
RuleML2012@ECAI Challenge and Doctoral
Consortium
6th International Rule Challenge

Proceedings of the RuleML2012@ECAI Challenge, at the 6th International
Symposium on Rules

Montpellier, France, August 27th-29th, 2012.

Edited by

Hassan Aït-Kaci *
Yuh-Jong Hu **
Grzegorz J. Nalepa ***
Monica Palmirani ****
Dumitru Roman ******

* IBM Canada
** National Chengchi University, Taiwan
*** AGH University of Science and Technology, Krakow, Poland
****CIRSFID-University of Bologna, Italy
*****SINTEF, Norway

Vol-874
urn:nbn:de:0074-874-C

Copyright © 2012 for the individual papers by
the papers' authors. Copying permitted only for

private and academic purposes. This volume is

published and copyrighted by its editors.

Table of Contents

� Preface

Part 1: RuleML2012@ECAI Doctoral Consortium

Doctoral Consortium Papers

1. Enabling Knowledge-Based Complex Event Processing
Kia Teymourian

2. Cognitive System for Knowledge Representation of Elementary
Pragmatics
Shashishekar Ramakrishna

Pagina 1 di 2CEUR-WS.org/Vol-874 - RuleML2012@ECAI Challenge and DC

22/08/2012file:///C:/Users/palmirani/Documents/RuleML2012-DC/admin/tmp0000.html

The whole proceedings can also be downloaded as a single file (pdf).

22-Aug-2012: submitted by Monica Palmirani
22-Aug-2012: published on CEUR-WS.org

3. Combining Ontology and Rules to Model Judicial Interpretation
Marcello Ceci

4. Checking Compliance in European Tender Documents through
Ontologies and Rules
Isabella Distinto

Part 2: RuleML2012@ECAI Challenge

Invited Demo Papers

5. Rule Based Business Process Compliance
Guido Governatori and Sidney Shek

6. PSOATransRun: Translating and Running PSOA RuleML via the TPTP
Interchange Language for Theorem Provers
Gen Zou, Reuben Peter-Paul, Harold Boley, Alexandre Riazanov

Challenge Demo Papers

7. Legal Rules, Text, and Ontologies Over Time
Monica Palmirani, Tommaso Ognibene and Luca Cervone

8. Browsing case-law: an application of the Carneades Argumentation
System
Marcello Ceci and Thomas Gordon

9. A model driven approach for bridging ILOG Rule Language and RIF
Valerio Cosentino, Marcos Didonet Del Fabro and Adil El Ghali

10. A loose Coupling Approach for Combining OWL Ontologies and Business
Rules
Amina Chniti, Patrick Albert and Jean Charlet

11. Diamond Debugger Demo: Rete-Based Processing of Linked Data
Daniel Miranker, Rodolfo Depena, Hyunjoon Jung, Juan Sequeda and
Carlos Reyna

12. Monitoring BPMN-Processes with Rules in a Distributed Environment
Lothar Hotz, Stephanie Von Riegen, Alexander Pokahr, Lars Braubach
and Torsten Schwinghammer

13. Loosely-Coupled and Event-Messaged Interactions with Reaction RuleML
1.0 in Rule Responder
Zhili Zhao, Kia Teymourian, Adrian Paschke, Harold Boley and Tara
Athan

14. Graph-based rule editor
Maciej Nowak, Jaroslaw Bak and Czeslaw Jedrzejek

15. RuleTheWeb!: Rule-based Adaptive User Experience
Adrian Giurca, Matthias Tylkowski and Martin Müller

16. PLIS+: A Rule-Based Personalized Location Information System
Iosif Viktoratos, Athanasios Tsadiras and Nick Bassiliades

Pagina 2 di 2CEUR-WS.org/Vol-874 - RuleML2012@ECAI Challenge and DC

22/08/2012file:///C:/Users/palmirani/Documents/RuleML2012-DC/admin/tmp0000.html

Preface

This volume collects the four selected contributions of the

RuleML2012 Doctoral Consortium and the twelve demo papers

accepted for presentation at the RuleML2012 Challenge.

The RuleML Doctoral Consortium is part of the RuleML

International Symposium on Rules, and is intended to attract Ph.D.

researchers in the area of Rules and Markup Languages, from different

backgrounds (e.g. theoretical, application, vertical domain-specific), to

encourage a constructive and fruitful interdisciplinary approach. The

doctoral symposium provides two benefits to students. Firstly, the

students can interact with academics and commercial experts in the

field, who can evaluate their research projects from both theoretical and

application points of view. Secondly, they have the opportunity to

present and discuss their ideas in a dynamic and friendly setting.

The first RuleML Doctoral Consortium was included in the first

part of the RuleML 5th International Symposium on Rules (RuleML

2011@IJCAI) held on July 19th, 2011 in Barcelona. We have

organized this second Doctoral Consortium as part of the RuleML 6
th

International Symposium on Rules, held jointly with ECAI2012, the

biennial European Conference on Artificial Intelligence. We include

here the four papers of the doctoral consortium, selected from two

different backgrounds: Computer Science, for the first two papers, and

Law, for the other two. All contributions stressed their attention to

temporal reasoning and complex event modelling; application is mostly

in the legal domain.

Teymourian’s work, supervised by Adrian Paschke, formalizes

the combination of vocabularies/ontologies and declarative rules in the

field of event processing, allowing to create more intelligent event

processors capable of understanding the semantics of events.

Ramakrishna’s work, supervised by Adrian Paschke, focuses on

shedding light on the imminent need for an effective system for

extraction, representation and specification of legal rules, especially in

national Patent Law regulation.

Ceci’s work, supervised by Monica Palmirani, defines an

integrated methodology for modelling judgments, starting from legal

texts and capturing both structural parts and arguments used by judges

to reach conclusions using ontologies and rules modelled in a tentative

preliminary version of LegalRuleML.

Distinto’s work, supervised by Monica Palmirani, describes a

hybrid approach for combining a legal ontology on the EU Public

Procurement Directives, developed in OWL 2.0, with the related rules

modelled using the emerging LegalRuleML standard. The goal is to

present a semantic and conceptual framework to support checking of

compliance of European tenders with EU Directives.

The 6
th

 RuleML International Symposium on Rules

(RuleML2012@ECAI), took place on August 27th, 2012 in

Montpellier, France. The RuleML Challenge was included in the

symposium for the 6
th

time. The Rule Challenge is devoted to

disseminating the most advanced practical experiences with rule-based

applications, where state-of-the-art solutions and recent research

proposals meet the concrete needs of the market.

The Challenge session features two invited demo papers. The first

demo, from Governatori and Shek, reports on the development and

evaluation of a business process compliance checker (BPCC), based on

the compliance-by-design methodology proposed by Governatori and

Sadiq in 2009. BPCC is implemented on top of the Eclipse Activity

BPMN 2.0 plug-in for the representation of process models and has

been extended with features to allow users to add semantic annotations

to the tasks in the process model. The second invited demo, from Zou,

Peter-Paul, Boley, and Riazanov, presents an online Positional-Slotted,

Objective-Applicative (PSOA) RuleML reasoning service,

PSOATransRun, consisting of a translator and an execution engine.

The translator, PSOA2TPTP, maps knowledge bases and queries in the

PSOA RuleML presentation syntax to the popular TPTP interchange

language, which is supported by many first-order logic theorem

provers.

This year, five main topics have emerged from the other

contributions to the Challenge:

1) Legal rule modelling and tools enabling the integration between

legal textual sources, metadata, ontologies and rules, including

temporal reasoning and compliance checking.

2) Combination of rules, objects and ontologies, to support the

development of integrated systems able to deal with knowledge-

intensive domains and hybrid reasoning, especially when applied

in business processing environments.

3) Graphic tools for creating, visualizing, debugging, and modelling

rules, and for presenting the outcomes of the reasoning.

4) Improvement of tools related to RuleML as a standardization

effort with particular regard to complex event management using

the Reaction Rules dialect.

5) Combining rules with adaptive user experience for improving the

Semantic Web and providing personalized online services.

In particular, Palmirani, Ognibene, Cervone present an integrated

prototype platform composed of several modules (web based rule editor

and rule viewer, XML database, Drools reasoner) that are able to

capture all the levels of legal document modelling simultaneously (text,

metadata, and rules) and to manage legal changes over time. An

application based on a simple fragment of the US copyright normative

rules is presented. Ceci and Gordon present the application of the

Carneades Argumentation System to case-law to demonstrate its

abilities to: reconstruct the legal interpretations performed by the judge;

present its reasoning path; suggest possible different or divergent

interpretations in the light of relevant code- and case-law.

Cosentino, Didonet Del Fabro and El Ghali present an implementation

based on a Model Driven approach for bridging the gap between JRules

(part of IBM’s WODM – WebSphere Operational Decision

Management) to the W3C’s RIF standard, to improve interoperability

and reusability of the rules in a business process environment. Chniti,

Albert and Charlet present two prototypes based on the Business Rule

Management System (BRMS) in IBM’s WODM: an OWL plug-in and

a change-management plug-in able to detect inconsistencies that could

be caused by ontology evolution and propose solutions (called repairs)

to resolve them. Miranker, Depena, Jung, Sequeda, and Reyna present

Diamond, a Rete-based rule system that evaluates SPARQL queries on

Linked Data using a graphical rule debugging environment. Hotz, von

Riegen, Braubach, Pokahr and Schwinghammer demonstrate an

application of rules in a business process scenario using Business

Process Model and Notation (BPMN) and using declarative rules to

monitor the process execution in a distributed environment.

Zhao, Teymourian, Paschke, Boley and Athan present a recent

instantiation of Rule Responder, a rule-based inference agent

middleware, integrated with the event-messaging features of Reaction

RuleML, which supports interaction based on a loosely-coupled

interface using rule signatures and decoupled communication via event

messages.

Nowak, Bak and Jedrzejek present a prototype implementation of a

graphical tool for creating rules; it is also used to visualize data and

results of reasoning.

Giurca, Tylkowski and Müller present RuleTheWeb!, an application

using JSON-Rules to enrich the user navigation experience on the web.

RuleTheWeb! uses adaptive user experience based on semantic data

and reaction rules aiming to enable Social Web rules designed and

shared by web users.

Viktoratos, Tsadiras and Bassiliades present Personalized Location

Information System (PLIS+), a system able to provide personalized,

location-based information services via rule-based policies. PLIS+

proves that combining contextual data coming from the end-user and

policy rules of the online service can lead to powerful personalized

information services.

We would like to warmly thank all students, supervisors, referees,

co-chairs, members of the program committee and the organising team

that made the RuleML2012 Doctoral Consortium and the RuleML2012

Challenge a great success.

August 2012 Hassan Aït-Kaci

Yuh-Jong Hu

Grzegorz J. Nalepa

Monica Palmirani

Dumitru Roman

Enabling Knowledge-Based Complex Event
Processing

Kia Teymourian

Supervisor: Prof. Adrian Paschke
Freie Universitaet Berlin, Berlin, Germany

{kia, paschke}@inf.fu-berlin.de

Abstract. Usage of background knowledge about events and their re-
lations to other concepts in the application domain can improve the ex-
pressiveness and flexibility of complex event processing systems. Huge
amounts of domain background knowledge stored in external knowl-
edge bases can be used in combination with event processing in or-
der to achieve more knowledgeable complex event processing. In this
dissertation, I address the challenges of adding formalized vocabular-
ies/ontologies and declarative rules to the area of event processing for
enabling more intelligent event processors which can understand the se-
mantics of events.

1 Motivation

In many business organizations some of the important complex events cannot be
used in process management, because they are not detected from the workflows
and decision makers can not be informed about them. Detection of events is one
of the critical factors for the event-driven systems and business process manage-
ment. Because of current successes in business process management (BPM) and
enterprise application integration (EAI), many organizations know a lot about
their own activities, but this huge amount of event information can not be used
in the decision making process. The permanent stream of low level events in
business organizations needs an intelligent real-time event processor. The detec-
tion of occurrence of complex events in the organization can be used to optimize
the management of business processes.

Semantic models of events can improve event processing quality by using
event meta-data in combination with ontologies and rules (knowledge bases).
The combination of event processing and knowledge representation can lead to
novel semantic-rich event processing engines. These intelligent event processing
engines can understand what is happening in terms of events, can (process)
state and know what reactions and processes it can invoke, and furthermore
what new events it can signal. The identification of critical events and situa-
tions requires processing vast amounts of data and metadata within and outside
the systems. Knowledge about event types and their hierarchies i.e. specializa-
tion, generalization, or other forms of relations between events can be useful.
Semantic (meta) models of events can improve the quality of event processing

by using event metadata in combination with ontologies and rules (knowledge
bases). Event knowledge bases can represent complex event data models which
link to existing semantic domain knowledge such as domain vocabularies / on-
tologies and existing domain data. Semantic inference is used to infer relations
between events such as e.g. transitivity or equality between event types and their
properties. Temporal and spatial reasoning on events can be done based on their
data properties, e.g. a time ontology describing temporal quantities.

The usage of background knowledge in event processing can have several use
cases such as: e-health, business activity monitoring, fraud detection, etc.

Use Case - High Level Stock Market Monitoring: Companies have
some business dependencies to each other, e.g., a company C1 produces raw
material M1, the business of another company C2 depends on this raw material
for its production and might have big troubles if they can not supply the material.
A third company C3 financed the company C2 and might have some financial
problems if the company C2 have some material troubles. Let’s consider that
Mr. Smith is a stock broker and has access to a stock exchange event stream
like: (Name, “V OW ′′), (Price, 20.24), (V olume, 8, 835) Mr. Smith might be interested
in this dependency chain and can define a complex event detection pattern for
this special complex event without even knowing what these companies are. He
might be interested to know when the prices for these three companies have
started falling.

Mr. Smith might also be interested in special kinds of stocks and would
like to be informed if there are some interesting stocks available for sale. His
special interest or his special stock handling strategy can be described in high
level language which describes the interest using background knowledge about
companies. Mr. Smith would like to start a query on the event stream similar to
the following query: Buy Stocks of Companies, Who have production facilities
in Europe and produce products from Iron and have more than 10,000 employees
and are at the moment in reconstruction phase and their price/volume increased
stable in the past 5 minutes.

As we can see, the above query cannot be processed without having back-
ground knowledge which can define the concepts in this query. Mr. Smith needs
an intelligent system which can use background knowledge about companies.
A background knowledge like the following should be integrated and processed
together with the event data stream in a real-time manner so that interesting
complex events can be timely detected.

{ (OPEL, belongsTO, GM),(OPEL, isA, automobilCompany),
(automobilCompany, produce, Cars), (Cars, areFrom, Iron),
(OPEL, hatProductionFacilitiesIn, Germany), (Germany, isIn, Europe),
(OPEL, isA, MajorCorporation), (MajorCorporation, have, over10,000employees),
(OPEL, isIn, reconstructionPhase), ... }

2 Research Problem

The existing event processing approaches are dealing primarily with the syntac-
tical processing of low-level signals, constructive event database views, streams,
and primitive actions. They provide only inadequate expressiveness to describe

the ontological semantics of events, actions, agents, states, processes, tempo-
ral/spatial concepts and other related concepts. They also do not provide ade-
quate description methods for the complex decisions, behavioral logics including
expressive situations, pre- and post-conditions, complex transactional (re-) ac-
tions, and work-flow like executions. All of these are needed to declaratively
represent many real-world domain problems on a higher level of abstraction. My
dissertation will address the following two main problems of the existing event
processing approaches:

1. Lacking Knowledge Representation Methods: Event processing needs
a knowledge (metadata) representation methodology. The current event process-
ing systems do not provide any knowledge representation methods for events,
and there is no precise logical semantics about events and other related con-
cepts. There is a need for methods which can include ontological semantics of
all related concepts to the event processing without affecting the scalability and
real-time processing. A formal specification can build a stable foundation which
is needed for any describing and reasoning about a system. It is also needed
for comparing different systems without misunderstandings. Event processing
needs as its basis a formalization and specification which can describe events,
event patterns, situations, pre- and post-conditions, (re-) actions etc. Definition
of events by logic is not addressed in current complex event processing solutions.

In this dissertation, I will address the challenge of knowledge representation
for complex event processing (CEP) which integrates the domain and applica-
tion specific ontologies for events, complex events, situations, actions and other
concepts related to CEP.

2. Limited Processing and Integration Method of Background Knowl-
edge with Event Stream: The processing approach of current event processing
engines often rely on processing of simple event signals. They do not implement
any usage of metadata about events or other related concepts from the appli-
cation domain. The existing on-the-fly in-memory processing methods do not
address the challenges of integration of background knowledge and semantic en-
richment of events or event queries (complex event definitions/patterns). In this
dissertation, I will address the nature of the trade-off real-time high-performance
processing of events and expressiveness reasoning on background information.
The advantages and disadvantages of alternative processing methods for the fu-
sion of event stream and background knowledge should be investigated which
can be used without effecting the real-time processing or scalability.

3 Fusion of Events and Background Knowledge

The fusion of background knowledge with data from an event stream can help
the event processing engine to know more about incoming events and their re-
lationships to other related concepts. I propose to use a Knowledge Base (KB)
which can provide background knowledge (conceptual and assertional, T-Box
and A-Box of an ontology) about the events and other non-event resources. This
means that events can be detected based on reasoning on their type hierarchy,
temporal/spatial relationships, or their relationship to other objects in the appli-
cation domain. The connections to other relevant concepts and objects means for

example the relationship of a stock market event (price change) to the products
or services of a company.

The benefits of using background knowledge in CEP are higher expressiveness
and flexibility. Expressiveness means that an event processing system can pre-
cisely express CEP patterns and reactions. Flexibility means that a CEP system
is able to integrate new business changes into the systems in a fraction of time
rather than changing the whole event processing rules. Furthermore, complex
event processing can benefit from the knowledge representation and semantic
web technologies, because a central problem of event processing is information
integration for which these technologies have already been proven to be a valid
solution.

I propose to use external KBs for the storage and reasoning on background
knowledge. The background knowledge about events and other non-event con-
cepts/objects is described in description logic. The knowledge in the KB can be
stored in the Resource Description Framework (RDF) data format1 in an exter-
nal triple store (special kind of databases for storage and management of RDF
data). This knowledge can be queried from the event processing agents based on
the demands of the event query rules. The external KB also includes a descrip-
tion logic to reason on the relations between events and other relevant non-event
objects in the application domain. The KB can be queried by using SPARQL2

queries and the results are then included in the event processing engine.

4 Knowledge Representation for CEP

Ontologies play an important key role in the knowledge-based CEP. They should
be the conceptualization of the application domain to allow reasoning on events
and other non-event concepts. I propose that event processing domain should
be described by a modular and layered ontology model which can be reused
in different application areas. Important general concepts such as event, action,
situation, space/place, time, agent and process should be defined based on meta-
models and pluggable ontologies which are in a modularized ontological top-level
structure. These general concepts defined in the top-level ontologies can be fur-
ther specialized with existing domain ontologies and ontologies for generic tasks
and activities. The applications ontologies for specialize these domain and task
concepts with respect to a specific application, often on a more technical plat-
form specific level.
Event Query Rules: Event query rules (Complex event Patterns) can be con-
siderd as declarative rules which are used to detect complex events from streams
of raw events. These event queries have a hybrid semantic, because they use
event operation algebra to detect events and they use SPARQL queries to in-
clude background knowledge about these events and their relationships.

The event query rules allow simple event algebra operations, similar to Snoop
[6] i.e. event operations like Sequence (Ordered), Disjunction (Or), Xor (Mu-
tually Exclusive), Conjunction (And), Concurrent (Parallel), Any, Aperiodic,

1 http://www.w3.org/RDF/
2 SPARQL http://www.w3.org/TR/rdf-sparql-query/

Periodic, Operator (generic Operator). Futher higher interval-based event op-
erations like (BEFORE, MEETS, OVERLAP, . . .) can also be used. My event
query rules also include SPARQL query predicate to query external KBs, the
SPARQL queries are used in a rule in combination with event operation alge-
bra. This hybrid use of SPARQL query with event operation algebra can be
categorized into several categories.

