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Abstract. Historically, student performance prediction has been ap-
proached with regression models. For instance, the KDD Cup 2010 used
the root mean squared error (RMSE) as an evaluation criterion. This
is appropriate when the goal is to predict student marks or how well
will they perform in a given exercise. Since in many datasets the target
variable is binary, i.e. a student has solved the exercise or failed in it,
it would be natural to look at this problem as to a classification task.
Another, probably not so usual case could be when we only have a so-
called positive feedback, i.e. only the successful solutions are recorded. In
this case, neither the regression nor the classification approaches would
be useful and one could look on this problem as to a ranking task. We
propose to look at solving the student performance prediction as a clas-
sification or ranking tasks, respectively, where models are optimized for
appropriate error measures which are the Hinge loss and the Area under
the ROC curve. Experimental comparison of these techniques are intro-
duced using two, large-scale datasets. Both methods are well known in
their respective fields, thus the goal of this paper is to introduce them in
the educational data mining community.
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1 Introduction

To address the student performance prediction problem, many works have been
published so far. Most of them relying on traditional methods such as logistic
regression [1], linear regression [2], decision trees [3], neural networks [4], support
vector machines [5], hidden Markov models [6], Bayesian networks [7], and so
on.

Matrix factorization via Stochastic Gradient Descent algorithm [8] is one of
the most prominent approaches among the recommender system techniques, ap-
plied successfully also in educational data mining [9, 10]. An important attribute
of matrix factorization techniques is that these result in very precise models even
if no additional attributes (meta-data of students and tasks) are known and the
models are learned only from the (student-task-outcome) triples.
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Usually, as was also in the KDD Cup 2010, models for student performance
prediction are evaluated using the root mean squared error (RMSE) suggesting
that it is a regression task. This is straightforward, especially when the goal is
to predict student marks or how well will they perform in a given exercise.

Inspired by the dataset from the KDD Cup in 2010 where the target labels
were binary, i.e. a student was or was not successful in solving the exercise or the
particular steps of an exercise, we can look to student performance prediction
also as to a classification task. Moreover, it can also happen, that some system
records only the successful solutions. Probably, it is not so usual but still remains
as an option. In such case, we have only one target label what limits the use of
regression or classification techniques. This situation is equivalent to the case of
learning from positive-only feedback – a well known concept in the recommender
system community. We can model this situation in the context of ranking.

The goal of this paper is to propose a different perspective to the student
performance prediction problem as opposed to the regression formulation that
is common in the literature. First this problem can be viewed as a classifica-
tion task. We show how the problem can be approached from this perspective
by optimizing a matrix factorization model for a smooth version of the Hinge
Loss [11], a loss function widely used for learning classification models. Student
performance prediction can also be seen as ranking problem. To couple with this
view, we optimize a factorization model for the Bayesian Personalized Ranking
(BPR) optimization criterion [12], a smooth approximation to the Area Under
the ROC Curve (AUC), that has been successfully applied for the item prediction
task in recommender systems.

2 Matrix Factorization Models

Student performance prediction task is to predict whether a given student will
correctly solve a given problem, given his/her performance on other problems.
The performance of a student in a problem is usually modeled as a binary variable
ysp ∈ {−1.+1}. ysp = +1 indicates that the student s correctly solved problem p.
As already shown in the literature, this problem can be successfully approached
using factorization models [9]. A factorization model maps each student s and
problem p to a respective k-dimensional latent feature vector, i.e. s ∈ Rk and
p ∈ Rk. The actual performance of a student is predicted as

ŷsp := sp>

The latent feature vectors are learned by optimizing a regularized loss func-
tion that can be generally written as:

Loss := L(Y,SP>) + λ(||S||2 + ||P ||2)
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where S ∈ R|S|×k and P ∈ R|P |×k are matrices where each row is the latent
feature vector of a given student and problem respectively; Y is a matrix con-
taining the actual performance of the different students and λ is a regularization
term (hyper-parameter) to prevent the over-fitting of the model. Since Y is usu-
ally partially observed, L is a function that evaluates how good the factorization
model approximates the observed part of Y. There are a number of possible
choices for L. In this section we discuss some possibilities not yet explored in
the student performance prediction literature.

