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Abstract. Workflow systems can produce very large amounts of provenance 

information. In this paper we introduce provenance-based inference rules as a 

means to reduce the amount of provenance information that has to be stored, 

and to ease quality control (e.g., corrections). We motivate this kind of (prove-

nance) inference and identify a number of basic inference rules over a concep-

tual model appropriate for representing provenance. The proposed inference 

rules concern the interplay between (i) actors and carried out activities, (ii) ac-

tivities and devices that were used for such activities, and, (iii) the presence of 

information objects and physical things at events. However, since a knowledge 

base is not static but it changes over time for various reasons, we also study 

how we can satisfy change requests while supporting and respecting the afore-

mentioned inference rules. Towards this end, we elaborate on the specification 

of the required change operations. 

1 Introduction 

Workflow systems can produce huge amounts of provenance information. For exam-

ple, in empirical 3D model generation, where tens of thousands of intermediate files 

and processes of hundreds of individual manual actions are no rarity, it is prohibitive 

to register each item’s complete history because of the immense repetition of facts: on 

the one side, the storage space needed would be blown up by several orders of magni-

tude, and, on the other, any correction of erroneous input would require tracing the 

huge proliferation graph of this input. In this paper we introduce provenance-based 

inference rules as a means to reduce the amount of provenance information that has to 

be stored, and to ease quality control (e.g., corrections). Note that the above notion of 

redundancy is yet formally not well understood and may even not be strictly logical. 

For instance, it is a question of convention whether we regard that persons carrying 

out an activity carry out all of its subactivities.  

In this paper we consider CRMdig [24] as the conceptual model for representing 

provenance, and over this model we identify custom inference rules. The identified 

inference rules concern the interplay between (i) actors and carried out activities, (ii) 

activities and devices that were used in such activities, and, (iii) the presence of in-

formation objects and physical things at events. We focus on these particular rules 



because the classes involved belong to almost every provenance model and they occur 

frequently in practice. Of course, one could extend this set according to the details 

and conventions of the application at hand. In general, we could say that the major 

sources of inference are: transitivity of part-hood relations and propagation of proper-

ties from wholes to parts, be it for objects and their parts or for processes and their 

subprocesses. 

Supporting these rules raises complications when a knowledge base (either stored 

in a system or composed by various metadata files) changes over time, as we need to 

satisfy change requests while still supporting the aforementioned inference rules. To 

tackle the update requirement we elaborate on the specification of change operations 

which handle changes while respecting the aforementioned inference rules. Specifi-

cally, we propose three operations, namely Add, Disassociate, and Contract, and dis-

cuss their semantics and application in our setting. 

The rest of this paper is organized as follows: Section 2 discusses in brief our ap-

plication context and assumptions; Section 3 introduces the provenance inference 

rules; subsequently, Section 4 elaborates on the knowledge evolution requirements 

and their interplay with the inference rules; Section 5 discusses related work, and 

finally Section 6 concludes the paper and identifies issues that are worth further re-

search.  

2 Background, Context and Working Assumptions  

2.1 Application Context 

There are several models for representing provenance. In this work we consider 

CRMdig [24] a structurally object-oriented model which is an extension of the 

CIDOC CRM ontology (ISO 21127:2006) [7]. In brief, CIDOC CRM is a core ontol-

ogy describing the underlying semantics of data schemata and structures from all 

museum disciplines and archives. It is the result of a long-term interdisciplinary work 

and agreement and it has been derived by integrating (in a bottom-up manner) hun-

dreds of metadata schemas. CRMdig was initially defined during the EU Project 

CASPAR
1
 (FP6-2005-IST-033572) and its evolution continues in the context of the 

EU IST IP 3D-COFORM
2
 project. In numbers, CIDOC CRM contains 86 classes and 

137 properties, while its extension CRMdig currently contains 31 classes and 70 

properties. Fig. 1 shows one small part of the model, specifically the part related to 

the inference rules which are introduced in Section 3.  

