
A Case Study in Combining Formal Verification
and Model-Driven Engineering

Selma Djeddai1, Mohamed Mezghiche2, and Martin Strecker1

1 IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse, Toulouse, France
2 LIMOSE, Université de Boumerdès
Faculté des Sciences, Boumerdès, Algeria

Abstract. Formal methods are increasingly used in software engineer-
ing. They offer a formal frame that guarentees the correctness of devel-
opments. However, they use complex notations that might be difficult
to understand for unaccustomed users. It thus becomes interesting to
formally specify the core components of a language, implement a prov-
ably correct development, and manipulate its components in a graphi-
cal/textual editor.
This paper constitutes a first step towards using Model Driven Engineer-
ing (MDE) technology in an interactive proof development. It presents a
transformation process from functional data structures, commonly used
in proof assistants, to Ecore Models. The transformation is based on
an MDE methodology. The resulting meta-models are used to generate
graphical or textual editors. We will take an example to illustrate our
approach: a simple domain specific language. This guiding example is a
Java-like language enriched with assertions.

Keywords. Model Driven Engineering, Model Transformation, Formal
Methods, Verification

Key Terms. Mathematical Model, Specification Process, Verification
Process

1 Introduction

Domain Specific Languages (DSL) have conquered many different aspects of
computer science. They are used in different fields such as aerospace, web-
services, multi-media, etc. [1]. Certain DSLs define their semantics in natural
languages. However, even though these tend to be quite easy to understand,
they usually suffer from incompleteness in some cases and ambiguity in others.
Therefore, there emerges a need for defining the formal semantics of DSLs in a
mathematically founded framework using proof assistants. Such a phase consists
in defining the abstract syntax of a DSL and then grafting a semantics on top
of it, using well-understood mechanisms like structural recursion or inductive

276 S. Djeddai, M.Mezghiche, and M. Strecker

relations. Such a semantics is often not executable, but other elements of a for-
mal development are, such as compilers or static analyses whose correctness is
proved on the basis of the formal semantics.

Interactive proof assistants such as Coq [2] or Isabelle [3] often use paradigms
stemming from functional programming (type systems, function definitions), but
they are as such not a programming language. It is however possible to export
the formal development to programming languages such as Caml [4] or Scala [5].
A formally verified compiler, for example, can therefore be effectively executed
in a standard programming language.

In order to improve the user interface for interacting with a DSL, we aim at
a textual or graphical concrete syntax as provided, for example, by the Eclipse
Xtext or GMF environments. Frequent changes of the DSL during the design
phase make it necessary to adapt this interface easily and to re-generate it au-
tomatically, as far as possible.

 Proof

DSL Graphical Syntax
GMF Xtext

SyntaxDSL Textual

MDE

OOPAssistant

Fig. 1. Meta-modeling(MM), Verification environment and OO languages

This paper studies the interplay of these formalisms (see Figure 1), and thus
constitutes a first step towards using Model Driven Engineering (MDE) [6, 7]
technology in an interactive proof development. The guiding example (see Sec-
tion 3) is a Java-like language enriched with assertions developed by ourselves
for which no off-the-shelf definition exists. This “meta-model” (in MDE par-
lance) is sufficiently complex to illustrate the method and to be a case study of
realistic size for a DSL. However, its formal model can be entirely defined as an
inductive datatype (and this is so for most formally defined languages). In this
case study, we can therefore not demonstrate some aspects of our work, such as
the translation of genuine graph structures that go beyond instances of inductive
data types.

Section 2 constitutes the technical core of the article; it describes a transla-
tion from data models in the functional programming world, used in verification
environments, to meta models in Ecore: the core language of the Eclipse Mod-
eling Framework. We illustrate the methodology in Section 3 with a case study.
In Section 4 we compare our work to other approaches, before concluding in
Section 5 with perspectives of further work.

