
Declarative 3D Approaches for Distributed Web-based
Scientific Visualization Services

Yvonne Jung
Fraunhofer IGD

Darmstadt, Germany
yjung@igd.fhg.de

Johannes Behr
Fraunhofer IGD

Darmstadt, Germany
jbehr@igd.fhg.de

Timm Drevensek
Fraunhofer IGD

Darmstadt, Germany
tidreven@igd.fhg.de

Sebastian Wagner
Fraunhofer IGD

Darmstadt, Germany
sewagner@igd.fhg.de

ABSTRACT
Recent developments in the area of efficient web-service ar-
chitectures and the requirement to provide applications not
just for a small expert group lead to new approaches in
the field of web-based (scientific) visualization. The just
emerging support for GPU-supported and therefore high-
performance 2D and 3D graphics in modern web-client im-
plementations and standards provide new application envi-
ronments, which are especially interesting for the demands
of scientific visualization solutions. Thus, in this paper we
present a web application deployment architecture that aims
at supporting decision making processes more efficiently. We
also show that current approaches in the field of declarative
3D techniques are useful for client-side rendering as well as
for a large number of processing and visualization aspects.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Online Information Ser-
vices—Web-based services; I.3.6 [Methodology and Tech-
niques]: Standards—Languages; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Virtual Re-
ality

Keywords
X3D, HTML5, WebGL, DOM, Web Integration, Transcoder,
Web Services, Service-oriented Architectures, X3DOM

1. INTRODUCTION
With the advent of 3D Internet, there is a strong trend to-
wards 3D data and documents (like 3D scanners and print-
ers, geo-referenced data, and Augmented Reality) as well as
a convergence of application platforms (e.g. W3C WebApps,
HTML5, etc.) towards web-based contents. However, we
still have various operating systems with very different soft-
and hardware requirements such as smart phones (e.g. iOS,

Copyright c©2012 for the individual papers by the papers’ au-

thors. Copying permitted only for private and academic purposes.

This volume is published and copyrighted by its editors.

Dec3D2012 workshop at WWW2012, Lyon, France

Android, RIM, WindowsPhone), different desktop systems,
cloud bases etc., which typically make cross-platform devel-
opment complicated and time consuming. In this regard,
web technologies incl. web-service architectures are rather
common and can overcome these issues by interconnecting
all these diverse approaches. Moreover, web browsers are
converting more and more towards full runtime environ-
ments for whole applications and with WebGL or Stage3D,
3D-capable browsers are now broadly available, too.

However, this does not solve the often intricate processes
to develop applications, where one can distinguish between
two main types. For one thing, we have interactive processes
with creative and individual components such as games with
their manual or semi-automatic tool chains (e.g., DCC tools
like 3ds Max and game editors like Unity3D) that focus on
isolated applications. For another, there are automatable
processes that typically are complex and distributed, which
can be realized by means of a web-service architecture. In
the context of this paper, we focus onto the latter approach
by presenting a fully automated Web Service Portal, which
thereby allows generating e.g. 2D/3D mash-ups for design
review, city planning or similar decision making tasks.

Generally spoken, distributed data-centered applications are
one of the common implementation concepts for scientific vi-
sualization solutions today to process huge data sets. There-
fore, utilizing web-service architectures or even cloud-based
solutions are just the next logical step. Recent develop-
ments in the area of high-performance web-service archi-
tectures and the requirement to provide applications not
just for a small expert group lead to new approaches in
the field of web-based visualization. The emerging support
for hardware-accelerated and therefore high-performance 2D
and 3D graphics in modern web clients and standards pro-
vide a new application environment, which is especially in-
teresting for the demands of scientific visualization solutions.
Therefore, some visualization packages (like ParaView with
ParaViewWeb from Kitware1) already use this opportunity
to move the established application model to a web and
cloud-based solution. Deploying current application models
to a new environment is just the first step. However, this
field is not yet explored to utilize its full potential.

1http://paraview.org/Wiki/ParaViewWeb



Figure 1: Coarse sketch of the visualization pipeline.

