them.

For this purpose we first choose an inner fragment πE = (AE ,≺) of πr by
selecting a connected plan fragment, which contains all failed actions Afail ⊆ AE .
A plan fragment πE is called connected, if for all a, b ∈ AE and c ∈ Aπ, we have
that c ∈ AE if a ≺ c ≺ b. AE may also be empty if πR only fails due to
an unexpected goal change. The outer fragment πF is the plan containing all
actions, which are unordered to every action in πE and not contained in πE . So
πF is connected as well. Finally we define the remaining fragment πP as the
plan fragment containing all actions a ∈ AR which are neither in the inner nor
the outer fragment. By definition AE , AF and AP are disjoint, but contain all
actions of πR in union. Therefor we call (πE , πF , πP) a fragmentation of πR (see
fig. 1).

Fig. 1. a valid fragmentation of the remaining plan πR

The plans πE and πF in a fragmentation (πE , πF , πP) are independent and πE
contains all failed actions of π. The plan repair mechanism we propose searches
for an alternative π′E for πE which is similar to the original, can be executed
independently of πF and together with πF and πP is a solution of P ′. To ensure
the independent (unordered) execution of πF in relation to π′E , we introduce the
so called context of πF . The context CF of πF is a pair (HF ,SF) of two fluent
sets: the soft criteria SF and the hard criteria HF . SF contains all fluents which
are used in preconditions or added, but not deleted by actions in πF .

SF :=

{

m :
∨

a∈AF

∧

b∈AF

(

m ∈ effect+(a) ∪ precond(a)
)

∧ ¬
(

m ∈ effect−(b)
)

}

The fluents in SF can also be used, added but not deleted in π′E without resulting
in plan flaws. On the other hand, fluents are not allowed to be added or used
if they are deleted in πF . These fluents make up HF := {m :

∨

a∈AF
m ∈

effects−(a)}.

Contextsensitive Online Adaption of Workflows 115

With the help of the context, it is possible to formulate an extended planning
problem PE = (Σ′, sE, gE , CF). Compared to a classical planning problem like P
an extended planning problem also takes into account the dynamic environment
described by the context CF . As described in section 2, a failure may occur after
the state where the unexpected event took place that triggered the plan repair.
This happens for example, if a state change event affects the applicability of
prospective actions in the plan. We therefore identify a fragment πV of πP that
contains all actions a ∈ AP with a ≺ aE for all aE ∈ AE . The plan fragment
πV is used to produce the starting state sE for the extended planning problem
PE from the state s′ which contains those fluents that for sure hold once πV is
completely executed: sE :=

⋂

{si : si ∈ Γ ∗(πV , s′)}. Thus our method is able
to repair parts of the plan which are far ahead of the current execution state
without expanding the inner fragment. Finally, the goal gE is constructed from
open preconditions in πP and the goal set g′. To simplify this procedure, the
goal is represented by an implicit goal action agoal = (g′, ∅, ∅) which is inserted
into πP after all other actions a ∈ AP . The goal gE for PE is then chosen to:

{

m ∈ L :
∨

a∈AP

m ∈ precond(a) and
∧

b∈AP∪AF

(

b ≺π a→ m 6∈ effects+(b)
)

}

.

In order to handle extended plan problems the planning procedure uses a gener-
alized definition of applicability which uses the context CF = (HF ,SF) to avoid
flaws between the computed plan solution and πF . An action a is applicable in
a state s wrt. a context CF , if

precond(a) ⊆ s and
∧

m∈precond(a)

m 6∈ HF and
∧

n∈effects−(a)

n 6∈ SF .

The parameters for the extended planning problem and the resulting applicabil-
ity of actions are all determined by the selection of the inner plan fragment of
πE : the smaller πE , the bigger CF and the more constrained is the planning pro-
cess. For a good choice of πE we propose to first attempt the repair process with
the smallest πE possible followed by iterative attempts with bigger fragments
until πE = πR which amount to classical replanning. It can be shown, that the
solution π′E of PE can replace the defective πE without producing flaws wrt. πF .
By processing π′E all open preconditions of πP and all (maybe changed) goal
fluents will be satisfied: the repaired plan π′R is a sound and correct solution for
the plan problem P ′ that summarizes the failure of the original plan.

4 A Real World Usecase

The generic repair method, introduced in this paper, was developed in the con-
text of the Mops project1. The target of this joint research project is adaptive

1
Mops is funded by the European Union (European Regional Development Fund)
and the Federal State of Thuringia of Germany.

116 Johannes Kretzschmar and Clemens Beckstein

planning and secure execution of mobile processes for human agents in dynamic
scenarios [1]. Because the processes in those scenarios typically are long living,
a comprehensive event and failure model as well as support for process adaption
during runtime is needed. The workflow technology of Mops is based on Bpel

descriptions. In order to bridge the expressive gap between the Bpel model and
the plan model, the plan activities are encapsuled as semantically annotated ser-
vices. As a consequence, workflows can contain complex control flow structures
and detailled local event handling mechanisms, and still can be planned and
manipulated automatically on an abstract level.

The application of Mops is based on a generic scenario of service staff com-
pleting missions (on site repair jobs, delivery tasks, facility management). In
order to exemplify our repair method, let us assume an extremely reduced sce-
nario with 3 service technicians and 3 missions that can be represented by
the following simple set-theoretic planning domain with the fluent set L =
{a1 , ..., a3 , done1 , ..., done3 , 1doing1 , ..., 3doing3 }. For every technician, there is
a fluent aX , which means “technician X is available”. Likewise there is a fluent
doneX for every job, which means “job X is successfully accomplished.” For every
job and every technician there is a fluent XdoingY , which means “technician X

is assigned to job Y ”. The planning domain further contains two types of actions.
The first one actually assigns a job to a technician, if the technician is available.
assign1to2 = ({a1}, {1doing2}, {a1}), e.g., allocates job2 to technician1. The
second type of action initializes the execution of a job by its assigned technician.
1do2 = ({1doing2 }, {done2 , a1}, {1doing2 }), e.g., means “technician 1 is doing
job 2”. The solution of the planning problem P = (Σ, s0, {done1 , done2 , done3})
with s0 = {a1 , a2 , a3 } then results in a plan like π as shown in fig. 2.

Fig. 2. a sound and correct solution π for P

Let us now assume that the current execution state sπ = s0 and that in
this state a technician reports to be sick resulting in the new actual state
s′ = γ((∅, ∅, {a3}), sπ) = {a1 , a2 }. This event leads to a failure of the re-
maining plan π′, because action assign3to2 is no longer applicable. Because
this action is the only action affected by the failure we can reasonably set
AE = {assign3to2 }, which implies AF = {assign1to3 , 1do3 , assign2to1 , 2do1 }
and AP = {3do2 }. This fragmentation leads to a context CF with HF =
{a1 , a2 , 1doing3 , 2doing1 } and SF = {done3 , done1 }) and the extended plan-
ning problem PE = (Σ, ∅, gE, CF) with the open precondition of 3do2 as goal
gE = {3doing2 } It is impossible to find a solution for this problem because job

Contextsensitive Online Adaption of Workflows 117

2 can not be assigned to any other technician due to {a1 , a2} ⊂ HF (an as-
signment action deletes the availability fluent for its agent and therefore is not
applicable as long as the fluent is contained in the context). If we now widen
the inner fragment to AE = {assign3to2 , 3do2 } (hence AP = ∅) then the cor-
responding new extended planning problem PE = (Σ, ∅, {done2}, CF) still has
no solution because AF and CF remained the same. A further widening of the
inner fragment to AE = {assign3to2 , 3do2 , 2do1 } (AP = AV = {assign2to1})
diminishes the outer fragment to AF = {assign1to3 , 1do3 } and the context to
SF = {done3} and HF = {a1 , 1doing3 }. The resulting extended planning prob-
lem PE = (Σ, {2doing1 }, {done1 , done2}, CF) is now solvable with the plan
alternative π′R as shown in fig. 3

Fig. 3. the adapted plan π′R with alternative π′E and corresponding fragmentation

This little example already shows that the choice of the inner fragment AE
significantly influences the context and therefore the degrees of freedom for the
replanning problem. For this choice we propose to use the control-flow structure,
respectively the partial plan order: in order to maximize the part of the workflow
that can be executed concurrently to the adaption process for the failed part,
the outer fragment AF and AV of the remaining fragment should stay as big as
possible.

