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Abstract. Grading dozens of Petri net models manually is a tedious and
error-prone task. In this paper, we present Grade/CPN, a tool supporting
the grading of Colored Petri nets modeled in CPN Tools. The tool is
extensible, configurable, and can check static and dynamic properties.
It automatically handles tedious tasks like checking that good modeling
practise is adhered to, and supports tasks that are difficult to automatize,
such as checking model legibility. We propose and support the Britney
Temporal Logic which can be used to guide the simulator and to check
temporal properties. We provide our experiences with using the tool in
a course with 100 participants.

1 Introduction

Colored Petri nets (CPNs) [8] is a formalism useful for modeling a broad range
of real-life systems, including complex network protocols [8] and business infor-
mation systems [1]. It is thus natural to use CPNs or other Petri net formalisms
when teaching such subjects. As modeling can only really be learned by do-
ing, hands-on experience is a must. Larger classes can comprise more than one
hundred students, and manually checking models created by students is time
consuming and error-prone. This is particularly unpleasant because much of the
effort is spent on checking trivial things, including whether good modeling stan-
dards are adhered to and whether formal requirements to the model are satisfied.
In this paper, we aim at supporting the grading of many models implementing
the same specification by providing with Grade/CPN an extensible tool for auto-
matic assessment of such routine properties, allowing teachers to focus on more
complicated tasks.

The support required for grading assignments is similar to what is needed
for testing or model checking, as we need to check a model against some formal
requirements. As we aim at supporting grading for all kinds of models, we here
focus on the testing perspective, as a model may not be suitable for model
checking due to having a large or even unbounded state space. Thus, parts of
the work described here is also applicable to general testing of CPN models,
but we present it here in the context in which it was developed. The significant



difference to classical testing is that for grading a possibly large set of different
models is to be checked against the same specification in a uniform way.

CPN Tools [3] is a tool for editing, simulating and analysis of CPN models. It
supports the user during the construction of the model due to incremental syntax
checking, which gives immediate feedback about errors, and allows modelers to
experiment with incomplete and even only partially correct models. This is a
useful feature for inexperienced users and makes CPN Tools suitable in teaching.
Furthermore, the Windows version of CPN Tools is downloaded more than 5,000
times a year, indicating that it is broadly used. The broad usage also means
that CPN Tools has reached a fairly stable state, which reduces unnecessary
frustrations during modeling. Finally, CPN Tools has extensive online help and
video tutorials, which means it is easy for students to get started. For these
reasons, we think that CPN Tools is a good choice of a tool for teaching.

There are as many ways of using models as there are teachers, so it is im-
portant that the requirements for the model can be described easily. This means
that the grading tool must be configurable, allowing individual teachers to cus-
tomize what is checked and how adhering to or deviating from each requirement
is awarded or punished. In addition, it must be easily possible to extend the
tool with new requirements. Thus our tool must have a plug-in like architecture
allowing new requirements to be added with minimal effort. At the same time,
we do not desire a heavy-weight framework with a steep learning curve just to
add a simple custom requirement. Of course, such a tool should come with a set
of reasonable built-in plug-ins so it is useful for many scenarios without requiring
any programming.
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Fig. 1: Base model of a delivery service.

To illustrate our motivation
for developing such a tool, as-
sume we want students to model
a (simplified) delivery service us-
ing CPN Tools. The idea is
to model that customers order
products from a shop, and the
shop uses a delivery service to
deliver ordered products to the
customers. To this end, we would
provide students with a base
model as in Fig. 1. The CPN in Fig. 1 models the behavior of the customer
and the shop and provides the interface between customer and delivery service
(Reject, Offer, Accept, and Delivery) and the interface between shop and delivery
service (Shipment, Return, and Notification). A customer can choose a product from
the catalog and place an order via place Order. The shop prepares the ordered
product for shipment and sends the resulting packet to the delivery service via
Shipment. The delivery service shall in all tasks try to deliver packets to the re-
spective customers via place Offer. If a customer is not at home, a token is placed
on place Reject; otherwise, a token is produced on place Accept and, finally, the
delivery service hands over the packet to the customer via place Delivery. Place
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Return is used to send a packet back to the shop in case the packet could not be
delivered. In addition, the delivery service informs the shop via place Notification
that a packet has been successfully delivered. The pages Shop and Customer are
given but the DeliveryService is empty and intended to be modeled by the student.