4.1 Categorize of Event Query Rules

Event query rules can be categorized into several categories based on the usage
of knowledge queries (SPARQL queries) inside the query rule. As previously de-
scribed, the semantics of the whole event query is a hybrid semantic of description
logic and event operation algebra which defines the semantics of event detection.
In this section we describe the most important and interesting categories of event
sQuery rules. This categorization is not a complete classification of all possible
rule combinations, our aim is more to emphasize interesting rule combinations
which can be processed using different event processing approaches.
Category A - Single SPARQL Query: In this category, the event query rule
includes only one single knowledge query and uses its results in one or more
variables within the event detection rule. A SPARQL query is used to import
knowledge about event instances or types. One or more attributes of events are
used to build the basic triple pattern inside the SPARQL query. Category A
event sQuery rules can be categorized into three subcategories:
Category A1 - Raw SPARQL: This category of sQuery rule is the simplest
form of these event query rule. The included SPARQL query is only about the
resources in the background knowledge. The background knowledge query is in-
dependent from the event stream, however the complex event detection is defined
on the results of this query in combination with the event stream. In some cases,
on each event the SPARQL query should be resent to the KB to update the
latest results from the KB.
Category A2 - Generated SPARQL: In this category of sQuery rules with
each incoming event a different SPARQL query is generated and sent to the
target knowledge base. The attribute/values of an event instance are used to
generate basic triple patterns of a SPARQL query. Based on user definitions
some of the tuples (attribute, value) of an event instance are selected and used
to generate a single SPARQL Query.
Category A3 - Generated SPARQL from Multiple Events: The query is
similar to A2, but the SPARQL query is generated from multiple events. Within
a data window (e.g., a sliding time window) from two or more events a single
SPARQL query is generated. Multiple events are used to generate the single
SPARQL query, the event processing waits for receiving some new events and
then generate a SPARQL query based on the emitted events, and query for the
background knowledge about them.
Category B - Several SPARQL Queries: Queries of this category include
several SPARQL queries and combine them with event detection rules. This
means that several A category rules are combined together which can build a
category B. The category B of rules are able to combine results from KBs with

events using event operation algebra.
Category B1 - Several SPARQL Queries in AND, OR and SEQ Op-
erations: The category B1 is based on the category B, but the results from the
SPARQL query predicates are combined with AND, OR, SEQ or similar event
algebra operations. The whole query is evaluated on sliding windows of event
streams. The SPARQL query predicates are not depending on each other, i.e.,
the results from one is not used in another SPARQL predicate, so that they are
not depending on the results of the other SPARQL query.
Category B2 - Chaining SPARQL Queries: In category B2 several SPARQL
queries are generated and executed in sequence. They can be generated based
on the results of the previous SPARQL query. Each SPARQL query can be gen-
erated from a set of events (e.g., included in a slide of event stream by means
of a sliding window, a counting or timing window). This means that different
data windows can be defined to wait until some events happened and then a
SPARQL query is executed. SPARQL queries might be defined in a sequence
chain. The results are directly used for event processing or used in another fol-
lowing SPARQL query.
Category B3 - Chained and Combined SPARQL Queries: In this cate-
gory SPARQL queries are used in combination with all possible event algebra
operations like, AND

∧
, OR

∨
, SEQ

⊕
, Negation ¬ , etc. The event opera-

tions are used for combining the results from several SPARQL queries or several
SPARQL queries are used in combination with event algebra operations like:
((sparql1

⊕
sparql2)

∧
sparql3

∨
¬sparql4)

This category of event query rules is the general form of queries and has the
highest possible complexity, because the results from external KBs are used in
combination with event operations or the attribute/values from incoming events
are used for generation of complex SPARQL queries.

5 Integration and Processing of Event Stream with KB

Based on the above discussed categories of event query rules, different event pro-
cessing approaches are possible to satisfy the requirements of event processing
agent (EPA), e.g., high performance, scalability and elasticity. In the following
different processing approaches are disscused:
Polling the Knowledge Base: The basic approach is to execute a query on
the KB on each incoming event. After events are emitted and received in EPA,
the EPA sends one or more queries to KB for every event. The problems of this
approach, scalability and real-time processing, makes it impossible to use it for
time-sensitive use cases like algorithmic trading or fraud-detection systems.
Knowledge Query First (KQF): For the processing of some rule categories,
it is possible to execute the SPARQL query in advance and offline to the live
event stream, i.e. executtion of SPARQL query, before the events are emitted to
the system. The results of knowledge queries can be cached in the main mem-
ory and be processed together with the events. Nevertheless, the results of the
knowledge query can be old results from the knowledge base, hence they should
be updated from time to time, e.g., by executing the whole query or pushing the
result differences to the event processing agent.

Plan-Based Processing (PBP) This approach is about processing of event
query based on an optimal plan for its sub-queries to avoid any unnecessary
costs or losses of time. Some rule categories like category B1 rules, have sev-
eral SPARQL queries which use multistep knowledge acquisition from external
KBs. These SPARQL queries are combined in AND, OR, SEQ or similar event
operations and the whole query should be evaluated in a time window. This
makes it possible that the SPARQL queries can be executed in a sequence one
after another or in a parallel setting. An execution plan can be generated to find
out which execution plan is the low cost plan and which execution plan can be
considered as high performance execution plan.
Event Query Preprocessing (EQPP) Event Query Preprocessing (EQPP)
means that the complex query is preprocessed before the query is executed
against the incoming stream event data. The original complex event query can
be preprocessed by use of a KB and rewritten into several simple new queries.
The original complex event query Qa is preprocessed under the usage of a KB
and divided into a set of simple event queries like {q1, ...qn}. A simple query is
here a query which can be processed only with the information from the event
stream and there is no need for using background knowledge. In the next step,
these new queries can be syntactically processed on a network of event process-
ing agents. The complex query Qa can be considered as a propositional formula
which can be converted to conjunctive normal form (CNF) Qa ← q1∧ ...∧qn, i.e.
if all of the simple queries are given, then the complex event query is satisfied.
The preprocessing is done by a processing agent which can access the KB and
divide the complex query into several simple queries. The complex query Qa

can also be mapped in disjunctive normal form (DNF) Qa ← q1 ∨ ... ∨ qn, i.e.
when one of the simple queries is triggered, then the complex event query will
be satisfied and triggered.

6 Related Work

The state of the art approaches for event processing can be distinguished into
two categories, rule-based approaches and non-rule-based approaches. Some of
the event processing systems use non-deterministic finite state automata like
Cayuga[4] or ESPER3. Many event processing languages have been proposed
like, Snoop [6], Cayuga Event Language (CEL)[4], XChangeEQ [5]. Also sev-
eral data stream processing systems have been proposed like Telegraph[8] which
are targeted at handling continuous queries over high-throughput data streams.
These systems are also related to the event processing systems[7].

Some stream reasoning languages and processing approaches are also pro-
posed. Barbieri et.al. propose Continuous SPARQL (C-SPARQL) [3] as a lan-
guage for continuous query processing and Stream Reasoning. Stream reason-
ing approaches for reasoning on RDF stream are not designed for fusion of
background KBs and event stream. One of the recent rule-based systems is
ETALIS [2]. ETALIS is a rule-based stream reasoning and complex event pro-
cessing (CEP). ETALIS is implemented in Prolog and uses Prolog inference

3 Esper: http://esper.codehaus.org , May 2012

engine for event processing. EP-SPARQL [1] is a language for complex events
and stream reasoning. The formal semantics of EP-SPARQL is along the same
lines as SPARQL. EP-SPARQL can be used in ETALIS for reasoning on RDF
triple stream (event stream can be mapped to RDF stream). I have discussed
CEP approaches which are most related for our knowledge-based CEP.

7 Future Work

My future steps are to work on more details of knowledge representation for
events, situations, actions, and other related concepts. One of my tasks is to
work on details of event query preprocessing algorithms for rewriting of complex
event queries to several simple queries which can be distributed over an event
processing network. Furthermore, I have to work on the described plan-based
approach and specification of heuristics which can be used for selection of the
optimized processing plan for a given query.

References

1. Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-sparql: a
unified language for event processing and stream reasoning. In Proceedings of the
20th international conference on World wide web, WWW ’11, pages 635–644, New
York, NY, USA, 2011. ACM.

2. Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic,
and Rudi Studer. Etalis: Rule-based reasoning in event processing. In Sven Helmer,
Alexandra Poulovassilis, and Fatos Xhafa, editors, Reasoning in Event-Based Dis-
tributed Systems, volume 347 of Studies in Computational Intelligence, pages 99–124.
Springer Berlin / Heidelberg, 2011.

3. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus.
An execution environment for c-sparql queries. In Proceedings of the 13th Inter-
national Conference on Extending Database Technology, EDBT ’10, pages 441–452,
New York, NY, USA, 2010. ACM.

4. Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher,
Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker White. Cayuga:
a high-performance event processing engine. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 1100–
1102, New York, NY, USA, 2007. ACM.

5. François Bry and Michael Eckert. Rule-based composite event queries: The language
xchangeeq and its semantics. In Proceedings of First International Conference on
Web Reasoning and Rule Systems, Innsbruck, Austria (7th–8th June 2007), volume
4524 of LNCS, pages 16–30, 2007.

6. S. Chakravarthy and D. Mishra. Snoop: an expressive event specification language
for active databases. Data Knowl. Eng., 14:1–26, November 1994.

7. Sharma Chakravarthy and Qingchun Jiang. Stream Data Processing: A Quality
of Service Perspective Modeling, Scheduling, Load Shedding, and Complex Event
Processing. Springer Publishing Company, Incorporated, 1st edition, 2009.

8. Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred
Reiss, and Mehul A. Shah. Telegraphcq: continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of
data, SIGMOD ’03, pages 668–668, New York, NY, USA, 2003. ACM.

Cognitive System for Knowledge Representation of

Elementary Pragmatics

Shashishekar Ramakrishna
1,2

1AG Corporate Semantic, Department of Computer Science Freie Universitaet Berlin, Germany
2 TelesPRI GmbH Berlin, Germany

s.ramakrishna@teles.de

Abstract. The focus of this article is to throw light on the imminent need for an

effective system for extraction, representation and construction of legal norms,

especially the national patent law norms. This system, complementary to the

FSTP-Expert system, would aim at (semi)-automatically translating the parts of

the notion “legal certainty” from its natural language non procedural presenta-

tion to a declarative logical presentation by formal modeling through interpret-

ing the pragmatics facts based within a National Legal Systems. This paper co-

vers the initial abstract solutions and possible outcomes as gathered during the

first year of PhD research.

Keywords. Facts Screening and Transformation Processor (FSTP), Innovation

Test, Innovation Expert System (IES)

1 Motivation

The need of a sub-system for automating the application of elementary pragmatics
1
,

‘EP’ and National Patent Laws into the existing Facts Screening and Transformation

Processor, ‘FSTP’[1]/Innovation Expert System, ‘IES’. This enables a person of per-

tinent skill, who is needed for recognizing non-elementary pragmatics, to recognize

automatically and/or guided interactively by the FSTP ES to consider whether the

properties an innovation at issue can be considered as Anticipate (A), Not-Anticipate

(N) /Contradicts (C) to its prior arts/ considered reference set (RS).

2 Background - The Fact Screening and Transformation

As described in [1], “an innovation/creation over existing knowledge, provided as

a reference set RS of prior art documents, is representable by a technique teaching

TT.p which goes beyond the knowledge of the RS – just as in a patent/application.

1 Elementary pragmatics are disclosures (explicit/implicit) of certain art which can be easily

understood by a person of pertinent skill

mailto:s.ramakrishna@teles.de

This compound of knowledge, representing an innovation, is called “PTR”, standing

for a “pair of TT.p and RS”.

The Innovation Expert System (IES) thus is the PTR Expert System, defined by the

epistemological and practical requirements it meets: For any PTR to which it is ap-

plied, it is supporting its user in

1. deriving from a PTR all technical facts for determining the “creativity geometrical”

height of TT.p over RS, and

2. Instantly recognizing and replying to any rational query as to any relation between

this TT.p and this prior art RS.

The PTR Expert System (ES) is built around the PTR’s “FSTP Test” (FSTP

=“facts screening & transforming processor”), and hence is also called FSTP ES. The

FSTP Test of a PTR supports initially screening its documents for all technical infor-

mal fundamental facts, then transforming them into technical formal fundamental

facts, then transforming those into the technical primary facts, and finally transform-

ing them into the technical secondary facts, called basic resp. semantic (alias crea-

tive) resp. pragmatic (alias innovative) facts. These technical secondary facts use

metrics induced by the Highest Courts precedents’ on creativity/innovation – by their

numbers of RS-orthogonal and independent thoughts embodied by TT.p. From the

basic facts the classical yes/no answer to the question, whether TT.p is indicated ob-

vious over RS, can be derived by this metric. The semantic/creative and pragmat-

ic/innovative facts extend this metric much further by first defining a PTR plcs specif-

ic (plcs = patent law carrying semantic) innovation geometry, which depicts the plcs-

height/-creativity of its TT.p over its RS. Based on plcs-height/-creativity, TT.p’s

pragmatic/innovative height over RS additionally takes into account the PTR’s “pa-

tent monopoly granting pragmatics”. A pmgp, in any National Patent System (NPS)

which represents the national/socio/economic principles underlying the idea of re-

warding an innovation by granting a 20 years monopoly to its TT.p. Hence a sub-

system capable of (semi-)automatically translating the parts of the notion “legal cer-

tainty” from its natural language non procedural presentation to a declarative logical

presentation by formal modeling through interpreting pmgp based on NLS/ (NNI =

National Normative judicial Interpretation of facts).

Figure 1, shows different Knowledge Representation (KR) domains with sub-

domains which cause an impact on a PTR during FSTP Test. The object of our con-

cern in this thesis is to create KR domain dealing with NPS, and having EU PS, US

PS, AU PS etc. as sub-domains. The formal modeling involves modeling of NLS/NNI

by ontologies and rules using deductive (non-monotonic) reasoning for legal interpre-

tations and inductive logics for learning.

3 Goals/Aim

1. To analyze and extract the rules and ontological concepts described in the natural

language descriptions of NPSs.

2. To identify the required semantics and inference rules needed for legal reasoning

with NPSs and for the legal interpretation enabling the separationg of novel inno-

vations from obvious steps.

3. Logic-based declarative representation of these chains of complex rules for legal

reasoning on top of structured formal ontologies domains representing the concep-

tualization of the NPSs and the underlying domains of skill and elementary prag-

matics.

4. Developing a legal reasoning sub-system to the FSTP ES which allows pmgp de-

pendent information to be derived from the NPS knowledge bases and to be used in

the FSTP for semi-automated legal decision support and compliance checks with

the applicable NPS for a PTR. This includes:

(a) Address the trade-off between required expressiveness of the knowledge repre-

sentation and its computational complexity of the legal reasoning in the FSTP

(b) Provide support for the different roles involved, such as inventor, person of per-

tinent skill, examiner, patent agent etc. This requires different representation

languages from natural-language format for expressing questions, answers,

proofs and explanations to platform-independent serializations in XML and

Semantic Web formats, to platform-specific executable formats on the logical

reasoning layer

(c) Provide support for life cycle management of the knowledge. This addresses

e.g., collaborative knowledge engineering and management (versioning, differ-

ent roles such as author, maintenance), updates in the NPSs by new decisions

which lead to corresponding isomorphic updates in the NPSs knowledge bases,

integration of internal and external (semantic) background knowledge e.g.

about skill, elementary pragmatics, usage data (annotations, proofs, etc.)

4 Research Questions

The research question will be refined and detailed after the literature review and

baseline study, from the following general problem domains of a knowledge represen-

tation

1. Syntax:

(a) Which representation and interchange format for the representation of the

knowledge on different representation layers? (human-oriented computational

independent, platform-independent supporting integration and interchange,

platform-specific logical reasoning)

2. Semantics:

(a) Which inference and interpretation semantics (non-monotonic vs. monotonic,

expressiveness vs. computational complexity, closed-world vs. open world,

“ontologies vs./and rules”, …)

3. Association problem:

(a) How to connect the formal representation with the real-world resources and

norms?

Requirements derived from these knowledge representation problem domains can

be distinguished according to functional requirements for the concrete knowledge

representation and non-functional requirements during design time (development /

engineering of the knowledge) and run time (use of the knowledge).

 Functional Requirements

– e.g., expressiveness, …

 Non functional requirements at design time

– e.g., composability and extensibility, interoperability, declarative

implementability, modifiability and evolvability, reusability and in-

terchangeability, …

 Non functional properties at runtime

– e.g., usability, understandability and explanation, correctness and

quality, scalability and efficiency, safety and information hiding

(need-to-know principle), …

5 Proposed Approach

An abstract model of the system envisioned as a solution to the problem can be

seen in Figure 2. An existing state-of-the-art prior art search module, using a semantic

search engines like, Cognition [2], DeepDyve, etc… retrieves patents through large

databases which forms the required RS (if previously not specified by the jury) for the

TT.p. Thus formed PTR will be transformed from their natural language texts into

some standard representation formats like XML, using text-mining and semantic

recognition and annotation techniques supporting human knowledge engineers in the

fact screening and transformation process.

Similar to the PTR, the existing patent rules from NPS have to be transformed

from their natural language format to more standardized rule representation formats

1. Fig. 1. Interdepence of domain ontologies (Source: [1])

like Reaction-RuleML [3], LKIF [4], or the upcoming Legal RuleML etc… thereby,

providing a powerful and declarative way to control and reuse such semantically

linked meanings with the help of independent micro-ontologies about the NPSs and

domain specific pragmatic contexts (skill ontologies, elementary pragmatics, stand-

ards etc.) for a flexible processing and legal reasoning [5]. The required (patent)

rules/constraints are built by the rule creator module, which uses a rule-based agent

networks like Prova [6] for realizing distributed rule inference services.

 Such built rules may be;

1. Simple: Built based simple on Patentable Subject Matter (PSM) constraints,

which are readily available out of any NPS. Like,

/* Invention dealing with plant, animals or seeds are not permitted to be patented */

or

/* Process of learning language, playing chess, teaching or operating machinery are

not patentable */

PSMCriteria1 ≡ (Invention Λ (Product V Process) Λ (¬

 Plant V ¬ Seed V ¬ Animal))

PSMCriteria2 ≡ (Process Λ (¬ LearningLanguage V ¬

 PlayingChess V ¬ OperatingMachinery

 V ¬Teaching))

2. Complex : Built based on deductive logic [8] to match the elementary patent rules

with background facts then using inductive logic in generalizing goal facts into

rules that connect with background facts.

/* use of any radioactive substance or any process for atomic energy production,

control or disposal cannot be patented */

PSMCriteria3 ≡ ∀ Invention ∃ SubjectMatter (Process Λ (¬
 AtomicEnergy Λ (¬Production V ¬ Disposal V ¬

 Control)) Λ (∃ Element (¬RadioactiveSubstance)).

3. Compound: Built based on combination of several rules (deductive rule chaining).

/*for prior-claiming, the invention claiming priority should have been patented in

US, the inventions priority-claim-date should be before the newly claimed invention

and publishing date should have been before the newly claimed invention*/

Criteria4 ≡ Invention Λ (Product V Process) Λ (Country

 (US)))

Criteria5 ≡ InventionPriorityDate (ClaimingInvention <

 ClaimedInvention)

Fig. 2. System model overview

Criteria6 ≡ InventionPublishDate (ClaimingInvention <

 ClaimedInvention)

PriorclaimCriteria7 ≡ Criteria4 Λ Criteria5 Λ Criteria6

Such built rules are assigned priorities using, e.g.defeasible logic and scoped rea-

soning for distributed modularization of the knowledge bases (such as used in the

Rule Based Service Level Agreement project and supported by Reaction RuleML

(and the new upcoming Legal RuleML).

Standardized rules with priorities enable arguments to be created, evaluated and

compared. One such category of rules are Elementary Pragmatic (EP) rules, which

including legal rules that can be applied at different fact gathering stages of the FSTP

expert system on a PTR. Few examples for such discretization stages and their appli-

cable elementary rules are as shown in Table 1.

Elaborating more on the concept identification stage, validation of identified con-

cept/concepts is a process of filtering the concepts identified from a patent document,

TT.0 based on existing EP’s. Thereby, segregating them into non-patent-eligible,

‘npe’ and patent-eligible, ‘pe’ concepts. A concept under ‘pe’ may also be known as

creative concepts, Cr-C. Certain complex concepts need a combination of EP’s to be

applied together to classify them as ‘npe’ which would otherwise have been consid-

ered as ‘pe’ concept.

5.1 Proposed Framework

We propose a legal information system framework as shown in Figure 3. The pro-

posed framework is built based on a general information system research framework

[7]. The central Research module is fed with information from both Environment and

Knowledge Base (KB) modules. Information/ raw material such as FSTP facts, which

include the norms from various NPS’s, are fed by the Environment module and the

syntax, semantics, pragmatics and instantiations encompassing a norm are fed by the

Knowledge Base (KB) module. The central research module works towards building

the inference rules required for the legal reasoner. The develop/Build sub-module

including legal reasoner is evaluated for the norm’s expressiveness, extensibility and

interoperability criteria’s. Based on the results, the rules and the reasoner are refined

again. This iterative process of (re-)assessing and refining is completed when all crite-

ria’s are effectively evaluated. Processed information is fed back to the environment

module for its actual usage within the FSTP ES. Additional information for the

lifecycle management of a norm and its contexts are is sent back to KB module.

Fig. 3. Legal (esp. Patent) Information system framework.

5.2 Elementary Pragmatics

Elementary Pragmatics are disclosures (explicit / implicit) of certain art which can

be easily understood by a person of pertinent skill. According to certain National

Patent Systems, an EP must not be just claimed to exist, but must be documented in

an enabling way.

Table 1. FSTP discretization stages and their applicable elementary rule

EP can be divided into 4 types, table 2 shows few trivial example concepts consid-

ered as ‘npe’ for each EP mentioned above:

 EP from Natural Laws of Nature, EP-NL

 EP from Natural Phenomenon’s, EP-NP

 EP from National Legal(Patent) Systems, EP-NPS

 EP from Skill Documents/Standards, EP-STD

EP Concepts related to

EP-NL Speed of light

Theory of relativity E= mc
2

Dijkstra Algorithm

EP-NP Gravity

Human metabolism

EP-NPS Method of learning Language

Method of teaching

Production/Control/Disposal of atomic energy

EP-STD Maximum delay for data transfer in ordinary telephone is 0.5 secs

ISDN line has a stack of three protocols

Table 2. Shows few trivial example concepts considered as ‘npe’ for each EP mentioned

above

FSTP

discretization stages

Elementary

rules

applicable

Explanation

Element

identification stage

PSMCriteria1 Elements with Plant or Animals or

Seeds not permitted

Attribute

identification stage

PSMCriteria2 Attributes having below methods

are not permitted

a. Method of learning language

b. Method of teaching

c. Method of operating machine

Concept

identification stage

PSMCriteria3 Concepts with below references are

not permitted

a. Musical notations

b. Coloring substance for identifi-

cation

c. Atomic energy

i. Production

ii. Control

iii. Disposal

d. Radioactive substance

5.3 Examples : Landmark cases

Mayo vs Prometheus.

Invention summary: Administration and use to thiopurine drugs to treat auto-immune

disease

Concepts:

C1: Physician administers the drug given to the patient using ‘administering step’

C2: Physician measures the resulting metabolic levels in the patient’s blood

C3: Physician compares the patients metabolic level against known safe and effect

tive metabolic levels and then decided to increase or decrease the drug dosage.