5 Related Work

A lot of workflow related approaches for adaption while runtime are based on the
reusability of pre-modeled workflow fragments. AdaptFlow [6], which is based
on Adeptflex [16], uses explicit event-condition-action (ECA) rules to change a
workflow. A similar, and widely-established approach, based on cased-based rea-
soning (CBR) [12], is implemented in Cbrflow [18], Phala [10] and Cake ii [13].
In case of a change request, a pre-modeled workflow fragment is chosen from
a case repository and integrated into the workflow. The retrieval is based on
a similarity measure of the structural, procedural and declarative knowledge.
The CBR related methods differ primarily in the type and complexity of the
underlying knowledge model. There are also approaches using AI planning tech-
niques like the traditional cased-based planner Chef [7], which can be applied
to simple workflow models. Codaw [11], e.g., is using a case repository imple-
mented as a hierarchical task network. Other workflow specific approaches like

118 Johannes Kretzschmar and Clemens Beckstein

Bpel’n’Aspects [9] or StPowla [5] use policy descriptions for implementing adap-
tive process logic. These descriptions are similar to the pre-modeled knowledge
of CBR cases and likewise triggered by ECA rules. In contrast to our approach,
all these approaches lack of a specified failure model and a goal oriented adap-
tion. The identification of events and the adaption is restricted to pre-modeled
use cases which do not cover unexpected events. Further, it is impossible to
recognize and handle any flaws which may occur by the adaption.

Besides case based approaches there are two strategies in AI planning for
performing a plan adaption: re-planning from scratch or plan repair. Nebel and
Koehler [15] show, that the local adaption and reuse of plans suffers from the
inherent structural worst case complexity of planning: failed plans should be
re-planned from scratch because in the worst case, the whole plan has to be re-
structured anyway. First, this consideration ignores the necessity of concurrent
plan execution and plan adaption as it is typical for, e.g., business processes. Fur-
ther, one of the few general domain independent approaches for plan repair, as
discussed by Arangu et. al. in [2] and used in the planner Mips-xxl [3], performs
great using local adaption techniques: an iterative two-step procedure identifies
the defective part of the plan and tries to find an alternative by gradually ex-
panding the planning problem, especially the set of planning operators. But in
contrast to our approach the scope of plan repair is fixed.

Usually there is no unique solution for a planning problem, thats why al-
ternatives have to be considered. Fox et. al, e.g., discuss in [4] a measure for
plan-similarity like those used in CBR: a heuristic assures that the alternative
plan is as close as possible to the original failed plan. This is justified by the
assumption that the original plan was modeled by or with the help of domain ex-
perts. Especially when using plans as workflow models, this measure also permits
maintaining commitments between process partners. Our context description of
process (fragments) could supply useful informations for a heuristic or similarity
measure in first principle planners as well as CBR or CBP approaches.

6 Conclusion and Future Work

We have introduced a domain independent method for adapting partial order
plans. In contrast to present approaches, this method follows a formally defined
complex failure model that captures the relevant characteristics of the underlying
process model. The approach is able to adapt processes at runtime, i.e. concur-
rently to process execution, and is guaranteed to produce sound and correct
solutions.

At the moment there still is a big gap between the expressive power of the
plan representation we used and that of state of the art workflow models but
we are working hard to generalize our method to more complex representations,
which are able to represent additional aspects of todays workflow languages —
among them complex control structures as well as explicitly coded data flow,
organizational and security aspects.

Contextsensitive Online Adaption of Workflows 119

References

1. Mops — project description (2011), http://mops.uni-jena.de/us/

Homepage-page-.html, [Online; accessed 08-February-2012]
2. Arangu, M., Garrido, A., Onaindia, E.: A general technique for plan repair. In:

Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE International Con-
ference on. vol. 1, pp. 515 –518 (nov 2008)

3. Edelkamp, S., Jabbar, S., Nazih, M.: Large-scale optimal pddl3 planning with
mips-xxl. In: 5th International Planning Competition Booklet (IPC-2006) (2006)

4. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan
repair. In: In Proc. ICAPS. pp. 212–221. AAAI Press (2006)

5. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: Service-oriented com-
puting - icsoc 2007 workshops. chap. StPowla: SOA, Policies and Workflows, pp.
351–362. Springer-Verlag, Berlin, Heidelberg (2009)

6. Greiner, U., Ramsch, J., Heller, B., Löffler, M., Müller, R., Rahm, E.: Adaptive
guideline-based treatment workflows with adaptflow. In: Proceedings of the Sym-
posium on Computerized Guidelines and Protocols (CGP 2004), Computer-based
Support for Clinical Guidelines and Protocols. pp. 113–117. IOS Press (2004)

7. Hammond, K.: Case-based planning: A framework for planning from experience.
Cognitive Science 14, 385–443 (1990)

8. Jablonski, S. (ed.): Workflow-Management. dpunkt-Verl., Heidelberg (1997)
9. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestra-

tion Logic. In: Proceedings of 7th International Conference on Web Services ICWS
2009. pp. 222–229. IEEE Computer Society (2009)

10. Leake, D., Kendall-Morwick, J.: Towards case-based support for e-science workflow
generation by mining provenance. In: Althoff, K.D., Bergmann, R., Minor, M.,
Hanft, A. (eds.) Advances in Case-Based Reasoning, Lecture Notes in Computer
Science, vol. 5239, pp. 269–283. Springer Berlin / Heidelberg (2008)

11. Madhusudan, T., Zhao, J.L., Marshall, B.: A case-based reasoning framework for
workflow model management. Data Knowl. Eng. 50, 87–115 (July 2004)

12. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation
of workflows. In: Montani, S., Bichindaritz, I. (eds.) Case-Based Reasoning. Re-
search and Development, 18th International Conference on Case-Based Reasoning,
ICCBR 2010, Alessandria, Italy, July 19-22, 2010. Proceedings. pp. 421–435. LNAI
6176, Springer (2010)

13. Minor, M., Schmalen, D., Kempin, S.: Demonstration of the agile workflow man-
agement system cake ii based on long-term office workflows. In: BPM (Demos)’09
(2009)

14. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

15. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and empir-
ical analysis. Artificial Intelligence 76, 427–454 (1995)

16. Reichert, M., Dadam, P.: Adept flex - supporting dynamic changes of workflows
without loosing control. Journal of Intelligent Information Systems 10, 93–129
(1998)

17. Weber, B., Wild, W.: Towards the agile management of business processes. In:
Althoff, K.D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) Pro-
fessional Knowledge Management, Lecture Notes in Computer Science, vol. 3782,
pp. 409–419. Springer Berlin / Heidelberg (2005)

18. Weber, B., Wild, W., Breu, R.: Cbrflow: Enabling adaptive workflow management
through conversational case-based reasoning. In: ECCBR. pp. 434–448 (2004)

Six Strategies for Building

High Performance SOA Applications

Uwe Breitenbücher, Oliver Kopp, Frank Leymann,

Michael Reiter, Dieter Roller, and Tobias Unger

University of Stuttgart, Institute of Architecture of Application Systems (IAAS)

{uwe.breitenbuecher, firstname.lastname}@iaas.uni-stuttgart.de

Abstract. The service-oriented architecture (SOA) concepts such as loose cou-

pling may have negative impact on the overall execution performance of a sin-

gle request. There are ways to facilitate high performance applications which

benefit from this kind of architectural style compensating the caused overhead

significantly. This paper gives an overview on six high level strategies to im-

prove the performance of SOAs with a central service bus and presents how to

apply them to build high performance service-oriented applications without cor-

rupting the SOA paradigm and concepts on the technical level.

Keywords: Service-oriented architecture, High Performance, Strategies

1 Introduction

The key concepts of service-oriented architectures (SOAs) such as loose coupling,

interoperability, or abstraction may have negative impact on the overall performance

of applications. The reasons are additional costs for time-consuming operations such

as message format transformations, dynamic service discovery, etc. [10]. In this paper

we present six different improvement strategies which may increase the performance

and show how to apply them to build high performance SOA applications. As the

presented strategies are applied on a higher level than the operations causing the

overhead, the strategies compensate these time-consumptions and additionally in-

crease the overall performance.

In this paper we use two metrics for assessing the performance: Throughput and

response time. Throughput denotes the maximum number of requests a SOA applica-

tion can process in a certain period. Response time measures the time an application

needs to respond to a request [14].

The remainder of this paper is structured as follows: Section 2 discusses related

work. Section 3 presents six strategies to improve the performance and how to apply

them in an abstract service-oriented architecture with a central service bus. Finally,

Section 4 concludes and provides an outlook on future work.

Six Strategies for Building High Performance SOA Applications 121

2 Related Work

This paper is a first attempt to show how a set of high level strategies can be applied

to improve the performance of a SOA application without corrupting the underlying

SOA concepts. Other work in the area of SOA performance improvements are focus-

ing on the technical level. One example for technical improvements are performance

best practices considering optimization strategies focusing on message processing,

message structure, and message design of XML based protocols [11]. These optimiza-

tions are different from the presented strategies in this paper in the level of abstrac-

tion: The six presented strategies in this paper are applied on a high abstract level

while the best practices propose optimizations for concrete technologies. FastSOA

[12] is an architecture and software coding practice which considers optimization

through native XML environments, a mid-tier service cache, and the use of native

XML persistence. It combines the cache strategy presented in this paper with best

practices by Endrei et al. [11], but lacks applying the other high level strategies in

order to gain a higher overall performance.

