
A Neural Network-Like Combinatorial Data Structure

Xenia A. Naidenova

Military Medical Academy, Saint-Petersburg, Russian Federation

ksennaidd@gmail.com

Abstract. A generalization of algorithm is proposed for implementing the well-

known effective inductive method of constructing sets of cardinality (q+1)

((q+1)-sets) from their subsets of cardinality q ((q)-sets). A new neural net-

work-like combinatorial data-knowledge structure supporting this algorithm is

advanced. This structure can drastically increase the efficiency of inferring

functional and implicative dependencies as like as association rules from a giv-

en dataset.

Keywords: Level-wise algorithm, Inferring dependencies from a dataset, Neu-

ral network-like data structure, Knowledge representation.

1. Introduction

Mining association rules from databases has attracted great interest because of its

potentially very useful application. Mining association rules was firstly introduced by

Agrawal et al. in [1], where an algorithm, called AIS (for Agrawal, Imielinski, and

Swami), has been proposed. Another algorithm, called SETM (for Set Oriented Min-

ing), has been introduced in [2]. This algorithm uses relational operations in a rela-

tional database environment.

The next step in solving the problem of inferring association rules has been done in

[3-4], where the algorithms Apriori, AprioriTid, and AprioriHybrid have been pre-

sented. These algorithms use an effective inductive method of constructing sets of

cardinality (q+1) ((q+1)-sets) from their subsets of cardinality q ((q)-sets). A (q+1)-set

can be constructed if and only if there exist all its proper (q)-subsets. The same prin-

ciple underlies the algorithm Titanic for generating key patterns [5] and the algorithm

TANE for discovering functional and approximate dependencies [6]. The level-wise

inductive method of (q+1)-sets’ construction has also been proposed for inferring

good diagnostic (classification) tests for a given classification or class of objects [7-

9]. These tests serve as a basis for extracting functional dependences, implications,

and association rules from a given dataset.

In all enumerated problems, the same algorithm deals with different sets of ele-

ments (items, attributes, values of attributes, transactions, indices of itemsets) and

checks the different properties of generated subsets. These properties are “to be a

frequent (large) itemset”, “to be a key pattern”, “to be a test for a given set of exam-

ples”, “to be an irredundant set of attribute values”, “to be a good test for a given set

mailto:ksennaidd@gmail.com

68 X. Naidenova

of examples”, and some others. If an obtained subset does not possess a required

property, then it is deleted from consideration. This deletion reduces drastically the

number of subsets to be built at all greater levels. In section 2, we introduce a Back-

ground algorithm solving the task of inferring all maximal subsets of set S (i.e., such

subsets that cannot be extended) possessing a given PROPERTY. The set S can be

interpreted depending on the context of a considered problem. This algorithm imple-

ments the level-wise inductive method of (q+1)-sets’ construction. In section 3, we

consider some possible ways of increasing the efficiency of Background Algorithm.

Finally, in Section 4, we propose a neural network-like combinatorial data structure

for constructing (q+1)-sets from their q-subsets.

2. Background algorithm

The Background Algorithm. By sq = (i1, i2, …, iq), we denote a subset of S, contain-

ing q element of S. Let S(test-q) be the set of subsets s = {i1, i2, ..., iq}, q = 1, 2, ..., nt,

satisfying the PROPERTY. Here nt denotes the cardinality of S. We use an inductive

rule for constructing {i1, i2, ..., iq+1} from {i1, i2, ..., iq}, q = 1, 2, ..., nt-1. This rule

relies on the following consideration: if the set {i1, i2, ..., iq+1} possesses the

PROPERTY, then all its proper subsets must possess this PROPERTY too and, con-

sequently, they must be in S(test-q). Thus the set {i1, i2, ..., iq+1} can be constructed if

and only if S(test-q) contains all its proper subsets. Having constructed the set sq+1 =

{i1, i2, ..., iq+1}, we have to determine whether it possesses the PROPERTY or not. If

not, sq+1 is deleted, otherwise sq+1 is inserted in S(test-(q+1)). The algorithm is over

when it is impossible to construct any element for S(test-(q+1)).