When students are given such a base model, they are asked to model the
missing part(s) or to change or improve the given model. These changes must
adhere to certain constraints. In our example, we would need to be able to
check that the given environment has not been changed (as the environment
constitutes a contract with the external world) and that the model satisfies the
given requirements, which often means that behavioral properties need to be
checked. Our focus on the first version of our tool has therefore been on making
it easy to check these requirements.

We have also implemented checks that ensure good modeling practise, in-
cluding respecting data hiding (i.e., student solutions are not allowed to connect
to nodes of the environment other than the interface places) and proper termi-
nation (i.e., ensuring that tokens are not erroneously left behind), and simple
static analysis (e.g., ensuring that communication channels are used in the cor-
rect direction, i.e., no messages are produced on an input channel).

As we cannot check all properties mechanically—for example, whether the
model is readable and understandable—we have implemented functionality facil-
itating this. This includes generating a view of the model in which the student-
designed parts are highlighted and the given parts from Fig. 1 are dimmed. This
allows teachers to focus on the new parts without having to distinguish these
parts manually.

We have earlier encountered problems with students copying solutions from
one another. We would also like to detect this, so we have checks that at least
make it harder to cheat. This includes providing each student with a unique
copy of the base model from Fig. 1 with a cryptographic signature including the
student ID embedded. This makes it impossible to two students to use the same
base model as starting point (indicating that one got a copy from the other).

Finally, we want a report summarizing all findings; the report should be
useful for both teachers, who should be able to grade the model based on the
report only, without having to manually open the model in CPN Tools except
in special cases, and for students, who should be pointed to flaws in the model,
using error traces when applicable.

We have chosen to implement our tool as a vanilla Java application. The
language is chosen due to its popularity and platform-independence. We have
chosen not to rely on a framework for handling plug-ins, as these frameworks
often demand significant overhead due to providing features we do not need
(e.g., we do not need dynamic configuration of plug-ins). We have used the
library Access/CPN [14] as it provides an easy way to load CPN models and
programatically interact with the simulator.

To sum up, we need a tool that

1. Works with CPN Tools models,
2. Provides easy configuration,
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3. Is easily extensible,
4. Contains a reasonable base set of capabilities, including:

(a) Detect changes to a given environment,
(b) Check dynamic properties using simulation, and
(c) Check good modeling practise, including data hiding, proper termina-

tion, and provide simple static analysis,
5. Supports the manual part of the grading process,
6. Detects attempts to defraud, and
7. Provides a report that pin-points problems, aids the teacher in grading, and

allows students to understand problems.

We continue with the outline of the architecture of our tool and introduce
some simple plug-ins checking basic properties in Sect. 2. In Sect. 3, we in-
troduce a temporal logic which is powerful enough to describe most dynamic
requirements while still being easy to use. In Sect. 4, we sum up our experi-
ences using our tool in semi-automatically assessing assignments from close to
100 students. Finally, we discuss related work, conclude the paper, and provide
directions for future work.

2 Architecture
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Fig. 2: Overall architecture and envi-
ronment of Grade/CPN.

In this section, we outline the architec-
ture of Grade/CPN. We first give the
overall architecture and explain how
this solves requirements 1, 2, 3, and 7
from the introduction. Then, we pro-
vide the details of some of the built-
in plug-ins, focusing on requirements
4(a), 4(c), and 6. Requirement 5 is
handled partly in this section and in
the next section, where we also deal
with requirement 4(b) (checking dy-
namic properties).

2.1 Overall Architecture

Figure 2 shows the overall architecture of Grade/CPN. We see that we build on
top of Java and Access/CPN [14]. Access/CPN is a Java library making it possible
to interact directly with the CPN Tools Simulator, including loading models and
translating them to an object structure we can use for static analysis, and send
to the simulator process also used by CPN Tools to perform syntax check and
simulation of models. Grade/CPN comprises two important components, one
for Configuration and one for Reporting, as well as an interface to several Plug-ins.
The Configuration component is responsible for loading a configuration file and
using it to instantiate and configure the appropriate plug-ins. Each plug-in re-
turns messages useful for the Reporting component, which use this information to
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generate an on-screen status view showing the overall correctness of the checked
models and for generating an individual report for each student. The report can
be generated as either an HTML file suitable for reading in a Web-browser or a
PDF file suitable for printing or archival.