3 High Performance Strategies

In this section we present six strategies which enable high performance service-

oriented applications without corrupting the underlying SOA concepts [4]. We do not

claim that these strategies are complete: They are inspired by the experiences in our

research projects – mainly SimTech
1
 – and have to be seen as a first attempt to design

high performance SOA applications which has to be extended.

We present Parallel Processing, Caching, Dynamic Service Discovery, Dynamic

Service Migration, Multiple Service Instantiation, and Multiple Service Invocation.

Each strategy targets performance issues on an architectural level.

Service Registry

Client 1

Client 2
Service Bus

Service 1

Service 2

Service 3

1

Service 3

2

3

4

5

6

1 Parallel Processing

2 Caching

3 Dynamic Service Discovery

4 Dynamic Service Migration

5 Multiple Service Invocation

6 Dynamic Service Instantiation

Fig. 1. Six high performance strategies applied to a SOA with central service bus (based on [3])

1 http://simtech.uni-stuttgart.de

122 Uwe Breitenbücher et al.

The strategies focus on SOAs having a service bus as central component (see Fig. 1):

A service is an application processing request messages and may returning response

messages. A client is any application that sends request messages which have to be

processed by services to a central component called service bus (a client can be a

service, too). The service bus is a middleware component providing an integration

platform to connect clients with services [6], [7]. It uses a service registry which

stores all available services combined with a description of their functionality to look

up appropriate services [7]. All messages sent by a client are routed through the ser-

vice bus, which looks up an appropriate endpoint and sends the message to the select-

ed service. After the service finishes the processing, response messages may be routed

back to the requesting client.

The following subsections describe the six strategies. Each strategy has a goal de-

scribing the strategy’s impact on the performance in one sentence. The description

explains in more detail how to apply the strategy and why the performance is im-

proved. The assumptions paragraph describes preconditions which have to be met to

apply the strategy successfully. Benefits of applying the strategies are summarized as

well as downsides and problems in a separate paragraph.

3.1 Parallel Processing

Goal. The goal of this strategy is increasing the internal throughput of requests in the

application to improve the overall application performance.

Description. An application implemented as SOA consists of different services or-

chestrated together to provide new functionality: The application receives a request,

invokes several services and thereby delegates tasks to them needed to provide the

overall application functionality. This concept is called “Programming in the large”

[9]. If the invocations are independent from each other they can be done in parallel at

the same time which increases throughput and therefore the overall processing per-

formance. The distributed computing paradigm of service-oriented architectures ena-

bles this feature. The strategy has to be implemented in clients (Fig. 1, Point 1).

Assumptions. It is assumed that each service is hosted on its own physical environ-

ment and therefore isolated from each other regarding performance. Thus, multiple

concurrent service executions do not influence the performance of each other.

Benefits. The application of this strategy does not need a special performance opti-

mized service bus to achieve high throughput.

Downsides and Problems. The client has to be able to send multiple requests at the

same time to the service bus and has to wait for multiple responses which may arrive

in various orders. This needs special programming effort as this kind of requesting

has to be done asynchronously. There are technologies enabling this kind of service

orchestration. One example is BPEL [8]. Another difficulty is identifying which re-

quests can be done in parallel and which requests have to be processed sequentially.

For applying this strategy to existing applications, the application flow may have to

be changed which can lead to modifications of the overall application architecture.

Six Strategies for Building High Performance SOA Applications 123

Application Example. Examples for applying this strategy are all scenarios where

requests can be processed independently from each other. For instance, in simulations

there are often multiple matrix equations which may be solved at the same time. The-

se equations are independent from each other as they are self-contained in a way that

no external information is needed for solving.

3.2 Caching

Goal. The goal of this strategy is avoiding multiple processing of identical requests to

speed up the application’s performance.

Description. One opportunity to improve the performance of an application’s request

processing is to avoid the actual request processing at all by exploiting caching. The

service bus is the central component which is responsible for any primary service

request message consumption: Clients send request messages to the bus which routes

the messages to selected services and the responses back to the corresponding reques-

tors [3]. For certain requests the responses are always the same, e.g. a matrix equation

solving service returns always the same solution for the same requested equation.

These requests can be cached by the service bus to decrease the response time [1].

The strategy has to be implemented in the service bus (Fig. 1, Point 2).

Assumptions. The requests have to be comparable in a way that identical requests

can be recognized.

Benefits. The application of this strategy is transparent for the requesting client. Thus,

this strategy can be applied without the need for modifying already existing compo-

nents (of course they have to send all requests to the service bus). If a request is

served by the cache the whole service system is discharged.

Downsides and Problems. The identification of cacheable request-response pairs is

difficult and causes overhead at the design time of the application. A request which

cannot be served by the cache causes additional overhead for cache lookup and man-

agement tasks and even decreases the performance for processing this request.

Application Example. In the scientific domain, experiments are executed many times

with only little modified input values and therefore internal simulation data within the

simulation is often identical [2]. Thus, requests depending on this internal simulation

data are also identical and can be cached for further experiment executions.

3.3 Dynamic Service Discovery

Goal. The goal of this strategy is to choose the fastest service for a certain request at

runtime to decrease the response time.

Description. One can distinguish between two different binding techniques: Static

binding and dynamic binding [10]. The first one enables the client to explicitly define

124 Uwe Breitenbücher et al.

which service should be used while the latter one sends the request to the service bus

which discovers a service matching the functional requirements of the request and

then sends the request to this selected service [3]. This service discovery can be en-

riched by taking non-functional requirements expressing capabilities into account,

too [6]: If there are functionally equivalent services, non-functional capabilities of the

service are analyzed to select the service guaranteeing the fastest response time. This

enables optimized load balancing, too. The Dynamic Service migration strategy (see

Section 3.4) may be applied to optimize the services before comparing them. The

strategy has to be implemented in the service bus to enrich the service discovery (Fig.

1, Point 3).

Assumptions. To select the fastest service, all available suitable services have to be

comparable in their performance for processing a certain request. This performance

values have to be predictable automatically (either by the service bus or by the respec-

tive services).

Benefits. The application of this strategy is transparent for the requesting client. Thus,

this strategy can be applied without the need for modifying already existing legacy

components (of course they have to send all requests to a service bus).

Downsides and Problems. This strategy only improves the performance if the over-

head caused by the discovery is below the time saved by the faster service. Otherwise

dynamic service discovery even slows down the performance.

Application Example. An example is a simulation orchestrating services for complex

calculations whose response time depends on a specified requested quality of the

output data. Some algorithms offer only low quality of data but guarantee a fast calcu-

lation. Other algorithms are designed to achieve high quality of data but are more

time-consuming. Depending on the required quality of data (non-functional require-

ment) the fastest service can be chosen.

3.4 Dynamic Service Migration

Goal. The goal of this strategy is to achieve the fastest response time for processing a

request regarding the environment and location conditions a service is hosted on.

Description. There are services whose response time to process a request depends on

the power of the environment they are hosted on. The Dynamic Service Migration

strategy moves services from less powerful machines to more powerful ones to scale

up [13, 15]. Other scenarios increasing the performance are the migration of one ser-

vice collocated to another service to cut down network costs or the migration of other

services hosted on the same environment to other environments to free resources. This

component-based migration is possible because of the loose coupling concept of

SOA. The strategy may be implemented in the service bus which triggers and manag-

es the migration (Fig. 1, Point 4).

Assumptions. To apply this strategy, the migration of services has to be feasible.

Six Strategies for Building High Performance SOA Applications 125

Benefits. The application of this strategy is transparent for the requesting client. Thus,

this strategy can be applied without the need for modifying already existing compo-

nents. Recall that we assume that the services send all requests to a service bus.

Downsides and Problems. The migration of a running service from one machine to

another machine is complex and needs management operations which have to be im-

plemented. Especially handling of local data is difficult, because even if a service can

be migrated to another machine, a huge amount of data which also has to be trans-

ferred can lead to problems: the time savings achieved by the more powerful envi-

ronment may be too small and the overall processing time (including the time needed

for migration) for a single request even increases. To avoid this, the design of the

services and the overall architecture of the application have to be aware that this strat-

egy may be applied. This causes additional overhead at the development time and is

generally difficult. To find out whether a migration of a service on runtime leads to a

faster response time to process a certain request is difficult and depends on many

factors. The component managing this migration has to calculate predictions in which

scenarios and constellations a migration makes sense.

