
Rating Prediction Using Preference Relations

Based Matrix Factorization

Maunendra Sankar Desarkar and Sudeshna Sarkar

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur,

Kharagpur - 721302,
India

Abstract. Rating prediction is an important problem for rating based
recommender systems. In Rating Prediction, the task is to predict the
rating that a user would give to an item that he/she has not rated in
the past. Most of the existing algorithms for the task concentrate on the
absolute ratings given to different items by different users in the past.
However, there are few recent research work that point out some draw-
backs of absolute rating based systems and algorithms, and suggest the
use of preference relations between pairs of items to capture the users’
interests about the items. In this paper, we propose a rating prediction
algorithm that considers the relative ratings given by the users for dif-
ferent pairs of items. The algorithm models the users and items using a
matrix factorization framework. The learned model of users and items
are first used to predict the personalized utility of an item for a user.
This utility is then converted to a valid rating value in a predefined
rating scale by employing a personalized scaling. Experimental evalua-
tion on a benchmark dataset reveals that better prediction accuracies
may be achieved by modeling the users and items using relative rating
information.

Keywords: Rating Prediction, Preference Relations, Matrix Factoriza-
tion.

1 Introduction

The rating prediction problem is a widely studied problem in the domain of rating
based recommender systems, where the goal is to predict the rating that a user
would assign to an item that he/she has not rated in the past. The system may
assume that the items with higher predicted rating for a user may be interesting
to the user, and those items can be recommended to the user. Hence rating
prediction is an important problem for recommender systems.

Although rating based recommender systems are widely popular, several is-
sues associated with absolute ratings have been highlighted in recent literature.
To get around some of these issues, several recent research have suggested the

use of preference relation information for efficient recommendation. For exam-
ple, it might be difficult to choose a rating for an item. Whereas, given a pair of
items, it might be easier for a user to tell which one he/she likes more, or both
are equally preferable. Also, there are some users who always tend to give higher
ratings to the items, and there are some who always give low ratings. In other
words, the users have different rating biases, and these biases should be carefully
handled before using the information for recommendation tasks. When prefer-
ence relations are used, this type of rating bias is automatically eliminated [1].
It has also been shown by a user survey [2] that users favor providing feedbacks
in the form of preference relations. Even for systems where absolute rating are
available, use of relative rating information or preference relations may be used
to achieve better recommendation performance [3].

In this paper, we present a preference relation based algorithm for the rating
prediction problem in recommender systems. Given a user and a pair of items, we
look at the relative rating (or preference relation) given by the user for this pair
of items and use this information for the prediction taskWe perform experiments
on a benchmark dataset and show that use of preference relations may help in
achieving better prediction performance.

2 Related Work

Rating prediction is a widely studied problem in the domain of recommender sys-
tems. One of the most widely used frameworks for the rating prediction problem
is the collaborative filtering approach. Here, the system measures the similar-
ity weights between every pair of users by looking at the ratings provided by
them to the items that both of them have rated. Pearson Correlation and Vector
Similarity [4] are two most common measures for finding the user similarities.
Later several researchers have proposed different other measures for calculating
user similarities [5, 6, 7]. Weighted average of the most similar users’ ratings for
the test items are output as the predicted rating. There are several algorithms
that use probabilistic graphical models for solving the task of rating prediction
[8, 9, 10]. Matrix factorization algorithms have also been widely popular. These
algorithms model both the user and items as vectors in a low dimensional feature
space. Representation of the user and items in the joint feature space is then
used to compute the predicted ratings.

However, almost all of the above methods are based on absolute ratings en-
tered by the users. Recently, few researchers have pointed out several problems
with actual ratings based systems and algorithms. These observations have en-
couraged people to look at algorithms that consider the relative ratings between
items. Given a user and a pair of items, these algorithms take into account the
ratings that the user has given for the item pair. This relative rating indicates
which of the two items in the pair is more preferable to the user and can be
directly accepted as a feedback in the form of preference relations. Even when
preference relations are not directly available as a feedback, algorithms may con-

struct preference relations by looking at the ratings given to the item pair. Few
recent algorithms advocate the use of such induced preference relations.

