
The HermiT OWL Reasoner

Ian Horrocks, Boris Motik, and Zhe Wang

Oxford University Department of Computer Science
Oxford, OX1 3QD, UK

{ian.horrocks,boris.motik,zhe.wang}@cs.ox.ac.uk

Abstract. HermiT is the only reasoner we know of that fully supports
the OWL 2 standard, and that correctly reasons about properties as well
as classes. It is based on a novel “hypertableau” calculus that addresses
performance problems due to nondeterminism and model size—the pri-
mary sources of complexity in state-of-the-art OWL reasoners. HermiT
also incorporates a number of novel optimizations, including an opti-
mized ontology classification procedure. Our tests show that HermiT
performs well compared to existing tableau reasoners and is often much
faster when classifying complex ontologies.

1 Introduction

HermiT is an OWL reasoning system based on a novel hypertableau calculus
[12]. Like existing tableau based systems, HermiT reduces all reasoning tasks to
ontology satisfiability testing, and proves the (un-)satisfiability of an ontology
by trying to construct (an abstraction of) a suitable model. When compared to
tableau calculi, however, the hypertableau technique can greatly reduce both the
size of constructed models and the non-deterministic guessing used to explore
all possible constructions. Moreover, HermiT employs a novel classification algo-
rithm that greatly reduces the number of subsumption (and hence satisfiability)
tests needed to classify a given ontology.

Our tests show that HermiT is as fast as other OWL reasoners when classi-
fying relatively easy-to-process ontologies, and usually much faster when classi-
fying more difficult ontologies. Moreover, HermiT is currently the only reasoner
known to us that fully supports the OWL 2 standard: it supports all of the
datatypes specified in the standard, and it correctly reasons about properties as
well as about classes. Most other reasoners support only a subset of the OWL
2 datatypes [11], and all other OWL reasoners known to us implement only
syntax based reasoning when classifying properties, and may thus fail to detect
non-trivial but semantically entailed sub-property relationships [4].

HermiT also includes some nonstandard functionality that is currently not
available in any other system. In particular, HermiT supports reasoning with
ontologies containing description graphs. As shown in [10], description graphs
allow for the representation of structured objects—objects composed of many
parts interconnected in arbitrary ways. These objects abound in bio-medical
ontologies such as FMA and GALEN, but they cannot be faithfully represented
in OWL.



2 Ian Horrocks, Boris Motik, and Zhe Wang

HermiT is available as an open-source Java library, and includes both a Java
API and a simple command-line interface. We use the OWL API [6] both as part
of the public Java interface and as a parser for OWL files; HermiT can thus pro-
cess ontologies in any format handled by the OWL API, including RDF/XML,
OWL Functional Syntax, KRSS, and OBO.

2 Architecture and Optimizations

On OWL ontology O can be divided into three parts: the property axioms, the
class axioms, and the facts. These correspond to the RBox R, TBox T , and ABox
A of a Description Logic knowledge base K = (R, T ,A). All basic reasoning
tasks, including subsumption checking, can be reduced to testing the satisfiability
of such a knowledge base. For example, K |= A v B iff (R, T ,A∪ {Au¬B(s)})
is not satisfiable, where s is a “fresh” individual (i.e., one that does not occur in
K).

To show that a knowledge base K = (R, T ,A) is satisfiable, a tableau al-
gorithm constructs a derivation—a sequence of ABoxes A0,A1, . . . ,An, where
A0 = A and each Ai is obtained from Ai−1 by an application of one inference
rule. The inference rules make the information implicit in the axioms of R and
T explicit, and thus evolve the ABox A towards (an abstraction of) a model
of K. The algorithm terminates either if no inference rule is applicable to some
An, in which case An represents a model of K, or if An contains an obvious
contradiction, in which case the model construction has failed. The following
inference rules are commonly used in DL tableau calculi.

