
Toward a Conceptual Comparison Framework
between CBSE and SOSE

Anthony Hock-koon and Mourad Oussalah

University of Nantes, LINA
2 rue de la Houssiniere, 44322 NANTES, France

{anthony.hock-koon,mourad.oussalah}@univ-nantes.fr

Abstract. In this paper, we discuss the theoretical differences between
component-based and service-oriented software engineering (CBSE and
SOSE). We present a conceptual comparison framework which confronts
their quantitative and qualitative aspects and provides a better under-
standing of their use. This comparison takes the object orientation (OO)
into account to illustrate changing concerns of software engineering be-
tween object, component and service.

Key words: SOSE, CBSE, OO, Comparison Framework, Quality Mea-
surement

1 Introduction

Component-based software engineering (CBSE) [1] proposes to reuse existing
software entities, called components, to build new applications. Service-oriented
software engineering (SOSE) [2, 3] proposes to reuse provided capabilities of
existing software entities called services. Both of them have the reusability as
theoretical root and rely on the concept of software architecture [4] to describe
and manage collaborative software entities. They use numerous similar concepts,
approaches, and technologies. Meanwhile, they have continued with their devel-
opment tracks in parallel and focused on their specific interests. Consequently,
there is a mixture of similarities and specialized concepts.

All comparison works between CBSE and SOSE have a bottom-up approach
in which they focus on specific technologies to identify the resulted software
qualities [5–7] (e.g. comparison of performance between technologies [8]). How-
ever, they do not allow a direct comparison at a conceptual level which can offer
a global understanding of the differences between the paradigms. To our knowl-
edge, only one other work [9] has a top-down approach which focuses on this
conceptual comparison. However, it only tackles some confusions of vocabular-
ies and does not analyze the consequences of these differences on the quality of
products and production processes.

In this paper, we propose a conceptual comparison framework which can
deduce the resulted software qualities. It is divided into quantitative and quali-
tative aspects. It takes object orientation (OO) into account to provide a global
point of view about the evolution of concerns between object, component and
service.



2 Anthony Hock-koon, Mourad Oussalah

2 Quantitative aspects

The top-level categories of our quantitative part are the product and the process.
It does not intend to be exhaustive, but it aims at listing the core concepts of
each paradigm to underline their theoretical stance.

2.1 Product and Process

Fig. 1. Abstraction levels and Description levels

A product is a software entity or a conceptual entity which is the result of
an action or a process. A process is an action or a succession of actions which is
used to create or modify a product and obtain a specific one.

The product category is divided into two sub categories (Figure 1):

– Basic architectural element - basic building blocks of each paradigm;
– Composite architectural element - complex products built from existing

architectural elements. Their structure clearly identifies the reused architec-
tural elements and their relationships.

Each sub categories is also divided into two groups according to two abstrac-
tion levels: the design-time and the runtime (Figure 1).

The process category focuses on the reusability principle shared by OO,
CBSE and SOSE, i.e how to reuse existing software entities, the constituent,
to build new ones, the composite. A constituent is a basic or a composite archi-
tectural element. These notions of constituent and composite define two descrip-
tion levels (Figure 1). The process category is divided into three sub categories
according to abstraction and description levels.

– Inside description level - gathers processes which target products from
the same description level (Figure 1 white arrows) at the two abstraction
levels;



Toward a Conceptual Comparison Framework between CBSE and SOSE 3

– Between description levels - gathers processes which target a product
from a different description level than the produced one (Figure 1 hatched
arrows). This category is divided into design-time and runtime;

– Between abstraction levels - gathers processes which target a product
from the design-time and then produce a product of the runtime (Figure 1
black arrows).

2.2 Comparison between OO, CBSE and SOSE

We want to emphasize two main differences illustrated by the Table 1. First,
SOSE relies on the dynamic service provisioning (discovery and selection) be-
tween abstraction levels to produce a concrete service from an abstract service.
On the contrary, OO and CBSE rely on the instantiation process between class
and object, and component type and component. Then, SOSE relies on addi-
tional runtime processes to support the self-adaptation of composite elements.
Even if some similar processes are proposed by CBSE, they are not required to
specify a component model.

3 Qualitative aspects

Existing works about software quality [10, 11] introduce a huge number of quality
criteria based on point of views (developer, user and so forth) or application
domains. Our approach is different and proposes a set of core features which
are used to express every quality criteria. Users choose a quality criterion they
desire to evaluate. Then, they define this quality by combining the measurement
of each core feature. This combination is what we call a qualitative perspective.

3.1 Core features

We identify six main features:

Loose coupling - measures the dependencies between entities.

Expressiveness - based on the number of concepts and processes provided
by the paradigm to specify and manipulate its products.