An algorithm that uses only preference relations and ignores absolute rat-
ing almost completely for the rating prediction problem is given in [1]. It views
the rating profile of each user as a preference graph. Similarity weight between
two users is determined by considering the similarities between their preference
graphs. First an aggregate preference graph biased to the target user’s interest
is generated by taking a weighted aggregation of his/her nearest neighbors’ pref-
erence graphs. Integer ratings for the test items are then picked by minimizing
the total weights of the back edges in this aggregate graph.

Another algorithm that uses such preference relations for neighborhood based
collaborative rating prediction is given in [11]. It measures the similarities be-
tween two users by considering the number of item pairs for which both the
users have similar relative preferences. Ratings given to the test items by the
nearest neighbors can then be used for predicting the unknown ratings. The work
proposed in [12] motivates the use of Somers’ coefficient for measuring user sim-
ilarities. Somers’ coefficient between two users is high if there is a large number
of item pairs that both of them have rated above (or below) their (the users’)
mean ratings. Weighted average of the ratings given by the similar users to the
test item can be output as the predicted rating.

A preference relation based algorithm for item recommendation is proposed
in [3]. It models the items and the users using a matrix factorization framework.
The algorithm learns the user and item profile vectors by looking at the relative
ratings provided by the users. User’s affinity or utility value for a particular
item is measured by the inner product of the corresponding user and the item
profile vectors. In [13], the authors propose an algorithm that uses preference
relations for predicting personalized rankings of items in presence of implicit
feedback data. The algorithm learns a model so that the predicted scores of the
seen items are more than the predicted scores for the unseen items. Both these
algorithms find the recommendations by using personalized utility values of the
items. However, these utility values are real numbers and are not in any fixed
range, whereas in rating prediction, the estimated ratings need to conform to the
rating scale used by the particular recommender system. Hence these algorithms
can not be directly applied for solving the rating prediction problem.

3 Rating Prediction: The Problem Description

We assume that the recommender system has a log of past ratings entered by
the users. Given a user u and an item i that u has not rated in the past, the
goal of the rating prediction problem is to predict the rating that u would have
given to i.

In absolute rating based systems, each entry in the log is of the form 〈u, i, rui〉,
where rui is the rating that the user u has given to the item i. For a system that
has preference relations as feedbacks, the entries are of the form 〈u, i, j, π(u, i, j)〉.
Here π(u, i, j) denotes the preference relation between the ordered item pair (i, j)

for the user u. If users provide the values of the preference relations, then the
values of π(u, i, j) are readily available. When only absolute ratings are available,
one can induce relative ratings information from it by setting π(u, i, j) using the
following rule:

π(u, i, j) =

0 if rui < ruj ,

0.5 if rui = ruj ,

1 if rui > ruj ,

undefined if either rui or ruj are not available.

(1)

4 Description of the Algorithm

We have developed a preference relation based matrix factorization algorithm
(PrefNMF-RP) for the task of rating prediction. An algorithm for preference
relation based matrix factorization for item recommendation has been proposed
in [3]. The algorithm presented in this paper uses the same framework for mod-
eling the users and the items, but uses the learned model in a different way as
it has to output predicted ratings that conform to the integer rating scale used
by the underlying recommender system.

The algorithm proposed in this paper represents each user u as a d-dimensional
feature vector pu ∈ R

d. Similarly, each item i is also represented as a d-dimensional
vector qi ∈ R

d. The d dimensional representation of the item can be viewed as the
item’s belongingness into the d hidden categories mined from the data. The d-
dimensional vector representation of the user denotes the user’s interests in each
of these d hidden categories. User’s interest in a particular item is estimated by
the inner product of the corresponding user and item vectors. The value of d is
often chosen beforehand and is much lesser than the number of items (m) and
the number of users (n). The user and item vectors are learned from the data in
the training phase which is performed offline. Personalized ratings of the items
for a test user are generally computed online.