Application Example. One example taken from our experiences with bone remodel-

ing simulation workflows is the processing of big data sets. The simulations typically

process a huge amount of data by sequentially invoking services and passing the data

from one service to another service. Because the services are used by multiple simula-

tions, it is not possible to host all services and store all needed data on a single envi-

ronment. Thus, the migration of services co-located to the data to be processed on

runtime may improve the performance in terms of response time because network

costs are cut down.

3.5 Multiple Service Invocation

Goal. The goal of this strategy is to choose the fastest service for a certain request at

runtime to decrease the response time.

Description. The selection of the fastest service can be difficult, especially if there

are completely different ways to process a single request. There are situations where

the Dynamic Service Discovery strategy cannot be applied to discover the fastest

service because the required values to compare the different services are not calcula-

ble. SOA offers a solution to achieve maximum request processing performance by

sending the request to all available appropriate services concurrently and taking the

response returned by the first responding service. This decreases the response time to

an ideal value as the fastest available service is implicitly chosen. To make this work,

the different services have to be isolated in a way that they do not affect each other’s

response time. The strategy has to be implemented in the service bus (Fig. 1, Point 5).

Assumptions. It is assumed that the multiple service invocations have no negative

impact on the performance of other request processing services.

126 Uwe Breitenbücher et al.

Benefits. The application of this strategy is transparent for the requesting client. Thus,

this strategy can be applied without the need for modifying already existing compo-

nents. Recall that we assume that the services send all requests to a service bus.

Downsides and Problems. The concurrent invocation of multiple functional identical

services basically produces unnecessary workload for the whole service-oriented en-

vironment. To avoid negative impact on other services in terms of performance cloud

technology may be used for the provisioning of new services discharging the system

(i.e., applying the Multiple Service Instantiation strategy, see Section 3.6).

Application Example. One example from the mathematics domain is solving a ma-

trix equation using numerical or algebraic techniques. For a numerical algorithm start-

ing with random values trying to converge towards the solution by executing multiple

iterations, the number of steps and thus the time needed to calculate the solution is not

predictable. Thus, for certain equations, data sets and algorithms it is impossible to

determine the fastest solving algorithm in advance.

3.6 Multiple Service Instantiation

Goal. The goal of this strategy is to increase the performance by invoking only ser-

vices having free capacity.

Description. The performance of the overall system decreases if services cannot pro-

cess a large number of requests any more. If there is no possibility to balance the out-

standing workload differently, this strategy solves the problem by instantiating more

services functionally equivalent to the overloaded ones [15]. The new instantiated

services can be invoked in parallel and hence scale out. The distribution of the work-

load discharges overloaded services and thus increases the throughput. The strategy

may be implemented in the service bus (Fig. 1, Point 6).

Assumptions. The current workload and utilization of a service has to be visible to

the service bus to enable the selection of appropriate services and there have to be free

resources for hosting the new instantiated services isolated in a way that the concur-

rent executions do not decrease the performance of each other.

Benefits. The application of this strategy is transparent for the requesting client. Thus,

this strategy can be applied without the need for modifying already existing compo-

nents. Recall that we assume that the services send all requests to a service bus.

Downsides and Problems. The application of this strategy only improves the per-

formance if the additional needed time for instantiation is below the time which is

saved by invoking the cloned service. Especially if local data also has to be cloned

and transferred to another hosting environment, this leads to additional time-

consumptions caused by network costs. A solution to solve this problem of data mi-

gration is using stateless services. Applying this strategy requires additional resources

in terms of hardware or virtualized systems. Thus, it has to be ensured that this has no

negative impact on the performance of other services (e.g. through cloud technology).

Six Strategies for Building High Performance SOA Applications 127

Application Example. In service-oriented environments where multiple SOA appli-

cations run at the same time certain services may be overloaded because their offered

functionality is so general that it is used by many of these applications. In our simula-

tion experiments matrix solving services are frequently overloaded, for example.

4 Conclusion and Outlook

We presented six high level strategies to increase the overall performance of service-

oriented applications and showed how to apply them to build high performance SOA

applications. As five of the six strategies can be implemented in a performance-driven

service bus we plan to implement this bus and integrate our existing migration proto-

types [5]. This bus enables performance optimization which is transparent to the or-

chestrating component and provides a basis for evaluation scenarios for showing that

the applied strategies also increase the overall performance in practice.

References

1. Rao, F. Y. et al.: Message Oriented Middleware Cache Pattern – a Pattern in a SOA Envi-

ronment. In: Fourth "Killer Examples" for Design Patterns and Objects First Workshop

(2005)

2. Sonntag, M., Karastoyanova, D.: Next Generation Interactive Scientific Experimenting

Based On The Workflow Technology. In: Proceedings of the 21st IASTED International

Conference on Modelling and Simulation (2010)

3. Keen, M. et al.: Patterns: Implementing an SOA Using an Enterprise Service Bus. IBM

Redbooks (2004)

4. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web Ser-

vices. Prentice Hall PTR (2004)

5. Binz, T. et al.: CMotion: A Framework for Migration of Applications into and between

Clouds. In: Proceedings of SOCA (2011)

6. Leymann, F.: The (Service) Bus: Services Penetrate Everyday Life. In: ICSOC (2005)

7. Chappell, D.A.: Enterprise service bus. Theory in Practice. O'Reilly Media (2004)

8. Weerawarana, S. et al.: Web Services Platform Architecture: SOAP, WSDL, WS-Policy,

WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR (2005)

9. DeRemer, F. and Kron, H.: Programming-in-the-Large Versus Programming-in-the-Small.

Software Engineering, IEEE Transactions on, SE-2, 80-86 (1976)

10. Papazoglou, M.: Web Services: Principles and Technology. Pearson Prentice Hall (2008)

11. Endrei, M. et al.: Patterns: Service-Oriented Architecture and Web Services. IBM

Redbooks (2004)

12. Cohen, F.: FastSOA. Morgan Kaufmann (2007)

13. Hao, W. et al.: Dynamic Service and Data Migration in the Clouds. In: Computer Software

and Applications Conference (2009)

14. Weikum, G. et al.: Transactional Information Systems: Theory, Algorithms, and the Prac-

tice of Concurrency Control and Recovery. Morgan Kaufmann (2002)

15. Lee, J. Y. et al.: Software Approaches to Assuring High Scalability in Cloud Computing.

In: IEEE 7th International Conference on e-Business Engineering (ICEBE) (2010)

Guided Control Flow Unfolding for Workflow
Graphs Using Value Range Information

Thomas S. Heinze1, Wolfram Amme1, Simon Moser2, Kai Gebhardt1

1 Friedrich Schiller University of Jena
{T.Heinze,Wolfram.Amme,Kai.Gebhardt}@uni-jena.de

2 IBM Software Laboratory Böblingen
smoser@de.ibm.com

Abstract. In our previous work, we have introduced a technique to un-
fold the control flow in workflow graphs based upon static information
about constant data values. Using this technique allowed us to safely
transform certain kinds of conditional into unconditional control flow,
and thus to support a usually data-unaware verification of business pro-
cesses by more accurate process models. In this paper, a generalisation
of this technique is discussed which can be employed in combination
with arbitrary information about data values. This way, we show how
statically derived value range information is beneficial for unfolding and
therefore eliminating conditional control flow in a wider range of cases.

1 Introduction and Motivation

Verification of business processes today is often done using a Petri-net-based
process model in which data aspects are being neglected. Prominent examples
are the verification of soundness [8], and the verification of its counterpart con-
trollability [6] in case of distributed business processes. The advantage of these
data-unaware approaches lies in the feasible and often efficient analysis that is
possible when process data is not considered. However, while such a verification
is supposed to provide correct results in most cases, in certain circumstances,
false-positive as well as false-negative verification results may occur [4, 10].

Given that properties like soundness or controllability relate to control flow,
this kind of wrong verification results is mainly due to an imprecise modelling
of business processes’ control flow. Reasoned by the ommitance of data aspects
within the Petri-net-based process model, conditional control flow is therein over-
approximated by nondeterminism, resulting in an abstraction too coarse. In [4],
we advocated the use of static analysis and a process restructuring technique
to safely transform certain types of a process’s conditional control flow into
unconditional control flow, before translating the process into its Petri net model.
Consequently, over-approximating the such resolved conditional control flow can
be avoided, which yields a more precise process model and thus verification.

