
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

HOBO: A Hybrid Modelling Framework

Colin Puleston, Bijan Parsia

School of Computer Science, University of Manchester, United Kingdom

Abstract. HOBO is a Java hybrid modelling framework for building ontology-

driven applications. A dynamic frame-based model provides a seamless integra-

tion of entities derived from (a) a Java object model, and (b) one or more exter-

nally-represented ontologies. Each entity retains dynamic links to its source(s),

enabling the utilisation of both ontological reasoning and procedural processing

in the dynamic updating of model instantiations. Although HOBO is totally in-

dependent of any particular ontology format, it was designed largely with OWL

ontologies and Description Logic (DL) reasoning in mind, and hence comes

with suitable OWL-specific plug-ins. HOBO comes with a generic 'Model

Explorer' GUI that enables the model developer to browse the hybrid models

and explore the dynamic behaviour of specific model instantiations. The HOBO

framework provides the basis for an OWL-driven clinical data-entry application

currently being developed in collaboration with an industrial partner.

Keywords: Ontology Driven Applications, Software Engineering, Software

Frameworks

1 Introduction

Ontology-backed hybrid software models combine a domain-specific Object Mod-

el (OM), implemented in an object-oriented programming language such as Java, with

one or more external models, expressed in suitable declarative ontology languages,

such as OWL. The latter will typically come with associated reasoning mechanisms,

such as Description Logic (DL) reasoners. HOBO is a successor to the generic hybrid

modelling framework that was developed for the CLEF Chronicle system [1][2]. It is

based on the same general principles, but is more flexible and provides a simpler and

easier to use API for building the OMs. The HOBO framework is implemented in

Java, as are the domain-specific OMs that it supports. Although totally independent of

any particular ontology format, it was designed largely with OWL ontologies and DL

reasoning in mind, and comes with suitable OWL-specific plug-ins.

HOBO provides the core functionality for an OWL-driven clinical data-entry ap-

plication currently being developed in collaboration with Siemens Healthcare, where-

in it facilitates the integration of OWL with a dedicated modelling formalism devel-

oped specifically for the application. This architecture will be described in detail

elsewhere. For the discussion in the remainder of the paper we will assume the simple

case where HOBO is used together with OWL ontologies and DL reasoners.

HOBO, like its predecessor, provides both a domain-specific API (via the OM),

and a domain-neutral API (via a dynamic Frames Model (FM) - described below).

This enables client software to operate over whichever API is the most suitable for its

particular purposes. Domain-specific client-code has been built on top of the Siemens

clinical data-entry model, as implemented via HOBO, and a generic GUI-based

'Model Explorer' application has been built on top of the domain-neutral API (a tool

that enables the modeller to (a) browse the hybrid model, and (b) create instantiations

of specific concepts in order to explore the dynamic behaviour of those models).

A hybrid modelling framework such as HOBO that incorporates an OM has two

main advantages over one based merely on OWL and DL reasoning. Namely (1) the

domain-specific API associated with the OM makes the writing of domain-specific

client code considerably simpler, and (2) the procedural processing capabilities of the

OM enables the creation of models whose instantiations can dynamically update

themselves in ways that cannot be achieved via DL reasoning alone.

2 HOBO Models

The above diagram provides an overview of the HOBO architecture. The central

feature is a Frames Model (FM), which is dynamically generated at runtime, with the

FM entities being derived from entities from either the OM or the ontologies, or, for

some key sections of the model, both. The entities in the FM retain links with their

original source entities, which are used in providing dynamic updating of the FM

instantiations. As an instantiation is created by the client software it will be continu-

ously automatically updated in both shape and content by the HOBO framework. This

dynamic updating is derived from (a) procedural processing by the OM, and (b) onto-

logical reasoning via the DL reasoner. The links between the OM and the FM are

tight two-way bindings. Hence the instantiation and subsequent updating of sections

of the OM will automatically be reflected in equivalent operations being performed

within the FM, and vice-versa.

2.1 Frames Model

The Java classes that the HOBO framework provides for representing the FM can

be categorised by representational-level, as follows:

 Concept-level: CFrame/CSlot/CNumber/CProperty

 Instance-level: IFrame/ISlot/INumber

 Meta-level: MFrame/MProperty

FM instantiations consist of IFrame/ISlot/INumber-networks. These instan-

tiation can be automatically updated via either DL reasoning or procedural processing

by the OM. Updates can be either (a) addition or removal of frame-slots, (b) updating

of slot constraints, or (c) addition or removal of slot-values.