Background Algorithm. Inferring all maximal (not extended) subsets of S possessing

a given PROPERTY.

1. Input: q = 1, S = {1,2,…, nt}, S(test-q) = {{1}, {2},

..., {nt}}.

Output: the set SMAX of all maximal subsets of S pos-

sessing the PROPERTY.

2. Sq := S(test-q);

3. While Sq  q + 1 do

3.1 Generating S (q + 1) = {s ={i1, ..., i(q + 1)}: ( j) (1

 j  q + 1) (i1, ..., i(j-1), i(j + 1), ..., i(q + 1)} Sq};

3.2 Generating S(test-(q + 1)) = {s = {i1, ..., i(q + 1)}:

(s  S(q + 1)) & (PROPERTY(s)) = true)};

3.3 S(test-q) := {s = {i1, ..., iq}: (s  S(test-q)) &

(( s’)(s’  S(test-(q + 1)) s  s’)};

A Neural Network-Like Combinatorial Data Structure 69

3.4. q := q + 1;

3.5. max := q;

end while

4. TGOOD := ;

5. While q  max do SMAX := SMAX  {s: s = {i1, ..., is}

 S(test-q) };

5.1 q:= q + 1;

end while

end

The most important factor influencing on computational complexity of Back-

ground Algorithm is the method of inductive generating of q-sets in the level-wise

manner. Generally, we use the following inductive rules, where SN is the family of

sets Sq of cardinality equal to q, q = 1, ….., nt, Sq  S = {1, …, nt} and CS(q) denotes

the number of combinations of S on q.

(1) q = 1, q + 1 = 2;

sq = {i}, s(q+1) = {i, j}, ( j) (i  j, {j}  SN;

(2) q = 2, q + 1 = 3;

sq = {i, j}, s(q+1) = {i, j, l}, where l different from i, j and such that there are in SN

a) two sets s1 = {i, l}, s2 = {j, l} or

b) s = {l};

(3) q = 3, q + 1 = 4;

sq = {i, j, m}, s(q+1) = {i, j, m, l}, where l different from i, j, m and such that there

are in SN

а) three sets s1 = {i, j, l}, s2 = {i, m, l}, s3= {j, m, l} or

b) three sets s1 = {i, l}, s2 = {j, l}, s3 = {m, l} or

c) s = {l};

……

(q) q, q + 1;

sq = {i1, i2, ..., iq}, s(q+1) = {i1, i2, ..., iq, l}, where l different from i1, i2, ..., iq and

such there are in SN

a) sets the number of which is equal to CS(q) = CS(nt - q) and the cardinality of

which is equal to q, such that {i1, i2, ..., ip-1, ip+1, ..., iq, l}\{ip} for all p = 1,...., q or

b) sets the number of which is equal to CS(q - 1) = CS(nt – (q-1)), the cardinality of

which is equal to q-1, such that {i1,i2,...,iq, l}\{ipi, ipj} for all {pi, pj}  {1,...., q} or

70 X. Naidenova

c) sets the number of which is equal to CS(q - 2) = CS(nt – (q-2)), the cardinality of

which is equal to q-2 , such that {i1, i2,...., iq, l}\{ipi, ipj, ipk} for all {pi, pj, pk}, {pi, pj,

pk}  {1,2,..., q} or

……

d) sets the number of which is equal to CS(1) = CS(nt - 1), the cardinality of which

is equal to 1, such that{l}, l  {i1, i2,..., iq}.

The Background Algorithm has an essential disadvantage consisting in the necessi-

ty to generate all subsets of s in Sq, q = 1, 2,…, qmax. But it is possible constructing

directly an element s  Sq, s = i1, i2,…, iq without generating all of its subsets.

