
Advancing the Enterprise-class OWL Inference Engine in
Oracle Database

Zhe Wu, Karl Rieb, George Eadon
Oracle Corporation

{alan.wu, karl.rieb, george.eadon}@oracle.com

Ankesh Khandelwal, Vladimir Kolovski
Rensselaer Polytechnic Institute, Novartis Institut es for Bio-

medical Research
ankesh@cs.rpi.edu, vladimir.kolovski@novartis.com

Abstract.

OWL is a standard ontology language defined by W3C that is used for
knowledge representation, discovery, and integration. Having a solid
OWL reasoning engine inside a relational database system like Oracle
is significant because 1) many relational techniques, including query
optimization, compression, partitioning, and parallel execution, can be
inherited and applied; and 2) relational databases are still the primary
place holder for enterprise information and there is an increasing use of
OWL for representing such information. Our approach is to perform da-
ta intensive reasoning as close as possible to the data. Since 2006, we
have been developing an RDBMS-based large scale and efficient for-
ward-chaining inference engine capable of handling RDF(S), OWL 2
RL/RDF, SKOS, and user defined rules. In this paper, we discuss our
recent implementation and optimization techniques for query-rewrite
based OWL 2 QL reasoning, named graph-based inference (local infer-
ence), and integration with external OWL reasoners.

1 Introduction

OWL [1] is an important standard ontology language defined by W3C and it has a
profound use in knowledge representation, discovery, and integration. To support
OWL reasoning over large datasets we have developed a forward-chaining rule-based
inference engine [2] on top of the Oracle Database. By implementing the inference
engine as a database application we are able to leverage the database’s capabilities for
handling large scale data. The most recent release of our engine, with support for
RDFS, OWL 2 RL/RDF [3], SKOS and user-defined rules, is available as part of
Oracle Database 11g Release 2 [4, 5, 7].

In our system semantic data is stored in a normalized representation, with one table
named LEXVALUES providing a mapping between lexical values and integer IDs and

another table named IDT RIPLES enumerating triples or quads in terms of IDs, similar
to other systems [8, 9]. Inference engine rules are translated to SQL and passed to
Oracle’s cost-based optimizer for efficient execution. For notational convenience,
SQL queries in this paper are written in terms of placeholders ID(x) and <IVIEW> . In
the implementation ID(x) is replaced by the ID for the given lexical value x , which
can be found by querying our LEXVALUES table, and <IVIEW> is replaced by an inline
view that unions the relevant triples (or quads) in IDT RIPLES with the inferred triples
(or quads) computed so far.

Additional features of our inference engine include: (1) for built-in OWL con-
structs we manually craft the SQL and algorithms that drive the inference, optimizing
for special cases including transitive properties and equivalence relations such as
owl:sameAs , (2) user-defined rules are translated to SQL automatically, (3) we lever-
age Oracle’s parallel SQL execution capability to fully utilize multi-CPU hardware,
and (4) we efficiently update the materialized inferred triples after additions to the
underlying data model, using a technique based on semi-naive evaluation [7].

Our engine has been used in production systems since 2006, and has proven
capable of handling many real-world applications. However, challenges remain:
- Despite support for efficient incremental inference, fully materializing inferred

results via forward chaining can be a burden, especially for large frequently-
updated data sets. Therefore we are introducing backward-chaining into our
system with a query-rewrite-based implementation of OWL 2 QL reasoning [2].

- Some applications need to restrict inference to a single ontology represented by a
named graph. For these applications inference should apply to just the assertions
in each named graph and a common schema ontology (TBox). This kind of infer-
ence is therefore local, as opposed to the traditional global inference, and it is
called Named Graph based Local Inference (NGLI) by Oracle.

- Some applications need the full expressivity of OWL 2 DL. To satisfy these
applications, we have further extended our inference engine by integrating it with
third-party complete OWL 2 DL reasoners like PelletDB [6].

In this paper we present our recent advances. Section 2 describes our query-rewrite
implementation of OWL 2 QL reasoning. Section 3 describes our implementation of
named graph local inference. Section 4 describes integration with external third-party
OWL reasoners. Section 5 presents a performance evaluation using synthetic Lehigh
University Benchmark (LUBM) datasets. Section 6 describes related work. Finally,
Section 7 concludes this paper.