    The shown properties and classes are described in detail in CIDOC CRM’s official 

definition.
3
 In brief, the properties “is composed of” and “forms part of” represent the 

part-hood relationships of man-made objects (i.e., instances of the “Man-made Ob-

ject” class) and activities (i.e., instances of the “Activity” class) respectively. Fur-

                                                           
1 http://www.casparpreserves.eu/ 
2 http://www.3d-coform.eu/ 
3 http://www.cidoc-crm.org/docs/cidoc_crm_version_5.0.4.pdf 

http://www.cidoc-crm.org/docs/cidoc_crm_version_5.0.4.pdf
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thermore, the property “carried out by” describes the active participation of actors 

(i.e., instances of the “Actor” class) in activities and also implies causal or legal re-

sponsibility. Moreover, “was used for” describes the use of objects in a way essential 

to the performance of an activity. Finally, immaterial items (i.e., instances of the “In-

formation Object” class) are related to physical carriers (i.e., instances of the “Physi-

cal Man-Made Thing” class) via the “carries” property and can be present at events 

(i.e., instances of the “Event” class) via the “was present at” property. Note that the 

properties “is composed of” and “forms part of” are transitive, reflexive and anti-

symmetric. 

  

Fig. 1.    Part of CRM Dig 

2.2 Working Assumptions 

We shall use the term KB to refer to a Knowledge Base in the logical sense, either 

stored in a system or composed by the contents of several metadata files, and K to 

refer to the set of RDF/S triples of a KB. Furthermore, hereafter we assume that K 

denotes the set of triples produced by the adopted metadata schemas and ontologies 

and the ingested facts (yielded by manual or automated processes). 

We shall use C(K) to refer to the closure of K. Note that the closure can be defined 

with respect to the standard inference rules for RDF/S and/or other custom rules (e.g., 

like those in Section 3) and is unique. We shall also use Red(K) to denote the reduc-

tion of K, which is the minimal set of facts that have the same closure as K, and it is 

unique if and only if the relations are acyclic [25]. 

A repository policy could be to keep stored either K, or Red(K), or C(K). Storing 

Red(K) would give optimum (i.e., minimal) space usage, but would imply an im-

portant overhead during changes, because the reduction should be recalculated after 

every change. Though, C(K) is optimal with respect to efficiency, because all the 

information is stored and can be easily found, but has increased space requirements. 

For this reason, we chose to store K as a reasonable compromise in this time-space 

tradeoff and compute C(K) dynamically e.g., at query time. Note that, in practice, K 

usually contains little or no redundancy, leading to a near-optimal space usage while 

avoiding the overhead of searching for, and eliminating redundancy. 



3 Provenance Inference Rules  

The proposed inference rules concern mainly the three binary relations, namely “car-

riedOutBy(Actor, Activity)”, “wasUsedFor(Device, Activity)”, and “wasPres-

entAt(InformationObject, Event)”. The corresponding rules are intuitively defined as: 

 R1: If an actor has carried out one activity, then he has carried out all of its sub-

activities. 

 R2: If an object (device) was used for an activity, then all parts of the object 

were used for that activity too. 

 R3: If a physical thing that carries an information object was present at an event, 

then that information object was present at that event too. 

More formally, the above three rules can be encoded into first-order logic (FOL) us-

ing the above relations (see also Fig. 1) as follows: 

 R1: x,y,z ( formsPartOf (y,x)  carriedOutBy (x,z) carriedOutBy (y,z) ) 

 R2: x,y,z ( isComposedOf (x,y)  wasUsedFor (x,z) wasUsedFor (y,z) ) 

 R3: x,y,z ( carries (x,y)  wasPresentAt (x,z) wasPresentAt(y,z) ) 

Subsequently we provide examples for each rule. In the included figures we do not 

show the transitivity-induced properties for “is composed of” and “forms part of”: 

Rule 1: scientists often use 3D laser scanning to construct digital 3D models by tak-

ing many photographs of the desired model. One example from our data is the activity 

Laser scanning acquisition of Canoe-shaped vase from Archaeological Museum of 

Nicosia which was carried out by the STARC-The Cyprus Institute. The activity can 

be analyzed to Sequence of shots and to the subactivities: Capture 1_7 and Capture 

1_8 storing different recorded metadata about each photo. However, the information 

that the initial actor was the Starc Institute is desired to be preserved following the 

path. Fig. 2 shows the edges (represented by dotted lines) inferred by the rule. 