The central interface of Grade/CPN is PlugIn, shown in Listing 1 (ll. 1–5).
Each plug-in must implement this interface. The configure method is a factory
method to instantiate the plug-in, and takes how many points should be awarded
if the plug-in succeeds and a configuration string. The format of the configuration
string is defined by the plug-in, but will typically be a name identifying the
plug-in and a list of named parameters. If the plug-in can be instantiated with a
given configuration string, it returns a new configured instance and otherwise it
returns null. This allows us to create an abstract factory for instantiating plug-
ins from a string. Furthermore, a plug-in has a method grade, which is given a
student ID, a base model (base), the student solution (model), and a connection
to the simulator. The plug-in can use this information to arrive at its conclusion
and return a Message, which comprises how many points are awarded and a
descriptive message with the reason for the grade.

Fig. 3: Report overview.

Reporting. The Reporting component
of Fig. 2 is responsible for emitting a re-
port based on the result of the PlugIns.
All interfaced pertaining to reporting is
shown in Listing 1 (ll. 7–17). The main
class is Report (ll. 7–10), which is instan-
tiated for each student ID and contains
a set of pairs of PlugIns and Messages
(produced by the grade method PlugIns).

Listing 1: Plug-in interface and central components.� �
1 public interface PlugIn {
2 public PlugIn con f i gu r e (double maxPoints , S t r ing con f i gu r a t i on ) ;
3 public Message grade ( StudentID id , Petr iNet base , Petr iNet model ,
4 HighLevelSimulator s imulator ) ;
5 }

7 public c lass Report {
8 public Report ( StudentID s id ) { . . . }
9 void addReport ( PlugIn plugin , Message r e s u l t ) { . . . }

10 }
11 public c lass Message {
12 public Message (double points , S t r ing message , Deta i l . . . d e t a i l s ) { . . . }
13 }
14 public c lass Deta i l {
15 public Deta i l ( S t r ing header , S t r ing . . . d e t a i l s ) { . . . }
16 public Deta i l ( S t r ing header , JComponent component ) { . . . }
17 }

19 public c lass Tester {
20 public Tester ( TestSuite su i t e , List<StudentID> ids , Petr iNet base ) { . . . }
21 public List<Report> t e s t ( ) { . . . }
22 }
23 public abstract c lass TestSuite {
24 public TestSuite ( PlugIn matcher ) { . . . }
25 public abstract List<PlugIn> getPlugIns ( ) ;
26 }
27 public c lass Conf igurat ionTestSu i te extends TestSuite {
28 public Conf igurat ionTestSu i te ( F i l e c on f i g u r a t i o nF i l e ) { . . . }
29 }� �
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A Message (ll. 11–13) ties together a number of awarded points, a descriptive
message and a list of Details providing in-depth reasoning leading to the outcome.
Each Detail (ll. 14–17) consists of a descriptive header and either a list of textual
details or a single graphical component, which is rendered as an image in the
resulting report. For each student a report overview is generated (see Fig. 3 for
an example) and supplementary details are added in separate sections.

Configuration. The Configuration component of Fig. 2 is shown in Listing 1
(ll. 19–29). The main class is a Tester (ll. 19–22), which given a TestSuite, a list
of student IDs, and a base model can perform a test (l. 21) and yields a Report
for each student. A TestSuite (ll. 23–26) has a distinguished matcher, which is a
PlugIn mapping models to student IDs by yielding a high score for a model and
student ID pair if the model is created by the student with the given ID and a low
score otherwise. A TestSuite can also return a list of PlugIns for the main grading
process. One implementation of a TestSuite, the ConfigurationTestSuite (ll. 27–29),
is instantiated using a configurationFile which along with an abstract PlugIn factory
is used to instantiate the correct PlugIns according to the configuration.

An example configuration file is shown in Listing 2. The file comprises two
sections, matcher (ll. 1–2) and test (ll. 4–15), setting up the matcher and the
actual tests graded, respectively. The intuition is that each line corresponds to a
plug-in; a line starting with a + (ignoring white space) is considered part of the
preceding line. Each line starts with a number indicating how many points are
awarded for successful execution. If the number is negative, successful execution
yields 0 points but a failure yields a punishment. This is followed by a colon
and a configuration option recognized by the plug-in and optionally a list of
named parameters. For example, in line 5 we see that the plug-in identified by
declaration-preservation is instantiated with one named parameter. If the test fails,
it yields a punishment of 5 points and if it succeeds, it yields 0 points. Lines 13–
14 are merged (as line 14 starts with +). In the following we go into more detail
with this example.