Thus, the web-application deployment component presented
in this paper helps supporting decision making processes
more efficiently, and the benefits include the following four
major aspects:
– leveraging new GPU-accelerated 2D and 3D client APIs;
– achieving interactivity while combining traditional client-
and server-side rendering techniques;
– providing new user experiences while considering scalabil-
ity and security in open web-based environments;
– automating and optimizing data preparation processes for
web-specific environments through web server infrastructures.

2. RELATED WORK
For the design of the proposed web-service architecture sev-
eral domains and technologies are relevant. Corresponding
work is thus briefly described within this section.

2.1 Scientific Visualization
To provide important features for scientific visualization (cf.
e.g. [6] and [14]) in a specialized web application, the appli-
cation must be able to handle visualization-specific represen-
tations that consist of registered and merged point, surface,
and even volume data as well as the corresponding meta in-
formation. But having the raw data to be visualized readily
available is only the very first step, as is shown in Figure 1
with a rather simplified visualization pipeline. Usually, after
data acquisition the information is re-sampled onto a struc-
tured regular grid before filtering the data accordingly (a
discussion of common data representations including multi-
resolution and adaptive resolution representations for large
data sets can be found in [14]). Then, the scalar, vector, or
tensor values of the data set are mapped to visual represen-
tations that can be rendered [6]. Well-known examples here
are volume rendering or flow visualizations in CFD [17].

For multi-dimensional, multi-variate/ multi-modal, and prob-
ably even time-varying data, visualization is much more in-
tricate, since first the registration between different data
sets including the thereby introduced uncertainties has to be
handled as well as data fusion aspects and the calculation
of derived quantities (e.g. the strength of correlation be-
tween two different variables) to improve the visualization
[6]. In this regard, not only the choice of an appropriate
visualization technique but also the possibility to interac-
tively explore the data set (e.g. by changing the value range
or transfer function) is of great importance for grasping and
analyzing the information and therefore requires real-time
capable mapping and rendering methods, which nowadays
is often achieved using GPU-based methods [17].

2.2 3D Graphics in the Web
Direct volume rendering in general is an alternative form
of visual data representation compared to the traditional
polygonal form. In [7] the implementation of a direct vol-
ume rendering system for the Web is presented. In this
publication the authors discuss their WebGL-based volume
rendering approach using ray-casting in two different but

challenging application domains: medical imaging and radar
meteorology. Performance, scalability, accuracy, and secu-
rity are some of the many challenges that must be solved
for 3D web applications, esp. since WebGL is still based on
the old Shader Model 2.0 (like on the NVidia GeForce 5900
series introduced in 2003).

Another alternative method for representing 3D graphics is
using point clouds, which is a set of points in 3D space with
attributes. This is especially of interest, since 3D scanning
devices such as LiDAR equipment and sonar scanners de-
liver their data as point clouds. One recent framework to
simplify the streaming and rendering of point clouds based
on JavaScript and WebGL [15] is “XB PointStream” [20].

In [22], the authors propose a WebGL-based framework for
representing reflectance information via Bidirectional Tex-
ture Functions (BTF), which allows for the progressive trans-
mission and interactive rendering of digitized artifacts con-
sisting of 3D geometry and reflectance information. This
is achieved by employing a novel progressive streaming ap-
proach for the huge BTF data set that allows the smooth
interactive inspection of a steadily improving model during
download. Analogously, the X3DOM framework [3, 4] cur-
rently follows a similar approach for lightweight geometry
compression and transmission via so-called image geometries
that likewise utilizes image compression techniques.

2.3 Declarative (X)3D in HTML5
The open ISO standard X3D [8] provides interactive 3D
graphics for the web and is the only standardized 3D de-
ployment format. It differs from other 3D formats like the
interchange format Collada [1] in that it also includes the
scene’s runtime behavior. The X3D standard already pro-
vides point and surface primitives. Typically, the visual el-
ements are described by their boundary representation, e.g.
via an “IndexedTriangleSet” node. Volume rendering will be
part of the next spec revision. Therefore, the Web3D med-
ical working group has presented a sample implementation
[11] and an ISO/ IEC PDAM extension for a volume render-
ing component in X3D, which also has answers to DICOM
requirements for n-D presentation states [19].

