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Preface

Nowadays, Workflow Management Systems (WfMSs) and, more generally, Pro-
cess Management Systems (PMSs) and Process-aware Information Systems
(PAISs), are widely used to support many human organizational activities, rang-
ing from well-understood, relatively stable and structured processes (supply
chain management, postal delivery tracking, etc.) to processes that are more
complicated, less structured and may exhibit a high degree of variation (health-
care, emergency management, etc.). Every aspect of a business process involves
a certain amount of knowledge which may be complex depending on the domain
of interest. The adequate representation of this knowledge is determined by the
modeling language used. Some processes behave in a way that is well understood,
predictable and repeatable: the tasks are clearly delineated and the control flow
is straightforward. Recent discussions, however, illustrate the increasing demand
for solutions for knowledge-intensive processes, where these characteristics are
less applicable.

The actors involved in the conduct of a knowledge-intensive process have to
deal with a high degree of uncertainty. Tasks may be hard to perform and the
order in which they need to be performed may be highly variable. Modeling
knowledge-intensive processes can be complex as it may be hard to capture at
design-time what knowledge is available at run-time. In realistic environments,
for example, actors lack important knowledge at execution time or this knowl-
edge can become obsolete as the process progresses. Even if each actor (at some
point) has perfect knowledge of the world, it may not be certain of its beliefs at
later points in time, since tasks by other actors may change the world without
those changes being perceived. Typically, a knowledge-intensive process cannot
be adequately modeled by classical, state of the art process/workflow model-
ing approaches. In some respect there is a lack of maturity when it comes to
capturing the semantic aspects involved, both in terms of representing them
and in terms of reasoning about them. The main focus of the 1st International
Workshop on Knowledge-intensive Business Processes (KiBP 2012) was investi-
gating how techniques from different fields, such as Artificial Intelligence (AI),
Knowledge Representation (KR), Business Process Management (BPM), Service
Oriented Computing (SOC), etc., can be combined with the aim of improving
the modeling and the enactment phases of a knowledge-intensive process. The
1st International Workshop on Knowledge-intensive Business Processes (KiBP
2012) was held as part of the program of the 2012 Knowledge Representation &
Reasoning International Conference (KR 2012) in Rome, Italy, in June 2012.

The workshop was hosted by the Dipartimento di Ingegneria Informatica, Au-
tomatica e Gestionale Antonio Ruberti of Sapienza Universitá di Roma, with fi-
nancial support of the University, through grant 2010-C26A107CN9 TESTMED,
and the EU Commission through the projects FP7-258888 Greener Buildings and
FP7-257899 Smart Vortex.

This volume contains the 5 papers accepted and presented at the workshop.
Each paper was reviewed by three members of the internationally renowned Pro-
gram Committee. In addition, a further paper was invited for inclusion in the
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workshop proceedings and for presentation at the workshop. There were two
keynote talks, one by Marlon Dumas (Institute of Computer Science, Univer-
sity of Tartu, Estonia) on “Integrated Data and Process Management: Finally?”
and the other by Yves Lespérance (Department of Computer Science and En-
gineering, York University, Canada) on “A Logic-Based Approach to Business
Processes Customization” completed the scientific program. We would like to
thank all the Program Committee members for their valuable work in selecting
the papers, Andrea Marrella for his valuable work as publication and publicity
chair of the workshop, and Carola Aiello and the consulting agency Consulta
Umbria for the organization of this successful event.

June 15, 2012
Rome, Italy

Arthur H.M. ter Hofstede
Massimo Mecella

Sebastian Sardina
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Integrated Data and Process Management: Finally?

Marlon Dumas

University of Tartu, Estonia
marlon.dumas@ut.ee

Abstract. Contemporary information systems are generally built on the princi-
ple of segregation of data and processes. Data are modeled in terms of entities
and relationships while processes are modeled as chains of events and activities.
This situation engenders an impedance mismatch between the process layer, the
business logic layer and the data layer. We discuss some of the issues that this
impedance mismatch raises and analyze how and to what extent these issues are
addressed by emerging artifact-centric process management paradigms.

1 The Data Versus Process Divide

Data management and process management are both well-trodden fields – but each in
its own way. Well-established data analysis and design methods allow data analysts to
identify and to capture domain entities and to refine these domain entities down to the
level of database schemas in a seamless and largely standardized manner. Concomi-
tantly, database systems and associated middleware enable the development of robust
and scalable data-driven applications, while contemporary packaged enterprise systems
support hundreds of business activities on top of shared databases.

In a similar vein, well-documented and proven process analysis and design methods
allow process analysts to identify and to capture process models at different levels of
abstraction, ranging from high-level process models suitable for qualitative analysis and
organizational redesign down to the level of executable processes that can be deployed
in Business Process Management Systems (BPMS).

But while data management and process management are each well supported by
their own body of mature methods and tools, these methods and tools are at best loosely
integrated. For example, when it comes to accessing data, BPMS typically rely on
request-response interactions with database applications or packaged enterprise sys-
tems. Typically, data fetched from these systems are copied into the “working memory”
of the BPMS. The data in this working memory are then used to evaluate business rules
relevant to the execution of the process, and to orchestrate both manual and automated
work. But the burden of synchronizing the working data maintained by the BPMS with
the data maintained by the underlying systems is generally left with the developers.

More generally, the “data vs. process” divide leads to an impedance mismatch be-
tween the data layer, the business logic layers and the process layer, which in the long
run, hinders on the coherence and maintainability of information systems. In particular,
the data vs. process divide has the following effects:

– Process-related and function-related data redundancy. The BPMS maintains data
about the state of the process, since these data are needed in order to enable the
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system to schedule tasks, react to events and to evaluate predicates attached to
decision points in the process. On the other hand, data entities manipulated by
the process are stored in the database(s) underpinning the applications with which
the BPMS interacts. Hence, the state of the entities is stored both by the BPMS
and by the underlying applications. In other words, data are managed redundantly
at the database layer and at the process layer, thereby adding development and
maintenance complexity.

– Business rules fragmentation and redundancy. Some business rules are encoded
at the level of the business process, others in the business logic layer (e.g. using a
business rules engine) and others in the database (in the form of triggers or integrity
constraints). Worst, some rules are encoded at different levels depending on the
type of rule and the data involved. This fragmentation and redundancy hampers
maintainability and potentially leads to inconsistencies.

The effects of this mismatch are perhaps less apparent when a one-to-one mapping
exists between the instances of a given process and the entities of a given entity type.
This is the case for example of a typical invoice handling process where one process
instance (also called a “case”) corresponds exactly to one invoice. In this context, the
state of a process instance maps neatly to the state of an entity. Ergo, the data required
by the process, for example when evaluating branching conditions, is restricted to the
data contained in the associated entity (i.e. the invoice in this example) and possibly to
the state of other entities within the logical horizon [5] of the said entity – e.g. the Pur-
chase Order (PO) associated to the invoice. Accordingly, collecting the data required
for evaluating business rules required by this process is relatively simple, while syn-
chronizing the state of the process instance with the state of its associated entity (at the
business logic and data layers) does not pose a major burden.

The impedance mismatch however becomes much more evident when this one-to-
one correspondence between processes and entities does not hold. Consider for example
a shipment process where a single shipment may contain products for multiple cus-
tomers, ordered by means of multiple purchase orders (POs) and invoiced by means of
multiple invoices – perhaps even multiple POs and multiple invoices per customer in-
volved. Furthermore, consider the case where the products requested in a given PO are
not necessarily sent all in a single shipment, but instead may be spread across multiple
shipments. In this setting, the effects of a customer canceling a PO are not circumscribed
to one single instance of the shipment process. Similarly, the effects of a delayed ship-
ment are not restricted to single PO. Consequently, business rules related for example
to cancellation penalties, compensation for delayed deliveries or prioritization of ship-
ments become considerably more difficult to capture, to maintain and to reason about,
as exemplified in numerous case studies [1, 9, 8, 3]. Traditional process management
approaches quickly hit their limit when dealing with such processes. The outcome of
this limitation is that a significant chunk of the “process logic” has to be pushed down to
the business logic layer (e.g. in the form of business rules) – which essentially voids the
benefits of adopting a structured process management approach supported by a BPMS.

Service-oriented architectures (SOAs) facilitate the inter-connection of applications
and application components. Their emergence has greatly facilitated the integration of
data-driven and process-driven applications. SOAs have also enabled packaged enter-
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prise software vendors to “open the box” by providing standardized programmatic ac-
cess to the vast functionality of their systems. But per se, SOAs do not address the prob-
lem of data and process integration, since data-centric services and process-centric ser-
vices are still developed separately using different methods. A case in point is Thomas
Erl’s service-oriented design method [4], which advocates that process-centric services
should be strictly layered on top of data-centric (a.k.a. entity-centric) services. Erl’s
approach consists of two distinct methods for designing process-centric services and
entity-centric services. This same principle permeates in many other service-oriented
design methods [7]. Such approaches do not address the issues listed above. Instead,
they merely reproduce the data versus process divide by segregating data-centric ser-
vices and process-centric services.

2 The Artifact-Centric Process Management Paradigm

This talk discusses emerging approaches that aim at addressing the shortcomings of the
traditional data versus processes divide. In particular, the keynote discusses the emerg-
ing artifact-centric process management paradigm [1, 2] and how this paradigm, in con-
junction with service-oriented architectures and associated platforms, enable higher lev-
els of integration and higher responsiveness to process change.

Mainstream process modeling notations such as BPMN can be thought as be-
ing activity-centric in the sense that process models are structured in terms of flows
of events and activities. Modularity is achieved by decomposing activities into sub-
processes. Data manipulation is captured either by means of global variables defined
within the scope of a process or subprocess, or by means of conceptually passive data
objects that are created, read and/or updated by the events and activities in the process.
In contrast, the database applications and/or enterprise systems on top of which these
processes execute are usually structured in terms of objects that encapsulate data and/or
behavior. This duality engenders the above-mentioned impedance mismatch between
the process layer and the business logic and data layers.

In contrast, artifact-centric process modeling paradigms aim at conceptually inte-
grating the process layer, the business logic and the data layer. Their key tenet is that
business processes should be conceived in terms of collections of artifacts that encap-
sulate data and have an associated lifecycle. Transitions between these states in this
lifecycle are triggered by events coming from human actors, modules of an enterprise
system (possibly exposed as services) and possibly other artifacts, thus implying that
artifacts are inter-linked. In this way, the state of the process and the state of the entities
are naturally maintained “in sync” and business processes are conceived as network
of inter-connected artifacts that may be connected according to N-to-M relations, thus
allowing one to seamlessly capture rules spanning across what would traditionally be
perceived to be multiple process instances.

The talk also discusses ongoing efforts within the Artifact-Centric Service Inter-
operation (ACSI) project-2. This project aims at combining the artifact-centric process
management paradigm with SOAs in order to achieve higher levels of abstraction dur-
ing business process integration across organizational boundaries. The key principle of
-2 http://www.acsi-project.eu/
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the ACSI project is that processes should be conceived as systems of artifacts that are
bound to services. The binding between artifacts and services specifies where should
the data of the artifact be pushed to, or where it should be pulled from, and when. In
the ACSI approach, process developers do not reason in terms of tasks that are mapped
to request-response interactions between a process and the underlying systems. Instead,
they reason in terms of artifacts, their lifecycles, operations and associated data. Arti-
fact lifecycles are captured based on a meta-model – namely Guard-Stage-Milestone
(GSM) – that allows one to capture behavior, data querying and manipulation in a uni-
fied framework [6].

Upon this foundation, the ACSI project is building a proof-of-concept platform that
supports the definition and execution of artifact-centric business processes. Challenges
addressed by ACSI include the problem of reverse-engineering artifact systems from
enterprise system logs – for the purpose of legacy systems migration – and the verifica-
tion of artifact-centric processes, which by nature are infinite-state systems due to the
tight integration of processes and data.

Acknowledgments. This paper is the result of collective discussions within the ACSI
project team. Thanks especially to Rick Hull for numerous discussions on this topic.
The ACSI project is funded by the European Commission’s FP7 ICT Program.
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A Logic-Based Approach to
Business Process Customization

Yves Lespérance

Department of Computer Science and Engineering,
York University, Toronto, Canada

lesperan@cse.yorku.ca

Abstract. In this invited lecture, I will present a logic-based approach to mod-
eling and engineering processes that arose from work in AI. The approach is
based on a logical framework for modeling dynamic domains called the Situation
Calculus. It also uses a language called ConGolog for specifying complex pro-
cesses on top of the Situation Calculus. By using such a logical framework we
can provide clear formal characterizations of problems that arise in the area of
business process design and management. Available automated reasoning tech-
niques can also be used to analyze and synthesize processes. After introducing
the framework, I will discuss how one can use it to model process customization,
where one customizes a generic process to satisfy certain constraints required by
a client. I will show how we can allow for uncontrollable actions by the process,
and then define a notion of maximally permissive supervisor for such a process,
i.e., a supervisor that constrains the process as little as possible, while ensuring
that the desired constraints are satisfied. We have shown that such a maximally
permissive supervisor always exist and is unique. Finally, I will briefly discuss
how one can use the framework to model the problem of process orchestration,
where one wants to orchestrate a set of available services to produce a desired
process.



Automatic Detection of Business Process
Interference

N.R.T.P. van Beest1, E. Kaldeli2, P. Bulanov2, J.C. Wortmann1, and
A. Lazovik2

1 Department of Business & ICT, Faculty of Economics and Business,
University of Groningen

Nettelbosje 2, 9747 AE Groningen, The Netherlands
2 Distributed Systems Group, Johann Bernoulli Institute, University of Groningen,

Nijenborgh 9, 9747 AG, The Netherlands

Abstract. Today’s organizations are characterized by long-running dis-
tributed business processes, which involve different stakeholders and share
common resources. One of the main challenges posed in such a highly dis-
tributed setting comes from the interference between different processes
that are running in parallel. During execution of a business process, a
data modification caused by some external process may lead to erroneous
and undesirable business outcomes. In order to address this problem, we
propose to annotate business processes with dependency scopes, which
cover critical sections of the process. Erroneous execution can be pre-
vented by executing intervention processes, which are triggered at run-
time. However, for complex processes with a large number of activities
and many interactions with the environment, the manual specification
of the appropriate critical sections can be particularly time-consuming
and error-prone. To overcome this limitation, we present an algorithm
for automating the discovery of critical sections. The proposed approach
is applied on a real case-study of a BP from the Dutch e-Government.

1 Introduction

Modern private and public organizations are moving from traditional, propri-
etary and locally managed Business Process Management Systems (BPMS) to
BPMS where more and more tasks are outsourced to third party providers and
resources are shared among different stakeholders. Often, this is realized by the
emergent paradigms such as Service Oriented Computing (SOC) and cloud com-
puting. As a result, business processes (BPs) can no longer be considered in
isolation, since data can be simultaneously accessed and modified by different
external processes. Disregarding the interdependencies with external actors and
other processes may lead to inconsistent situations, potentially resulting in un-
desirable business outcomes. The situation where undesirable business outcomes
are caused by data modifications of some other concurrently executing process is
known as process interference [1, 2]. The problem of process interference is par-
ticularly relevant for knowledge-intensive BPs, where shared data are accessed
and modified by many processes, involving a large number of stakeholders.
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E-Government is a typical area characterized by multiple concurrently exe-
cuting knowledge-intensive processes. These processes access and modify com-
monly shared resources such as citizen data, information reported by external
contracted parties, etc. In such a context, a “think globally, act locally” approach
has to be adopted: each BP instance has to take its own action, independently of
other processes, based on how its knowledge about the world evolves during run-
time, and how this knowledge affects the next tasks in its workflow. For example,
important data used by subsequent tasks may become obsolete, and conditions
on which the process relies may not hold anymore. Therefore, a BP has to be
continuously informed about changes concerning that data, reason about them,
and react accordingly in order to be able to ensure its consistency with the new
state of the world.

In the Netherlands, a first attempt has been made to provide a Software
as a Service (SaaS) solution for the local e-Government (www.govunited.nl).
One of the processes that is proposed as a candidate for this initiative concerns
the process of the Dutch Law for Societal Support, known as the WMO law.
This law is intended to offer support for people with a chronic disease or a
disability, by providing facilities (usually by external parties) such as domestic
care, transportation, a wheelchair or a home modification. Naturally, several
different instances of the WMO process can be executed concurrently, together
with other governmental processes, which may access and modify the same data.
For example, during the execution of the WMO process, the citizen may move
to a different address, the medical status of the citizen may alter, the eligibility
criteria may change because of some new directive etc. These changes may pass
unnoticed by BPs which rely upon them, and consequently result in unexpected
behavior and undesirable business outcomes. The consequences are often noticed
only by end customers [3], by erroneous orders or invoices, customer requests that
are never handled, etc.

Traditional verification techniques for workflow and data-flow (e.g. [4]) are
not sufficient for ensuring the correctness of such BPs, as they assume a closed
environment where no other process can use a service that affects the data used
by that organization. In addition, most work about resolving process interference
refers to failing processes or concerns design-time solutions [5, 6]. Consequently,
neither of these solutions is suitable for a highly dynamic SaaS environment. In
[2], a run-time mechanism is proposed, where vulnerable parts of the process are
monitored in order to manage interferences by employing intervention processes.
Dependency scopes (DS) are used to specify a critical section of the BP, whose
correct execution relies on the accuracy of a volatile process variable, i.e. a
variable that can be changed externally during the execution of the process. If
a volatile variable is modified by some exogenous factor during execution of the
activities in the respective DS, an intervention process (IP) is triggered, with
the purpose of resolving the potential execution problems stemming from this
change event. However, for complex processes with a large number of activities
and many interactions with the environment, the task of manually annotating
a BP with DSs becomes difficult, time-consuming, and prone to errors. Thus,
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critical parts of the BP whose correct execution is dependent on the validity of
some volatile variable may be neglected.

In this paper, we extend the initial idea presented in [2], by systematizing
the main methodology, and providing an algorithm which automates the task of
identifying the critical parts of a BP. To this end, we concretize the proposed
approach by describing the semantic extensions to the BP modelling that allow
the specification of DSs for resolving runtime process errors. Given a block-style
BP specification and some basic information about the services it uses (i.e. the
input-output parameters and internal state variables), we show how the parts
of the process that are covered by DSs can be automatically inferred. This way,
the task of the BP designer can be highly facilitated.

The remainder of this paper is organized as follows. Section 2 describes a pos-
sible interference scenario on a real case-study taken from Dutch e-Government,
which plays the role of our running example. In Section 3 the basic definitions re-
quired for the proposed approach are presented. The algorithm for the automatic
identification of critical sections is described in Section 4. Section 5 provides an
overview of related work, and the overall conclusions are drawn in Section 6.

2 A Process Interference Case-study

In order to illustrate the effects of process interference and the potential ways to
overcome them, let us consider a real case-study from the Dutch e-Government
regarding the WMO law, as described in [2]. The BP under investigation (referred
to as WMO process) concerns the handling of the requests from citizens at one
of the 430 municipalities in the Netherlands. In this section, the WMO process
is described as used by one of the municipalities. Furthermore, an example is
provided, showing the required DSs along with the required IPs.

2.1 WMO Process Description

The WMO process (shown in Figure 1) starts with the submission of an appli-
cation for a provision by a citizen. After receiving the application at the munic-
ipality office, a home visit is executed by an officer, in order to gather a detailed
understanding of the situation. After the home visit, additional information on
the citizen’s health may still be required, which can be obtained via a medical
advice provided by e.g. a general practitioner. Based on this information, a de-
cision is made by the municipality to determine whether the citizen is eligible to
receive the requested provision or not. In case of a negative decision, the citizen
has the possibility for appeal. In case of a positive decision, the process contin-
ues and the requested provision will be provided. For domestic help, the citizen
has the choice between “Personal Budget” and “Care in Kind”. In case of a
“Personal Budget”, the citizen periodically receives a certain amount of money
for the granted provision, and in case of “Care In Kind” suppliers who can take
care of the provision are contacted. For obtaining a wheelchair, first the detailed
requirements are acquired before sending the order to the supplier. The home
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Fig. 1: The WMO process

modification involves a tender procedure to select a supplier that provides the
best offer. If the selected tender is approved by the municipality, the order is
sent to the selected supplier. After delivery of the provision, an invoice is sent
by the supplier to the municipality. Finally, the invoice is checked and paid.

2.2 Interference Examples

The request for a wheelchair or a home modification may take up to 6 weeks
until the delivery of the provision. These processes depend on the correctness of a
number of process variables, like the address of the citizen and the content of the
decision. However, these process variables may be changed by another process
running in parallel, independently from the WMO process, and are, therefore,
volatile. A change in either of these process variables (e.g. address) may have
potentially negative consequences for the WMO process, due to its dependencies
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Fig. 2: WMO dependency scopes

on those variables, and lead to erronous outcomes. Such situations are typical
examples of process interference.

For example, the requirements of a wheelchair may depend on certain char-
acteristics of the citizen’s home. Consequently, an address change after “Acquire
requirements” might result in a wheelchair that does not fit the actual require-
ments. Similarly, if the citizen moves to a nursing home after “Check tender
with decision”, the home modification is not necessary anymore. However, the
supplier is not notified of this address change and the municipality is notified
through a different process, which is external to the WMO process. As a result,
unless some action is taken to cancel or update the order, the WMO process will
proceed with the home modification. In order to guard for changes to the volatile
process variables, DSs can be defined, covering those activities for which such a
change poses a potential risk of interference. In Figure 2, a part of the process is
annotated with DSs using a Process Modeller tool developed for the graphical
modeling of BPs. The tool provides a selection of standard control blocks like
flow, switch etc., with the extra support of design tools for modeling DSs. For
the implementation details see [7].

The activities in DS1 rely on the accuracy of the address. If the address
changes, the DS should be triggered, and potentially some recovery activities
need to be executed, depending on the state of the BP at that point. For example,
if the address change is detected before the order for a wheelchair is sent to the
supplier, it is sufficient to execute the IP as shown in Figure 3a. However, if
the order is already sent to the supplier, some additional activities are required
(Figure 3b). First of all, the current order should be put on hold. After acquiring
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Send order to 

supplier
Home visit

Receive delivery 

confirmation

Acquire 
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b)

[Requirements

Unchanged]

[New

Requirements]

Home visit
Acquire 

requirements
Pause order

Receive delivery 

confirmation

Send order to 

supplier
Cancel order

Resume order

Fig. 3: WMO intervention examples

the requirements again, it is evaluated whether there is a change. If not, the order
can be resumed, otherwise the old order should be cancelled and a new order
should be sent. The specification of IPs is outside the scope of this paper (for a
detailed discussion about the specification of IPs see [2] and [7]).

3 Basic Definitions

In this section, we provide the basic definitions regarding the BP representation
extended with the support of DSs. First, we define the Service Repository (SR),
which is a registry that keeps semantic information about a set of services that
are accessible to the client who is executing a specific BP. The SR plays the role
of a pool of service descriptions and instances, which are used as the building
elements of different process specifications. Service descriptions specify the basic
functionalities provided by a service. Service instances refer to specific providers,
which offer a service whose functionality conforms to some service description.

The service descriptions specify the operations offered by the respective ser-
vice type and are represented in terms of simple semantics. Service instances re-
fer to specific providers of a certain service description. The service descriptions
can be extracted from standard semantic languages for representing Web Ser-
vices, such as WSDL-S (www.w3.org/Submission/WSDL-S) and OWL-S (www.
w3.org/Submission/OWL-S). The service descriptions capture the Input-Output
behavior of the operations, i.e. the type of the input parameters inputs and of
the expected outputs, as well as some information about its internal variables
(similar to Locals in OWL-S). No extra semantic information is required to au-
tomatically identify the critical sections of a BP.

