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Abstract. In this paper we present an approach for reasoning about
which media content from an existing repository should be presented
to users. We elaborate on our technique by considering students within
an e-health intelligent tutoring environment. Our approach models the
benefits in socially connected learning gained by peers in order to then
recommend those objects predicted to offer the best gains in knowledge
for the student. This is achieved in a framework where the past learning
gains of peers are modeled and recorded with the objects in the repos-
itory. We previously confirmed the value of the approach by simulating
student learning. From here, we then conduct a user study comparing
the learning achieved by students presented with objects selected by
our algorithms, compared to a less principled approach for curriculum
sequencing; this is performed for the application of home healthcare (as-
sisting caregivers of autistic children). We provide compelling evidence
for the value of our proposed vision for achieving effective peer-based
tutoring: through past experiences of peers in an extensive repository.
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1 Introduction

With an aging population, home healthcare solutions are becoming, by necessity,
more prevalent. Caregivers and patients alike face the challenge of making med-
ical decisions in dynamically changing environments, using whatever resources
are available in the home. With copious amounts of information (e.g. text, videos,
interactive systems) users benefit from methods for effectively focusing on what
would be most beneficial to view.

Our research aims to provide important decision-making support in these
scenarios by leveraging the learning of peers through a social networking ap-
proach. In particular, we propose that peer-based tutoring form the basis of the
information imparted to homecare caregivers and patients. Distinct from other
approaches to peer-based intelligent tutoring which assume an active social net-
work of information exchange in real-time (e.g. [1]), we propose a framework
that makes use of learning experienced by peers at several points in the past and
allow these peers to streamline content that will be shown to future students. In
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essence, we seek to adopt an approach to learning that respects what McCalla
has referred to as the ecological approach [2]: enabling various learning objects
(texts, videos, book chapters) and adjusted version of these objects to be intro-
duced to peers, based on the past experiences of other, similar, students with
this media content (or learning objects). The core of our proposal is to enable the
peers to influence the determination of learning objects which will be considered.
While an initial corpus will be introduced, once a peer has experienced learn-
ing, it will be possible to suggest, for example, subdividing an existing, lengthy
learning object into a smaller, cogent element, which is strongly recommended
to other students.

An example scenario helps to motivate our research. Consider a diabetic
patient, attempting to manage his disease. Distinct from an approach of simply
posting a query to a discussion group and receiving various responses from peers
(with varying degrees of reliability), one would treat this problem as one of
properly teaching the patient suitable information that may be contained in a
variety of online articles or instructional videos. We assume a corpus of these
learning objects exists and has been experienced by other peers in the past.
Pre- and post-testing of the learning achieved by these peers is conducted (for
example, through an exit quiz that results in a level of understanding represented
as a grade achieved, before and after the interacting with the learning object).
Then, each learning object has stored with it the students who have experienced
it, along with the benefit that each students obtained (an increase, or decrease,
in grade level achieved).

In determining which learning object to display to a new student, we propose
two distinct methods. The first focuses on presenting to new students those
learning objects which produced the most benefit to like-minded peers, where
the similarity between students is determined on the basis of their overall level
of knowledge. This approach is motivated by collaborative filtering techniques,
as performed in recommender systems [3]. For example, those learning objects
which resulted in a weak understanding for other similar patients would be
avoided for the new student. This system allows the object that is best suited
to a particular student population to be shown to them.

Continuing with the motivating scenario of informing homecare diabetic pa-
tients, our second focus concerns the situation where there may be a particular
article in a book (or some other subset of a larger learning object) on manag-
ing diabetes which is of special value. As with our algorithm for recommending
learning objects, the determination of which of these smaller articles to present
to a peer will be based on the learning that is experienced by others. The ob-
ject would be added to the corpus and then its overall benefit to peers can be
tracked. It is possible that for one population of (perhaps more advanced) stu-
dents a more targeted, succinct learning object would be preferable, while for
another population of students a learning object with additional explanations
may be preferable. In addition, one can manage the entire corpus by eventually
discarding learning objects that are not of use (garbage collection), resulting in
a refined and more valuable corpus on which the learning may proceed.