The restructuring technique presented in [4] is based on the observation, that
a branching or loop condition can be statically evaluated if therein referenced
variables are assigned constant values only. Since the values of variables, and
therefore the value of the condition, correlate with the control flow path taken

Guided Control Flow Unfolding for Workflow Graphs 129

$order = Receive Order1

else

else

$balance = 01 Settle

$total = 0

5 Φ$total = ($total , $total)73

7

$total > 02

else

2 Φ

1

1

$total = ($total , $total)1

$total = $claim .value
$claim = Receive Claim

1

4

Receive
Exchange

Claim

Claim

Order
Exchange
Process

Order
Invalid

Acknowledge
Order

$balance = $total − $order .value1

$balance > 01

1

$total = assert($total , $total > 0)23 2
$total = $balance6 2

$balance = assert($balance , $balance > 0)2

4 Φ 56$total = ($total , $total)

1

3

1

Fig. 1. Running example: Extended workflow graph

at process runtime, separating and duplicating the control flow for each combi-
nation of assigned values then allows for the evaluation and substitution of the
condition with unconditional control flow in each duplicate. Since the restruc-
turing technique in its current form is thus restricted to analysis information
about constant values, only conditions with variables defined over constants, or
single messages, can be resolved. In this paper, we discuss a generalisation of the
technique to relax this limitation. For that purpose, the generalised technique is
enabled to be used in combination with an arbitrary static analysis which yields
an abstraction for the values of process data. In particular, we will show how
a value range analysis helps in resolving branching or loop conditions in cases
condition variables are not necessarily restricted to constant values.

In principle, our restructuring technique can be seen as an unfolding of a
process’s control flow. However, existing unfolding techniques restructure the
entire process with all variables, though, it is only necessary to unfold those parts
and variables related to a branching or loop condition. Further, unfolding at the
value level is infeasible in case of infinite data domain such that an abstraction for
variables’ values is required. Our restructuring approach overcomes these issues
by guiding the control flow unfolding based on static analysis information.

The remainder of the paper is structured as follows: The next section intro-
duces the process representation format and analysis used to derive value range
information. In Section 3, we describe our generalised technique for guided con-
trol flow unfolding and its use in combination with value range information.
Related work is discussed in Section 4. Finally, Section 5 concludes the paper.

2 Workflow Graphs and Value Range Analysis

In order to allow for the static derivation of information essential to our guided
control flow unfolding approach, a process representation format is required
which is capable of representing both, control as well as data aspects of a busi-
ness process. We therefore use an extension of workflow graphs [4, 8]. Workflow

130 Thomas Heinze et al.

Order

Acknowledgement

InvalidOrder

Settlement

Entry

Claim

 Exit

Fig. 2. Petri-net-based process model (Open workflow net [6])

graphs support a simple and flexible modelling of a process’s control structure.
However, since workflow graphs only map control flow, we augment them with a
notation of process data. Thus, nodes and edges of a workflow graph are anno-
tated with data manipulation statements in Concurrent Static Single Assignment
(CSSA-)Form [5], which yields an easy to analyse model for a business process’s
control and data flow. Since we here refer to the verification of fully-specified,
i.e., executable, business processes, processes can be translated into their process
representation through extended workflow graphs in an automated fashion [2].

In Figure 1, an example process is shown in its representation as extended
workflow graph (whose visualisation here closely follows the Business Process
Model and Notation). The depicted process models the action of item exchange.
A customer therein first specifies the item for exchange by sending message
Claim. Afterwards, the customer is allowed to order exchange items via message
Order, where each is acknowledged by message Acknowledgement, as long as
the total value of orders does not exceed the value of the item for exchange.
Otherwise, the last order is rejected, indicated via message InvalidOrder. In
case the total value of ordered items eventually equals the value of the item for
exchange, the claim is settled and message Settlement is sent to the customer.

For its realisation, the process is based on a loop whose execution is con-
ditioned. In the Petri-net-based process model, as shown in Figure 2, the loop
is mapped to the nondeterministic choice of transitions Entry and Exit, such
that the loop condition is not precisely represented. In consequence, verifying
the process using this Petri net model yields erroneous results for properties like
controllability, e.g., the process is verified to be non-controllable although it is.

In contrast, the extended workflow graph explicitly models the loop condi-
tion: Loop execution is controlled by an integer variable $total2, representing
the difference of the value of the item for exchange and the total value of all al-
ready ordered exchange items. Accordingly, if the value of the variable is greater
than zero, the loop is executed, and otherwise exited. Therefore, the value of
$total2 is initially set to the value of the item for exchange (message part
$claim1.value), and afterwards updated for each loop iteration with the differ-
ence of its current value and the value of an accepted exchange item (message
part $order1.value). As can be seen, all variables are statically only defined

Guided Control Flow Unfolding for Workflow Graphs 131

Variable Derived information Variable Derived information

$claim1 undefined $order1 undefined

$claim1.value (0, +∞] $order1.value (0, +∞]

$balance1 [−∞, +∞] $balance2 (0, +∞]

$total1 (0, +∞] $total2 [0, +∞]

$total3 (0, +∞] $total4 [0, +∞]

$total5 [0, +∞] $total6 (0, +∞]

$total7 [0, 0]

Table 1. Derived value range information

once, as is indicated by the variables’ subscripts. This is the main characteristic
of CSSA-Form and vitally supports analysis since variables then coincide with
their definition statements. Although, special handling is required if multiple
variable definitions have to be joined at a single node of the extended workflow
graph. In these cases, statements with so-called Φ-functions are used to merge
the confluent definitions into a single value, as is done for the definitions of
variables $total1 and $total4 by statement $total2 = Φ($total1,$total4).

To further improve analysis, the implications of branching and loop condi-
tions are annotated in terms of assertion statements. For instance, since the loop
in the example process is only executed if the value of variable $total2 exceeds
zero, we know that the variable must be a positive integer within the body of the
loop. Therefore, uses of $total2 in the loop body are substituted with a reference
to a new variable which is defined by $total3 = assert($total2,$total2 > 0),
indicating that $total3 equals $total2 and has a value greater than zero.

Based on the representation of business processes through extended workflow
graphs, various static analysis become available. In particular, the use of CSSA-
Form facilitates the transfer of analysis techniques from the area of compiler
optimisation, like, e.g., constant propagation, global value numbering [5], or
value range analysis. Especially the latter analysis provides an abstraction for
the values of process data which benefits a guided control flow unfolding.

Value range analysis is a textbook data flow analysis technique which can be
used to derive an interval for each integer or floating-point variable and point of
a program, such that the variable is guaranteed to take a value in the interval
at the given program point. In [2], we have implemented such an analysis for
extended workflow graphs and show how it can be used to derive value range
information for processes of a small subset of the WS-BPEL language.

An application of the analysis to the example process of Figure 1 yields the
value range information shown in Table 1. Note that, therein, each variable is
assigned a single interval which is valid at each point of the process, due to the
static single definition of variables in CSSA-Form. Further, the analysis defined
in [2] is able to exploit data type definitions in business processes for deriving
more precise value range information. In case of the example process, the derived
intervals for $claim1.value and $order1.value therefore only comprise positive
integers since the corresponding message types are set to xsd:positiveInteger.

132 Thomas Heinze et al.

// let eWFG be an extended workflow graph and let loop denote a loop therein
inf = analyse(eWFG); // inf : V ariables→ AnalysisInformation
normalise loop in eWFG and derive instance pattern as is explained in [4];
while (∃ guard ∈ eWFG such that guard is an instance guard) do

assertion = ∅; // assertion: V ariables→ AnalysisInformation
let values be the assignment of condition variables valid at guard;
foreach single assignment (variablecondition ← variable) in values do

assertion = assertion ∪ {variablecondition 7→ inf(variable)};
end for;
if (evaluate(guard, assertion) == true) then

let instance be the loop instance for assertion;
if (instance * eWFG) then eWFG = eWFG ∪ instance;
end if;
replace guard with a control flow edge to instance;

else replace guard with a control flow edge to the exit node of loop;
end if;

end while;

Fig. 3. Generalised algorithm for guided control flow unfolding

3 Guided Control Flow Unfolding

We now describe how the derived analysis information is used to guide control
flow unfolding in such a way that conditional control flow can be effectively re-
solved. In our previous work [4], we only considered branching or loop conditions
whose condition variables could be analysed to be only defined by constant val-
ues. As a result, it was always possible to resolve conditions using our technique
since knowing the constant value for each condition variable allows for inferring
the value of the condition. This may not hold true if arbitrary analysis informa-
tion is used instead. For instance, it is not possible to infer the value of condition
x > 10 if, e.g., an interval (0,+∞] has been derived for x. However, using a con-
servative criteria we are able to check beforehand whether the derived analysis
information is sufficient to completely resolve a branching or loop condition.