Definition 1 (Service Repository (SR)). A Service Repository SR=(SD ,
SI ) is a registry, which keeps a set of Service Descriptions SD, and a set of Ser-
vice Instances SI . A Service Description sd ∈ SD is a tuple sd = (sdid ,O ,SV ),
where sdid is a unique identifier, O is a set of service operations, and SV is a
list of variables, each ranging over a finite domain. These variables correspond to
state variables internal to the service, whose value can be changed by the service
operations. Each service operation o ∈ O is a tuple o = (id(o), in(o), out(o))
where:
– id(o) is the identifier of the operation
– in(o) is a list of variables that play the role of input parameters to o, ranging
over finite domains
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– out(o) is a list of variables that play the role of output parameters to o,
ranging over finite domains

A Service Instance si ∈ SI is a tuple si = (iid(si), st(si)):
– st(si) is the unique identifier (service type) of the service description sd ∈ SD
this instance complies with

– iid(si) is an instance identifier. For each pair of service instances si1 , si2
∈ SI that have the same service type st(si1 ) = st(si2 ), iid(si1 ) 6= iid(si2 ).

The set of state variables involved in the SR may be used by different running
process instances, and their value may be changed by any process that has access
to the respective setting service operation.

In the followings, the working definition of a Business Process (BP) is pro-
vided. Although the WMO process (Figure 1) is represented in BPMN-notation
for readability, the core BP representation used in this paper is block-structured
[8], and uses the basic BPEL constructs of BPEL, enriched with DSs. As such,
the syntax of the BP is block-structured and unambiguously defined, so that the
BP can be directly executed by an orchestrator [9], and automatically parsed to
identify the parts of the BP that should be covered by a DS. The representation
is ultimately a tree structure where a block can have other blocks as children,
and for each block its parent can be obtained. All activities included in the BP
are references to service instances that exist in the Service Repository.

Definition 2 (Business Process (BP)). Given a Service Repository SR=
(SD, SI), a Business Process is a tuple BP = (PV ,E ), with E being a pro-
cess element E = (ACT | SEQUENCE | FLOW | SWITCH | REPEAT |
WHILE | DS ), where:

– PV = PVi ∪ PVe is a set of variables ranging over finite domains.
- PVi is a set of internal variables, which are declared at the BP level (BP-

specific). A subset of PVi are passed as input parameters to the entire BP,
in which case we write BP(pv1 , . . . , pvn), where pvi ∈ PVi and pvi can be
initialized with specific values at execution time.

- PVe is a set of external variables, which refer to state variables declared
in the SR. An external variable v ∈ PVe is a reference sdid .iid .vid, where
sdid is the identifier of a service description sd = (sdid ,O ,SV ) ∈ SD, iid
is the identifier of a service instance si = (iid , sdid) ∈ SI , and vid is the
identifier of some state variable v ∈ SV .

– ACT is a process activity, which represents the invocation of a service op-
eration. For instance, in BPEL it may correspond to an invoke, receive,
reply, etc. Every ACT refers to an operation that exists in SI . It is a tuple
act = (id(act), in(act), out(act)), where id(act) is a reference sdid .iid .oid,
with sdid being an identifier of a service description sd = (sdid ,O ,SV ) ∈
SD, iid the identifier of a service instance si = (iid , sdid) ∈ SI , and oid is the
identifier of some operation o ∈ O. The input and output parameters of act
refer to the inputs and outputs of the respective oid, i.e. in(act) = in(oid) and
out(act) = out(oid). The input (output) parameters of all activities in the BP
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form the sets IP (OP). Input variables can be assigned with constant values or
other process variables: id(act)(ip1 := v1 , . . . , ipn := vn), where ipi ∈ in(act),
vi ∈ (PV ∪OP), or vi is a value compliant with ipi ’s domain. There are also
two special types of activities: no-op, which represents an idle activity, and
exit, whose execution causes the entire BP to halt.

– SEQUENCE refers to a totally ordered set of process elements, which are
executed in sequence: SEQUENCE{e1 . . . en}, where ei is a process element.

– FLOW represents a set of process elements, which are executed in parallel:
FLOW {e1 . . . en}, where ei is a process element.

– SWITCH is a set of tuples {(c1 , e1 ), . . . , (cn , en)}, where ei is a process
element and ci is a logical condition C ::= var ◦ v, where var ∈ (PV ∪OP),
v is some constant belonging to var’s domain, and ◦ is a relational operator
(◦ ∈ {=, <,>, 6=,≤,≥}). All ci participating in a SWITCH refer to the same
variable var and are mutually exclusive.

– REPEAT represents a loop structure, and is defined as a tuple (pe, c{pei}),
where c is a logical condition as already defined, and pe, pei are process ele-
ments. c is evaluated just after the end of pe, and if it holds then pe is repeated,
after the execution of the optional pei .

– DS is a dependency scope as defined in Definition 3.

3.1 Dependency scopes

The DS is based on a guard-verify structure to deal with modification events
due to factors exogenous to the BP, e.g. due to some other process execution
which affects some data on which the BP relies. The critical part of the BP is
included in the guard block, while the verify block specifies the types of events
that require intervention. The mechanism of event recording and handling are
out of scope of this paper (for a system dealing with process-generated events see
e.g. [10]). Whenever such an event occurs, the control flow is transferred to the
verify block, and the respective goal is activated. Once the resulting IP finishes
execution in the updated environment, the control flow of the BP continues
from the point following the guard-verify structure, unless it is explicitly forced
to terminate.

Definition 3 (Dependency Scope (DS)). Given a SR = (SD ,SI ) and a
BP = (PVi ∪ PVe ,E ), a dependency scope is a tuple DS = 〈guard(VV ){CS},
verify({(ci , IPi | terminate(IPi))})〉, where:

– guard(VV ) indicates the set of volatile variables VV ⊂ PVe whose modifi-
cation triggers the verification of the DS, and CS a process element of BP
which is called the Critical Section. Whenever during the execution of CS a
modification event regarding the value of a vv ∈ VV is received, the verify part
of the DS is triggered, and BP’s execution is interrupted.

– verify({(ci , IPi)}) comprises a set of tuples consisting of a logical condition ci
and an intervention process IPi in compliance with Definition 2 to be pursued if
ci holds. Providing a case condition is optional, with the default interpretation
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being ci = TRUE. IPi specifies a BP which ensures the satisfaction of the
properties that reflect the state right after the final activity of CS. After the
interruption of the BP, some IPi is executed, and then BP is resumed just
after CS (and from any other parallel branches that were interrupted).

– terminate(IP) forces the rest of BP’s execution to be aborted after completing
IP’s execution.

Following Definition 3, the DS specification representing DS1 of Figure 2 is
as follows, where IPa, IPb and IPc refer to the respective intervention processes,
which take care of repairing the erroneous execution in each of the cases.

<ds>
<guard>

<variables >
<variable name="address" dataType="dt:address"/>
<variable name="medCond" dataType="dt:medInfo"/>

</variables >
<criticalSection >

<!-- Subprocess covered by DS1 as in Figure 2 -->
</criticalSection >

</guard >
<verify >

<case condition="address.county!=‘Groningen ’">
<terminate >

<invoke name="IPa"/>
</terminate >

</case>
<case condition="address.county=‘Groningen ’&AND;medCond!=‘deceased ’">

<invoke name="IPb"/>
</case>
<case condition="medCond=‘deceased ’">

<terminate >
<invoke name="IPc"/>

</terminate >
</case>

</verify >
</ds>

According to DS1 , if a modification event regarding the address or the medical
condition is received within the scope of the guarded subprocess, different IPs are
executed, depending on the state of execution and the kind of modification that
has occurred. For example, if the address change indicates that the citizen has
moved to another municipality, then IPa includes canceling the order (either for
a wheelchair or home modification) if one has already been issued, and sending a
notification to the city hall. Similarly, IPb takes care of the situation where the
customer has moved within the range of the municipality, and IPc in case his
medical condition has changed to ‘deceased’. In the following section we describe
how the guard(VV ){CS} part of a DS description can be derived automatically,
by parsing the BP specification.

4 Automatic Identification of Critical Sections

The algorithm of automated generation of the parts of a BP covered by a DS is
presented in Algorithm 1 below. The algorithm guarantees that the computed



Automatic Detection of Business Process Interference 15

CSs are elements of the BP in compliance with Definition 2. CSs cover all activi-
ties that are directly or indirectly dependent on the same set of volatile variables
VV . That is, they either use a vv ∈ VV as input or use the output of another
activity, which is dependent on vv . These activities are referred to as Dependent
Activities (DA). In order to ensure that important change events will not pass
untreated, any part of the process in a potential execution path between two
activities dependent on the same VV should also be covered by the respective
CS. This is necessary to take care of any modification of vv that occurs dur-
ing the execution of this intermediate part, since the modification may require
the cancelation or repetition of some preceding part of the BP which relied on
some vv ∈ VV (e.g. performing a new visit to the new house if the address
has changed), and which is used by a succeeding element (e.g. to calculate the
characteristics of the requested wheelchair). However, branches in switch or flow
constructs that are not on a potential path between two activities dependent on
some vv , should not be unnecessarily included in the respective CS, in order to
avoid unnecessary invocation of intervention processes.

a) b)

c)

Fig. 4: CS creation examples

In Figure 4, some examples of CSs are provided to illustrate the properties
described above. The shaded activities are dependent on VV and should be
covered by a CS. The CSs are indicated by a dashed line. In case (a), only
the specific branches of the switch-constructs that comprise dependent activities
are included in the CS. In situation (b), however, the second switch has to
be covered entirely by a CS, because the last activity is dependent on VV as
well. Any modification event regarding a vv ∈ VV that occurs during the upper
branch (which is not dependent on VV ) has still to be dealt with, since the last
activity may use a a variable that is a result of some dependent activities before
the switch, which produced this result based on the obsolete vv . In situation (c),
both branches of the first switch contain activities that are not dependent on
VV . However, as they both are on a path between activities that are dependent
on VV , the entire switch is covered by a CS.

The main function of Algorithm 1 is extractScopes, which takes as an input a
BP specification in accordance with Definition 2 and the list of volatile variables
VV . extractScopes returns a list of tuples 〈VVi ,CSi〉, which correspond to the
guard parts of all DSs in the BP. Given a BP = (PVi ∪ PVe ,E ), VV = PVe .
That is, all state variables that are declared in the SR and used in the BP should
be guarded, since their modification may be a source of erroneous results. The
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BP is treated as a tree (represented in XML), where the root is the outermost
element in the specification, and the leaves are the activities.

The outermost loop in the function extractScopes iterates over the list of
volatile variables VV . For each vv ∈ VV , critical sections are extracted sepa-
rately. Identical CSs for different variables are merged into a united CS at the
end by mergeScopes. The first step (line 4) is to find all activities and switch–
blocks that depend directly or indirectly on the volatile variable vv , by calling
the function getDependentElems. First (line 18), all activities for which vv is
assigned to some of their input parameters directly or by transitivity are added
to the dependent elements DE . Then (line 24), DE is augmented by adding all
switch–blocks whose condition is either on vv , or some variable produced by the
already considered activities. All elements in DE are arranged in a breadth-first
order as they appear in the BP. The next step in extractScopes is to iterate
through the list DE . In the inner loop, for each pair of elements ei, ej , it is
checked whether their minimal common ancestor is of type sequence. If so, then
the function getTempCS is called, which returns a set of elements that are can-
didates for being CSs with respect to the variable vv , and lie between ei and
ej . Then, ej can be removed from DE , since subsequent inspections on it are
redundant, as the appropriate CSs covering it have already been computed.

Function getTempCS(ei , ej ,BP) first calls getPathBtw to compute the path
between ei and ej (line 31), which comprises all elements that are part of the
sequence between ei and ej , including the special markers StartBranchEl and
EndBranchEl . These markers indicate the start (splits) and end points (joins)
of branching elements. Consequently, a path is a list with members of type Item
(line 44), where an item is either a process element or a BranchElMarker . Mark-
ers are added in the path only if they concern joins (splits) for which the re-
spective split (join) is not encountered during the traversal of the BP from ei
to ej . This way, the markers divide the path into the appropriate sequences of
elements (lines 33 to 39), each of which is a candidate for being a CS.

Function getPathBtw uses the auxiliary function nextItems (not explained
in the algorithm for space reasons), which returns a list consisting of the next
element in the sequence path, and some possible EndBranchEl , if any are en-
countered before the next element is fetched. These are added to the path, and
the process proceeds by fetching the next items (line 45), until the element in
the sequence that contains ej is reached. In the latter case, pathInElem is called,
which traverses the path within this last element until ej is reached. If the ele-
ment containing ej is an activity or sequence, this activity (ej) or the subsequence
till ej (line 52) are returned respectively. If the element is a switch or flow, then
a StartBranchEl marker is added in the list of results, and the branch containing
ej is inspected. pathInElem is called recursively on this branch, and all items in
the path leading to ej are collected in pathj . Consequently, the computation of
the entire path is completed, and returned to getTempCS . The path is traversed
(line 33), and divided into the appropriate CSs: currCS is constructed as a se-
quence of the elements in path, until a marker is met, at which point currCS is
added to the list of candidate CSs.
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Algorithm 1 Automatic computation of the set of the pairs
Guarded={〈VVi ,CSi〉}, consisting of volatile variables and respective ele-
ments that constitute the Critical Sections

1: function extractScopes(BP ,VV ): List[(List[V], E)]
2: for each vv ∈ VV do
3: guardList = ∅
4: DE = getDependentElems(vv ,BP)
5: for each ei ∈ DE do
6: tmpCS = ∅
7: DE = DE .remove(ei)
8: for each ej ∈ DE do
9: if type(minCommonAncestor(ei, ej))=sequence then

10: tmpCS = tmpCS ∪ getTempCS(ei, ej , BP)
11: DE = DE .remove(ej)

12: for tmpCSi ∈ tmpCS do
13: guardList .add(〈{vv}, tmpCSi〉)
14: mergeScopes (guardList)

15: function getDependentElems(vv ,BP): List[Element]
16: varList = {vv}
17: DE = ∅
18: for each ai ∈ BP .getActivities do
19: for each ipi := v ∈ ai .parseInputAssignments do
20: if v ∈ varList then
21: for each opi ∈ out(ai) do
22: varList .add(opi)

23: DE .add(ai); break;

24: for each SWITCHi ∈ BP .getSWITCHelements do
25: ci = SWITCHi .getFirstCondition
26: if ci .getLeftVariable ∈ varList then
27: miDE.add(SWITCHi);

28: return DE

29: function getTempCS(ei , ej ,BP): List[Elem]
30: tmpCSList = ∅
31: path = getPathBtw(ei , ej ,BP)
32: currCS = ∅
33: for each item ∈ path do
34: match type(item)
35: case Element:
36: currCS .attachInSeq(item)

37: case BranchElMarker:
38: tmpCSList .add(currCS)
39: currCS = ∅
40: return tmpCSList
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41: function getPathBtw(ei , ej ,BP): List[Item]
42: currElem = ei
43: while ¬ currElem.contains(ej) do
44: path.append(currItems)
45: currItems = nextItem(currElem, ei ,BP)
46: currElem = currItems.getElement
47: if currItems = ∅ then return ∅
48: path.append(pathInElem(currElem, ej ,BP))
49: return path

50: function pathInElem(el , endEl ,BP): List[Item]
51: match type(el)
52: case activity:
53: return {el}
54: case sequence:
55: return el .subsequenceTill(endEl)

56: case SWITCH ∨ flow:
57: pathj = {StartBrEl}
58: branchj = el .getBranchWith(endEl)
59: return pathj .append(pathInElem(branchj , endEl ,BP)

60: return ∅

Once the list of temporary CSs tmpCS regarding a volatile variable vv is
computed as described above, extractScopes proceeds with constructing the re-
spective guardList consisting of tuples 〈{vv}, tmpCSi〉 (line 12). After repeating
the process described above for each vv ∈ VV , mergeScopes is called, in order
to clean up the candidate CSs. The following steps are performed in that order:

– If there are two tuples 〈{v1},CS1 〉 and 〈{v2},CS2 〉, where CS1 and CS2 are
identical, then they are replaced by a single tuple 〈{v1, v2}, CS1〉.

– If there are two tuples 〈{v1},CS1 〉 and 〈{v2},CS2 〉, where v1 =v2 and
CS1 .descendantOf (CS2 ), then the former tuple is removed as redundant.

– If a list of tuples on the same volatile variable set 〈VV ,CS1 〉, . . . , 〈VV ,CSn〉
correspond to the branches of a switch, i.e. there is an eswitch = switch{
(CS1 , e1 ), . . . , (CSn , en)}, then these are replaced with a single CS, which cov-
ers the entire switch–element. A similar process is performed for flow branches.

– If a list of tuples on the same volatile variable set 〈VV ,CS1 〉, . . . , 〈VV ,CSn〉
are interrelated through a sequence relation, i.e. there is a seq{CS1 , . . . ,CSn},
then these are replaced with a single CS, which covers the entire sequence.

Algorithm 1 has been applied to the BP specification of the WMO process
represented in Figure 1. The algorithm identified three volatile variables, and
all five critical sections related to them. The total time for parsing the WMO
process specification and computing all CSs is below 100 msec. The discovered
CSs can then be projected on the Process Modeller, as presented in Figure 2.
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5 Related work

Process interference between concurrent BPs occurs frequently in organizations,
and some solutions have been provided in literature, e.g. [2, 5, 6]. Although the
use of temporal logic for data-flow analysis in business processes can ensure
soundness of both the control-flow and the data-flow [4], runtime disruptions due
to external data changes are not accounted for. As a result, process interference
can not be prevented or resolved by such methods.

However, most existing mechanisms to resolve process interference are either
providing a design-time solution, thus requiring that the designer anticipates
all potential problems and ways to overcome them in advance, or are based
on failing processes [5]. A more elaborate solution for process interference in
Service-Oriented Computing is provided by [6], where in addition to failing pro-
cesses, events like exceptional conditions or unavailable activities are covered.
More specifically to cloud computing, an approach for handling faults due to
failing processes or services is presented by [11]. In practice, however, process
interference does not necessarily cause processes to fail. Often, processes may
end up with providing erroneous outcomes as a result of wrong data values, a
problem that is acknowledged in [2].

Interference causes processes to provide erroneous outcomes as a result of
wrong data values. In most cases, however, wrong data values are interpreted a
data integrity problem. Much work has been done with respect to ensuring data
integrity in distributed and concurrent systems. Some techniques for checking
the integrity of distributed and dynamic data stored on the cloud are discussed
in [12, 13], while [14] focus on run-time failures that affect cloud short-lived data.
Although the interference problem is related to concurrent data usage, the cause
of the problem is beyond data integrity issues. Therefore, we focus on problems
that arise at the level of process execution due to the use of outdated data.

6 Concluding Remarks

One of the main challenges posed by the emergent distributed setting of modern
BP Management Systems comes from the interference between different pro-
cesses that access common resources. During execution of a business process, a
data modification caused by some external factor may lead to erronous results,
and should, therefore, be guarded and dealt with. To address this issue, the cor-
rect identification of the sections of a business process, whose correct execution
depends on some volatile variable, is very important. These sections shoul be
guarded upon, so that whenever a modification event is received during their
execution, an appropriate intervention process is executed, in order to restore
the process to a consistent state. However, the task of manual specification of
these critical sections can become cumbersome and prone to errors, especially
for processes with a complex structure, using many shared resources. To facili-
tate this task, we have developed an algorithm, which automatically computes
the appropriate critical sections, given a BP specification and some semantics
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regarding the input-output and the internal state variables of the service oper-
ations used by the process. We have shown how this can be applied in a real
case-study taken from the Dutch e-government. The results can be presented on
a process modelling tool in a graphical way, so as to assist the process designer
in the specification of the necessary dependency scopes in order to ensure the
delivery of correct results by the process.
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Abstract. In this paper we consider processes that run over data stored in a
relational database. Our setting is that of ontology-based data access (OBDA),
where the information in the database is conceptually represented as an ontology
and is declaratively mapped to it through queries. We are interested in verifying
temporal logic formulas on the evolution of the information at the conceptual
level, taking into account the knowledge present in the ontology, which allows
for deducing information that is only implicitly available. Specifically, we show
how, building on first-order rewritability of queries over the system state that is
typical of ontology languages for OBDA, we are able to reformulate the temporal
properties into temporal properties expressed over the underlying database. This
allows us adopt notable decidability results on verification of evolving databases
that have been established recently.

1 Introduction

Recent work in business processes, services and databases brought the necessity of
considering both data and processes simultaneously while designing the system. This
holistic view of considering data and processes together has given rise to a line of
research under the name of artifact-centric business processes [16, 14, 19, 1] that aims
at avoiding the notorious discrepancy of traditional approaches where these aspects are
considered separately [7]. Recently, interesting decidability results for verification of
temporal properties over such systems have been obtained in the context of so-called
Data-centric Dynamic Systems (DCDSs) based on relational technology [12, 6, 4, 5]. In
a DCDS, processes operate over the data of the system and evolve it by executing actions
that may issue calls to external services. The data returned by such external services is
injected into the system, effectively making it infinite state. There has been also some
work on a form of DCDS based on ontologies, where the data layer is represented in
a rich ontology formalism, and actions perform a form of instance level update of the
ontology [3]. The use of an ontology allows for a high-level conceptual view of the data
layer that is better suited for a business level treatment of the manipulated information.

Here we introduce Semantically-Governed Data-Aware Processes (SGDAP), in
which we merge these two approaches by enhancing a relational layer constituted by
a DCDS based system, with an ontology, constituting a semantic layer. The ontology
captures the domain in which the SGDAP is executed, and allows for seeing the data
and their manipulation at a conceptual level through an ontology-based data access
(OBDA) system [8, 18]. Hence it provides us with a way of semantically governing
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the underlying DCDS. Specifically, an SGDAP is constituted by two main components:
(i) an OBDA system [8] which includes (the intensional level of) an ontology, a relational
database schema, and a mapping between the ontology and the database; (ii) a process
component, which characterizes the evolution of the system in terms of a process
specifying preconditions and effects of action execution over the relational layer.

The ontology is represented through a Description Logic (DL) TBox [2], expressed in
a lightweight ontology language of the DL-Lite family [10], a family of DLs specifically
designed for efficiently accessing to large amounts of data. The mapping is defined in
terms of a set of assertions, each relating an arbitrary (SQL) query over the relational
layer to a set of atoms whose predicates are the concepts and roles of the ontology, and
whose arguments are terms built using specific function symbols applied to the answer
variables of the SQL query. Such mappings specify how to populate the elements of
the ontology from the data in the database, and function symbols are used to construct
(abstract) objects (object terms) from the concrete values retrieved from the database.

When an SGDAP evolves, each snapshot of the system is characterized by a database
instance at the relational layer, and by a corresponding virtual ABox, which together
with the TBox provides a conceptual view of the relational instance at the semantic
layer. When the system is progressed by the process component, we assume that at
every time the current instance can be arbitrarily queried, and can be updated through
action executions, possibly involving external service calls to get new values from the
environment. Hence the process component relies on three main notions: actions, which
are the atomic progression steps for the data layer; external services, which can be called
during the execution of actions; and a process, which is essentially a non-deterministic
program that uses actions as atomic instructions. During the execution, the snapshots of
the relational layer can be virtually mapped as ABoxes in the semantic layer. This enables
to: (i) understand the evolution of the system at the conceptual level, and (ii) govern it at
the semantic level, rejecting those actions that, executed at the relational layer, would
lead to a new semantic snapshot that is inconsistent with the semantic layer’s TBox.

In this work, we are interested in verifying dynamic properties specified in a variant
of µ-calculus [15], one of the most powerful temporal logics, expressed over the semantic
layer of an SGDAP. We consider properties expressed as µ-calculus formulae whose
atoms are queries built over the semantic layer. By relying on techniques for query an-
swering in DL-Lite OBDA systems, which exploit FOL rewritability of query answering
and of ontology satisfiability, we reformulate the temporal properties expressed over the
semantic layer into analogous properties over the relational layer. Given that our systems
are in general infinite-state, verification of temporal properties is undecidable. However,
we show how we can adapt to our setting recent results on the decidability of verification
of DCDSs based on suitable finite-state abstractions [5].