Student modeling to select appropriate learning objects 3

In all, we believe that home healthcare can be improvedby enabling patients
and caregivers to learn on the basis of the past learning of their peers, through
judicious choice of material to present to the learners, which evolves over time
as the learning experiences of the peer group expand.

2 Background

Intelligent tutoring systems research has increasingly incorporated student mod-
els using the machinery of user modeling[4] and has most recently progressed to
encompass efforts aimed at allowing students to benefit from the learning that
their peers are undergoing [1]. McCalla has proposed an ecological approach [2]
for e-learning: making use of a repository of learning objects (which could be
web pages, research papers, videos, simulations, etc.) with a history of interac-
tions from previous students, in order to direct the learning of new students.
This view of peer-based tutoring is distinct from the standard view where peers
are assisting each other in real-time. McCalla’s approach is simply a general
philosophy for design; with this hand, we proceed to create specific algorithms
embodying this approach, used as the basis for recommending objects to stu-
dents. Using techniques inspired by collaborative filtering [3], the basis of our
approach is to identify which users in a system are similar to each other, to
then use past interactions with these similar students to intelligently tailor the
system’s interactions with the current student.

2.1 Our Approach

Algorithm 1 Pseudocode For Collaborative Learning Algorithm (CLA)
Input the current-student-assessment
for each learning object: do

Initialize currentBenefit to zero
Initialize sumOfBenefits to zero
Input all previous interactions between students and this learning object
for each previous interaction on learning object: do

similarity = calculateSimilarity(current-student-assessment, interaction-initial-
assessment)
benefit = calculateBenefit(interaction-initial-assessment, interaction-final-
assessment)
sumOfBenefits = sumOfBenefits + similarity * benefit

end for
currentBenefit = sumOfBenefits / numberOfPreviousInteraction
if bestObject.benefit < currentBenefit then bestObject = currentObject

end for
if bestObject.benefit < 0 then bestObject = randomObject
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Our proposed algorithm for determining which learning objects to present
to students is presented in Algorithm 1. We assume that we are tracking a set
of values, v[j,l], representing the benefit of the interaction for user j with learn-
ing object l. v[j,l] is determined by assessing the student before and after the
interaction, and the difference in knowledge is the benefit. We also record for
each learning object what we refer to as the interaction history : the previous
interactions of students with that object, in terms of their initial and final as-
sessments.1 We assume that a student’s knowledge is assessed by mapping it to
18 discrete levels: A+, A, A-, ... F+, F, F-, each representing 1

18 th of the range of
knowledge. This large-grained assessment was used to represent the uncertainty
inherent in assessing student knowledge, and only this large-grained assessment
is used to reason about the students’ ability in our approach.

The anticipated benefit of a specific learning object l, for the active user, a,
under consideration would be 2

p[a, l] = κ

n∑
j=1

w(a, j)v(j, l) (1)

where w(a,j) reflects the similarity ∈ (0,1] between each user j and the active
user, a, and κ is a normalizing factor. 1

|n| was used as the value for κ in this work
where n is the number of previous users who have interacted with learning object
l. w(a,j) was set as 1

1+difference where difference is calculated by comparing the
initial assessment of j and the current-student-assessment, and assigning an
absolute value on the difference of the letter grades assigned. This is in order to
obtain a similarity between 0 and 1, with 1 representing identical assessments.
So the difference of A+ and B- would be 5 and the difference of D+ and C-
would be 1. v(j,l) is also computed using a difference. Instead of a sum of the
absolute differences between the initial assessments of two users, it is the sum
of the difference between initial and final assessments for user j ’s interactions
with learning object l. For example, v(j,l) where j is initially assessed as A+
and finally assessed at B- would be -5, while where j is initially assessed at
B- and finally assessed at A+ would be 5. This is shown as the calculateBenefit
function in Algorithm 1. In the absence of other criteria, a user a will be assigned
the learning object l that maximizes p[a,l]. If the maximum p[a,l] is a negative
anticipated benefit, a random learning object will be assigned to the user.