2.1 Learning Student Performance prediction with the Hinge Loss

In this section, we introduce the student performance prediction as a classifica-
tion task. It makes sense to optimize the model to a loss suited for this task.
One successful loss used in this area is the hinge loss, which is, for instance, the
loss Support Vector Machines optimize for. The hinge loss is defined as

hinge(y, ŷ) := max(0, 1− yŷ)

where ŷ is the score predicted by the model. One drawback of using the Hinge
Loss is that it is not smooth, thus not being easy to optimize by gradient based
methods. So we use the smooth hinge loss proposed by [11] defined as

smooth hinge(y, ŷ) :=


1
2 − yŷ if yŷ ≤ 0,
1
2 (1− yŷ)2 if 0 < yŷ < 1,

0 if yŷ ≥ 1

(1)

2.2 Learning Student Performance prediction with the Bayesian
Personalized Ranking Framework

If we are searching for a ranking model, it makes sense to learn a model able to
rank the problems according to the likelihood that the student will succeed in
solving it. The Bayesian Personalized Ranking [12] is a framework for learn to
rank that has been successfully applied to recommender systems. It can be seen
as a direct optimization of the Area Under the ROC Curve (AUC) measure. It
is defined as:

BPR−Opt :=
∑

(s,i,j)∈D

lnσ(xsij)

where σ(x) = 1
1+e−x is the sigmoid function and xsij = ŷsi − ŷsj with ŷsi, ŷsj

being the predicted ranks for the items i and j, respectively, by the student s.
One crucial step in using BPR is delineating how the training data D look

like. Here, a triple (s, i, j) ∈ D refers to exercises i, j and a student s, such that
the exercise i received higher rank1 than the exercise j by the student s.

1 In other words, the exercise i is rated/classified higher than the exercise j.
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In [12], the authors show how to apply BPR to a recommendation problem
where only positive observations are available. In the student performance pre-
diction setting, however, one usually has both positive and negative observations
available. Here we propose three different ways of defining the set D in order to
take into account this information.

For convenience, we define B+
s as being the set of problems solved correctly by

the student s and B−s , the set of problems for which the student s has attempted
to solve but failed to provide a correct answer (negative observations). Finally
we define the set B?

s as the problems that the student never attempted to solve.
We devise three alternative definitions for D:

– D+ := {(s, i, j)|i ∈ B+
s ∧ j /∈ B+

s } - in line with the definition in [12], this
creates a contrast between problems correctly solved by the students and
the rest. While this definition makes sense for positive only feedback data,
it is not a good fit for the kind of educational data we work with here, as it
does not account for the negative observations.

– D+/− := {(s, i, j)|i ∈ B+
s ∧ j ∈ B−s } - Creates a contrast between problems

where the students either succeeded or failed to correctly solve.
– D+/−/? := {(s, i, j)|(i ∈ B+

s ∧ j ∈ B−s
⋃
B?

s)∨ (i ∈ B?
s ∧ j ∈ B−s )} - Same as

the previous contrast but also taking into account the problems for which
the user never attempted to solve.

3 Experiments

In the experiments, we have used two large data sets from the KDD Challenge
20102. These data, namely Algebra and Bridge, represent the log files of inter-
actions between students and the tutoring system.

Despite there is a lot of information recorded in the dataset, we consider here
only the sparse student-task matrix consisting of the correct first attempt (CFA)
information, i.e. if a student has solved the given task3 successfully (CFA=1) or
not (CFA=0). The main characteristics of the two datasets, as the number of
students, tasks and student-task-CFA triples, are presented in the table 1.

Table 1: Data set characteristics

Data set # Students # Tasks # (student,task,CFA)

Algebra 2008-2009 3,310 2,979 8,918,054

Bridge to Algebra 2008-2009 6,043 1,458 20,012,498

Fig. 1 shows the results of optimizing a factorization model for the different
criteria proposed in this paper on both datasets. For comparison, we provide

2 http://pslcdatashop.web.cmu.edu/KDDCup/
3 A task represents one step (part) of a problem, here.
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the results of optimizing a model for the root mean squared error, too. For
fair comparison, we evaluated the models using a classification and a ranking
measure. For classification we used Hinge loss:

hinge(y, ŷ) :=
1

|T |
∑

(s,t,yst)∈T

max(0, 1− (ystŷst))

whereas for ranking we considered AUC:

AUC(ŷ) :=
1

|T |
∑
s∈T

1

|B+
s ||B−s |

∑
i∈B+

s

∑
j∈B−

s

δ(ŷsi > ŷsj)

where T refers to test data and δ(x) is 1 if x is true and 0 otherwise.

AUC performance of the tested ranking models.
The higher the better.

Hinge Loss performance of the
tested classification models. The
lower the better.

Fig. 1: Results for the Hinge Loss and AUC

The reason of the poor performance of MF-BPR+ is that when optimizing
BPR one should take the negative observations into account, differentiating it
from the unobserved ones. On the other hand, MF-BPR+/−/? performance is
really close to MF-BPR+/− providing empirical evidence that the model does
not benefit from the contrast with the unobserved cases once both positive and
negative examples are available. Finally, one can see that the Hinge loss performs
better than RMSE.

4 Conclusions

Two factorization techniques and their performance on large-scale datasets were
presented in this paper to approach the student performance prediction prob-
lem as a classification and ranking tasks, respectively. As far as we know, these
techniques were not yet introduced to the educational data mining community.
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