2 Preliminaries

In this section we introduce the description logic (DL) DL-LiteA,id and describe the
ontology-based data access (OBDA) framework.
DL-LiteA,id [11, 8] allows for specifying concepts, representing sets of objects, roles,
representing binary relations between objects, and attributes, representing binary rela-
tions between objects and values. The syntax of concept, role and attribute expressions
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in DL-LiteA,id is as follows:

B −→ N | ∃R | δ(U) R −→ P | P−

Here, N , P , and U respectively denote a concept name, a role name, and an attribute
name, P− denotes the inverse of a role, and B and R respectively denote basic concepts
and basic roles. The concept ∃R, also called unqualified existential restriction, denotes
the domain of a role R, i.e., the set of objects that R relates to some object. Similarly, the
concept δ(U) denotes the domain of an attribute U , i.e., the set of objects that U relates
to some value. Note that we consider here a simplified version of DL-LiteA,id where we
distinguish between between objects and values, but do not further deal with different
datatypes; similarly, we consider only a simplified version of identification assertions.

A DL-LiteA,id ontology is a pair (T , A), where T is a TBox, i.e., a finite set of TBox
assertions, and A is an Abox, i.e., a finite set of ABox assertions. DL-LiteA,id TBox
assertions have the following form:

B1 v B2

B1 v ¬B2

(id B Z1, . . . , Zn)

R1 v R2

R1 v ¬R2

(funct R)

U1 v U2

U1 v ¬U2

(funct U)

From left to right, assertions of the first row denote inclusions between basic concepts,
basic roles, and attributes; assertions of the second row denote disjointness between
basic concepts, basic roles, and attributes; assertions of the last row denote identification
(assertions) (IdA), and global functionality on roles and attributes. In the IdA, each Zi
denotes either an attribute or a basic role. Intuitively, an IdA of the above form asserts
that for any two different instances o, o′ of B, there is at least one Zi such that o and
o′ differ in the set of their Zi-fillers, that is the set of objects (if Zi is a role) or values
(if Zi is an attribute) that are related to o by Zi. As usual, in DL-LiteA,id TBoxes we
impose that roles and attributes occurring in functionality assertions or IdAs cannot be
specialized (i.e., they cannot occur in the right-hand side of inclusions).

DL-LiteA,id ABox assertions have the form N(t1), P (t1, t2), or U(t1, v1), where t1
and t2 denote individual objects and v1 denotes a value.

The semantics of DL-LiteA,id is given in [11]. We only recall here that we interpret
objects and values over distinct domains, and that for both we adopt the Unique Name
Assumption, i.e., different constants denote different objects (or values). The notions of
entailment, satisfaction, and model are as usual [11]. We also say that A is consistent
wrt T if (T , A) is satisfiable, i.e., admits at least one model.

Next we introduce queries. As usual (cf. OWL 2), answers to queries are formed
by terms denoting individuals appearing in the ABox. The domain of an ABox A,
denoted by ADOM(A), is the (finite) set of terms appearing in A. A union of conjunctive
queries (UCQ) q over a TBox T is a FOL formula of the form ∃~y1.conj 1(~x, ~y1) ∨ · · · ∨
∃~yn.conjn(~x, ~yn), with free variables ~x and existentially quantified variables ~y1, . . . , ~yn.
Each conj i(~x, ~yi) in q is a conjunction of atoms of the form N(z), P (z, z′), U(z, z′)
where N , P and U respectively denote a concept, role and attribute name of T , and
z, z′ are constants in a set C or variables in ~x or ~yi, for some i ∈ {1, . . . , n}. The
(certain) answers to q over an ontology (T , A) is the set ans (q, T , A) of substitutions3

3 As customary, we can view each substitution simply as a tuple of constants, assuming some
ordering of the free variables of q.
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σ of the free variables of q with constants in ADOM(A) such that qσ evaluates to true
in every model of (T , A). If q has no free variables, then it is called boolean, and its
certain answers are true or false. Computing ans (q, T , A) of a UCQ q over a DL-LiteA,id
ontology (T , A) is in AC0 in the size of A [11]. This is actually a consequence of the
fact that DL-LiteA,id enjoys the FOL rewritability property, which in our setting says
that for every UCQ q, ans (q, T , A) can be computed by evaluating the UCQ REW(q, T )
over A considered as a database. REW(q, T ) is the so-called perfect reformulation of q
w.r.t. T [11]. We also recall that, in DL-LiteA,id, ontology satisfiability is FOL rewritable.
In other words, we can construct a boolean FOL query qunsat(T ) that evaluates to true
over an ABox A iff the ontology (T , A) is unsatisfiable.

In our framework, we consider an extension of UCQs, called ECQs, which are
queries of the query language EQL-Lite(UCQ) [9]. Formally, an ECQ over a TBox T is
a possibly open domain independent formula of the form:

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q | x = y

where q is a UCQ over T and [q] denotes that q is evaluated under the (minimal)
knowledge operator (cf. [9]). To compute the certain answers ANS(Q, T , A) to an ECQ
Q over an ontology (T , A), we can compute the certain answers over (T , A) of each
UCQ embedded in Q, and evaluate the first-order part of Q over the relations obtained
as the certain answers of the embedded UCQs. Hence, also computing ANS(Q, T , A) of
an ECQ Q over a DL-LiteA,id ontology (T , A) is in AC0 in the size of A [9].
Ontology-Based Data Access (OBDA). In an OBDA system, a relational database is
connected to an ontology that represents the domain of interest by a mapping, which
relates database values with values and (abstract) objects in the ontology (c.f. [8]). In
particular, we make use of a countably infinite set V of values and a set Λ of function
symbols, each with an associated arity. We also define the set C of constants as the union
of V and the set {f(d1, . . . , dn) | f ∈ Λ and d1, . . . , dn ∈ V} of object terms.

Formally, an OBDA system is a structure O = 〈R, T ,M〉, where: (i) R =
{R1, . . . , Rn} is a database schema, constituted by a finite set of relation schemas;
(ii) T is a DL-LiteA,id TBox; (iii)M is a set of mapping assertions, each of the form:
Φ(~x) ; Ψ(~y,~t), where: (a) ~x is a non-empty set of variables, (b) ~y ⊆ ~x, (c) ~t is a set
of object terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x, (d) Φ(~x) is an arbitrary SQL
query over D, with ~x as output variables, and (e) Ψ(~y,~t) is a conjunctive query over T
of arity n > 0 without non-distinguished variables, whose atoms are over the variables ~y
and the object terms ~t.

Example 1. As a running example, we consider a simple university information system that
stores and manipulates data concerning students and their degree. In particular, we define an
OBDA system O = 〈R, T ,M〉 to capture the conceptual schema of such a domain, how data
are concretely maintained in a relational database, and how the two information levels are linked
through mappings. The conceptual schema is depicted in Figure 1, and formalized as the following
DL-LiteA,id TBox T :

Bachelor v Student δ(MNum) v Student (funct MNum)
Master v Student Student v δ(MNum) (id Student MNum)

Graduated v Student

The conceptual schema states that Bachelor and Master are subclasses of Student, that some
Students could be already Graduated, and that MNum (representing the matriculation number) is
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Student

Master

Bachelor

mNum: String 
Graduated

Fig. 1. UML conceptual schema for our running example.

an attribute relating individuals of type Student (domain of the attribute) to corresponding Codes
(range of the attribute). The conceptual schema also expresses that each Student has exactly one
matriculation number, and we assume that matriculation numbers can be used to identify Students
(i.e., each MNum is associated to at most one Student). Data related to students are maintained in
a concrete underlying data source that obeys the database schemaR, constituted by the following
relation schemas: (i) ENROLLED(id, name, surname, type, endDate) stores information about
students that are currently (endDate=NULL) or were enrolled in a bachelor (type="Bachelor") or
master (type="Master") course. (ii) GRAD(id,mark, type) stores data of former students who
have been graduated. (iii) TRANSF M(name, surname) is a temporary relation used to maintain
information about master students that have been recently transferred from another university, and
must still complete the enrollment process. The interconnection between the database schemaR
and the conceptual schema T is specified through the following setM of mappings:
m1 : SELECT name, surname, type FROM ENROLLED WHERE type ="Bachelor"

; Bachelor(stu1(name, surname, type))

m2 : SELECT name, surname, type FROM ENROLLED WHERE type ="Master"

; Master(stu1(name, surname, type))

m3 : SELECT name, surname, type, id FROM ENROLLED ; MNum(stu1(name, surname, type), val(id))

m4 : SELECT name, surname FROM TRANSF M ; Master(stu1(name, surname, "Master"))

m5 : SELECT e.name, e.surname, e.type FROM ENROLLED e, GRAD g WHERE e.id = g.id

; Graduated(stu1(name, surname, type))

Intuitively, m1 (m2 resp.) maps every id in ENROLLED with type "Bachelor" ("Master")
to a bachelor (master) student. Such a student is constructed by “objectifying” the name, surname
and course type using variable term stu1/3. In m3, the MNum attribute is instead created using
directly the value of id to fill in the target of the attribute. Notice the use of the val function symbol
for mapping id to the range of MNum. Mapping m4 leads to create further master students by
starting from the temporary TRANSF M table. Since such students are not explicitly associated
to course type, but it is intended that they are "Master", objectification is applied to students’
name and surname, adding "Master" as a constant in the variable term. Notice that, according to
the TBox T , such students have a matriculation number, but its value is not known (and, in fact,
no mapping exists to generate their MNum attribute). Finally, m5 generates graduated students
by selecting only those students in the ENROLLED table whose matriculation number is also
contained in the GRAD table. ut

Given a database instance D made up of values in V and conforming to schemaR,
and given a mappingM, the virtual ABox generated from D by a mapping assertion
m = Φ(x) ; Ψ(y, t) in M is m(D) =

⋃
v∈eval(Φ,D) Ψ [x/v], where eval(Φ,D)

denotes the evaluation of the SQL query Φ over D, and where we consider Ψ [x/v] to
be a set of atoms (as opposed to a conjunction). Then, the ABox generated from D
by the mappingM isM(D) =

⋃
m∈Mm(D). Notice that ADOM(M(D)) ⊆ C. As

for ABoxes, the active domain ADOM(D) of a database instance D is the set of values
occurring in D. Notice that ADOM(D) ⊆ V . Given an OBDA system O = 〈R, T ,M〉
and a database instance D for R, a model for O wrt D is a model of the ontology
(T ,M(D)). We say that O wrt D is satisfiable if it admits a model wrt D.
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Example 2. Consider a database instanceD = {ENROLLED(123, john, doe,Bachelor,NULL)}.
The corresponding virtual ABox obtained from the application of the mappingM isM(D) =
{Bachelor(stu1(john, doe,Bachelor)),MNum(stu1(john, doe,Bachelor), val(123))}. ut

An UCQ q over an OBDA system O = 〈R, T ,M〉 is simply an UCQ over T . To
compute the certain answers of q over O wrt a database instance D forR, we follow a
three-step approach: (i) q is rewritten to compile away T , obtaining qr = REW(q, T );
(ii) the mappingM is used to unfold qr into a query overR, denoted by UNFOLD(qr,M),
which turns out to be an SQL query [17]; (iii) such a query is executed over D, obtaining
the certain answers. For an ECQ, we can proceed in a similar way, applying the rewriting
and unfolding steps to the embedded UCQs. It follows that computing certain answers
to UCQs/ECQs in an OBDA system is FOL rewritable. Applying the unfolding step to
qunsat(T ), we obtain also that satisfiability in O is FOL rewritable.

3 Semantically-Governed Data-Aware Processes

A Semantically-Governed Data-Aware Process (SGDAP) S = 〈O,P, D0〉 is formed
by an OBDA System O = 〈R, T ,M〉 by a process component P , and by an initial
database instance D0 that conforms to the relational schema R in O. Intuitively, the
OBDA system keeps all the data of interest, while the process component modifies and
evolves such data, starting from the initial database D0.

The process component P constitutes the progression mechanism for the SGDAP.
Formally, P = 〈F ,A, π〉, where: (i) F is a finite set of functions representing calls to
external services, which return values; (ii) A is a finite set of actions, whose execution
progresses the data layer, and may involve external service calls; (iii) π is a finite set of
condition-action rules that form the specification of the overall process, which tells at
any moment which actions can be executed.

An action α ∈ A has the form α(p1, . . . , pn) : {e1, . . . , em}, where:
(i) α(p1, . . . , pn) is the signature of the action, constituted by a name α and a sequence
p1, . . . , pn of input parameters that need to be substituted with values for the execution
of the action, and (ii) {e1, . . . , em} is a set of effect specifications, whose specified
effects are assumed to take place simultaneously. Each ei has the form q+i ∧Q−i  Ei,
where: (a) q+i ∧Q−i is a query overRwhose terms are variables ~x, action parameters, and
constants from ADOM(D0). The query q+i is a UCQ, and the query Q−i is an arbitrary
FO formula whose free variables are included in those of q+i . Intuitively, q+i selects the
tuples to instantiate the effect, and Q−i filters away some of them. (b) Ei is the effect,
i.e., a set of facts forR, which includes as terms: terms in ADOM(D0), input parameters,
free variables of q+i , and in addition Skolem terms formed by applying a function f ∈ F
to one of the previous kinds of terms. Such Skolem terms involving functions represent
external service calls and are interpreted so as to return a value chosen by an external
user/environment when executing the action.

The process π is a finite set of condition-action rules Q 7→ α, where α is an action
in A and Q is a FO query overR whose free variables are exactly the parameters of α,
and whose other terms can be quantified variables or values in ADOM(D0).

Example 3. Consider the OBDA system O defined in Example 1. We now define a process
component P = 〈F ,A, π〉 over the relational schema R of O, so as to obtain a full SGDAP.
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In particular, π is constituted by the following condition-action rules (’ ’ denotes existentially
quantified variables that are not used elsewhere):

– ENROLLED(id, , , ,NULL) GRADUATE(id)
– TRANSF M(name, surname) COMPL-ENR(name, surname)

The first rule extracts a matriculation number id of a currently enrolled student
(endDate=NULL) from the ENROLLED relation and graduates the student, whereas the sec-
ond rule selects a pair name surname in TRANSF M and use them to complete the enrollment of
that student. In order to be effectively executed, the involved actions rely on the following set F
of service calls: (i) today() returns the current date; (ii) getMark(id, type) returns the final mark
received by student id; (iii) getID(name, surname, type) returns the matriculation number for the
name-surname pair of a student. The two actions GRADUATE and COMPL-ENR are then defined as
follows:

GRADUATE(id) : { GRAD(id2,m, t) GRAD(id2,m, t),
TRANSF M(n, s) TRANSF M(n, s),
ENROLLED(id2, n, s, t, d) ∧ id2 6= id ENROLLED(id2, n, s, t, d),
ENROLLED(id, n, s, t, NULL) ENROLLED(id, n, s, t, today()),
ENROLLED(id, , , t, NULL) GRAD(id, getMark(id, t), t) };

COMPL-ENR(n, s) : { GRAD(id,m, t) GRAD(id,m, t),
ENROLLED(id, n2, s2, t, d) ENROLLED(id, n2, s2, t, d),
TRANSF M(n2, s2) ∧ (n2 6= n ∨ s2 6= s) TRANSF M(n2, s2),
TRANSF M(n, s) ENROLLED(getID(n, s, "Master"), n, s, "Master",NULL)}

Given a matriculation number id, action GRADUATE inserts a new tuple for id in GRAD,
updating at the same time the enrollment’s end date for id in ENROLLED to the current date,
while keeping all other entries in TRANSF M,GRAD and ENROLLED. Given a name and
surname, action COMPL-ENR has the effect of moving the corresponding tuple in TRANSF M to
a new tuple in ENROLLED, for which the matriculation number is obtained by interacting with
the getID service call; all other entries TRANSF M,GRAD and ENROLLED are preserved. ut

4 Semantics of SGDAP

This work focuses on the semantics of SGDAP assuming that external services behave
nondeterministically, i.e., two calls of a service with the same arguments may return
different results during the same run. This captures both services that model a truly
nondeterministic process (e.g., human operators), and services that model stateful servers.

Let S = 〈O,P, D0〉 be a SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. The
semantics of S is defined in terms of a possibly infinite transition system (TS), which
represents all possible computations that the process component can do over the data
starting from D0. We start by defining the semantics of action execution. Let α be an
action in A of the form α(~p) : {e1, . . . , en} with effects ei = q+i ∧Q−i  Ei, and let σ
be a substitution of ~p with values in V . The evaluation of the effects of α on a database
instance D using a substitution σ is captured by the following function:

DO(D,α, σ) =
⋃
q+i ∧Q

−
i  Eiin α

⋃
θ∈ANS((q+i ∧Q

−
i )σ,D)

Eiσθ

which returns a database instance made up of values in V and Skolem terms represent-
ing service calls. We denote with CALLS(DO(D,α, σ)) such service calls, and with
EVALS(D,α, σ) the set of substitutions that replace these service calls with values in V:

EVALS(D,α, σ) = {θ | θ : CALLS(DO(D,α, σ))→ V is a total function}.
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We then say that the database instance D′ over V and conforming toR is produced from
D by the application of action α using substitution σ if D′ = DO(D,α, σ)θ, where
θ ∈ EVALS(D,α, σ).

Relational Layer Transition System (RTS). Let S = 〈O,P, D0〉 be a SGDAP with
O = 〈R, T ,M〉. The RTS ΥR

S of S is formally defined as 〈R, Σ, s0, db,⇒〉, whereΣ is
a (possibly infinite) set of states, s0 is the initial state, db is a total function from states in
Σ to database instances made up of values in V and conforming toR, and⇒⊆ Σ×Σ is
a transition relation. Σ,⇒ and db are defined by simultaneous induction as the smallest
sets such that s0 ∈ Σ, with db(s0) = D0, and satisfying the following property: Given
s ∈ Σ, for each condition-action rule Q(~p) 7→ α(~p) ∈ π, for each substitution σ of ~p
such that σ ∈ ANS(Q,D), consider every database instance D′ produced from D by the
application of α using σ. Then: (i) if there exists s′ ∈ Σ such that db(s′) = D′, then
s⇒ s′; (ii) otherwise, if O is satisfiable wrt D′, then s′ ∈ Σ, s⇒ s′ and db(s′) = D′,
where s′ is a fresh state. We observe that the satisfiability check done in the last step of
the RTS construction accounts for semantic governance.

Semantic Layer Transition System (STS). Given a SGDAP S with O = 〈R, T ,M〉
and with RTS ΥR

S = 〈R, Σ, s0, db,⇒〉, the STS Υ S
S of S is a “virtualization” of the RTS

in the semantic layer. In particular, Υ S
S maintains the structure of ΥR

S unaltered, reflecting
that the process component is executed over the relational layer, but it associates each
state to a virtual ABox obtained from the application of the mappingM to the database
instance associated by ΥR

S to the same state. Formally, Υ S
S = 〈T , Σ, s0, abox,⇒〉, where

abox is a total function from Σ to ABoxes made up of individual objects in C and
conforming to T , such that for each s ∈ Σ with db(s) = D, abox(s) =M(D).

5 Dynamic Constraints Formalism

Let S = 〈O,P, D0〉 be an SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. We are
interested in the verification of conceptual temporal properties over S, i.e., properties
that constrain the dynamics of S understood at the semantic layer. Technically, this means
that properties are verified over the SGDAP’s STS Υ S

S , combining temporal operators
with queries posed over the ontologies obtained by combining the TBox T with the
ABoxes associated to the states of Υ S

S . More specifically, we adopt ECQs [9] to query
the ontologies of Υ S

S , and µ-calculus [15] to predicate over the dynamics of Υ S
S .

We use a variant of µ-calculus [15], one of the most powerful temporal logics
subsuming LTL, PSL, and CTL* [13], called µLEQL

C , whose formulae have the form:

Φ ::= Q | Z | ¬Φ | Φ1 ∧ Φ2 | ∃x ∈ C0.Φ | 〈−〉Φ | µZ.Φ

where Q is an ECQ over T , C0 = ADOM(M(D0)) is the set of object terms appearing
in the initial virtual ABox (obtained by applying the mapping M over the database
instance D0), and Z is a predicate variable. As usual, syntactic monotonicity is enforced
to ensure existence of unique fixpoints. Beside the usual FOL abbreviations, we also
make use of the following ones: [−]Φ = ¬〈−〉(¬Φ) and νZ.Φ = ¬µZ.¬Φ[Z/¬Z]. The
subscript C in µLEQL

C stands for “closed”, and attests that ECQs are closed queries. In
fact, µLEQL

C formulae only support the limited form of quantification ∃x ∈ C0.Φ, which
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is a convenient, compact notation for
∨
c∈ADOM(M(D0))

Φ[x/c]. We make this assumption
for simplicity, but actually, with some care, our result can be extended to a more general
form of quantification over time [5].

In order to define the semantics of µLEQL
C we resort to transition systems. Let

Υ = 〈T , Σ, s0, abox,⇒〉 be an STS. Let V be a predicate and individual variable
valuation on Υ , i.e., a mapping from the predicate variables Z to subsets of the states Σ,
and from individual variables to constants in ADOM(M(D0)). Then, we assign meaning
to µLEQL

C formulas by associating to Υ and V an extension function (·)AV , which maps
µLEQL

C formulas to subsets of Σ. The extension function (·)AV is defined inductively as:

(Q)AV = {s ∈ Σ | ANS(QV, T , abox(s)) = true}
(Z)AV = V (Z) ⊆ Σ
(¬Φ)AV = Σ − (Φ)AV
(Φ1 ∧ Φ2)

A
V = (Φ1)

A
V ∩ (Φ2)

A
V

(∃x ∈ C0.Φ)AV =
⋃
{(Φ)AV [x/c] | c ∈ ADOM(M(D0))}

(〈−〉Φ)AV = {s ∈ Σ | ∃s′. s⇒ s′ and s′ ∈ (Φ)AV }
(µZ.Φ)AV =

⋂
{E ⊆ Σ | (Φ)Av[Z/E],V ⊆ E}

When Φ is a closed formula, (Φ)AV does not depend on V , and we denote it by (Φ)A. We
are interested in the model checking problem, i.e., verify whether a µLEQL

C closed formula
Φ holds for the SGDAP S. This problem is defined as checking whether s0 ∈ (Φ)Υ

S
S ,

that is, whether Φ is true in the initial state s0 of Υ S
S . If it is the case, we write Υ S

S |= Φ.

Example 4. An example of dynamic property in our running example is Φ =
µZ.((∀s.[Student(s)]→ [Graduated(s)])∨ [−]Z), which says that every evolution of the system
leads to a state in which all students present in that state are graduated. ut

6 Verification of Dynamic Properties over SGDAPs

We now describe how µLEQL
C properties can be effectively verified over SGDAPs. Let

S = 〈O,P, D0〉 be an SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. Let Φ be
a µLEQL

C dynamic property specified over the T , and let Υ S
S and ΥR

S respectively be
the STS and RTS of S. The main issue to be tackled is that Υ S

S and ΥR
S are in general

infinite-state, and their verification undecidable. In [5], some decidability boundaries
for the verification of Data-Centric Dynamic Systems (DCDSs) have been extensively
studied. DCDSs are tightly related to SGDAPs, with some key differences in the data
component: (i) the process component is identical in the two frameworks; (ii) DCDSs
are only equipped with a relational layer, i.e., no ontology nor mapping are specified;
(iii) while SGDAPs define constraints over the data at the semantic layer, DCDSs are
equipped with denial constraints posed directly over the database schema. Given a
µLEQL

C property Φ, we therefore attack the verification problem Υ S
S |= Φ in the following

way: (1) We transform Φ into a corresponding µLC property Φ′, i.e., a µL property
whose atoms are closed FO queries overR, thus reducing Υ S

S |= Φ to ΥR
S |= Φ′. (2) We

show, again exploiting FOL rewritability in DL-LiteA, that the consistency check used
to generate ΥR

S can be rewritten as denial constraints over R. This means that ΥR
S can

be generated by a purely relational DCDS. (3) We argue that Φ′ belongs to the dynamic
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Fig. 2. Verification of dynamic µLEQL
C properties over SGDAP

property language investigated in [5] for DCDSs under the nondeterministic semantics.
(4) We can therefore reuse the decidability results of [5] to check whether ΥR

S |= Φ′ can
be decided and, in the positive case, we apply the abstraction technique defined in [5] for
reducing the verification problem to conventional finite-state model checking. Details
are provided below. The idea of the approach is depicted in Figure 2.
Property Transformation. In order to transform the property, we separate the treatment
of the dynamic part and of the embedded ECQs. Since the dynamics of an SGDAP is
completely determined at the relational layer, the dynamic part is maintained unaltered.
ECQs are instead manipulated as defined in Section 2. In particular, the rewriting of Φ
wrt the TBox T , denoted by Φr = REW(Φ, T ), is done by replacing each embedded
ECQ with its corresponding rewriting wrt T .