2 Support of OWL 2 QL in the Context of SPARQL

OWL 2 QL is based on the DL-Lite family of Description Logics, specifically DL-
LiteR [10]. OWL 2 QL is an important profile because it has been designed so that
data (Abox) can be queried through an ontology (Tbox) via a simple rewriting mech-
anism. Queries can be expanded to include the semantic information in Tbox, using
query-rewrite techniques such as the PerfectRef algorithm [10], before executing
them against the Abox. The query expansion could produce many complex queries,
which presents a challenge for scalable QL reasoning. There have been several pro-

posals for optimizing and reducing the size of rewritten queries; see Section 6 for a
brief discussion. Most of these techniques return a union of conjunctive queries
(UCQ) for an input conjunctive query (CQ). Rosati et.al. [11] proposed a more so-
phisticated rewriting technique, the Presto algorithm, that produces non-recursive
datalog (nr-datalog), instead of UCQ. OWL 2 QL inference is supported in the Oracle
OWL inference engine based on the Presto algorithm. We elaborate on this and other
optimizations for efficient executions of query rewrites in Section 2.1. To meet the
requirements of enterprise data, OWL 2 QL inference engine must handle arbitrary
SPARQL queries. We discuss some subtleties to handling arbitrary SPARQL queries
by query expansion in Section 2.2. We will be using the following OWL 2 QL ontol-
ogy to illustrate various concepts. It is described in functional syntax and has been
trimmed down for brevity.

Ontology (SubDataPropertyOf(:nickName :name)
 SubClassOf(:Married ObjectSomeValuesFrom(:spouseOf :Person))
 SubObjectPropertyOf(:spouseOf :friendOf)
 DataPropertyAssertion(:name :Mary "Mary")
 ClassAssertion(:Married :John)
 DataPropertyAssertion(:name :Uli "Uli"))

2.1 Optimizing Execution of Query Rewrites

As noted in the introduction, Oracle OWL inference engine implements an approach
that is similar to that of rewriting CQs as nr-datalog. We will illustrate our approach
through some examples. Consider the conjunctive query (CQ),

 select ?x ?y ?n where { ?x :friendOf ?y . ?y :name ?n },

and its equivalent datalog query q(?x, ?y, ?n) :- friendOf(?x, ?y),

name(?y, ?n) . Note that friendOf(?x, ?y) and name(?y, ?n) are referred to
as atoms of the query. q(?x, ?y, ?n) can be translated into following nr-datalog
using the Presto algorithm, and the example Tbox.
 q(?x, ?y, ?n) :- q1(?x, ?y), q2(?y, ?n) .
 q1(?x, ?y) :- friendOf(?x, ?y) .
 q1(?x, ?y) :- spouseOf(?x, ?y) .
 q2(?y, ?n) :- name(?y, ?n) .
 q2(?y, ?n) :- nickName(?y, ?n) .

The nr-datalog can be represented by a single SPARQL query as shown below.
The heads of the nr-datalog, q1(?x, ?y) and q2(?y, ?n) for example, define a
view for the atoms of the query, which can be represented via UNION operation. The
conjunctions in the body of nr-datalog rules can be represented via intersections of
views. We refer to the resulting form of SPARQL query as the Joins of Union (JoU)
form. (UCQs, in contrast, are of the form Unions of Joins (UoJ).)

select ?x ?y ?n where { {{?x :friendOf ?y} UNION {?x :spouseOf ?y}}

 {{?y :name ?n} UNION {?y :nickName ?n}}}

The JoU form of SPARQL queries generated from query rewrite often contains
many UNION clauses and nested graph patterns that can become difficult for the
query optimizer to optimize. To improve the quality of query plans generated by the

query optimizer, our latest inference engine rewrites the UNION clauses using
FILTER clauses. For example, the query above is rewritten as follows, using
sT(...) as notational shorthand for the SPARQL operator sameTerm(...) . Recall
that sameTerm(A, B) is true if A and B are the same RDF term.

select ?x ?y ?n where

 {{?x ?p1 ?y FILTER(sT(?p1, :friendOf) || sT(?p1, :spouseOf))}

 {?y ?p2 ?n FILTER(sT(?p2, :name) || sT(?p2, :nickName))}}.

