

Checking Inconsistencies in UML Design

Iryna Zaretska1, Oleksandra Kulankhina1, Hlib Mykhailenko1, and Roman Kovalenko1

1 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
zar@univer.kharkov.ua, mary.cauliflower@gmail.com,

tas.nix@gmail.com, kovalenkoo.roman@gmail.com

Abstract. The paper presents a simple method and software implementation for
checking inconsistencies in UML design and the general method of UML
design verification using its own model and first order predicate logic to specify
relations between components of the design. Unlike various existing methods
the proposed ones are focused mostly on cross-diagram inconsistencies and
strong adhering to object-oriented principles. The model proposed for the
general method is based on the unified graph representation of UML diagrams.

Keywords. Software design, object-oriented approach, UML, design model,
verification.

Key Terms. SoftwareSystem, SoftwareComponent, Object, Model,
VerificationProcess.

1 Introduction

Software design has become an increasingly important part of the software lifecycle
due to the increasing complexity of software under construction.

The Unified Modeling Language (UML) is the de facto standard for modeling
software systems. The UML supports a wide range of diagrams for modeling
software. UML diagrams are independent but connected; their meta-model describes
them under a common roof.

Detection of errors at the software design level allows reducing a great number of
problems in the late stages of software development. There are several approaches for
testing design models but they are mainly dealing with intra-diagram inconsistencies
or using scripts for design execution.

In this paper model faults concerned with cross-diagram inconsistencies are
considered. First, we present a simple method for detecting the cross-diagram
inconsistencies in a UML design and its Java implementation. Then the general model
of UML design for verification and refining purposes is introduced and discussed.

34 I. Zaretska, O. Kulankhina, H. Mykhailenko, and R. Kovalenko

2 Related Work

2.1 OCL Constraints

The most common approach to set the rules of consistency for a UML model is to use
Object Constraint Language (OCL) which is supported by the majority of UML
CASE tools. In fact a lot of OCL constraints are embedded into the wide spread UML
CASE tools in order to provide inconsistency verification of the model. The fact is
that one can freely use OCL on the intra-diagram level but not on the cross-diagram
level.

2.2 Critic Approach

A number of UML visual design tools provide model verification support including
syntax checking and structural and consistency analysis. One of the components of
such integrated support tools are critics.

There are various definitions of a design critic or a critic system in the literature. A
critic can be considered as an intelligent user interface that evaluates a design made
by a user and provides feedback to assist the user to improve the design. Generally
critic tools detect potential problems, give advice and alternative solutions, and
possibly automated or semi-automated design improvements to the end user.

Design critic tools have been used in design tools for various domains, including
software engineering, design sketches, education, etc. Several studies report the
benefits of applying design critic tools in software developments activities [1 – 8].
One of the critic tools is ArgoUML, an open source UML CASE tool. This tool
supports the editing of UML notation diagrams and detects common errors made by
software designers. For example, after placing a class in a class diagram, several
critiques are displayed reminding the user that the class requires a better attribute
name, needs operations, constructor and associations with other classes, and its class
name needs to be capitalized. Thus, the user is helped to improve the design through
the critiques. Java API is used to implement these features.

Other examples of the critic-based tools are ArchStudio3, SoftArch, DAISY,
IDEA, ABCDE-Criticand AIR. These tools provide knowledge to architects,
designers, and requirement engineers who lack specific understanding of the problem
or solution domains. These critic tools all produce critiques that are specific to their
problem domain. They use various approaches such as Java API, Prolog rules and
knowledge bases, first-order production systems etc. to design and define critiques
constraints. These tools have several limitations such as particular code or design
language orientation or difficulties in customization requiring comprehension the
critic’s domain.

Checking Inconsistencies in UML Design 35

2.3 UML Design Execution

A number of approaches have been proposed to execute UML models [9 – 12]. Most
of them use UML models to generate high level language code and execute the
generated code.

Mellor and Balcer [11] for example use model compilers to support UML model
execution. A set of domain and platform-specific model compilers are available
commercially for realtime system modeling. At present the compilers cannot be
extended to incorporate specific checks as the compiler source is not freely available
for modifications.