The proposed algorithm proceeds in two phases. The first phase models the
users and the items in a low dimensional latent feature space. The second phase
finds the unknown ratings using the feature representations of the users and
the items. A brief discussion of the two phases is provided in the following
subsections.

4.1 Phase 1: Modeling user and item features

The first phase of the proposed algorithm PrefNMF-RP models the users and
items in a low dimensional latent feature space. A brief overview of this phase
is given below.

Let U be the set of users and I be the set of items. S is the set of preference
relations from the training set. Each entry in S is of the form 〈u, i, j, π(u, i, j)〉.
It means that for user u ∈ U , the strength of the actual preference relation for

the item pair (i, j) ∈ I × I is given by π(u, i, j). If the user feedback comprises
of absolute ratings instead of preference relations, then underlying preference
relations can be induced from absolute ratings by using Equation 1.

Given a user u and an item pair (i, j), the strength of the preference re-
lation may be computed as pu(qi − qj)

T . However, this value may fall in any
arbitrary range. To normalize this value in a range between 0 and 1, we model
the strength of the relation using the inverse-logit function. So, we define the
predicted preference relation for the triplet (u, i, j) as

π̂(u, i, j)
def
=

epu(qi−qj)
T

1 + epu(qi−qj)T
. (2)

For the triplet (u, i, j), the error in prediction is given by: 1
2 (π(u, i, j)−π̂(u, i, j))2.

Therefore, the total error for the training set can be computed as

E =
∑

〈u,i,j,π(u,i,j)〉
∈S

∧(i<j)

1

2
(π(u, i, j)− π̂(u, i, j))2. (3)

The model learning phase aims to minimize this prediction error (given in Equa-
tion 3) on the training set. However, in order to avoid overfitting, a regularization
term R(p, q) term is added with this error term, and resultant objective function
is of the form:

f(p, q) =
1

2

∑

〈u,i,j,π(u,i,j)〉
∈S

∧(i<j)

(π(u, i, j)−π̂(u, i, j))2+λp

∑

u∈U

||pu||
2+λq

∑

i∈I

||qi||
2. (4)

Here, R(p, q) = λp

∑

u∈U ||pu||
2 + λq

∑

i∈I ||qi||
2 is the regularization term. λp

and λq are constants. Hence, given a training set S, the model learning phase
boils down to solving the optimization function given in Equation 4. Output
of this phase are the matrices p|U |×d and q|I|×d containing the user and item
features respectively.

4.2 Phase 2: Rating Prediction:

The second phase of the algorithm predicts the ratings of the items that are not
already rated by the target users. Different recommender systems have different
rating scales from which the users have to choose the ratings. Some systems allow
the users to give ratings in a scale of 5, some system allow a maximum rating of
10 and so on. Hence, it is expected that the predicted ratings also should be in
the rating scale defined by the system.

To find the predicted rating of an item i for the target user u, we first find a
personalized utility value of the item i for u. This utility value may not be in a
fixed range as followed by the recommender systems. So the algorithm has to map
these utility values to the different rating levels as dictated by the recommender
system.

Estimating Utility: We now consider different ways of measuring the utility
of an item for a user. For a user u and the item pair (i, j), the (unnormalized)
strength of the preference relation may be predicted as pu(qi− qj)

T . Following a
similar line of thought as explained in [3], the utility of an item i for the user u,
denoted as x(u, i), may be estimated as the item’s total preference over all the
items in the system. Mathematically,

x(u, i) =
∑

j∈I\i

pu(qi − qj)
T .