The CLA’s value in achieving increases in knowledge to students has been
confirmed by a method of simulated student learning [6, 7] achieving performance
approaching that of algorithms with perfect knowledge about the students, the
learning objects and the learning gains of their interactions. Below we show just
one of our graphs of results where the learning of 50 students was simulated over
100 trials with 20 iterations where the mean of the average student knowledge is

1 The algorithm would be run after an initial phase where students are learning
through the use of a set of learning objects. These students’ experiences would then
form the basis for instructing the subsequent students.

2 Adapted from [3, 5].
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mapped. Simulated students interacted with learning objects that had varying
impact depending on the student’s current assessment grade where a total of
100 learning objects were included in the repository. The Raw Ecological curve
embodies the CLA Algorithm. The Pilot variation allows 10% of the students
to prime the system first and the Simulated Annealing variation included a
cooling phase where students first had a chance of being randomly assigned a
learning object; both variants are done to address cold-start problems. All three
variations show very effective student learning (Figure 1). We then move on to
human evaluation in order to confirm the value of our methods; necessarily we
are investigating a smaller sample size (i.e. we cannot easily subject participants
to thousands of learning experiences nor easily manage hundreds of participants
in one study). But the learning that is accomplished is now matching the ground
truth for those students (revealed through performance on assessment quizzes).

Fig. 1: Comparison of 5 Approaches for Selecting Learning Objects [6]

3 Human Evaluation

To study the effectiveness of our approach with humans we conducted a prelimi-
nary evaluation with participants at the University of Waterloo. We chose as an
application domain enabling users to learn about how to care for a child with
autism (which may arise as a home healthcare scenario, of interest to projects
such hSITE [8], with which we are involved). Our first step was to assemble our
repository of learning objects: the material that students would learn from. In
collaboration with a clinical psychologist specializing in children and autism, we
created 20 learning objects (16 text articles and 4 videos) that each took about 5
minutes to experience. Also in collaboration with the psychologist we created a
10-question multiple choice assessment, covering material from the learning ob-
jects. This was used to carry out the pre- and post-test assessments which serve
to model learning gains in students (and form a component of our algorithm for
determining which objects to present to each student).
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We hypothesized that a group of students using our peer-based technique for
selecting learning objects would show greater learning gains than a control group
that had learning objects randomly assigned to them. The aim of our study,
therefore, was to validate our proposed Collaborative Learning Algorithm for
curriculum sequencing (Algorithm 1) – the centrepiece of our overall peer-based
learning framework.

In order to obtain feedback from our participants about corpus division,
we also explained our corpus approach to participants and then offered them
the opportunity to subdivide each learning object that they were shown, as the
learning proceeded.3 We finally obtained more information during an exit survey
where participants responded to questions asking them how they felt about this
option of streamlining learning objects. The entire process lasted approximately
1 hour. 23 participants took part in our experiment, including graduate students,
undergraduate students and staff members at the university. All were at least
18 years old, fluent in English and not an expert in autism spectrum disorders.

3.1 Procedure

Each participant experienced 5 learning objects and was assessed before and after
each for a total of 6 assessments, with the first assessment before they experience
any learning objects being a measure of the student’s initial knowledge before
seeing any learning objects. The assessments were the same 10 multiple choice
questions each time.4 The quiz was designed so that each question was covered
well by different learning objects in the repository (and more than one learning
object served to help a student to respond to that question). After experiencing
each learning object, each participant did the assessment quiz and also answered
a separate questionnaire allowing the student to propose a streamlining (division)
of that learning object. At the end of the experiment each participant was given
an exit survey asking them their overall feelings about streamlining and soliciting
general feedback.