In addition, since most geo-referenced data is provided in
a geodetic or projective spatial reference frame, the X3D
Geospatial component includes conventions that are defined
by the Spatial Reference Model and thereby provides sup-
port for geographic and geospatial applications [8, 16]. With
surface, volume, and geo-spatial components X3D already
provides a solid foundation for scientific visualization tasks
and thus enables an automated connection of existing data
with e.g. atmospheric, oceanographic, or geological data to
be visualized in the Web.

However, all existing and proposed X3D components only
extend X3D for various application and visualization sce-
narios but do not address one of the essential issues of X3D
right now, namely that X3D is still bound to a plugin-based
integration model that has major usability and performance
issues especially for large data sets [3, 4]. All plugin-based
systems have two major drawbacks. First, they are only plu-
gins and not installed by default on most systems. There-
fore, the user has to deal with plugin installation, security,



and browser or OS incompatibility issues, not to mention
the lack of accessibility. Second, the presented systems de-
fine an application and event model inside the plugin, which
is decoupled from the DOM content. Developers, who try to
develop integrated web applications that use both, the DOM
and the plugin-model, have to deal with small plugin-specific
interfaces and synchronization problems.

WebGL (a JavaScript binding for OpenGL ES 2.0 in the
Web Browser [15]), Adobe’s Flash 11 with Stage3D [23],
and Microsoft’s Silverlight 5 [18] now all provide access to
the native GPU layer without any further plugin installa-
tion process, but the issue of the missing DOM integration
still exists. Hence, what is still missing is a better integra-
tion with open architectures, which integrate well with ex-
isting web technologies like CSS(3), HTML(5), JavaScript,
DOM scripting and Ajax. In this regard, with the X3DOM
project recently a DOM-based integration model for declar-
ative (X)3D in HTML5 was proposed [3, 4], that allows a
seamless integration of 3D contents into the HTML docu-
ment model by utilizing standard web APIs for integrating
content and interactions.

2.4 Service-oriented Architectures
Finally, we have to shortly review service-oriented architec-
tures (SOA). An SOA is a software architecture paradigm
for structuring and using distributed functionalities that are
managed by various owners. Comparable to business trans-
actions an SOA composes several low-level services to more
complex services with a higher level of abstraction [9]. Here,
web-services help supporting the collaboration between dif-
ferent applications running on different platforms by uti-
lizing REST, JSON, and XML-based standards like UDDI,
WSDL, and SOAP as web-service protocols. In this regard,
one prominent application of web-services are the standard-
ized geo-services (such as WCS [2]) provided by the Open
GeoSpatial Consortium (OGC) to make spatial geo-data ac-
cessible in a structured way.

Hence, some 3D rendering systems already make prototyp-
ical use of REST and JSON for scene-graph manipulation
and distributed rendering [21] within a service-oriented plat-
form. To demonstrate the full potential of their web-service
interface, the authors additionally included a second visual-
ization backend that provides global illumination algorithms
that are evaluated on a server farm whereas the web frontend
only shows the final image and the UI elements. Likewise,
in [5] a full workflow pipeline from data acquisition up to
interactive web-based visualization in the Cultural Heritage
domain was proposed. Remote or server-based rendering in
general is a very active research discipline for the last 20
years. Visualization servers or services are build to over-
come the performance issues with client solutions or provide
specific systems to protect the 3D dataset while not or only
partially distributed to the client. Koller et al. [12] provide
an interesting proposal to the protection system with a re-
mote rendering service that not just only transfers images
to the client but also includes a number of active defense
method to guard against 3D reconstruction attacks.