Example 5. Consider the µLEQL
C property Φ described in Example 4, together with the TBox T

introduced in Example 1. The rewriting of Φ wrt T produces Φr = REW(Φ, T ), which is:

µZ.(∀s.[Student(s) ∨ Bachelor(s) ∨Master(s) ∨MNum(s, )]→ [Graduated(s)]) ∨ [−]Z
ut

Before unfolding the rewritten dynamic property Φr we translate each subformula of
the form ∃x ∈ C0.Ψ into the equivalent form

∨
c∈ADOM(M(D0))

Ψ [x/c]. This means that
when such a form of quantification is used, the initial ABox must be materialized in order
to compute the initial active domain of the semantic layer. We then extend the UNFOLD()
function defined in Section 2 to unfold a µLEQL

C dynamic property over the semantic
layer into a corresponding property over the relational layer. As for the rewriting, the
temporal structure is maintained unaltered, reflecting that the dynamics of SGDAPs is
determined at the relational layer. For what concerns the ECQs embedded in the property,
the interesting case to be discussed is the one of (existential) quantification:

UNFOLD(∃x.ϕ,M) = ∃x.UNFOLD(ϕ,M) ∨∨
(f/n)∈FS(M) ∃x1, . . . , xn.UNFOLD(ϕ[x/f(x1, . . . , xn)],M)

where FS(M) is the set of function symbols contained inM. This unfolding reflects
that quantification over individuals at the semantic layer must be properly rephrased as a
corresponding quantification over those values in the relational layer that could lead to
produce such individuals through the application ofM. This is done by unfolding ∃x.ϕ
into a disjunction of formulae, where: (i) the first formula corresponds to ∃x.ϕ itself,
and is used to tackle the case in which x appears in the range of an attribute, which is
in fact a value; (ii) Each of the other formulae is obtained from ϕ by replacing x with
one of the possible variable terms produced byM, and quantifying over the existence of
values used to construct the corresponding object term.
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Example 6. Let us consider the µLEQL
C property Φr of Example 5, together with the mapping

M defined in Example 1. We get that UNFOLD(Φr,M) corresponds to:

µZ.
(
∀x1, x2, x3.AUXm3(x1, x2, x3, )→ AUXm5(x1, x2, x3)

)
∨ [−]Z

where AUXm3(name, surname, type, id) and AUXm5(name, surname, type) represent the aux-
iliary view predicates of mapping assertions m3 and m5 respectively, whose defining queries
are the SQL queries in the left-hand side of the mapping assertion themselves. When unfolding
the UCQ Student(stu1(x1, x2, x3))∨Bachelor(stu1(x1, x2, x3))∨Master(stu1(x1, x2, x3))∨
MNum(stu1(x1, x2, x3), ), we notice that the involved mapping assertions are m1, m2, and m3.
However, we only consider m3, because the query on its left-hand side contains the ones on the
left-hand side of m1 and m2.

Reduction to Data-Centric Dynamic Systems. The connection between SGDAPs
and DCDSs is straightforward (see [5] for the definition of DCDS). Given a SGDAP
S = 〈O,P, D0〉 with O = 〈R, T ,M〉, we can construct a corresponding DCDS with
nondeterministic services SREL = 〈D,P〉, whereD = 〈V,R, {qunsat(T )→ false}, D0〉.
Thanks to this encoding, we obtain ΥR

S ≡ ΥDCDS
SREL

, where ΥDCDS
SREL

is the RTS constructed
for the DCDS SREL following the definition in [5].

Verification. Leveraging on the parallel between SGDAPs and DCDSs, verification of
a µLEQL

C property over a SGDAP can be reduced to the verification of a µLC property
over the corresponding DCDS. In fact, µLC (µ-calculus over closed FOL queries) is
contained in the fragments of FO µ-calculus studied for DCDSs in [5], namely µLA and
µLP . Both µLA and µLP support FOL queries over the DCDS, allowing for controlled
forms of FO quantification across states, and therefore they clearly support FO sentences.

Let S = 〈O,P, D0〉 be a SGDAP with O = 〈R, T ,M〉, STS Υ S
S and ΥR

S =
〈R, Σ, s0, db,⇒〉. We say that ΥR

S is state-bounded if there exists a bound b such
that for each s ∈ Σ, |ADOM(db(s))| < b. Let Φ be a µLEQL

C property, and let Φ′ =
UNFOLD(REW(Φ, T ),M). Since (i) Υ S

S |= Φ can be reduced to ΥR
S |= Φ′, (ii) Φ′

belongs to µLC (which is contained in µLP ), (iii) ΥR
S can be generated by a DCDS

with nondeterministic services, we can reuse the decidability results presented in [5]. In
particular, we obtain that Υ S

S |= Φ is decidable if Υ R
S is state bounded. Verification can in

this case be reduced to conventional finite-state model checking.

Example 7. Consider the SGDAP S = 〈O,P, D0〉, where O is the OBDA system defined in
Example 1, P the process component defined in Example 3. It is easy to see that the resulting
RTS Υ R

S is state-bounded. Intuitively, this follows from the facts that the actions of S either move
tuples from the TRANSF M table to the ENROLLED one, or copy tuples from the ENROLLED
table to the GRAD one. Hence, the size of each database instance appearing in Υ R

S is at most twice
the size of D0, thus verification of µLEQL

C properties over the STS Υ S
S is decidable. ut
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Abstract. Engineering of knowledge-intensive processes is far from
being mastered. Processes are defined knowledge-intensive when peo-
ple/agents carry them out in a fair degree of “uncertainty”, where the
uncertainty depends on different factors, such as the high number of
tasks to be represented, their unpredictable nature, or their dependency
on the scenario. In the worst case, there is no pre-defined view of the
knowledge-intensive process, and tasks are mainly discovered as the pro-
cess unfolds. In this work, starting from three different real scenarios, we
present a critical comparative analysis of the existing approaches used
for supporting knowledge-intensive processes, and we discuss some recent
research techniques that may complement or extend the existing state of
the art.

Keywords: Knowledge-intensive Processes, Process Management Sys-
tems, Health Care, Process Adaptation, Process Mining

1 Introduction

Process management systems (PMSs) hold the promise of facilitating the ev-
eryday operation of many enterprises and work environments. However, PMSs
remain especially useful in a limited range of applications where business pro-
cesses can be described with relative ease. Current modeling techniques are used
to codify processes that are completely predictable: all possible paths along the
process are well-understood, and the process participants never need to make a
decision about what to do next, since the workflow is completely determined by
their data entry or other attributes of the process. This kind of highly-structured
work includes mainly production and administrative processes. However, most
business functions involve collaborative features and unstructured processes that
do not have the same level of predictability as the routine structured work [58].

In [29] processes have been classified on the basis of their “degree of struc-
ture”. Traditional PMSs perform well with fully structured processes and con-
trolled interactions between participants. A major assumption is that such pro-
cesses, after having been modeled, can be repeatedly instantiated and executed

? This work has been partly supported by the SAPIENZA grant TESTMED and by
the EU Commission through the project SmartVortex
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in a predictable and controlled manner. However, even for structured processes,
the combination and sequence of tasks may vary from instance to instance due
to changes in the execution context such as user preferences, or modifications in
the environment such as exceptions and changes in the business rules. In such
cases (structured processes with ad hoc exceptions), processes should be adapted
accordingly (e.g. by adding, removing or generating an alternative sequence of
activities). In general, structured processes can be described by an explicit and
accurate model. But in scenarios where processes are to a large extent unclear
and/or unstructured, process modeling cannot be completed prior to execution
(due to lack of domain knowledge a priori or to the complexity of task combi-
nations). Hence the classical axiom “first model, then execute” – valid for the
enactment of structured processes – fails. As processes are executed and knowl-
edge is acquired via experience, it is needed to go back to the process definitions
and correct them according to work practices. This is the case of unstructured
processes with predefined fragments, where processes cannot be anticipated, and
thus cannot be studied or modeled as a whole. Instead, what can be done is to
identify and study a set of individual activities, and then try to understand the
ways in which these activities can precede or follow each other. At the end of the
classification lies the category of unstructured processes, where it is impossible
to define a priori the exact steps to be taken in order to complete an assignment.
Since there is no pre-defined view of the process, process steps are discovered
as the process scenario unfolds, and might involve decisions not based on some
“codified policy”, but on the user expertise applied on the scenario at hand.

The class of knowledge-intensive processes is transversal with respect to the
classification proposed in [29]. In the literature, different definitions have been
proposed about what does “knowledge-intensive” mean for a business process.
In [24] a process is defined as knowledge intensive if its value can only be created
through the fulfillment of the knowledge requirements of the process partici-
pants, while Davenport recognizes the knowledge intensity by the diversity and
uncertainty of process input and output [11]. In our view, a knowledge-intensive
process is characterized by activities that can not be planned easily, may change
on the fly and are driven by the contextual scenario that the process is embedded
in. The scenario dictates who should be involved and who is the right person
to execute a particular step, and the set of users involved may be not formally
defined and be discovered as the process scenario unfolds. Collaborative inter-
actions among the users typically is a major part of such processes, and new
process steps might have to be defined at run time on the basis of contextual
changes. Despite the popularity of commercial PMSs, there is still a lack of ma-
turity in managing such processes, i.e., a lack of a semantic associated to the
models or an easy way to reason about that semantic.

In this paper, starting from three different real application scenarios, we
present a critical and comparative analysis of the existing approaches used for
supporting knowledge-intensive processes, and we discuss some recent research
techniques which may complement or extend the existing state of the art. The
rest of the paper is organized as follows. Section 2 discusses the role of knowledge-
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intensive processes in the health-care domain, mainly focusing on how different
modeling approaches can contribute to the process representation and execu-
tion. Section 3 discusses the use of knowledge-intensive processes for supporting
the work in highly dynamic scenarios, by focusing on the challenging aspect
of process adaptation. Section 4 traces the evolution of process mining, from
the beginnings up to the current open challenge of discovering flexible models
for knowledge-intensive partially structured processes, along with the graphical
models proposed for presenting them to the user. Finally, Section 5 concludes
the paper.

2 Modeling Approaches for Healthcare Processes

Healthcare is widely recognized as one of the most promising, yet challenging, do-
mains for the adoption of process-oriented solutions able to support both organi-
zational and clinical processes [10,31,46,30]. Organizational processes, which also
include administrative tasks (patient admission/discharge, appointment schedul-
ing, etc.), are typically structured, stable and repetitive, and represent the ideal
setting for the application of traditional approaches for process automation and
improvement. On the other side, the knowledge-intensive nature and flexibility
requirements of medical treatment processes [3,37] pose challenges that existing
process management approaches are not able to adequately handle. Although
BPM solutions can potentially support these processes, in practice their uptake
in healthcare is limited, mainly due to a generally perceived lack of flexibil-
ity [30]. Clinical decision making is highly knowledge-driven, as it depends on
medical knowledge and evidence, on case- and patient-specific data, and on clini-
cians’ expertise and experience. Patient case management is mainly the result of
knowledge work, where clinicians act in response to relevant events and changes
in the clinical context on a per-case basis, according to so-called diagnostic-
therapeutic cycles based on the interleaving between observation, reasoning and
action [31]. Clinical practices can not be captured by process models that require
a complete specification of activities and their control/data flow, with the risk
of constraining the clinicians and undermining the acceptance of proposed tools.

Despite these characteristics, in the last years the medical community has
introduced Clinical Guidelines (CGs), in an attempt to improve care quality
and reduce costs. CGs are “systematically developed statements to assist prac-
titioner and patient decisions about appropriate health care for specific clinical
circumstances”[21] and act as blueprints that guide the care delivery process and
provide evidence-based recommendations. Consequently, many research groups
have focused on computer-interpretable clinical guidelines (CIGs) and differ-
ent languages have been proposed [49,42,61], which can be broadly classified as
rule-based (e.g., Arden Syntax), logic-based (e.g., PROforma), network-based
(e.g., EON) and workflow-based (e.g., Guide). Most of them follow a task-based
paradigm where modeling primitives for representing actions, decisions and pa-
tient states are linked via scheduling and temporal constraints, often in a rigid
flowchart-like structure, and many representation models are supported by sys-
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tems that allow the definition and enactment of CGs [27]. This rapid evolution
in medical informatics has occurred mainly independently of the advances in
the BPM community. However, the recent shift in the BPM domain towards
process flexibility, adaptation (see Section 3) and evolution [47,30] has led to
reconsider the link with CIGs and investigate the benefits coming from the ap-
plication of process-oriented approaches in the healthcare domain [36]. On the
one side, pattern-based analyses of CIG languages have shown that the expres-
siveness of these models, although specifically developed for the medical domain,
is comparable with (or even lower than) the expressiveness of process modeling
languages [39]. On the other side, emerging declarative constraint-based ap-
proaches [40,32] have been investigated as a possible solution to achieve a high
degree of flexibility, taking advantage of loosely specified process models. In this
direction, the combination of procedural and declarative models is under in-
vestigation, in order to support healthcare processes with different degrees of
structuredness.

After more than a decade of research activities, researchers and practition-
ers agree on three main points: (i) clinical procedures, based on semi-structured
and unstructured decision making, can not be completely specified in advance
nor fully automated; (ii) deviations and variations during the care process (as
well as uncertainty and changes in the clinical context) represent the rule rather
than the exception; (iii) process- and activity-centric models can not adequately
represent and support clinical case management. One of the main limitations
of existing approaches is that they often underestimate the knowledge and data
dimension. As patient treatment is knowledge-driven, the focus should be not on
automating the decision making process, but rather on supporting the clinician
during this process, according to a “system suggests, user controls” approach [62]
that makes available the appropriate data and relevant knowledge when needed
or required. Any system intended to support CGs should allow for representing
and integrating at a semantic level evolving medical knowledge, patient-related
data (including conditions, medical history, prescribed treatments and medi-
cations, etc.), and the existing (sometimes unpredictable) interactions between
patient conditions, treatments and medications. This focus on data and knowl-
edge is producing a shift from a process management approach to a more flexible
case management approach, well understood by clinicians (although mostly in
the form of paper-based processes) but only partially investigated in the BPM
area [60]. Process support requires object-awareness in the form of a full integra-
tion of processes with patient data models consisting of object types and object
relations [30,5]. Domain-relevant objects (such as medical orders, clinical and
lab reports, etc.), their attributes and their possible states need to be explicitly
represented, along with their inter-relations, so as to define a rich information
model. This data model enables the identification and definition of the activities
that rely on the object-related information and act on it, producing changes on
attribute values, relations and object states. As a result, a tight integration be-
tween data objects and process activities can be achieved. As object-awareness
requires a data-driven process modeling and execution approach, based on ob-
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ject behavior and object interactions, process/activity-centric methodologies are
being replaced by data-centric models evolving over time [7]. In the context
of a CG, patient’s clinical situation (referred to as patient state, scenario, or
context [49]) is central and represent the shared knowledge that drives the de-
cision making and evolves as a result of performed actions, made decisions and
collected data. Conditions defined over patient state, along with temporal con-
straints, are typically used as entry/exit points for a guideline [61] and as eli-
gibility criteria for specific actions [49]. During the collaboration-based patient
management activities, clinicians have to react to internal (e.g., a change in
patient’s state) and external (e.g., availability of lab test results) events, that
can occur in any sequence. Moreover, it is often not possible to predetermine
which activities have to be executed and in which order when an event occurs:
according to the diagnostic-therapeutic cycles mentioned before, the clinician
first assesses and evaluate the situation and then acts or plans the actions to
be performed. This suggests an interleaving and overlapping of modeling and
execution, where the process is “created at the time it is executed”. Any mod-
eling and execution approach for supporting this view has to consider that the
clinician should be guided by what can be done and not restricted by what has
to be done [35]. Although the path to be followed can be initially unclear and is
gradually determined by clinician decisions, the care process evolves through a
series of intermediate goals or milestones to be achieved (e.g., bring a parameter
back to a normal level) that can again be expressed as conditions or constraints
over patient state.

Given the above scenario, a promising and emerging approach for model-
ing CGs and supporting their execution and management is the artifact-centric
paradigm, which considers data and knowledge as an integral part of business
processes [51]. It is based on the concept of business artifacts as an abstraction
for business-relevant entities and data that evolve according to a lifecycle and
drive the activities in a business setting. Activities are defined in the context
of interrelated artifacts and become enabled as the result of triggering events
(internal or external) constrained by conditions defined and evaluated over the
artifacts. Events and conditions over artifacts can also be used to set specific
goals and evaluate the progress towards their achievement. The scheduling of
actions is thus event- and data-driven, rather than induced by direct control
flow dependencies. Under this perspective, it emerges a clear correspondence
between artifact-centric concepts and clinical case management, in particular if
considering the Guard-Stage-Milestone (GSM) meta-model [51] as a represen-
tative example of the artifact-based paradigm. GSM builds on the concepts of
information model and lifecycle model, where the latter includes milestones to
be achieved, hierarchically organized stages as clusters of possible activities to
be performed to achieve milestones, and guards, timed events and conditions
that control the stages and determine milestones’ achievement. The patient and
his/her state, a diagnostic test, a treatment course can all be considered as ar-
tifact types and represented by an information model that evolves according
to a lifecycle and captures all relevant data and relations (e.g., as a relational
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model or domain ontology). CGs could be seen as progressing through a set
of stages, where each performed action, made decision or event occurrence is
driven by (eligibility criteria mentioned before) and has an impact on patient
state, as reflected in the underlying information model. The data-driven nature
of the model facilitates the integration between process control knowledge and
the patient-related and medical knowledge; in addition, the distinction between
data attributes and status attributes can directly support an integrated and ex-
plicit representation of both patient and execution states, not provided by all
CIG models [61,49]. Although artifact-centric models can open the way for a
new generation of flexible and adaptive case management systems in healthcare,
further investigation is needed to understand the contribution that these mod-
els can bring in solving well-known problems for CIGs; among them: (i) how
to reconcile the decision-action nature of CGs with a declarative modeling ap-
proach than can be used and understood by clinicians and is able to represent
the evidence-based knowledge contained in the CGs; (ii) how to define an infor-
mation model that is able to capture all clinically relevant data and takes into
account existing standards, models, and ontologies used in Electronic Medical
Records (EMRs) for patient and medical data; (iii) to what extent clinical events
and medical knowledge can be represented and encoded by rules and conditions;
(iv) how can an artifact-centric model address the problems of guideline acqui-
sition, verification, testing, tracing and evolution, and how to turn or customize
abstract models in executable models that take into account additional infor-
mation, such as resource availability, roles and local services, in a collaborative
multi-user environment.

3 Process Adaptation in Highly Dynamic Scenarios

A recent open research question in the BPM field concerns how to tackle sce-
narios characterized by being very dynamic and subject to higher frequency of
unexpected contingencies than classical scenarios, e.g., scenarios for emergency
management. There, a PMS can be used to coordinate the activities of first
responders on the field (e.g., reach a location, evacuate people from collapsed
buildings, extinguish a fire, etc.). The use of processes for supporting the work
in highly dynamic contexts has become a reality, thanks also to the growing use
of mobile devices in everyday life, which offer a simple way for picking up and
executing tasks. These kinds of processes are also named dynamic processes. A
dynamic process usually includes a wide range of knowledge-intensive tasks; as
the process proceeds, the sequence of tasks depends so much upon the specifics
of the context (for example, which resources are available and what particular
options exist at that time), and often it is unpredictable the way in how it un-
folds. This is due to the high number of tasks to be represented and to their
unpredictable nature, or to a difficulty to model the whole knowledge of the
domain of interest at design time. If we refer again to the classification shown
in [29], dynamic processes can be classified between structured processes with
ad hoc exceptions and unstructured processes with predefined fragments.
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Research efforts in this field try to enhance the ability of dynamic processes
and their support environments to modify their behavior in order to deal with
contextual changes and exceptions that may occur in the operating environment
during process enactment and execution. On the one hand, existing PMSs like
YAWL [50] provide the support for the handling of expected exceptions. The
process schemas are designed in order to cope with potential exceptions, i.e.,
for each kind of exception that is envisioned to occur, a specific contingency
process (a.k.a. exception handler or compensation flow) is defined. On the other
hand, adaptive PMSs like ADEPT2 [65] support the handling of unanticipated
exceptions, by enabling different kinds of ad-hoc deviations from the pre-modeled
process instance at run-time, according to the structural process change patterns
defined in [64].

However, traditional approaches that try to anticipate how the work will
happen by solving each problem at design time, as well as approaches that allow
to manually change the process structure at run time, are often ineffective or
not applicable in rapidly evolving contexts. The design-time specification of all
possible compensation actions requires an extensive manual effort for the pro-
cess designer, that has to anticipate all potential problems and ways to overcome
them in advance, in an attempt to deal with the unpredictable nature of this
kind of processes. Moreover, the designer often lacks the needed knowledge to
model all the possible contingencies, or this knowledge can become obsolete as
process instances are executed and evolve, by making useless his/her initial ef-
fort. In general, for a dynamic process there is not a clear, anticipated correlation
between a change in the context and corresponding process changes, since the
process may be different every time it runs and the recovery procedure strictly
depends on the actual contextual information. For the same reason, it is also
difficult to manually define an ad-hoc recovery procedure at run-time, as the
correctness of the process execution is highly constrained by the values (or com-
bination of values) of contextual data. Dealing with dynamic processes require
that PMSs provide intelligent failure handling mechanisms that, starting from
the original process model, are able to adapt process instances without explicitly
defining at design time all the handlers/policies to recover from exceptions and
without the intervention of domain experts.
Recently, some techniques from the field of artificial intelligence (AI) have been
applied to process management, with the purpose of improving the degree of au-
tomatic adaptation of dynamic processes. In [23], the authors present a concept
for dynamic and automated workflow re-planning that allows recovering from
task failures. To handle the situation of a partially executed workflow, a multi-
step procedure is proposed that includes the termination of failed activities, the
sound suspension of the workflow, the generation of a new complete process def-
inition and the adequate process resumption. In [28], the authors take a much
broader view of the problem of adaptive workflow systems, and show that there
is a strong mapping between the requirements of such systems and the capabili-
ties offered by AI techniques. In particular, the work describes how planning can
be interleaved with process execution and plan refinement, and investigates plan
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patching and plan repair as means to enhance flexibility and responsiveness.
A new life cycle for workflow management based on the continuous interplay
between learning and planning is proposed in [20]. The approach is based on
learning business activities as planning operators and feeding them to a planner
that generates the process model. The main result is that it is possible to pro-
duce fully accurate process models even though the activities (i.e., the operators)
may not be accurately described. The approach presented in [45] highlights the
improvements that a legacy workflow application can gain by incorporating plan-
ning techniques into its day-to-day operation. The use of contingency planning
to deal with uncertainty (instead of replanning) increases system flexibility, but
it does suffer from a number of problems. Specifically, contingency planning is
often highly time-consuming and does not guarantee a correct execution under
all possible circumstances. Planning techniques are also used in [22] to define
a self-healing approach for handling exceptions in service-based processes and
repairing faulty activities with a model-based approach. During the process exe-
cution, when an exception occurs, a new repair plan is generated by taking into
account constraints posed by the process structure and by applying or deleting
actions taken from a given generic repair plan, defined manually at design time.