Criteria8 ≡ (Process V Manufacture V machine

 V composition of matter)

Criteria9 ≡ Criteria8 Λ (¬ EP-NL V ¬ EP-

 NP V ¬ EP-STD V ¬ AbstractIdea)

{EP-NPS} {C1}

‘npe’ {EP-STD} {C2}

{EP-NL} {C3}

Even though all concepts defined above seems to qualify all criteria’s at the first

glance, On addition of pragmatic context (using micro-ontologies) to our analysis,

Concepts, C2 and C3 identified in the above example fail to qualify the ‘criteria 9’,

while concept C1 qualifies the ‘PSMCriteria1’, ‘Criteria 8’ and ‘criteria 9’, it fails to

qualify ‘PSMCriteria2’. Thus, grouping all identified concepts as ‘npe’.

Newman vs United States Patent Office.

Invention summary: A device which will produce mechanical power exceeding the

electrical power being supplied to it.

Concepts:

C1: Electromagnetic energy can be rendered by a rotating permanent magnet spin-

ning inside an electromagnetic pulsating conducting coil.

C2: Rotating permanent magnet spinning inside an electromagnetic pulsating coil

utilizes the coil mass energy and turns in into torque.

{EP-NL, EP-STD} {C1}

‘npe’ {EP-STD} {C2}

{EP-NPS} {C1, C2}

Concepts C1 and C2 do not pass the ‘criteria 9’ while a concept formed by combining

concept C1 and C2 would also fail to qualify the PSMCriteria1. Thus making the

entire invention as ‘npe’.

6 Conclusion

The solution to have a sub-system, based on configurable EP which connects the

FSTP ES, thus making it full/-semi automatized in handling queries pertaining to EP

and NLS thereby, providing a uniform platform for standardizing the generation and

representation of complex rules (built using fewer NPS goal clauses/(patent) rules.

Such a system would serve as a ready reckoner in drawing legal conclusions on top of

scientific fact determined during FSTP analysis. This would then help in applying the

(elementary) cognitive norms required for interpretation and evaluation of such iden-

tified facts.

7 Acknowledgements

This work has been partially supported by the Fact Screening and Transformation

Project (FSTP) funded by the TelesPRI GmbH: www.fstp-expert-system.com”.

8 References

1. S. Schindler, “THE FSTP EXPERT SYSTEM (FSTP = Facts-Screening-and-

Transforming-Processor),” 2010.

2. K. Dahlgren, “Technical Overview of Cognition’s Semantic NLP TM (as Applied to

Search),” ReCALL, pp. 1-20, 2007.

3. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., & Athan, T. (2012). Reaction RuleML

1.0: Standardized Semantic Reaction Rules. RuleML 2012.

4. Thomas F. Gordon. (2008). The Legal Knowledge Interchange Format (LKIF).

5. Hans Weigand, Adrian. Paschke. (2012). The Pragmatic Web: Putting Rules in Context.

RuleML 2012.

6. Paschke, A., & Boley, H. (2011). RULE RESPONDER: Rule-Based Agents for the Se-

mantic-Pragmatic Web. International Journal on Artificial Intelligence Tools (IJAIT),

20(06), 1043-1081. doi:10.1142/S0218213011000528.

7. Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; and Ram, Sudha. 2004. "Design Sci-

ence in Information Systems Research," MIS Quarterly, (28: 1)

Combining Ontologies and Rules to

Model Judicial Interpretation

Marcello Ceci1

1 CIRSFID, University of Bologna.

m.ceci@unibo.it

Abstract. This research aims to define an integrated methodology for

modelling judgments, starting from legal texts and capturing not only structural

parts but also arguments used by judges to reach conclusions. The goal is to

build a complete ontology framework capable of detecting and modelling

knowledge from the judgement’s text. The formalized judgements provide the

necessary metadata for the rule layer to enable argumentation towards the

acceptance or rejection of a given interpretation. For pursuing this goal it is

important to integrate the legal ontology construction with a rule formalization

following legal reasoning-oriented theory and defeasible logics, just like the

Carneades application (presented here) follows Walton's argumentation theory.

The XML interchange uses OWL, RuleML, and the emerging LegalRuleML.

Keywords: OWL, Case-law, Legal Reasoning, LKIF-Rules, LegalRuleML

1 Introduction

Precedent is a main element of legal knowledge worldwide: by settling conflicts

and sanctioning illegal behaviours, judicial activity enforces law provisions within the

national borders, therefore supporting the validity of laws as well as the sovereignty

of the government that issued them. Moreover, precedents (or case-law) are a

fundamental source for law interpretation and it paradoxically happens that the

exercise of jurisdiction can influence the scope of the same norms it has to apply, both

in common law and civil law legal systems – even if to different extents.

The goal of the present research is to define a framework for case-law semantics,

exploiting Semantic Web technologies to achieve isomorphism between the text

fragment (the only binding legal expression) and the legal rule, thus "filling the gap"

between document representation and rules modelling [15]. The formalization of the

general structure of case-law, the metadata connected with the judicial legal concepts

and the ontology set1 constitute the basis for a semantic tool enriching the XML mark-

up of precedents and supporting legal reasoning [17]. We believe that the features of

OWL2 could greatly improve legal concepts modelling and reasoning [4], once

properly combined with rule modelling. Our aim is hence to formalize the legal

concepts and the argumentation patterns contained in the judgment in order to check,

1 An ontology is a shared vocabulary, a taxonomy and axioms representing a domain of

knowledge by defining objects and concepts with their properties, relations and semantics.

validate and reuse the elements of judgement as expressed by the text and the

argumentation contained in it. To achieve this, four models are necessary:

 a document metadata structure, capturing the main parts of the judgment to

create a bridge between text and semantic annotation of legal concepts;

 a legal core ontology, describing the legal domain’s main elements in terms

of general concepts through an LKIF-Core extension;

 a legal domain ontology, modelling the legal concepts of a specific legal

domain concerned by the case-law, including a set of sample precedents;

 argumentation modelling and reasoning, representing the structure and

dynamics of argumentation.

2 Research Methodology

This research is based on a middle-out methodology: top-down for modelling the

core ontology, bottom-up for modelling the domain ontology and the argumentation

rules. The research starts from the analysis of a sample set of 27 decisions of different

grade Italian case-law (tribunal, court of appeal, Cassation Court) concerning

consumer law2.

While DL is very powerful and semantically rich (making OWL an acknowledged

standard for the modelling of document metadata), monotonic logics are not sufficient

for modeling legal rules in a verifiable way, while at the same time maintaining the

structure of the legislation and regulation they are ought to represent: legislation is

typically organized as general rules subject to exceptions, and arguments made by

applying legal rules are often defeasible. Moreover, the application of laws depends

on time, and various legal rules may conflict with each other: these conflicts are

resolved using legal principles about priority relationships between rules. Metarules

such as these, however, need defeasible logics in order to be properly managed.

The research relies on the previous efforts of the community in the field of legal

knowledge representation [2] and rule interchange for applications in the legal domain

[9]. The issue of implementing logics to represent judicial interpretation has already

been faced [1], albeit only for the purposes of an sample case. The aim of the present

research is to apply these theories to a set of real legal documents, stressing the OWL

axioms definitions as much as possible in order to enable them to provide a

semantically powerful representation of the legal document and a solid ground for an

argumentation system using a defeasible subset of predicate logics.

3 The Ontology Set

The Core Ontology (an extension of the LKIF-Core Ontology) introduces a model

of the legal domain whose main elements are: legal rules, legal concepts, material

circumstances, judicial claims, judicial interpretations, adjudications3.

2 The matter is specifically disciplined in Italy through the "Codice del Consumo" (Consumer

Law) and articles 1341-1342 of the Civil Code. This discipline is also present in all foreign

legal systems, which will allow an extension of the research to foreign decisions and laws.
3 Even though the core ontology should be domain-generic and not modeled upon a specific

legal subject, the sample model was conceived only to successfully represent the interaction

in the civil law subject, when contracts, laws and judicial decisions come into play.

Following this structure, the metadata taken from judicial documents are

represented in the Domain Ontology. The modeling was carried out manually by an

expert in the legal subject, which actually represents the only viable choice in the

legal domain: automatic information retrieval and machine learning techniques, in

fact, do not yet ensure a sufficient level of accuracy, even if some progress in the field

has been made, for example in applying NLP techniques to recognize law

modifications [14]. Building a legal domain ontology is similar to writing a piece of

legal doctrine, thus it should be manually achieved in such a way as to maintain a

reference to the author of the model, following an open approach.

Such a layered ontology creates an environment where the knowledge extracted

from the decision’s text can be processed and managed, in such a way as to enable a

deeper reasoning on the interpretation instances grounding the decision itself.

Example of this deeper reasoning include: finding relevant precedents which were not

explicitly cited in the decision; validating the adjudications of the judge on the claims

brought forward by the parties during the trial on the basis of applicable rules,

accepted evidence and interpretation; suggesting legal rules/precedents /circumstances

that could bring to a different adjudication of the claim. The layered structure of the

ontology set also allows an efficacious scaling from legal concepts to factors, up to

dimensions and legal principles: all these concepts can be represented in the domain

ontology, and the hook of the core concepts to the LKIF taxonomy should allow

semantic alignment between domain ontologies when different authors are concerned

(yet, the ontology set alignment has not been tested by the present research).

4 Legal Argumentation Modeling

The last part of the research relies on argumentation modeling to perform legal

reasoning on the knowledge contained in the ontologies, in order to evaluate their

capabilities. As a first test of the ontology set, the research developed a pilot case

using the Carneades Argumentation System4 [5] in order to verify the correctness of

the OWL representation of precedents and to test how far defeasible rules can

simulate judicial reasoning. Carneades implements Walton’s argumentation schemes

[10] to reconstruct and evaluate past arguments in natural language texts, but also as

templates for manual generation of arguments graphs representing ongoing dialogues.

It can therefore be used for studying argumentation from a computational perspective,

but also to develop tools supporting practical argumentation processes. It is capable of

importing knowledge from the ontology set [8] and of applying rules on them [7]. The

new version of Carneades (2.x, under development) uses the Clojure language, while

the latest complete version (1.0.2) relies on the LKIF-Rule language [2].

4.1. The implementation

The present research developed applications [3] for Carneades in both LKIF-Rules

and Clojure languages. Implementing Carneades involved the following interventions:

 enriching the semantic content of the ontology set by representing finer-grained

knowledge contained in the decision’s text, in an environment which does not

overload the OWL reasoners, compromising computability;

4 Carneades is a set of open source software tools for mapping and evaluating arguments, under

development since 2006.

 modeling a rule system representing the dynamic relationships created by judicial

interpretation and law application;

 importing knowledge from the ontology set in such a way as to allow successful

interaction with the rule set and the Carneades model.

4.2. Results and Issues

The so-built system is capable of creating argumentation graphs pro or con a given

legal statement: for example, it can state whether a contract clause can be judged as

inefficacious, under which norms, and following which judicial precedents and

judicial interpretations. These arguments are brought forward by the system not only

when all the premises for the argument are accepted in the knowledge base:

Carneades is in fact capable of “suggesting” incomplete arguments [3], thus

highlighting critical aspects of the case which have not been taken into consideration

by the judge (in the precedent case) or by the user (in the query).

As a result of their application to the ontology set, the LKIF-Rule and Clojure rule

languages showed to be unsatisfactory in:

 identifying a border between semantic representation and syntactic modeling;

 importing ontologies: in the Carneades application no distinction is made

between stated and inferred knowledge, and no feedback of new knowledge into

the ontology reasoner is possible;

 providing basic legal deontics operators to represent obligation, violation,

reparation and penalty;

 providing defeasibility logic operators defining the hierarchy between rules;

 modeling temporal dimensions to represent the three axes of enforceability,

efficacy, applicability;

 assigning IDs for single parts of the rules, necessary to reach full isomorphism

between the rule and the source legal document(s);

 qualifying rules with metadata such as author, data of creation of the rule,

jurisdiction of the rule, etc.

4.3. The Boundary Between Ontology and Rules.

The critical point in importing ontologies, adding factors and writing rules was the

design and management of information between the ontologies and the rules: some of

the axioms already modeled in the ontologies, in fact, could better meet their

potentialities if modeled as an LKIF or Clojure rules instead. The issue, anyway,

should be solved with general criteria, since the two systems use different logics

(description logic for OWL vs. first-order predicate logic for LKIF and Clojure). This

suggests the distinction between static information (thesauri, taxonomies,

administrative and procedural data) to be included in the ontology, and legal concepts

(legal statuses, subsumptions, inclusion of a material circumstance into the scope of a

norm) to be modeled as rules for argument evaluation.

To manage defeasibility of arguments (and thus rules) Carneades includes proof

standards [6], which can in a way be interpreted as a kind of priority relation in

defeasible logics [11]. The new Carneades 2.x also includes, in its Clojure-based rule

system, the metadata block <strict> which allows to specify (through the values

true/false) if a <scheme> is either strict of defeasible. However, this block does not

ensure full expressivity of the defeasible logics constituents, since it does not

represent neither defeaters nor metarules.

5 A New Approach: LegalRuleML

The situation presented above is likely to present itself over and over again as long

as modeling decisions (i.e. the introduction of elements of defeasible logics) are taken

just for the purposes of a single application. In order to fully exploit its potentialities,

AI&Law systems (such as legal argumentation systems) should instead rely on open

and shared standards. The research community joined the efforts towards the

definition of a standard for the syntax of legal rule extending LKIF-Rules with a

modeling of temporal parameters, giving birth to the LKIF++ language [16]. Soon

realizing that a standard in syntactic representation of norms would require a shared

rule language to be built from scratch, the OASIS consortium started the development

of a brand new syntax for legal rules, explicitly relying on the acquired standards in

the underlying layers of the Semantic Web cake.

5.1. RuleML and LegalRuleML

LegalRuleML [18] is an extension of RuleML, an XML based language for the

representation of legal rules using formal semantics [12]. LegalRuleML introduces

features which are fundamental for modeling legal rules: isomorphism, defeasible

logics, jurisdiction and authority, legal temporal parameters, legal deontics operators,

qualifications, semantic of negation, behaviors. The language also allows to include

elements and statements compliant with external ontologies. The syntax and structure

of this language are a work in progress: therefore all tags, elements, attributes recalled

here follow a syntax proposal presented mostly by Palmirani5 in the TC, and some of

them may not correspond to the definitive syntax of LegalRuleML6. The requirements

expressed are nevertheless important for tackling some of the problems encountered

using LKIF-Rules and Carneades.

 5.2. Achieving isomorphism

Modelling the legal rules in the LegalRuleML language highlighted the

potentialities of this tool in achieving isomorphism and representing defeasibility and

temporal parameters. In the present proposal, the <ruleInfo> section introduces

detailed information on the context of the rule. This rule-centric metadata approach

favours the isomorphism with the legal text during the change management and the

encapsulation of all information related to the rule in a unique XML node:

<lrml:ruleInfo id="ruleInfo2" appliesTo="#rule2">

 <lrml:sources id="sourceBlock2">

 <lrml:source element="#atom1" idRef="#art1341-com2"/>

 <lrml:source element="#atom2" idRef="#art1341-com1"/>

 <lrml:source element="#atom3" idRef="#art1341-com1"/>

5 General contents of the proposal can be found at https://www.oasis-open.org/apps/org/workgr

oup/legalruleml/download.php/46379/1.2PRINCIPLES.004.doc.
6 Documents of the OASIS LegalRuleML TC are available at https://www.oasis-

open.org/committees/documents.php?wg_abbrev=legalruleml. The mailing list describing

the work in progress can be browsed at https://lists.oasis-open.org/archives/legalruleml/.

 <lrml:source element="#atom4" idRef="#art1341com2"/>

 </lrml:sources>

 <lrml:strength iri="&dfsont;defeater"/>

 <lrml:jurisdiction iri="&jurisdictions;italy"/>

 <lrml:author idRef="#aut1"/>

 <lrml:times idRef="#t1"/>

 <lrml:creationDateTime idRef="#e1"/>

</lrml:ruleInfo>7

This section represents a context data container, since it introduces metadata which

can be used in multiple circumstances to classify the rules. The bond between the text

fragment, the legal rule and the author of the model is ensured by a list of <sources>

for every element which constitutes the rule and by the element <author/>, linking

the rule and its parts to specific individuals (a fragment of text and a person

respectively), identified through an IRI. In this way it is possible to explicitly refer to

the source documents of each part of a rule, also when a rule takes origin from

multiple documental sources, allowing a clear distinction of which part of the rule

comes from which document. At the same time, different rule authors are allowed to

model the same text fragment in different ways, being always clear which author

modelled which rules on a certain legal document.

5.3. Introducing Defeasible Logics and Temporal Parameters to the Rule

Inside the <ruleInfo> section, the element <strength/> defines the role of

each rule in the defeasible logics dynamics (strict/defeasible/defeater). Priority

relations are built through the <Overrides> element8, in the following form:

<Overrides id=”ovr1”>

 <Rule keyref="#rule_3"/>

 <Rule keyref="#rule_2"/>

</Overrides>9

The <ruleInfo> section contains also a <times> element, not indeed a normal

attribute but rather a section introducing a whole different layer: it contains

information on the time periods of the legal rule’s coming into force, efficacy,

application. The representation of temporal dimension of legal rules using three axes

is a crucial addition towards the automatic management of legal rules in connection

7 The proposal can be found at http://www.oasis-open.org/apps/org/workgroup/legalruleml/dow

nload.php/45887/2.8isomorphism.001.doc.
8 This tag is developed jointly with RuleML (http://ruleml.org/) and in particular with the

Defeasibility RuleML TG (http://ruleml.org/1.0/defeasible.html).
9 This implementation of defeasibility should allow a better management of exceptions than in

LKIF-Rule, where exceptions had to be made explicit in the rule syntax. If an exception

presents itself in the form of two legal fragments not explicitly referring to each other but

rather disposing opposing legal consequences (i.e. efficacy vs. inefficacy) it is possible to

model these rules independently, and then create a priority relation reflecting the actual

hierarchy between the two norms. Moreover, this solution allows a relative management of

hierarchy, without the need to assign arbitrary "weight" values to each rule. The proposal can

be found at https://www.oasis-open.org/committees/download.php/46454/2.1.1defeasibility.0

06.doc. Meaningful comments by TC member Tara Athan can be found at http://www.oasis-

open.org/apps/org/workgroup/legalruleml/download.php/45888/2.1defeasibility.002.002.doc.

with their legally binding documents [16], and LegalRuleML allows to specify these

time coordinates for each rule, starting from the identification of the relevant points in

time through a list of <events> such as:

<lrml:event id="e2" value="1942-04-21T01:01:00.0Z"/>.

Events' IDS are recalled by the <timeBlock> element, which adds information

on the event which occurs (start, end) and on the axis which is affected:

<lrml:timeBlock id="t1">

 <lrml:time start="#e2" refType="&lkif;#efficacy"/>

</lrml:timeBlock>10

6 Conclusions

The project presented here represents an effort towards the acquisition of an

acknowledged standard for the rule layer of the semantic web layer cake, while at the

same time trying to improve the state-of-the-art of legal knowledge representation by

facing its main issues: the gap between document representation and rule modeling,

and the need for a shared standard in the logic layer to represent legal reasoning. The

Carneades Argumentation System has been used as a test field for the ontology set

and the rules design, highlighting potentialities and issues of the approach.

Under these points of view, the approach proposed by the research represents a

step towards the filling of that gap, relying on existing standards to achieve the

isomorphism between legal document and rules; at the same time, the research defines

the requirements for a reasoning engine to be capable of semantically managing

knowledge coming from the ontology and applying legal rules to it. This engine will

probably not be a closed one, embedded in some argumentation tool (as in

Carneades): It should rather consist of a set of libraries to be implemented into

existing engines in order to introduce a complete management of defeasibility and a

standard language for interaction between these rules and OWL-encoded knowledge.

The intention, in the upcoming research on this behalf, is to rely on a Drools11

application under construction by CIRSFID and on NICTA's SPINdle12 [13].

Acknowledgements

A particular acknowledgement is due to Tom Gordon, provider of meaningful

research inputs during my stage in Berlin, FOKUS, in the last autumn. Thanks also to

Adam Wyner who gave me important feedbacks for improving the readability of the

paper and also, as a legal domain expert, fruitful comments on the ontology modeling

choices. Thanks go also to Harold Boley and Tara Athan of the RuleML Initiative for

his helpful hints. Last but not least, I am grateful to my tutor and mentor Monica

Palmirani, for her guidance in this challenging research.

10 The proposal can be found at http://markmail.org/message/oy34tkzzr3r2ldhz?q=temporal+lis

t:org%2Eoasis-open+list:org%2Exml+list:org%2Eebxml.
11 Drools (www.drools.org) is a production rule system based on the Rete algorithm.
12 SPINdle is an open source, Java-based defeasible logic reasoner which conducts efficient and

scalable reasoning on defeasible logic theories.

References

1. Boella G., Governatori G., Rotolo A., van der Torre L., A Logical Understanding of

Legal Interpretation. In: KR 2010.

2. Boer, A., Radboud, W., Vitali, F., MetaLex XML and the Legal Knowledge

Interchange Format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.),

Computable Models of the Law, Springer, Heidelberg (2008), pp. 21-41.

3. Ceci, M., Gordon, T.: Browsing Case-Law: An Application of the Carneades

Argumentation System, RuleML Challenge 2012 (under submission).