A streaming-based remote visualization for mobile devices
was presented in [13], where complex 3D models are ren-
dered on a cluster of PCs and transferred to the client via

MPEG video streaming. Smart environments consisting of
several interconnected devices, which can change dynami-
cally whenever mobile devices enter or leave the environ-
ment, are specifically addressed in [24]. To utilize such en-
vironments efficiently for information visualization, the au-
thors also propose a service-oriented architecture. Although
their work still focuses on the specificities of certain display
devices, it nevertheless already also addresses issues such as
caching strategies and compression methods.

3. SYSTEM ARCHITECTURE
Within this section, we focus onto automatable processes for
web application development by designing and implement-
ing a fully automated Web Service Portal, which provides
services that automatically combines application templates
and raw data into interactive 3D visualizations for the web.

3.1 Use Cases and Design Considerations
The goal here is to provide web services that automatically
convert raw 3D data (e.g. geo-spatial data, simulation re-
sults, and architectural models) into interactive 3D visual-
izations for the Web that can be delivered as a cloud service.
For example, value ranges that can be interactively explored
like a temperature or density distribution are automatically
tagged, like e.g. it is often done in modern IDEs such as
the CG FX Composer framework, to provide all data that
is necessary for an appropriate user interface, like a slider
with a corresponding value range as shown in Figure 4.

This enables the user (in our case typically a decision maker)
to interactively explore the presented 3D data, which is
achieved with the help of two approaches. On the one hand,
certain data values and ranges are reflected in such a way,
that the application service can directly derive appropriate
UI elements (e.g. a slider from x meters to y meters that
allows visualizing different water-levels in a disaster man-
agement scenario). On the other hand, the user must be
able to directly interact with the visualization, e.g. by se-
lecting a certain region for which he wants to obtain more
information (which e.g. in a GIS scenario might be “show
buildings and trees in marked area”) or by clicking onto a
certain POI, which in turn delivers other information from
the processing backend.

Therefore, the visualization needs to be scalable in such
a way that – depending on the desired application type –
mobile and desktop machines with rather different comput-
ing and 3D capabilities are supported alike. For example
this can be achieved via a hybrid approach that provides
both, server-side streaming for low-end mobile clients (us-
ing InstantPlayer as render server [10]) and direct web-based
3D rendering for desktop machines via X3DOM. Moreover,
cross-platform and cross-browser issues need to be addressed.
Finally, especially when also CAD and PDM or highly clas-
sified data is used, security aspects are of high importance.
Here again, streaming technologies help with information
hiding in that only image streams but no 3D models are
transferred over the network to the client for display.

As mentioned, the proposed software architecture is based
on web services. As described in section 2.4, these are in-
tended for being used in broader software ecosystems, which
automatically exchange data. Usually, the service interfaces



Figure 2: Instant3D Hub – scalable, secure, and efficient SOA for 3D visualizations on the Web.

are described by XML documents such as SOAP. Obviously,
utilizing a unified standard for shared services and commu-
nication is essential here. Furthermore, declarative XML-
based languages such as X3D are suited well for SOAs in
that 3D content, such as CAD/ CAM data or a given WCS
response in a GIS application, can be directly transformed,
e.g. via an XSLT or similar transform, from one representa-
tion to another (such as an X3D world that can be rendered
in real-time in the web browser using the X3DOM frame-
work). As shown in Figure 2, this transformation is done
with the help of a transcoder service, which also needs to
consider the respective client capabilities (e.g. mobile device
vs. desktop system) to provide an appropriate visualization.

For being able to present even large-scale big data, suitable
compression schemes are required for both, the client (esp.
when considering mobile devices) and the server (where esp.
latency is an issue). In our implementation this is handled by
utilizing image-based compression and delivery algorithms
that can encode geometric as well as material data. In ad-
dition, appropriate server-side caching strategies allow for
faster delivery of 3D contents.

3.2 Web-Service Architecture
Figure 2 coarsely shows the concept of the proposed service-
oriented architecture. The core component is the“Instant3D
Hub” that acts as application provider, whereas the appli-
cation identification is resolved via a URI. Thereto, the ap-
plication service takes a request from the so-called Hub and
extracts an application template, which specifies the data
and application characteristics. For data preparation, the

template provides at least the HTML page, the necessary
meta-information of the respective application, as well as de-
scriptions of all required data containers, e.g. in the declar-
ative X3D format for 3D contents.