The first 12 participants were randomly assigned learning objects. They were
used both as a control group and to provide training data for our technique.
The next 11 participants experienced a curriculum sequence provided by our
approach. Participants read hardcopy articles or watched videos on a provided
netbook and then a “Wizard of Oz” style study was performed. For our tech-
nique, a program was written using the CLA (Algorithm 1) and the answers pro-
vided by participants in their pre-test assessments served as the current student
assessment; a new recommendation for a learning object was then determined.
This sequence continued until the student had experienced five different learn-
ing objects. In essence, the first 12 participants served to prime the system for

3 These subdivisions were not used by other participants. Getting enough data, with
the limited number of participants, to differentiate between original learning objects
and streamlined versions would have been problematic.

4 This was done in part to ensure that we were modeling comparable learning experi-
ences from the participants.
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the remaining participants. After this phase, each learning object in the reposi-
tory had 3 experiences recorded: while the initial control group of students were
shown a random set of objects, which objects would be presented to each was
determined offline in a way that ensured that each object would be shown to 3
different participants. The net-benefit obtained by each subject in the control
group (number of questions correct between pre and post-test) became part of
that object’s interaction history. For the participants in our experimental group,
determining the similarity between the current student and previous peers was
measured by comparing the number of questions on the assessment that were
answered identically. Only the data collected from the training group was used
to make recommendations to the experimental group.5 No learning objects were
shown twice to the same participant.

3.2 Results

Curriculum Sequencing We first compared the learning gains of our 11 exper-
imental group participants, namely the post-test (their final assessment) minus
the pre-test (their first assessment).

Mean s.d. Mean (without P20) s.d. (without P20)

Control 1.83 1.27
Experimental 3.09 2.21 3.4 2.07

Table 1: Comparison of overall learning gains of users in each case

These results can be interpreted that, on average, participants in the control
group got 1.83 more questions correct (out of 10) after completing the 5 learning
objects and participants in the experimental group got an average of 3.09 more
questions correct.

P20 was a participant who did not seem to be taking the experiment seriously,
did not read learning objects fully and rushed through the experiment (finishing
in about 40 minutes when most participants took about 1 hour). The data was
analyzed with and without this participant’s data included.

The results were statistically reliable at p=0.059 (one-sided, two samples,
unequal variance t-test) which was not statistically significant. With participant
20 removed, the results were statistically reliable at p=0.027 (one-sided, two
samples, unequal variance t-test) which was statistically significant.

Next, we compared the proportional learning gains of participants. This was
to take into consideration the suggestion of Jackson and Graesser [9] that sim-
ple learning gains are “biased towards students with low pretest scores because

5 Had we followed our proposed approach and continually added data for the program
to make recommendations from, the final participants would have been given learning
objects based on a richer repository of data and the experimental group would not
have been provided with a consistent treatment.
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they have more room for improvement”. This is measured using [(post-test −
pretest)/(10-pretest)]6.

Mean s.d. Mean (without P20) s.d. (without P20)

Control 0.530 0.452
Experimental 0.979 1.07 1.08 1.02

Table 2: Comparison of proportional overall learning gains of users

The results were statistically reliable at p=0.10 (one-sided, two samples,
unequal variance t-test) which was not statistically significant. With participant
20 removed, the results were statistically reliable at p=0.071 (one-sided, two
samples, unequal variance t-test) which also was not statistically significant.

Next, we considered the per-LO learning gains of each student. Here, the
change in assessment after assignment of a single learning object, were measured
for each learning object experienced and the average computed. This average was
then compared for the control and experimental groups.

Mean s.d. Mean (without P20) s.d. (without P20)

Control 0.367 0.253
Experimental 0.618 0.442 0.68 0.413

Table 3: Comparison of average learning gains of users in each case

The results were statistically reliable at p=0.059 (one-sided, two samples,
unequal variance t-test) which was not statistically significant. With participant
20 removed, the results were statistically reliable at p=0.027 (one-sided, two
samples, unequal variance t-test) which was statistically significant.