3. A structure of interconnected lists for implementing

Background Algorithm

The inductive rules can be used not only for extending sets, but also for cutting off

both the elements of S and the sets themselves containing these deleted elements. If

element j enters in sq+1, then it must enter in q proper subsets of sq+1. If we observe

that j enters in only one doublet (pair), then it cannot enter in any triplet. If we ob-

serve that j enters in only one triplet, then it cannot enter in any quadruplet and so on.

If an element enters in two and only two doublets, it means that it can enter only in

one triplet. If an element enters in three and only three doublets, it can enter in only

one quadruplet.

These inductive reasoning are applicable to constructing triplets from doublets,

quadruplets from triplets and so on. For instance, if a doublet enters in two and only

two triplets, then it can enters in one quadruplet. If a triplet enters in two and only two

quadruplets, then it can enter in only one set of five elements. The removal of a cer-

tain element (or set of elements) from the examination draws the removal of doublets,

triplets, quadruplets,…) into which it enters.

Let us name the procedure for removal of elements and sets containing these ele-

ments the procedure of “winnowing”. It is convenient to realize this procedure with

the use of a Matrix of Correspondences the columns of which are associated with

elements of S, and the rows are associated with subsets of S. An entrance {i, j} in this

matrix equals 1, if index associated with column j enters in s associated with row i.

Consider the following example. The set S = {{1}, {2}, ..., {14}}.

Consider the Matrix of Correspondences (Table 1) between the 2-component sub-

sets of S possessing a given PROPERTY (S(test-2)) and elements of S appearing in

these subsets. In this matrix, the columns are ordered by increasing the number of

subsets associated with the columns.

Element 9 enters in one and only one doublet, hence (9,11) cannot be included in

any triplet. We can delete the corresponding column and row. We conclude also that

set (9,11) cannot enter in any triplet.

Element 5 enters in two and only two doublets, hence it is included in only one

triplet (1,5,12). Element 5 cannot be included in any quadruplet. We can delete the

corresponding column and rows 2, 3.

A Neural Network-Like Combinatorial Data Structure 71

Element 6 enters in three and only three doublets, hence it is included in only one

quadruplet (4,6,8,11). Element 6 cannot be included in a subset of five indices. We

can delete the corresponding column and rows 4, 5, 6.

By analogous reason, we conclude that collection (1,2,12,14) cannot be extended

and we can delete the corresponding column and rows 7, 8, 9.

Note that all subsets (9,11), (1,5,12, (4,6,8,11), and (1,2,12,14) possess the

PROPERTY.

Element 10 enters in three and only three doublets, hence it is included in only one

quadruplet (2,3,8,10). This set does not possess the PROPERTY. In this case, we have

to construct all the triplets with element 10. These triplets (2 8 10), (2 3 10), (3 8 10)

do not possess the PROPERTY, it means that subsets (2,10), (3,10), (8,10) are maxi-

mal ones possessing the PROPERTY. Element 10 can be deleted together with rows

10, 11, 12. Currently, we have generated the following 7 subsets: (1,5,12), (4,6,8,11),

(1,2,12,14), (2,3,8,10), (2,3,10), (2,8,10), (3,8,10). Table 2 shows the reduced Matrix

of Correspondences.

Table 1. The Matrix of Correspondences for the S(test-2)

Subset 9 5 6 14 10 1 11 8 12 3 7 4 2

(9,11) 1 1

(1,5) 1 1

(5,12) 1 1

(4,6) 1 1

(6,8) 1 1

(6,11) 1 1

(1,14) 1 1

(2,14) 1 1

(12,14) 1 1

(2,10) 1 1

(3,10) 1 1

(8,10) 1 1

(1,2) 1 1

(1,4) 1 1

(1,7) 1 1

(1,12) 1 1

(3,11) 1 1

(4,11) 1 1

(7,11) 1 1

(8,11) 1 1

(2,8) 1 1

(3,8) 1 1

(4,8) 1 1

(7,8) 1 1

(2,12) 1 1

(3,12) 1 1

72 X. Naidenova

(4,12) 1 1

(7,12) 1 1

(2,3) 1 1

(3,4) 1 1

(3,7) 1 1

(2,7) 1 1

(4,7) 1 1

(2,4) 1 1

Table 2. The reduced Matrix of Correspondences (Reduction 1)