After that, the Hub invokes the appropriate transcoder ser-
vice for providing the concrete data (like a 3D world with
a certain camera pose). Therefore, the transcoder service
translates and, where required, caches the 3D data from
already existing descriptions by converting them from var-
ious resources and formats, which are not yet suitable for
real-time web presentation, to a declarative deployment for-
mat for final presentation. Here we use X3D in combination
with HTML5, since declarative formats nicely fit to SOA
pipelines. The result is then provided under a new URI.
This basic architecture tries to fulfill three basic require-
ments that are outlined next.

Scalability The central HUB recognizes the browser crite-
ria (e.g. mobile or desktop) and can use those to ask
for a device- and/ or context-specific application UI.
The application uses a scene-graph manipulation layer,
which maps the actual changes to browser local (e.g.
DOM content) or remote scene representations.

Efficiency The overall structure is build to produce very
interactive and pleasant user experiences. All main UI
pages should get delivered immediately and all further
data sets should be provided with a flexible caching
infrastructure on request. The whole service architec-
ture is build asynchronous and does not wait at any



point for any data conversion process at all. The client
and server side rendering processes are both built to
be able to stream efficient binary updates to the server
for highly responsive environments.

Flexibility The architecture is not bound to a specific ap-
plication model and very open through the web-service
infrastructure. It provides an environment useful to
a large number of applications by harmonizing three
basic steps: application-UI retrieval, continuous data-
preparation and a hybrid visualization approach, which
can map to client and server side rendering.

3.3 Application and UI retrieval
The goal of the framework is to deliver context- and browser-
specific web applications. The application service provides
templates for those applications, which are retrieved on re-
quest. Those templates consist of the following parts:

HTML documents HTML documents at first can be seen
as the building ground for all application-specific struc-
tures. Those documents are provided by the applica-
tion service for a specific browser and therefore device
(e.g. tablet or desktop).

Data references The application includes usually a list of
external resources, which should be delivered to the
browsers while running. This could be resources like
XML documents or images, which do not need any
further processing but also link to data sets that need
to be converted before viewed (e.g. a specific 3D data
set) or transformed for a specific device class.

Metadata The metadata describes criteria for the conver-
sion and transcoding process. This can e.g. control
whether optimizations on the graph are allowed or not
and how identification of objects should be performed.

The hub requests this information from the application ser-
vice, requests then data sets from the transcoder service
with the data references and metadata settings and delivers
the final HTML document with the not yet existing external
references.

3.4 Transcoder
The transcoder service converts the data of a given resource
to a new single resourc or set of resources while considering
the guidelines provided by the application metadata. The
resulting URI’s are provided immediately as result of the
transcoding request even so the data may not be available
yet. The basic HTTP return code is used to communicate
the availability of a specific resource while requesting.

200 OK: the request has succeeded and the entity corre-
sponding to the requested resource is sent in the re-
sponse.

404 Not Found: the conversion job could not be completed
successfully and the sources will not be available with-
out it.

503 Service Unavailable: The service is not yet available
since the conversion process is still running. The HTML

head includes a standard Retry-After element that de-
fines when the resources is expected to be available.

The transcoder also includes an efficient caching and updat-
ing mechanism, which allows to convert the data only once
for similar requests, but also updates the converted data as
soon as new data sets are available.

3.5 Rendering
The converted data is fetched to a real-time rendering sys-
tem, which consists of a scene-graph whose elements can be
identified and modified during runtime. This scene-graph
is manipulated through a client-side abstraction layer that
allows mapping those changes to local or remote represen-
tations of the graph.

3.5.1 Client-side Rendering
Depending on data security aspects and the respective web
browser capabilities, the Hub generates a concrete visual-
ization application from a given pre-prepared scenario tem-
plate. For one thing, this can be realized via client-side
rendering by utilizing X3DOM, which either uses JavaScript
with WebGL or Flash 11 with Stage 3D for real-time render-
ing. Open research issues here are suitable caching strategies
for fast content delivery as well as scalable methods for bi-
nary compression of high-end material data (compare [22])
and of big geometric data (i.e. vertex attributes).