 

Fig. 2. Example of rule R1 
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Rule 2: in 3D modeling, devices with many cameras, called multiviewdome devices, 

are usually employed. These devices have as parts other cameras or lighting devices. 

Consider a fact stating that a multiviewdome device was used for that activity. With 

R2 we can infer that the constituent devices were also used for that activity. Indeed, a 

multiviewdome device cannot be used without using its parts. Fig. 3 illustrates an 

indicative modeling of such a setting. 

Rule 3: consider the exhibit shown in Fig. 4 (left) which is part of a column of 

Ramesses II located in the Egyptian museum garden in Cairo. The 3D reconstruction 

process of said exhibit could be modeled as an event and the exhibit itself as a physi-

cal man-made thing. Moreover, the carved hieroglyphics could be modeled as an 

information object. Rule R3 infers the presence of information in hieroglyphics at the 

event of a 3D reconstruction because the part of Ramesses II was also present at that 

event (see Fig. 4 (right)). The inference is reasonable because the information was 

carved in hieroglyphics when the column was built, and this implies not only its coex-

istence with the column but also its presence at the same events. 

 

Fig. 3. Example of rule R2 

 

 
 

Fig. 4. Part of a column of Ramesses II (left) example of Rule R3 (right) 

4 Provenance Inference Rules and Knowledge Evolution 

A KB changes over time, i.e., we may have requests for adding or deleting facts. Sat-

isfying update requests while still supporting the inference rules is a challenging is-

sue, because several problems arise when updating knowledge taking into account 

rules and implicit facts. These issues are described below with a running example. For 



each change operation, we describe the KB’s states (through figures) and explain the 

challenges incurred in the update process due to the existence of the inference rules.  

Consider a KB that contains the example with the activities of Laser scanning ac-

quisition that were carried out by the Starc Institute. The initial state of the KB is 

demonstrated in Fig. 5 (left). Over this example we shall apply three change opera-

tions: addition, disassociation, and contraction.  

Adding an actor carrying out an activity (addition of a “carried out by” relation-

ship): suppose a request that Michael (a photographer) is also the actor of Sequence of 

Shots. The update is demonstrated in the following figures. We observe that Michael 

has been associated with the activity Sequence of shots, but also, due to rule R1, he 

has been (implicitly) associated with the subactivities Capture 1_7 and Capture 1_8. 

Note that the propagation of actors from subactivities to superactivities is not assumed 

and defined as a rule. An actor’s responsibility for a subactivity does not imply his 

responsibility for its superactivity and as a result for the rest subactivities of the latter.  

 

Fig. 5. Initial state of the KB (left) and state of the KB after the addition (right) 

Deleting an actor from carrying out an activity (disassociation or contraction of a 

“carried out by” relationship): the problem becomes more complicated when dealing 

with the deletion of facts. Consider an update request saying that the Starc Institute is 

not responsible for the activity Capture 1_7. The rising question is whether the Starc 

Institute is not responsible only for Capture 1_7, or also for other activities, i.e., how 

refuting the fact that it is responsible for Capture 1_7 affects the information that it is 

responsible for Laser scanning acquisition, Sequence of shots, or Capture 1_8.  

Initially, we note that the Starc Institute should also be disassociated from the re-

sponsibility of Sequence of shots and Laser scanning acquisition; failing to do so 

would cause the subsequent undesirable re-emergence of the refuted knowledge (i.e., 

that the Starc Institute is not responsible for Capture 1_7) due to inference.  