Subset 1 11 8 12 3 7 4 2

(1,2) 1 1

(1,4) 1 1

(1,7) 1 1

(1,12) 1 1

(3,11) 1 1

(4,11) 1 1

(7,11) 1 1

(8,11) 1 1

(2,8) 1 1

(3,8) 1 1

(4,8) 1 1

(7,8) 1 1

(2,12) 1 1

(3,12) 1 1

(4,12) 1 1

(7,12) 1 1

(2,3) 1 1

(3,4) 1 1

(3,7) 1 1

(2,7) 1 1

(4,7) 1 1

(2,4) 1 1

Element 1 enters in 4 doublets. In this case, we construct the following triplets in-

cluding element 1: (1,2,4), (1,2,7), (1,2,12), (1,4,7), (1,4,12), (1,7,12). Only two tri-

plets possess the PROPERTY: (1,4,7) and (1, 2, 12). We conclude that element 1

cannot be included in any quadruplet possessing the PROPERTY; hence it can be

deleted from consideration with rows 13, 14, 15, 16. Since (1, 2, 12)  (1, 2, 12, 14)),

we conclude that subset (1,4,7) corresponds to maximal subset possessing the

PROPERTY but subset (1, 2, 12) is not maximal with respect to the PROPERTY.

Analogously, the consideration of element 11 leads to constructing the following

subsets: (3,4,11), (3,7,11), (3,8,11), (4,7,11), (4,8,11), (7,8,11) from which only

A Neural Network-Like Combinatorial Data Structure 73

(7,8,11) and (4,8,11) possess the PROPERTY. We conclude that element 11 cannot

be included in any quadruplet possessing the PROPERTY; hence it can be deleted

from consideration with rows 17, 18, 19, 20. We also conclude that subset (7,8,11) is

maximal with respect to the PROPERTY, but (4, 8, 11) does not.

Currently, we have constructed 7 + 12 = 19 subsets. Table 3 shows the reduced

Matrix of Correspondences.

With element 8, the following subsets can be constructed: (2,3,8), (2,4,8), (2,7,8),

(3,4,8), (3,7,8), (4,7,8). But only (2,7,8) possesses the PROPERTY. We conclude that

it is maximal with respect to the PROPERTY. Element 8 can be deleted together with

rows 21, 22, 23, 24.

For element 12, the following triplets can be constructed: (2,3,12), (2,4,12),

(2,7,12), (3,4,12), (3,7,12), (4,7,12). Only (3,7,12), (4,7,12) possess the PROPERTY.

Since element 12 cannot be included in any quadruplet possessing the PROPERTY,

we conclude that (3,7,12), (4,7,12) are maximal with respect to the PROPERTY. El-

ement 12 can be deleted together with rows 25, 26, 27, 28.

Currently, we have constructed 19 + 12 = 31 subsets. Table 4 shows the reduced

Correspondent Matrix. In this table, (2,3,4,7), the union of all remaining subsets, pos-

sesses the PROPERTY, hence the process of generating subsets is over.