2.2 Simple Plug-ins for Interface Preservation

In Listing 2, we use two plug-ins to ensure that the interface to the environment
and the environment itself are not modified. The declaration-preservation plug-

Listing 2: Example configuration file.� �
1 [matcher ]
2 −5: signature , threshold=65

4 [ tests ]
5 −5: declaration−preservation
6 −100: interface−preservation , addpages=fa l s e , initmark=true , subset=de l i v e r y s e r v i c e
7 −5: matchfilename
8 0 . 0 33 : btl , repeats=2,name="Accept 10 Orders " , t e s t=
9 + (10 ∗ (−−> Order ) −> (−−> Order ) => f a i l u r e ) &

10 + (10 ∗ (−−> Receive ) −> (−−> Receive ) => f a i l u r e ) &
11 + ((−−> Reject ) => f a i l u r e ) &
12 + [(−−> Handle_Return ) => f a l s e ]
13 0 . 0 33 : btl , repeats=2,name="Only two car s o f capac i ty 1" , t e s t=
14 + [ | Reject | + | Of f e r | + | Accept | < 3 ]� �
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in (l. 5) makes sure that no declaration in the provided model is removed or
changed. This ensures that it is impossible to change the type of the interface
by redefining color sets. If declarations are removed or changed, this is reported
as an error and if new declarations are added, they are added to the report so
it is easy to see what was added without having to compare the student model
with the base model manually.

The interface-preservation (l. 6) plug-in makes sure that students do not change
the given net structure, but only add new structure. In our example from Fig. 1,
students are only allowed to add new net structure, but not to modify the given
environment. Here, we are given four parameters. The addpages parameter is
set to false, which means that students are not allowed to add new pages. The
model used here is flat, and thus introducing hierarchy is considered an error.
The initmark option is set to true, which means that students are not allowed to
change the initial marking of the model. Finally, the subset parameter contains
a list of pages students are allowed to add structure to. Any page not in this
list is not allowed to be changed at all. Here, we specify that the students are
allowed to alter the deliveryservice page from Fig. 1. Any added page is listed in
the report as is any modified page. If the change is illegal, the error is listed (i.e.,
if a node of the interface is removed or altered, this is highlighted), and if the
model contains no errors, the entire environment is dimmed so only the student
solution is highlighted.

2.3 Fraud Prevention

We have two plug-ins for matching a model to a student ID. In Listing 2, we use
both to award points. We see in line 8 that we instantiate the matchfilename plug-
in. This plug-in simply checks if the student ID is a substring of the filename
(and punishes if it is not). This is fine for honest students; unfortunately, we
have in earlier years encountered students copying models from one another. To
catch that, we instead use the more elaborate signature plug-in as matcher (l. 2).

The signature matcher exploits that all elements of a CPN Tools model have
a unique identifier. This is necessary, e.g., to represent that an arc is connected
to a specific place and transition. While these identifiers must be unique in the
file and match for nodes and arcs, the actual contents of the identifiers have no
semantics. We have developed a simple signer application which, given a base
model, modifies the identifiers in a predictable way. By using a cryptographic
random number generator, we can generate a sequence of pseudo-random num-
bers using the student ID and a secret passphrase as seed. The idea is that if
we know the passphrase and the student ID, we can regenerate the sequence,
but using just the sequence (and optionally the student ID), it is not possible to
reverse-engineer the passphrase. Now, using the generated sequence of numbers
as identifiers of model elements in the file containing the environment, we create
a unique signature in the base file for each student.

The signature plug-in can check this signature. It queries for each student
ID and student model whether the two match. It regenerates the sequence of
random numbers for the student ID and the provided passphrase, and check
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that the identifiers are present in the file. If they are, the model is considered a
match and otherwise not. The plug-in takes a parameter threshold which indicates
how many identifiers must be present in the model. As the signing is a one-way
process, students are forced to use the appropriate base model and cannot just
hand in the same model (even after making cosmetic changes).