As mentioned earlier, UNION clauses correspond to views for atoms in the query.
Rules in the nr-datalog that define view for an atom of the query contain single atom
in their body [11]. The former atom is entailed by the latter atoms. For example, the
(SPARQL) CQ atom {?x p ?y} can be entailed from atoms of types {?x q ?y}

(by sub-property relationships) and {?y q ?x} (by inverse relationships), and also
of type {?x rdf:type c} (by existential class definition) if ?y is a non-
distinguished non-shared variable. There may be more than one atom for each type. In
that case, the view corresponding to atom {?x p ?y} can be defined via filter claus-
es as follows. (Any of n2 , n3 may be zero in which case corresponding pattern is
omitted; q11 equals p.)

 {{?x ?q ?y FILTER(sT(?q, q11) || ... sT(?q, q1n1))} UNION

 {?y ?q ?x FILTER(sT(?q, q21) || ... sT(?q, q2n2))} UNION

 {?x rdf:type ?c FILTER(sT(?c, c11) || ... sT(?c, c1n3))}}

Note that the unions above can be further collapsed using more general filter ex-
pressions and the result of query-rewrite is an expanded query (that is no rules are
generated). A key benefit of treating UCQ as JoU is that the SQL translation of a JoU
query is typically more amenable to RDBMS query optimizations because it uses
fewer relational operators, which reduces the optimizer’s combinatorial search space;
and the JoU, together with the filter clause optimization, will typically execute more
efficiently in an RDBMS because the optimizer can find a better plan involving fewer
operators, which reduces runtime initialization and destruction costs. Take the Lehigh
Benchmark (LUBM) Query 5 and 6 for example. The JoU approach takes both less
time and fewer database I/O requests, as shown in the following table, to complete the
query executions against the 1.1 billion-assertion LUBM 8000 data set. The machine
used was a Sun M8000 server described in Section 5.

LUBM8000 (1.1B+
asserted facts)

JoU with FILTER Optimization No Optimization

Time # of DB I/O Time # of DB I/O
Q5 (719 matches) 98.9s 73K 171.1s 271K

Q6 (63M+ matches) 25.68s 48K 28.7s 73K

Table 1 Effectiveness of JoU with FILTER optimization

2.2 SPARQLing OWL 2 QL Aboxes

The main mechanism for computing query results in the current SPARQL standard is
subgraph matching, that is, simple RDF entailment [12]. Additional RDF statements

can be inferred from the explicit RDF statements of an ontology using semantic inter-
pretations of ontology languages such as OWL 2 QL. The next version of SPARQL
(SPARQL 1.1) is in preparation and various entailment regimes have been specified
that define basic graph pattern matching in terms of semantic entailment relations
[13]. One such entailment regime is the OWL 2 Direct Semantics Entailment Regime
(ER), which is relevant for querying OWL 2 QL Aboxes. The ER specifies how the
entailment is used.

The entailed graphs may contain new blank nodes (that are not used in the explicit
RDF statements). ER, however, restricts semantic entailments to just those graphs
which contain no new blank nodes. In other words, all the variables of the query are
treated as distinguished variables irrespective of whether they are projected. This
limits the range of CQs that can be expressed using SPARQL 1.1 ER. For example,
consider following two queries that differ only in projected variables.

 select ?s ?x { ?s :friendOf ?x .}

 select ?s { ?s :friendOf ?x .}

Per ER, both queries have empty results. However, if viewed as CQs, ?x is a non-
distinguished variable in the second query and [?s � :John] is a valid result.
Therefore, the second CQ cannot be expressed in SPARQL 1.1 ER.

For practical reasons, we would like to be able to express all types of CQs to
OWL-2 QL Aboxes using SPARQL, especially when there are well-defined algo-
rithms such as PerfectRef for computing sound and complete answers for CQs. We
thereby adopt, in addition to ER, another entailment regime for Abox queries to OWL
2 QL ontologies, namely OWL 2 QL Entailment Regime (QLER). QLER is similar to
ER except that non-projected variables can be mapped to new blank nodes (not speci-
fied in the explicit triples of the Abox or Tbox). Projected variables cannot be mapped
to new blank nodes under both ER and QLER. QLER, unlike ER, is defined only for
Abox queries, and property and class expressions are not allowed (that is, only con-
cept and property IRIs may be used). Note that the results obtained under ER are al-
ways a subset of the results obtained under QLER.