Table 3. The reduced Matrix of Correspondences (Reduction 2)

Subset 8 12 3 7 4 2

(2,8) 1 1

(3,8) 1 1

(4,8) 1 1

(7,8) 1 1

(2,12) 1 1

(3,12) 1 1

(4,12) 1 1

(7,12) 1 1

(2,3) 1 1

(3,4) 1 1

(3,7) 1 1

(2,7) 1 1

(4,7) 1 1

(2,4) 1 1

Table 4. The reduced Matrix of Correspondences (Reduction 3)

Subset 3 7 4 2

(2,3) 1 1

(3,4) 1 1

(3,7) 1 1

(2,7) 1 1

(4,7) 1 1

74 X. Naidenova

(2,4) 1 1

Currently, we have constructed 31 + 1 = 32 subsets. Without the procedure of win-

nowing, it is necessary in Background Algorithm to form 91 + 38 + 3 = 91 +41 = 132

subsets, where 91 doublets, 38 triplets, and 3 quadruplets. The application of winnow-

ing reduced the total quantity of considered subsets to 123: 91 + 32 = 123.

4. A special combinatorial network for implementing the

Background Algorithm

The idea of the following algorithm is based on the functioning of a combinatory

network structure, whose elements correspond to subsets of a finite set S generated in

the algorithm. These elements are located in the network along the layers, so that each

q - layer consists of the elements corresponding to subsets the cardinality of which is

equal to q. All the elements of q–layer have the same number q of inputs or connec-

tions with the elements of previous (q – 1)–level. Each element “is excited” only if all

the elements of previous layer connected with it are active. The weight of connection

going from the excited element is taken as equal to 1; the weight of connection going

from the unexcited element is taken as equal to 0. An element of q–layer is activated

if and only if the sum of weights of its inputs is equal to q. The possible number Nq of

elements (nodes) at each layer is known in advance as the number of combinations of

S on q. In the process of the functioning of the network the number of its nodes can

only diminish.

An advantage of this network consists in the fact that its functioning does not re-

quire the complex techniques for changing the weights of connections and it is not

necessary to organize the process of constructing q -sets from their (q -1)-subsets. The

nodes of network can be interpreted depending on a problem to be solved. The as-

signed properties can be checked via different attached procedures.

If an activated node does not possess the assigned property, then it is excluded

from the network by setting to 0 all connections going from it to the nodes of above

layer. Non-activated node does not require checking whether it possesses the

PROPERTY or not. The work of this combinatorial network consists of the following

steps:

Step 1. The setting of the first layer nodes of network to active state, the weights of

connections leading to the second layer nodes are set equal to 1;

For each level beginning with the second one:

Step 2. The excitation of nodes, if they were not active and all their incoming traf-

fic (links) have the weight equal to 1; checking the assigned property for the activated

nodes of this layer;

Step 3. If the assigned property of node is not satisfied, then all the outgoing con-

nections of this node are established to 0. If the assigned property of node is satisfied,

then its outgoing connections are set to be equal to 1;

Step 4. The propagation of “excitation” to the nodes of the following higher layer

(with respect to the current one) and the passage to analyzing the following layer;

A Neural Network-Like Combinatorial Data Structure 75

Step 5. “The readout” of the active nodes not connected with above lying active

nodes. Such nodes correspond to maximal (not extended) subsets possessing a given

property.

In Fig. 1, all the nodes of two first levels are activated but nodes {4,10}, {7,10},

{1,8}, and {1,10} do not possess the given property and they have no active outgoing

links. At the third level, only two nodes are activated among which node {4,7,8} does

not possess the given property. As a result, we have two nodes corresponding to max-

imal subsets possessing the given property: {8,10}, {1,4,7}. In the process of network

activating, only 12 nodes have been checked and 14 ones did not require to be

checked.

Apparently, we can see that the size of network may be a problem if the data is

large. But the decomposition of the main problem into sub-problems drastically di-

minishes the memory size of Background Algorithm. A subproblem is determined by

a subnetwork generated by a node of the network.

Generally, the main advantages of combinatorial network are the following ones:

1. The size of network is computed in advance;

2. It is possible to decompose network into autonomic fragments;

3. Different fragments of network can be joined via common nodes;

4. The states of nodes can be established by the use of attached procedures.

This combinatorial network can be used for solving many problems of data mining

such that finding frequent patterns, association rule mining, discovering functional

dependencies and some others. The application of neural network models for these

problems is a new field for investigating. We can refer the readers only to one work in

this direction related to optical neural network model used for mining frequent item-

sets in large databases [10]. The optical neural network model proposes the most op-

timized approach with only one database scan and parallel computation of frequent

patterns.