Another technique for executing UML designs is to execute code that is generated
from the model. Assuming that the code and model both contain the same
information, executing the code is the same as executing the model.

Trung T. Dinh-Trong at el. [12] offer the systematic approach to testing UML
designs based on a Java-like action language (JAL) used to transform the UML design
under test into the executable form and then exercise them with generated inputs.

3 Cross-Diagram Inconsistencies

It is quite important to verify that the information about the model of the system at
one UML diagram does not contradict to the information at the other UML diagram.
We call such contradictions cross-diagram inconsistencies.

A UML design may contain different cross-diagram inconsistencies. Some of them
are listed below.

1. An instance of the class A sends the message to the instance of the class B at the

Sequence diagram, but the class B isn’t visible for the class A at the Class diagram
(Fig. 1).

Fig. 1. Class B should be visible.

2. An instance of the class A sends the message to an instance of the class B at the
Sequence diagram, but there is no corresponding method in the class B (Fig. 2).

36 I. Zaretska, O. Kulankhina, H. Mykhailenko, and R. Kovalenko

Fig. 2. Class B does not have method3().

3. Transition from one state of the class A to another at the State Chart diagram
occurs by the class A method invocation, but there is no such method in the class
A at the Class diagram (Fig. 3).

Fig. 3. Class A does not have method2().

4. An instance of the class A sends the message to the class B (but not to the instance
of this class) at the Sequence diagram, but the corresponding method of the class
B isn’t specified as static (Fig.4).

Fig. 4. In class B method2() is not specified as static.

Checking Inconsistencies in UML Design 37

As our analysis shows the most wide spread UML CASE tools cannot “see” such
faults in the design and neither critic tools nor the design execution method are of any
help in a cross-diagram verification process.

4 Simple Method for Detecting Cross-diagram Inconsistencies in
UML Design

As most of the UML CASE tools allow exporting an object oriented design (OOD) of
a target system into XMI format we offer a simple method of cross-diagram
verification: we parse XMI file and find UML components dependences we are
interested in. Depending on the type of an inconsistence under check we develop
different check modules with their own models and consistency rules. The whole
process looks like shown in Fig. 5. After parsing the XMI file into the Document
Object Model (DOM) the Visitor takes care of getting over its elements and creating
instances of the classes from the Checker’s model. Then the concrete Checker
verifies this model according to its own rules and generates check results. To support
this process the Java plug-in was developed. We call it Cross Diagram Inconsistency
Check Plug-in (CDICP). It can be easily added to most of the UML CASE tools.

Fig. 5. The whole process of checking UML design.

As an example of a Check Module (Fig. 5) we developed Visibility Check Module
(VCM) which finds the inconsistencies of the first type (Fig.1).

VCM uses three classes for UML components representing; we call them Role,
AssRole, and SeqRole (Fig. 6). The class Role represents a class at the Class diagram,
the class SeqRole represents this class at the Sequence diagram (in fact they are two
different UML components), and the class AssRole represents an association or
dependency between classes at the Class diagram or a message between classes at the
Sequence diagram (Fig. 7).

The Visitor in VCM identifies these components in the DOM, creates their
instances and places them to the lists of classes, associations, messages, etc. Then the
Checker applies its rules, verifies them and generates the result messages. The

38 I. Zaretska, O. Kulankhina, H. Mykhailenko, and R. Kovalenko

Checker of VCM for every instance of the class AssRole, which represents some
message between classes, checks if there is an association or dependency between
these classes (another instance of the class AssRole) and detects its direction. If the
connection is not found the Checker forms error message. This message contains
information about cross-diagram inconsistency specifying its type and names of
classes.

The CDICP plug-in for the VCM was developed and incorporated into Eclipse
(Fig. 8).

Fig. 6. Classes used by VCM.

Class A

 : Class A

Role AssRole AssRole SeqRole

Fig. 7. Elements of UML design and correspondent classes of VCM.

Fig. 8. New plugin CDICP in Eclipse.