Now, any CQ can be expressed as BGP SPARQL query under QLER (unlike ER).
The BGP query can be expanded, as discussed in Section 2.1, such that the query
results can be obtained from the expanded query by standard subgraph matching.
SPARQL, however, supports more complex queries than BGPs and union of BGPs
such as accessing graph names, filter clauses, and optional graph patterns. Thus, a
query-rewrite technique for complex SPARQL queries is also required.

Under ER, since all variables are treated as distinguished variables, individual
BGPs of a complex query can be expanded separately and replaced in place. For ex-
ample, SPARQL query select ?s ?n {?s :friendOf ?x} OPTIONAL {?x :name ?n} can be
expanded as,
 select ?s ?n {{ {?s :friendOf ?x} UNION {?s :spouseOf ?x} }

 OPTIONAL {{ ?x :name ?n } UNION {?x :nickname ?n}}}.

This expansion strategy is, however, not valid under QLER. ?x is a non-
distinguished variable under QLER, and the expanded form by that strategy will be,
 select ?s ?n {{{?s :friendOf ?x}

 UNION {?s :spouseOf ?x} UNION {?s rdf:type :Married} }
 OPTIONAL { { ?x :name ?n } UNION {?x :nickname ?n}}.

The query above produces two incorrect answers, [?s � :John; ?n �

“Uli”] and [?s � :John; ?n � “Mary”], and the source of the incorrect an-
swers is that binding [?s � :John] is obtained from the pattern {?s rdf:type

:Married} , and then ?x , which is implicitly bound to some new blank node, is ex-
plicitly bound to nothing (that is ?x is null). A left outer join with bindings from
{?x :name ?n } produces erroneous results because null value matches any value
of ?x from the optional pattern.

The way around that problem is to bind ?x to a new blank node using SPARQL 1.1
assignment expression [14] BIND(BNODE(STR(?s)) AS ?x) as shown below. The
BGP { ?s :friendOf ?x } is expanded into

 {{ ?s :friendOf ?x } UNION { ?s :hasSpouce ?x } UNION

 { ?s rdf:type :Married . BIND(BNODE(STR(?s)) AS ?x). }}.

The bindings for a non-distinguished variable are also lost when two similar atoms
of a CQ are replaced by their most general unifier; cf. reduction step of the
PerfectRef algorithm. Let ?x be a non-distinguished variable that is unified with
term t of other atom, which may be a variable or a constant, then the binding for ?x
can be retained by using SPARQL 1.1 assignment expression BIND(t as ?x) , in a
manner similar to that used in the above example.

So, the query-rewrite technique for complex SPARQL queries under QLER con-
sists of the following steps: 1) identify distinguished variables for all BGPs of the
query, 2) expand BGPs separately using the standard query-rewrite techniques (for
CQs), including the one described in Section 2.1, 3) make the bindings for non-
distinguished variables explicit whenever they are not using SPARQL 1.1 assignment
expressions as discussed above, and 4) replace the expanded BGPs in place. Steps 2)
and 3), even though presented sequentially, are intended to be performed concurrent-
ly. That is the bindings may be made explicit in the expansion phase for BGPs.

3 Named-Graph based Local inference

Inference is typically performed against a complete ontology together with all the
ontologies imported via owl:imports . In this case inference engines consolidate all
of the information and then perform tasks like classification, consistency checking,
and query answering, thereby maximizing the discovery of implicit relationships.

However, some applications need to restrict inference to a single ontology repre-
sented by a named graph. For example, a health care application may create a separate
named graph for each patient in its system. In this case, inference is required to apply
to just the assertions about each patient and a common schema ontology (TBox). This
kind of inference is therefore local, as opposed to the traditional global inference, and
it is called Named Graph based Local Inference (NGLI) by Oracle. NGLI together
with the use of named graphs for asserted facts modularizes and improves the man-
ageability of the data. For example, one patient’s asserted and inferred information
can be updated or removed without affecting those of other patients. In addition, a

modeling mistake in one patient’s named graph will not be propagated throughout the
rest of the dataset.