– t-rule: Given (C1 t C2)(s), derive either C1(s) or C2(s).
– u-rule: Given (C1 u C2)(s), derive C1(s) and C2(s).
– ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.
– ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).
– v-rule: Given an axiom C v D and an individual s, derive (¬C tD)(s).

The t-rule is nondeterministic, and the knowledge base K is unsatisfiable if and
only if all choices lead to a contradiction.

Or-Branching This “case based” procedure for handing disjunctions is
sometimes called or-branching. The v-rule is the main source of or-branching,
as it adds a disjunction for each TBox axiom to each individual in an ABox, even
if the corresponding axiom is equivalent to a Horn clause, and so inherently de-
terministic. Such indiscriminate application of the v-rule can be a major source
of inefficiency, and this has been addressed by various absorption optimizations
[2, Chapter 9], including role absorption [14] and binary absorption [8].

HermiT’s hypertableau algorithm generalizes these optimizations by rewrit-
ing description logic axioms into a form which allows all such absorptions be
performed simultaneously, as well as allowing additional types of absorption im-
possible in standard tableau calculi. Furthermore, HermiT actually rewrites DL
concepts to further reduce nondeterminism, and is thus able to apply absorption-
style optimizations much more pervasively.



The HermiT OWL Reasoner 3

And-Branching The introduction of new individuals in the ∃-rule is some-
times called and-branching, and it is another major source of inefficiency in
tableau algorithms [2]. To ensure termination, tableau algorithms employ block-
ing to prevent infinitely repeated application of the ∃-rule [7]. Standard blocking
is applied only along a single “branch” of fresh individuals. HermiT uses a more
aggressive anywhere blocking strategy [12] that can reduce the size of gener-
ated models by an exponential factor, and this substantially improves real-world
performance on many difficult and complex ontologies.

HermiT also tries to further reduce the size of the generated model using a
technique called individual reuse: when expanding an existential ∃R.C, it first at-
tempts to re-use some existing individual labeled with C to construct a model,
and only if this model construction fails does it introduce a new individual.
This approach allows HermiT to consider non-tree-shaped models, and drasti-
cally reduces the size of models produced for ontologies which describe complex
structures, such as ontologies of anatomy. “Reused” individuals, however, are
semantically equivalent to nominal concepts, and thus performance gains due to
individual reuse are highly dependent upon the efficient handling of nominals.
HermiT therefore uses an optimised nominal introduction rule that reduces non-
determinism, and is more conservative in its introduction of new nominals.

Caching Blocking Labels Anywhere blocking avoids repetitive model
construction in the course of a single satisfiability test. HermiT further extends
this approach to avoid repetitive construction across an entire set of satisfiabil-
ity tests. Conceptually, instead of performing n different tests by constructing n
different models, it performs a single test which constructs a single model con-
taining n independent fragments. Although no two fragments are connected, the
individuals in one fragment can block those in another, greatly reducing the size
of the combined model. In practice, tests are not actually performed simultane-
ously. Instead, after each test a compact representation of the model generated is
retained for the purpose of blocking in future tests. This näıve strategy is, how-
ever, not compatible with ontologies containing nominals, which could connect
the models from independent tests.

This optimization has been key to obtaining the results that we present in
Section 3. For example, on GALEN only one satisfiability test is costly because it
computes a substantial part of a model of the TBox; all subsequent satisfiability
tests reuse large parts of that model.

Classification Optimizations DL reasoning algorithms are often used in
practice to compute a classification of a knowledge base K—that is, to determine
whether K |= A v B for each pair of atomic concepts A and B occurring in
K. Clearly, a näıve classification algorithm would involve a quadratic number
of subsumption tests, each of which can potentially be expensive. To obtain
acceptable levels of performance, various optimizations have been developed that
reduce the number of subsumption tests [3] and the time required for each test
[2, Chapter 9].