An interesting approach for dealing with exceptional changes has been pro-
posed in [13,34]. Here, it is presented SmartPM (Smart Process Management),
a model and a proof-of-concept PMS featuring a set of techniques providing sup-
port for automatic adaptation of processes. In SmartPM, a process model is
defined as a set of n task definitions, where each task ti can be considered as a
single step that consumes input data and produces output data. Data are repre-
sented through some process variables whose definition depends strictly on the
specific process domain of interest. The model allows to define logical constraints
based on process variables through a set F of predicates fj . Such predicates can
be used to constrain the task assignment (in terms of task preconditions), to
assess the outcome of a task (in terms of task effects) and as guards into the ex-
pressions at decision points (e.g., for cycles or conditional statements). Choosing
the predicates that are used to describe each activity falls into the general prob-
lem of knowledge representation. To this end, the environment, services and tasks
are grounded in domain theories described in Situation Calculus [48]. Situation
Calculus is specifically designed for representing dynamically changing worlds in
which all changes are the result of the tasks’ execution. Processes are represented
as IndiGolog programs. IndiGolog [12] allows for the definition of programs
with cycles, concurrency, conditional branching and interrupts that rely on pro-
gram steps that are actions of some domain theory expressed in Situation Calcu-
lus. The dynamic world of SmartPM is modeled as progressing through a series
of situations. Each situation is the result of various tasks being performed so far.
Predicates may be thought of as “properties” of the world whose values may vary
across situations. SmartPM provides mechanisms for adapting process schemas
that require no pre-defined handlers. Specifically, adaptation in SmartPM can
be seen as reducing the gap between the expected reality, the (idealized) model
of reality that is used by the PMS to reason, and the physical reality, the real
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world with the actual values of conditions and outcomes. The physical reality
Φs reflects the concept of “now”, i.e., what is happening in the real environment
whilst the process is under execution. In general, a task ti can only be performed
in a given physical reality Φs if and only if that reality satisfies the preconditions
Prei of that task. Moreover, each task has also a set of effects Effi that change
the current physical reality Φs into a new physical reality Φs+1. At execution
time, the process can be easily invalidated because of task failures or since the
environment may change due to some external event. For this purpose, the con-
cept of expected reality Ψs is given. A recovery procedure is needed if the two
realities are different from each other. An execution monitor is responsible for
detecting whether the gap between the expected and physical realities is such
that the original process δ0 cannot progress its execution. In that case, the PMS
has to find a recovery process δh that repairs δ0 and removes the gap between the
two kinds of reality. Currently, the adaptation algorithm deployed in SmartPM
synthesizes a linear process δh (i.e., a process consisting of a sequence of tasks)
and inserts it at a given point of the original process - specifically, that point of
the process where the deviation was first noted. This means that such technique
is able to automatically recover from exceptions without defining explicitly any
recovery policy.

4 Mining

Process Mining [54], also referred to as Workflow Mining [53], is the set of tech-
niques that allow the extraction of process descriptions, stemming from a set of
recorded executions. Throughout this Section, we will investigate the techniques
adopted, along with the notations used to display the results, i.e., the mined
processes. To date, ProM [55] is one of the most used plug-in based software
environment for implementing workflow mining techniques. The idea to apply
process mining in the context of workflow management systems was introduced in
[1]. There, processes were modelled as directed graphs where vertices represented
individual activities and edges stood for dependencies between them. Cook and
Wolf, at the same time, investigated similar issues in the context of software
engineering processes. In [8] they described three methods for process discovery:
(i) neural network-based, (ii) purely algorithmic, (iii) adopting a Marko-
vian approach. The authors considered the latter two as the most promising.
Although, the results presented in [8] were limited to sequential behavior only.
The nowadays mainstream process mining algorithms and management tools
model processes with a graphical syntax derived from a subset of Petri Nets,
i.e., Workflow Nets (WfN [53]), explicitly designed to represent the control-flow
dimension of a workflow. See [41] for a history of Petri nets and an extensive
bibliography. From [1] onwards many techniques have been proposed, in order to
address specific issues: pure algorithmic (e.g., α algorithm [59] and its evolution
α++ [67]), heuristic (e.g., [66]), genetic (e.g., [38]). Heuristic and genetic algo-
rithms were introduced to cope with noise, that the pure algorithmic techniques
were not able to manage. Whereas algorithmic processes rely on footprints of
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traces (i.e., tables reporting whether events appeared before or afterwards, if de-
cidable) to determine the workflow net that could have generated them, heuristic
approaches build a representation similar to causal nets, taking frequencies of
events and sequences into account when constructing the process model, in or-
der to ignore infrequent paths. Genetic process mining adopts an evolutionary
approach to the discovery and differs from the other two in that its computation
evolves in a non-deterministic way: the final output, indeed, is the result of a
simulation of a process of natural selection and evolutionary reproduction of the
procedures used to determine the final outcome. A very smart extension to the
previous research was achieved by the two-steps algorithm proposed in [52]. Dif-
ferently from previous works, in which the proposed approaches provide a single
process mining step, it splitted the computation in two phases: the first built
a Transition System that represents the process behavior and the tasks causal
dependencies; the second made use of the state-based “theory of regions” [9,15]
to construct a Petri Net bisimilar to the Transition System. The first phase was
made “tunable”, so that it could be either more strictly adhering or more per-
missive to the analyzed log traces behavior, i.e., the expert could determine a
balance between “overfitting” and “underfitting”. Indeed, past execution traces
are not the whole universe of possible ones that may run: hence, the extracted
process model should be valid for future unpredictable cases, on one hand, nev-
ertheless checking whether the latter actually adhere to the common behavior,
on the other hand. This issue reveals to be particularly relevant in the field of
knowledge-intensive processes.

To date, the majority of research relating to processes coped with structured
business processes. [26] discusses about a particular class of knowledge-intensive
processes, named “artful business processes”; they are typically carried out by
those people whose work is mental rather than physical (managers, professors,
researchers, etc.), the so called “knowledge workers” ([63]). With their skills,
experience and knowledge, they are used to perform difficult tasks which require
complex, rapid decisions among multiple possible strategies, in order to fulfill
specific goals. In contrast to business processes that are formal and standardized,
informal processes are not even written down, often, let alone defined formally,
and can vary from person to person even when those involved are pursuing the
same objective. Knowledge workers create informal processes “on the fly” to
cope with many of the situations which arise in their daily work. While informal
processes are frequently repeated, because they are not written down, they are
not exactly reproducible, even by their originators, nor can they be easily shared.
[63] described the “ACTIVE” EU collaborative project, coordinated by British
Telecom. Such project addressed the need for greater knowledge worker produc-
tivity by providing more effective and efficient tools. Among the main objectives,
it aimed at helping users to share and reuse informal processes, even by learning
those processes from the user’s behavior. Basing on the work of [6] and [56],
[19] investigated the challenge of mining these processes out of semi-structured
texts, i.e., the email conversations exchanged among knowledge workers, through
the interplay of text mining, object matching and process mining techniques. It
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provided an architectural overview of the application (named MailOfMine) able
to fulfill the objective.

The need for flexibility in the definition of some types of process, such as artful
business processes, leads to an alternative to the classical “imperative” approach:
the “declarative”. Rather than using a procedural language for expressing the
allowed sequences of activities, it is based on the description of workflows through
the usage of constraints: the idea is that every task can be performed, except
what does not respect them. [58] showed how the declarative approach can help in
obtaining a fair trade-off between flexibility in managing collaborative processes
and support in controlling and assisting the enactment of workflows. DecSerFlow
[57] and ConDec [43], now under the name of Declare [44], define such constraints
as formulations in Linear Temporal Logic. [33] outlines an algorithm for mining
Declare processes, integrated in ProM (namely, Declare Miner). The tool is based
on the translation of Declare constraints into automata, and works in conjunction
with the optimization techniques described in [68]. [4] describes the usage of
inductive logic programming techniques to mine models expressed as a SCIFF
theory. SCIFF theory is thus translated into the ConDec notation [43]. [2] differs
from both [4] and [33] in that it does not directly verify the candidate constraints
over the whole set of traces in input. It prepares an ad-hoc knowledge base of
its own, instead, which specific queries are further submitted to. The model is
determined on the base of the result of such queries. MINERful, proposed in [18],
exploits this two-steps technique too, in order to improve the efficiency of the
mining procedure. [17] proves the complexity of the algorithm to be polynomial
w.r.t. the size of both the alphabet of constraints and the input traces. Differently
from [33], [4] and [2], it is independent of the formalism adopted for representing
constraints.

Declare provides a graphical model for representing declarative processes,
useful to depict the constraints that hold between activities as a graph where
nodes are activities and arcs are constraints among them. [25] and [16] presented
a different approach to the graphical modelling. The former describes an event-
based model, namely DCRGraph, showing the current state of the workflow at
run-time, through the listing of tasks that can (either optionally or mandatorily)
or can not be executed at the moment. A section describing the mapping of that
notation to Büchi Automata is provided as well. The latter provides multiple
graphical syntaxes, respectively depicting the process from two viewpoints: (i)
global, i.e., focused on the representation of constraints between tasks, repre-
sented all together in a single graph and (ii) local i.e., focused instead on the
constraints directly related to one single activity at a time. The first is then
divided into a base and an extended version, in order to respectively depict less
or more details about the nature of constraints that hold in the process – fol-
lowing the so called “map metaphor” [14]. The second is also twofold. The static
view shows the constraints affecting an activity, which is put on the origin of a
cartesian-like diagram. There, the implication and the temporal succession are
aligned on orthogonal axes. The tasks involved in constraints related to the ac-
tivity under analysis are put on different coordinates accordingly. In the dynamic
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view, the graph evolves as new tasks are executed. Starting from the initial, the
enacted task is chained down to the previous. On the basis of the execution
trace, the consequent next tasks are shown below the chain, in compliance with
the constraints that hold at the moment.

5 Conclusions

In this work, we provided a critical and comparative analysis of the existing
approaches used for supporting knowledge-intensive processes, and we showed
some recent research techniques that may complement or extend the existing
state of the art to this end.

In the health care domain, several challenges still need to be addressed and
an interdisciplinary research effort is required. In this direction, the existing
gap between the general evidence-based knowledge contained in CGs and the
knowledge and information required to apply them to specific patients in local
healthcare organizational contexts needs further investigation. Similarly, model-
ing approaches should allow to capture all “knowledge layers” and their possible
interactions, including the procedural knowledge contained in CGs, the declara-
tive knowledge representing domain- or site-specific constraints and properties,
and clinicians’ basic medical knowledge.

In highly dynamic environments, commercial PMSs are not able to deal with
knowledge-intensive processes sufficiently, due to the static and only implicitly
defined meta models of those systems. Basically, a dynamic process is largely
dependent on the scenario at hand, and the result of process modeling is often
a static plan of actions, which is difficult to adapt to changing procedures or to
different business goals. In order to devise intelligent failure handling mechanisms
for dynamic processes there is the need to define enriched workflow models,
possibly with a declarative specification of process tasks, i.e., comprising the
specification of input/output artefacts and task preconditions and effects. In
general, the use of AI techniques for adapting dynamic processes seems very
promising.

In the area of process mining, the declarative model proves to be very effective
in allowing flexibility required by knowledge-intensive processes. Although, it has
to be verified with people involved in those processes. E.g., the graphical notation
proposed in [16] has to be implemented and its readability tested with real actors
of those processes. A graphical notation representing the level of severity of a
constraint in the process still misses. In the area of declarative workflow mining,
it might be useful to determine the tightness of the discovered constraints on
the basis of the frequency with which a constraint did not hold in the past.
Moreover, a study on the impact of noise in such analysis could be done.
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Abstract. The paper provides a framework for the specification and
verification of business processes, based on a temporal extension of an-
swer set programming (ASP). The framework allows to capture fluent
annotations as well as data awareness in a uniform way. It allows for a
declarative specification of business process but also for a direct encod-
ing of processes specified in conventional workflow languages. Verifica-
tion of temporal properties of a business process, including verification of
compliance to business rules, can be performed by LTL bounded model
checking techniques.

1 Introduction

The verification of business process compliance to business rules and regulations
has gained a lot of interest in recent years and it has led to the development
to a process annotation approach [12, 18, 33, 23], where a business processes is
enriched with information relevant for compliance verification, to capture the se-
mantics of atomic tasks execution through preconditions and effects. The treat-
ment of data in business process verification, on the other hand, has attracted
growing interest in the last decade, with the definition of artifact-centric and
data-centric process models [27, 5, 9].

In this paper we combine the two perspectives and propose a framework for
the specification and verification of business processes which allows to model
both annotations and data properties by specifying atomic tasks in a uniform
way. The approach is well suited for a declarative specification of the business
process, which has been advocated by many authors in the literature [32, 30, 25].
Following [7], the specification of annotation can be done in an action theory by
defining the effects and preconditions of atomic tasks. The same approach allows
to capture data properties, by modelling data acquisition tasks as actions which
nondeterministically assign values to variables (data objects) on given domains,
under the restriction that domains are finite.

The use of directional rules for modeling business rules as well as to capture
the conditional structure of norms is widely used in the literature [18]. In our
approach, besides the specification of action preconditions and direct effects,
causal rules in an action domain allow to capture dependencies among fluents
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(propositions whose truth is affected by actions) and fluent changes, as well as
dependencies between process data and fluents. Our claim is that both static and
dynamic causal laws are useful for the specification of business process annota-
tions and their use allows unintended conclusions to be avoided. Observe that,
once the data perspective is included, causal laws can include both conditions on
data and annotations. For instance, the rule age ≥ 18⇒ ofAge may establish a
link between the business process, whose execution assigns values to the variable
age, and the compliance rules dealing with persons ”of age”.

The approach we propose is based on Answer Set Programming (ASP) [11]
and, more precisely, on the temporal extension of ASP in [16], combining ASP
with the temporal logic DLTL [22], an extension of LTL in which the temporal
operators are enriched with program expressions. The action language in [16]
allows general DLTL constraints to be included in action domains, which can be
profitably used for a declarative specification of the business process advocated
in the literature [32, 30, 25]. In addition, the proposed approach also allows for a
direct encoding of processes specified in workflow languages, and it can be used
in combination with state of the art workflow management systems.

The paper considers several verification tasks including the verification of
business process compliance to business rules. Verification is performed through
Bounded Model Checking [6] techniques and exploits the approach in [16] for
DLTL bounded model checking in ASP, which extends the approach for Bounded
LTL Model Checking with Stable Models in [21].

2 A Temporal Answer Set Programming language

In this section we recall the temporal ASP language introduced in [16]. The
language is based on a temporal extension of Answer Set Programming (ASP)
which combines ASP with the temporal logic DLTL [22], an extension of LTL
in which temporal operators are enriched with program expressions. In particu-
lar, in DLTL the next state modality can be indexed by actions, and the until
operator Uπ can be indexed by a program π which, as in PDL, can be any
regular expression built from atomic actions using sequence (;), nondeterminis-
tic choice (+) and finite iteration (∗). Satisfiability and validity for DLTL are
PSPACE-complete problems [22].

Let Σ = {a1, . . . , an} be a finite non-empty alphabet of actions. From the
until operator, the derived modalities 〈π〉, [π], © (next), U , 3 and 2 can be
defined as follows: 〈π〉α ≡ >Uπα, [π]α ≡ ¬〈π〉¬α, ©α ≡

∨
a∈Σ〈a〉α, αUβ ≡

αUΣ∗
β, 3α ≡ >Uα, 2α ≡ ¬3¬α, where, in UΣ∗

, Σ is taken to be a shorthand
for the program a1 + . . . + an. Informally, a formula [π]α is true in a world w
of a linear temporal model if α holds in all the worlds of the model which are
reachable from w through any execution of the program π. A formula 〈π〉α is
true in a world w of a linear temporal model if there exists a world of the model
reachable from w through an execution of the program π, in which α holds.

A domain description D is a pair (Π, C), where Π is a set of laws describing
the effects and executability preconditions of actions (as described below), and C
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is a set of temporal constraints, i.e., general DLTL formulas. Atomic propositions
describing the state of the domain are called fluents. Actions may have direct
effects, described by action laws, and indirect effects, described by causal laws
capturing the causal dependencies among fluents.

Let L be a first-order language which includes a finite number of constants
and variables, but no function symbol. Let P be the set of predicate symbols, V ar
the set of variables and C the set of constant symbols. We call fluents atomic
literals of the form p(t1, . . . , tn), where, for each i, ti ∈ V ar ∪ C. A simple
fluent literal l is an atomic literal p(t1, . . . , tn) or its negation ¬p(t1, . . . , tn).
We denote by LitS the set of all simple fluent literals, and we assume that the
fluent ⊥ representing the inconsistency is included in LitS . A temporal fluent
literal has the form [a]l or ©l, where l ∈ LitS and a is an action name (an
atomic proposition, possibly containing variables). Given a (simple or temporal)
fluent literal l, not l represents the default negation of l. A (simple or temporal)
fluent literal possibly preceded by a default negation, will be called an extended
fluent literal. The laws are formulated as rules of a temporally extended logic
programming language having the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where the li’s are simple or temporal fluent literals. As usual in ASP, rules with
variables are a shorthand for the set of their ground instances; and we let Σ be
the set of ground instances of atomic actions in the domain description.

In the following we call a state a set of ground fluent literals. A state is said
to be consistent if it is not the case that both f and ¬f belong to the state, or
that ⊥ belongs to the state. The execution of an action in a state may possibly
change the values of fluents in the state through its direct and indirect effects,
thus giving rise to a new state. We assume that a law as (1) can be applied in
all states while, when prefixed with the Init, it only applies to the initial state.

Action laws, causal laws, precondition laws, persistency laws, initial state
laws, etc., which are normally used in action theories, can all be defined as
instances of (1). Action laws describe the effects of atomic tasks. The meaning
of an action law [a]l0 ← l1, . . . , lm, not lm+1, . . . , not ln, (where l0 ∈ LitS and
l1, . . . , ln are either simple fluent literals of temporal fluent literals of the form
[a]l) is that executing action a in a state in which l1, . . . , lm hold and lm+1, . . . , ln
do not hold makes the effect l0 to hold (in the state after the action).

Precondition laws allow the specification of executability conditions for atomic
tasks; they are a special case of action laws with ⊥ as effect, i.e., they have the
form: [a]⊥ ← l1, . . . , lm, not lm+1, . . . , not ln meaning that a cannot be executed
(has an inconsistent effect) in case l1, . . . , lm hold and lm+1, . . . , ln do not hold.

Causal laws define causal dependencies among propositions, which are used to
derive indirect effect of actions, called ramifications in the literature of reasoning
about actions where it is well known that causal dependencies among proposi-
tions are not suitably represented by material implication in classical logic. Static
causal laws have the form: l0 ← l1, . . . , lm, not lm+1, . . . , not ln where the li’s are
fluent literals. Their meaning is: if l1, . . . , lm hold and lm+1, . . . , ln do not hold
in a state, then l0 is caused to hold in that state. Dynamic causal laws have the
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form: ©l0 ← t1, . . . , tm, not tm+1, . . . , not tn where l0 is a fluent literal and the
ti’s are either fluent literals or temporal fluent literals of the form ©li (meaning
that the fluent literal li holds in the next state). Their meaning is: if t1, . . . , tm
hold and lm+1, . . . , ln do not hold, then l0 is caused to hold in the next state.
In particular, in the premise, a combination of the form ¬f,©f (or f,©¬f)
may be used to mean that fluent f becomes true (resp., false). The language also
includes constraints of the form ⊥ ← l1, . . . , lm, not lm+1, . . . , not ln where the
li’s are simple or temporal fluent literals.

In this language, default negation in clause bodies allows for the specification
of nondeterministic action laws, of the form [a](l0 ∨ . . . ∨ lk) ← lk+1, . . . , lm,
not lm+1, . . . , not ln, stating that the execution of action a in a state in which
lk+1, . . . , lm hold and lm+1, . . . , ln do not hold, makes nondeterministically one of
l0, . . . , lk true. In fact, [a](l0∨ . . .∨lk)← Body can be seen as a shorthand for the
rules [a]li ← Body, not [a]l1, . . . not [a]li−1, not [a]li+1, . . . not [a]lk (i = 1, . . . , k).

The laws above can be used to define persistency laws to deal with frame
fluents as well as to complete the initial state in all the possible ways compatible
with the initial state specification. The semantics of a domain description, is
defined by extending the notion of answer set [11] to temporal answer sets, so to
capture the linear structure of temporal models. We refer to [16] for details.

3 Declarative specification of business processes: merging
annotations with data

A declarative specification of a business process can be given by exploiting the
action theory above to define the effects of atomic tasks as well as their exe-
cutability preconditions. This approach has been followed in different contexts
such as in the declarative specification of web services in [26, 5] and in the declar-
ative specification of agent communication protocols in [35, 14]. We show that
causal laws have a relevant role in the specification of background knowledge,
which is common both to the business process and to the business rules, and that
the proposed approach allows for an easy integration of the data perspective.

The declarative specification of business processes has been advocated by
many authors [32, 30, 25], as opposed to the more rigid transition based approach.
A declarative specification of a process is, generally, more concise than transition
based specification as it abstracts away form rigid control-flow details and does
not require the order among the actions in the process to be rigidly defined.

The Temporal ASP language in Section 2 is well suited for defining imme-
diate and indirect effects of atomic tasks and their preconditions. Consider, for
instance, the business process of an investment firm in [7], where the firm offers
financial instruments to an investor. The atomic task investor identification has
as effect that the investor has been identified, while investor profiling has the
nondeterministic effect that the investor is recognized as being either risk averse
or risk seeking. This can be modeled by the action laws:

[investor ident(I)]investor identified(I)
[profiling(I)](risk averse(I)∨risk seeking(I))← investor identified(I)
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The first action law has empty precondition. The fact that profiling can be
executed only when the atomic task investor identification has been executed,
can be modeled by introducing the precondition law:

[profiling(I)]⊥ ← not investor identified(I))

which, literally, states that executing action profiling in a state in which the
investor I has not been identified gives an inconsistency. Observe that, in this
language, an action is executable unless there is a precondition law for it whose
antecedent is not satisfied. Hence, once the investor has been identified, the
action profiling(I) becomes executable. However, to guarantee that it will be
eventually executed, we can add in C the DLTL constraint

2[investor ident(I)]3〈profiling(I)〉>

To force the execution of profiling immediately after investor identification,
instead, we could add the constraint: 2[investor ident(I)] 〈profiling(I)〉>.

The presence of DLTL constraints in a domain specification allows for a sim-
ple way to constrain activities in a business process. Observe that, as DLTL is
an extension of LTL, it is possible to provide an encoding of all ConDec [28]
constraints into our action language. The additional expressivity which comes
from the presence of program expressions in DLTL, allows for a very compact
encoding of certain declarative properties of the domain dealing with finite iter-
ations. For instance, the property “action b must be executed immediately after
any even occurrence of action a in a run” can be expressed by the temporal
constraint: 2[(a;Σ∗; a)∗]〈b〉>), where Σ∗ represents any finite action sequence.

In [7] it has been shown that program expressions can be used to model the
control flow of a business process in a rigid way. However, the solution in [7]
does not deal with non-structured workflows.

As concerns the data perspective, an atomic task which acquires the value
of a data variable (data object) x can be regarded as an action assigning nonde-
terministically to x one of the values in its domain. Consider, for instance, the
atomic task verify status which verifies the status of a customer. Assume it has
the effect of assigning a value (gold, silver or unknown) to a variable status. The
task verify status can be regarded as a non deterministic action assigning one
of the possible values to the variable status:

[verify status]( status(gold) ∨ status(silver))

In general, we model a data acquisition task as a nondeterministic action. As an
example, let us consider an atomic task get order which acquires an order of a
product P and an atomic task select shipper(P ) which selects a shipper among
the available shippers, which are compatible with the choice of the product P .
Let us introduce the notation 1{[a]R(X) | P (X)}1 (similar to the notations used
in Clingo and in S-models) as a shorthand for the two laws:

[a]R(X)← not [a]¬R(X) ∧ P (X)
[a]¬R(X)← [a]R(Y ) ∧ P (X) ∧ P (Y ) ∧X 6= Y
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meaning that after the execution of action a, R(X) holds for a unique value of X
among those values satisfying P (X). Let available product(P ) and
available shipper(S) be the predicates defining the available products and ship-
pers, and compatible(P, S) be a predicate saying that product P and shipper S
are compatible. We can represent the effect of action get order by the law:

1{[get order]product(P ) | available product(P )}1
and the effect of action select shipper(P ) as

1{[select shipper(P )]shipper(S) | available shipper(S)}1.
The requirement that P and S must be compatible can be enforced introducing
the constraint:
⊥ ← [select shipper(P )]shipper(S) ∧ not compatible(P, S)

meaning that it is not the case that the selected shipper S and the product P
to be shipped are not compatible.