A more complicated issue is whether the Starc Institute should remain responsible 

for Capture 1_8: note that this information was originally included just because of the 

fact that the Starc Institute was considered responsible for Laser scanning acquisition, 

ergo (due to the inference rules), also responsible for Capture 1_8. Once the former is 
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dropped, as discussed above, it is questionable whether the latter (inferred) infor-

mation should still remain in the KB, since its “reason for existence” is no longer 

there. On the other hand, the fact that the Starc Institute is not responsible for Capture 

1_7 does not in any way exclude the possibility that it is still responsible for Capture 

1_8, therefore deleting this information seems like an unnecessary loss of knowledge. 

To address this issue, one should go deeper and study the related philosophical is-

sues regarding the epistemological status of the inferred knowledge, and whether such 

knowledge has the same or different value compared to primary, explicitly provided 

knowledge (i.e., ingested knowledge). There are two viewpoints in this respect: foun-

dational theories and coherence theories [10].  

Under the foundational viewpoint, each piece of our knowledge serves as a justifi-

cation for other beliefs. This viewpoint implies that the ingested facts are more im-

portant than other knowledge and that implicit knowledge has no value of its own, but 

is depending on the support of the explicit knowledge that caused its inference. 

On the other hand, under the coherence theory, no justification is required for our 

knowledge; each piece of knowledge is justified by how well it fits with the rest of the 

knowledge, in forming a coherent set of facts that contains no contradictions. This 

means that all knowledge (implicit or explicit) has the same “value” and that every 

piece of knowledge (including implicit ones) is self-justified and needs no support 

from explicit knowledge. 

This distinction is vital for effective management of data deletions. When a piece 

of knowledge is deleted, all implicit data that is no longer supported must be deleted 

as well under the foundational viewpoint. In our example, this should cause the dele-

tion of the fact that the Starc Institute is responsible for Capture 1_8. On the other 

hand, the coherence viewpoint will only delete implicit data if it contradicts with ex-

isting knowledge, because the notion of support is not relevant for the coherence 

model. Therefore, in our case, the fact that the Starc Institute is responsible for Cap-

ture 1_8 should persist, because it does not in any way contradict the rest of our 

knowledge, nor does it cause the re-emergence of the recently deleted information. 

Instead of positioning ourselves in favour of one or the other approach, we decided 

to support both. This is done by defining two different “deletion” operations, namely, 

disassociation and contraction, that allow us to support both viewpoints: 

Disassociation: disassociation handles deletion using the foundational viewpoint. In 

our example, the non-responsibility of the Starc Institute about Capture 1_7 implies 

some uncertainty about its responsibility for other related activities (i.e., was he re-

sponsible for Capture 1_8?), since this knowledge is no longer supported by any ex-

plicit data. Based on the foundational viewpoint, all such associations must also be 

deleted, i.e., we should delete the following: 

 (Capture 1_7, carried out by, Starc Institute)  // as requested 

 (Capture 1_8, carried out by, Starc Institute) 

 (Sequence of shots, carried out by, Starc Institute) 

 (Laser scanning acquisition, carried out by, Starc Institute) 

In practice, implicit facts are not stored so need not be deleted; thus, in our case, we 

only need to delete: (Laser scanning acquisition, carried out by, Starc Institute). 



Contraction: contraction handles deletion using the coherence viewpoint. In particu-

lar, this operation assumes that there is a high degree of certainty that the non-

responsibility of the Starc Institute is only for Capture 1_7. Other activities which are 

still associated with Starc Institute, such as Capture 1_8, should persist despite the 

lack of explicit knowledge to support them. In this case we delete only the following: 

 (Capture 1_7, carried out by, Starc Institute) // as requested 

 (Sequence of shots, carried out by, Starc Institute) 

 (Laser scanning acquisition, carried out by, Starc Institute) 

Again, implicit facts need not be deleted, so the only actual deletion required is the 

deletion of (Laser scanning acquisition, carried out by, Starc Institute). For contrac-

tion, one should also be careful with the implicit knowledge that is supposed to per-

sist. In our example, the fact that the Starc Institute  is responsible for Capture 1_8, is 

not explicitly stored and will be lost along with the deletion of (Laser scanning acqui-

sition, carried out by, Starc Institute) unless we explicitly add it back. 