5. Conclusion

In this paper, we describe an algorithm, called Background Algorithm, based on the

method of mathematical induction. This algorithm is applicable to inferring many

kinds of dependencies from a given dataset, for example, functional, implicative de-

pendencies, and association rules. We discussed also the possible ways of increasing

the efficiency of the Background Algorithm. For implementation of this algorithm, we

proposed a neural network-like combinatorial structure of data an advantage of which

consists in the fact that its functioning does not require the complex techniques for

changing the weights of connections. The nodes of network can be interpreted de-

pending on a problem to be solved. The assigned properties of nodes can be checked

via different attached procedures.

76 X. Naidenova

Fig. 1. An example of special combinatorial network

4

7

8

10

1

4

8

10

1

7

8

10

1, 4, 7, 8, 10

1

4

7

10

1

4

7

8

4

7

8

4

7

10

4

8

10

7

8

10

1

7

8

1

7

10

1

8

10

1

4

8

1

4

10

1

4

7

4

7

4

8

7

8

4

10

7

10

8

10

1

7

1

8

1

10

1

4

1 4 7 8 10

- a node is excited

- a node is not excited

- a connection has value 0

- a connection has value 1

A Neural Network-Like Combinatorial Data Structure 77

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in

large databases. In: P. Buneman, S. Jajodia (eds.), Proceedings of the ACM SIGMOD

Conference on Management of Data, pp. 207-216. ACM Press (1993).

2. Houtsma, M., Swami, A.: Set-oriented mining of association rules. Research Report RJ

9567 IBMAlmaden Research Center, San Jose, California (1993).

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: J. B. Bocca, M.

Jarco, C. Zaniolo (eds.), Proceeding of the 20th VLDB Conference, pp. 487-489. Morgan

Kaufman (1994).

4. Agraval, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I.: Fast discovery of as-

sociation rules. In: Fayyard, U. M., Piatetsky-Shapiro, G., Smyth, P., Utchurusamy, R.

(eds.), Advances in Knowledge Discovery and Data Mining, pp. 307-328. Menlo Park,

CA: AAAI Press (1996).

5. Stumme G.: Efficient Data Mining Based on Formal Concept Analysis. In: R. Cicchetti at

al. (eds.), DEXA 2002, LNCS 2453, pp. 534-546. Springer-Verlag, Berlin, Heidelberg

(2002).

6. Huhtala, Y., Karkkainen, J., Porkka P., and Toivonen, H.: Tane: an efficient algorithm for

discovering functional and approximate dependencies. The computer Journal, 42(2), pp.

100-111 (1999).

7. Naidenova, X.A.: Machine learning as a diagnostic task. In: Arefiev, I. (ed.), “Knowledge-

Dialog-Solution”, Materials of the Short-Term Scientific Seminar, pp. 26-36. Saint-

Petersburg, Russia: State North-West Technical University (1992).

8. Megretskaya, I. A.: Construction of natural classification tests for knowledge base genera-

tion. In: Y. Pecherskij (ed.), The Problem of the expert system application in the national

economy: Reports of the Republican Workshop (pp. 89-93). Kishinev, Moldava: Mathe-

matical Institute with Computer Centre of Moldova Academy of Sciences (1988).

9. Naidenova, X.A.: DIAGARA: An incremental algorithm for inferring implicative rules

from examples. International Journal “Information Theories & Applications, 12(2), 171-

186 (2005).

10. Bhatnagar, D. Adlakha, N., Swaroopsaxena, A. A.: Distributed approach for mining fre-

quent itemsets using optical neural network model. International Journal of Engineering

Science and Technology, 3(5), pp. 3979-3981 (2011).