Checking Inconsistencies in UML Design 39

5 General Method for Detecting Cross-diagram Inconsistencies in
UML Design

Analyzing only four most important at the design stage diagrams which are Class
diagram, Sequence diagram, Object Diagram and State Machine diagram (in UML
2.0 specification) [13, 14] we defined more than 30 intra- and cross-diagram relations
to be checked. None of well known CASE tools offers such checks. Using the simple
method mentioned above is quite tedious as it supposes developing a special Checker
(Fig. 8) for each relation, which in its turn requires multiple searches on XMI file.
Even for a middle size project this file is quite big. The main idea here is to develop a
special model of the system design for verification purposes (as usually done in
verification methods), build it once by parsing XMI file, and then make all checks on
this model. Moreover such model can be used for refining design on account of
lessening couplings, strengthening cohesion and applying design patterns. All results
of this model analysis regardless of the purpose take the form of recommendations so
the corrective changes are up to the designer.

Thorough analysis of UML 2.0 specification led us to using graph representation of
such model. It allows unified representation of all four diagrams by graphs with
different types of vertices and edges. In this case checking relations between UML
diagrams is just searching for the definite types of vertices or edges or their
interconnections in the model. The first order predicate logic is used to formulate the
relations leading to inconsistencies. In fact graph representation simplifies the
description of diagrams comparing to their formal specification but is sufficient for
verification purposes. For a class diagram the corresponding graph’s vertices are
classes and edges are connections between them which are association, dependency,
generalization and interface realization. The information about generalization sets is
stored separately to simplify search algorithms. For an object diagram the
corresponding graph’s vertices are objects and edges are connections between them.
For a sequence diagram the vertices are objects and edges are messages between
them. For a state machine (or state chart) diagram the vertices are states and edges are
transitions between them. Each type of vertex and each type of edge stores
information needed to check intra- and cross-diagram inconsistencies. Say an
association of a class diagram as an edge of a graph keeps the name of the association,
roles and multiplicities of its participants, etc. An example of the simple class diagram
and its graph representation is given in Fig. 9. The edges of the graph represent
different types of connections between classes and hence store different information.

Here is the formal representation of our model consisting of graphs of four types
for Class, Object, Sequence and State Machine diagrams correspondently:

{{ } { } { } { }}D D D D D
cl ob seq st

    .

Each of these graphs consists of two sets: V stands for vertices and E stands for
edges. Their description is given below.1

 D V ,E
cl cl cl



1 Elements in [] are optional.

40 I. Zaretska, O. Kulankhina, H. Mykhailenko, and R. Kovalenko

Fig. 9. Example of graph representation of a class diagram

{ : (, [, , , ,])}V v v name isAbstract ATTR MTHD STRT visibility
cl

 

{ : (, , [, ,])}ATTR attr attr name domain scope visibility multiplicity 

{ : (, ,)}MTHD mthd mthd mthdSgn scope visibility 

([, ,])mthdSgn name PARAMS returnDomain

{ : ([,],)}PARAMS param param num name domain 

{ : ()}STRT stereotype stereotype name 

{ : (, , [,]); , , | | | }E e e v v type info v v V type gen ass dep impl
cl s e s e cl

   

([, , , , , , , ,])info name r r m m aggr aggr navig navig
s e s e s e s e



{ , }D V E
ob ob link



{ : (, [, ,)}V v v name clName ATTRVAL STRT
ob

 

{ : (,)}ATTRVAL attrval attrval name value 

{ : (, ,); , }E e e v v name v v V
link s e s e ob

  

{ , }D V V E
seq cl ob msg

 

{ : (, ,); , }E e e v v msgCall v v V V
msg s e s e cl ob

   

([,] ,)msgCall guard seqnum mthdCall

Checking Inconsistencies in UML Design 41

(, [,])mthdCall name ARGS returnValue

{ : (,)}ARGS armnt armnt num value 

{ , }D V E
st st tr


{ : (,[, , ,]); , , }V v v name entry do exit entry do exit mthdCall
st
  

{ : (, ,); , }E e e v v trCall v v V
tr s e s e st
  

([,])trCall guard mthdCall .
An example in Fig. 10 illustrates information stored with some types of vertices

and edges.

Fig.10. Information stored in graph elements for the example above

The relation to be checked should be represented as the first order predicate logic
formula. Propositional variables in this formula are the elements of the model above.
Such unified approach to formulating the criteria of relations to be checked allows
using the only Checker for any sort of relation.