Abstraction of communication - ability of a paradigm to abstract the
communication layer which drives the execution of the application.

Explicit architecture - ability of a paradigm to provide a clear architectural
view of the application which follows its principles.

Evolutionary ability - ability of a paradigm to provide a powerful set of
concepts and processes to evolve its products.

Ownership - allocation of responsibilities (development, QoS, maintenance,
deployment, execution, management, use) among the provider of the reused
products and its clients. It expresses the level of liberty granted by the provider
to the client.



4 Anthony Hock-koon, Mourad Oussalah

Table 1. Product-Process: Comparing Object, Component and Service

Product OBJECT COMPONENT SERVICE

Basic Design-time Class Component type, Abstract service
architectural Connector type
elements Runtime Object Component, Concrete Service,

Connector Service description
Composite Design-time Composite Configuration Composition schema
architectural class type, type,
elements Composite Composite service

component type type
Runtime Composite Configuration, Composition schema

object Composite instance,
component Composite service

instance,
Composite service
description

Process OBJECT COMPONENT SERVICE

Inside Design-time Association Horizontal Choreograph,
description Inheritance composition, Inheritance of
level Interface inheritance composition schema

Versioning, type
Refinement

Runtime Method call Functionality call, Choreography,
Service provisioning,
Service invocation,
Service publication,
Self-adaptation of
composite
architectural element

Between Design-time Composition Vertical Orchestration,
description composition
levels

Runtime Method call Functionality call, Orchestration,
Delegation Service invocation,

Service provisioning,
Composition of
service descriptions

Between Instantiation Instantiation Service provisioning,
abstraction Instantiation of
levels composition schema



Toward a Conceptual Comparison Framework between CBSE and SOSE 5

3.2 Comparing Object, Component and Service

Figure 2 shows the classification of OO, CBSE and SOSE according to our six
features and three levels of importance (low, medium and high). It illustrates an
instance of our qualitative comparison. These levels are not a precise measure-
ment but they are used to define a hierarchy between paradigms based on our
analyze.

Fig. 2. Comparison of the features

Loose coupling - typically, an Object-based system is built from a set of
classes which are tightly coupled while a Component-based or a Service-based
system intends to be more loosely coupled. In fact, related topics such as the self-
adaptation or the management of heterogeneities are deeply studied by CBSE
and SOSE. We set that existing researches reach the same level of maturity.
However, our previous work [12] on the definition of the loose coupling notion
shows that numerous challenges are still unsolved.

Expressiveness - OO manipulates a huge number of concepts such as granu-
larity, reflexion, template, inheritance, abstraction level, description level and so
forth. CBSE’s expressiveness mainly relies on OO’s researches. However, some
advanced concepts such as reflexion or inheritance and polymorphism do not
reach the same level of maturity. SOSE has the weaker expressiveness of the
three. In fact, it shares the lack of CBSE and adds some others (e.g. the abstrac-
tion levels and the distinction between type and instance are still unclear).

Abstraction of communication - SOSE provides the best abstraction of
communication. In fact, the global collaboration pattern between constituent ser-
vices is located inside a single entity: the composition schema which expresses
the overall behavior in terms of workflows and dataflows. In CBSE, the com-
munications are located inside the connectors which split the global behavior.



6 Anthony Hock-koon, Mourad Oussalah

The workflow is not explicit. Therefore, the overall collaboration is harder to
understand and manipulate. In OO, the fine granularity of the class and the
association link accentuates this drawback of CBSE.

Explicit architecture - typically, an Object-based system lacks an explicit
architecture which is easily understandable. CBSE was first introduced to en-
hance this aspect and develop the concept of software architecture. SOSE directly
uses this experience and its difference with CBSE is not significant.

Evolutionary ability - dependent on the architectural graph and the evo-
lution processes which target its nodes, edges, or the overall graph. Typically,
OO does not provide an explicit architecture and thus, its community only fo-
cuses on the evolution of the nodes and edges. Both CBSE and SOSE handle an
explicit architecture. Their communities also study the evolution of the overall
graph. However, some works of the CBSE community such as [13, 14] go further
and study the evolution process at the meta and meta-meta-architecture levels.

Ownership - SOSE has taken the concept of ownership to the extreme and
thus, the provider of services is responsible for the development, the quality
of service, the maintenance, the deployment, the execution, the management.
On the contrary, CBSE splits the responsibilities at the deployment level. In
fact, the client is responsible for the instantiation of the component inside his
application and its execution and management. Typically, the object orientation
defines the class as a glass box entity and provides some powerful processes to
easily manipulate it.