A Case Study in Combining Formal Verification and Model-Driven ... 277

2 From Datatypes to Meta-Models

In this part, we present in detail the translation process from functional data
types to meta-models. We start in Section 2.1 by giving an overview of our
methodology, then we introduce the source and the target of the transformation
in Sections 2.2 and 2.3 respectively. The essence of the translation is further
developed in Section 2.4.

2.1 Methodology

Model Driven Engineering (MDE) is a software development methodology where
the (meta-)models are the central elements in the development process. A meta-
model defines the elements of a language. The instances of theses elements are
used to construct a model of the language. A model transformation is defined
by a mapping from elements of the source meta-model to those of the target
meta-model. Consequently, each model conforms to the source meta-model can
be automatically translated to an instance model of the target meta-model. The
Object Management Group (OMG) [8] defined the Model Driven Architecture
(MDA) standard [9], as specific incarnation of the MDE.

We apply this method in order to define a generic transformation process from
datatypes (used in functional programming) to Ecore models. Figure 2 shows an
overview of our approach. Using an EBNF representation of the datatype defini-
tion grammar [3], we derive a meta-model of datatypes. This meta-model is the
source meta-model of our transformation. We also define a subset of the Ecore
meta-model [10] to be the target meta-model. In order to perform the transfor-
mation, we defined a set of transformation rules (detailed in Section 2.4) that
maps components of the meta-model of datatypes to those of Ecore Meta-model.
These rules have been implemented in the application presented in Section 3.2.

Meta−Model

Datatype

Functional

Ecore
Datatype To

<<Implements>>

Grammar

of a Datatype’s
EBNF representation

<<ConformsTo>>

Transformation Rules

Meta−Model

Ecore

Model

Datatype

<<ConformsTo>>

Ecore
Model

<<ConformsTo>>

Datatype

Definition

Fig. 2. Overview of the Transformation Method

278 S. Djeddai, M.Mezghiche, and M. Strecker

2.2 Source Meta-Model : The Datatype Meta-Model

Functional programming supplies us with a rich way to describe data structures.
However, since some features are not supported by Ecore, we have only defined
a subset, that contains the essential elements composing datatypes. Figure 3
depicts the datatype metamodel that is constructed from a subset of datatype’s
declarations grammar [3].

A Module may contain several Type Definitions. Each Type Definition has a
Type Constructor. It corresponds to the data types’ name. It is also composed
of at least one Constructor Declaration. These declarations are used to express
variant types. Type declarations have names, it is the name of a particular type
case. It takes as argument some (optional) type expressions which can either
represent a Primitive Type (int, bool, float, etc.) or also a data type defined
previously in the module. The list option is used to represent lists in functional
programming. The type option feature describes the presence or the absence of
a value. The ref option is used for references (pointers).

We enriched the type definition grammar with a new element named Ac-
cessor. It is a function introduced by a special annotation (*@accessor*). It
allows to assign a name to a special field of the type declaration. This element
is essential for the transformation process, its absence would lead to nameless
structural features.

Fig. 3. Datatype Meta-model

A Case Study in Combining Formal Verification and Model-Driven ... 279

2.3 Target Meta-Model: The Ecore Meta-Model

Our target metamodel is a subset of the Ecore metamodel. Ecore is the core
language of Eclipse Modeling Framework (EMF) [11]. It allows to build Java ap-
plications based on model definitions. It unifies three technologies: Java, XML
and UML. Actually, it is possible to describe a model in one of the three tech-
nologies and generate it in the other two. It also allows to develop and integrate
Eclipse plug-ins.
The Meta Object Facility (MOF) standardized by the OMG defines a subset

of UML class diagram [12]. It represents the Meta-Meta-Model of UML. Ecore
is comparable to MOF but simpler. They are similar in their ability to specify
classes, structural and behavioral features, inheritance and packages.

Fig. 4. Simplified subset of the Ecore Meta-model

Figure 4 represents a subset of the Ecore language. This subset contains
essentially the elements that are needed for the transformation process. Its main
components are:

– The EPackage is the root element in serialized Ecore models. It encompasses
EClasses and EDataTypes.