The above specification of the effects of the task select shipper(P ) has strong
similarities with the specification of a post-condition for a service in [9]. Indeed,
in [9], a post-condition of the form R(x) := ψ(x), associated with a service σ,
requires that after the execution of σ the argument x of R is instantiated with a
(unique) tuple u such that ψ(u) holds in the previous state (artifact instance). As
a difference with [9], where ψ(x) is a first-order temporal formula, our temporal
language does not allow for explicit quantification: all variables occurring in
action and causal laws are intended to be universally quantified in front of the
laws. Furthermore, in our approach we cannot deal with infinite domains. As
usual in ASP, a finite groundization the set of laws in the domain specification
is required. Abstraction techniques as those in [24] can be adopted to abstract
infinite or large domains to a finite, small set of abstract values.

4 Specification of business rules: causality and
commitments

The use of directional implications for modeling business rules as well as for
modeling the conditional structure of norms is widely recognized in the literature
[18]. In this section we claim that static and dynamic causal laws, proposed in
the AI literature about reasoning about actions and change, are also appropriate
for modeling business processes.

Consider the domain in examples 2 and 3 in [33], with the rule stating that if
an insurance claim is accepted by reviewer A and reviewer B, then it is accepted.
Suppose this is represented as the material implication

claimAccRevA ∧ claimAccRevB ⊃ claimAccepted
i.e., the clause ¬claimAccRevA ∨ ¬claimAccRevB ∨ claimAccepted. Suppose
further, as in [33], that as a result of an action with direct effects, we accept
models where such effects hold, that satisfy a background theory including the
implication above, and, according to the Possible Models Approach [34], dif-
fer minimally from the previous state. Consider a state where claimAccRevA
already holds, and an action of acceptance for reviewer B occurs, with direct ef-
fect claimAccRevB. In order to satisfy the material implication, claimAccepted
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should become true, or claimAccRevA should become false, or both; minimal
difference with the previous state only excludes this third alternative, while pro-
viding equal status to the first two. If the redundancy in the process means that
the assessment of a reviewer has no influence on the other’s, then only the first
result, where claimAccepted becomes true, is intended. The (static) causal rule

claimAccepted← claimAccRevA, claimAccRevB

allows to obtain the first solution, given that its semantics imposes that in all
states, if claimAccRevA ∧ claimAccRevB is true (and, in particular, it just
became true), then claimAccepted holds (and it becomes true as a side effect if
the premise just became true).

However, the above implication might not actually be intended, as in case
later steps in the process could make the claim not accepted. For example,
the process model might specify that if the amount claimed is greater than
a threshold, it should go through further approval by a supervisor (with possible
effect ¬claimAccepted). Unlike [33], we consider the case where this does not
mean that claimAccRevA ∧ claimAccRevB should become false, i.e., at least
one conjunct (or exactly one, for a minimal change) should become false. Rather,
we suggest that here, after reviewers acceptance, claimAccepted actually stands
for “accepted unless decision is overridden” Dynamic causal laws are suitable to
represent this; the side effect of acceptance by the single reviewers becomes:
©claimAccepted←©claimAccRevA,¬claimAccRevB,©claimAccRevB
©claimAccepted← ¬claimAccRevA,©claimAccRevA,©claimAccRevB

where syntactic sugar can be introduced, as in [8], to succinctly state that the
conjunction claimAccRevA ∧ claimAccRevB is initiated i.e., it becomes true.

Such rules correctly make claimAccepted true after reviewer acceptance, but,
if a further step has the effect ¬claimAccepted, they do not “fire” because
claimAccRevA ∧ claimAccRevB is true, but it is not becoming true. Note the
difference with the static causal rule which would fire (because claimAccRevA∧
claimAccRevB is true) and then contradict ¬claimAccepted.

A particularly significant case of the pattern above, where a fluent becomes
true as an indirect effect of some activity, but may be canceled by further activi-
ties, is the one of obligations, which arise naturally in compliance rules: several
such rules are variants of “if B happens, then A shall happen”, or, “if B is (or
becomes) true, then A shall become true”. Compliance verification for such rules
could be performed by verifying a straightforward representation of the rule as
a temporal logic formula, e.g., in LTL, the formula 2(B ⊃ 3A).

This, however, does not admit the possibility that a later activity cancels the
obligation: e.g., if an order for goods is confirmed by the seller, goods have to
be shipped; but if the customer cancels the order, the obligation to ship goods
is canceled. An explicit representation of obligations is useful to this purpose. In
this paper we limit our attention to one type of obligations in the classification
in [19]: the case where a given condition should become true at least once, after
they have been triggered; i.e., we consider achievement obligations in [19], and
we only consider the case where the obligation should be fulfilled after it is
triggered.
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We then identify obligations with the notion of commitment from the social
approach to agent communication [30, 20, 10]. A (base) commitment C(i, j, A),
means that agent i is committed to agent j to bring about A, while conditional
commitments of the form CC(i, j, B,A), mean that agent i is committed to
agent j to bring about A, if condition B is brought about [35, 14]. In this paper
we do not consider agents explicitly, and we concentrate our attention to base
commitments C(A) where A is a fluent; C(A) is also a fluent, which can be made
true, due to an action law or a dynamic causal law, as a direct or indirect effect of
an activity in the process (order confirmation, in the example). The commitment
(to ship goods, in the example) can be made false by an action with effect
¬C(A) (the customer cancelling the order). Fulfilling the commitment (shipping
goods) also makes the commitment false. Compliance verification, as we shall
see in Section 6, amounts then to verifying that commitments, if introduced, are
discharged, i.e., they are either fulfilled or explicitly canceled.

We refer to [7] for the treatment of defeasible business rules by means of
default negation in ASP.

5 Translating business process workflows in ASP

The temporal action language introduced above provides a flexible and declara-
tive specification language for business processes, and in [16] we have provided
its translation to standard ASP.

There are, however, cases where the business process is naturally modeled
(or it has already been modeled) in a workflow language such as YAWL [31]. In
principle, such process models could be translated automatically to the temporal
action language, but we have provided a direct translation to ASP for a subset
of YAWL including AND- and XOR- splits and joins. The translation is based
on an enabling semantics of arcs and tasks: an atomic task can be executed (i.e.,
the action can occur) when it is enabled. It is enabled when its only incoming
arc is enabled, or it is an AND-join and all incoming arcs are enabled, or it is
a XOR-join an one incoming arc is enabled. The execution of a task enables
the outgoing arcs, and, in case it is a XOR-split, the execution of a subsequent
activity based on the enabling of one such arc disables the other arcs.

6 Business process verification by bounded model
checking

In [16] we have developed Bounded Model Checking techniques for the verifica-
tion of DLTL constraints. In particular, the approach extends the one developed
in [21] for bounded LTL model checking with Stable Models. The approach can
be used for checking satisfiability of temporal formulas. To prove the validity
of a formula, its negation is checked for satisfiability. In case the formula is not
valid, a counterexample is provided.

Several verification tasks can be addressed within the proposed approach.
Compliance verification (described in some detail in [7]) amounts to check that all
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the business rules are satisfied in all the execution of the process. We distinguish
among business rules which can be encoded as a temporal formula and business
rules whose modeling involves commitments.

As an example of rule which can be encoded as a temporal formula to be
verified, consider, in the order-production-delivery process in [24], the rule “Pre-
mium customer status shall only be offered after a prior solvency check”: it can
be verified by checking the validity of the temporal formula

2(solvency check done ∨ ¬〈offer premium status〉>)

i.e., by verifying that in all executions of the business process if the action
offer premium status is executable, the fluent solvency check done holds. As
an example of rule modeled through causal laws whose effect is adding a com-
mitment, consider the rule “if the investor signs an order, the firm is obliged to
provide him a copy of the contract”. It can be encoded by the causal law:

C(sent contract)← order signed

We require that all the commitments generated are eventually fulfilled, unless
they are explicitly cancelled (e.g., in the example, cancelling the order also can-
cels the obligation to send the contract). Observe that canceling a commitment
would not be possible if the commitment to α corresponded directly to the tem-
poral formula 3α. A commitment is also discharged when it is fulfilled, i.e., the
following causal rule is added for all possible commitments:

©¬C(α)← C(α) ∧©α

Then the verification of rules involving commitments amounts to verifying the
validity, for all possible commitments C(α), of the formula:

2(C(α)→ 3(¬C(α)))

A verification task considered in [9] is that of verifying properties of a busi-
ness process, under the assumption that the process satisfies some given business
rules. This verification task can also be addressed in our approach: the specifica-
tion of the business rules is given by adding temporal constraints (and, possibly,
causal laws) to the domain specification. The executions of the resulting domain
specification are then verified against other temporal properties.

Satisfiability and validity of a DLTL formula over the business process ex-
ecutions are decidable problems. However, given that BMC is not complete in
general, an alternative approach to BMC in ASP is proposed in [15] to address
the problem of completeness, by exploiting the Büchi automaton construction
while searching for a counterexample.

7 Conclusions and related work

The paper presents an approach to the verification of the compliance of business
processes with norms. The approach is based on a temporal extension of ASP.
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The business process, its semantic annotation and the norms are encoded using
temporal ASP rules as well as temporal constraints. Causal laws are used for
modeling norms, and commitments are introduced for representing obligations.
Compliance verification can be performed using the BMC technique developed
in [16] for DLTL bounded model checking in ASP, which extends the approach
for bounded LTL model checking with Stable Models in [21].

This paper enhances the approach to business processes compliance verifica-
tion in [7] by taking into consideration the data perspective and by providing a
declarative specification of the business process, while in [7] the control flow of
a structured business process is modeled in a rigid way by means of a program
expression. Also, we have shown that a direct encoding of the process workflow
in ASP can be given and exploited for process verification.

Several proposals in the literature introduce annotations on business pro-
cesses for dealing with compliance verification [12, 18, 33]. In particular, [18]
proposes a logical approach to business process compliance based on the idea of
annotating the business process. Annotations and normative specifications are
provided in the same logical language, namely, the Formal Contract Language
(FCL), which combines defeasible logic [3] and deontic logic of violations [17].
Compliance is verified by traversing the graph describing the process and identi-
fying the effects of tasks and the obligations triggered by task execution. Ad hoc
algorithms for propagating obligations through the process graph are defined.

The idea of describing the effects of atomic tasks on data through precondi-
tions and effects is already present in [23], where effects and preconditions are
sets of atomic formulas, and the background knowledge consists of a theory in
clausal form; I-Propagation [33] is exploited for computing annotations. In our
approach the domain theory contains directional causal rules rather than gen-
eral clauses (which allow unintended conclusions to be avoided when reasoning
about side effects), and domain annotations are combined with data properties
in a uniform approach. In the related paper [33] several verification tasks are
defined to verify that the business process control flow interacts correctly with
the behaviour of the individual activities.

In [9] a service over an artifact schema is defined as a triple: a precondition, a
post-condition and a set of static rules, which define changes on state relations,
and are formulas in a first-order temporal logic. State update rules S(x)← φ+(x)
and ¬S(x)← φ−(x) are essentially specific kind of causal laws whose antecedents
φ+ and φ+ are evaluated in the artifact instance in which the service is executed
and whose consequents are added to the resulting artifact instance. [9] identifies
a class of guarded artifacts for which verification of properties in a (guarded)
first-order extension of LTL is decidable. While our action language does not
allow for explicit quantification, it allows for a flexible formulation of action
effects and causal laws, which permits (as shown in Section 3) an encoding of
post-conditions as in [9].

In [4] compliance checking for BPMN process models is based on the BPMN-
Q visual language. Rules are given a declarative representation as BPMN-Q
queries, which are translated into temporal formulas for verification.
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In [25] the Abductive Logic Programming framework SHIFF [2] is exploited
in the declarative specification of business processes as well as in the verification
of their properties. In [1] expectations are used for modelling obligations and
prohibitions and norms are formalized by abductive integrity constraints.

In [29] Concurrent Transaction Logic (CTR) is used to model and reason
about general service choreographies. Service choreographies and contract re-
quirements are represented in CTR. The paper addresses the problem of decid-
ing if there is an execution of the service choreography that complies both with
the service policies and the client contract requirements.

Temporal rule patterns for regulatory policies are introduced in [13], where
regulatory requirements are formalized as sets of compliance rules in a real-time
temporal object logic. The approach is used essentially for event monitoring.
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Abstract. Methods for abstraction have been proposed to ease comprehension,
monitoring, and validation of large processes and their running instances. To date,
abstraction mechanisms have focused predominantly on structural aggregation,
projection, and ad-hoc transformations.
We propose an approach for configuration of process abstractions tailored to a
specific abstraction goal expressed as constraints on the abstraction relation and
process transformation operators. Our framework goes beyond simple structural
aggregation and leverages domain-specific properties, taxonomies, meronymy,
and flow criteria. In this paper we outline the constraint-based framework and its
underlying inference procedure. We show that our approach can handle most of
the common process analysis use cases.
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configuration

1 Introduction

Models of business processes and operational procedures are increasingly being used
in modern organizations, and the size and complexity of processes and their models
can often be large. Development processes in large technology-focused organizations
can easily span more than one thousand process steps [10]. As a result, process models
have become difficult to understand and manage, as they may not be specified in full
in order to enable flexible executions. However, such flexibility comes at a price: it is
no longer easily possible to reason about executions based on a single process model.
Although learning methods have been developed to reconstruct process models from
execution logs [5], the resulting processes are often very specific and can be difficult
to comprehend in full. Therefore, methods for business process abstraction are desired
that enable process analysts to tailor large models to their specific analysis task at hand.

Methods for abstraction have been proposed to ease comprehension, monitoring,
and validation of large processes and their running instances. To date, abstraction mech-
anisms have focused predominantly on structural aggregation and projection. Collaps-
ing “similar” entities in a process model into one abstract element and projecting away
irrelevant entities are among the most common forms of simplification employed for
abstraction. Similarity and relevancy of process entities is often defined ad-hoc using
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process structure, clustering techniques, and user-specified selection criteria [4]. Clus-
tering techniques, statistical methods, and ad-hoc criteria are commonly used to devise
a concise summary representation that reflects certain aspects of the larger process.

Although structural aggregation can lead to considerable simplification of large pro-
cess models, the resulting model may not show all required elements or aggregate ele-
ments together that would be better kept separate. However, these measures fail to take
into consideration the purpose of the abstraction for the user.

We propose an approach to computing abstractions of business process models tai-
lored to conducting selected common business process analysis tasks. We address this
problem by imposing constraints on the abstraction relations that relate concrete and
abstract process models such that the abstract process model induced by the abstraction
relation is guaranteed to include the information needed to assess selected properties of
the process. Rather than relying on cumbersome explicit specification of relevant pro-
cess elements, we combine a questionnaire-driven approach to eliciting constraints for
common analysis tasks with explicit specification of additional constraints a user may
have.

As a result, significance and granularity of an abstract model can be explicitly con-
trolled and adjusted to suit a given task. Furthermore, the granularity need not be uni-
form across the entire model; different abstraction operators can be applied to different
regions of the process model.

Although techniques for parameterizing the granularity of the resulting abstractions
have been introduced in order to compensate for current techniques’ inability to devise
representations that are fit for the user’s objective [8], to the best of our knowledge,
no explicit means to control abstractions is available to non-experts in formal process
analysis.

Our method can be seen as configuration of process models, where configuration ap-
plies to the abstraction operators used in devising process rather than the process model
itself. In contrast to classic configuration where one chooses between alternative instan-
tiations of given variation points within a parametric process model, our approach takes
a detailed process model without explicit variation points and derives simplified vari-
ations thereof. Hence, our configuration method controls the operators applied within
the abstraction process rather than the underlying process model.

In this paper we make the following contributions:

– a knowledge-based framework for configuring purposeful abstractions;
– a framework for specifying constraints on the abstraction;
– a method to infer the process elements (nodes, data, labels) that need to be retained

in a conforming abstraction;
– a method to compute abstractions conforming to the abstraction goal.

The subsequent sections are structured as follows. Our process model and abstrac-
tion framework are introduced in section 2, our constraint-based abstraction framework
and configuration mechanism are described in sections 3 and 4, respectively. Abstrac-
tion operators are modeled in section 5 and our method of synthesizing conforming
abstractions is summarized in section 6, followed by discussion of related work in sec-
tion 7.
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2 Process Model Abstractions

Different users of a process model are usually interested in observing a process model
at different levels of details. This requires creation of different abstract process models
from one model. However, not all abstract views of a process are equally desirable, as
useful abstractions should be tailored to the user’s needs. In this work, we pursue this
aspect of process abstraction by constraining abstractions such that certain user-selected
properties of the underlying concrete process are maintained in its abstract view.

We adapt the process model of Smirnov et al.[15] for our purposes and furnish the
model with explicit representations of data- and domain-specific properties attached to
tasks:

Definition 1 (Process Model). A tuple (N,F, P, φ,DP ) is a process model, where N
is a finite set of nodes partitioned into tasks Nt and gateways Ng , F ⊆ N × N is the
flow relation such that (N,F ) is a connected graph, P is a finite set of properties of
tasks, DP is a finite set of property values of tasks, and φ : N × P 7→ DP is a function
that maps each property of a node to its value. For brevity, we write n.p for φ(n, p). Let
M denote the set of all process models.

The set of properties P comprises common domain-specific properties, predicate val-
uations, and information derived from executions of process instances. Common prop-
erties include roles, resources, timing information, and used and modified data flow
information. Domain-specific predicates are boolean properties expressing facts such
as “is on a critical path”. Information derived from executions indicate aggregate infor-
mation, for example execution frequencies or number of running instances of a task.

Given a concrete model m of a business process, an abstract view of m is a process
model m̂ that retains “significant” entities of m and omits insignificant ones. In our
framework, entities comprise the nodes, flows, and properties associated with nodes in
a given model. We write Ωm to denote the set of entities in m where Ωm ⊆ N ∪ F ∪
{n.p|n ∈ N, p ∈ P}.

Which entities are considered significant is largely determined by the purpose of the
abstract model and hence should be defined flexibly based on the goals of the analyst.
We will therefore use an abstract predicate sign ⊆ Ωm ∪Ωm̂ to capture the significant
entities.

Whereas insignificant entities can be either eliminated from in the abstraction or
absorbed into an abstract entity, the significant elements are to be retained. The corre-
spondence between significant entities of m and their abstract counterpart in m̂ is given
by an abstraction relation R ⊆ Ωm ×Ωm̂.

Definition 2 (Process model abstraction). A business process model abstraction is
a function α : M 7→ M that transforms a model m into a model m̂ = α(m) with
correspondence relation Rα such that

– ∀ω̂ ∈ Ωm̂ sign(ω̂) is true,
– ∀ω̂ ∈ Ωm̂∃ω ∈ Ωm (ω, ω̂) ∈ Rα,
– ∀ω ∈ Ωm sign(ω)→ ∃ω̂ ∈ Ωm̂ : (ω, ω̂) ∈ Rα, and
– α preserves local composition of m in m̂.
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Fig. 1. Example Process Model (bottom), Abstract Model (top), and Correspondence Relation

The first three conditions ensure that all retained entities in the abstraction are signifi-
cant, are justified by the existence of at least one entity in the concrete process, and that
all significant concrete entities have a corresponding element in the abstract model. The
fourth condition restricts correspondences to meaningful maps that preserve the local
structural composition of m in m̂. We require that each concrete entity maps to at most
one abstract counterpart. Where each abstract property attaches to the abstraction of
the concrete nodes belonging to the concrete properties. Also the abstract flow relation
reflects the flow in the concrete process model:

– ∀ω ∈ Ωm ∀ω̂, ω̂′ ∈ Ωm̂ (ω, ω̂) ∈ Rα ∧ (ω, ω̂′) ∈ Rα → ω̂ = ω̂′,

– ∀n.p ∈ Ωm∀n̂.p̂ ∈ Ωm̂ (n.p, n̂.p̂) ∈ Rα → (n, n̂) ∈ Rα,

– (m̂, n̂) ∈ F̂ → ∃m,n ∈ N (m,n) ∈ F ∗ ∧ (m, m̂) ∈ Rα ∧ (n, n̂) ∈ Rα.

Consider the example process models in Figure 1, where the model in the lower half
depicts the concrete process and the upper half shows the abstract model. The corre-
spondence relation for tasks is indicated by dashed lines; the correspondences for flows
are left implicit. Assuming that all elements performed by role Receptionist in m are
significant, the abstraction satisfies the condition of Definition 2 as well as the three
constraints stated above. For illustration, assume that tasks Cancel Late and Send Can-
cellation Confirmation each have a property Duration, then the constraints on Rα en-
sure that property Duration of abstract task Cancel is an abstraction of only the concrete
tasks’ property.
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3 Abstraction Specification

According to Smirnov et al.[15] business process abstraction consists of three aspects:
the why, the when and the how aspect. The why aspect captures the reasons for building
an abstraction of a process model (fragment), the when aspect describes the conditions
under which an element of a process model needs to be abstracted, and the how aspect
relates to the concrete transformation mechanism to devise an abstraction. Whereas an
extensive body of work covers the how aspect, comparatively little work is available to
address the remaining aspects.

Our work aims to address the why and when aspects. We assume that a specification
of the information, its granularity, and predicates whose truth values shall be preserved
by the abstraction can be elicited, represented formally, and exploited to guide a search
procedure to infer suitable abstractions. Let Γ be such a specification, formulated over
the entities in a given process model m. Specifically, we are interested in abstract mod-
els m̂ = α(m) satisfying Γ .

By making the abstraction criterion explicit, the why aspect of process abstraction
is captured, which can be translated into conditions for when it is admissible to abstract
different entities. We define the significance predicate such that the entities are pre-
served which are required to ensure that criterion Γ is fulfilled on the abstract model.
Building on prevalent structural rewriting mechanisms, we provide generic operators
on properties and their values in order to automatically eliminate or aggregate entities,
and furnish the abstract model with a suitable representation of aggregated information.
The application of operators is restricted such that the resulting abstract model retains
the significant entities and predicates.

An abstraction criterion may be composed of the following specification primitives:

– sign(ω) for ω ∈ Ωm;
– ω = ω′ for ω, ω′ ∈ Ωm ∪Ωm̂;
– (n, n′) ∈ F ∗ ∪ F̂ ∗, n, n′ ∈ Nt ∪ N̂t, n, n′ ∈ Ng ∪ N̂g;
– n.p ⊕ c, where n, p, and c are a node, a property and a constant drawn from DP ,

respectively, and ⊕ is a relational operator (e.g. ≺, �, =, 6=, . . . );
– (ω, ω̂) ∈ Rα;
– negation, conjunction, disjunction, universal and existential quantification.

This language is expressive enough to capture many interesting properties, including
domain-specific predicates and some aggregate instance information. The starred F ∗

and F̂ ∗ denote the transitive closure of the flow relation.
For example, one could be interested only in the expensive tasks in the process

model in Figure 1, where the value of Fee exceeds some threshold $$: Γ = x.Fee ≥
$$→ ∃x (x, x̂) ∈ Rα ∧ x.p = x̂.p ∧ (x.p, x̂.p) ∈ Rα for p ∈ {Fee,Label}. Capturing
this explicitly in Γ , significance predicate and aggregation operators can be found. The
example formula implies that all “expensive” tasks will retain their precise labels and
fee information, whereas all other tasks and properties can potentially be abstracted
away (subject to maintaining the generic abstraction constraints and well-formedness
of the resulting abstract process).

While this example may seem trivial, our approach generalizes to more involved sit-
uations. For example, if execution times shall be retained, but labels of some tasks need
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not be, our approach allows us to absorb otherwise insignificant tasks into other tasks,
but prevents us from eliminating the task entirely, which would result in its contribution
to execution time being lost. Similarly, the model abstractions that may be applied in
devising an abstraction would be restricted to aggregate the property of sequence of
nodes using the sum function but not, for example, max function. Furthermore, data
flow in the model may impose restrictions on significance of non-local process entities.

To facilitate the abstraction of data properties and other non-structural aspects of
the business process, we assume that the value domain Dp of each property (including
the label of nodes) p ∈ P forms a (finite-height) (semi-)lattice with partial order ≺p,
where x ≺p y denotes that x is more precise (or has more information) than y. We use
>p to denote the least element of Dp, which provides no information. In this case, the
property can be omitted.