HermiT employs a novel classification procedure, and exploits the unique
properties of the system’s new calculus to further optimise the procedure. In



4 Ian Horrocks, Boris Motik, and Zhe Wang

Table 1: Statics of the ontologies

Ontology Name DL Expressivity Classes Properties TBox RBox

EMap (Feb09) EL 13737 2 13730 0
GO Term DB (Feb06) EL + + 20526 1 28997 1

DLP ExtDnS 397 SHIN 96 186 232 675
LUBM (one university) ALEHI+(D) 43 32 142 51

Biological Process (Feb09) EL + + 16303 5 32286 3
MGED Ontology ALCOF(D) 229 104 452 21

RNA With Individual (Dec09) SRIQ(D) 244 93 364 310
NCI Thesaurus (Feb09) ALCH(D) 70576 189 100304 290

OBI (Mar10) SHOIN (D) 2638 83 9747 150
FMA Lite (Feb09) ALEI+ 75145 3 119558 3

FMA-constitutional part (Feb06) ALCOIF(D) 41648 168 122695 395

GALEN-doctored ALEHIF+ 2748 413 3937 799
GALEN-undoctored ALEHIF+ 2748 413 4179 800

GALEN-module1 ALEHIF+ 6362 162 14515 219
GALEN-full ALEHIF+ 23136 950 35531 2165

particular, when it tries to construct a model I of K ∪ {A(a)} (in order to de-
termine the satisfiability of A), HermiT is able to exploit the information in I
to derive a great deal of information about both subsumers and non-subsumers
of A, information that can be efficiently exploited by the new classification pro-
cedure [4].

3 Empirical Results

To evaluate our reasoning algorithm in practice, we compared HermiT with the
state-of-the-art tableau reasoners Pellet 2.3.0 [13], and FaCT++ 1.5.3 [15].

We selected a number of standard test ontologies, and measured the time
needed to classify them using each of the mentioned reasoners. Unlike Pellet
and FaCT++, HermiT does not include a dedicated reasoner for any tractable
fragment of OWL 2. Hence, we mainly focus on ontologies that exploit most or
all of the expressive power available in OWL 2. All tests were performed on a
2.7 GHz MacBook Pro with 8 GB of physical memory. A classification attempt
was aborted if it exhausted all available memory (Java tools were allowed to use
2 GB of heap space), or if it exceeded a timeout of 20 minutes.

The majority of the test ontologies were classified very quickly by all three
reasoners. For these “trivial” ontologies, the performance of HermiT was com-
parable to that of the other reasoners. Therefore, we consider here only the test
results for “interesting” ontologies—that is, ontologies that are either not trivial
or on which the tested reasoners exhibited a significant difference in performance
(see Table 1 for details of these ontologies).

Table 2 summarizes the results of our tests on these “interesting” ontologies.
Since HermiT has no special handling for tractable fragments of OWL 2, the per-



The HermiT OWL Reasoner 5

Table 2: Results of Performance Evaluation

Ontology Name
Classification Times (seconds)