– The EClass component represents classes in Ecore. It describes the structure
of objects. It contains EAttributes and EOperations.

– The EDataType component represents the types of EAttributes, either pre-
defined (types: Integer, Boolean, Float, etc.) or defined by the user. There is
a special datatype to represent enumerated types EEnum, each enumeration
is called EEnumLiteral.

280 S. Djeddai, M.Mezghiche, and M. Strecker

– EReferences is comparable to the UML Association link. It defines the kinds
of the objects that can be linked together. The containment feature is a
Boolean value that makes a stronger type of relations. When it is set to true,
it represents a whole/part relationship known as “by-value aggregation” in
UML.

2.4 From Datatypes to Meta-Models

The transformation method is from functional datatypes to Ecore meta-models.
To precisely define transformation rules, the transformation method is presented
in a formal notation by the Tr() function. In each case we start by an informal
description, then we present it formally and finally we show an effective exemple.

Tr : DataTypes −→ Ecore Meta-model

The following translation functions are given for a concrete syntax in the
style of Caml [4]. Since most functional languages (including the language of
proof assistants) have great similarities, the concrete syntax can be mapped to
different functional languages.

Rule DatatypeToEClass When the datatype is formed of only one construc-
tor, it is translated to an EClass. The EClass name is the name of the type
constructor.

Tr(tpConstr = cn t1...tn) = createEClass();
setName(tpConstr);
Trtype(acci, ti)
/ 1 ≤ i ≤ n

Example:

datatype tpConstr =
Cn of int ∗ string ∗ ...∗ bool

Rule DatatypeToEEnum Datatypes composed only of constructors (without
typexprs) are translated to EEnums which are usually employed to model enu-
merated types in Ecore. There, each constructor from the datatype model is
translated into an EEnumLiteral.

A Case Study in Combining Formal Verification and Model-Driven ... 281

Tr(tpConstr = cn1|...|cnp) = createEEnum();
setName(tpConstr);
TrconstrNm(cni) / 1 ≤ i ≤ p

TrconstrNm(cni) = EEnumLiteral(cni) / 1 ≤ i ≤ p

Example:

datatype tpConstr=
Cn1 |Cn2 |... | CnN

Rule DatatypeToEClasses When constructor declarations are composed of
more than one constructor declaration containing type expressions: a first EClass
is created to represent the type constructor (tpConstr). Then, for each construc-
tor, an EClass is created too, and inherits from the tpConstr one.

Tr(tpConstr = cd1|...|cdn) = createEClass();
setName(tpConstr);
Trdecl(cdi)
/ 1 ≤ i ≤ n

Trdecl : ConstructorDeclaration −→ EClass
Trdecl(cni t1...tm) = createEClass();

setName(cni);
setSuperType (EClass(tpConstr));
Trtype(accj , tj)
/ 1 ≤ j ≤ m

Example:

datatype tpConstr =
Cn1 of string

|Cn2 of int

|...
|CnN of bool

282 S. Djeddai, M.Mezghiche, and M. Strecker

Rule PrimitivTypeToEAttribute If a type expression is formed of a prim-
itive type, the translation function generates a new EAttribute. The name of
this EAttribute is the name of its corresponding accessor, and its type is the
EMF representation of the the primitive type : EInt for int, EBoolean for bool,
EString for string, etc.

Trtype : (accessor, type) −→ EStructualFeature
Trtype(acc, primTp) = createEAtrribute();

setName(acc);
setType(primTpEMF);

Example:

datatype tpConstr =
Cn of int ∗ string ∗ ...∗ bool

Rule TypeToEReference When a type expression contains a type which is
not a primitive type, the latter has to be previously defined in the Isabelle theory.
Then, a containment link is created between the current EClass and the EClass
referenced by type constructor, and the multiplicity is set to 1.