For example, let us revisit the model in Figure 1. An example of the (semi-)lattice
for the Role properties is shown in Figure 2. The lattice for roles indicates that roles
Receptionist and Admin are specializations of role Staff and are therefore candidates
for role abstraction.

For example, one could be interested in distinguishing Customers from Staff but not
the precise staff roles. This could be captured in Γ as a constraint on the Role property
of nodes. As a result, any value r of property Role that satisfies r ≺ Staff would be
abstracted to value Staff.

We impose one more constraint on Rα: any admissible Rα must satisfy that no
information can be gained in the abstract model. That is, (ω, ω̂) ∈ Rα → ω � ω̂ must
hold for all property entities ω, ω̂.

4 Abstraction Configuration

Although the method of constraining valid abstractions is powerful, direct exposure
of the formal framework to business analysts is rarely feasible in practice. Therefore,
we employ knowledge-based configuration mechanisms to elicit appropriate partial ab-
straction specifications. We use a variant of the questionnaire method of process config-
uration [6], which interacts with the user in terms of simple domain-specific questions
in order to construct the formal domain representation from the user’s answers. Differ-
ent from previous work, our configuration model does not rely on established variation
points within the process model, but rather aims to construct a formula that constrains
the admissible abstraction relations and operators that can be used to construct it. No
explicit library of processes and variation points specific to the process under consider-
ation is needed.
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We envision our process abstraction configurator to provide a wizard-like interac-
tion where process analysts may select the information and predicates they wish to
retain in the abstraction, and define domain-specific value lattices, aggregation- and
structural transformation operators. Underlying our configurator is a catalog of abstrac-
tion constraint templates, which can be selected and its parameters instantiated by the
user.

Definition 3 (Configuration Model). A configuration model is a triple (C,O, G), where
C is a catalog of abstraction aspects,O is a library of abstraction operators (defined in
section 5), and G is a finite set of boolean propositions.

The catalog contains configuration options and associated abstraction constraints, the
library of abstraction operators defines the transformations that can potentially be ap-
plied to the process model, and the set of propositions allows one to restrict the set of
applicable operators based on choices made for aspects in the catalog. We first describe
the catalog and defer discussion of the operators until the next section.

Definition 4 (Abstraction Aspect Catalog). An abstraction aspect catalog is a set of
templates (Q,X,C[X,G]) where Q is a configuration option, X is a set of parameter
variables, and C[X,G] is a formula template parametric in X specifying the abstrac-
tion constraints associated with Q in terms of the process model, and abstraction oper-
ator constraint in terms of assignments to G. Each placeholder variable x ∈ X can be
assigned a predicate or domain value from the process model (subject to resulting in a
well-formed formula C[X,G]). The configuration criterion Γ is simply the conjunction
of all constraints Ci[xi, Gi] of selected Qi with binding Xi = xi.

As an example, let the configuration option Q1 be ’Get a process view from all
the interactions between two specific roles’. By selecting this configuration option, the
parameter variables are set as: X = {Role1, Role2}. The values for the roles are re-
quested and assigned as Role1 = Admin and Role2 = Accountant. The configura-
tion imposes constraints on the abstraction relation: a task n must be retained in the
abstraction if its Role property valuation matches either Role1 or Role2, and there is a
flow from n to another task n′ that has property Role set to the remaining given role.
Formally, the abstraction criterion Γ can be expressed as

∀n1, n2 ∈ Nt : (n1, n2) ∈ F ∗

∧ ((n1.Role = Role1 ∧ n2.Role = Role2)

∨ (n1.Role = Role1 ∧ n2.Role = Role2))

→ (n1, n1) ∈ Rα ∧ (n2, n2) ∈ Rα.

The catalog allows for convenient elicitation of user’s requirements based on com-
mon abstraction goal patterns. Table 1 shows how 11 of the 14 common use cases for
process abstraction presented by Smirnov et al[15] can be expressed in our framework.
Most constraints restrict which tasks and properties may be abstracted, and whether
insignificant tasks shall be eliminated or aggregated. In the first group of uses cases
(1–4), a process view respecting one or more properties of a task, such as resources
and data objects, is required. For this purpose the properties of all tasks are compared



A knowledge-based approach to the conf. of business proc. model abstractions 67

with the user specified property P. Tasks satisfying property P over property A are re-
tained in the abstraction, whereas others are eliminated. In the second use case, tracing
a task, the effect of a task in the process model needs to be assessed. For this purpose
a process view containing the tasks which are reachable from the interesting task is
produced. The constraint ensures that all tasks x′ reachable from a given task x are
retained in the abstraction. For instance-related use cases (5–7), we currently require a
pre-processing stage, where the tasks in the process model are furnished with aggregate
property information derived from the instances. For example, an property representing
execution frequencies or cumulative case costs could be added. For use case 9, adapt
process model for an external partner, the tasks which need to be presented to the ex-
ternal partner are selected. The selected tasks are considered as significant, hence they
need to be retained while the rest of the tasks are aggregated. The first constraint ensures
that selected tasks are retained in the abstraction, whereas the second constraint ensures
that no insignificant tasks are eliminated from the model (although such tasks may be
aggregated with other insignificant tasks). In use case 10, a process view respecting the
data dependencies of the tasks is required. For this purpose those tasks which make
use of the data objects of interest are considered as significant and must be retained
in the abstraction while the rest of the tasks are considered as insignificant and can be
eliminated from the abstract model. For use case 13, a process view respecting user
specified property(s) is required. Different from use cases 1–4, in this process view the
insignificant tasks (tasks without interesting property(s)) are aggregated and presented
as a composite task in the process view. Hence the constraint prohibiting the elimination
of insignificant tasks must be imposed in addition to the constraint capturing use cases
1–4.

Three use cases cannot directly be expressed in our framework. In use case 14, Re-
trieve coarse grained activities, a view over the coarse-grained tasks are required but
not a view over the process model. This requires inferring the coarse-grained activities,
i.e, abstraction hierarchies and meronymy, from the detailed process model. In contrast,
our approach relies on given abstraction hierarchies and meronymy to compute abstrac-
tions. In use case 12, the user needs to control the abstraction level gradually while in
our approach the process model is abstracted until all the user specified criteria are met.
Finally, use case 8 requires to infer possible executions of the process model given a
specification of a case instance. Extensions to our framework would be required in or-
der to infer transitions that are potentially enabled or blocked based on guard conditions
and values in the given case instance.

5 Abstraction Operators

Once abstraction constraints have been set, the concrete process model m can be trans-
formed into a customized process view m̂. In our framework, this amounts to construct-
ing an abstraction function α and its induced Rα such that all abstraction constraints
are satisfied when applying α on m. We employ generic search techniques to compose
α from individual model transformation operators selected from a library of abstraction
operators.
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Preserving Relevant Tasks (Use cases 1–4)
Q1 : Retain a task if property [A] satisfies [P]
C1[A,P ] = ∀x ∈ Nt [P ](x.[A]) → (x, x) ∈ Rα
Tracing a Task (Use case 11)
Q2 : Retain a task if it is reachable from the node [x]
C2[x] = ∀x′ ∈ N (x, x′) ∈ F ∗ → (x′, x′) ∈ Rα
Preserving Relevant Process Instances (Use cases 5–7)
Q1 and Q2, based on pre-processed model
Adapt Process Model for an External Partner (Use case 9)
Q3 : Retain selected tasks in set T
∀x ∈ T (x, x) ∈ Rα
Q′3 : Aggregate insignificant tasks:
∀x ∈ N sign(x)

Trace Data Dependencies (Use case 10)
Q4 : Retain a task if it uses data property [P]
C4[P ] = ∀x ∈ Nt∀p ∈ [P ]HasProperty(x, p) → (x, x) ∈ Rα ∧ (x.p, x.p) ∈ Rα
Get Process Quick View Respecting a Property (Use case 13)
Q1 and Q′3

Table 1. Representation of Use Cases in [15]

Abstraction operators are model transformations that rewrite the concrete model’s
entities into their abstract counterparts. Traditionally, work on business process abstrac-
tion focuses predominantly on structural transformations, where rules specify how frag-
ments in a model shall be transformed into an abstract (smaller) fragments in the ab-
stract model. Our work extends this approach to data properties.

Similar to constraints on the abstraction relation, which limit the information re-
tained in the abstraction, the selection of abstraction operators is subject to constraints
imposed by the configuration model that ensure abstract data values are given meaning-
ful values consistent with the purpose of the abstraction.

Definition 5 (Abstraction Operator). An abstraction operator is a tuple (R,S, V,W )
where R, S are fragments of a process model (“patterns”) with common variables V ,
and W is a boolean expression over propositions G (in the configuration model) and
V , governing the application of the operator. If R matches with binding σ in a model
m, and W is satisfiable, a model m′ = m[Rσ 7→ Sσ] is obtained by replacing the
matched part Rσ in m with the replacement fragment Sσ. Substitute S may contain
data transformation functions that compute the aggregate value for properties in the
abstract model. Operators include sum, min, max, avg, for numeric properties, and
least upper bound and greatest lower bound operators (if defined) on properties’ value
lattices.

Our library of abstraction operators currently comprises:

– Projection operators that eliminate tasks/flows;
– Entity abstraction rules that transform labels and properties of individual tasks.

These operators abstract property values according to the corresponding lattices of
domain values;
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– Structural rewrite rules that transform the process structure and re-arrange tasks
and flows;

– Aggregation rules that aggregate values of properties of multiple tasks. Separate
rules exist for properties of different type, and different aggregation functions may
need to be used for sequence, choice, parallel, and loop constructs.

For space reasons we cannot present the entire collection in detail. Figure 4 contains
examples of property-related aggregation for properties of different types (numeric,
set-valued, boolean). The bottom part shows the concrete fragments and the top part the
abstract counterparts; X and Y represent variables to be matched and a,b,c represent
placeholders for numeric, set-valued, and boolean properties, respectively.

Figure 4a indicates 2 tasks in a block. To aggregate the numeric properties of the
two tasks, the operators such as Max, Min, Avg, Sum can be employed. Selecting an
operator is completely case based. For example, assume a user is interested in tasks
with high hand-off times. In this case, the operator Max needs to be selected to as-
sign the maximum hand-off time to the composite task XY. Likewise, for the set-valued
properties, an operator such as union, aggregate meronymy, abstract label, based on the
configuration option in hand, can be selected. The operators for boolean properties of
the tasks, include, Or, And, Xor. As an example, assume a user is interested in observing
the tasks which are in a critical path, the operator Or can be employed which indicates
the composite task is whether on a critical path or not. Figure 4b shows an abstraction
operator for two tasks in a loop. For the numeric properties of these tasks, based on
how many times the loop is executed, the result from the abstracting operator needs to
be multiplied or widened to infinity, if an upper bound is not known. Figure 4c shows
an abstraction operator for sequential tasks. In this case, where numeric properties typi-
cally are aggregated, set-valued properties are merged, and boolean properties are either
merged or combined using logic operators to infer the property value associated with
the abstract task.

Table 2 gives a list of operators currently defined in our library. The table on the
right-hand side of the figure shows examples for formalization of three operators in our
framework. Our formalization relies on a set G of propositions defined in the config-
uration model that is used to govern the application of certain abstraction operators.
The elements of this set are determined by the selected configuration options and do-
main model and consists of propositions of the form Enable(o, op, p), where o is the
name of an abstraction operator, op is an aggregation operation, and p is a property. To-
gether with a hierarchy of properties (with specialization ordering v), the propositions
are used to control which operators can be applied to certain operations. For example,
abstraction operator SumNumPropSeq is only applicable if none of the configuration
options prohibits its application. Whereas most operators are generic and can be ap-
plied to process models from any domain, domain-specific operators can be introduced
to account for specific abstractions, such as the meronymy approach presented in [14].

6 Abstraction Computation

Conceptually, our abstraction method proceeds as follows. Starting with a given con-
crete process model m and configuration constraints Γ , we employ a search procedure
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[Y.a, ∞] 

Fig. 4. Structural and Property Aggregation Operators

Operator Type
Remove Task/Flow Projection
Remove Property Projection
Abstract Label Entity
Abstract Property Value Entity
Aggregate Sequence Structural
Aggregate Concurrent Structural
Aggregate Choice Structural
Aggregate Loop Structural
Aggregate Meronymy Structural
Simplify Gateway Structural
Shift Gateway Structural
Aggregate Value (Seq) Aggregation
Aggregate Value (Concurrent) Aggregation
Aggregate Value (Choice) Aggregation
Aggregate Value (Loop) Aggregation

Logic Representation of the Operators
RemoveTask(x):
∀x ∈ Nt : ¬sign(x) →

@x̂ ∈ N̂t : (x, x̂) ∈ Rα
AggregateTaskSeq(x,y):
x, y ∈ Nt ∧ (x, y) ∈ F →

∃x̂y ∈ N̂t : (y, x̂y) ∈ Rα
∧ (y, x̂y) ∈ Rα

SumNumPropSeq(x,y,p):
x, y ∈ Nt ∧ (x, y) ∈ F∧
(x, x̂y) ∈ Rα ∧ (y, x̂y) ∈ Rα
∧p v Numeric
∧ ¬Enable(SumNumPropSeq,+, p) /∈ G

→ x̂y.p = x.p+ y.p

Table 2. Abstraction Operators

to incrementally build an abstraction. An applicable abstraction operator r is selected
and applied to m, yielding a transformed model m′. If structural aggregation was per-
formed, additional rules to determine the property values of new task(s) are applied.
Concurrently, the abstraction function and its correspondence relation are extended to
account for the effects of r. This process repeats until an abstraction satisfying all con-
straints in Γ has been created and no further rule applications are possible. As a result,
we obtain an abstraction function that transforms the given model m in a maximally
abstract process model reflecting the relevant tasks and properties. If the intermediate
results are recorded, this yields a hierarchy of abstractions of varying granularity. Al-
though not all models in this hierarchy necessarily satisfy all abstraction constraints,
navigating the abstraction hierarchy could be useful to “drill-down” in specific areas if
needed (comparable to the approach in [12]). Incremental specification and adjustment
of abstraction constraints based on initial abstract views remains a direction for future
research.
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If multiple operators are applicable, this approach may result in multiple possible
abstractions. To steer our algorithm towards desirable abstractions, we employ a sim-
ple optimization method that aims to minimize both constraint violations and model
complexity. When selecting an abstraction operator, we choose the operator that mini-
mizes the sum viol(Γ, α,m) + size(α(m)), where viol(Γ, α,m) denotes the number
of constraints in Γ that are violated by the current abstraction α when applied to m,
and size(α(m)) measures the number of elements (|N | + |F |) in the abstract model
α(m). In addition, we maintain a worklist of the current best k abstraction functions.
Currently, k is a user-set parameter.

For example, let us revisit the process in Figure 1. Assume that only tasks that are
involving role “Receptionist” with Duration> 3min are required to be shown in the
abstraction.

Based on the given the abstraction constraints, the abstraction criterion Γ can be
expressed as:
∀n ∈ Nt ∧ n.Role = Receptionist ∧ n.Duration > 3→ (n, n) ∈ Rα

Considering the criteria, tasks Use, Cancel Early and Cancel Invoice are insignif-
icant, as for example Use.Role 6= Receptionist. Aggregating the two tasks Cancel
Early and Cancel Invoice does not result in a significant task either. Hence among oth-
ers, operator “Remove Task” can be applied to these tasks to eliminate them from the
process model. Tasks Cancel Late and Send Cancellation Confirmation are also in-
significant but unlike Cancel Early and Cancel Invoice, aggregating these two tasks
results in a significant task. Hence, operator Abstract Property Value can be applied to
their role properties to lift the property value to the abstract value Staff. Now, operator
Aggregate Meronymy can be applied (based on the meronymy in Figure 3), combin-
ing Cancel Late and Send Cancellation Confirmation into Cancel. The operator Sum-
NumPropSeq is applied on the duration properties of the two tasks to add up these
properties. Since the abstract task was formed by sequential composition, Aggregate
Value (Seq) must be applied twice to infer the value for properties Role and Duration of
the abstract task.

At this point, no operators are applicable that satisfy the abstraction constraints.
Further simplification of properties and removal of tasks or flows would yield either an
ill-formed process model or violate an abstraction constraint.

7 Related Work

The research presented in this paper complements the areas of business process model
abstraction and process model configuration. Due to emerging various needs, several
approaches have been proposed by which the size of a process model can be reduced.
However, no single approach provides the same level of configuration ability as ours.

Many approaches for simplifying a given process model based on rewrite rules have
been developed [15]. Rewriting approaches based on process fragments, process re-
gions and patterns aim to simplify the structure of large processes by hierarchical ag-
gregation. Various process visualization techniques rely on users selecting interesting
tasks and eliminating the remaining tasks from the process model [2]. Pankratius et al.
[11] proposed Petri Net based reduction patterns, including place and transition elim-
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ination and place and transition join, for abstraction. Liu et al. [9] cluster tasks in a
process model, preserving ordering constraints, roles, execution frequencies, and pro-
cess view for external partners. Since their main abstraction operation is aggregation,
the clusters are aggregated into composite nodes. In both of these approaches [11, 9],
the authors address the how component of the business process abstraction. Since the
papers ignore the execution semantic of the process model and treat only tasks, but
not the reachability criterion, as the abstraction objects, the process views related to the
process instances (use cases [5-7]) cannot be captured by their techniques. Additionally,
compared to our approach, their approach is not user interactive. Cardoso et al.[3] pro-
posed reduction rules to synthesize process views respecting ordering constraints and
roles. The paper concentrates on the how component of the process abstraction while
only non-functional property values have been considered. Furthermore, their reduction
technique is pattern based. Once a region matches one of their predefined patterns, the
region is aggregated into a composite node. Hence, it is not always possible to aggre-
gate an insignificant task, as forming a region for the task that matches the patterns, can
be impossible.

Bobrik et al.[1] aggregate information derived from running instances into a sum-
mary process model, including completion status, data properties, and timing informa-
tion. In this paper only the how component is discussed. Also the paper does not discuss
the property aggregation operations for different types of properties. Polyvyanyy et al.
[13] defined abstraction criteria based on slider approach which separate significant
from insignificant tasks, which are subsequently aggregated based on structural process
patterns. Although the abstraction criteria can be extended to cover more abstraction
scenarios, they are limited to those properties which have a quantitative measurement
such as cost and execution duration.

Fahland et al.[5] proposed a simplification strategy for Petri nets that is based on un-
folding and subsequent transformation and folding regardless of abstraction purposes.
Overall most of the process model abstraction approaches focus on only the how com-
ponent, reduce a process model based on predefined patterns, consider only a limited
number of properties, and are not user interactive. In contrast, we take other process
abstraction components into account, we do not restrict the preservation or aggregation
of a task based on its region and the corresponding patterns, we provide an aggrega-
tion solution for properties with different types. Finally using a questionnaire, different
needs of a user from abstracting a process model are taken into account.

In process model configuration literature, La Rosa et al. [8] introduce a question-
naire approach for system configuration. The questionnaire elicits facts about the de-
sired process variant. Facts are associated with actions that adapt a given generic ref-
erence process to suit the users requirements. Gottschalk et al. [7] summarizes similar
approaches for EPCs and YAWL, where tasks in the process are either blocked or hid-
den. In contrast, our approach does not rely on a reference process with variation points.
Instead, we constrain the resulting abstraction relation and employ search techniques to
compute suitable abstractions for tasks and data entities in the process model.
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8 Conclusion

We presented a configuration method for generating tailored business process abstrac-
tions that satisfy user-selected abstraction criteria. Our method is based on imposing
constraints on the abstraction relation, which is computed using a generic search pro-
cedure using a library of generic and domain-specific abstraction operators. Elicitation
of relevant abstraction constraints is simplified by a questionnaire-based approach that
hides much of the formal underpinnings of our method. Our abstraction approach goes
beyond simple structural transformation and also considers data properties and flow
aspects within the process model in the abstraction.

In this paper we focused on conceptual elaboration of our method. Immediate future
work will focus on empirical evaluation of the approach on large business processes,
and on incorporating preference orderings into our search and operator selection algo-
rithms. Other avenues for research are incremental elicitation of abstraction constraints
in the context of incremental process exploration and integration of process instance-
based properties and further reachability-based criteria.
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Abstract. The business process planner relies on external services for particu-
lar tasks. The tasks performed by each of the providers or the planner are often
NP-complete, e.g. the Traveling Salesman Problem. Therefore, finding a com-
bined solution is a computationally (as well as conceptually) complex task. Such
a central planner could be used in business process management in e.g. logistics
service provider, manufacturer supply chain management, mid-size businesses
relying on external web services and cloud computing. The main challenge is a
high level of uncertainty and that each module can be described in a different lan-
guage. The language is determined by its suitability for the task and the expertise
of the local developers. To allow for multiple languages, we approach the problem
of finding combined solutions model-theoretically. We describe a knowledge rep-
resentation formalism for representing such systems and then demonstrate how
to use it for representing a business process planner. We prove correctness of our
representation, describe general properties of modular systems and ideas for how
to automate finding solutions.

1 Introduction

Formulating AI tasks as model finding has recently become very promising due to the
overwhelming success of SAT (propositional satisfiability) solvers and related technol-
ogy such as ASP (answer set programming) and SMT (satisfiability modulo theories).
In our research direction we focus on a particular kind of model finding which we call
model expansion. The task of model expansion underlies all search problems where for
an instance of a problem, which we represent as a logical structure, one needs to find
a certificate (solution) satisfying certain specification. For example, given a graph, we
are looking for its 3-colouring in a classic NP-search problem. Such search problems
occur broadly in applications; they include planning, scheduling, problems in formal
verification (where we are looking for a path to a bug), computational biology, and so
on. In addition to being quite common, the task of model expansion is generally simpler
(for the same logic) than satisfiability from the computational point of view. Indeed, for
a given logic L, we have, in terms of computational complexity,

MC(L) ≤ MX(L) ≤ Satisfiability(L),

where MC(L) stands for model checking (structure for the entire vocabulary of the
formula in logicL is given), MX(L) stands for model expansion (structure interpreting a
part of the vocabulary is given) and Satisfiability(L) stands for satisfiability task (where
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we are looking for a structure satisfying the formula). A comparison of the complexity
of the three tasks for several logics of practical interest is given in [15].

The next step is to extend the framework to a modular setting. In [21], we started
to develop a model-theoretic framework to represent search problems which consist
of several modules. In this paper, we develop our ideas further through an example of
a Business Process Planner (BPP). This planner generalizes a wide range of practical
problems. We envision such a planner used as a part of a multi-tool process management
system. The task solved by BPP is extremely complex, and doing it manually requires
significant resources. The technology is now ready to automate such computationally
complex tasks, and our effort is geared towards making the technology available to less
specialized users.

In systems like our planner, a high level of uncertainty is present. In our framework,
we can model the following types of uncertainty.

– Each agent can see only the inputs and the outputs of other modules, but not their
internals. The modules are viewed as black boxes by the outside world. Modules
communicate with each other through common vocabulary symbols.

– Modules can be represented using languages that are not known to other modules.
Such languages can even be old and no longer supported, as is common for legacy
systems.

– Each module (an agent) can have multiple models (i.e., structures satisfying an
axiomatization), each representing a possible plan of an individual module. This is
a feature that generates uncertainty in planning. We view each module abstractly as
a set of structures satisfying the axioms of the module.

The main challenge is that each module can be represented in a different language,
reflecting the local problem’s specifics and local expertise. Thus, the only way to for-
malize such a system is model-theoretic. Our goal is not only to formalize, but to even-
tually develop a method for finding solutions to complex modular systems like the BPP.
This is a computationally complex task. Our inspiration for finding solutions to such
systems comes from “combined” solvers for computationally complex tasks such as
Satisfiability Modulo Theories (SMT). There, two kinds of propagation work interac-
tively – propositional satisfiability (SAT) and theory propagation. In the case of modular
systems, each module will have a so-called oracle that is similar to solvers/propagators
used in SMT. If the logic language used by a module has a clear model-theoretic se-
mantics, such an oracle (propagator) is easy to construct, but in the most extreme cases,
derivations can be even performed by a human expert. At the level of solving, oracles
would interact using a common internal solver language with a clear formal semantics.
We believe that a formal model-theoretic approach is the right approach to develop-
ing a general algorithm for solving modular systems such as the BPP. This is another
important motivation for developing a rigorous model-theoretic framework.