One naïve implementation is to run the regular, global, inference against each and
every named graph separately. Such an approach is fine when the number of named
graphs is small. The challenge is to efficiently deal with thousands, or tens of thou-
sands of named graphs. In the existing forward-chaining based implementation, Ora-
cle database uses SQL statements to implement the rule set defined in the OWL 2 RL
specification. To add the local inference feature, we have considered two approaches.
The first approach re-implements each rule by manually adding SQL constructs to
limit joins to triples coming from the same named graphs. Take for example a length
2 property chain rule defined as follows:

?u1 :p1 ?u2, ?u2 :p2 ?u3 � ?u1 :p ?u3

This rule can be implemented using the following SQL statement. Obviously this
rule applies to all assertions in the given data set <IVIEW>, irrespective of the origins
of the assertions involved.

 select distinct m1.sid, ID(p), m2.oid from <IVIEW> m1, <IVIEW> m2

 where m1.pid=ID(p1) and m1.oid=m2.sid and m2.pid=ID(p2)

To extend the above SQL with local inference capability, the following additional
SQL constructs (in Italic font) are added. The assumption here is that <IVIEW> has
an additional column, gid , which stores the integer hash ID values of graph names.
Also, as a convention, the common schema ontology is stored with a NULL gid value
in the same <IVIEW>. This allows an easy separation of the common schema ontolo-
gy axioms from those assertions made and stored in named graphs.

select distinct m1.sid, ID(p), m2.oid, nvl(m1.gid,m2.gid) AS gid
 from <IVIEW> m1, <IVIEW> m2
 where m1.pid=ID(p1) and m1.oid=m2.sid and m2.pid=ID(p2)
 and (m1.gid = m2.gid or m1.gid is null or m2.gid is null)

In the above SQL statement, a new projection of gid column is added to tag each
inferred triple with its origin. This is very useful provenance information. Also, a new
Boolean expression is added to the end of the SQL statement. This new expression
enforces that the two participating triples must come from the same named graph or
one of them must come from the common schema ontology. Note that when dealing
with more complex OWL 2 RL rules, the number of joins increases and this addition-
al Boolean expression becomes more complicated. As a consequence, it is error prone
to manually modify all existing SQL implementations to support the local inference.
This motivated an annotation-based approach, where each existing SQL statement is
annotated using SQL comments. Using the above example, the annotation (in Italic
font) together with the original SQL statement looks like:

select distinct m1.sid, ID(p), m2.oid /* ANNOTATION: PROJECTION */

 from <IVIEW> m1, <IVIEW> m2 where m1.pid=ID(p1) and m1.oid=m2.sid

 and m2.pid=ID(p2) /* ANNOTATION: ADDITIONAL_PREDICATE */

At runtime, the above dummy annotation texts will be replaced with proper SQL
constructs, similar to those described before. Those automatically-generated SQL
constructs are based on the number of joins in a rule implementation, and the set of

view aliases used in the SQL statement. Compared to the first approach, this annota-
tion based approach is easier to implement and much more robust because all the
actual SQL changes are centralized in a single function.

4 Extensible Inference

We realize in practice that, to be enterprise ready, an inference engine has to be ex-
tensible. Our engine natively supports RDFS, SKOS, OWLPrime [3], OWL 2 RL
which is a rich subset of the OWL 2 semantics, and a core subset of OWL 2 EL that is
sufficient to classify the well-known SNOMED ontology, in addition to user-defined
positive Datalog-like forward-chaining rules to extend the semantics and reasoning
capabilities beyond OWL. This is sufficient to satisfy the requirements of many real-
world applications. However, some application domains need the full expressivity of
OWL 2 DL. To satisfy these applications, we have further extended our inference
engine by integrating it with third-party complete OWL 2 DL reasoners like PelletDB
[6]. A key observation has been that even when dealing with a large-scale dataset
which does not fit into main memory, the schema portion, or the TBox, tends to be
small enough to fit into physical memory. So the idea is to extract the TBox from
Oracle database via a set of Java APIs provided in the Jena Adapter [5], perform clas-
sification using the in memory DL reasoner and materialize the class and property
hierarchies, save them back into Oracle, and finally invoke Oracle’s native inference
API to perform reasoning against the instance data, or the ABox.