We will be referring to the above cases as actor disassociation and actor contrac-

tion respectively and are shown in Fig. 6. Notice that in contrast to disassociation, the 

contraction operation preserves the association: (Capture 1_8, carried out by, Starc 

Institute).  

 

Fig. 6. Actor disassociation (left) and actor contraction (right) 

The operation of contraction is very useful in cases of activity delegation, i.e., 

when specific subactivities are assigned to different actors than their superactivity 

(e.g., Capture 1_7 has a different actor than the Starc Institute). This assignment can 

be completed by a combination of a contraction and an addition operation. In this 

case, Addition and Contraction can be composed to define a “Replace” operation. In 

general, one could compose operations to define more complex, composite ones in 

various ways, but details on this issue are omitted due to lack of space.  
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4.1 Algorithmic Perspective 

The analysis discussed previously can be applied for deriving the exact plan for each 

change operation involving the rules R1, R2 and R3. Indicatively, we provide below 

update plans (algorithms) for two operations, namely: 

 DisassociateActorFromActivity (p:Actor, a:Activity) 

 ContractActorFromActivity (p:Actor, a:Activity) 

 

Algorithm 1: DisassociateActorFromActivity (p:Actor, a:Activity) 
1. if an explicit “carried out by” link exists between a and p then 
2.    Remove the requested “carried out by” link between a and p  
3. end if 
4. for each superactivity:superAct of a related to p via the “carried out 

by” link do 
5.    Remove possible explicit “carried out by” link between superAct and p  
6. end for 

 

Algorithm 2: ContractActorFromActivity (p:Actor, a:Activity) 
1. if an explicit “carried out by” link exists between a or a superactivity 

of a and p then 
2.    for each maximal subactivity:subAct of a do 
3.       Execute AssociateActorToActivity (p, subAct) 
4.    end for 
5. end if 
6. if an explicit “carried out by” link exists between a and p then 
7.    Remove the requested “carried out by” link between a and p  
8. end if 
9. for each maximal superactivity:supAct of a related to p via the “carried 

out by” link do  
10.    for each subactivity:subAct of supAct do 
11.       if subAct is not superactivity or subactivity of a then 
12.          Add subAct to collection: Col 
13.       end if 
14.    end for 
15. end for 
16. Execute DisassociateActorFromActivity (p, a) 
17. for each maximal activity:act in Col do 
18.    Execute AssociateActorToActivity (p, act) 
19. end for 

 

    Algorithm 1 takes the actor p and activity a in its input, and its purpose is to disas-

sociate p from the responsibility for a. According to the semantics given above, this 

requires the deletion of all associations of p with all superactivities of a. Note that 

only explicit links need to be removed, because implicit ones do not actually exist in 

K. Note also that in order to find the superactivities of a, we need to compute (part of) 

the transitive closure of the “forms part of” property. 

Algorithm 2 contracts p from the responsibility for a. This requires, apart from the 

deletion of all associations of p with all superactivities of a (as in disassociation), the 

preservation of certain implicit associations that would otherwise be lost In order to 

avoid adding redundant associations, we add new explicit associations only to the 

maximal activities in Col or the respective subactivities of a. The complexity of Algo-

rithms 1, 2 is O(NlogN) and O(N
2
) respectively, where N is the number of triples in 

K. These complexities assume that the triples in K are originally sorted (in a prepro-

cessing phase); such a sorting costs O(NlogN).  

Our operations guarantee that the resulting KB will not contain the deleted triple, 

either as an explicit or as an implicit fact, given the existing knowledge and the cus-

tom inference rules that we consider. In addition, our operations preserve as much as 



possible of the knowledge in the updated KB under the considered semantics (founda-

tional/coherence for disassociation/contraction respectively). The two observations 

have been coined as general principles in the belief revision literature [6]. 

5 Related Work 

5.1 Provenance Storage and Inference Rules 

The problem of efficient storage of provenance information has been extensively 

recognized and studied in the literature. Different methods have been presented for 

reducing space storage requirements of provenance information. For example, in da-

tabase operations, provenance minimization via polynomials has been studied in [1]. 