The latter can be achieved by utilizing our image geometry
approach. This method not only allows to asynchronously
deliver and compress vertex attribute data but it also allows
to nicely separate the structure of the 3D content from raw
vertex data that usually only bloats the HTML document.
The advantages of client-side rendering are a rather simple
server infrastructure and highly interactive apps since ev-
erything is rendered on the client. Disadvantages are that
the data-load can easily overburden the client, that lots of
3d data needs to be transferred, and security or IPR issues.

3.5.2 Server-side Rendering
The second option is server-side rendering. In this case, for
instance an X3D-based runtime environment [10] is utilized
for rendering and the rendered image frames are transferred
(e.g. as an MJPEG stream) to the client. Since interactions
are handled via WebSockets and XMLHttpRequest (XHR),
the latency is much higher than for client-side rendering.
Therefore, we are currently exploring suitable interaction
methods and message protocols.

Another disadvantage here is the fact that a complex server
infrastructure is required. However, since no 3D data but
only images are transferred over the network, there are no
IPR issues concerning the 3D data, and data security is in-
herently given as a nice side effect. Also, the visualization
application can be executed on arbitrary clients, which is
another advantage of utilizing server-side rendering.

4. RESULTS AND DISCUSSION
4.1 Application Examples
In this section a few use cases are exemplarily described to
demonstrate the potential of the proposed service architec-
ture. In the area of cultural heritage for instance, working



Figure 3: Presentation of laser scanned CH artifacts
using our proposed web-service architecture.

Figure 4: Picking of generic vertex and/or fragment
properties (left: material thickness of a structural
element, right: electromagnetic field strength).

with 3D scanner data for preservation is getting more and
more common. Figure 3 shows an example of a web appli-
cation for the visualization of scanned historical 3D objects,
which was generated using the proposed transcoder architec-
ture by automatically processing and converting the scanned
data to create an interactive viewer.

Figure 4 shows a 3D CAE prototype for the visualization
of simulation data in the web browser using X3DOM [3, 4],
where two examples from the domain of sheet metal forming
(left) and electromagnetic field simulation (right) are taken
to allow the exploration of FEM results. These application
prototypes have a huge potential for communicating and
presenting e.g. simulation results towards decision makers
or consumers, without distributing a whole application while
providing the user with more information than a static image
or a boring fact sheet.

The example to the left in Figure 4 shows the results of a
sheet metal forming simulation in automotive environments.
The material thickness after the forming process is color-
coded and applied via a look-up texture. By clicking onto a
colored region, the corresponding thickness value is obtained
and marked with a yellow arrow and textual information in
the top right of the application. The slider elements below
are implemented using the JavaScript library jQuery (http:
//jquery.com/) and can be used to interactively modify the
color-coding by setting offset, bias, and threshold.

4.2 Standardization Aspects
Another point is the lack of open standards in scientific visu-
alization and 3D graphics as well as in mobile and interactive
systems. Although current visualization systems are often

highly specialized and rather sophisticated, they still utilize
proprietary formats and methods that are neither compati-
ble in their concepts of operation nor in their supported data
formats. On the one hand this prevents a harmonization of
data from different sources and thereby hinders its distribu-
tion and utilization. On the other this also leads to parallel
developments of incompatible and isolated technologies.

In this context, the open ISO standard X3D [8] is the only
standardized 3D deployment format that also defines the
runtime behavior. Hence, there are ongoing efforts [19] to
develop an open interoperable standard for the representa-
tion of volumetric data based on input from a wide variety
of modalities. The proposed X3D volume rendering compo-
nent [8] therefore aims at the exchange and interactive ex-
ploration of volumetric data and at industrial applications
that use X3D as interchange format, but can link to propri-
etary databases and hardware, too.