However, if we use x(u, i) for measuring the item utilities, then we have to
first compute the values of pu(qi − qj)

T for each j ∈ I \ i. As a result, finding
x(u, i) has a time complexity of O(d|I|). Here, d is the number of latent features.
Since there are typically many items in the set I, this cost is very high, and may
not be suitable for online processing.

To reduce the cost of this operation, we estimate x(u, i) by a function y(u, i) =
puq

T
i . It can be shown that x(u, i) = c1y(u, i)+c2, where c1 and c2 are constants

(independent of u and i). Therefore, the ordering of items produced by the
utility functions x(u, i) and y(u, i) are same. i.e. given two items i1 and i2,
x(u, i1) > x(u, i2) ⇔ y(u, i1) > y(u, i2). Complexity of computing y(u, i) is O(d).
Hence, y(u, i) has the same expressive power as x(u, i), and can be computed in
lesser amount of time.

Mapping utilities to ratings: Once we estimate the utilities using x(u, i)
or y(u, i), we need to map the utility values to the appropriate rating scale.
One possible way of achieving this is by mapping the utilities to the different
possible rating values. However, different users have different levels of leniency
while rating items. There are some users who are strict and tend to assign low
ratings even for the items they liked very much. On the other hand, there are
users who are lenient and assign high ratings even to the items that they have
moderately liked. Hence, a set of global mapping parameters that is common
for all the users may not be suitable for the rating prediction task. In order to
address this issue, we find the parameters of the mapping function for each user
separately and use that for finding the unknown ratings.

To obtain these personalized parameters, we look at the ratings already
entered by the users to different items. Suppose u has rated l different items
Iu = {i1, i2, · · · il}, and the corresponding ratings are Ru = {ru1, ru2, · · · , rrl}.
We model the mapping by using a linear function given below:

ru,ik = αuy(u, ik) + βu. (5)

The parameters αu and βu can be learned from the training data by solving
the following least square objective function:

min
αu,βu

l
∑

k=1

(ru,ik − αuy(u, ik)− βu)
2
. (6)

The values αu and βu may be stored in the system. The rating that user u

would give to a test item j is predicted as r̂u,j = αuy(u, j) + βu. Please note
that the mapping can be done using higher order functions also. However, we
performed some small experiments and found that linear mapping does better
than higher order mappings, and hence we describe only linear mapping here and
use the same for our experimental evaluations. Since y(u, j) can be computed
in O(d) time and the mapping from y(u, j) to r̂uj can be done in O(1) time
(as αu and βu are stored in the system), the time complexity of the rating
prediction phase is O(d) for each unknown rating, which is reasonably fast for
online processing.

5 Experimental Results

5.1 Dataset Used

We use two different samples of the Netflix dataset1 for experimentation. The
first dataset (D1) was created by considering 1500 movies from the Netflix chal-
lenge data. The second dataset (D2) was created by considering the next 1500
movies. Some ratings were eliminated so as to have a dataset where each user
has rated minimum lu and maximum ru movies. The values of lu and lr were
set to be different for the two datasets to create data with different sparsities.
For both the datasets, the data was sorted according to rating timestamps. First
75% of this sorted data were used for training, and the remaining 25% were used
for testing. However, as the proposed algorithm has to learn the mapping from
the utilities to the bounded rating scale from the training set, we select for test
only those users who have rated at least 20 items in the training set.

A brief statistics of the datasets is given below.

Dataset D1 D2

Number of Ratings 124,637 485,333

Users 3229 22920

Items 1255 1232

Sparsity 96.9% 98.2%

Minimum Number of Ratings by any User 20 10

Maximum Number of Ratings by any User 449 455

Average Number of Ratings by any User 38 21

Minimum Number of Ratings for any Item 1 16

Maximum Number of Ratings for any Item 652 2879

Average Number of Ratings for any Item 99 394

Table 1. Statistics of the datasets

1 http://www.netflixprize.com/

5.2 Algorithms Compared

We compared the performance of the rating prediction algorithm with five differ-
ent algorithms from the literature. A brief overview of the algorithms are given
below. The first four of them are based on Collaborative Filtering (CF) frame-
work and the remaining one is based on the matrix factorization framework.