4. Gangemi, A.: Design Patterns for Legal Ontology Construction. In: Noriega, P.,

Bourcier, D., Galindo, F. (eds.), Trends in Legal Knowledge. The Semantic Web and

the Regulation of Electronic Social Systems, pp. 171-191. European Press Academic

Publishing (2007)

5. Gordon, T., Walton, D.: The Carneades Argumentation Framework: using

presumptions and exceptions to model critical questions. In: Dunne, P.E.:

Computational Models of Argument. Proceedings of COMMA 2006: 1st

International Conference on Computational Models of Argument, The University of

Liverpool, UK, 11th - 12th September 2006. IOS Press, Amsterdam (2006)

6. Gordon, T., Prakken, H., Walton, D.: The Carneades model of argument and burden

of proof. In: Artificial Intelligence, Vol.171 (2007), No.10-15, pp.875-896.

7. Gordon, T.: Constructing Legal Arguments with Rules in the Legal Knowledge

Interchange Format (LKIF). In: Casanovas, P.: Computable models of the law:

Languages, dialogues, games, ontologies (Lecture Notes in Artificial Intelligence

4884), pp. 162-184. Springer, Heidelberg (2008)

8. Gordon, T.: Combining Rules and Ontologies with Carneades. In: Proceedings of the

5th International RuleML2011@BRF Challenge, CEUR Workshop Proceedings

(2011), 103-110.

9. Gordon, T., Governatori, G., Rotolo, A., Rules and Norms: Requirements for Rule

Interchange Languages in the Legal Domain. In: Rule Interchange and Applications,

International Symposium, RuleML 2009, BERLIN, Springer pp. 282 - 296 (2009).

10. Gordon, T., Walton, D., Legal reasoning with argumentation schemes. Ind:

Proceedings of the Twelfth International Conference on Artificial Intelligence and

Law, ACM Press, New York, 2009, pp. 137-146.

11. Governatori, G.: On the relationship between Carneades and Defeasible logic. In:

ICAIL '11 Proceedings of the 13th International Conference on Artificial Intelligence

and Law, ACM New York (2011)

12. Lee, J.K., Sohn, M.M.: The eXtensible Rule Markup Language, Communications of

the ACM, Volume 46, Issue 5, pp. 59-64 (2003)

13. Lam, H.P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J.,

Paschke, A. (eds.): RuleML 2009. LNCS 5858, 315–322.Springer, Berlin (2009)

14. Palmirani, M., Brighi, R., Model Regularity of Legal Language in Active

Modifications. In: LNCS 6237/2010, pp. 54-73.

15. Palmirani, M., Contissa, G., Rubino, R.: Fill the Gap in the Legal Knowledge

Modelling. In: Proceedings of RuleML 2009, pp. 305-314.

16. Palmirani, M., Governatori, G., Contissa, G.: Temporal Dimensions in Rules

Modelling. In: JURIX 2010, pp.159-162.

17. Palmirani, M., Ceci, M.: Ontology framework for judgement modelling. In: AICOL

2011 Proceedings. Springer, 2012 (under publication).

18. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:

LegalRuleML: XML-Based Rules and Norms. In: RuleML 2011, pp. 298-312.

Checking Compliance in European Tender Documents
through Ontologies and Rules

Isabella Distinto

CIRSFID, University of Bologna
isabella.distinto@unibo.it

Abstract. In this paper we present an overview of the PhD thesis, which aims
to show the feasibility of a legal knowledge modeling based on the definitions
included into legal texts using Semantic Web techniques in order to check
compliance of tender documents to EU Directives. We show a hybrid approach,
i.e. a theory and a system that combine the use of Akoma-Ntoso standard to
describe legal texts, OWL 2.0 for modeling legal concepts and the emerging
LegalRuleML standard for providing a rule-based extension of legal knowledge
representation on the top of ontologies.

1 Introduction

The world of public procurements is a field of great significance for many reasons. It
is one of the main economic activities of Governments, since through procurements
are acquired services and goods for functioning of the res publica and for meeting
needs of citizens' communities. This activity represents also a significant business
opportunity for economic operators because public procurement in the EU accounts
for 17% of EU GDP. In this scenario, the regular conduct of tendering processes plays
a key role, in terms of transparency and fairness in bidding competitions, reduction of
litigation-related costs, but also corruption fighting strategies.
A tender situation can be considered as a complex case, in which agents, documents
and processes play an interactive role. Norms on public procurements contracts
regulate either the content of documents and the conduct of processes. Through the
representation of knowledge contained in normative texts it is possible to define the
abstract, lawfully type of those documents or processes. Each single document or
applied procedure is an instance of the abstract type defined by normative provisions.
With respect to documents involved in processes related to European public
procurements, both the abstract type and the actual token can be represented with
languages of Semantic Web, in order to describe all the layers perspective of this kind
of texts: structure (as organization of the texts), metadata (as any information that was
not approved by the authority in the document), ontology (as any legal concept called
from text that need a modeling), and finally legal knowledge representation (as
modeling of rules). Through this articulate definition of legal knowledge, as showed
in [16], it is possible to bridge the gap between legal text description of procurement
documents and legal knowledge representation that on these same texts start.

This structured knowledge base can be exploited by a system that, making use of an
inference engine, may enable automated reasoning useful to check compliance of
tender documents and processes involved (ABox) with legal concepts and rules, as
norm expressions (TBox).
We define compliance the conformity of a legal document and/or of a relevant
behavior with the normative prescriptions regulating them. The difference between
the prescription stated in legal texts and its actual application is a compliance failure.
Through compliance check is possible to detect this failure.
The ultimate goal of the research is to produce a set of pilot cases in order to show the
feasibility of such kind of system that would facilitate the monitoring by the
administrations on the regular conduct of procedures for the award of public
contracts.

2 Background and approaches

XML-based standards are widely adopted by Governments of several countries for
structuring legal documents. Some Legal XML standard (such as Akoma-Ntoso
standard [22]) envisages the connection of structured legal texts with ontologies.
Upon this connection, ontologies can be intended as a common vocabulary for shared
understanding of terms and a powerful tool to express the legal concepts in a formal
and unambiguous way. In that way it is possible to have a link between legal language
or terms and legal concept-based representation, as defined by the same text.
We distinguish between two types of legal knowledge, which can be represented
through languages of Semantic Web [1]. The first is static knowledge, namely any
concept that is used in legal domain as mean of classification of facts (or ontological
instances), by applying certain rules. We think that the role of ontologies is to model
all static and definitional aspects of these rules-contained knowledge components.
Indeed, legal systems are built upon concepts, whose semantics is defined by the same
text in which they are invoked and through which are enabled inferences, broadly
coincident with teleological purposes of norms. These kinds of knowledge
components are also called “intermediate legal concepts” [20], since through them are
represented preconditions and legal consequences, in the same way of rules, or as
“inferential links” [18].
The second type of legal knowledge is the dynamic one. The ontological level is used
to classify instances (facts) into ontological classes (abstract types). Such classified
facts are then subject to certain provisions. This is the point where ontologies and
rules meet. Indeed, even if in many cases rules applied to classified instances may be
represented through first order logic (necessary condition), in many others cases
monotonic reasoning based on Open World Assumptions (OWA) is not suitable for
reasoning with knowledge-base inconsistencies or conflicts among rules. In legal
domain, accordingly to a set of information an argument can be considered true, but if
the set under consideration is enriched, maybe the truth of the argument has to be
revised. This type of situation is well known as defeasibility and typically is required
non-monotonic logic with Closed World Assumptions (CWA) to represent it. So, our
hypothesis is based on the assumption that it is possible to recognize rules that define

ontologically legal concepts (in terms of proof-of-concepts) and rules that are applied
to legal concepts.

Over the last decades, many rules interchange languages has been produced. The
most relevant are undoubtedly RuleML [3], SVBR [15], SWRL [13], RIF [14] and
LKIF [6, 7]. As noted in [10], these languages are not suited to represent rules of legal
domain. Both SWRL and RIF are not able to meet the requirements of legal
knowledge representation, such as the isomorphism and the defeasibility, which can
not be represented with a series of chained implications in first-order logic. It's also
necessary to emphasize that the same type of rules can be implemented in ontologies
through the additional features (Property Chain Inclusion) of OWL 2.0. Also SVBR
suffer the same kind of limitation. Instead, LKIF, although designed specifically for
modeling legal knowledge, is based on the ISO Common Logic standard that does not
look as a candidate standard to be widely adopted within the World Wide Web
community. RuleML has been designed to become the markup language for the
Semantic Web Rules: it is based on XML, is suitable to integrate inferences from
Web ontologies, is extensible since it is built with a modularity approach. However, it
lacks of extensions required by the legal knowledge. Thus, the extension of RuleML
with key features of rules extracted from legal knowledge is now the goal of
LegalRuleML [17] emerging standard. This last language, indeed, allows to meet the
requirements of isomorphism (i.e. the one-to-one correspondence between the atomic
rule and the fragment of natural language text in which the rule is expressed), the
specification of normative effects (such as deontic, qualificatory or potestative, just to
name a few), the dynamic feature of norm and normative effects and the reification
(namely the fact that rules are like objects with relevant properties, such as
jurisdiction, authority and temporal constraints). For these reasons, we chose to
represent rules in LegalRuleML.

3 Related works

Compliance checking is a field that is typically related to business domain. There is
a vast literature on various techniques developed for supporting compliance checking
of business processes to regulations. Just to name a few, Governatori et al. have been
proposed approaches based on multi-modal logic [12] and on a specialized logic,
namely Formal Contract Language (FCL) [11] to formalize contracts' rules in order to
manage the compliance of contractual relationships in business processes. Many other
works are based on the formal representation of business contracts and their
performance [5, 8]. An approach based on the use of an ontology of compliance
requirements for service processes is described in [21]: however this work represent
an exception in field of business process compliance checking.

About the legal domain, under the NEURONA project, has been developed a legal
ontology for the representation of data protection knowledge for reasoning about the
correctness of the information regarding personal data files and the correctness of the
measures of protection applied to these data files [4]. Some studies has been
conducted on the complexity and limitations of reasoning on EU Directives with
OWL [9].

4 Pilot Case Scenario

A pilot case scenario is used for explaining the described methodology. It is based
on the modeling of a complex norm extracted from the European Directive 2004/18
on the coordination of procedures for the award of public works contracts, public
supply contracts and public service contracts, namely the Art. 17. With this example,
we intend to show what are both the limits and the role of ontologies versus rules and
also that LegalRuleML allows to model articulated types of rules, which may be
encountered in modeling of legal knowledge.
The article 17 of Directive 2004/18 states: “Without prejudice to the application of
Article 3, this Directive shall not apply to service concessions as defined in Article
1(4)”. In this norm are contained: a reference to a the legal concept of service
concession as defined by the same directive (in Art. 1 (4)); an exception to the
application of the Directive (“shall not applied”) and an exception of exception about
this rule in all the cases covered by the Art. 3 recalled by the Art. 17 (“Without
prejudice to the application of Article 3”). In legal domain this mechanism (to recall
another rule) is called meta-rule, since it is a rule about (the activation of) another
rule, namely the Art. 3. This article states that if a contracting authority grants special
or exclusive rights to carry out a public service activity to an entity other than such a
contracting authority, the act by which that right is granted shall provide that, in
respect of the supply contracts which it awards to third parties as part of its activities,
the entity concerned must comply with the principle of non-discrimination on the
basis of nationality1. Section 4.1 describes our proposal about modeling of legal
concepts (static knowledge); Section 4.2 describes how it is possible to model
complex metadata on the top of legal concepts with a syntax look-like LegalRuleML2.

4.1 Proof of legal concepts as basis of proof of legal compliance

As outlined in Section 1, legal concepts are basically identified by terms
incorporating inferential links between preconditions and legal consequences, in the
same way of rules. So, the role to express this kind of rules can be delegated to
ontologies and in that way the proof of legal concepts can serve as basis of proof of
legal compliance, since every individual belonging to a class of a specific legal
concept have to comply with the restrictions on this class. For the purpose of the
presented pilot case, we've developed an ontology3 for describing particularly the
class of Service Concession as defined in the Art. 1 (4) of the Directive

1 Article 3. Granting of special or exclusive rights: non-discrimination clause - Where a

contracting authority grants special or exclusive rights to carry out a public service activity
to an entity other than such a contracting authority, the act by which that right is granted
shall provide that, in respect of the supply contracts which it awards to third parties as part
of its activities, the entity concerned must comply with the principle of non-discrimination on
the basis of nationality.

2 Documents of the OASIS LegalRuleML TC are available at https://www.oasis-
open.org/committees/documents.php?wg_abbrev=legalruleml. The mailing list describing
the work in progress can be browsed at https://lists.oasis-open.org/archives/legalruleml/.

3 Available at http://codexml.cirsfid.unibo.it

2004/18/ec and the class of Act of grant to entities others than
authority as defined in the Art. 3 of the Directive 2004/18/ec. The main
commitments of this ontology are to check if an individual of type Public
Procurement Contract is also of type Service Concession, and which
individual belongs to the class of Service Concession, but is also of type Act of
grant to entities others than authority. In that way the rules are
applied upon the materializations made by the ontology on legal concepts.
According to the definition of Art. 1 (4) of the Directive 2004/18/ec the Class of
Service Concession is modeled as SubClassOf a Public procurement contract,
which has its object the right to exploitation the service or both the right to
exploitation the service and the payment:

<EquivalentClasses>
 <Class IRI="#ServiceConcession"/>
 <ObjectIntersectionOf>
 <Class IRI="#PublicProcurementContract"/>
 <ObjectSomeValuesFrom>
 <ObjectProperty IRI="#hasObjectOfContract"/>
 <ObjectUnionOf>
 <Class IRI="#RightOfExploitationTheService"/>
 <ObjectIntersectionOf>
 <Class IRI="#Payment"/>
 <Class IRI="#RightOfExploitationTheService"/>
 </ObjectIntersectionOf>
 </ObjectUnionOf>
 </ObjectSomeValuesFrom>
 </ObjectIntersectionOf>
 </EquivalentClasses>

According to the definition of Art. 3 of the Directive 2004/18/ec the Class of Act of
grant to entities others than authority is modeled as SubClassOf a
LegalDocument, by which is granted a right (special or exclusive) to a legal person
that is not a Contracting authority:

<EquivalentClasses>
 <Class IRI="#ActOfGrantToEntityOtherThanAuthority"/>
 <ObjectIntersectionOf>
 <Class IRI="#LegalDocument"/>
 <ObjectSomeValuesFrom>
 <ObjectProperty IRI="#byWhichIsGrantedRightTo"/>
 <ObjectIntersectionOf>
 <Class IRI="#LegalPerson"/>
 <ObjectComplementOf>
 <Class IRI="#ContractingAuthority"/>
 </ObjectComplementOf>
 </ObjectIntersectionOf>
 </ObjectSomeValuesFrom>
 </ObjectIntersectionOf>
 </EquivalentClasses>

4.2 Rules in LegalRuleML

We have modelled three rules4 using a very preliminary syntax of LegalRuleML5 for
testing the emerging standard and providing useful feedback to the OASIS TC:

• the rule1 is a defeasible rule and involves this fragment of the Art. 17:
“this Directive shall not apply to service concessions as defined in Article 1(4).”
The formalization of this text is the following:

if
X is a member of the OWL class public-procurement-contract
X is a member of the OWL class called service-concession
X enters in the definition of the Article 1(4)

then
the Directive2004/18/EC shall not apply

• the rule2 has strength defeater and is also a meta-rule, since it activates the
rule3:
“Without prejudice to the application of Article 3”
if

X is a member of the OWL class public-procurement-contract
X is a member of the OWL class called service-concession

then
the Directive2004/18/EC shall apply
the rule3 is activated

• the rule3 is related to the content of Article 3;
if

X is a member of the OWL class called service-concession
X is a member of the OWL class act-of-grant-to-entity-other-

than-authority
then

X shall respect the principle of
Non-discriminationClauseOnTheBasisOfNationality
X shall respect of supply contracts which it awards to third

parties as part of its activities

We concentrate our attention on the connection between rule2 and rule3 using
lrml:typeRule=&legalRuleML;metaRule as attribute in the rule2 and the <Ind
iri="#rule3">rule3</Ind>:

<Rule material="no" id="rule2" lrml:typeRule="&legalRuleML;metaRule">

 <!-- Art.17 Without prejudice to the application of Article 3 -->
 <if id="rule2-body">
 <And>
 <Atom id="rule2-atom1">
 <Rel iri="&lkif;#member_of">is a member of the public-
procurement-contract</Rel>
 <Var type="&lkif;#public-procurement-contract">X</Var>
 </Atom>
 <Atom id="rule2-atom2">
 <Rel iri="&lkif;#member_of">is a member of class service-
concession</Rel>
 <Var type="&lkif;#service-concession">X</Var>

4 “Article 17 Service concessions - Without prejudice to the application of Article 3, this

Directive shall not apply to service concessions as defined in Article 1(4).”
5 We take in consideration the version available at the date of the paper submission:

http://www.oasis-
open.org/apps/org/workgroup/legalruleml/download.php/45888/2.1defeasibility.002.002.doc

 </Atom>
 </And>
 </if>
 <then id="rule2-head">
 <And>
 <Atom id="rule2-atom2">
 <Rel iri="&lkif;#shallApply">shall apply</Rel>
 <Ind iri="&DIRECTIVE2004_18_ec">Directive2004_18_</Ind>
 </Atom>
 <Atom id="rule2-atom2">
 <Rel iri="&lkif;#shallApply">shall apply</Rel>
 <Ind iri="#rule3">rule3</Ind>
 </Atom>
 </And>
 </then>
 </Rule>

5 Ongoing and future perspectives

In this paper we have shown how with an hybrid approach that integrates
ontologies in OWL 2.0 (for contents related to legal concepts) and rules in a
preliminary syntax of LegalRuleML (for the dynamic legal knowledge), it is possible
to express in a computable formalism also complex norms, maintaining the
isomorphic [2] relation with the text and with a clear distinction between roles of
ontologies and rules.

Up to now, an ontology of European public procurement notices has been
developed from scratch in OWL 2.0, in order to represent concepts related to these
types of tender documents and processes involved. The ontology is based on both a
top-down and a bottom-up approach. Indeed it represents concepts extracted form
authoritative sources (Directive 2004/17/EC; Directive 2004/18/EC; etc.) compared
with natural language patterns derived from standard forms in use for these tender
documents6. The ontology is based on a modular approach and allows, for example,
inferences for classifying a contract notice as contract notice with European relevance
(i.e. upon EU threshold) or not. Another module of the ontology has the main
commitment to classify contract notices covered by the Government Procurement
Agreement: through this information it is possible to find out whether a call is open to
the participation of economic operators from countries that are not EU members.

RDFa assertions in the XML enable the connection between the structural part of
legal texts and the classes of the ontology so developed. Finally upon the ontological
level, are represented rules applied to defined ontological classes as well as to
materializations inferred through reasoners such as Hermit or Pellet.
We think that future perspectives on this work are strictly related to the investigation
of the topic of legal ontology evolution, in order to met the need to automatically
detect changes in legal concepts and allow for a sustainable evolutionary system
approach.

6 These forms are available at http://simap.europa.eu/buyer/forms-standard/index_en.htm

Acknowledgements

A particular acknowledgement is due to Enrico Motta, provider of meaningful
research inputs during my stage at KMI - The Open University (UK), in the last
spring. Thanks go also to the TC of the RuleML Initiative and to the LegalRuleML
TC for their helpful hints. I am grateful to my tutor and mentor Monica Palmirani, for
her guidance in this challenging research.

References

1. Antoniou G., and Bikakis, A., DR-Prolog: A System for Defeasible Reasoning with
Rules and Ontologies on the Semantic Web, IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 2, p. 233-245, 2007.

2. Bench-Capon, T. and Coenen, F., Isomorphism and legal knowledge based systems.
Artificial Intelligence and Law, 1(1):65–86, 1992.

3. Boley, H., Tabet, S. and Wagner G., Design rationale for RuleML: A markup
language for Semantic Web rules. In I. F. Cruz, S. Decker, J. Euzenat, and D. L.
McGuinness, editors, Proc. SWWS’01, The first Semantic Web Working
Symposium, pages 381–401, 2001.

4. Casellas, N., Nieto, J., Meroño, A., Roig, A., Torralba, S., Reyes, M., Casanovas, P.,
Ontological Semantics for Data Privacy Compliance: The NEURONA Project., In
AAAI Spring Symposium: Intelligent Information Privacy Management, 2010.

5. Desai, N., Narendra, N. C. & Singh, M. P., Checking correctness of business
contracts via commitments, in Proc. AAMAS, 2008.

6. ESTRELLA Project. The legal knowledge interchange format (LKIF). Deliverable
4.3, European Commission, 2008.

7. ESTRELLA Project. The reference LKIF inference engine. Deliverable 4.3, European
Commission, 2008.

8. Farrell, A. D. H., Sergot, M. J., Sallè, M., Bartolini, C., Using the event calculus for
tracking the normative state of contracts, International Journal of Cooperative
Information Systems, 2005.

9. Gangemi A., Sagri M. T., Tiscornia D., A Constructive Framework for Legal
Ontologies, in Benjamins, R., Breuker, J., Casanovas, P., Gangemi, A. (eds.): Law
and the Semantic Web, LNCS, Springer, 2005

10. Gordon, T. F., Governatori, G., Rotolo, A., Rules and Norms: Requirements for Rule
Interchange Languages in the Legal Domain, in: Rule Interchange and Applications,
International Symposium, RuleML 2009, Springer, 2009.

11. Governatori, G. and Milosevic, Z. Dealing with contract violations: formalism and
domain specific language. In Proceedings of the Conference on Enterprise Computing
EDOC 2005, IEEE Press, 2005.

12. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: Proc. EDOC 2006, pp. 221–232. IEEE, Los
Alamitos (2006)

13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., & Dean, M.
(May 2004). SWRL: A semantic web rule language combining OWL and RuleML.
Available from http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

14. Kifer, M., Rule Interchange Format: The Framework, Proceedings of the 2nd
International Conference on Web Reasoning and Rule Systems, October 31-
November 01, 2008, Karlsruhe, Germany.