The meta-level classes are used to specify value-types for slots whose values are

concept-level entities. Values for both MFrame-valued and MProperty-valued

types can be used in higher-order processing by the OM, whilst those for MFrame-

valued slots can also be used in normal first-order DL reasoning .

2.2 Object Model

An OM is a domain-specific entity built from classes provided by the HOBO

framework. These framework classes provide mechanisms for automatically generat-

ing the corresponding FM entities and setting up the required dynamic bindings be-

tween the OM and FM entities. Bindings are of the following types:

 OM classes/class-fields <==> CFrame/CSlot objects

 OM objects/object-fields <==> IFrame/ISlot objects

Hence, when an OM class is instantiated (i.e. when an OM object is created), the

corresponding CFrame object along with its associated CSlot objects will be in-

stantiated in the form of IFrame/ISlot objects. Similarly, whenever a CFrame is

instantiated together with its associated CSlot set, then the corresponding OM class

will also be instantiated. Once instantiated, any updates to one version of the instan-

tiation, will be automatically reflected in the other.

2.3 OWL/DL-Based Plug-ins

HOBO comes with the following plug-ins specifically for loading OWL ontologies

and reasoning over them with DL reasoners:

OWL Ontology Loading Plug-in: Loads OWL ontologies to create relevant sections

of the FM. OWL constructs are used to derive concept-level frames and slots via a

fairly obvious heuristic mechanism. The plug-in is configurable in various ways to

specify which entities will be loaded, and how loaded entities will be interpreted.

DL Reasoning Plug-in: Provides IFrame updates based on DL classification. The

classifiable entities are derived from the current state of the IFrame, with configura-

tion options including:

 Entity type: Either (a) instance-networks, or (b) class-expressions

 Embodied semantics: Either (a) open-world, or (b) closed-world (configurable

on a per-property basis)

3 HOBO Model Instantiations

We now look at some examples that illustrate the dynamic behaviour of the model-

instantiations. These examples are taken from a small model developed as a test mod-

el for HOBO, but designed to mirror certain features of the CLEF Chronicle model.

Each example includes (1) a description of the behaviours illustrated, (2) a set of

screenshots of the HOBO 'Model Explorer' GUI depicting the relevant sequence of

user actions and subsequent model responses, (3) a table describing each action and

response in this sequence (with columns aligned with the screenshots to which they

refer). Though not illustrated here, all updates shown in all these example are com-

pletely reversible.

The following is a key to the icons used by the 'Model Explorer' GUI and shown in

the screenshots.

3.1 Example 1: Simple updates via DL Reasoning

This example illustrates local updates to the model instantiation due to simple DL

reasoning, showing how the setting of specific values for particular slots can cause (a)

modification of constraints on other exiting slots, and (b) addition of extra slots to

existing frames.

User Action User Action User Action

Instantiates Job con-

cept

Sets industry slot to Aca-

demia

Sets job-type to Re-

searcher

Model Response Model Response Model Response

 Constraint on job-type

slot updated accordingly

research-area slot

added

3.2 Example 2: Simple Updates by Object Model

This example illustrates slot-value updates based on simple numeric calculations

by the OM, including a trivial example of higher order processing (the value for the

job-count slot is determined by counting the number of values in the jobs slot).

User Action User Action User Action

Instantiates Employ-

ment concept

Adds Job value to job

slot

Sets values for hourly-

pay and hours-per-

week to

Model Response Model Response Model Response

job-count and to-

tal-weekly-pay

slots set to '0'

job-count slot set to

'1'

weekly-pay and to-

tal-weekly-pay slots

set to appropriate values

3.3 Example 3: More Complex updates via DL Reasoning

This example illustrates slightly more complex use of the DL reasoner, involving

OWL expressions that are (a) nested, and (b) embody closed world semantics. The

example also illustrates the automatic setting of inferred slot values. The close-world

semantics are specified via the HOBO configuration file, which defines the job

property as "closed", meaning that the generated OWL expressions involving this

property will include suitable closure constructs. Thus when the employment slot is

filled with an Employment frame for which no job values have been specified,

values of Unemployment-benefit and Zero-tax are inferred for the relevant

slots on Citizen.