1. CF with User Based Pearson Correlation (PC-CF): This is a neigh-
borhood based collaborative filtering method introduced in [4]. This is a stan-
dard baseline used in several papers proposing rating prediction algorithms.
It computes the user similarity weights using Pearson Correlation between
the rating values provided by the users. For a given target user u, top-K users
according to the similarity weights are considered as u’s neighbors. Weighted
average of the ratings provided to the test item by the neighbors is output
as the predicted rating.

2. CF with Somers’ Coefficient (Som-CF): Use of Somers’ coefficient for
measuring the similarities between two users was suggested in [12]. Somers’
Coefficient between two users is computed as w = C−D

N−T
. Here, C,D and

T are the numbers of concordant, discordant, tied pairs respectively. N is
the number of items in the dataset. Once the weights are determined, the
unknown ratings can be predicted as it is done in PC-CF.

3. CF with Preference Relations (Pref-CF): This is another algorithm
that uses relative ratings for measuring user similarities [11]. Similarity
weights between two users is determined by computing the fraction of item
pairs for which the relative preferences are same for those two users. Pre-
dicted rating is calculated by the weighted average technique as used by
PC-CF and Som-CF.

4. CF with Aggregation of Preference Graphs (Pref-GrAgg): This is
a preference relations based algorithm and was proposed in [1]. It views
the rating profile of each user as a preference graph. User similarities are
measured based on the similarities between their preference graphs. The
similarity weights are then used to generate an aggregate preference graph
for the target user. Predicted ratings for items are determined by minimizing
the total weight of the back edges in the aggregate graph.

5. Standard Non-negative Matrix Factorization (NMF): This is a ma-
trix factorization based algorithm that learns the user and item vectors by
minimizing a regularized objective function. The objective function repre-
sents the prediction error on the training dataset where the predicted rating
is computed as the inner product between the corresponding user and item
vectors. Description of the method and its working details can be found in
[14, 15].

For all the CF based methods, we first select a shortlist of users who have a
high number of co-rated items with the target user. We then assign similarity
weights to only those users and select the K users with the highest weights as
the neighbors.

5.3 Evaluation Metrics

Mean Absolute Error (MAE) and Root Mean Square (RMSE) were used as
evaluation metrics. If rui is the actual rating given by the user u to item i and
r̂ui denotes predicted rating, then the metrics MAE and RMSE are defined as:

MAE =

∑

(u,i)∈T |r̂ui − rui|

|T |

and

RMSE =

√

∑

(u,i)∈T (r̂ui − rui)2

|T |
.

T is the set of test instances.

5.4 Results and Discussions

Performance Comparison: We compared the performances of PrefNMF-RP
with that of the algorithms mentioned in Section 5.2. For PC-CF, Som-CF, Pref-
GrAgg and Pref-CF, we experimented with different sizes of the neighborhood:
40, 60 and 80. For each of these algorithms, we report the result of the experi-
ments that achieved the best values of the evaluation metrics. We ran both NMF
and PrefNMF-RP algorithms using 40, 60, 80, 100, 120, 150, 200 and 250 fea-
tures. For NMF and PrefNMF-RP, for each feature size, we run the algorithms
10 times and report the average values of the metrics of those 10 experiments.

The values of MAE and RMSE for the datasets D1 and D2 are shown in
Table 2 and Table 3 respectively. For both the datasets and both the evaluation
metrics, the PrefNMF-RP algorithm proposed in this paper achieves the best
performance. Pref-GrAgg is the closest competitor for both D1 and D2.