15. OMG: Semantics of business vocabulary and business rules (SBVR).
http://www.businessrulesgroup.org/sbvr.shtml, 2008.

16. Palmirani, M., Contissa, G., Rubino, R., Fill the Gap in the Legal Knowledge
Modelling, Proceedings of the 2009 International Symposium on Rule Interchange
and Applications, November 05-07, 2009, Las Vegas, Nevada.

17. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.,
LegalRuleML: XML-Based Rules and Norms.; in RuleML America (2011), 298-312.

18. Ross, A., Tû-Tû, Harvard Law Review, vol. 70, pp. 812-825.
19. Sartor, G., Legal Reasoning and Normative Conflicts, in Reasoning with

Inconsistency, 1991.
20. Sartor, G., Understanding and Applying Legal Concepts: An Inquiry on Inferential

Meaning. In: Concepts in Law. Ed. by Jaap C. Hage and Dietmar von der Pfordten.
Springer, 2009.

21. Schmidt, R., Bartsch, C. and Oberhauser, R., Ontology-Based Representation of
Compliance Requirements for Service Processes. In Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle Management, 2007.

22. Vitali, F.: Akoma Ntoso Release Notes, http://www.akomantoso.org (accessed
August 20, 2009).

Rule Based Business Process Compliance

Guido Governatori, Sidney Shek

NICTA, Australia

Abstract. In this paper we report on the development and evaluation of a busi-
ness process compliance checker, based on the compliance-by-design methodol-
ogy proposed by Governatori and Sadiq [9].
For a screencast see http://www.youtube.com/watch?v=gFmDQJNai_4

1 Introduction
Regulatory compliance is the set of activities an enterprise does to ensure that its core
business does not violate relevant regulations, in the jurisdictions in which the business
is situated, governing the (industry) sectors where the enterprise operates.

The activities an organisation does to achieve its business objectives can be under-
stood as business processes, and consequently they can be represented by business pro-
cess models. On the other hand a normative document (e.g., a code, a bill, an act) can
be understood as a set of clauses, and these clauses can be represented in an appro-
priate formal language. Based on this [5] proposed that business process compliance
is a relationship between the formal representation of a process model and the formal
representation of a relevant regulation.

To gain compliance different strategies can be devised. [16] classifies approaches to
compliance as detective, corrective and preventative.

Detective measures are intended to identify “after-the-fact” un-compliant situations.
There are two main approaches: (a) retrospective reporting through manual audits by
consultants or through IT forensics and Business Intelligence tools; (b) automated de-
tections generating audit reports against hard-coded checks performed on the requisite
system. Unlike the first approach, automated detection reduces the assessment time and
consequently also the time of un-compliance remediation/mitigation.

Corrective measures are intended to limit the extent of any consequence caused by
un-compliant situations. For example, situations that can arise from the introduction of
a new norm impacting upon the business, to the organisation coming under surveillance
and scrutiny by a control authority or to an enforceable undertaking.

The two approaches above suffer from lack of sustainability, caused by the extreme
interest of companies in continuous improvements of the quality of services, and for
changing legislations and compliance requirements. Indeed, even with automated de-
tection means, the hard coded checking of repositories can quickly grow to a very large
scale making it extremely difficult to evolve and maintain. To obviate these problem
[17,13] propose a preventative focus based on the idea of compliance-by-design.

The key aspect of the compliance-by-design methodology is to supplement business
process models with additional information to ensure that a business process is compli-
ant with relevant normative frameworks before the deployment of the process itself.

http://www.youtube.com/watch?v=gFmDQJNai_4

2 BPCC Architecture

In this section we first introduce the architecture of BPCC, a business process com-
pliance checker based on the business process compliance methodology proposed by
Governatori and Sadiq [9].

As we have already discussed to check whether a business process is compliant with
a relevant regulation, we need an annotated business process model and the formal rep-
resentation of the regulation. The annotations are attached to the tasks of the process,
and it can be used to record the data, resources and other information related to the single
tasks in a process.

For the formal representation of the regulation we use FCL [4,8]. FCL is a simple,
efficient, flexible rule based logic. FCL has been obtained from the combination of de-
feasible logic (for the efficient and natural treatment of exceptions, which are a common
feature in normative reasoning) [1] and a deontic logic of violations [6]. In FCL a norm
is represented by a rule

𝑎1, … , 𝑎𝑛 ⇒ 𝑐

Where 𝑎1, … , 𝑎𝑛 are the conditions of applicability of the norm/rule and 𝑐 is the nor-
mative effect of the norm/rule. FCL distinguishes two normative effects: the first is that
of introducing a definition for a new term. For example the rule

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑥), 𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔(𝑥) > 1000 ⇒ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚_𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑥)

specifies that, typically, a premium customer is a customer who has spent over 1000 dol-
lars. The second normative effect is that of triggering obligations and other deontic no-
tions. The deontic notions covered by FCL are obligations1, permissions, and reparation
chains. For obligations FCL supports both maintenance obligations and achievement
obligations, and for achievement obligations both pre-emptive and non-pre-emptive obli-
gations (see [8] for full details). A reparation chair is an expression 𝑂1𝑐1 ⊗ 𝑂2𝑐 ⊗ ⋯ ⊗
𝑂𝑛𝑐𝑛, where each 𝑂𝑖 is an obligation, and each 𝑐𝑖 is the content of the obligation (mod-
elled by a literal). The meaning of a reparation chain is that we have that 𝑐1 is obligatory,
but if the obligation of 𝑐1 is violated, i.e., we have ¬𝑐1, then the violation is compen-
sated by 𝑐2 (which is then obligatory). But if even 𝑂2𝑐2 is violated, then this violation
is compensated by 𝑐3 which, after the violation of 𝑐2, becomes obligatory, and so on.

It is worth noticing that FCL allows deontic expression (but not reparation chains)
to appear in the body of rules, thus we can have rules like:

𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡, [P]𝑠𝑒𝑙𝑙_𝑎𝑙𝑐𝑜ℎ𝑜𝑙 ⇒ [OM]𝑠ℎ𝑜𝑤_𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ⊗ [OAPNP]𝑝𝑎𝑦_𝑓𝑖𝑛𝑒.

The rule above means that if a restaurant has a license to sell alcohol (i.e, it is permitted
to sell it, [P]𝑠𝑒𝑙𝑙_𝑎𝑙𝑐𝑜ℎ𝑜𝑙), then it has a maintenance obligation to expose the license
([OM]𝑠ℎ𝑜𝑤_𝑙𝑖𝑐𝑒𝑛𝑠𝑒), if it does not then it has to pay the fine ([OAPNP]𝑝𝑎𝑦_𝑓𝑖𝑛𝑒). The
obligation to pay the fine is non-pre-emptive (this means it cannot be paid before the
violation). For full description of FCL and its feature see [4,8].
1 Note the obligations allow us to capture prohibitions; a prohibition is an obligation plus nega-
tion, for example the prohibition to smoke can be understood as the obligation not to smoke.

Finally, FCL is agnostic about the nature of the literals it uses. They can represent
tasks (activities executed in a process) or propositions representing state variables.

Compliance is not just about the tasks to be executed in a process but also onwhat the
tasks do, the way they change the data and the state of artifacts related to the process, and
the resources linked to the process. Accordingly, process models must be enriched with
such information. [17] proposes to enrich process models with semantic annotations.
Each task in a process model can have attached to it a set of semantic annotations. In our
approach the semantic annotations are literals in the language of FCL, representing the
effects of the tasks. The approach can be used tomodel business process data compliance
[10]

Recommendations

W
h

at
-if

 a
n

al
ys

is

S
ta

tu
s

re
po

rt

Compliance checker

Obligations

Input

Annotated
process model

.

.

.

Logical state
representation

FormalisationLegalese
Rule1

Rule2

Rule3

Rule4

Rule5

Rule6

Rule7

Rule8

Rule9

...

Compliance rule
base & checker

Recommendation sub-system

I*(e1)

I*(e3)

I*(e4)

I*(e2)

T2

Post2

T1

Post1

T4

Post4

T3

Post3

T5

Post5

T6

Post6
T7

Post7

Fig. 1. Architecture of BPCC

Figure 1 depicts the architecture of BPCC. Given an annotated process and the for-
malisation of the relevant regulation, we can use the algorithm propose in [7,8] to deter-
mine whether the annotated process model is compliant. The process runs as follows:
– Generate an execution trace of the process.
– Traverse the trace:

• for each task in the trace, cumulate the effects of the task using an update se-
mantics (i.e., if an effect in the current task conflicts with previous annotation,
update using the effects of the current tasks).

• use the set of cumulated effects to determine which obligations enter into force
at the current tasks. This is done by a call to an FCL reasoner.

• add the obligations obtained from the previous step to the set of obligations
carried over from the previous task.

• determine which obligations have been fulfilled, violated, or are pending; and
if there are violated obligation check whether they have been compensated.

– repeat for all traces.

A process is compliant if and only if all traces are compliant (all obligations have been
fulfilled or if violated they have been compensated). A process is weakly compliant if
there is at least one trace that is compliant.

Fig. 2. An Opening Credit Card Account Process with Annotations in BPCC

3 Implementation and Evaluation

BPCC is implemented on top of Eclipse. For the representation of process models, it
uses the Eclipse Activiti BPMN 2.0 plugin, extended with features to allow users to add
semantic annotations to the tasks in the process model. BPCC is process model agnostic,
this means that while the current implementation is based on BPMN all BPCC needs is
to have a description of the process and the annotations for each task. Amodule of BPCC
take the description of the process and generates the execution traces corresponding to
the process. After the traces are generated, it implements the algorithm outlined in the
previous section, where it uses the SPINdle rule engine [12] for the evaluation of the
FCL rules. In case a process is not compliant (or if it is only weakly compliant) BPCC

Fig. 3. Regulations Relevant to the Opening Credit Card Process

reports the traces, tasks, rules and obligations involved in the non compliance issues (see
Figure 4).

BPCC was tested against an 2012 Australian Telecommunications Customers Pro-
tection Code (C628-2012). The code is effective from September 1st 2012. The code
requires telecommunication operators to provide annual attestation of compliance with
the code staring from April 1st 2013. The evaluation was carried out in May-June 2012.
Specifically, the section of the code on complaint handling has been manually mapped
to FCL. The section of the code contains approximately 100 commas, in addition to ap-
proximately 120 terms given in the Definitions and Interpretation section of the code.
The mapping resulted in 176 FCL rules, containing 223 FCL (atomic) propositions, and
7 instances of the superiority relation. Of the 176 rules 33 were used to capture defini-
tions of terms used in the remaining rules. Mapping the section of the code required all
features of FCL: all types of obligations apart punctual obligations were used, repara-
tion chains, permissions, defeasibility to easily capture exceptions, and obligations and
permissions in the body of rules.

The evaluationwas carried over in cooperationwith an industry partner subject to the
code. The industry partner did not have formalised business processes. Thus, we worked
with domain experts from the industry partner (who had not been previously exposed to
BPM technology, but who were familiar with the industry code) to draw process models
for the activities covered by the code. The evaluation was carried out in two steps. In the
first part we modelled the processes they were. BPCC was able to identify several areas
where the existing processes were not compliant with the new code. In some cases the
industry partner was already aware of some of the areas requiring modifications of the
existing processes. However, some of the compliance issues discovered by the tools were
novel to the business analysts and were identified as genuine non-compliance issues that
need to be resolved. In the second part of the experiment, the existing processes were
modified to comply with the code based on the issues identified in the first phase. In
addition a few new business process models required by the new code were designed.
As result we generated and annotated 6 process models. 5 of the 6 models are limited
in size and they can be checked for compliance in seconds. The largest process contains
41 tasks, 12 decision points, xor splits, (11 binary, 1 ternary). The shortest path in the
model has 6 tasks, while the longest path consists of 33 tasks (with 2 loops), and the

Fig. 4. BPCC report of traces, rules, and tasks responsible for non-compliance

longest path without loop is 22 task long. The time taken to verify compliance for this
process amounts approximately to 40 seconds on a MacBook Pro 2.2Ghz Intel Core i7
processor with 8GB of RAM (limited to 4GB in Eclipse).

4 Conclusions

We reported on the development of a tool, BPCC, for checking the compliance of busi-
ness processes with relevant regulations. The BPCC was successfully tested for real
industry scale compliance problems. In the recent years, a few other compliance proto-
types have been proposed:MoBuCom [15], Compass [2] and SeaFlows [14].MoBuCom
and Compass are based on Linear Temporal Logic (LTL) and mostly they just address
“structural compliance” (i.e., that the tasks are executed in the relative order defined by
a constraint model). The use of LTL implies that the model on which these tools are
based on is not conceptual relative to the legal domain, and it fails to capture nuances of
reasoning with normative constrains such as violations, different types of obligations,
violations and their compensation. For example, obligations are represented by temporal
operators. This raises the problem of how to represent the distinction between achieve-
ment and maintenance obligations. A possible solution is to use always for maintenance
and sometimes for achievement, but this leaves no room for the concept of permission
(the permission is dual of obligation, and always and sometimes are the dual of each
other). In addition using temporal operators to model obligations makes hard to capture
data compliance [10], i.e., obligations that refer to literals in the same task. SeaFlow
is based on first-order logic, and it is well know that first oder logic is not suitable to
capture normative reasoning [11]. On the other hand FCL complies with the guidelines
set up in [3] for a rule languages for the representation of legal knowledge and legal
reasoning.

Acknowledgment

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Representation results for de-
feasible logic. ACM Transactions on Computational Logic, 2(2):255–287, 04 2001.

2. A. Elgammal, O. Türetken, and W.-J. van den Heuvel. Using patterns for the analysis and
resolution of compliance violations. Int. J. Cooperative Inf. Syst., 21(1):31–54, 2012.

3. T.F. Gordon, G. Governatori, and A. Rotolo. Rules and norms: Requirements for rule inter-
change languages in the legal domain. In G. Governatori, J. Hall, and A. Paschke, editors,
RuleML 2009, lNCS 5858, pp. 282–296. Springer, 2009.

4. G. Governatori. Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems, 14(2-3):181–216, 2005.

5. G. Governatori, Z.Milosevic, and S. Sadiq. Compliance checking between business processes
and business contracts. In P.C..K. Hung, ed., EDOC 2006, pp. 221–232. IEEE Computing
Society, 2006.

6. G. Governatori and A. Rotolo. Logic of violations: A Gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4:193–215, 2006.

7. G. Governatori and Antonino Rotolo. An algorithm for business process compliance. In E.
Francesconi, G, Sartor, and D. Tiscornia, eds, Jurix 2008, pp. 186–191. IOS Press, 2008.

8. G. Governatori and A. Rotolo. A conceptually rich model of business process compliance.
In S. Link and A. Ghose, eds, APCCM 2010, CRPIT 110, pp. 3–12. ACS, 2010.

9. G. Governatori and S. Sadiq. The journey to business process compliance. In J. Cardoso and
W. van der Aalst, eds, Handbook of Research on BPM, pp. 426–454. IGI Global, 2009.

10. M. Hashmi, G. Governatori, and M. Thandar Wynn. Business process data compliance. In
RuleML 2012, LNCS 7438. Springer, 2012.

11. H Herrestad. Norms and formalization. In ICAIL 1991, pp 175–184. ACM, 1991.
12. H-.P. Lam and G. Governatori. The making of SPINdle. In G. Governatori, J. Hall, and A.

Paschke, eds, RuleML 2009, LNCS 5858, pp. 315–322. Springer, 2009.
13. R. Lu, S. Sadiq, and G. Governatori. Compliance aware business process design. In A.H.M.

ter Hofstede, B. Benatallah, and H.-Y. Paik, eds, BPD’07, LNCS 4928, pp 120–131. Springer,
2007.

14. L.T. Ly, S. Rinderle-Ma, K. Göser, and P. Dadam. On enabling integrated process compli-
ance with semantic constraints in process management systems - requirements, challenges,
solutions. Information Systems Frontiers, 14(2):195–219, 2012.

15. F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring Business
Constraints with Linear Temporal Logic: An Approach Based on Colored Automata. In BPM
2011, LNCS 6896, pp. 132–147. Springer, 2011.

16. S. Sadiq and G. Governatori. Managing regulatory compliance in business processes. In J.
van Brocke and M. Rosemann, eds, Handbook of Business Process Management, volume 2,
pp. 157–173. Springer, 2010.

17. S. Sadiq, G. Governatori, andK.Naimiri. Modelling of control objectives for business process
compliance. In G. Alonso, P. Dadam, and M. Rosemann, eds, BPM 2007, LNCS 4714, pp.
149–164. Springer, 2007.

PSOATransRun: Translating and Running
PSOA RuleML via the TPTP Interchange

Language for Theorem Provers

Gen Zou1, Reuben Peter-Paul1, Harold Boley1,2, and Alexandre Riazanov3

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
gen.zou AT unb.ca, reuben.peterpaul AT gmail.com,

2 Information and Communications Technologies, National Research Council Canada
harold.boley AT nrc.gc.ca,

3 Department of Computer Science & Applied Statistics, UNB, Saint John, Canada
alexandre.riazanov AT gmail.com

Abstract. PSOA RuleML is an object-relational rule language general-
izing POSL, OO RuleML, F-logic, and RIF-BLD. In PSOA RuleML, the
notion of positional-slotted, object-applicative (psoa) terms is used as a
generalization of: (1) positional-slotted terms in POSL and OO RuleML
and (2) frame and class-membership terms in F-logic and RIF-BLD.
We demonstrate an online PSOA RuleML reasoning service,
PSOATransRun, consisting of a translator and an execution engine. The
translator, PSOA2TPTP, maps knowledge bases and queries in the PSOA
RuleML presentation syntax to the popular TPTP interchange language,
which is supported by many first-order logic theorem provers. The trans-
lated documents are then executed by the open-source VampirePrime
reasoner to perform query answering. In our implementation, we use the
ANTLR v3 parser generator tool to build the translator based on the
grammars we developed. We wrap the translator and execution engine
as resources into a RESTful Web API for convenient access. The presen-
tation demonstrates PSOATransRun with a suite of examples that also
constitute an online-interactive introduction to PSOA RuleML.

1 Introduction

Knowledge representation is at the foundation of Semantic Web applications,
using rule and ontology languages as the main kinds of formal languages. PSOA
RuleML is a recently developed rule language which combines the ideas of re-
lational (predicate-based) and object-oriented (frame-based) modeling. In order
to demonstrate the PSOA RuleML semantics, we have implemented an online
PSOA RuleML reasoning service PSOATransRun. It enables PSOA RuleML
deduction using the first order open-source VampirePrime reasoner via the in-
terchange language TPTP (Thousands of Problems for Theorem Provers), which
is supported by many reasoners, especially theorem provers. PSOATransRun is
composed of a translator, PSOA2TPTP, and a run-time environment in the
form of a TPTP-aware execution engine. The translator maps knowledge bases

2 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

and queries of PSOA RuleML in RIF-like Presentation Syntax (PSOA/PS) into
a document in TPTP’s First Order Form (FOF), which is then fed into the
VampirePrime reasoner to deduce the query results.

Our implementation of PSOA2TPTP is built upon the ANTLR v3 parser
generator framework.4 The main components include a lexer, a parser and a
tree walker generated from the input ANTLR grammars. The input document is
first broken up, by the lexer, into a token stream; then converted, by the parser,
into a structured Abstract Syntax Tree (AST); and finally traversed, by the tree
walker, to generate a TPTP document via TPTP Abstract Syntax Objects.

We wrapped the PSOA2TPTP translator and the VampirePrime-based exe-
cution engine as resources into a RESTful Web API, and published a Web site
demonstrating its use.5

2 Preliminaries

2.1 PSOA RuleML

PSOA RuleML [1] is an object-relational rule language generalizing POSL, OO
RuleML, F-logic, and RIF-BLD. In PSOA RuleML, the notion of positional-
slotted, object-applicative (psoa) terms is introduced:

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

This notion generalizes (1) positional-slotted terms in POSL and OO RuleML
and (2) frame and class-membership terms in F-logic and RIF-BLD. In a psoa
term, o is the object identifier (OID) which uniquely identifies the object rep-
resented by the term. A psoa term integrates three types of information: (1)
The class membership o # f makes f the type of instance o; (2) every slotted
argument pi->vi associates o with an attribute pi and its value vi; (3) every
tupled argument [ti,1 ... ti,ni] associates o with a sequence of terms.

2.2 TPTP-FOF and VampirePrime

TPTP is a collection of test problems for automated theorem proving systems
using the problem format of the same name. TPTP-FOF is the dialect allow-
ing the use of arbitrary first-order formulas. A TPTP-FOF problem is a list of
annotated formulas of the form:

fof(name, role, formula, source, useful info).

Here, name is a name given to the formula; role specifies the type of intended
use of the formula, e.g. axiom, theorem, conjecture, etc. formula is the formula
body (source and useful info are optional and irrelevant for our translation).
Table 1 shows the most widely used TPTP constructors.
4 http://www.antlr.org/
5 http://198.164.40.211:8082/psoa2tptp-trans/index.html

PSOATransRun: Translating and Running PSOA RuleML 3

Table 1. TPTP Constructors

Symbol Logical Meaning Symbol Logical Meaning
~ not != unequal
& and => implication
| or ?[v1, v2, ...] existential quantifier
= equal ![v1, v2, ...] universal quantifier

VampirePrime is an open source reasoner derived from Vampire [2], a mature
high-performace reasoner for first-order logic. VampirePrime supports not only
standard theorem proving tasks like consistency checking and entailment, but
also query answering using the Incremental Query Rewriting Technique [3].