3.3 Qualitative perspectives

Fig. 3. Quality definition



Toward a Conceptual Comparison Framework between CBSE and SOSE 7

Our six features represent the main elements of a software development
paradigm which impact on the software quality. However, the importance of
their impact can vary according to the chosen quality and the user’s point of
view about this quality. In the figure 3, we act as users and define three quality
criteria: reusability, composability and dynamicity. We express our understand-
ing about these qualities and divide the features into three groups, from the
γ group which has the weaker impact to the α group which has the stronger
impact.

Then, we define a set of formula (e.g. for the reusability(1)) which combine
our vision of these qualities dropped to our six features and the previous clas-
sification of the three paradigms following these features (Figure 2). Each level
(low, medium and high, Figure 3) is associated with a weight (respectively 1, 2
and 3).

Reusability =Object : α(4) + β(3) + γ(1)

Component : α(5) + β(6) + γ(2)

Service : α(3) + β(7) + γ(3)

(1)

From our qualitative perspective, CBSE has a better reusability than SOSE
or OO. The same work can be done for other quality criteria (flexibility, robust-
ness and so forth). The definition of the impacts of each feature on each quality
depends on the user’s expertise. In fact, each quality represents a particular per-
spective on our six features and this perspective has to be defined by the user.
The following formula Quality = f(α, β, γ, δ, ε, ζ) emphasizes the user role which
has to provide:

– the different coefficients (α to ζ) which define the respective importance of
each feature according to the chosen quality perspective;

– the function f which defines the way to combine these features.

4 Conclusion

This paper presents a conceptual comparison between CBSE and SOSE divided
into quantitative aspects and qualitative aspects. The quantitative aspects clas-
sify products and processes which are used to develop some new applications.
The qualitative aspects compare the three paradigms following six features which
are reused to specified any software quality such as reusability, composability and
dynamicity. We show how a user can exploit these features and combine them
to evaluate some quality criteria according to their own expertise.

For now, measures of each feature presented in Figure 3 only confront the
three paradigms at a conceptual level to provide a hierarchy between them. This
hierarchy is based on our own expertise. This approach is sufficient for a direct
comparison between theories at a paradigm level, however it is not precise enough



8 Anthony Hock-koon, Mourad Oussalah

to descend to implementation and technological level. In [12], we propose a new
definition of the loose coupling which comes along with an objective evaluation
formula. Therefore, the same work needs to be done for the five other features.
A better measurement of each feature will ensure a better evaluation of the
qualitative perspectives defined by users.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Professional (2002) isbn 0201745720.

2. Stojanovic, Z., Dahanayake, A.: Service-oriented Software System Engineer-
ing Challenges And Practices. IGI Publishing, Hershey, PA, USA (2005) isbn
1591404274.

3. OASIS: Reference architecture for service oriented architecture 1.0. (April 2008)
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf.

4. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Software Eng. 26(1) (2000)
70–93

5. Masek, K., Hnetynka, P., Bures, T.: Bridging the component-based and service-
oriented worlds. In: Euromicro Conference on Software Engineering and Advanced
Applications, SEAA. (2009) 47–54

6. Stojanovic, Z.: A Method for Component-based and Service-Oriented Software
Systems Engineering. PhD thesis (2005) Delft University of Technology, isbn 90-
9019100-3.

7. Vassilopoulos, D., Pilioura, T., Tsalgatidou, A.: Distributed technologies corba,
enterprise javabeans, web services &#8212; a comparative presentation. In: Pro-
ceedings of the 14th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. (2006) 280–284

8. Kim, S., Han, S.Y.: Performance comparison of dcom, corba and web service. In:
PDPTA. (2006) 106–112

9. Breivold, H.P., Larsson, M.: Component-based and service-oriented software en-
gineering: Key concepts and principles. In: Euromicro Conference on Software
Engineering and Advanced Applications, SEAA. (2007) 13–20

10. Kithchenham, B., Lawrence, S.: Software quality: The elusive target. IEEE Soft-
ware 13 (1996) 12–21

11. Bianco, P., Kotermanski, R., Merson, P.: Evaluating a service-oriented architec-
ture. Technical Report Software Engineering Institute Carnegie Mellon (2007)
http://www.sei.cmu.edu/reports/07tr015.pdf.

12. Hock-koon, A., Oussalah, M.: Defining metrics for loose coupling evaluation in
service composition. In: International Conference on Services Computing, IEEE
SCC. (2010) 362–369

13. Goaer, O.L., Tamzalit, D., Oussalah, M., Seriai, A.: Evolution shelf: Reusing evo-
lution expertise within component-based software architectures. In: International
Computer Software and Applications Conference, COMPSAC. (2008) 311–318

14. Garlan, D., Barnes, J.M., Schmerl, B.R., Celiku, O.: Evolution styles: Foundations
and tool support for software architecture evolution. In: Working IEEE/IFIP
Conference on Software Architecture, WICSA/ECSA. (2009) 131–140