This approach combines the full expressivity support provided by an external
OWL 2 DL reasoner and the scalability of Oracle database. Such an approach is gen-
eral enough and can be applied to other well-known OWL reasoners including
Fact++, HermiT, and TrOWL. It is worth pointing out that such an extension to Ora-
cle's inference capability is sound, but completeness in terms of query results cannot
be guaranteed. Nonetheless, users welcome such an extension because 1) in-memory
solutions simply cannot handle a very large dataset that exceeds the memory con-
straint, 2) more implicit relationships are made available using additional semantics
provided by external reasoners.

5 Performance Evaluation

In this section, we evaluate the performance of Oracle’s native inference engine.
Most tests were performed on a SPARC Enterprise M8000 server with 16 SPARC 64
VII+ 3.0GHz CPUs providing a total of 64 cores and 128 parallel threads. There is
512 GB RAM and two 1-TB F5100 flash arrays incorporating 160 storage devices.
Note that the performance evaluation is focused on local inference performance. A
systematic evaluation of SPARQL query answering under QL semantics is ongoing.

Benchmark Data Generation. We are using the well-known, synthetic Lehigh
University Benchmark (LUBM) to test the performance because 1) a LUBM dataset
can be arbitrarily large; and 2) it is quite natural to extend a LUBM dataset from tri-

ples to quads. The existing LUBM data generator produces data in triple format.
However, the triples are produced on a per university basis, so it is straightforward to
append university information to the triples to yield quad data.

Local Inference Performance. In the following table, we compare the perfor-
mance of named-graph based local inference against that of the regular, global infer-
ence. Three benchmark datasets are used and the dataset size is between 133 million
and 3.45+ billion asserted facts. Such a scale is sufficient for many enterprise-class
applications. The second and third columns list the number of inferred triples and
elapsed time for global inference. The last two columns list the number of inferred
new quads and elapsed time for local inference. Note that a parallel inference [7] with
a degree of 128 was used for both the global and local inferences. In addition, at the
end of both global and local inference process, a multi-column B-Tree index is built
so that the inferred data is ready for query. The only factor that stopped us from test-
ing even bigger ontologies was the 2-TB disk space constraint.

Benchmark/Inference
Type

Global Inference Local Inference

New triples Elapsed time New quads Elapsed time
LUBM10001 108M 12m 15s 111M 13m 0s

LUBM8000 869M 33m 17s 892M 40m 3s

LUBM25000 2.71B 1h 44m 2.78B 2h 1m
Table 2 Performance comparison between global and local inference

The performance of local inference is a bit slower than but still quite comparable to
that of the global inference. The performance difference comes from two places: 1)
local inference deals with quads instead of triples and a quad dataset is larger in size
than its triple counterpart because of the additional graph names, 2) the SQL state-
ment is more complex due to the additional expressions.

It may be counter intuitive that local inference produced more inferred relation-
ships than global inference. An examination of the inference results suggests that
there are inferred triples showing multiple times in different named graphs even
though any named graph contains only a unique set of triples.

With help from a customer, we conducted a performance evaluation of local infer-
ence using OWL 2 RL profile against large-scale real-world data2 from the medi-
cal/hospital domain. The machine used was a quarter-rack Exadata x2-2. It is a 2-node
cluster and each node has 96 GB RAM and 24 CPU cores. Detailed hardware specifi-
cations can be found here3. It took around 100 minutes to complete the local inference
using a parallel degree of 48. Inference generated a total of 574 million new quads.

Benchmark/Inference Type
Local Inference

New quads Elapsed time
Real-world Medical/Hospital Dataset 574M 100m 28s

Table 3 Local inference performance against real-world quad dataset

1 LUBM1000, LUBM8000, and LUBM25000 datasets have 133M+, 1.1B+, and 3.45B+ facts
asserted, respectively.

2 Private data. It has 1.163B+ quads asserted.
3 http://www.oracle.com/technetwork/database/exadata/dbmachine-x2-2-datasheet-175280.pdf

Parallel Inference. Oracle’s inference engine has benefited greatly from the paral-
lel execution capabilities provided by the database. The same kind of parallel infer-
ence optimization, explained in [7], applies both to the regular, global inference and
the local inference. Figure 1 shows the local inference performance improvement as
the degree of parallelism goes higher. LUBM 25K benchmark was used for this ex-
periment. Note that most improvement was achieved when the parallel degree went
up from 24 to 64. After that, only marginal improvement was observed. This is due to
the fact that the Sun M8000 has 64 cores.