3 System Architecture

In Figure 1, we present an architectural view of the PSOATransRun framework.
We use Linux for our host environment, and VampirePrime can be re-compiled
for any platform that supports gcc 4.x. We use a Java servlet container to host the
PSOATransRun RESTful-Web-API web application, which we depict in Figure 1
as a Web ARchive (WAR). The RESTful Web API WAR, basically consists of
two JAX-RS6 resources, and a static HTML page application.html. The Web API
depends on the PSOA2TPTP-Translator Java application (see Figure 2) and it is
also packaged into the WAR. The PSOATransRun application component, appli-
cation.html is a static HTML Web page that accesses (via XMLHttpRequests7)
the PSOATransRun RESTful resources (Translate and Execute) and composes
them to provide an experimental PSOA Presentation Syntax (PSOA/PS) pro-
totype for basic reasoning. The design and implementation of the RESTful Web
API is described in more detail in Section 4.2.

The architecture of the PSOA2TPTP translator is depicted in more detail
in Figure 2. The translation consists of four phases:

1. The PSOA/PS lexer feeds off the input document as a character stream and
does lexical analysis, grouping the characters into a stream of tokens.

2. The PSOA/PS parser operates on the token stream emanating from the
lexer, and parsing the grammatical structure while constructing an interme-
diate data structure called Abstract Syntax Tree (AST), which is a highly
structured and condensed version of the input.

3. The tree walker traverses the AST and builds an internal data structure,
TPTP Abstract Syntax Objects (TPTP ASOs), representing semantically
equivalent TPTP formulas, based on the translation rules.

6 JAX-RS is a Java API for RESTful Web Services that facilitates the creation of
Web services according to the Representational State Transfer (REST) architectural
style.

7 Used to send HTTP requests directly to a Web server.

4 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

«JAR»
PSOA2TPTP-
Translator

«bin»
VampirePrime

WEB-INF

translator

TRANS

reasoner

RUN

«Host»
Linux

«Class, JAX-RS»
Translate

«Class, JAX-RS»
Execute

«HTTP»

browser

«HTTP»

«Servlet Container»
JBossWeb

«HTML, JavaScript»
application.html

«WAR»
RESTful-Web-API

PSOATransRun Framework

User

Fig. 1. Architecture of PSOATransRun. The PSOATransRun application, applica-
tion.html, composes the Translate and Execute (Run) resources for PSOA/PS queries.

4. The TPTP renderer reuses an existing parser/renderer library8 for generat-
ing TPTP documents in concrete syntax from TPTP ASOs.

The lexer, parser and tree walker are generated by the ANTLR framework9

from the provided lexer grammar, parser grammar and tree grammar, respec-
tively.

Our intention was to create an application programming interface (API)
and expose our growing set of translation tools and reasoner services over the
World Wide Web via Web services. We chose to apply the REpresentational
State Transfer (REST)10 architectural style when designing our API for practical
8 http://riazanov.webs.com/tptp-parser.tgz
9 ANother Tool for Language Recognition (ANTLR) is a parser generator widely
used for building translators and interpreters for domain-specific languages.
http://www.antlr.org/

10 REST is an architectural style for distributed systems such as the World Wide
Web. A RESTful Web API is an API that conforms to the RESTful architectural
constraints specified in [4]

PSOATransRun: Translating and Running PSOA RuleML 5

Fig. 2. Detailed architectural view of the PSOA2TPTP translator

reasons. While there are other architectural styles for distributed computing
besides REST, RESTful Web APIs tend to be much easier to understand and
use (see [5]).

4 Implementation

4.1 Translation

The semantics-preserving translation from PSOA RuleML to TPTP has two
phases: (1) Normalization of composite formulas into a conjunction of elementary
constructs and (2) translating them into corresponding TPTP forms.

In the first phase, every psoa formula of the form

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

is split into a conjunction of 1 class membership formula o # f(), m single-
tuple formulas o # Top(ti,1 ... ti,ni) and k (RDF-triple-like) single-slot formu-
las o # Top(pi->vi). The rewriting preserves the semantics since the truth value
of a psoa formula is defined by the conjunction.

In the second phase, we define the translation function τpsoa(·) mapping each
PSOA/PS elementary construct to a TPTP construct as shown in Table 2.

In the translation, we use ‘l’ and ‘Q’ as the prefixes for translated local con-
stants and variables in TPTP, respectively.11 The KB is translated sentence by
sentence using τpsoa(·), while for the query we use a preserved answer predicate
ans to show the bindings of variables. More explanations can be found in [6].
11 In TPTP, constants and variables start with lower case and upper case letters, re-

spectively.

6 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

Table 2. Mapping function τpsoa(·) from PSOA/PS constructs to TPTP constructs

PSOA/PS Constructs TPTP Constructs
_C lC
?v Qv

o # Top(t1...tk) tupterm(τpsoa(o), τpsoa(t1) . . . τpsoa(tk))
o # Top(p -> v) sloterm(τpsoa(o), τpsoa(p), τpsoa(v))

o # f() member(τpsoa(o), τpsoa(f))
a ## b subclass(τpsoa(a), τpsoa(b))
a = b τpsoa(a) = τpsoa(b)

And(f1 ... fn) (τpsoa(f1) & ... & τpsoa(fn))
Or(f1 ... fn) (τpsoa(f1) | ... | τpsoa(fn))

Exists ?v1... ?vn f ? [τpsoa(?v1)...τpsoa(?vn)] : τpsoa(f)
Forall ?v1... ?vn f ! [τpsoa(?v1)...τpsoa(?vn)] : τpsoa(f)

ϕ :- ψ τpsoa(ψ) => τpsoa(ϕ)

4.2 RESTful Web API

Both the translation and execution operations are exposed as RESTful Web
services as shown in Figure 1. This was accomplished by creating two REST
resources: Translate, a REST resource for representing the PSOA2TPTP trans-
lator; Execute, a REST resource for representing a reasoner (VampirePrime). 12

Currently POST is the only HTTP operation supported by these resources along
with application/json (JSON encoding) and text/plain (plain text) Internet me-
dia types.

To translate a PSOA/PS document into a TPTP document, the PSOA/PS
document must be JSON-encoded and sent, in an HTTP POST request, to the
Translate URI; the response is the result of the PSOA2TPTP translator encoded
as a JSON array of TPTP-FOF sentences. See [7] for details.

The Execute Web service allows an application programmer to execute a rea-
soner; the reasoner we use is the VampirePrime reasoner, which accepts TPTP-
FOF sentences as input. Therefore, to query an input knowledge base using
PSOA/PS the application programmer must first request translation and then
send the resulting TPTP-FOF sentences in an HTTP POST request to the
Execute URI. The result will be the plain text output from the reasoner (see
Listings 2-5 in [7]) and the example in the next section.

5 Examples

In this section we demonstrate some examples showing how input knowledge
bases (KBs) and queries are translated into TPTP-FOF and executed by
VampirePrime to get the query results. We start with a simple example with
only ground facts in the KB, followed by an advanced one with rules.
12 Note that the designation of resource is not in and of itself a Web service, which

requires the combination of the resource URI, an HTTP operation and an Internet
media type.

PSOATransRun: Translating and Running PSOA RuleML 7

5.1 Example 1

– Input KB:
Document(
Group(
_f1 # _family(_Mike _Amy _child->_Fred _child->_Jane)
_Amy # _person([_married] [_bcs _mcs _phd] _job->_engineer)

)
)

– Translated KB:
fof(ax01, axiom,

member(lf1, lfamily) & tupterm(lf1, lMike, lAmy)
& sloterm(lf1, lchild, lFred) & sloterm(lf1, lchild, lJane)).

fof(ax02, axiom,
member(lAmy, lperson) & tupterm(lAmy, lbcs, lmcs, lphd)
& tupterm(lAmy, lmarried) & sloterm(lAmy, ljob, lengineer)).

The KB has two psoa formulas as facts. The first fact has one tuple for the
family’s adults, where _Mike _Amy is equivalent to [_Mike _Amy], a short-
cut allowed only in single-tuple psoa terms; it has two slots for the family’s
children. The second fact has two tuples, of lengths 1 and 3, and also a
slot. The two formulas are first broken into two conjunctions of elementary
constructs, and then mapped to two TPTP conjunctions according to the
function τpsoa(·) defined in the last section.

– Query 1.1: _Amy # _person(_job->_engineer)
– Translated Query:

fof(query, theorem,
((member(lAmy, lperson) & sloterm(lAmy, ljob, lengineer))
=> ans)).

– VampirePrime Output:
Proof found.
...
... | «ans» ...
The translated query is combined with the translated KB into a document
and executed by VampirePrime. In the output, «ans» indicates that the
queried fact is true. Note that this query is a ground fact, so that the task
here is to prove the fact rather than asking for variable bindings, which we
will show next.

– Query 1.2: _Amy # _person(_job->?Job)
– Translated Query:

fof(query, theorem,
((member(lAmy, lperson) & sloterm(lAmy, ljob, QJob))
=> ans("?Job", QJob))).

– VampirePrime Output:

8 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

Proof found.
...
... | «ans»("?Job = ",lengineer) ...

This query asks for the job of _Amy, and the answer «ans»("?Job = ",lengineer)
means ?Job can unify with _engineer.

5.2 Example 2

– Input KB:
Document(
Group (
Forall ?X ?Y ?Z (

?X # _person(_descendent->?Z) :-
And(?X # _person(_child->?Y) ?Y # _person(_descendent->?Z))

)
Forall ?X ?Y (

?X # _person(_descendent->?Y) :- ?X # _person(_child->?Y)
)
_Tom # _person(_child->_Amy _job->_professor)
_Eva # _person(_child->_Amy)
_Amy # _person([_married] [_bcs _mcs _phd] _child->_Fred)
_Fred # _person(_school->_UNB)

)
)

– Translated KB:
fof(ax01,axiom,(

! [QZ,QY,QX] :
((member(QX,lperson) & sloterm(QX,lchild,QY)
& member(QY,lperson) & sloterm(QY,ldescendent,QZ))

=> (member(QX,lperson) & sloterm(QX,ldescendent,QZ))))).
fof(ax02,axiom,(

! [QY,QX] :
((member(QX,lperson) & sloterm(QX,lchild,QY))
=> (member(QX,lperson) & sloterm(QX,ldescendent,QY))))).

fof(ax03,axiom,
(member(lTom,lperson) & sloterm(lTom,lchild,lAmy)
& sloterm(lTom,ljob,lprofessor))).

fof(ax04,axiom,
(member(lEva,lperson) & sloterm(lEva,lchild,lAmy))).

fof(ax05, axiom,
(member(lAmy, lperson) & tupterm(lAmy, lbcs, lmcs, lphd)
& tupterm(lAmy, lmarried) & sloterm(lAmy,lchild,lFred))).

fof(ax06,axiom,
(member(lFred,lperson) & sloterm(lFred,lschool,lUNB))).

PSOATransRun: Translating and Running PSOA RuleML 9

The KB has two rules and four facts. The facts shows the information of
_Tom, _Eva, _Amy, _Fred. The rules define the descendent relationship.

– Query 2.1: ?Ancestor # _person(_descendent->?Who)

– Translated Query:
fof(query,theorem,(

! [QWho,QAncestor] :
(sloterm(QAncestor,ldescendent,QY)
=> ans("?Ancestor = ",QAncestor,"?Y = ",QWho)))).

– VampirePrime Output:
Proof found.
...
... | «ans»("?Ancestor = ",lAmy,"?Who = ",lFred) ...
...
... | «ans»("?Ancestor = ",lEva,"?Who = ",lAmy) ...
...
...
...
... | «ans»("?Ancestor = ",lEva,"?Who = ",lFred) ...
...
The query asks for all the descendent pairs <?Ancestor, ?Who> in the KB,
and the output «ans»("?Who = ",lMike) and «ans»("?Who = ",lTom) from
VampirePrime means gives all the unifications.

– Query 2.2:
And (?Ancestor1 # _person(_descendent->_Fred)

?Ancestor2 # _person(_descendent->_Fred))
– Translated Query:

fof(query,theorem,(
! [QAncestor2,QAncestor1] :
((member(QAncestor1,lperson)
& sloterm(QAncestor1,ldescendent,lFred)
& member(QAncestor2,lperson)
& sloterm(QAncestor2,ldescendent,lFred))
=> ans("?Ancestor1 = ",QAncestor1,
"?Ancestor2 = ",QAncestor2)))).

– VampirePrime Output: Proof found.
...
... | «ans»("?Ancestor1 = ",lAmy,"?Ancestor2 = ",lAmy) ...
...
... | «ans»("?Ancestor1 = ",lAmy,"?Ancestor2 = ",lEva) ...
...
...
... | «ans»("?Ancestor1 = ",lTom,"?Ancestor2 = ",lEva) ...
...

– Query 2.3:

10 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

And (?Ancestor1 # _person(_descendent->?Who)
?Ancestor2 # _person(_descendent->?Who))

– Translated Query:
fof(query,theorem,(

! [QAncestor2,QWho,QAncestor1] :
((member(QAncestor1,lperson)
& sloterm(QAncestor1,ldescendent,QWho)
& member(QAncestor2,lperson)
& sloterm(QAncestor2,ldescendent,QWho))
=> ans("?Ancestor1 = ",QAncestor1,

"?Who = ",QWho,"?Ancestor2 = ",QAncestor2)))).
– VampirePrime Output: Proof found.

...

... | «ans»("?Ancestor1 = ",lAmy,"?Who = ",lFred,"?Ancestor2 = ",lAmy)

...

......

... | «ans»("?Ancestor1 = ",lTom,"?Who = ",lAmy,"?Ancestor2 = ",lEva)

...

......

... | «ans»("?Ancestor1 = ",lTom,"?Who = ",lFred,"?Ancestor2 = ",lEva)

...

...

6 Conclusions and Future Work

PSOATransRun is the first implementation of PSOA RuleML. It translates a
PSOA/PS knowledge base and queries into semantically equivalent TPTP doc-
uments, and then executes them through the VampirePrime reasoner to obtain
the query results. Future work on the project includes: (1) Extend the capability
of PSOATransRun to support all PSOA RuleML constructs; (2) build a complete
benchmark suite for testing PSOA RuleML reasoners; (3) deploy PSOATrans-
Run in real applications, e.g. the Clinical Intelligence use case [8], where PSOA
rules are used to define semantic mappings for a hospital data warehouse.

The wiki page on PSOA RuleML13 documents the ongoing development of
PSOATransRun, gives further examples, and links to the online system. Users
of PSOATransRun are encouraged to send their email feedback to the authors.

References

1. Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-Slotted, Object-
Applicative Rules. In Bassiliades, N., Governatori, G., Paschke, A., eds.: RuleML
Europe. Volume 6826 of LNCS., Springer (2011) 194–211

13 http://wiki.ruleml.org/index.php/PSOA_RuleML

PSOATransRun: Translating and Running PSOA RuleML 11

2. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Com-
munications 15(2-3) (2002) 91–110

3. Riazanov, A., Aragao, M.A.: Incremental Query Rewriting with Resolution. Cana-
dian Semantic Web II (2010)

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

5. DuVander, A.: New Job Requirement: Experience Building
RESTful APIs. http://blog.programmableweb.com/2010/06/09/
new-job-requirement-experience-building-restful-apis/ (July 2010)

6. Zou, G., Peter-Paul, R., Boley, H., Riazanov, A.: PSOA2TPTP: A Reference Trans-
lator for Interoperating PSOA RuleML with TPTP Reasoners. In Bikakis, A.,
Giurca, A., eds.: RuleML 2012. LNCS, Springer, Heidelberg (2012) 264–279

7. Zou, G., Peter-Paul, R.: PSOA2TPTP: Designing and Prototyping a Transla-
tor from PSOA RuleML to TPTP Format. Technical report http://psoa2tptp.
googlecode.com/files/PSOA2TPTP_Report_v1.0.pdf.

8. Riazanov, A., Rose, G.W., Klein, A., Forster, A.J., Baker, C.J.O., Shaban-Nejad,
A., Buckeridge, D.L.: Towards Clinical Intelligence with SADI Semantic Web Ser-
vices: a Case Study with Hospital-Acquired Infections Data. In: Proceedings of the
4th International Workshop on Semantic Web Applications and Tools for the Life
Sciences. SWAT4LS ’11, New York, NY, USA, ACM (2012) 106–113

Legal Rules, Text and Ontologies Over Time
Monica Palmirani1, Tommaso Ognibene, Luca Cervone1

1 CIRSFID, University of Bologna.

{monica.palmirani, tommaso.ognibene, luca.cervone}@unibo.it

Abstract. The current paper presents the “Fill the gap” project that aims to

design a set of XML standards for modelling legal documents in the Semantic

Web over time. The goal of the project is to design an information system using

XML standards able to store in an XML-native database legal resources and

legal rules in an integrated way for supporting legal knowledge engineers and

end-users (e.g., public administrative officers, judges, citizens).

Keywords: Legal Reasoning, Akoma Ntoso, LKIF-core, LegalRuleML.

1. Introduction

“Fill the gap” [28] is a project funded by the CIRSFID-University of Bologna in 2009

as an extension of the outcomes of the ESTRELLA1 IST project (IST-2004-027655)

with the aim for performing a platform where legal documents are modelled using

XML standards and the ontology layer is used as the interconnection technique

between the pure text of the document and the embedded legal knowledge, including

rules representing the norms expressed by the textual document. The ontology is used

for modelling the legal concepts and to represent the properties and the T-Box axioms

of the main legal values (e.g., copyright, work, etc.), including geo-spatial (e.g.,

jurisdiction) and legal temporal dimensions (e.g., enforceability, efficacy,

applicability of the norms). The text, annotated in XML using the Akoma Ntoso

standard [35] and the metadata, extracted using parsers and NLP techniques [22], are

connected manually to the ontology framework [14] [10] and finally, the rules,

formalized in defeasible logic, are connected to the textual provisions and to general

and abstract legal concepts modelled in the legal ontology.

In this way several applications are possible: i) to improve information retrieval of

legal documents; ii) to facilitate navigation over time when norms and texts change;

iii) to foster semantic indexing, classification and query; iv) to enhance the

expressivity of formal models of legal reasoning; v) to provide appropriate legal

explanations using textual provisions in order to justify the proof of reasoning and vi)

finally to annotate legal resources with the legal knowledge output of the proof for

permitting open data sharing (e.g., Linked data). The aim of this paper is to present a

first demo of this approach applied on a fragment of the US code, Title 17, Section

504 in order to provide a proof-of-concept of the applicative architecture.

1 http://www.leibnizcenter.org/current-projects/estrella

2. Relevance of the Problem

The last twenty years have seen a growing interest in the development of XML

standards, methodologies and models for the management of legal knowledge

 [21] [33] [8]. This interest covers not only “proper” law documents, such as legislation,

but it embraces all source documents with a relevant legal content, such as the vast

area of internal regulations of public bodies/private companies, codes of conduct,

codes of practice, often cited as “soft law”. This is particularly true in some

financial/legal domains [6], such as those involving banks and insurance companies

and as well as new emerging sectors like patent law , cloud computing and privacy

 [17], credit card company regulations and telecommunication policies.

The Computer Science and Law community itself [30] dedicated the last two

decades to modelling legal norms using different logics and formalisms. The

methodology used starts from a reinterpretation of the legal source text by a Legal

Knowledge Engineer who extracts the norms, applies models and theory using a logic

representation and finally represents them with a particular formalism. In the last ten

years several Legal XML standards have arisen for describing legal text and rules

(RuleML, RIF, SWRL, etc.). In the meantime the Semantic Web, in particular Legal

Ontology research, combined with NLP extraction of semantics, has given a great

impulse to modelling the legal concepts [23] [10] [14] [31]. Certainly, one of the main

challenges is to acquire the ability to capture, with the help of NLP techniques

 [30] [36], all relevant legal knowledge embedded in a legal document and to represent

it in an appropriate formal model. This enables the descriptiveness, meaning and

semantics of the source document to be retained, and at the same time, the knowledge

is machine-readable and computable.

In this scenario there is an urgent need to close the gap between the text

description, represented using XML techniques, and the norms formalized with

logical rules in order to realize an integrated and self-contained representation. There

are four main reasons:

• legal knowledge is currently presented in a disjointed way in the original text that

inspired the logical modelling. This disconnection between legal document

management and logic representation of the embedded rules strongly affects the

real usage of the legal document knowledge in favour for citizens, public

administrations and business (e.g., contracts, assurance regulation, bank soft law,

etc.);

• management of changes to the legal document over time, especially act,

regulations and contracts that by nature are variable and subject to frequent

modifications, significantly affecting the coordination between the text and the

rules that should be remodelled;

• the legal validity of the text as authentically approved by the empowered bodies

(e.g., contractors) should be preserved by any manipulation. On the other hand, it is

important to connect legal document resources, which themselves include many

legality values (e.g., authenticity, integrity, evidence in trial, written form, etc.),

with the multiple interpretations coming from legal knowledge modelling;

• a theory of legal document modelling able to separate clearly the many layers of

representation of the resource: content (text), structure of the text, metadata on the

document, ontology on the legal concepts expressed in the text, legal content

modelling (regulatory part of the text) are fundamental to preserving over time the

digital legal text enriched by many semantic annotations, including logic

representation of the rules.

3. Filling the Gap: from Text to Rules

The first distinction that we should provide to understand goals in the legal domain is

to distinguish between three conceptual layers:

• norms (abstract mandatory commands concerning rights or duties)

• textual provisions (sequences of texts) and

• rules (elaboration of the text in logical rules).

The norm, following Kelsen’s definition [19], is an abstract mandatory command

concerning rights or duties. The norm usually is expressed in written using legal text

or in an oral way (e.g., social norm, oral contract) or in other representations (e.g.,

symbolic road signs).

The textual provisions (or simply provisions) are the instantiation of the general

norms in one possible textual representation (sentence, article, paragraph).

The legal rules are interpretation of the provision(s) formalized using logical rules

in the form of antecedent and consequent. Sometime several provisions determine a

single rule or a single provision includes multiple rules.