3 Britney Temporal Logic

An important requirement to our tool is to check dynamic properties, require-
ment 4(b) from the introduction. In the example in Fig. 1, we are for example
interested in the behavior when a customer accepts packets ten times in a row
and how many packets can be outstanding at any time. As CPN models tend to
have huge or even infinite state spaces, we cannot verify such properties in general
and especially not for models generated by students who have less experience
with modeling. Therefore, we check such properties by guiding the simulator;
that is, we apply a testing-based approach rather than exhaustive state-space
exploration, yielding a sound but not necessarily complete checking mechanism.

Guiding the simulator requires to specify which transition the simulator
should execute. Testing whether some property holds in a state of the model
requires a specification of this property. To this end, we introduce the Britney
Temporal Logic (BTL). This logic is similar to linear-time logic (LTL) [12] but in
addition to checking properties also allows guiding the simulator and to specify
constraints that should hold in a state. We also adopt a syntax more similar to
common descriptions of Petri net firing sequences rather than cryptic abbrevia-
tions or symbols to make it easier for practitioners to adopt the logic. The choice
for an LTL-like logic reflects our wish to have existential counterexamples that
can be represented by a simple firing sequence. Other kinds of counterexamples
are difficult to find using simulation only. In the following, we define the syntax
of BTL formulae and then their semantics based on Kripke structures [10] and
structural operational semantics (SOS) [11].

3.1 Syntax

A BTL formula is a 〈guide〉. A guide describes how simulation should be per-
formed; that is, it guides the simulator to a desired state. The atomic propositions
of a guide are described using 〈simple〉, which is an expression without temporal
operators but otherwise allowing full propositional logic on transitions and place
invariants. The temporal operators are various arrows emulating the arrows typ-
ically used to describe transition steps. Thus a->b means that first a must hold
and subsequently b must hold. For example, a and b can represent transitions,
meaning that for the formula to hold, the corresponding transitions are executed
one after the other. We lift this operator to a-->b meaning that a must hold
and at some point afterward b must hold. Finally, a--->[b] means that a must
hold and when the simulation stops b must hold. The brackets indicate that b
is not used for guiding the simulation anymore (it has terminated after all). We
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can omit a, which is an abbreviation for true. For each kind of arrow, we also
add a double arrow version indicating that if a holds, then b just holds at the
appropriate time. We also allow bounded and unbounded repetition using a star
syntax. In contrary to a regular Kleene star, we put it in front as it improves
readability for western readers. We allow conjunctions of guides using &, but
no disjunctions because for an expression like (a->b)|(c->d) it is not obvious
whether to guide the simulation with an a or a c if both are enabled (as we do
not know whether b or d are enabled in the next step).

A guide can also include 〈check〉s, which are not used to guide the simulator
but only to test assertions. They are therefore allowed to contain disjunctions
and negations and general boolean expressions. Finally, a guide can include the
special keyword ‘failure’, which is a synonym for ‘false’ but with a very
restricted syntax. This means that we try to stay clear of transitions that would
violate the formula. The BTL formula in Listing 2 (ll. 8-12) guides a model to
execute a transition Order exactly 10 times (l. 9) and a transition Receive exactly
10 times (l. 10) with any intermediate transitions allowed except for Reject (l. 11).

〈guide〉 :=-- � 〈simple〉� �〈guide〉� �� ‘->’ 〈guide〉 �
� �〈guide〉� �� ‘-->’ 〈guide〉 �
� �〈guide〉� �� ‘--->’ ‘[’ 〈check〉 ‘]’ �
� 〈guide〉 ‘=>’ 〈guide〉 �� 〈guide〉 ‘==>’ 〈guide〉 �� 〈guide〉 ‘===>’ ‘[’ 〈check〉 ‘]’ �� 〈number〉 ‘*’ 〈guide〉 �� ‘*’ 〈simple〉 �� ‘[’ 〈check〉 ‘]’ �� ‘(’ ‘-->’ 〈simple〉 ‘)’ ‘=>’ ‘failure’ �� 〈guide〉 ‘&’ 〈guide〉 �� ‘(’ 〈guide〉 ‘)’ �

� -�

〈check〉 ::=-- � 〈guide〉� 〈guide〉 ‘|’ 〈guide〉 �� ‘!’ 〈guide〉 �� 〈bexp〉 �� ‘(’ 〈check〉 ‘)’ �
� -�

〈simple〉 ::=-- � 〈name〉� ‘true’ �� ‘false’ �� ‘!’ 〈simple〉 �� 〈simple〉 ‘&’ 〈simple〉 �� 〈simple〉 ‘|’ 〈simple〉 �� ‘(’ 〈simple〉 ‘)’ �

� -�

In addition to the syntax for guiding, we also allow boolean expressions.
These are mostly for testing state properties, such as counting the tokens on a
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place or testing values of the global clock. Boolean expression are defined in the
standard way and shall not be repeated here due to space limitations. Line 12 in
Listing 2 tests that Handle Return is never executed (but does not enforce it like
the guides). The formula in line 14 checks that at any point during execution,
the three places Reject, Offer, and Accept never contain 3 or more tokens in total.