HermiT Pellet FaCT++

EMap (Feb09) 1.1 0.4 34.2
GO Term DB (Feb06) 1.3 1.3 6.1

DLP ExtDnS 397 1.3 timeout 0.05
LUBM (one university) 1.7 0.7 152.7

Biological Process (Feb09) 1.8 4.0 8.0
MGED Ontology 2.1 19.6 0.04

RNA With Individual (Dec09) 2.7 0.8 102.9
NCI Thesaurus (Feb09) 58.2 12.3 4.4

OBI (Mar10) 150.0 timeout 17.2
FMA Lite (Feb09) 211.1 timeout timeout

FMA-constitutional part (Feb06) 1638.3 timeout 396.9

GALEN-doctored 1.8 timeout 2.5
GALEN-undoctored 6.7 out of mem. 11.6

GALEN-module1 out of mem. timeout timeout
GALEN-full out of mem. timeout timeout

formance of HermiT on such ontologies may not be competitive. For example,
FaCT++ shows advantages when classifying ontologies which fall into a prede-
fined syntactic fragment for which it uses a more efficient reasoning technique
[16]. Different versions of GALEN have commonly been used for testing the per-
formance of DL reasoners. The full version of the ontology (called GALEN-full)
cannot be processed by any of the reasoners. Thus, we extracted a module (called
GALEN-module1) based on a single concept from GALEN-full using the tech-
niques from [5] in order to determine if modularisation techniques might make
classification feasible. However, although the module is much smaller than the
full ontology, no reasoner was able to classify it either. Our analysis has shown
that, due to a large number of cyclic axioms, the reasoners construct extremely
large ABoxes and eventually exhaust all available memory (or get lost in the
resulting large search space). FMA-constitutional part exhibits similar features,
but to a lesser extent, and both HermiT and FaCT++ were able to classify it.
Because of the failure of DL reasoners to process GALEN-full, various simpli-
fied versions of GALEN have often been used in practice. As Table 2 shows,
these ontologies can still be challenging for state-of-the-art reasoners. HermiT,
however, can classify them quite efficiently.

4 Conclusions and Future Directions

We have described HermiT, an OWL reasoner based on novel algorithms and
optimizations. HermiT fully supports the OWL 2 standard, and shows significant
performance advantages over other reasoners across a wide range of expressive
real-world ontologies. Although not always the fastest, HermiT exhibits relatively
robust performance on our tested ontologies, and as shown in our results, it never



6 Ian Horrocks, Boris Motik, and Zhe Wang

failed to classify an ontology in the test corpus that was successfully handled by
one of the other reasoners. HermiT also includes support for some non-standard
ontology features, such as description graphs.

We are continuing to develop HermiT, and to explore new and refined opti-
mization techniques. We also continue to extend its functionality: the latest ver-
sion, for example, provides support for the SPARQL 1.1 query language [1]. We
are also investigating techniques for exploiting specialized reasoning techniques,
such as those implemented in the ELK system [9], to speed up the classification
of ontologies that are (largely) within a fragment of OWL that such techniques
can handle.

Acknowledgments This work was supported by the EU FP7 project SEALS
and by the EPSRC projects ConDOR, ExODA, and LogMap.

References

1. SPARQL 1.1 Query Language. W3C Working Draft, 12 May 2011.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,

editors. The Description Logic Handbook. 2nd edition, 2007.
3. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. Making KRIS

Get a Move on. Applied Intelligence, 4(2):109–132, 1994.
4. B. Glimm, I. Horrocks, B. Motik, R. Shearer, and G. Stoilos. A Novel Approach

to Ontology Classification. J. of Web Semantics, 10(1), 2011.
5. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of

Ontologies: Theory and Practice. JAIR, 31:273–318, 2008.
6. M. Horridge and S. Bechhofer. The OWL API: A Java API for Working with OWL

2 Ontologies. In Proc. OWLED 2009, 2009.
7. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Descrip-

tion Logic SHIQ. In Proc. CADE-17, pages 482–496, 2000.
8. A. K. Hudek and G. Weddell. Binary Absorption in Tableaux-Based Reasoning

for Description Logics. In Proc. DL 2006, 2006.
9. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. Concurrent Classification of EL On-

tologies. In Proc. of ISWC 2011, pages 305–320, 2011.
10. B. Motik, B. Cuenca Grau, I. Horrocks, and U. Sattler. Representing Ontologies

Using Description Logics, Description Graphs, and Rules. Artificial Intelligence,
173(14):1275–1309, 2009.

11. B. Motik and I. Horrocks. OWL Datatypes: Design and Implementation. In Proc.
of ISWC 2008, pages 307–322, 2008.

12. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. JAIR, 36:165–228, 2009.

13. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical
OWL-DL Reasoner. J. of Web Semantics, 5(2):51–53, 2007.

14. D. Tsarkov and I. Horrocks. Efficient Reasoning with Range and Domain Con-
straints. In Proc. DL 2004, 2004.

15. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. IJCAR 2006, pages 292–297, 2006.

16. D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimizing Terminologi-
cal Reasoning for Expressive Description Logics. J. of Automated Reasoning,
39(3):277–316, 2007.