Usually in the state of the art AI&Law scholars focused their attention only on the

rules modelling and on the foundational logical theory, and apart the isomorphism

principles [4] the connection with the text over time and the ontology aspects has

been neglected. There is a theoretical and important debate in the AI&Law

community on the interpretation of the legal textual provisions expressed in natural

language and on canonization of the rules using logical formalisms [5]. The prevalent

theory is now oriented towards hybrid interpretation [32] (rather than pure textualism,

or pure interpretation). We want to make visible in the text a “scintilla of evidence”

that there is a minimal but reasonable interconnection, following the legal theory of

interpretation, with a logical rule in a formal representation. This exercise sometimes

forced the legal knowledge expert to split the original provision in two or more rules,

or to duplicate the rules or to compact several sentences in one unique rule. In this

scenario we have to manage an N:M relationship between norms, textual provisions

and ontology that we want to capture and to represent maintaining the strong

separation between these three levels.

The law changes over time and consequently change the rules and the ontological

classes (e.g., the definition of EU citizenship changed in 2004 with the annexation of

10 new member states in the European Community). It is also fundamental to assign

dates to the ontology and to the rules, , based on an analytical approach, to the text,

and analyze the relationships among sets of dates. The semantic web cake

recommends that content, metadata should be modelled and represented in separate

and clean layers. This recommendation is not widely followed from too many XML

schemas, including those in the legal domain. The layers of content and rules are

often confused to pursue a short annotation syntax, or procedural performance

parameters or simply because a neat analysis of the semantic and abstract components

is missing.

Therefore in our vision all legal resources present a complex multilayered

information architecture [2] that includes several perspectives of analysis:

• TEXT. The perspective of the document officially approved by a legally competent

authority. This text is the only legal binding.

• TEXT’S STRUCTURE. The perspective of the document that describes the way the

text is organized.

• METADATA. Any additional information that was not deliberated by the legally

competent authority. Metadata can describe the document itself (e.g., by way of

keywords), its workflow (e.g., procedural steps in the bill), its lifecycle (the

document’s history), or its identification (e.g., by way of an URI).

• ONTOLOGY. Any information specifying the legal or institutional setting in which

the document plays a role—e.g., information identifying the document as a

judgment or opinion about the legal system’s concepts—or any legal concept

which is invoked in the text and which needs modelling (e.g., jurisdiction, enter

into force, applicability, etc.).

• LEGAL RULES. The legal interpretation and modelling of the text’s meaning. The

transformation of the norms in logical rules for permitting legal reasoning. Several

XML standards are present in the state of the art for managing rules (RIF, RuleML,

SWRL), nevertheless RuleML seems to provide a flexible language able to

describe different possible theories or logical models (propositional, predicative,

argumentative, non-monotonic, deontic, defeasible, etc.) but it is not fitted for the

legal domain. For this reason we are starting a new technical group in OASIS

called LegalRuleML with the aim to perform a specific RuleML module oriented

to the legal peculiarities including defeasibility, deontic, temporal reasoning,

qualification of the norms, institutions (e.g., authority, agents, authors), jurisdiction

 [29].

The aim of this project is to connect all the layers and to manage the temporal

dimensions of the provisions (text layer) and rule levels to make them connected

accordingly with respective change over time. In other worlds our aim is to track the

modifications of the text especially concerning the temporal dimensions (e.g.,

application of the norm) and to model the changes in the rules accordingly with the

change management of the text. Vice versa it often happens that rules are changed by

external events or by the result of legal reasoning, so the validity of the text is affected

by these inferred knowledge (e.g., international treaty rules suspended by war).

Secondarily, we would like to build a reasoner that is able to deduct the correct

rules to apply depending on the time parameters of the facts. If we have a precedent in

criminal law of the High Court in 1994, a new law in 2010 and while the facts of the

case occurred in 2005, but the judge must decide the case-law in 2012, the reasoner

has to take in consideration and compare two scenarios: the rules coming before the

2005 (date of the facts) and the rules coming after the 2005 till 2012 for permitting to

the judge to evaluate the best opportunities for the criminal (principle of favor rei).

The reasoner should be able to manage temporal reasoning on the rules at a meta-

level in order to pre-filter the pertinent rules according to the temporal parameters and

to build dynamically new rules for qualifying the rules (e.g., defeasible and defeater).

We use the Akoma Ntoso XML standard [35] for implementing the first three

levels of the Semantic Web cake (mark-up the text, the structure and the legal

metadata) and to provide hooks and mechanisms for referring to external ontologies

and to legal knowledge modelling using URI and idRef to the proper nodes. LKIF-

Core [10] provides general mechanisms for coping with the ontology level and it is

able to manage the events, the roles, the authors, and other more fine grained legal

knowledge models. Finally LegalRuleML (we used a draft preliminary version not

official approved by the OASIS TC2) is able to model normative rules [29]. The

fundamental part of this multilayer architecture is the URI reference based naming

convention [16] [3] that functions as the interface between levels. A specific resolver

is able to point out the different sources and rules, over time, in correct way. This

mechanism is included in the RuleViewer module presented in section 7.

4. Applicative Scenario

The applicative scenario that this project aims to manage is showed in the following

picture (see Fig.1) and organized in the following steps:

i. legal text is marked-up in XML legal standard, in our case in Akoma Ntoso;

ii. legal concepts derived by legal text are modelled in OWL and updated on the

base of the changes over time;

iii. rules interpreted by legal text, and integrated by the legal ontologies, are

modelled in LegalRuleML;

iv. a native XML database stores all the files and it is able to manage Xpath and

Xquery in easy way on all the files XML, RDF, OWL;

v. Drools engine provide the level of reasoning;

vi. general assertions derived by knowledge base reasoning process (e.g., an invalid

section) could be exported in RDF in order to enrich the original XML text and in

such way to improve the sharable knowledge on the web.

This approach is based on several requirements near to the concept “Fill the Gap”:

• the granularity of the legal document marked-up in XML must be related,

following the isomorphic principle [4], to the logic rules representation and to the

ontological statements (word, paragraphs, etc.). For this purpose we recall the URI

references of Akoma Notoso XML nodes in a special metadata block of

LegalRuleML called <lrml: sources>, where we specify the provisions connected

with the atoms and rules. This relationship between rules and text is an N:M

cardinality, so the current state of LegalRuleML implements a mechanism able to

represent the multiple associations;

• the contextual information related to the rules has to manage in atomic way in

order to favour the correspondence between rule and the textual provision. This

ensures that where there is a modification or cessation of a fragment of text, it is

possible to manipulate only a node of the LegalRuleML XML tree without

affecting the consistency of the other rules. This principle enables rule and its

2 We take into consideration the version available at the date of the paper submission:

http://www.oasis-

open.org/apps/org/workgroup/legalruleml/download.php/45888/2.1defeasibility.002.002.doc

metadata to be encapsulated as an atomic object. For this reason we proposed a

separate and atomic block < lrml:ruleInfo> in LegalRuleML (under discussion in

the TC).

• the relationship between the document, rules and the ontology layers needs to be

implemented considering the bidirectionality of the information and, among the

other issues, the evolution of the legal concept over time. The system is not able to

implement this feature in the current version;

• the legal document changes over time, therefore in the rule modelling layer, as

well as in the legal ontology and in the text layers, it is necessary a mechanism for

managing the dynamicity over time and a temporal logic able to manage

retroactivity effect of the norms (e.g., annulment, forking of temporal lines, etc.)

and applicability of the law (e.g., an Act about the earthquakes in Italy is

applicable only to the events of 20 and 29 May 2012). The legal temporal model

should be able to manage three main legal axes (enforceability, efficacy and

applicability, so a rule could be effective but not applicable when concrete

conditionals are not satisfied). For this purpose Akoma Ntoso and LegalRuleML

include a temporal model event-based;

• the deontic operators need to be managed jointly with the temporal parameters for

permitting the correct application of the obligations, rights, permissions and

violations accordingly with the fact (e,g, crime) to evaluate;

• the non-monotonic dimension of the law, (e.g., the exceptions that are present often

in legal documents including contract) would strongly suggests that a defeasible

reasoning approach should be adopted.

Fig. 1 – Applicative Scenario

5. Architecture Design

For implementing these goals we will adopt the following methodology and apply it

to a fragment of the US copyright domain (sec. 504) in order to model, describe and

represent the different levels of legal knowledge information:

• text, structure, metadata: legal documents (e.g., contracts) will be marked-up in

Akoma Ntoso using a new web editor (Rawe) based on a previous .specialized

editors features (Norma-Editor [24]) that was able to extract structure, references

and metadata using parsers [2];

• legal domain ontology: an ontology for modelling and defining macro-concepts

specific for the legal domain (e.g., IPR issues, jurisdiction, penalty, etc). The

ontological classes built manually define the legal theoretical concepts describing

their properties, relationships with other contents and their spatial and

chronological dimensions. The ontology are stored in the native XML database that

is able to manage versioning and evolution over time of OWL2 ontologies [7] [1];

• NLP tools: the team uses NLP techniques for extracting the legal knowledge

embedded in legal texts and to represent them as XML structured elements or as

previously defined ontological structures. NLP techniques facilitate the

development of parsers able to fill the gap between the text and its semantic level

and accelerating the mark up process that usually is a time consuming task [25];

• rules modelling and reasoning: the legal document (e.g., law, judgments,

contracts, etc.) will be modelled by the legal knowledge engineer in LegalRuleML.

Rules using the web editor. The rules represented in LegalRuleML are imported

inside of an inference engine properly customized by CIRSFID (based on Drools

ver. 5.4) with a specific dialog interface for entering the facts. The rule engine aims

to use a hybrid technology [9] [34] (see among the others OntoRule project) using

semantic rule reasoning taking benefits from the OWL2 ontology;

• native XML DB repository and rule viewer. All legal resources (text, metadata,

ontologies and rules) are stored and delivered on the Web using a native XML

database (based on eXist). In this way all the legal resources will be interconnected

and presented for gathering the legal knowledge through an information retrieval

engine, a reasoning engine and an application layer [26] [27];

• presentation of rules an text. Finally the text and rules are presented using a web

interface (RuleViewer) in order to connect text and rules for the end-user.

Some modules of this architecture (see Annex) are presented in this paper demo.

• A specialized web editor for marking up legal text and normative rules (Rawe3) in

synchronized way, realizing so the isomorphism principle.

3 http://sinatra.cirsfid.unibo.it/rawe/

Fig. 2 – Rawe web editor for marking up legal text and normative rules.

The rules are converted to the LegalRuleML emerging standard and the text to

Akoma Ntoso.

Fig. 3 – Rule Viewer inside of Rawe editor.

• In a second step the editor submits the text and the rules in XML format

(respectively in Akoma Ntoso and in LegalRuleML) to the eXist native XML

database.

• An interface API queries eXist and extracts the LegalRuleML files. In particular

those files are used for populating the temporal information in a dynamic way

stored in the Drools knowledge base.

• The Drools reasoner simulates defeasibility rules and reasoning.

• Finally a rule viewer (RuleViewer module4) presents the rules connected with the

legal text, including version management over time.

Fig. 4 – Text and RuleViewer.

6. Pilot Case

We definitely aim to provide a demonstration environment for testing the applicative

scenario, using a pilot case coming from the US code, Title 17, sec. 504 on the

copyright infringement.

17 USC Sec. 504
(c) Statutory Damages. -
(1) Except as provided by clause (2) of this subsection, the

copyright owner may elect, at any time before final judgment is
rendered, to recover, instead of actual damages and profits, an
award of statutory damages for all infringements involved in the
action, with respect to any one work, for which any one
infringer is liable individually, or for which any two or more
infringers are liable jointly and severally, in a sum of not
less than $250 or more than $10,000 as the court considers just.
For the purposes of this subsection, all the parts of a
compilation or derivative work constitute one work.

(2) In a case where the copyright owner sustains the burden
of proving, and the court finds, that infringement was committed
willfully, the court in its discretion may increase the award of
statutory damages to a sum of not more than $50,000. In a case
where the infringer sustains the burden of proving, and the
court finds, that such infringer was not aware and had no reason
to believe that his or her acts constituted an infringement of

4 http://sinatra.cirsfid.unibo.it/ruleviewer/

copyright, the court it its discretion may reduce the award of
statutory damages to a sum of not less than $100.

This provision was modified three times and it is just a chance that the

modifications are not retroactive (i.e., in legal domain it is necessary to use a non-

monotonic temporal model). The table below lists the modifications with the temporal

intervals of efficacy:

Interval
name

Interval of
efficacy of the
norm

Statutory
Damages

Willfully Bona
Fides

timeBlock1 [1976-10-19,
1995-03-01[

$250 <=
statutoryDamages
<= $10,000

Max
$50,000

Min
$100

timeBlock2 [1995-03-01,
2001-02-01[

$500 <=
statutoryDamages
<= $20,000

Max
$100,000

Min
$200

timeBlock3 [2001-02-01, •[$750 <=
statutoryDamages
<= $30,00

Max
$150,000

Min
$200

The goal is to insert in the system a fact in a due date t1 and to check which

statutory damages the infringer must pay. We are interested also to show the text of

the proper version according to the rules applied and the time.

6.1. Modelling Text and Rules

We have translated the textual provisions (all the three versions) in XML using

Akoma Ntoso and the corresponding rules in LegalRuleML5. The XML files where

posted to the system, stored in eXist repository and also converted in Drools Rule

Language for permitting to manage the rules in the Drools suite. In Drools a rule has

the following format:
rule
 // attributes
 when
 // conditions
 then
 // actions
end

It is not a classical conditional structure IF-THEN, because Drools uses WHEN-

THEN model. Drools implements a version of Rete algorithm and executes the

conclusions whenever the patterns in the conditions are matched by a fact. Drools

supports several temporal reasoning constructs (e.g., Allen’s time model) as showed

in the table below:

5 Using the preliminary draft version of the OASIS TC.

Fig. 5 – Allen’s temporal model managed by Drools.

Anyway, the implementation of the temporal reasoning by Allen’s model in

Drools is effective only when dealing with business rules and business events such as

commercial markdowns that live in the present and die in the future. On the contrary,

when dealing with legal events and rules, there is not only present and future, but a

complex mix of past, present and future to deal with (e.g., modifications in the past

with retroactive effects). For this reason the temporal attributes (metadata)

implemented by Drools to manage events’ and rules’ lifecycles are not enough in our

case. This limitation has been partially supplied by adding temporal constraints as

patterns to be matched.

Fig. 6 – date-effective and date-expires.

The rule attributes “date-effective” and “date-expires” are almost useless when

dealing with legal rules (see Fig. 6). Drools is open source and written entirely in

Java, so that we implemented a data structured using POJO. We inserted some

instances in the reasoner in the following way:

Fig. 7 – Instances.

Furthermore, in the DRL (Drools Rule Language) file, we added besides the mere

instances some semantics of Drools:

Fig. 8 – Data model of the instance query.

In this way, the reasoner considers the instances as events, with a precise

timestamp and duration. Though the attributes “@timestamp” and “@duration” suffer

the same limitations as the rule’s temporal attributes as “@stated” before. Every rule

refers to a precise legal provision with precise temporal parameters for its efficacy.

We can add these temporal conditions in every rule as in the following listing (see

Fig. 9). Or we can consider the temporal parameters as meta rules that control the rule

flow. For this we use the Drools & jBPM RuleFlow (see Fig. 10). In the following

example we force the rule engine to fire (or rather, to give a chance to fire) only the

rules that match with given certain temporal parameters. In this manner we can deal

with rule versioning in a fast way (especially in case of modifications of the relative

norms).

Fig. 9 – Temporal conditions in Drools Rules.

Fig. 10 – Workflow module for modelling the priority of the rules in Drools Rules.

Nevertheless, this kind of rule flow management cannot deal in an effective way with

the phenomenon of multiple versions of legal rules applicable at the same time. Or

rather, it can, by using an OR type instead of an XOR type, but it needs also a more

accurate combination between the two rule set versions.

Drools has various way to deal with complex rule sets. In order to deal with

conflicting rules we tried to apply the construct named “salience”. It allows to give to

every rule an order of priority. This way the rule engine shall fire firstly the rules with

the highest priority. The disadvantages is to define since the beginning the priority of

all rules manually.

6.2. Goals

The system manages the following request for each fact on the basis of the below

table of variables shown below:

Starting
Time of the
infringement

Ending Time
of the
infringement

Status of the
willfulness

Status of the
proving

T1 T2 Willful
Not-willful

Burden of Proving
Not burden of
proving

Fig. 11 – Data model of the dialogue.

We need also the status of the work (public domain or not public domain) that for

now it is stored in the local database in static way, but for the future we will insert the

appropriate rules coming from the Title 17, US code, and we will deduct in real-time

and dynamically the status of the work from the reasoning.

We have entered several cases testing different intervals of time, different status of

wilful and proving. In the pilot case this produces the following output:

Fig. 12 – Output of the test.

For example, the event with timestamp “1989-01-01T00:00:00.000+01:00” has the

field “burden of proving” set true and the field “willfulness” set true, therefore the

legal rule to be applied should be the rule “burden of proving + willfulness”.

Nevertheless, as the rule “not burden of proving” has the highest priority and it is a

general rule with no constraints, the rule engine fires it and executes the

consequences. In a second moment, when the rule engine fires the rules with a lower

priority, it fires our right rule, the rule “burden of proving + willfulness” and this

leads to override the consequences of the general rule fired before.

Such kind of priority as a conflict resolution strategy between rules may be

consequent to the following legal argument: first we apply the general rule, then we

apply the more specific rule and override the general rule consequences with the more

specific rule consequences.

6.3. Reasoner

Drools rule engine is made for dealing with thousands of facts and thousands of rules

fired real time by different entry points. Its aim is to build expert systems able to take

into consideration all the events happened during the time and matching the

appropriate conclusions by means of rulebases. For our legal domain, the best option

is to build a legal expert system very focalized on concrete, business application in

order to exploit all the best features of Drools (If the aim is to exploit all the best

feature of a Business Rule Management System). For example if we want a system

for dealing with US Copyright law, with Drools we can build a rule engine always

active, 24/7, that process several precise classes of events (such as possible violations,

death of authors, payment of royalties) and compute different kinds of rules (we can

have more abstract rules that just represents the logic within the norms, or we can

have more concrete rules that realize a business policy conforming to the norms). In

technical terms, Drools offers:

• Several clock types, for example, a real-time clock or a pseudo clock. The real-

time clock is the default and should be used in normal circumstances. But in the

legal domain the pseudo clock is especially useful as we have complete control

over time and we can better deal with complex temporal reasoning schemas.

• The declaration and usage of events with both semantics: point-in-time events

and interval-based events. This is useful in the legal domain since an

infringement or, more generally, a crime, can be committed in a precise single

moment, or in an interval of time (e.g., stalking crime that is a set of harassment

during an interval of time).

7. Front-End Component: RuleViewer

At the end the system front-end RuleViewer6 (see Fig. 5) shows the list of the versions

of the US Code, Title 17, section 504 over times (seven versions). The end-user can

navigate to one version (using a calendar or selecting the list of versions) and to detect

immediately, by mouse-hover mechanism, the rules involved in a due fragment of

text. Vice versa it is possible to navigate the rules in the right window and the end-

user can see the correspondent fragment of legal text for integrating the legal

interpretation. An important feature of RuleViewer is to provide a common

environment where the models for representing legal knowledge are close to the

6 http://sinatra.cirsfid.unibo.it/ruleviewer/

document text, thus bridging the gap between legal reasoning and textual

representation. This means that each document (or each document package) can be

connected with a set of rules representing the norms found in the legal document. It is

for this purpose that we use the LegalRuleML language in our project in a very

preliminary version7. The relationship between LegalRuleML files and the legal

textual Akoma Ntoso documents is thus managed using a many-to-many (N:M)

cardinality expressed in the <lrml:source> element that is able to connect, using URI

references, rules and original textual sources. This makes it possible to navigate from

a document to its corresponding norms and vice-versa, also considering the

versioning. This can be done using the latest Web technologies (AJAX) and the

mouse-hover technique. But this also means that searching for the relations dependent

on a rule can be a quite complex task, typically involving a very large body of XML

documents. The best way to query LegalRuleML resources related to a document is to

use Xpath or Xquery languages and to foster the < lrml:source> < lrml:ruleInfo>

LegalRuleML blocks and the temporal parameters related to the rules. So, if we store

the LegalRuleML files in a particular instance of the eXist database, we can use the

above-mentioned technology to do complex queries in a very customizable way and

with good results. This feature of connecting documents with their rules and vice-

versa is helpful especially where change management is concerned, for in this way we

can navigate a set of documents stilled at a time t and extract a subset of rules already

coordinated with respect to the timeline. An inference engine can process for purposes

of reasoning.

8. Conclusion

We have presented the foundational architecture design of a project called “Fill the

Gap” which aims to integrate and to interconnect legal text marked up in Akoma

Ntoso with rules marked up with the emerging LegalRuleML and ontology expressed

in LKIF-Core. Three modules are presented: i) a specialized web editor for marking

up text and rules in XML; ii) an eXist repository with an API for Xpath and Xquery;

iii) a prototype in Drools for implementing defeasibile reasoning using first priority

mechanism and after workflow steps definitions for simulating the hierarchy

relationship among the rules (override mechanism); iv) a front-end visualization of

the legal text and rules in side-by-side windows. We have also refined the temporal

aspects, but the legal time parameters don’t follow the canonical sequence of Allen’s

events because we need to manage the retroactive effects. Finally we have tested the

Drools engine for producting some results. Unfortunately Drools needs new modules

for managing defeasibility (not only simulating it) and temporal reasoning closer to

the legal domain time parameters imported dynamically by LegalRuleML files. We

are satisfied by these discovery because for the future we intend to proceed with the

folloaing experiments: 1) to refine the editor especially on the rule modelling side and

for including boxes dedicated to metadata; 2) to extend the eXist API versus Drools;

7 Documents of the OASIS LegalRuleML TC are available at https://www.oasis-

open.org/committees/documents.php?wg_abbrev=legalruleml. The mailing list describing

the work in progress can be browsed at https://lists.oasis-open.org/archives/legalruleml/.