Trtype : (accessor, type) −→ EStructualFeature
Trtype(acc, tpConstr) = createEReference();

setName(acc);
setType (tp constr);
setContainment (true);
setLowerBound(1);
setUpperBound(1);

A Case Study in Combining Formal Verification and Model-Driven ... 283

Example:

datatype tpConstr=
Cn oftpConstr2

Rule TypeOptionToMultiplicity The type expressions can also appear in
the form of a type list. In this case the multiplicity is set to 0...*. The type
expression type option is used to express whether a value is present or not. It
returns None, if it is absent and Some value, if it is present. This is modeled by
changing the cardinality to 0...1.

Trtype : (accessor, type) −→ EStructualFeature
Trtype(acc, t list) = Trtype(acc, t)

setLowerBound(0);
setUpperBound(∗);

Trtype(acc, t option) = Trtype(acc, t)
setLowerBound(0);
setUpperBound(1);

Example:

datatype tpConstr=
Cn oftpConstr2 list

The last case that we deal with, is type ref which is used to represent point-
ers. It is translated to references without containments.

Trtype(acc, t ref) = Trtype(acc, t)
setContainment(False);

284 S. Djeddai, M.Mezghiche, and M. Strecker

Example:

datatype tpConstr=
Cn of tpConstr2 ref

3 Case Study

In this section, we apply the method presented in Section 2 on a detailed example
that consist of a Domain Specific Language. We start by the DSL definition, then
we show the architecture of the application before finishing with the effective
results of the transformation.

3.1 Presentation of the Case Study

We are currently working on a real-time dialect of the Java language allowing
us to carry out specific static analyses of Java programs. We only sketch this
language here; details are described in [13]. This language is not a genuine subset
of Java, since we have added annotations characterizing timing behavior of pro-
gram parts that are inserted in particular comments into the program. Neither
is the language a superset of Java, because we have to impose syntactic restric-
tions on the shape of the program, and also static restrictions on the number of
objects that are allocated.
All this made us opt for writing our own syntax analysis, which is integrated

into the Eclipse Xtext environment [14]. After syntax analysis and verification
of the above-mentioned static restrictions, the program together with its timing
annotations is translated to Timed Automata (TA) for model checking. The
language is currently not entirely stable and will be modified while we refine and
improve the translation from Java to TA, and while the formal model evolves.
The formal aspect comes into play at the following point: We are currently

developing a real-time semantics of Java in the proof assistant Isabelle, based on
an execution semantics using inductive relations. Performing the translation for
the whole language description would generate a huge metamodel that couldn’t
be presented in the paper. We thus choose to present a only an excerpt of it,
corresponding to a method definition.
Figure 6 shows the datatype definitions in the Isabelle proof assistant, where

a method definition is composed of a method declaration, a list of variables,
and statements. Each method declaration has an access modifier that specifies
its kind. It also has a type, a name, and some variable declarations. The stmt
datatype describes the statements allowed in the method body: Assignments,

A Case Study in Combining Formal Verification and Model-Driven ... 285

Conditions, Sequence of statements, Return and the annotation statement (for
timing annotations). In this example we use Booleans, integers, strings for types
and values.

3.2 Implementation: DatatypesToEcore

Our approach is implemented using the Eclipse environment which includes
among others

– Eclipse Modeling Framework (EMF) [11]: a framework for modeling and
code generation that builds tools and applications based on data models.

– Eclipse Modeling Project (EMP) [10]: a framework allowing the manipula-
tion of DSLs by defining their (textual/graphical) concrete syntax based on
a corresponding metamodel.

Figure 5 shows the architecture of our application. There, green arrows represent
model transformations or code generation. The base element is an Isabelle theory
where both of the datatypes and the properties to be checked are defined. The
corresponding meta-model is generated using the translation function described
in Section 2.4. Starting from a generated Ecore meta-model, we use the Xtext
tool to define a textual concrete syntax. First, Xtext builds an EBNF grammar
depending on the structure of the metamodel. The grammar is then adapted
using the right key words of the language, yielding a textual editor as an Eclipse
plug-in.