Figure 1 Local inference elapsed time versus degree of parallelism

6 Related Work

We will discuss works related to query rewriting as required for OWL 2 QL infer-
ence, implementations for OWL 2 QL reasoning. (We will be focusing on theory and
techniques and not so much on relative performances).

Several techniques for query-rewriting have been developed since the
PerfectRef algorithm was introduced in [10]; see [15] for a nice summary. The
given CQ is reformulated as a UCQ by means of a backward-chaining resolution pro-
cedure in the PerfectRef algorithm. The size of the computed rewriting increases
exponentially with respect to the number of atoms in the given query, in the worst
case. But as observed by others, many of the new queries that were generated were
superfluous, for example some of the CQs in a UCQ may be subsumed by others in
the UCQ. An alternative resolution-based rewriting technique was proposed in [16]
which avoids many useless unifications and thus UCQs are smaller even though they
are still exponential in the number of atoms of the query. This alternative rewriting
technique is implemented in the Requiem system4. Rosati et al. [11] argued that
UCQs are reasons for exponential blow up, and have proposed a very sophisticated
rewriting technique, the Presto algorithm, which produces a non-recursive Datalog
program as a rewriting, instead of a UCQ. As noted before, we deploy the Presto al-
gorithm for optimal performance.

The W3C's OWL implementations page5 lists four systems that support OWL 2
QL reasoning: QuOnto6, Owlgres7, OWLIM8, Quill9.

4 http://www.cs.ox.ac.uk/isg/tools/Requiem/
5 http://www.w3.org/2007/OWL/wiki/Implementations
6 http://www.dis.uniroma1.it/~quonto/

QuOnto, Quill and Owlgres implement the PerfectRef query-rewrite technique,
but Quonto implements an optimized PerfectRef query-rewrite technique,
QPerfRef [10], and Quill in addition to query-rewrite, transforms ontology into a
semantically approximate ontology [17].

Owlgres is an RDBMS-based implementation [18]. It deploys PerfectRef query-
rewrite technique, with some optimizations such as Tbox terms with zero occurrences
in Abox are identified in a preprocessing step and CQs of a UCQ that contain such
Tbox terms are discarded, in contrast to the Presto algorithm. Furthermore, the UCQs
are translated into a single SQL query that is a union of SQL queries, which is remi-
niscent of UoJ form. In contrast, we translate UCQs into more efficient JoU form, and
the unions are collapsed into compact FILTER clauses.

OWLIM supports forward-chaining style rule-based reasoning, wherein blank
nodes can be inferred during rule evaluation. OWL 2 QL reasoning is supported in
OWLIM by defining new ruleset that captures OWL 2 QL semantics [19], and using
the same forward chaining mechanism.

7 Conclusions

This paper described the recent advances in our OWL inference engine, which is
implemented on top of the Oracle Database. We described optimizations for rewrite-
based backward-chaining implementation of OWL 2 QL. We showed that conjunctive
queries for OWL 2 QL knowledge bases cannot be expressed in SPARQL 1.1 using
its entailment regimes because the regimes are very restrictive towards bindings to
new blank nodes. We introduced a new regime to overcome that and described a que-
ry-rewrite technique for general SPARQL queries (which may contain constructs such
as optional graph patterns). We introduced the concept of “named-graph based local
inference” and described our implementation. We described the motivation for inte-
grating a third-party OWL reasoner in our system, and described our implementation.
Finally, we evaluated the performance of named-graph based local inference as com-
pared to traditional global inference on synthetic data sets.

Acknowledgement. We thank Jay Banerjee for his support. We thank Rick Heth-
erington and Brian Whitney for providing access to and guiding us on the use of the
Oracle Sun M8000 server machine. We thank Christopher Hecht and Kathleen Li for
their assistance in using the Exadata platform.