3.2 Semantics

We interpret formulae specified in BTL over the state space of a CPN. The state
space of a CPN can be seen as a Kripke structure K = (Q, δ, q0, Σ, λ), where
Q is a set of states, q0 ∈ Q is the initial state, Σ is a set of transition labels,
δ ⊆ Q×Σ ×Q is the transition relation, and function λ : Q −→ 2AP maps each
state q ∈ Q to a set of atomic propositions that hold in q. As usual, AP denotes
the set of all atomic propositions. As BTL is an LTL-like logic, we also introduce
the notion of a trace. A trace is a transition sequence q0, . . . , qk such that q0 is
the initial state and for all 0 ≤ i < k, there exists an a ∈ Σ with (qi, a, qi+1) ∈ δ.
The semantics is similar to a standard finite trace semantics for LTL like the
one defined in [5].

Our syntax includes a lot of conveniences. We already mentioned that avoid-
ing the precondition for the single-arrows is a convenience for a precondition of
true and that ‘failure’ is semantically the same as ‘false’. Furthermore, all
single arrows can be defined from the double arrows by forcing the precondition.
The eventuality defined by a==>b can be defined in terms of the unbounded
repetition and the next operator, and bounded repetition is just a syntactical
convenience:

->G ≡ true->G

-->G ≡ true-->G

--->[B] ≡ true--->[B]

failure ≡ false

G1->G2 ≡ G1&G1=>G2

G1-->G2 ≡ G1&G1==>G2

G--->[B] ≡ G&G===>[B]

G1==>G2 ≡ G1->(∗true->G2)

n ∗ (G) ≡
{
G->(n− 1) ∗ (G) if n ≥ 1

true otherwise.

The semantics of 〈simple〉 can now be defined over the traces of a Kripke
structure K. Attribute name in the grammar thereby refers to a transition label.

– Every trace (q0, . . . , qk) satisfies (q0, . . . , qk) |= true and (q0, . . . , qk) 6|= false.
– (q0, q1, . . . , qk) |= name iff q0

name−−−→ q1.
– (q0, q1, . . . , qk) |=!S iff (q0, q1, . . . , qk) 6|= S.
– (q0, q1, . . . , qk) |= S1&S2 iff (q0, q1, . . . , qk) |= S1 ∧ (q0, q1, . . . , qk) |= S2.
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– (q0, q1, . . . , qk) |= S1|S2 iff (q0, q1, . . . , qk) |= S1 ∨ (q0, q1, . . . , qk) |= S2.

Boolean expressions can be evaluated over the set AP of atomic proposi-
tions and are, therefore, evaluated at a state. The remaining operators are LTL-
like and are therefore defined over traces. We write q0

G−→ qk to denote that
(q0, . . . , qk) |= G. The first is unbounded repetition. We notice that this is satis-
fied regardless of what we do (as zero repetitions can be performed).

q
G−→ q′′, q′′

(‘*’G)−−−−→ q′

q
(‘*’G)−−−−→ q′

,
q

(‘*’G)−−−−→ q′
(1)

Operator => is similar to the next operator in LTL (though here it is condi-
tional): If G1 holds on a trace q0, . . . , qj then G2 must hold starting from qj .

q0
G1−−→ qj =⇒ qj

G2−−→ qk, 0 < j < k

q0
G1=>G2−−−−−→ qk

(2)

The following three rules define operators used for checking a property (ex-
pressed by putting the expression into squared brackets). We use them to check
whether a boolean expression holds, a boolean expression holds in a final state
after guiding the simulator using expression G, and whether a guide holds.

q0 |= B

q0
[B]−−→ qk

,
qk |= B

q0
G===>[B]−−−−−−→ qk

,
∀j ≤ k : ¬(q0

G−→ qj)

q0
G===>[B]−−−−−−→ qk

,
q0

G−→ qk

q0
[G]−−→ qk

(3)