A service for open, flexible, and scalable access and pro-
cessing of Earth data is the OGC Web Coverage Service
(WCS) 2.0 Standard, which now allows providing a com-
prehensive portion of Earth science data categories through
one coherent and implementation-independent interface [2].
The coverage model of WCS 2.0 transcends pure raster data
and includes almost all relevant categories, such as irregular
and curvilinear grids, general meshes, trajectories, surfaces,
solids, and point clouds.

In this regard, X3D already incorporates basic means for
point rendering, as well as a geospatial component. Since
most geo-referenced data are provided in a geodetic or pro-
jective spatial reference frame, X3D therefore provides sup-
port for a number of nodes that can use spatial reference
frames for modeling purposes. However, there are still sev-
eral drawbacks like the lack of well-defined terrain rendering
etc., which for instance were addressed in [16]. In addition,
with the X3D Earth working group there is a strong collab-
oration of the Web3D Consortium with the OGC, because
as mentioned, X3D provides a solid foundation here and is
a good starting point for further standardization efforts to
enable an automated connection of existing data sources for
further visualization.

Hence, a pro-active participation in several standardization
bodies (ISO, W3C, Khronos) helps preventing parallel devel-
opments of isolated technologies by harmonizing the general
understanding. Therefore, the “Declarative 3D for the Web
Architecture” W3C Community Group was founded in 2011
with the objective to standardize a declarative approach to
interactive 3D graphics as part of HTML documents.

5. CONCLUSIONS
Traditional scientific visualization approaches are extremely
demanding in regards to software and hardware require-
ments. Thus, today’s visualization solutions are tailored
for specific data representations and application scenarios
to cope with several soft- and hardware limitations, which
led to extremely specialized software packages that are built
and run by professionals in high-cost scenarios. However, re-
cent developments in the area of web applications and the re-
quirement to provide applications not only for a small group
of experts lead to new approaches for web-based visualiza-



tion. Morever, since data-centered, distributed applications
were one of the common concepts to process huge data sets
for visualization, web-service architectures and cloud-based
solutions are just the next step. Additionally, the emerging
support for GPU-accelerated high-performance 3D raster-
graphics in modern web clients and standards provide an
application environment that is especially interesting for the
demands of scientific visualization solutions.

In this regard, the approach we presented in this paper does
not only implement an established application model in a
new web- and cloud-based environment, but it also intro-
duces a web-service architecture as core of the application
distribution and deployment infrastructure. Instead of sim-
ply delivering data to a rigid viewer like in conventional
applications, our proposed architecture delivers a user ex-
perience that is tailored for specific user scenarios and the
actual context. Thereby, the final environment is able to de-
rive and deliver a dynamic application with regards to user,
system, security, and data requirements.

This allows the system to provide dynamic technical solu-
tions and to automatically choose a client, server, or even
hybrid visualization method for an unchanged application
at runtime, while also considering the device capabilities as
well as IPR and security concerns. What is even more im-
portant, besides the technical aspects, is the architecture’s
ability to provide very specific applications for certain user
groups, since the system is not built as a rigid application
model for a small user group. Thus, the presented service
architecture enables new application scenarios, including sci-
entific visualization for decision support or visual analytics
applications, as well as e.g. corresponding web applications
for public information scenarios.

6. ACKNOWLEDGMENTS
The work described in this paper was carried out in the
project EarthServer, which has received funding from the
European Community’s Seventh Framework Programme (EU
FP7-INFRA) under grant agreement no 283610.

7. REFERENCES
[1] R. Arnaud and M. Barnes. Collada. AK Peters, 2006.

[2] P. Baumann. Beyond rasters: introducing the new ogc
web coverage service 2.0. In Proceedings GIS ’10,
pages 320–329, New York, NY, USA, 2010. ACM.

[3] J. Behr, Y. Jung, T. Drevensek, and A. Aderhold.
Dynamic and interactive aspects of X3DOM. In
Proceedings Web3D 2011, pages 81–87, New York,
USA, 2011. ACM Press.