In principle, unfolding a loop or branching so that conditional control flow is
transformed into unconditional control flow is done using two steps. First, the
loop or branching is converted into a normal form [4], which is characterised
by the separation of all static paths of the control flow, ending in the respec-
tive loop header or branching node, that convey distinct values for condition
variables. To this end, nodes with Φ-functions merging alternative definitions of
condition variables are resolved by duplicating these nodes and their successors
for each definition. Thus, after normalisation, definitions of condition variables
only converge at the loop header or branching node. Second, in case of a condi-
tional branching, splitting the branching node for each of its predecessors allows
for evaluating the branching condition based on derived analysis information.
According to the result, the branching is replaced with unconditional control
flow leading either to the then- or to the else-part of the branching. For loops,
a further step is needed to also separate the remaining paths of the control flow

Guided Control Flow Unfolding for Workflow Graphs 133

else

else

$balance = 011 Settle
Claim

Order
Exchange
Process

Order
Invalid

Acknowledge
Order

$total = 0

$balance = $total − $order .value11

$order = Receive Order11

Φ 1 16

$total = $balance16

$balance = assert($balance , $balance > 0)

$total = ($total , $total , $total)13

$total = assert($total , $total > 0)12 12

13

$balance > 011

11

11 11

Receive
Exchange

Claim

1

1$total = $claim .value
$claim = Receive Claim

1

12

12

17

13

12

∋ 8Instance for $total (0,+]12

Fig. 4. Unfolded workflow graph

which define distinct values for condition variables, in particular, the dynamic
paths coalesced in the loop header node. For that purpose, a loop is divided
into duplicates of its loop body, i.e., loop instances, where the execution of each
instance is guarded by a copy of the loop condition, i.e., an instance guard. An
instance thereby represents a loop iteration for a certain assertion for the values
of condition variables. In our previous work [4], assertions constrained condition
variables to constant values or messages. However, for a generalised unfolding,
we now basically allow arbitrary assertions about variables’ values. Eventually,
in an iterative procedure, all instance guards are evaluated based on the de-
rived analysis information and, like is done in case of a branching, replaced with
unconditional control flow leading either to an instance or to the loop exit node.

In Figure 3, a consolidated view of unfolding a loop is given in terms of an
algorithm. Therein, having derived static analysis information for a process’s
variables using function analyse, the loop is first converted into its normal form
as explained in [4]. Afterwards, instance guards are iteratively processed by
creating an assertion assertion for the values of condition variables valid at
an instance guard guard based on the derived analysis information inf . This
assertion is then used to evaluate the guard with function evaluate and to replace
it with unconditional control flow according to the result of the evaluation.

Note that, in the algorithm, the use of analysis information is parameterised
using functions analyse and evaluate. Thus, it is possible to instantiate this gen-
eral algorithm for exploiting information provided by an arbitrary static analysis
by merely declaring implementations for functions analyse and evaluate, with
respect to the analysis. In case of our running example, function analyse denotes
the value range analysis as described in [2]. Function evaluate realises the evalu-
ation of condition expressions based on information derived by function analyse
and can be implemented using the semantic transfer functions listed in [2].

134 Thomas Heinze et al.

Order

Claim

Acknowledgement

InvalidOrder

Settlement

Fig. 5. Petri-net-based process model after unfolding

An application of the algorithm to the loop contained in the example process
of Figure 1 allows us to exploit the value range information given in Table 1
for unfolding the loop such that the loop condition is finally resolved. The thus
unfolded workflow graph is shown in Figure 4. As can be seen, it was only
necessary to create a single instance for assertion $total12 ∈ (0,+∞] while
unfolding, where variable $total2 has therein been renamed to $total12.

In Figure 5, the unfolded workflow graph is mapped to a Petri net based on
the Petri net semantics for workflow graphs stated in [8]. In so doing, process
data, i.e., data annotations in the extended workflow graph, can be discarded
without loosing precision in representing the loop’s control flow since the loop
condition is now properly modelled by unconditional control flow. Verifying the
thus refined Petri net model with respect to controllability gives then the correct
verification result for the example process, i.e., the process is controllable.

In general, our technique provides in this way a heuristics for improving
verification in that the more conditional control flow is resolved, the more precise
is the Petri-net-based process model and therefore the verification. Furthermore,
if termination can be shown, e.g., using termination analysis [10], the verification
result is guaranteed to be safe with respect to properties like controllability.

4 Related Work

Improving business process verification based on Petri nets by means of incorpo-
rating data aspects is an ongoing research topic. In [10], a termination analysis is
introduced for WS-BPEL processes to help in justifying the fairness assumption.
The use of high-level Petri nets is, e.g., advocated in [9] for detecting deadlocks
in acyclic processes. However, the application of high-level nets in case of cyclic
control flow is basically hindered by undecidability, if the domain of process data
is unrestricted. This holds also true if high-level nets are unfolded into low-level
Petri nets, since infinite domains then yield infinite models. In contrast, our
guided unfolding approach is always guaranteed to result in finite models.

Control flow restructuring is also utilised by other program analysis and
optimisation methods for improving analysis results [7]. Although, none targets
the elimination of conditional control flow or value range analysis in particular.
A similar static analysis for the derivation of value ranges to the one used here,
which is also applied to WS-BPEL processes, has already been described in [3].

Guided Control Flow Unfolding for Workflow Graphs 135

5 Conclusion and Future Work

In this paper, we presented a generalised version of our process restructuring
technique [4], which allows us to unfold conditional into unconditional control
flow. Compared to our previous work, the generalised technique is enabled to
exploit information derived by arbitrary static analysis, as is exemplified for
value range analysis, and can therefore be effectively applied in a wider range of
cases. Using the technique then helps in compiling more precise process models
for data-unaware Petri-net-based approaches to business process verification.

Main issue of future work will be the thorough evaluation of our process re-
structuring technique. Therefore, we want to implement the technique for struc-
tured business processes of the WS-BPEL language. As the value range analysis
has already been realised, we currently focus on the implementation of the re-
structuring algorithm itself. Building on that, we further plan to employ other
static analysis, i.e., symbolic methods [1], to our guided unfolding approach.

References

1. Fahringer, T., Scholz, B.: Advanced Symbolic Analysis for Compilers: New Tech-
niques and Algorithms for Symbolic Program Analysis and Optimization. No. 2628
in LNCS, Springer (2003)

2. Gebhardt, K.: Entwurf und Implementierung einer Wertebereichsanalyse für
WS-BPEL-Prozesse auf Grundlage erweiterter Workflow-Graphen. Diplomarbeit,
Friedrich Schiller University of Jena (2011)

3. Görlach, K.: Ein Verfahren zur abstrakten Interpretation von XPath-Ausdrücken
in WS-BPEL-Prozessen. Diplomarbeit, Humboldt University of Berlin (2008)

4. Heinze, T.S., Amme, W., Moser, S.: Process Restructuring in the Presence of
Message-Dependent Variables. In: Service-Oriented Computing - ICSOC 2010 In-
ternational Workshops, PAASC, WESOA, SEE, and SOC-LOG, San Francisco,
CA, USA, December 7-10, 2010, Revised Selected Papers. pp. 121–132. No. 6568
in LNCS, Springer (2011)

5. Lee, J., Padua, D.A., Midkiff, S.P.: Basic Compiler Algorithms for Parallel Pro-
grams. ACM SIGPLAN Notices 34(8), 1–12 (1999)

6. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data & Knowledge Engineering
64(1), 38–54 (2008)

7. Steffen, B.: Property-Oriented Expansion. In: Static Analysis, Third International
Symposium, SAS’96, Aachen, Germany, September 24-26, 1996, Proceedings. pp.
22–41. No. 1145 in LNCS, Springer (1996)

8. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An Alternative Way to
Analyze Workflow Graphs. In: Advanced Information Systems Engineering, 14th
International Conference, CAiSE 2002, Toronto, Canada, May 27-31, 2002, Pro-
ceedings. pp. 535–552. No. 2348 in LNCS, Springer (2002)

9. Wagner, C.: Partner Synthesis for Data-Dependent Services. In: Services and their
Composition, 4th Central-European Workshop on Services and their Composition,
ZEUS 2012, Bamberg, February 23-24 2012, On-Site Proceedings. pp. 17–24 (2012)

10. Weißbach, M., Zimmermann, W.: Termination analysis of business process work-
flows. In: Proceedings of the 5th International Workshop on Enhanced Web Service
Technologies, WEWST 2010, Ayia Napa, Cyprus, December 1, 2010. pp. 18–25.
ACM Press (2010)

Model support for confidential
service-oriented business processes

Andreas Lehmann and Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{andreas.lehmann, niels.lohmann}@uni-rostock.de

Abstract. A core motivation of service-oriented execution of business
processes is the opportunity to reduce costs by outsourcing certain tasks
to third-party service providers. For legal or economic reasons, it might be
undesirable that delicate information (e. g., customer data, trade secrets,
or financial details) “leak” to the involved third parties. The absence of
such leaks — called noninterference — can be checked automatically. To
this end, a model is required in which each task is assessed as either con-
fidential or public. A drawback of this method is that (1) this distinction
has to be made for each task prior to the verification and that (2) an
unsuccessful check requires a new confidentiality assessment followed by
another verification step.
This paper introduces a full-automatic technique to complete partial con-
fidentiality assessments while guaranteeing noninterference. The proposed
technique can be integrated into the design phase of a service-oriented
business process and help the modeler choose which tasks can be safely
outsourced.