Another example is [12] in which workflow directed acyclic graphs (DAGs) are trans-

formed into interval encoded tree structures. Furthermore, similar to our notion of 

property propagation, [5] proposes provenance inheritance methods assuming tree-

form models (but not DAGs). However, these are applied on redundant information 

already stored. Additional techniques have been proposed in [2], where the authors 

present a more general model than CIDOC CRM and use inference rules for collaps-

ing provenance traces. Although, that model captures mainly only the dependencies 

among data and thus suffers from overgeneralization and possible loss of information. 

Our approach is based on the implicit knowledge that is the logical consequence of 

the explicit one; note that this is different than tacit knowledge [19], [20] which may 

be the result of common sense or knowledge. In addition, the reasoning forms that we 

consider aim at the dynamic completion (deduction) of facts from the original input at 

query time, rather than at ingestion time and propagate features or properties among 

entities. This is complementary to reasoning on “data provenance”, which traces 

causal dependencies of individual data elements between input and output. In the 

latter category we could mention [17], [18]. Lastly, inference rules with annotations 

are exploited in [4] for scalable reasoning on web data. Although these annotations 

are indicators of data provenance, they do not directly model it. 

5.2 Knowledge Evolution in RDF/S 

The research field of ontology evolution [9] deals with updating knowledge in ontol-

ogies; a detailed survey of the field appears in [8]. However, none of these works 

considers custom inference rules. Some works (e.g., [22]) address the problem within 

ontology editors. This is insufficient, because, first, it introduces a huge manual bur-

den to the ontology engineer (who has to manually take care of the complications 

arising due to inference rules), and, second, it does not consider the standard inference 

semantics of RDF/S and other ontological languages. Works like [3], [9], [21], [23], 

[13] have proposed and implemented change semantics which consider the standard 

inference rules of RDF/S and determine, for each type of change request, the side-

effects necessary to properly execute said change taking into account the inference 

semantics. However, they do not consider custom inference rules or coherence seman-
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tics. In certain cases, some flexibility is provided to independently customize or ex-

plicitly define the semantics of (some of) the operations [9], [15]. 

Other works deal with all change operations in a generic manner. For example, 

[16] proposes a declarative approach which can handle all possible changes on the 

data part of an RDF/S KB, whereas [14] considers both schema and data changes. 

These works consider only the standard inference rules of RDF/S (but [14] can be 

extended to support also custom inference rules) and only the coherence semantics. 

Our future plans include the generalization of the approach in [14] to support the 

foundational semantics as well; this will allow us to apply the updates in a generic 

manner, without having to resort to the specific update plan of each operation. 

Finally, we should mention [11] which elaborated on the deletion of triples (includ-

ing inferred ones) assuming the standard inference rules of RDF/S for both schema 

and instance update focusing on the “erase” operation. The considered semantics is 

coherence (only), and the paper shows how one can compute all the “optimal” plans 

for executing such an erase operation (contraction in our terminology). 

6 Concluding Remarks  

In this paper, we motivated the need for provenance-based inference aiming at the 

dynamic completion (deduction) of facts from the original input and thus reducing the 

storage space requirements. Errors in data are only attributed to that input and so the 

search space for their identification and correction has also been reduced. Further-

more we elaborated on the difficulties of updating a KB using these rules and identi-

fied two ways to deal with deletions in this context, based on the philosophical stance 

against explicit (ingested) knowledge and implicit (inferred) one (foundational and 

coherence semantics). Based on these ideas, we specified a number of update opera-

tions that allow knowledge updating under said inference rules. Although we confined 

ourselves to CRMdig, and to three specific inference rules, the general ideas behind 

our work (including the discrimination between foundational and coherence semantics 

of deletion) can be applied to other models and/or sets of inference rules. A next step 

is to study the problem in a more generic manner, without resorting to specific, per-

operation update plans, in the spirit of [14]. We also plan to conduct experiments to 

determine the space reduction achieved using our inference rules in real-world 
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