In this paper, we demonstrate how to use ideas of model expansion and modular
systems together to naturally represent modular systems such as BPP. We prove cor-
rectness of our formalization and explain how finding solutions to such systems can be
automated.
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2 Business Process Planner

A business process planner is an entity which plans a particular task by relying on ex-
ternal services for particular tasks. Often, in business, there are cases when one needs to
buy services from other service providers. The planner combines services provided by
different companies to minimize the cost of the enterprise. The customer needs to allo-
cate required services to different service providers and to ask them for their potential
plans for their share. These plans will then be used to produce the final plan, which can
be a computationally complex task. The tasks performed by each of the providers are of-
ten NP-complete, e.g. the Traveling Salesman Problem. Therefore, finding a combined
solution is a computationally (as well as conceptually) complex task. Such a central
planner could be used in business process management in many areas such as:

– Logistics Service Provider operates on the global scale, uses contracted carri-
ers, local post, fleet management, driver dispatch, warehouse services, transporta-
tion management systems, e-business services as well as local logistics service
providers with their own sub-modules.

– Manufacturer Supply Chain Management uses a supply chains planner relying
on transportation, shipping services, various providers for inventory spaces, etc.. It
uses services of third party logistics (3PL) providers, which themselves depend on
services provided by smaller local companies.

– Mid-size Businesses Relying on External Web Services and Cloud Computing
Such businesses often use data analysis services, storing, spreadsheet software (of-
fice suite), etc.. The new cloud-based software paradigm satisfies the same need in
the domain of software systems.

Planner

Provider1 Provider2 Provider3

R

S

P

R1 R2 R3S1 S2 S3

P1 P2 P3

P1' P3'P2'

Fig. 1. Business Process Planner (BPP).

Figure 1 shows a general representation of a business process planner with three
providers. Each of the solid boxes in Figure 1 represents a business entity which, while
interested to participate in the process, is not necessarily willing to share the informa-
tion that has affected their decisions. Therefore, any approach to representing and solv-
ing such systems that assumes unlimited access to complete axiomatizations of these
entities is impractical.
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The business process planner in Figure 1 takes a set S of services and a set R of
restrictions (such as service dependencies or deadlines) and generates plan P . Each
“Provideri” takes a subset of services Si and their restrictions Ri. Provideri generates
a potential plan Pi for subset Si of services and returns it to “Planner”. Planner takes
all these partial plans and, if not satisfied with them, reconsiders service allocations or
providers. However, if satisfied, it outputs plan P by combining partial plans Pi.

3 Background: Model Expansion Task

In [17], the authors formalize combinatorial search problems as the task of model ex-
pansion (MX), the logical task of expanding a given (mathematical) structure with new
relations. Formally, the user axiomatizes their problem in some logic L. This axiom-
atization relates an instance of the problem (a finite structure, i.e., a universe together
with some relations and functions), and its solutions (certain expansions of that struc-
ture with new relations or functions). Logic L corresponds to a specification/modelling
language. It could be an extension of first-order logic, or an ASP language, or a mod-
elling language from the Constraint Programming (CP) community such as ESSENCE
[12]. MX task underlies many practical approaches to declarative problem solving.

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An
interpretation for a vocabulary is provided by a structure, which consists of a set, called
the domain or universe and denoted by dom(.), together with a collection of relations
and (total) functions over the universe. A structure can be viewed as an assignment to
the elements of the vocabulary. An expansion of a structure A is a structure B with the
same universe, and which has all the relations and functions ofA, plus some additional
relations or functions. The task of model expansion for an arbitrary logic L (abbreviated
L-MX), is:

Model Expansion for logic L
Given: (1) An L-formula φ with vocabulary σ ∪ ε and

(2) A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

We call σ, the vocabulary of A, the instance vocabulary, and ε := vocab(φ) \ σ the
expansion vocabulary1.

Example 1. The following formula φ in the language of logic programming under an-
swer set semantics constitutes an MX specification for Graph 3-colouring.

1{R(x), B(x), G(x)}1← V (x).
⊥ ← E(x, y), R(x), R(y).
⊥ ← E(x, y), G(x), G(y).
⊥ ← E(x, y), B(x), B(y).

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E).
The task is to find an interpretation for the symbols of the expansion vocabulary ε =
{R,B,G} such that the expansion of A with these is a model of φ:

1 By “:=” we mean “is by definition” or “denotes”.
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A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper 3-
colourings of G.

Given a specification, we can talk about a set (class) of σ∪ε-structures which satisfy
the specification. Alternatively, we can simply talk about a set (class) of σ∪ε-structures
as an MX-task, without mentioning a particular specification the structures satisfy.

Example 2 (BPP as Model Expansion). In Figure 1, both the planner box and the
provider boxes can be viewed as model expansion tasks. For example, the box labeled
with “Provider1” can be abstractly viewed as an MX task with instance vocabulary
σ = {S1, R1} and expansion vocabulary ε = {P1}. The task is: given some services
S1 and some restrictions R1, find a plan P1 to deliver services in S1 such that all re-
strictions in R1 are satisfied.

Moreover, in Figure 1, the bigger box with dashed borders can also be viewed as an
MX task with instance vocabulary σ′ = {S,R} and expansion vocabulary ε′ = {P}.
This task is a compound MX task whose result depends on the internal work of all the
providers and the planner.

4 Modular Systems

This section presents the main concepts of modular systems.

Definition 1 (Primitive Module). A primitive module M is a set (class) of σM ∪ εM -
structures, where σM is the instance vocabulary, εM is the expansion vocabulary.

Each module can be axiomatized in a different logic. However, we can abstract away
from the logics and study modular systems entirely model-theoretically.

A modular system is formally described as a set of primitive modules (individual
sets of structures) combined using the operations of:
1. Projection(πτ (M)) to restrict a module’s vocabulary,
2. Composition(M1 BM2) to connect outputs of M1 to M2,
3. Intersection(M1 ∩M2),
4. Union(M1 ∪M2),
5. Feedback(M [R = S]) which connects output S of M to its inputs R.

Formal definitions of these operations were introduces in [21] and are given below.
The initial development of of our algebraic approach was inspired by [14]. In con-

trast to that work, our contribution was to use a model-theoretic setting, simplify the
framework and add a loop operator which increases the expressive power significantly,
by one level in the polynomial time hierarchy. Here, we only consider modular systems
that do not use the union operator.
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Operations for Combining Modules

Definition 2 (Composable, Independent [14]). Modules M1 and M2 are composable
if εM1

∩ εM2
= ∅ (no output interference). Module M1 is independent from M2 if

σM1
∩ εM2

= ∅ (no cyclic module dependencies).

Definition 3 (Modular Systems). Modular systems are built inductively from con-
straint modules using projection, composition, union and feedback operators:
Base Case A primitive module is a modular system.
Projection For modular system M and τ ⊆ σM ∪ εM , modular system πτ (M) is

defined such that (a) σπτ (M) = σM ∩ τ , (b) επτ (M) = εM ∩ τ , and (c) B ∈ πτ (M)
iff there is a structure B′ ∈M with B′|τ = B.

Composition For composable modular systems M and M ′ (no output interference)
with M independent from M ′ (no cyclic module dependencies), M BM ′ is a mod-
ular system such that (a) σMBM ′ = σM ∪ (σM ′ \ εM ), (b) εMBM ′ = εM ∪ εM ′ ,
and (c) B ∈ (M BM ′) iff B|vocab(M) ∈M and B|vocab(M ′) ∈M ′.

Union For modular systemsM1 andM2 with σM1
∩σM2

= σM1
∩εM2

= εM1
∩σM2

=
∅, the expression M1 ∪ M2 defines a modular system such that (a) σM1∪M2

=
σM1
∪σM2

, (b) εM1∪M2
= εM1

∪εM2
, and (c)B ∈ (M1∪M2) iffB|vocab(M1) ∈M1

or B|vocab(M2) ∈M2.
Feedback For modular system M and R ∈ σM and S ∈ εM being two symbols of

similar type (i.e., either both function symbols or both predicate symbols) and of the
same arities; expression M [R = S] is a modular system such that (a) σM [R=S] =
σM \ {R}, (b) εM [R=S] = εM ∪ {R}, and (c) B ∈ M [R = S] iff B ∈ M and
RB = SB.

Further operators for combining modules can be defined as combinations of basic oper-
ators above. For instance, [14] introduced M1 I M2 (composition with projection op-
erator) as πσM1

∪εM2
(M1BM2). Also,M1∩M2 is defined to be equivalent toM1BM2

(or M2 BM1) when σM1 ∩ εM2 = σM2 ∩ εM1 = εM1 ∩ εM2 = ∅.

Definition 4 (Models/Solutions of Modular Systems). For a modular system M , a
(σM ∪ εM )-structure B is a model of M if B ∈M .

Since each modular system is a set of structures, we call the structures in a modular
system models of that system.

Example 3 (Stable Model Semantics). Let P be a normal logic program. We know S is
a stable model for P iff S = Dcl(PS) where PS is the reduct of P under set S of atoms
(a positive program) andDcl computes the deductive closure of a positive program, i.e.,
the smallest set of atoms satisfying it. Now, let M1(S, P,Q) be the module that given
a set of atoms S and ASP program P computes the reduct Q of P under S. Also, let
M2(Q,S

′) be a module that, given a positive logic program Q, returns the smallest set
of atoms S′ satisfying Q. Now define M as follows:

M := π{P,S}((M1 BM2)[S = S′]).

Then, M represents a module which takes a ground ASP program P and returns all and
only its stable models. Figure 2 shows the corresponding diagram of M .
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L

P’

L’

P

Reduct

Dcl

Fig. 2. Modular Representation of an ASP Solver.

On a model-theoretic level, this module represents all possible ASP programs and
all their solutions, where programs are encoded by structures. While such a module is
certainly possible, a more practical use would be where one module corresponds to a
particular ASP program such as the one for graph 3-colouring in Example 1. Never-
theless, the Example 3 is useful because it represents a well-known construction and
illustrates several concepts associated with modular systems.

Example 4 (BPP as a Modular System). Figure 1 can be viewed as a modular repre-
sentation of the business process planner. There, each primitive module is represented
by a box with solid borders and our module of interest is the compound module which
is shown by the box with dotted borders. This module is specified by the following
formula:

BPP := π{S,R,P}(Planner B ((Provider1 ∩ Provider2∩
Provider3)[P ′1 = P1][P

′
2 = P2][P

′
3 = P3])).

(1)

As in Figure 1, the only vocabulary symbols which are important outside the big box
with dashed borders are S, R and P . There are also three feedbacks from P1 to P ′1, P2

to P ′2, and P3 to P ′3.

5 Details of the Business Process Planner

In this section we give a detailed description of one of the many kinds of business
process planners, i.e., a logistics service provider on the global scale which hires lo-
cal carriers and warehouses. So, in Figure 1, “Planner” refers to the global entity and
“Provider” refers to local entities.

The logistics provider need a plan to execute the services so that all restrictions
are met. Some sample restrictions are: (1) latest delivery time (e.g., Halloween masks
should be in stores before Halloween), (2) type of carrying vehicles (perishable products
need refrigerator trucks), and (3) level of care needed (glass-works should be carried
carefully).

We say that a plan P is good for a set of services S and restrictions R
(Good(P, S,R)) if P does all services in S and satisfies all restrictions in R. For sim-
plicity, here, we only consider time restrictions, i.e., the value of t(i) is the (latest)
delivery time for item i. There are also functions s(.) and d(.) to indicate the source
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and the destination of an item. For an item i, a plan is a sequence of cities 〈c1, · · · , cn〉
along with its pickup times pt(i, j) and arrival time at(i, j). So, we have that2:

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
c0 = s(i) ∧ cn = d(i)),

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃ at(i, n) ≤ t(i)),
∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
∀j ∈ [1, n] (connected(cj−1, cj)),

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
∀j ∈ [0, n] (pt(i, j) ≥ at(i, j))),

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
∀j ∈ [1, n] (at(i, j) = pt(i, j − 1) + time(cj−1, cj))).

Intuitively, these axioms tell us that a plan for each item should: (1) start at the source
and end at the destination, (2) arrive at the destination sooner than their latest delivery
time, (3) pass through cities which are connected to each other, (4) respect time con-
straints, i.e., be picked up at a city after they have arrived at that city, and (5) respect
the distance between cities. Certainly, a good plan needs to satisfy all these conditions,
but, of course, this does not give us a full axiomatization of the problem. Here, we do
not even intend to do that, because we believe that this is enough for the reader to have
a good idea on how such full axiomatizatins look like.

Given a definition of a good plan, one can define the intended solutions of a business
process planner as below:

Definition 5 (Intended Solutions). Let BPP be a business process planner with ac-
cess to n providers. Structure B is an intended solution of BPP if:
1. PB is good for SB and RB, i.e., B |= Good(P, S,R),
2. All atomic actionsA of PB (here, moving items between different cities) are doable

by one of the n providers.

So, by Definition 5, if some set of services cannot be executed under some restrictions,
there should not exist any solution for the whole modular system which interprets S by
those services and R by those restrictions.

Now, to ensure that the intended solutions of modular system in Figure 1 coin-
cide with the models of this modular system under our modular semantics, we use the
declarative representations below for the modules:

2 We slightly abuse logic notations here to keep the axiomatization simpler. For example, we use
the notation P (i) = 〈c0, · · · , cn〉 to denote that item i takes a path starting at city c0 and then
going to city c1 and so on until it getting to city cn. In practice, such a specification can be
realized using two expansion function “len(.)” (to show the length of the path of an item) and
“loc(., .)” (to show its location). As an example, this is how the first axiom above is rewritten
in terms of “len” and “loc”:

∀i ∈ Items (loc(i, 0) = s(i) ∧ loc(i, len(i)) = d(i)).
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Module “Planner” is the set of structures over vocabulary σ = {R,S, P1, · · · , Pn}
and ε = {P, S1, · · · , Sn, R1, · · · , Rn} which satisfies:

Good(P, S,R)⇔
∧

i∈{1,··· ,n}

Good(Pi, Si, Ri), (2)

P is a join of sub-plans Pi(for i ∈ {1, · · · , n}). (3)

This module is easily specifiable in extended FO.
Module “Provideri” is the set of structures over vocabulary σ = {Ri, Si} and ε =

{Pi} which satisfy Good(Pi, Si, Ri). Each such module “Provideri” can be specified
using mixed integer linear programming. Also, in practice, many such modules are
realized using special purpose programs (so, no standard language). Our framework
enables us to deal with such programs in a unified way.

Proposition 1 (Correctness). Structure B is in modular system BPP :=
π{S,R,P}(Planner B ((Provider1 ∩ · · · ∩ Providern)[P ′1 = P1] · · · [P ′n = Pn])) (where
“Planner” and “Provideri”s are defined as above) iff B is an intended solution ofBPP
(according to Definition 5).

Proof. (1) Take B which satisfies all modules, each PBi has to be good for SBi and RBi .
Therefore, PB is good for SB and RB. Thus, B is an intended solution of BPP . (2)
Conversely, take an intended solution B. PB should be such that PB is good for SB

and RB. So, set B′ to be an expansion of B such that PB
′

i is the parts of PB which
are executed by i-th provider. Also, SB

′

i is those services that PB
′

i executes and RB
′

i is
those restrictions satisfied by PB

′

i , e.g., the latest delivery time of item a is the delivery
time of a according to PB

′

i . Now, PB
′

i is good for SB
′

i and RB
′

i . So, B ∈ BPP .

6 The Bigger Picture

Complexity of the modular framework In this subsection, we summarize one of
our important results about the modular framework from [21]. In order to do so, we first
have to introduce the concepts of totality, determinacy, monotonicity, anti-monotonicity,
etc. For lack of space, we do this through examples. The exact definitions can be found
in [21].

Example 5 (Reachability). Consider the following model expansion task with σ =
{S,E,B} and ε = {R}:

R(v)← S(v).
R(v)← R(u), E(u, v), not B(u).

(4)

where S represents a set of source vertices of a graph, E represents the edges of the
graph, B represents a set of blocked vertices of the graph and R represents a set of ver-
tices which can be reached from a source vertex without passing any blocked vertices.

Through this section, let MR denote a primitive module which represents the MX
task of Example 5. Obviously, σMR

= {S,E,B} and εMR
= {R}: Then, we have:
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Totality: Module MR is {S,E,B}-{R}-total because for every interpretation of S, E
and B, there is an interpretation for R which is a stable model of program 4.

Determinacy: Module MR is {S,E,B}-{R}-deterministic because for every inter-
pretation of S, E and B, there is at most one interpretation for R which satisfies
(4).

Monotonicity: ModuleMR is {E}-{S,B}-{R}-monotone because if we fix the inter-
pretation of symbols S and B and increase the set of edges E, then the interpreta-
tion of R (reachable vertices) increases.

Anti-monotonicity: ModuleMR is {E}-{S,B}-{R}-anti-monotone because if we fix
the interpretation of S and E and increase the set of blocked vertices (B), then, the
set R of reachable vertices decreases.

Polytime Checkability/Solvability: Module MR is both polytime checkable (because
one can check in polynomial time if a structure B belongs to MR) and polytime
solvable (because, given interpretations to S, E and B, one can compute the only
valid interpretation for R in polynomial time). However, the module MC which
corresponds to the graph 3-coloring (Example 1) is polytime checkable but not
polytime solvable (unless P=NP).
Now, we are ready to restate our main theorem from [21]. We should however point

out one difference to the readers who are not accustomed to the logical approach to
complexity: In theoretical computing science, a problem is a subset of {0, 1}∗. How-
ever, in descriptive complexity, the equivalent definition of a problem being a set of
structures is adopted. The following theorem gives a capturing result for complexity
class NP:

Theorem 1 (Capturing NP over Finite Structures). Let K be a problem over the
class of finite structures closed under isomorphism. Then, the following are equivalent:
1. K is in NP,
2. K is the models of a modular system where all primitive modules M are σM -εM -

deterministic, σM -total, σM -vocab(K)-εM -anti-monotone, and polytime solvable,
3. K is the models of a modular system with polytime checkable primitive modules.

Note that Theorem 1 shows that when basic modules are restricted to polytime
checkable modules, the modular system’s expressive power is limited to NP. Without
this restriction, the modular framework can represent Turing-complete problems. As an
example, one can encode Turing machines as finite structures and have modules that
accept a finite structure iff it corresponds to a halting Turing machine.

Theorem 1 shows that the feedback operator causes a jump in expressive power
from P to NP (or, more generally, from ∆P

k to ΣP
k+1).

Example 6 (Stable Model Semantics). In Example 3, firstly, note that primitive module
M1 is {S}-total and {S}-{P}-{Q}-anti-monotone, and also polytime solvable. Sec-
ondly, module M2 is {Q}-total, {Q}-{}-{S′}-monotone and, again, polytime solvable.
However, the module M := π{P,S}((M1 BM2)[S = S′]) is neither total nor mono-
tone or anti-monotone. Moreover, M represents the NP-complete problem of finding a
stable model for a normal logic program. This shows how, in the modular framework,
one can describe a complex modular system in terms of very simple primitive modules.
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Solving modular systems We would like to find a method for solving complex tasks
such as the application in this paper, without limiting to the particular structure of Figure
1, and without committing to a particular language. The language is determined by its
suitability for the task and the expertise of the local developers. For example, the planner
module is more easily specified as a SAT (propositional satisfiability) problem, while
some provider modules are most easily specified using MILP (mixed integer linear
programming), and global constraints with CP (constraint programming). A module
performing scheduling with exceptions is more easily specified with ASP (answer set
programming).

In our research, we focus on the central aspect of this challenging task, namely on
solving the underlying computationally complex task, for arbitrary modular systems and
arbitrary languages suitable for specifying combinatorially hard search/optimization
problems. Our approach is model-theoretic. We aim at finding structures satisfying
multi-language constraints of the modular system, where the system is viewed as a func-
tion of individual modules. Our main goal is to develop and implement an algorithm
that takes a modular system as its input and generates its solutions. Such a prototype
system should treat each primitive module as a black-box (i.e., should not assume ac-
cess to a complete axiomatization of the module). Not assuming complete knowledge
is essential in solving problems like business process planning.

We take our inspiration in how “combined” solvers are constructed in the general
field of declarative problem solving. The field consists of many areas such as MILP, CP,
ASP, SAT, and each of these areas has many solvers, including powerful “combined”
solvers such as SMT, ASP-CP solvers. There are several methods e.g. cutting plain
techniques of ILP, the formal interaction between SAT and theory solvers in SMT, etc.
used in different communities. We made the fundamental observation [22] that while
different on the surface, the techniques are similar when looked at model-theoretically.
We proposed that those general principles can be used to develop a new method of
solving modular systems as in the example above.

7 Related Work

In [21],we continued the line of research initiated in [14]. We introduced MX-based
modular systems and extended the previous work in several ways such as adding the
feedback (loop) operator, thus drastically increasing the expressive power. The current
paper shows one of the important real-world applications of systems with loops. In
our modelling of the business process planner, we use the language independence of
modular systems in an essential way. This is an essential property because, in practice,
providers use domain-specific software which may not belong to a well-studied logic.
This property separates the modular framework of [21] from many other languages
which support modularity such as modular logic programs [7, 18, 13], and frameworks
with multiple languages [19, 10].

An early work on adding modularity to logic programs is [7]. There, the authors
derive a semantics for modular logic programs by viewing a logic program as a gen-
eralized quantifier. This work is continued by [18] to introduce modular equivalence
in normal logic programs under the stable model semantics. That work, in turn, is ex-
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tended to define modularity for disjunctive programs in [13]. The last two papers focus
on introducing modular programming in logic programs and dealing with difficulties
that arise there.

Applications such as business process planning need an abstract notion of a module,
independent from the languages used. Our MX-based modular framework is well-suited
for this purpose. That cannot be said about many other approaches of adding modularity
to ASP languages and FO(ID) (such as those described in [2, 1, 6]) because they address
different goals.

Modular programming enables ASP languages to be extended by constraints or
other external relations. This view is explored in [8, 9, 20, 3, 16]. While this view is ad-
vantageous in its own right, we needed an approach that is completely model-theoretic.
Also, some practical modelling languages incorporate other modelling languages. For
example, X-ASP [19] and ASP-PROLOG [10] extend prolog with ASP. Also ESRA
[11], ESSENCE [12] and Zinc [5] are CP languages extended with features from other
languages. Such practical modelling languages are further proof that combining differ-
ent languages is extremely important for practitioners. We take this view to its extreme
by looking at modules as only sets of structures and, thus, having no dependency on
the language they are described in. The existing practical languages with support for
specific languages could not have been applied to our task.

Yet another direction to modularity is the multi-context systems. In [4], the authors
introduced non-monotonic bridge rules to the contextual reasoning and originated an
interesting and active line of research followed by many others for solving or explain-
ing inconsistencies in non-monotonic multi-context systems. However, we believe that
this application cannot be naturally described as a multi-context system because it is
impractical to define the concepts of a logic, a knowledge-base and an acceptability
relation (these are concepts that are essential to define in multi-context systems) for a
domain-specific application which might not use any known logical fragment.

8 Conclusion and Future Work

In this paper, we introduced an important range of real-world applications, i.e., business
process planning. We discussed several examples of where this general scheme is used.
Then we represented this problem as a model expansion task in the modular setting
introduced in [21]. We gave a detailed description of the modules involved in describing
business process planning in the modular framework and proved the correctness of our
representation. Our main challenge is to devise an appropriate mathematical abstraction
of “combined” solving. Remaining particular tasks include:
Algorithm Design and Implementation We will design and implement an algorithm

that given a modular system, computes the models of that modular system itera-
tively, and then extracts the solutions.

Reduction in Search Space We will improve our algorithm by using approximation
methods proposed in [21]. These methods correspond to least fixpoint and well-
founded model computations (but in modular setting). We will extend our algorithm
so that it prunes the search space by propagating information from the approxima-
tion process to the solver.
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