[4] J. Behr, Y. Jung, J. Keil, T. Drevensek, P. Eschler,
M. Zöllner, and D. W. Fellner. A scalable architecture
for the HTML5/ X3D integration model X3DOM. In
S. Spencer, editor, Proceedings Web3D 2010, pages
185–193, New York, USA, 2010. ACM Press.

[5] R. Berndt, G. Buchgraber, S. Havemann, V. Settgast,
and D. W. Fellner. A publishing workflow for cultural
heritage artifacts from 3d-reconstruction to internet
presentation. In Proceedings of the 3rd intl. conf. on
digital heritage, pages 166–178, Berlin, 2010. Springer.

[6] R. Bürger and H. Hauser. Visualization of
multi-variate scientific data. In Eurographics 2007

State of the Art Reports, pages 117–134, 2007.

[7] J. Congote, A. Segura, L. Kabongo, A. Moreno,
J. Posada, and O. Ruiz. Interactive visualization of
volumetric data with webgl in real-time. In
Proceedings Web3D 2011, pages 137–146, New York,
NY, USA, 2011. ACM.

[8] W. Consortium. Extensible 3d (X3D), 2011.
http://www.web3d.org/x3d/specifications/.

[9] T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, 2005.

[10] FhG. Instant Reality, 2012. www.instantreality.org.

[11] N. John, M. Aratow, J. Couch, D. Evestedt,
A. Hudson, N. Polys, R. Puk, A. Ray, K. Victor, and
Q. Wang. MedX3D: Standards enabled desktop
medical 3d. In MMVR: Medicine Meets Virtual
Reality, pages 189 – 194, 2008.

[12] D. Koller, M. Turitzin, M. Levoy, M. Tarini,
G. Croccia, P. Cignoni, and R. Scopigno. Protected
interactive 3d graphics via remote rendering. In ACM
SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages
695–703, New York, NY, USA, 2004. ACM.

[13] F. Lamberti and A. Sanna. A streaming-based
solution for remote visualization of 3d graphics on
mobile devices. IEEE Transactions on Visualization
and Computer Graphics, 13(2):247–260, 2007.

[14] D. R. Lipsa, R. S. Laramee, R. D. Bergeron, and T. M.
Sparr. Data representation for scientific visualization:
An introduction. In Computer Graphics, chapter 6,
pages 121–136. Nova Science Publishers, 2011.

[15] C. Marrin. Webgl specification, 2011.
https://www.khronos.org/registry/webgl/specs/1.0/.

[16] M. McCann, R. Puk, A. Hudson, R. Melton, and
D. Brutzman. Proposed enhancements to the x3d
geospatial component. In Proceedings Web3D 2009,
pages 155–158, New York, NY, USA, 2009. ACM.

[17] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post,
and M. Chen. Over two decades of integration-based,
geometric flow visualization. Computer Graphics
Forum, 29(6):1807–1829, 2010.

[18] Microsoft. Silverlight, 2011.
http://www.microsoft.com/SILVERLIGHT/.

[19] N. F. Polys, N. W. John, D. Evestedt, and M. Aratow.
Unifying iso standards for medical image presentation.
In Workshop on Medical Virtual Env. IEEE, 2010.

[20] A. Salga. XB PointStream, 2011.
http://scotland.proximity.on.ca/asalga/demos/freecam/.

[21] T. Schiffer, A. Schiefer, R. Berndt, T. Ullrich,
V. Settgast, and D. W. Fellner. Enlightened by the
web – a service-oriented architecture for real-time
photorealistic rendering. In Tagungsband 5. Kongress
Multimediatechnik Wismar, pages 1–8, 2010.

[22] C. Schwartz, R. Ruiters, M. Weinmann, and R. Klein.
Webgl-based streaming and presentation framework
for bidirectional texture functions. In Proceedings
VAST 2011, pages 113–120. Eurographics, 2011.

[23] A. Systems. Flash, 2011.
http://www.adobe.com/products/flashplayer.html.

[24] C. Thiede, C. Tominski, and H. Schumann.
Service-oriented information visualization for smart
environments. In 13th Intl. Conf. on Information
Visualisation, pages 227–234. IEEE, 2009.