Algorithm MAE RMSE

PC-CF 1.0765 1.5543

Som-CF 1.2068 1.6678

Pref-CF 1.0579 1.4783

Pref-GrAgg 0.7650 1.0850

NMF 0.8085 1.1278

PrefNMF-RP 0.7199 1.0505

Table 2. Comparison on dataset D1

Algorithm MAE RMSE

PC-CF 0.9602 1.4001

Som-CF 1.0898 1.5300

Pref-CF 0.9759 1.3665

Pref-GrAgg 0.7623 1.0738

NMF 0.8525 1.1832

PrefNMF-RP 0.7153 1.0267

Table 3. Comparison on dataset D2

It can be observed from the results that although D2 is sparser than D1,
PC-CF, Som-CF and Pref-CF methods perform much better on D2 than on D1.
This is because the average number of ratings for an item is more in D2. As a
result, it becomes easier to find the set of neighbors for the users. Also, while
computing the predicted rating using the weighted average approach, as more

number of users are likely to have rated the item, the algorithm can be more
confident about the predicted output. On the other hand, Pref-GrAgg uses a
graph based approach for finding the ratings from the aggregate graph. If the
rating for a heavily-rated item can be predicted confidently by Pref-GrAgg, then
that confidence can be passed through the preference edges to other items which
are not rated by many users. Hence it does very well even when the dataset is
very sparse as in the case of D2.

For the matrix factorization based algorithms, sparsity does affect the per-
formance. For PrefNMF-RP, the results are almost similar for both the datasets.
For NMF, The result worsens for D2, but is still much better than the CF based
methods. There are newer versions of actual ratings based NMF that use differ-
ent rating bias terms for the users and items [15]. However, we have not explored
those variants of the NMF. We used the basic NMF method so that we have a
baseline algorithm parallel with the proposed PrefNMF-RP algorithm.

Effect of the number of features: Here we analyze the effect of the number
of features on the prediction accuracies of PrefNMF-RP and NMF. The MAE
values of the algorithms obtained by experimenting with different numbers of
features are shown in Figure 1. As the number of features is increased, generally
the performances of the matrix factorization algorithms improve as they are
able to capture different dimensions or aspects about the data. However, after
reaching a certain number of features, the performance either saturates or starts
to degrade due to overfitting. Overfitting generally happens faster if the data is
very sparse.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 50 100 150 200 250

M
A

E

NMF
PrefNMF-RP

(a) Dataset D1

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 50 100 150 200 250

M
A

E

NMF
PrefNMF-RP

(b) Dataset D2

Fig. 1. Changes in MAE with number of features

This trend is clearly visible from the results shown in Figure 1. For dataset
D2, the performance of NMF deteriorates after 80 features. This might be due
to the reason that as the dataset is very sparse, when NMF attempts to learn
more about the data by using higher number of features, the learned model

becomes very much tuned for the training data and overfitting occurs. However,
the performance of PrefNMF-RP does not degrade or saturate that early for
this dataset. This is due to the reason that PrefNMF-RP is able to use more
information from the data by using preference relations. If many users rate an
item higher than another item, then it is a direct evidence that the former item
will have higher utility than the later item, for almost all the users. Also, if user
u has rated nu number of items in the training set, then the preference relations

based methods have nu(nu−1)
2 observations which they can use for learning, as

opposed to nu observations for actual rating based methods. Due to these factors,
probably PrefNMF-RP is able to learn the model better as the number of features
is increased. As a result, degradation or saturation in performance does not
happen that early. In our experiments, performance of PrefNMF-RP improved
till 200 features, and then saturated. For dataset D1, which is denser than dataset
D2, performance of both the algorithms improve till 200 features. After that, the
changes are negligible. Comparison of RMSE values with the number of features
show a similar pattern and hence is not shown separately.