Taken together, our results indicate that students presented with learning
objects determined by our algorithm achieved greater learning gains than those
who were randomly assigned objects.

Corpus Approach Each participant was invited, after the concept had been
explained to them, to streamline learning objects according to the corpus ap-
proach.

In spite of being told it was up to them whether or not to streamline learning
objects, only 5 out of 23 participants declined to streamline any objects. On av-
erage, participants suggested streamlined versions for 2 of the 5 learning objects
they saw.7

Each participant was asked 3 questions about the corpus approach during
their exit survey:
6 10 is the maximum possible score on a 10 question multiple-choice quiz.
7 In practice, participation may be lower if there isn’t a researcher sitting across the

table when students are deciding whether or not to streamline; however there was
clearly a willingness to engage in this activity.
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Question Mean s.d.

Q1 0.227 3.35
Q2 0.864 2.949
Q3 3.773 1.232

Table 4: Mean answer values to exit survey
questions

1. How would you rate the difficulty of creating a new streamlined learning object?
2. How would you rate the difficulty of deciding what content to include in a streamlined version?
3. How would you rate the usefulness of a system offering a user the full version or streamlined

version of content like you’ve seen?

Participants were given a 11 point scale, ranging from -5 to 5 with the labels
“difficult” at -5, “neutral” at 0, and “easy” at 5 for Q1 and Q2 and “useless” at
-5, “neutral” at 0 and “useful” at 5 for Q3.

For the 23 participants the feedback is provided in Table 4.
Although participants were mostly neutral with respect to creating stream-

lined versions of learning objects (Q1 and Q2), they were clearly positive about
using a system where other students create streamlined learning objects for them.
This conforms to research on participatory culture (e.g. [10]) which has shown
that consumers usually greatly outnumber contributors. It has been shown to
be possible (e.g. [11]) to use incentives to encourage greater participation.

4 Conclusion and Discussion

With an overall aim of enabling effective patient-led health management, we
offer here a specific approach for peer-based tutoring that makes use of a rich
interaction history to personalize delivery of content for users; this serves to
assist caregivers in focusing their attention on the most valuable material and
demonstrates the true potential of social recommendation for this critical appli-
cation area. The human study described in this paper confirms the effectiveness
of the approach in achieving knowledge gains; the exit survey also support our
proposal for allowing peers to augment the repository through corpus division.

Personalization for E-Health Other work in this area, in the area of E-
Health that has demonstrated the importance of personalized content delivery
and of leveraging social networks as part of that learning (e.g. [12, 13]) focus on
promoting healthier lifestyles by encouraging reflection and discussions within
the family through the use of a collaborative platform. Our approach is aimed
instead at allowing individuals to better understand their health concerns and
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make informed decisions. [14] proposes personalized delivery of video to users
to educate about self-care of fibromyalgia. This work confirms several elements
in our approach: including video objects, supporting personalized selection of
objects from a corpus. Like us, their user study compared the value of their
approach with one that was less personalized. One notable difference is that our
tailoring is based on modeling peer-experiences.

Personalized E-learning More traditionally, intelligent tutoring systems re-
searchers have been focused on providing opportunities for students to direct
their own learning, making choices about lessons to explore [4, 15]. One signifi-
cant way in which our e-learning framework differs is in its enhanced focus on
determining the content to be presented to a student. In our approach, this con-
tent is determined on the basis of the experiences of other students and on the
initiative of those students to introduce new subdivided learning objects into the
corpus that is used as the lesson repository for the tutoring.