Finally we define a conjunction as usual:

q0
G1−−→ qk ∧ q0 G2−−→ qk

q0
G1&G2−−−−−→ qk

(4)

The final consideration is how we guide. This is done by defining a set of
allowed transitions for each guide. For simulation, only transitions that are in this
set are considered. This in particular means that if the set of allowed transitions
is empty, the simulation is considered finished (and not with an error unless
the formula is not satisfied). We define the set guide over a set T of possible
transitions inductively as:

– guide(q, S) = {name ∈ T | q name−−−→ q′ =⇒ (q, q′) |= S},

– guide(q, n‘*’G)

{
guide(G) if n ≥ 1,

T otherwise,
– guide(∗G) = T ,
– guide(q,G1=>G2) = T ,
– guide(q, [B]) = T ,
– guide(q,G===>[B]) = T ,
– guide(q, [G]) = T ,
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– guide(q,G1 ∧G2) = guide(q,G1) ∩ guide(q,G2),
– guide(q, (-->S) => failure) = T \ guide(q, S).

We more or less just allow concrete steps if they are needed to satisfy a formula
or forbid a step if it would violate a formula, and otherwise allow anything when
we do not care about the outcome.

3.3 Implementation

Our implementation of BTL uses simple formula rewriting. Our implementation
implements the guide set for filtering enabled transitions, pick and execute one
that is in the guide set and in the set of enabled transitions. We then rewrite
the formula according to the previous rules. For efficiency, we have expanded
some of the syntactical equivalences, most importantly the future temporal op-
erator (a==>b). When no more transitions are in the intersection, we check if the
rewritten formula is satisfied for the empty trace.

Fig. 4: Error report.

We evaluate formulae us-
ing a four-value logic similar
to [2]. The idea is that we
have two versions of both true
and false: the value is def-
inite and can never change
and the value is true/false but
may change with further ex-
ecution. For example, if we
have a formula a->b and ex-
ecute c we know for sure that
we can never satisfy the for-
mula (we say it is permanently false), whereas for -->b if we execute a c, the
formula is only temporarily false (we still have proof obligations but may be able
to satisfy them in the future). This allows us to terminate early once a formula
is permanently true or false. This has the added advantage of allowing us to
provide a rewritten formula after executing a sequence of steps, which often con-
tains hints of shortcomings of the model. Figure 4 shows such an error report,
containing an error trace (which we have shortened here), the violated formula
(ll. 10–14 from Listing 2), the formula at the error, and the marking at the error.
If a model has no error, we instead show the final state which can be manually
inspected for irregularities, e.g. improper termination.

In addition to the grader used by teachers to finally grade assignments, we
also have two tools for testing BTL formulas. One is used during construction to
help a teacher get immediate feedback on a formula and a solution by manually
or experimentally testing formulas on a proposed solution. A simplified version
of this tool allows students to check that their models conform to the formulas.
This tool also allows students to manually single-step through their model and
watch the formula progress, aiding in finding and avoiding obvious errors before
handing in.
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4 Practical Experience

In this section, we present first experiences we made with Grade/CPN in sup-
porting the evaluation of a CPN assignment in the course Business Information
Systems at the Eindhoven University of Technology. In this assignment, students
were given the base model in Fig. 1 and they had to model the delivery system
according to a textual specification. Each of the 94 students had to submit two
models. We received in total 130 models from 66 students.

In a first step of the assessment, we applied Grade/CPN by calling it with
a student model, the base model, and a configuration file (see Listing 2). Here,
we were interested whether the interface and declaration of the base model have
been preserved, whether there is a suspicion of fraud, and whether six scenarios
can be replayed on the model (only two are shown in the Listing). The scenarios
were part of the specification of the assignment, and we specified them using
BTL. As BTL refers to the interface, it is crucial that students have not changed
it. The runtime of the tool was about ten minutes for all students; that is, after
this time, a report had been generated for each student. The tool detected two
fraud attempts, though they turned out to be caused by students handing in a
subsequent assignment using the same base model as well.