Code for

Generated

DSL tool
Theory

Isabelle

DSL
Graphical
/Textual
Notation

Model

Meta−

Fig. 5. Datatype To Ecore implementation architecture

3.3 Applying the Transformation

Figure 6 shows a datatype taken form the Isabelle theory where the verifications
were performed. Due to lack of space we do not present them in the paper.

286 S. Djeddai, M.Mezghiche, and M. Strecker

This part of the theory was given as input to the implementation of our trans-
lation rules presented in Section 2.4. The resulting Ecore diagram is presented
in Figure 7.

As it is shown on the figure, data type definitions built only of type con-
structors (Tp, AccModifier, Binop, Binding) are treated as enumerations in the
metamodel. Whereas Datatype MethodDecl composed of only one constructor
derive a single class. As for type expressions that represent list of types (like ac-
cModifier list in varDecl), they generate a structural feature in the corresponding
class and their multiplicities are set to (0...*). The result of type definitions con-
taining more than one constructor and at least a type expression (stmt and expr)
is modeled as a number of classes inheriting from a main one. Finally, the trans-
lation of the int, bool and string types is straightforward. They are translated
to respectively EInt, EBoolean and EString.

datatype binop = BArith| BCompar| BLogic
datatype value = BoolV bool

|IntV int
|StringV string
|V oidV

datatype binding = Local| Global
datatype var = V ar binding string
datatype expr = Const value

|V arE var
|BinOperation binop expr expr

datatype tp = BoolT | IntT | V oidT | StringT
datatype stmt = Assign var expr

|Seq stmt stmt
|Cond expr stmt stmt
|Return expr
|AnnotStmt int stmt

datatype accModifier =
Public |Private |Abstract|Static |Protected |Synchronized

datatype varDecl =
V arDecl (accModifier list) tp int

datatype methodDecl =
MethodDecl (accModifier list) tp string (varDecl list)

datatype methodDefn =
MethodDefn methodDecl (varDecl list) stmt

Fig. 6. Datatypes in Isabelle

A Case Study in Combining Formal Verification and Model-Driven ... 287

Fig. 7. Resulting Ecore Diagram after Transformation

4 Related Work

EMF models are comparable to Unified Modeling Language Class diagrams. For
this fact we are interested in the mappings from other formal languages to UML
Class diagrams. Some research is dedicated to establishing the link between these
two formalisms. We cite the work of Idani & al. that consists of a generic trans-
formation of UML models to B constructs [15] and vice-versa [16]. The authors
propose a metamodel-based transformation method based on defining a set of
structural and semantic mappings from UML to B (a formal method that allows
to construct a program by successive refinement, using abstract specifications).

288 S. Djeddai, M.Mezghiche, and M. Strecker

Similarly, there is an MDE based transformation approach for generating
Alloy (a textual modeling language based on first order logic) specifications
from UML class diagrams and backwards [17], [18].
Delahaye & al. describe in [19] a formal and sound framework for transform-

ing Focal specification into UML models.
These methods enable to generate UML component from a formal descrip-

tion but their formal representation is significantly different from our needs:
functional data structures.
Also, graph transformation tools [20, 21] permit to define source and target

metamodels all along with a set of transformation rules and use graphical repre-
sentations of instance models to ease the transformation process. However, the
verification functionality they offer is often limited to syntactic aspects (such as
confluence of transformation rules) and does not allow to model deeper seman-
tic properties (such as an operational semantics of a programming language and
proofs by bisimulation).
Our approach combines the two views by offering the possibility to define

the abstract syntax of a DSL, to run some verifications on the top of it and
to generate the corresponding metamodel to graphically document the formal
developments. Furthermore, this metamodel can be used to easily generate a
textual editor using Xtext facilities.