Our approaches to tutoring can be viewed as peer-based, to the extent that
student learning is enabled by previous peer interactions. Other researchers
have explored a peer-based approach to intelligent tutoring. For example, the
COMTELLA project [11, 16, 1] at the University of Saskatchewan investigated
recommendation of academic papers by users in a small-scale, on-line commu-
nity. The system encouraged users to participate but was concerned as well with
preventing information overload (too many items being posted at once). This was
achieved by introducing limits on the number of posts that a student could con-
tribute (higher or lower based on the perceived quality of the student’s previous
posts). In contrast, in our approach, having a wealth of possible learning objects
does not necessarily detract from student learning, as our system is determining
the content to be presented to each student (and our simulations verified that
valuable learning objects could still be selected for students, when the corpus
grew to include many objects).

Also, in contrast to efforts such as [11], in our approach each student’s learn-
ing is directed by considering all experiences of previous students, thus allowing
for a continuous redirection of possible content. Personalization is maintained
throughout, as well. This is achieved by modeling the knowledge levels of each
student and an assessment of their current overall understanding in order to
perform matching to like-minded peers, for the selection of learning objects.

Previous work on collaborative learning, such as [17], has attempted to use
interactions between students and the system to provide a better experience for
subsequent students. The authors created a program that would capture user
problem solving behaviours in the system. This data was then used to begin the
development of a tutor, in what they call “bootstrapping novice data (BND)”.
The authors admit, however, that the task is non-trivial and reach the conclusion
that that analysis must happen at multiple levels of abstraction. In contrast, our
approach does not try to model specific user actions. Instead it pragmatically
considers the sequence that learning material is experienced and how successful
the students were.
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Collaborative Recommendation Collaborative filtering recommender sys-
tems [3, 5] also make use of content selection via modeling similarity of peers.

On the surface, it might seem that recommendation techniques could be
applied directly in an intelligent tutoring setting. However, whereas most rec-
ommender systems endeavour to obtain an increasingly specific understanding
of a user, an intelligent tutoring system seeks both to understand a user and to
enable change or growth. In addition, in contrast to positioning a user within a
cluster of similar users, we would like to model a continually evolving community
of peers who are operating at a similar level of knowledge.

Some of the cutting-edge areas of recommendation research are more relevant
to us. The work of Herlocker et al. ([5]), which explores what not to recommend
(i.e. instead of seeking highly relevant items from a set, removing irrelevant
items) is perhaps relevant in our context, where peer-created learning objects
which have be found to lack benefit for student learning may be worth removing
from the repository.

Our work is distinct from the above approach, however, in a number of ways.
Obtaining a history, and accurately categorizing a user’s life events, will be a
time consuming process that may be difficult to convince users to undertake. In
their system user histories must be continually updated, with the ongoing issue
of out-of-date user profiles. In contrast, the data used by our system should be
easily gathered and will be as up-to-date as the last usage of a learning object.
Finally, our modeling of students is on the basis of their knowledge levels as
reflected in pre- and post-test assessments and as such reflects a more concrete
representation than a cumulative code.

The Evolution of Social Relationships One valuable aspect of our approach
in its management of the social network of peers is its ability to cope with a
potentially large number of fellow students. This is achieved in part by first
grounding the student learning in the context of a particular learning object
that is most appropriate, based on the benefits in learning derived from this
object by students at a similar level of knowledge.

Scaling is problematic for many approaches to real-time peer-tutoring (e.g.
[1]). Our approach, like many ecological approaches, uses data from past inter-
actions and performance improves as the size of the user base and repository
of learning objects increases. A very large social network, therefore, is not a
challenge at all, but instead an opportunity to provide highly personalized rec-
ommendations to students.

While computational demands do increase with a larger group of students,
the time needed for such computations is small compared to the time it takes
for students to complete tasks. The approach detailed in this paper could easily
scale to making recommendations for large numbers of students every 1/2 hour
if needed. If computation were to become a limiting factor, a straightforward
adjustment would be to compute the predicted benefits for a student in between
her interactions with the system instead of making recommendations on-the-fly.
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