6 Conclusions

In this paper, we have proposed a preference relations based matrix factorization
algorithm for the rating prediction problem. The algorithm considers the pref-
erence relations or relative ratings provided to the items by the different users
in the system. It then uses this information to map the users and the items in a
joint latent feature space. Utility of an item for a user is estimated by the inner
product between the feature vectors for the corresponding user and the item.
Higher value of the utility indicate better satisfaction for the user. We then scale
this utility to obtain a personalized rating for the item that the user would pos-
sibly have assigned to it. As the users have individual rating biases, the scaling
parameters are determined separately for each individual user.

Two different samples of different sparsity configurations were used for exper-
imentation. From the experimental results, we see that the proposed algorithm
performed best among the different range of methods that we used for compar-
isons. The results indicate that the use of the preference relations instead of
actual ratings can help in achieving better recommendations for the users.

Acknowledgements

Work of the first author is supported by a PhD Fellowship from Microsoft Re-
search India.

References

[1] M. S. Desarkar, S. Sarkar, and P. Mitra, “Aggregating preference graphs for col-
laborative rating prediction,” in Proceedings of the fourth ACM conference on
Recommender systems, RecSys ’10, pp. 21–28, ACM, 2010.

[2] N. Jones, A. Brun, and A. Boyer, “Comparisons instead of ratings: Towards more
stable preferences,” in Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01,
WI-IAT ’11, pp. 451–456, IEEE Computer Society, 2011.

[3] M. S. Desarkar, R. Saxena, and S. Sarkar, “Preference relation based matrix
factorization for recommender systems,” in Proceedings of the 20th international
conference on Advances in User Modeling, UMAP ’12, Springer-Verlag, 2012.

[4] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive al-
gorithms for collaborative filtering,” in Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, UAI’98, pp. 43–52, Morgan Kaufmann
Publishers Inc., 1998.

[5] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen, “Scalable
collaborative filtering using cluster-based smoothing,” in Proceedings of the 28th
annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’05, pp. 114–121, ACM, 2005.

[6] J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unified relevance models for rat-
ing prediction in collaborative filtering,” ACM Trans. Inf. Syst., vol. 26, pp. 16:1–
16:42, June 2008.

[7] H. Luo, C. Niu, R. Shen, and C. Ullrich, “A collaborative filtering framework
based on both local user similarity and global user similarity,” Mach. Learn.,
vol. 72, pp. 231–245, Sept. 2008.

[8] D. H. Stern, R. Herbrich, and T. Graepel, “Matchbox: large scale online bayesian
recommendations,” in Proceedings of the 18th international conference on World
wide web, WWW ’09, pp. 111–120, ACM, 2009.

[9] M. Harvey, M. J. Carman, I. Ruthven, and F. Crestani, “Bayesian latent variable
models for collaborative item rating prediction,” in Proceedings of the 20th ACM
international conference on Information and knowledge management, CIKM ’11,
pp. 699–708, ACM, 2011.

[10] J. Yoo and S. Choi, “Bayesian matrix co-factorization: variational algorithm
and cramer-rao bound,” in Proceedings of the 2011 European conference on Ma-
chine learning and knowledge discovery in databases - Volume Part III, ECML
PKDD’11, pp. 537–552, Springer-Verlag, 2011.

[11] A. Brun, A. Hamad, O. Buffet, and A. Boyer, “Towards preference relations in
recommender systems,” in Preference Learning (PL-10) ECML/PKDD-10 Work-
shop, 2010.

[12] N. Lathia, S. Hailes, and L. Capra, “Private distributed collaborative filtering us-
ing estimated concordance measures,” in Proceedings of the 2007 ACM conference
on Recommender systems, RecSys ’07, pp. 1–8, ACM, 2007.

[13] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian
personalized ranking from implicit feedback,” in UAI, pp. 452–461, 2009.

[14] S. Funk, “Netflix update: Try this at home.” http://sifter.org/~simon/

journal/20061211.html, December 2006. [Online; accessed 02-July-2012].
[15] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-

mender systems,” Computer, vol. 42, pp. 30–37, Aug. 2009.