5 Conclusion

Our work constitutes a first step towards a combination of interactive proof and
Model Driven Engineering. We have presented a generic method based on MDE
for transforming data type definitions used in proof assistants to Class diagrams.
The approach is illustrated with the help of a Domain Specific Language

developed by ourselves. It is a Java-like language enriched with annotations.
Starting from data type definitions, set up for the semantic modeling of the DSL
we have been able to generate an EMF meta-model. In addition to its benefits for
documenting and visualizing the DSL, it is manipulated in the Eclipse workbench
to generate a textual editor as an Eclipse plug-in.
Currently, we are working on extending subset of data type definitions by

adding a way to transform parameterized types to generic types in Ecore. And
coupling our work with the generation of provably correct object oriented code
from proof assistants. Moreover, we intend to work on the opposite side of trans-
formation, the possibility to generate data structure definitions from class dia-
grams.

References

1. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices 35 (2000) 26–36

2. http://coq.inria.fr/: Coq proof assistant website (2012)

http://coq.inria.fr/

A Case Study in Combining Formal Verification and Model-Driven ... 289

3. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-
Order Logic. Volume 2283 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2002)

4. http://caml.inria.fr: Caml programming language website (2012)
5. Martin Odersky et al.: An Overview of the Scala Programming Language. Tech-
nical report, EPFL (2007)

6. Bézivin, J.: Model driven engineering: An emerging technical space. In Lämmel,
R., Saraiva, J., Visser, J., eds.: Generative and Transformational Techniques in
Software Engineering. Volume 4143 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2006) 36–64

7. Selic, B.: The pragmatics of model-driven development. IEEE Software 20 (2003)
19–25

8. OMG: Meta Object Facility (MOF) Core v. 2.0 Document. (2006)
9. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained : The Model Driven Archi-
tecture : Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2003)

10. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Upper Saddle River, NJ (2009)

11. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)

12. France, R.B., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling
notation. Computer Standards & Interfaces 19 (1998) 325–334

13. Baklanova, N., Strecker, M., Féraud, L.: Resource Sharing Conflicts Checking in
Multithreaded Java Programs. Informal Proceedings FAC’12 (2012)

14. Eclipse Community: Tutorials and documentation for Xtext 2.0 (2011) http:

//www.eclipse.org/Xtext/documentation/.
15. Idani, A., Boulanger, J.L., Philippe, L.: A generic process and its tool support
towards combining UML and B for safety critical systems. In Hu, G., ed.: CAINE,
ISCA (2007) 185–192

16. Idani, A.: UML models engineering from static and dynamic aspects of formal
specifications. In Halpin, T.A., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R., eds.: BMMDS/EMMSAD. Volume 29 of Lecture Notes in
Business Information Processing., Springer (2009) 237–250

17. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In Ghosh, S., ed.: MoDELSWorkshops. Volume 6002 of Lecture Notes in Computer
Science., Springer (2009) 158–171

18. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In Engels, G., Opdyke, B., Schmidt, D.C., Weil, F., eds.: MoDELS.
Volume 4735 of Lecture Notes in Computer Science., Springer (2007) 436–450

19. Delahaye, D., Étienne, J.F., Viguié Donzeau-Gouge, V.: A Formal and Sound
Transformation from Focal to UML: An Application to Airport Security Regula-
tions. In: UML and Formal Methods (UML&FM). Innovations in Systems and
Software Engineering (ISSE) NASA Journal, Kitakyushu-City (Japan), Springer
(2008)

20. de Lara, J., Vangheluwe, H.: Using AToM3 as a meta-case tool. In: Proceedings
of the 4st International Conference on Enterprise Information Systems (ICEIS),
Ciudad Real, Spain (2002) 642–649

21. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
Eclipse plug-ins. In: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. ASE ’05, New York, NY, USA, ACM (2005)
134–143

http://www.eclipse.org/Xtext/documentation/
http://www.eclipse.org/Xtext/documentation/
http://seminaire-verif.enseeiht.fr/FAC/2012/Papiers/I-1.pdf
http://seminaire-verif.enseeiht.fr/FAC/2012/Papiers/I-1.pdf
http://www.scala-lang.org/docu/files/ScalaOverview.pdf
http://caml.inria.fr