User Action User Action User Action

Instantiates Citi-

zen concept

Sets employment slot to

Employment

Adds Job value to job slot

Model Response Model Response Model Response

 a) benefits-received slot set to

Unemployment-benefit

b) tax-paid slot set to

Zero-tax

a) benefits-received

slot cleared

b) Constraint on tax-paid

slot updated, and previous

(now invalid) value removed

3.4 Example 4: More Complex Updates by Object Model

This example illustrates how the OM can dynamically create structure via higher

order processing involving FM entities of which the OM has no built-in knowledge.

Specifically, the example shows how a user-specified concept-level frame is used to

create (a) a set of instance-level frames, and (b) a set of structures to summarise the

values of the slots associated with the instance-level frames.

User Action User Action (centre screenshot)

a) Instantiates Travel

concept

b) Set's travel-mode

slot to Plane

Sets appropriate values for miles-travelled and

travelling-class slots, for each Trip frame

[COLLAPSED IN RIGHT SCREENSHOT]

Model Response Model Response (right screenshot)

a) travel-details slot

set to Travel-details

b) summaries slot on

Travel-details frame

set to Values-summary

c) Values-summary

initialised for summarising

the values of all slots on

Plane [COLLAPSED IN

THIS SCREENSHOT]

Appropriate summary values for each relevant slot added to

structure under summaries slot [COLLAPSED IN

CENTRE SCREENSHOT]

4 Related Work

Other than the CLEF Chronicle framework, the only system we are aware of that

adopts a similar hybrid modelling approach to HOBO is Mooop [3]. The main ways

in which Mooop differs from HOBO are (a) it is OWL-specific and does not abstract

away from the underlying ontology format (b) it provides the client with greater ac-

cess to the OWL semantics than HOBO does, and (c) it does not, as HOBO does,

provide a domain-neutral API.

Most approaches to hybrid modelling seem to be based on code-generation. Exam-

ples are Sapphire [4], and the approach described in [6]. As far as we are aware, none

of these types of approaches provide the kind of dynamic model-updating via DL-

based reasoning at runtime that HOBO and Mooop do. Sapphire does however pro-

vide runtime mechanisms that "approximate the dynamic classification of OWL indi-

viduals".

5 Conclusion

From the discussion in this paper and the examples provided, it should be clear that

HOBO provides rich facilities for building OWL ontology sensitive applications. In

particular, it provides structured ways for "filling in the gaps" between the functional-

ity OWL provides and the functionality applications need in a way that is natural to a

Java programmer. As HOBO is pluggable, the same style of programming could ac-

commodate domain models in other formalisms.

6 References

1. Puleston C, Cunningham J, Rector A. A Generic Software Framework for Building Hybrid

Ontology-Backed Models for Driving Applications. OWLED 2008.

2. Puleston C, Cunningham J, Parsia B, Rector A. Integrating Object-Oriented and Ontologi-

cal Representations: A Case Study with Java and OWL. ISWC 2008.

3. Frenzel C, Parsia B, Sattler U, and Bauer B. Advanced Information Systems Engineering

Workshops, CAiSE 2011

4. Stevenson, GT, Dobson, SA. Sapphire: Generating Java Runtime Artefacts from OWL On-

tologies , ODISE 2011

5. Kalyanpur A, Pastor D, Battle S, Padget J. (2004). Automatic Mapping of OWL

Ontologies into Java. SEKE, 2004

6. HOBO software download page: http://owl.cs.manchester.ac.uk/research/topics/hybrid-

modelling/

http://www.springerlink.com/content/978-3-540-88563-4/
http://www.bibsonomy.org/author/Frenzel
http://www.bibsonomy.org/author/Parsia
http://www.bibsonomy.org/author/Sattler
http://www.bibsonomy.org/author/Bauer
http://www.pubzone.org/pages/publications/showVenue.do?venueId=43879
http://www.pubzone.org/pages/publications/showVenue.do?venueId=43879
https://risweb.st-andrews.ac.uk/portal/da/persons/simon-andrew-dobson%285db65bdc-bac2-429e-b668-3083f6bc0fc5%29.html
https://risweb.st-andrews.ac.uk/portal/da/persons/simon-andrew-dobson%285db65bdc-bac2-429e-b668-3083f6bc0fc5%29.html
http://owl.cs.manchester.ac.uk/research/topics/
http://owl.cs.manchester.ac.uk/research/topics/