1 Introduction
Service-oriented computing aims at reducing complexity and costs by replacing
large monolithic systems by interacting components, called services. Such services
are offered by service providers and can be flexibly reused in service compositions.
As a result, business owners can focus on their core business and outsource other
tasks to (possibly cheaper) third-party service providers according to their needs.
This trend has led to paradigms such as software as a service, infrastructure as a
service, or platform as a service.

The service-oriented execution of a business process adds new challenges, as
a business process is usually a very sensitive asset of each company. Though the
interplay with third parties can be regulated by contracts, a business owner should
never entirely trust other agents. Consequently, only uncritical tasks may be
outsourced. To ensure noninterference (i. e., the absence of information leaks) in a
service-oriented business process, three steps need to be taken: First, the modeler
needs to assess each task whether it is confidential or public. This assessment may
be straightforward given the nature of the tasks (e. g., processing financial data),
but can also be arbitrary for noncritical tasks. Second, the assessment needs to
be checked for information leaks. In the context of this paper, we speak of an
information leak if a third party can derive confidential runtime information of
the business process (e. g., the outcome of choices). Recently [1], we investigated

Confidential Service-Oriented Business Processes 137

low

high

Fig. 1. Petri net model of the insurance business process

noninterference in terms of Petri net models and showed that modern model
checking techniques [7] allow to check noninterference of industrial models in
fractions of seconds. Finally, the public tasks of the business process can be
delegated to third-party service providers, whereas the confidential tasks remain
in the responsibility of the business process owner. Apparently, an information
leak can be avoided by assessing more tasks as confidential and hence by reducing
the number of outsourced tasks. This would, however, contradict the idea of
service-orientation.
Contribution. The contribution of the paper is twofold. Instead of requiring a
complete confidentiality assessment, we first present an approach that completes a
partial assessment while guaranteeing noninterference. As a second contribution,
we provide a characterization of all valid assessments. This enables the modeler
to interactively assess tasks by automatically removing any invalid choices. Fur-
thermore, a characterization of all possible assessments can be seen as a first step
toward finding a cost-optimal assessment assuming given costs for each transition
that cannot be outsourced.
Organization. The rest of this paper is organized as follows. The next section
introduces the fundamental concepts of noninterference and a running example we
shall use throughout the paper. Section 3 presents our completion approach and
a compact representation of all noninterfering assessments. We further discusses
several optimizations to avoid combinatorial explosion. In Sect. 4, we provide
first experimental results using 559 industrial business process models. Section 5
concludes the paper and sketches a research agenda of future extensions.

2 Background

We consider the Petri net representation of business process models as a basis for
the analysis. For this, mappings from common modeling languages, such as WS-
BPEL, BPMN, and EPC, exist [6]. To express the confidentiality requirements, we
separate the tasks — modeled by Petri net transitions — into two logical security
domains: high for confidential and low for public.

The Petri net in Fig. 1 models a service-oriented insurance claim business
process. After submitting the claim, further information is collected and decided
whether to initiate a fraud investigation or to prepare the resulting payment
before the process finishes. In this example the submitting task is public, because
claims can be submitted via a Web site or a call center. The tasks can be

138 Andreas Lehmann and Niels Lohmann

(a) causal place (b) conflict place

Fig. 2. Patterns for potential causal and conflict places s

11 2

1c 2c

Fig. 3. Pattern for the reachability problem for the causal pattern from Fig. 2(a)

outsourced and the respective transition is labeled low. The submission process
may contain no confidential data but must only be used to establish the first
contact between the insurant and his insurance. The task that initiates a fraud
investigation is, however, confidential yielding a high labeling.

An undesired leak happens whenever information meant to remain in the high
domain leaks to the low domain. The analysis of noninterference for such Petri
net models is carried out with positive place-based noninterference (PBNI+) [4].
PBNI+ is an approach to encode and reason about structural noninterference
(and hence information flow control) in Petri nets. The idea is that some specific
places in the net encode different noninterference properties which are leaks from
the high to the low domain. In our example “collected” could be such a place,
because the following decision depends on it. So in case “collect” is a high labeled
transition, the transitions “initiate” and “prepare” should also be labeled high. In
demonstrating the absence of such places in the net, one proves noninterferences.

Figure 2 depicts the two types of possible interference places, the causal
case (a) and the conflict case (b). In the causal case, the low labeled transition t2
can only fire after the high labeled transition t1 has fired, so the fact that t1 (and
its corresponding confidential task) has fired is leaked. In the conflict case the
two transitions t3 and t4 are mutually exclusive, which means that from firing
of the low labeled transition t4 one may deduce that the high labeled transition
t3 has not fired. Both cases can be expressed as a triple (s, h, l) of a place s, a
high labeled transition h, and a low labeled transition l. In our running example
“collected” is both a causal and a conflict place and the triples are (“collected”,
“collect”, “prepare”) and (“collected”, “initiate”, “prepare”).

A labeled Petri net is secure in terms of PBNI+ if it contains no such places.
Although it appears like a structural property, the behavior of the net needs to
be considered to decide PBNI+, because there must be a behavioral dependency

Confidential Service-Oriented Business Processes 139

between the creation or consumption of the token on the place s by the involved
transition h and l. This dependency can only be checked by taking the behavior
of the net (i. e., its state space) into account. Based on our previous work [1],
these checks can be expressed as independent reachability problems instead of an
examination of the whole state space. Therefore, all checks can be done locally
for each specific triple (s, h, l). Figure 3 depicts the pattern for the causal case
(cf. 2(a)) in which the place “goal” is interesting according to reachability. The
interested reader is referred to [1].

3 Completion of partial confidentiality assessment
The PBNI+ check has several drawbacks: First, it requires a complete confiden-
tiality assessment; that is, each transition has to be labeled with either high or
low. This means that the modeler needs to make a manual decision for each
transition whether the modeled task is confidential or public. Such choices can be
very arbitrary, yet still affect overall noninterference. That said, if an information
leak was detected, the assessment has to be manually corrected and re-checked.

To this end, we propose to provide a characterization of all valid confidential
assessments given a partial (or even empty) confidentiality assessment. Whereas
previous work [1] showed that a noninterference check is quite fast, a naive
enumeration of all possible assessments has two major downsides:
1. Assuming t transitions in the net, 2t assessments need to be considered. Even

with an average checking time of 30 milliseconds the exponential blowup
makes this enumeration not applicable to industrial models with hundreds of
transitions.

2. Even if we can determine the valid assessments, an explicit representation is
infeasible due to the same exponential blowup. However, only a complete list
of all valid assessments gives the modeler maximal freedom to come up with
an optimal outsourcing plan.

The rest of this section presents reduction ideas how to tackle each mentioned
problem.

3.1 Reducing the number of checks
Considering all possible assessments, one would end up with checking 2t assign-
ments, if a net has t transitions. For each assignment more than one check (triples
in terms of the reachability problem) may be necessary. Therefore it is necessary
to reduce the number of checks considerably. In our running example with 4
transitions we already start with 24 = 16 possible assignments. In Tab. 1 all
possible 16 assignments are listed.

Based on our observation, all checks are independent from each other, so they
can be executed independently [1]. In fact, this does not reduce their number,
but all potential critical assignments follow from the structure of the Petri net,
because for PBNI+ only potential causal and conflict places are relevant. This
means, that only specific parts (the triples) of the net are interesting, which are in
O(p · t · (t−1)) if a net has t transitions and p places. Consider a potential conflict
place s with two transition t1 and t2 in its postset. Without any assignment on t1
and t2 there are two possible triples (s,t1,t2) and (s,t2,t1). In the first triple t1 is

140 Andreas Lehmann and Niels Lohmann

Table 1. All assignments and their necessary checks of our running example.

Assignments Triples Checks

submit collect initiate prepare 1 2 3 4 5

low low low low 0
low low low high × 1
low low high low × 1
low low high high 0
low high low low × × 2
low high low high × × 2
low high high low × × 2
low high high high 0
high low low low × 1
high low low high × × 2
high low high low × × 2
high low high high × 1
high high low low × × 2
high high low high × × 2
high high high low × × 2
high high high high 0

Sum 4 4 4 4 4 20

labeled high and t2 is labeled low ([t1 7→ high, t2 7→ low]) and in the second triple
it is the other way around. Both other combinations ([t1 7→ low, t2 7→ low] and
[t1 7→ high, t2 7→ high]) are not interesting according to PBNI+. Each of these two
possible triples will occur in 2t−2 of all possible assignments, because of fixing
the assignment of the two transitions. In our running example one can identify 5
of these triples:

1. (“collected”, “initiate”, “prepare”): potential conflict place “collected”,
2. (“collected”, “prepare”, “initiate”): potential conflict place “collected”,
3. (“collected”, “collect”, “initiate”): potential causal place “collected”,
4. (“collected”, “collect”, “prepare”): potential causal place “collected”, and
5. (“submitted”, “submit”, “collect”): potential causal place “submitted”.