Here is an example of such formula. It describes the fact that if the instance of one
class sends the message to the instance of another class in the sequence diagram then
the corresponding method should be among the methods of the latter class in the class
diagram (Fig. 2 shows an example of this relation not satisfied).
(: ())

((()))((())) : () ()

(: ())

()((()))((())) : () ()

e E v e V
msg e cl

v genPath v e mthd MTHD v e msgCall e mthdSgn mthd
e

e E v e V
msg e ob

cl V v genPath v e mthd MTHD v e msgCall e mthdSgn mthd
cl e

  

    


  

      

42 I. Zaretska, O. Kulankhina, H. Mykhailenko, and R. Kovalenko

where
 1 1 1() ... : (1, 1)(: () () ())n cl s i e igenPath v v v v v i n e E type e gen v e v v e v             

is introduced to take into account the fact that the method in question can be inherited
along the path in the inheritance tree of the class.

At the moment the software tool for the proposed method is being developed and
tested.

6 Conclusions

This paper offers a simple method for detecting inconsistencies between different
UML diagrams. It was implemented as an Eclipse plug-in and tested on some types of
cross-diagram inconsistencies.

Another more general method for checking inconsistencies in UML design is
proposed. It uses the unified model with graph representation of the design
components and formulae of the first order predicate logic to represent relations
which should be satisfied to make the design consistent. This approach can also be
used to evaluate the quality of a design and make recommendations on its
improvement on account of better use of the main principles of the object-oriented
design.

References

1. A. Andrews, R. B. France, S. Ghosh, and G. Craig.: Test Adequacy Criteria for UML
Design Models. Journal of Software Testing, Verification and Reliability, 13(2), pp. 95--
127 (2003)

2. Fischer. G. et al.: The Role of Critiquing in Cooperative Problem Solving, ACM
Transactions of Information Systems, Vol.9, No.3, pp. 123--151 (1999)

3. Lionel Briand and Yvan Labiche: A UML-based approach to system testing. Software
and System Modeling, 1(1), pp. 10--42 (2004)

4. Souza, C.R.B., et al.: Using Critiquing Systems for Inconsistency Detection in Software
Engineering Models. In: Proceedings of the Fifteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE 2003), San Francisco Bay, pp.
196--203 (2003)

5. Souza, C.R.B., et al.: A Group Critic System for Object-Oriented Analysis and Design.
In: Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE'2000), pp. 313--316 (2000)

6. S. Ghosh, R. B. France, C. Braganza, N. Kawane, A. Andrews, and O. Pilskalns: Test
Adequacy Assessment for UML Design Model Testing. In: Proceedings of the
International Symposium on Software Reliability Engineering, pp. 332--343, Denver,
CO (2003)

7. Mara del Mar Gallardo, Pedro Merino, Ernesto Pimentelis: Debugging UML Designs
with Model Checking. Journal of Object Technology, 1(2), pp. 101--117 (2002)

8. Martin Gogolla, Jrn Bohling, and Mark Richters: Validation of UML and OCL models by
automatic snapshot generation. In: Proceedings of the 6th International Conference on
Unified Modeling Language (UML'2003), pp. 265--279. Springer, Berlin, LNCS 2863
(2003)

Checking Inconsistencies in UML Design 43

9. Nilesh Kawane: Fault Detection Effectiveness of UML Design, Model Test Adequacy
Criteria. In: Supplementary Proceedings of the International Symposium on Software
Reliability Engineering, pp. 327--328, Denver, CO (2003)

10. Nilesh Kawane: EPTUD : An Eclipse plug-in for testing UML design models. Master's of
science thesis, Colorado State University, Fort Collins, Colorado (2005)

11. Stephen Mellor and Marc Balcer: Executable UML: A Foundation for Model Driven
Architecture. Addison Wesley Professional (2002)

12. T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and A. A. Andrews: A Tool-
Supported Approach to Testing UML Design Models. In: 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2005), Shanghai,
China, Proceedings (2005)

13. Object Management Group: UML 2.0 Superstructure Specification (2005),
http://www.uml.org/

14. Pender. T.: UML Bible. Wiley Published Inc. (2003)