Reference

1. OWL 2 Web Ontology Language Direct Semantics. http://www.w3.org/TR/owl2-direct-semantics/
2. Oracle Database Semantic Technologies.

http://www.oracle.com/technetwork/database/options/semantic-tech/index.html

7 http://pellet.owldl.com/owlgres
8 http://www.ontotext.com/owlim/
9 http://kt.abdn.ac.uk/wiki/Projects/Quill

3. OWL 2 Web Ontology Language Profiles. http://www.w3.org/TR/owl2-profiles/
4. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: “Implementing

and Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle” IEEE 24th Intl.
Conf. On Data Engineering (ICDE) 2008

5. Oracle Database Semantic Technologies Developer’s Guide 11g Release 2 (11.2)
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/toc.htm

6. Introducing PelletDb: Expressive, Scalable Semantic Reasoning for the Enterprise
http://clarkparsia.com/files/pdf/pelletdb-whitepaper.pdf

7. Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational
Database System. International Semantic Web Conference (1) 2010: 436-452

8. J. Broekstra, F. van Harmelen, and A. Kampman, “Seasme: A Generic Architecture for Storing and
Querying RDF and RDF Schema”. International Semantic Web Conference (ISWC) 2002.

9. L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “RStar: An RDF Storage and Querying System for Enter-
prise Resource Management”. CIKM 2004.

10. Calvanese, G. deD., Giacomo, D.G., Lembo, M.D., Lenzerini, R.M., Rosati “, R.: Tractable Reason-
ing and Efficient Query Answering in Description Logics: The DL-Lite Family” In J.. Journal of Au-
tomated Reasoning 39(3):) (October 2007) 385---429, 2007.

11. Rosati, R., Almatelli, A.: Improving Query Answering over DL-Lite Ontologies. In Proceedings of the
12th International Conference on Principles of Knowledge Representation and Reasoning. KR, AAAI
Press (2010).

12. SPARQL Query Language for RDF. W3C Recommendation 15 January 2008.
http://www.w3.org/TR/rdf-sparql-query/ Last accessed 18-April-2012.

13. SPARQL 1.1 Entailment Regimes. W3C Working Draft 05 January 2012.
http://www.w3.org/TR/sparql11-entailment/ Last accessed 18-April-2012.

14. SPARQL 1.1 Query Language. W3C Working Draft 05 January 2012.
http://www.w3.org/TR/sparql11-query/ Last accessed 18-April-2012.

15. Gottlob, G., Schwentick, T.: Rewriting Ontological Queries into Small Nonrecursive Datalog Pro-
grams. In Proceedings of the 24th International Workshop on Description Logics (DL 2011), Barcelo-
na, Spain, July 13-16, 2011.

16. Pe'rez-Urbina, H., Motik, B., Horrocks, I.: Tractable Query Answering and Rewriting under Descrip-
tion Logic Constraints. Journal of Applied Logic 8(2) (2010) 186—209.

17. Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. In: Proceedings of the 22nd National
Conference on Artificial Intelligence - Volume 2. AAAI'07, AAAI Press (2007) 1434—1439.

18. Stocker, M., Smith, M.: Owlgres: A Scalable OWL Reasoner. In Proceedings of the Fifth OWLED
Workshop on OWL: Experiences and Directions, Karlsruhe, Germany, October 26-27, 2008.

19. Bishop, B., Bojanov, S.: Implementing OWL 2 RL and OWL 2 QL. In Proceedings of the 8th Inter-
national Workshop on OWL: Experiences and Directions (OWLED 2011), San Francisco, California,
USA, June 5-6, 2011.

20. Narayanan, S., Catalyurek, U., Kurc, T., Saltz, J.: Parallel Materialization of Large ABoxes. In: Pro-
ceedings of the 2009 ACM symposium on Applied Computing. SAC'09, New York, NY, USA, ACM
(2009) 1257—1261.

21. Urbani, J., Kotoulas, S., Massen, J., van Harmelen, F., Bal, H.: Webpie: A web-scale parallel infer-
ence engine using mapreduce. Web Semantics: Science, Services and Agents on the World Wide Web
10 (2012).

22. Hogan, A., Pan, J., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations for Distributed
Reasoning over 1 Billion Linked Data Triples. In: 9th International Semantic Web Conference
(ISWC). (November 2010).