Table 1 lists all these triples (same enumeration) for all possible assignments. For
instance, in line 2, where just “prepare” is assigned high, only the second triple
needs to be checked, resulting in a single check for this assignments.

Combining these two observations it is not necessary to check all 2t assignments
(by performing O(2t · (p · t · (t− 1))) checks), but it is enough to check only the
potential critical triples which are in O(p · t · (t− 1)), because they are common
through the net structure. Back to our running example: Each of these 5 triples
occur 24−2 = 4 times over all 16 assignments yielding to the sum of 20 checks.
However, it is not necessary to perform all 20 checks (× in Tab. 1), but is is
sufficient to check each possible triple (columns in Tab. 1) once.

Confidential Service-Oriented Business Processes 141

(a) (b) (c) (d)

Fig. 4. BDD representation (a) and all valid assignments (b) of running example of
Fig. 1. Without initial constraints, more assignments are possible (c, d).

In case the modeler has already assigned some confidentiality, the set of
potential critical triples decrease and further triples can be ruled out. In fact our
running example has two preassigned tasks (“submit” 7→ low and “initiate” 7→
high), so two triples (columns 1 and 4) are left to decide for all 16 assignments
whether they are noninterfering.

To summarize, the main idea is to identify structural causal and conflict
triples (columns in terms of the table) once for the net which has polynomial
complexity in the net size. Afterwards perform these polynomial many checks
(locally and independently) also once and represent all valid assignments in a
compact way, which is the content of the following subsection.

3.2 Compact characterization of valid assessments

To fight the exponential blowup of the number of the valid assignments, we
employ a symbolic representation, namely binary decision diagrams (BDDs) [2].
BDDs are successfully used in verification [3] as they can represent sets of bit
vectors very compactly.

Figure 4(a) depicts an example of a BDD that represents all valid confiden-
tiality assessments of the running example. The oval nodes are labeled with
transition names and represent decisions whether to assess the transition as high
(continuous outgoing arrow) or low (dashed outgoing arrow). After a sequence of
decisions, either the node “valid” or “invalid” is reached which describes the status
of the resulting assessment. Note that Fig. 4(a) does not mention the “collect”
transition: This means that either label is valid for this transition, resulting in 2
valid assessments (cf. Fig. 4(b)). We can further derive that the pay task must be
confidential in any case. In case no initial assessment is given (i. e., no transition
is initially labeled high or low), the resulting BDD (cf. Fig. 4(c)) characterizes 2
additional valid assessments: setting all transitions to high or all transitions to
low (cf. Fig. 4(d)).

The construction of the BDDs from the noninterference verification results
use standard BDD operations for which efficient algorithms exist. In particular,

142 Andreas Lehmann and Niels Lohmann

Algorithm 1 Overall algorithm
Require: Petri net N
1: BDD ← true
2: for all relevant potential causal/conflict triples (s, h, l) do
3: create net N(s,h,l) and perform reachability check
4: if place “goal” can be marked (i.e., s is an active causal/conflict place) then
5: BDD ← BDD ∧ ¬(h ∧ ¬l))
6: end if
7: end for
8: return BDD

the addition of further constraints (e. g., further assessments of the modeler) can
be realized at modeling time and be used to guide the confidentiality assessment.

Algorithm 1 describes how a complete characterization of all valid assessments
can be calculated. We begin with a BDD that assigns true (viz. “high”) to all
transitions. Then, we check for each potential causal and conflict triple (s, h, l)
whether it is an actual violation of noninterference using the reachability check
sketched in Fig. 2. In case a violation is found, the respective (partial) assignment
is excluded by adding the constraint ¬(h ∧ ¬l) to the BDD. This excludes
assignments [h 7→ high, l 7→ low].

4 Experimental results

The evaluation uses a library of 559 industrial business processes from different
business branches, including financial services, ERP, supply-chain, and online
sales [5]. They contain no semantic information with respect to the security
domains; that is, they are not labeled for security analysis. To this end, this is a
good start for our approach, because we can characterize all possible confidential
assessments. Table 2 summarizes their experimental results.

As summarized in Tab. 2 we only need to perform 282 checks for the biggest
process (no assignments) in contrast to more than 2100 checks, which takes 3
seconds on a desktop computer. For this process, the respective BDD has 1,054
nodes.

Table 2. Experimental results of the 559 industrial business processes.

minimum average maximum

transitions (exponent of problem size) 1 20 100

causal triples (cf. Fig. 2(a)) 3 34 242
conflict triples (cf. Fig. 2(b)) 0 4 90

possible assignments (main factor for checks) 2 1.048.576 > 1030

sum of triples (necessary checks) 3 38 282

Confidential Service-Oriented Business Processes 143

5 Conclusion
Summary. Confidentiality is important in service-oriented business processes,
because business processes are sensitive asset of each company. To express such
confidentiality requirements one can use PBNI+, which can be verified on the fly
for business processes. So the next step after the verification of a complete assessed
business process is to support the modeler in 2 ways: firstly by automatically
complete a partial assessed business process and, secondly, by providing a complete
characterization of all valid assessments. As shown in this paper, first numbers
on runtime are very promising.

Lessons learnt. It is possible to derive all 2t assessments with only polynomial
many checks. The independence shown earlier is essential for this reduction. A
polynomial number of checks is feasible for industrial business processes. In order
to represent all 2t assessments, necessary to provide a complete support for all
assessments, existing model checking techniques (BDD) are used which proved
their scalability in industrial settings.

Future work. Future work aims at two directions: Firstly, provide some interactive
design support where only possible choices are offered and obvious ones are set
automatically. One way could be an integration into an existing business process
modeling tool with a graphical user interface. Second, enhance the approach with
costs aspects. Based on the complete representation of all valid assessments one
could reason about the costs for each assessment.

Acknowledgement. This work was partially funded by the DFG (German research
foundation) in the project WS4Dsec in the priority program Reliably Secure
Software Systems (SPP 1496).

References

1. Accorsi, R., Lehmann, A.: Automated and fast information flow analysis for business
process models (2012), unpublished manuscript available at http://www.informatik.
uni-rostock.de/˜al357/reader.pdf.

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers C-35(8), 677–691 (1986)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

4. Busi, N., Gorrieri, R.: Structural non-interference in elementary and trace nets.
Mathematical Structures in Computer Science 19(6), 1065–1090 (2009)

5. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011)

6. Lohmann, N., Verbeek, H., Dijkman, R.M.: Petri net transformations for business
processes – a survey. LNCS ToPNoC II(5460), 46–63 (2009)

7. Wolf, K.: Generating Petri net state spaces. In: ICATPN 2007. pp. 29–42. LNCS
4546, Springer (2007)

http://www.informatik.uni-rostock.de/~al357/reader.pdf
http://www.informatik.uni-rostock.de/~al357/reader.pdf

Index of Authors

Amme, Wolfram, 127

Beckstein, Clemens, 111
Breitenbücher, Uwe, 119

Calvanese, Diego, 41
Cortes-Cornax, Mario, 49

Doliwa, Dariusz, 25
Dupuy-Chessa, Sophie, 49
Duske, Kristian, 65

Eid-Sabbagh, Rami-Habib, 88

Gebhardt, Kai, 127
Gierds, Christian, 1
Glesner, Sabine, 33

Heinze, Thomas, 127
Herzberg, Nico, 96
Horzelski, Wojciech, 25

Jarocki, Mariusz, 25

Kopp, Oliver, 80, 119
Kretzschmar, Johannes, 111
Kunze, Matthias, 96

Lehmann, Andreas, 134
Lenhard, Jörg, 57

Leymann, Frank, 80, 119
Lohmann, Niels, 134

Müller, Richard, 65
Meyer, Andreas, 73
Moser, Simon, 127

Niewiadomski, Artur, 25

Penczek, Wojciech, 25
Polrola, Agata, 25
Polyvyanyy, Artem, 73

Reiter, Michael, 119
Rieu, Dominique, 49
Rogge-Solti, Andreas, 96
Roller, Dieter, 119

Sürmeli, Jan, 9
Santoso, Ario, 41
Schulte, Daniel, 103
Skaruz, Jaroslaw, 25
Stöhr, Daniel, 33

Unger, Tobias, 119

Wagner, Christoph, 17
Wagner, Sebastian, 80
Weske, Mathias, 73
Wirtz, Guido, 57