In a second step, we manually checked each of the generated reports. On
average, this took less than five minutes for each report. Based on the feedback
provided by Grade/CPN, it was easy to check whether a model was actually cor-
rect or not. Basically, the violation of a certain scenario simplified the detection
of the cause for this violation drastically. In most cases, we did not even have
to look at the counterexample provided by our tool. Overall, we had to simulate
only five models manually to determine the cause of an error. The tool automat-
ically detected several subtle errors such as wrong guards and minor changes
to the environment without having the need to open the respective model; it is
highly unlikely we would have caught all of these completely manually. We even
found subtle errors in our own solutions, yielding better results.

Based on experience from previous years, the use of Grade/CPN reduced the
amount of time for grading the assignment by a factor of at least two to three.
This is factoring in that we used Grade/CPN for the first time and had to both
define and understand the defined logic BTL, and also did not place complete
confidence in the reported results which probably increased the manual labor as
well. As correcting models is a rather monotonous work, it is easily possible that
one oversees an error or forgets to check some scenario. Using Grade/CPN, this
is now impossible and, therefore, we think that we can provide students with a
fairer (in the sense of more equal) grading on the one hand and better feedback
on the other hand.

5 Conclusion and Future Work

We have presented Grade/CPN, a tool to semi-automatically grade CPN mod-
els. Using Access/CPN, we can support any model created using CPN Tools.
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The plug-in architecture makes the tool easily extendible: to do so, one must
just implement the interface in Listing 1 (ll. 1–5). The pluggable configuration
with a very simple base format makes configuration simple. Configuration com-
prises selecting which plug-ins to use, which weight to assign them, and which
parameters to instantiate them. Each plug-in only needs to consider its own op-
tions as the overall configuration format is handled by Grade/CPN. Reporting
is handled by making all plug-ins return simple messages optionally annotated
with more detailed reasoning (Listing 1 ll. 13–15). The information is automat-
ically gathered by Grade/CPN and presented both as an overview in the user
interface and as a detailed report. We have presented both simple plug-ins and
a very powerful one implementing guided checking of Britney Temporal Logic
(BTL). BTL allows us to guide the simulation toward desired scenarios and to
check that the environment contracts are adhered to. All plug-ins provide cat-
egorized information explaining the score and highlighting any changes made
to the model, so teachers processing the reports only have to focus on things
that cannot be automatically checked. We have designed and implemented an
infrastructure for detecting fraud. We have reported on our experience with the
Business Information Systems course where Grade/CPN was used to grade 130
assignments from 66 students. Using Grade/CPN instead of a completely man-
ual approach reduced the manual labor by a factor of three. Each student has
to hand in a total of five models during the course, so anticipated time savings
are immense.

The idea of (semi-)automatically grading assignments is not new and closely
related to testing. A known testing framework is JUnit [9], which also runs a
set of tests and reports the result. The advantage of our tool over JUnit is
that JUnit requires programming to even get started, whereas we use simple
configuration files. Also from the testing world is Jenkins (previously known as
Hudson) [7], which runs tests on a central server and provides near-instantaneous
feedback. The main disadvantage of Jenkins in our view is also complexity;
while it does not (necessarily) require programming, setup does require complex
XML configuration and extension either requires huge effort or makes it difficult
to get consolidated reports. There are many tools for automatically grading
programming assignments [6], for example, the tool peach3 [13], which more focus
on managing hand-ins, but can also run automatic tests. In contrast, we focus
on the tests and CPN models directly and assume that models already exist.
Our testing approach is similar to runtime LTL [2,5], but our logic also supports
guiding. This is similar to hot/cold events in Live-Sequence Charts [4], but our
sections are more urgent in that a guide is not only preferred, it is an immediate
failure if it is not possible to follow it. This makes BTL computationally easier
to check.

Future work includes loosening what is allowed in guides by having the tool
try resolving, e.g., disjunctions itself (by keeping track of which branches have
been explored and only reporting errors if no branch is successful). We also
consider a designer for automatically building BTL formulae and full configura-
tion files by manually guiding the simulation in a manner similar to our current

M. Westergaard, D. Fahland, C. Stahl: Grade/CPN 45



tool for testing BTL formulas. We aim to integrate Grade/CPN with Jenkins
or peach3 so we can combine our simplicity of configuration with the more ad-
vanced features of those systems. While BTL is designed for grading assignments
using testing, it has also proved useful for finding errors in our model. It would
be interesting to investigate this further, including making testing complete by
exploiting the guiding perspective of our logic.

Acknowledgements. The authors thank Boudewijn van Dongen for fruitful dis-
cussions about the requirements for an automatic grader.
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