3) to extend the Drools environment with the following modules: i) to import in a

more effective way in Drools the LegalRuleML rules and to export from the editor

them in the LegalRuleML syntax (when fixed by the OASIS TC); ii) to manage

defeasibility in a more abstract way, not embedded in the Drools code; iii) to

implement an abstract legal temporal model of reasoning. The goal is also to

understand if we can reach the same performance and expressiveness of SPINdle [20]

using some Drools extensions; 4) to refine the front-end interface for the rule viewer

(e.g., graphs representation) and to improve the Rest/API from and to Drools.

Acknowledgement. A particular thanks go to Guido Boella, University of Turin, for

the precious inputs on the research topics and on the organization of the paper for

improving readability. I would like to thank Llio Humphreys for the proof-reading,

not limited to the English matter but fruitfully integrated with her competences in the

legal informatics and logic.

References

[1] Ashley K. D.: Ontological requirements for analogical, teleological, and hypothetical legal reasoning.

In: ICAIL 2009, pp. 1-10, 2009.

[2] Barabucci G., Cervone L., Palmirani M., Peroni S., Vitali F.: Multi-layer Markup and Ontological

Structures in Akoma Ntoso. In: LNCS 6237/2010, pp. 133-149, Springer, 2010.

[3] Bekiari C., Doerr M. and Le Boeuf P.: International Working Group on FRBR and CIDOC CRM

Harmonization. 2008. FRBR object-oriented definition and mapping to FRBRER (v. 0.9 draft).

Accessed 20 August 2009.

http://cidoc.ics.forth.gr/docs/frbr_oo /frbr_docs/FRBR_oo_V0.9.pdf.

[4] Bench-Capon T. and Coenen F.: Isomorphism and legal knowledge based systems. Artificial

Intelligence and Law, 1(1):65–86, 1992.

[5] Boella G., Governatori G., Rotolo A., Torre L.V.D.: A Formal Study on Legal Compliance and

Interpretation. ;In AICOL Workshops(2009), Springer, 162-183, 2011.

[6] Boella G., Humphreys L., Martin M., Rossi P., and van der Torre L.: Eunomos, a legal document and

knowledge management system to build legal services. In Proceedings of AI Approaches to the

Complexity of Legal Systems Workshop (AICOL), Berlin, Springer, 2012.

[7] Boer A., Hoekstra R., de Maat E., Hupkes E., Vitali F., Palmirani M., Rátai B.: CEN Metalex

Workshop Agreement (2009-08-28 proposal). http://www.metalex.eu/WA/proposal.

[8] Boer A., Radboud W., Vitali, F.: MetaLex XML and the Legal Knowledge Interchange Format. In:

Casanovas P., Sartor G., Casellas N., Rubino R. (eds.), Computable Models of the Law, Springer,

Heidelberg (2008), pp. 21-41, 2008..

[9] Bragaglia S:, Chesani F., Ciampolini A., Mello A., Montali M., Sottara D.: An Hybrid Architecture

Integrating Forward Rules with Fuzzy Ontological Reasoning. HAIS (1) 2010: pp. 438-445, 2010.

[10] Breuker J., Boer A., Hoekstra R., Van Den Berg C.: Developing Content for LKIF: Ontologies and

Framework for Legal Reasoning, in Legal Knowledge and Information Systems, JURIX 2006, pp.41-

50, ISO Press, Amsterdam, 2006.

[11] Brighi R., Lesmo L., Mazzei A., Palmirani M., Radicioni D.: Towards Semantic Interpretation of

Legal Modifications through Deep Syntactic Analysis. JURIX 2008: 202-206, 2008.

[12] Gordon T. F., Governatori G., Rotolo A.: Rules and Norms: Requirements for Rule Interchange

Languages in the Legal Domain. RuleML 2009: pp. 282-296, Springer, 2009.

[13] Gordon T. F.: Constructing Legal Arguments with Rules in the Legal Knowledge Interchange Format

(LKIF). In: Computable Models of the Law, Languages, Dialogues, Games, Ontologies (2008), pp.

162-184, Springer, 2008.

[14] Hoekstra R., Breuker J., Di Bello M., Boer A.: The LKIF Core Ontology of Basic Legal Concepts. In:

Casanovas P., Biasiotti M.A., Francesconi E., Sagri M.T. (eds.), Proceedings of LOAIT 2007, 2007.

[15] http://www.akomantoso.org/ naming convention of the URI

[16] http://www.ifla.org/publications/functional-requirements-for-bibliographic-records

[17] Hu Y., Wu W., Cheng D.: Towards law-aware semantic cloud policies with exceptions for data

integration and protection. WIMS 2012: 26, 2012.

[18] Karam N., Paschke A.: Patent Valuation Using Difference in ALEN. Description Logics 2012, 2012.

[19] Kelsen H.: Reine Rechtslehre, 2d. ed., Wien, 1960.

[20] Lam H., Governatori G.: The Making of SPINdle. RuleML 2009 proceeding, pp. 315-322, 2009.

[21] Lupo C., Vitali F., Francesconi E., Palmirani M., Winkels R., de Maat E., Boer A., and Mascellani P:

General xml format(s) for legal sources - Estrella European Project IST-2004-027655. Deliverable

3.1, Faculty of Law, University of Amsterdam, Amsterdam, The Netherlands, 2007.

[22] Mazzei A., Radicioni D., Brighi R.: NLP-based extraction of modificatory provisions semantics.

ICAIL 2009: pp. 50-57, ACM, 2009.

[23] Mommers L.: Ontologies in the Legal Domain. In: Poli R., Seibt J. (eds.), Theory and Applications of

Ontology: Philosophical Perspectives, Springer 2010, pp. 265-276, 2010.

[24] Palmirani M., Brighi R.: An XML Editor for Legal Information Management. Proceeding of the

DEXA 2003, Workshop on E-Government, Praga, 1-5 September, pp. 421-429. Springer-Verlag

Berlin Heidelberg, 2003.

[25] Palmirani M., Brighi R.: Model Regularity of Legal Language in Active Modifications. AICOL

Workshops 2009: pp. 54-73, Springer, 2009.

[26] Palmirani M., Cervone L., Vitali F.: Legal metadata interchange framework to match CEN metalex.

ICAIL 2009, pp. 232-233, 2009.

[27] Palmirani M., Cervone L.: Legal Change Management with a Native XML Repository. A cura di G.

Governatori. Legal Knowledge and Information Systems. JURIX 2009. The Twenty-Second Annual

Conference. Rotterdam. 16th-18th December 2009,pp. 146-156, Amsterdam: ISO press, 2009.

[28] Palmirani M., Contissa G., Rubino R: Fill the Gap in the Legal Knowledge Modelling. In Proceedings

of RuleML 2009, pp. 305-314, Springer, 2009.

[29] Palmirani M., Governatori G., Rotolo A., Tabet S., Boley H., Paschke A.: LegalRuleML: XML-Based

Rules and Norms. RuleML America 2011: 298-312, Springer, 2011.

[30] Proceeding of the 13th International Conference on Artificial Intelligence and Law, Pittsburgh 6-10

June, 2011, ACM, NY, 2011.

[31] Sartor G.: Legal Concepts as Inferential Nodes and Ontological Categories. In Artif. Intell. Law 17(3)

2009, pp. 217-251, 2009.

[32] Sartor G.: Legal Reasoning: A Cognitive Approach to the Law. Vol. 5. Treatise on Legal Philosophy

and General Jurisprudence. Berlin: Springer, 2005.

[33] Sartor G.; Palmirani M.; Francesconi E.; Biasiotti M. (eds.): Legislative XML for the Semantic Web.

Principles, Models, Standards for Document Management, Dordrecht/Heidelberg/London/New York,

Springer, 2011, Law, Governance and Technology Series, Vol. 4., 2011.

[34] Sottara D., Mello P., and Proctor M.: A configurable rete-oo engine for reasoning with different types

of imperfect information. IEEE Trans. Knowl. Data Eng., 22(11): pp. 1535–1548, 2010

[35] Vitali F., Palmirani M.: Akoma Ntoso Release Notes. [http://www.akomantoso.org]. Accessed 20

June 2012.

[36] Wilcock G.: Introduction to Linguistic Annotation and Text Analytics Morgan & Claypool Publishers

2009.

Annex

Application Layer

Front-end

CMS

HTTP

Apache

Public

Access

Disk

CMS

Page

CMS

Page

CMS

Data

SOAP/WSDL Layer

Application Logic

Data Layer- eXist

SOAP/WSDL Layer

Transaction Manager

Exist Database

Validator Module

XML&RDF

Akoma Ntoso

Presentation

Applications

 CMS

Administration

RDBMS

URI

Resolver

Web Editor

Web Client

Application

RuleViewer
REST Web

Services

User

User

NLP module

Rule Engine

API

SOAP/WSDL Layer

Ontology

Resoner

Ontology Graph

Management

Integration Knowledge Module

Parser module

OWL

ontology

Integrator Module

Extractor
Ontology

Learning

Communication module

Query Module

Legal

RuleML

Drools

Fig. 13 – System Architecture

Browsing case-law: an Application of the Carneades

Argumentation System

Marcello Ceci
1
,Thomas F. Gordon2

1 CIRSFID, University of Bologna, Italy

2 Fraunhofer-FOKUS Institut, Berlin, Germany

m.ceci@unibo.it

 thomas.gordon@fokus.fraunhofer.de

Abstract. This paper presents an application of the Carneades Argumentation

System to case-law. The application relies on a set of ontologies – representing

the core and domain concepts of a restricted legal field, the law of contracts –

and a collection of precedents taken from Italian courts of different grades. The

knowledge base represents the starting point for the construction of rules

representing laws and precedents which, in turn, are responsible for the

argumentative reasoning. The system reconstructs the legal interpretations

performed by the judge, presenting its reasoning path and suggesting possible

different or divergent interpretation in the light of relevant code- and case-law.

Keywords: AI&Law, Legal Argumentation, Semantic Web, Legal Ontology.

1 Introduction

Precedent is a main element of legal knowledge worldwide: by settling conflicts and

sanctioning illegal behaviours, judicial activity enforces law provisions within the

national borders, therefore supporting the validity of laws as well as the sovereignty

of the government that issued them. Representing the content of case-law, in terms of

legal concepts taken into consideration and interpretations performed by the judge, is

a very interesting task for the IT research, and the AI & LAW community has

presented very significant outcomes in this topic since the ‘80, with different

approaches: legal case-base reasoning (HYPO, CATO, IBP, CABARET), legal

concepts representation through logics [1], rule interchange for applications in the

legal domain [8] and more recently also argumentation.

1.1. Carneades

Carneades1 [10] is a set of open source software tools for mapping and evaluating

arguments, under development since 2006. Carneades contains a logical model of

argumentation based on Doug Walton’s theory of argumentation, and developed in

1 http://carneades.berlios.de

mailto:m.ceci@unibo.it
mailto:thomas.gordon@fokus.fraunhofer.de
mailto:thomas.gordon@fokus.fraunhofer.de

collaboration with him. In particular, it implements Walton’s argumentation schemes

[11] not only to reconstruct and evaluate past arguments in natural language texts, but

also as templates guiding the user as he/she generates his/her own arguments graphs

to represent ongoing dialogues. It can therefore be used for studying argumentation

from a computational perspective, but also to develop tools supporting practical

argumentation processes. The main application scenario of Carneades is that of

dialogues where claims are made and competing arguments are put forward to support

or attack these claims [14], but it also takes into account the relational conception of

argument2 [4].

1.2. The application to case-law: objectives and methodology

In the present application, Carneades’ potentialities will be exploited to conduct

reasoning on case-law, whose knowledge has been previously modeled in an

OWL/RDF ontology and in a set of rules (in LKIF-Rule language [2]).

The goal of the present approach is to define a framework for case-law semantics,

exploiting Semantic Web technologies to "fill the gap" between document

representation and rules modelling [13], ensuring isomorphism between the text

fragment (the only binding legal expression) and the rule. Cornerstone of the

framework is the ontology, intended in its computer science meaning: a shared

vocabulary, a taxonomy and axioms which represent a domain of knowledge by

defining objects and concepts together with their properties, relations and semantics.

We believe that the features of OWL2 could greatly improve legal concepts

modelling and reasoning, once properly combined with rule modelling. Our aim is

hence to formalize the legal concepts and the argumentation patterns contained in the

judgment in order to check, validate and reuse the elements of judgement as

expressed by the text and the argumentation contained in it.

To achieve this, four models are necessary:

 a document metadata structure, capturing the main parts of the judgment to

create a bridge between text and semantic annotation of legal concepts;

 a legal core ontology, describing the legal domain’s main elements in terms

of general concepts through an LKIF-Core extension;

 a legal domain ontology, modelling the legal concepts of a specific legal

domain concerned by the case-law, including a set of sample precedents;

 argumentation modelling and reasoning, representing the structure and

dynamics of argumentation.

Three kinds of knowledge are modelled in the ontology and the rules: legal rules

(laws and other authoritative acts), case-law (precedents and their relevant

interpretations), and material circumstances (the object of the judgment: i.e., a

contract clause, a human behaviour, an event).

2 The main difference between the two conceptions is that a proposition which has not been

attacked is acceptable in the relational model of argument, while in most dialogues it would

be not acceptable, since in most schemes making a claim involves having the burden of proof

on it.

Aim of this application is to create a reasoning environment allowing a high level

of human-machine interaction: the user can start from some basic concept (a legal

concept, a fact, an exception, a law prescription) and query the database (which is

contained in the OWL ontology) to get some “pilot cases” in return. The user can then

ask about the outcome of the pilot case, and about the main interpretations made by

the judge in his decision: these are presented in a graph which shows not only the

logical process followed by the judge and the laws which he applied but also those

who could be, and the precedents which – if accepted - could lead to a different

judgement.

This is possible thanks to the mix of OWL/DL reasoning, semantically managing

static information on the elements of the case, and rule-based defeasible reasoning,

which is ought to represent the dynamics of norms and judicial interpretations.

The present approach focuses on the "argument from ontology" feature of

Carneades [6]: the program is in fact capable of accepting (or rejecting) the premises

of arguments on the basis of the knowledge contained in some imported OWL/RDF

ontology (see below 3.1). This allows to build complex argumentation graphs, where

the argument nodes represent legal rules and the statements are accepted or rejected

on the basis of knowledge coming from the ontology and/or data inserted by the user.

In this perspective, the Carneades argument graph may either represent:

 a reconstruction of a judicial decision's contents in terms of laws applied,

factors taken into considerations, interpretations performed by the judge. The

conclusion of the argumentation represents the final adjudication of the

claim, and the Carneades reasoner is expected to accept or reject the claim by

semantically applying the judicial interpretations contained in the decision's

groundings (this is the kind of representation which will be shown in the

present application);

 a collection of argumentations paths leading to a given legal statement (such

as "contract x is inefficacious"). On the basis of manually-inserted statements

concerning the object of the case (statuses or factors concerning the material

circumstance, i.e. contract x) the Carneades reasoner suggests possible

argumentation paths leading to (the acceptation or rejection of) the desired

legal statement.

In both cases, however, the system presents to the user not only argumentation

paths which have been proved as valid (i.e. rules whose conditions have all been met),

but also possible, incomplete argumentation paths where one or more of the premises

is still undecided: under this perspective, the tool presents to the user a semantic

environment where different laws, legal statuses and precedents are semantically

related to each other.

From that point, the user can go further by querying the knowledge base to retrieve

precedents where similar (or different) interpretations are made: in this way, he can

realize which differences – if any – exist between two or more precedents. It is like

browsing case-law in a law journal in order to compare different decisions, but in the

Carneades environment this can be done directly with legal concepts, not only to

verify a combination of circumstances and laws under a logical point of view, but also

to receive suggestions from the system on which law, precedent or circumstance

could lead to a different outcome.

2 The case-law argumentation ontologies

The “Core and Domain Legal Ontologies” are two OWL/RDF ontologies

conceived to model the semantics of judicial interpretations, developed in the contest

of a research on judicial knowledge modelling [12].

2.1. The Core Ontology

The core ontology (an extension of the LKIF-Core Ontology) introduces the main

concepts of the legal domain, defining the classes which will be later filled with the

metadata of judicial decisions. Even though the core ontology should be domain-

generic and not modeled upon a specific legal subject, the sample model was

conceived only to successfully represent the interaction in the civil law subject, when

contracts, laws and judicial decisions come into play. An important modeling choice

is the reification of legal statuses and the creation of the object property “applies”

(subproperty of LKIF’s “qualifies”) to link a material circumstance to its status.

2.2. The Domain Ontology

Following the structure outlined in the Core Ontology, the metadata taken from

judicial documents are represented in the Domain Ontology. The modeling was

carried out manually by an expert in the legal subject (a graduated jurist), which

actually represents the only viable choice in the legal domain: automatic information

retrieval and machine learning techniques, in fact, do not yet ensure a sufficient level

of accuracy. Building a domain ontology is similar to writing a piece of legal

doctrine, thus it should be manually achieved in such a way as to maintain a reference

to the author of the model, while at the same time keeping an open approach. Here,

the property “applies” is used to link the fact of the cases to its legal statuses, in such

a way as to give evidence to interpretations made by the judge (represented by the

object property “judged_as”, subproperty of “applies”).

2.3. Features of the Ontology Set

The so-built layered ontology creates an environment where the knowledge

extracted from the decision’s text can be processed and managed, in such a way as to

enable a deeper reasoning on the interpretation instances grounding the decision itself.

Example of this deeper reasoning include: finding relevant precedents which were not

explicitly cited in the decision; finding anomalies in the evaluation of material

circumstances, in the light of cited precedents and similar cases; validating the

adjudications of the judge on the claims brought forward by the parties during the trial

on the basis of applicable rules, accepted evidence and interpretation; suggesting

possible weak spots in the decision’s groundings; suggest possible appeal grounds and

legal rules/precedents/circumstances that could bring to a different application of the

rules and/or to a different adjudication on the claim.

The layered structure of the ontology set allows an efficacious scaling from legal

concepts to factors, up to dimensions and legal principles: all these concepts can be

represented in the domain ontology, and the hook of the core concepts to LKIF-Core

should ensure a good semantic alignment between different domain ontologies, as far

as different authors are concerned (even if, at the present time, this research has not

yet evaluated the alignment capabilities of the present ontology set).

2.4. Changes made to the ontology set for the present application

This application of Carneades involved the following modifications for the Core

and Domain ontologies [3]:

 enriching the semantic content of the ontology set by representing finer-grained

knowledge contained in the decision’s text, in an environment where this

expansion of the knowledge base does not entail an overloading of the OWL

reasoners, which would compromise computability;

 modeling a rule system representing the dynamic relationships created by judicial

interpretation and law application;

 importing knowledge from the ontology set in such a way as to allow successful

interaction with the rule set and the Carneades model.

3 Constructing Arguments with Carneades

Carneades is a tool which relies on a solid background theory involving Walton’s

argumentation schemes with an articulated conception of the burden of proof and of

its allocation [9]. However, even though the present application takes advantage from

the strong conceptual foundations of this tool, these two features will be set aside. The

main reason for this is that (as of Carneades version 1.0.2) these functions are not

implemented in the automatic argument construction process, which itself represents

the pivot of this experiment. Particularly for the burden of proof this is unfortunate,

since the present experiment would gain a lot of depth from an automatic

management of burden of proofs and proof standards.

While the new version of Carneades (2.x, currently under development) will use

the Clojure language, the latest complete version (1.0.2, the one used for the present

application) relies on the LKIF-Rule language [7].

The features of Carneades which are thoroughly used in the present application are

the ontology import module, the argxument construction module, and the argument

visualizer.

3.1. Ontology Import Module

The ontology import module allows the system to automatically import (stated and

inferred) knowledge coming from any OWL/RDF ontology [6]. This knowledge is

then used by Carneades during its argumentation process, in order to accept those

assertions inside the argument graph which are recorded as true into the (stated or

inferred) ontology. What the Carneades ontology import feature cannot do, as of

version 1.0.2, is to show the reasoning process, followed by the Hermit reasoner3 to

3 HermiT is reasoner for ontologies written using the Web Ontology Language. Given an OWL

file, a reasoner can perform tasks such as determining whether or not the ontology is

consistent, identifying subsumption relationships between classes, inferring new knowledge.

infer those assertions. The ontology import is instead a black box: in the argument

visualizer, assertions accepted on the basis of knowledge coming from the ontology

actually appear as accepted under the condition that the whole ontology is valid,

without any argumentation being provided nor a distinction between stated and

inferred knowledge being made. This means that, at the present time, only the

reasoning coming from the application of rules to the knowledge base is showed in

the visualizer: nevertheless, having solved some modeling issues on this behalf, this is

already enough to show the core part of the interpretation process followed by the

judge.

3.2. Argument Construction Module

The argument construction module relies on rules, ontologies and manually

inserted statements to construct an argumentation tree trying to answer any query

concerning a precedent contained in the knowledge base [10]. The target statement

can be of two types: a "query-like" statement (i.e. ?x Oppressive_Clause, which

means “give me all x, where x is an oppressive clause”) or a simple assertion

(ME/LaSorgente_Clause8 Oppressive_Clause, which means “Clause 8 of the contract

between M.E. and La Sorgente is an oppressive clause”): in the first case, the system

will return a list of results and arguments, while in the second case the system will

construct a single argumentation tree towards the desired goal (pro or con, which

means towards the acceptance or the rejection of the target statement).

3.3. Argument Visualizer

The argument visualizer is a powerful tool that allows the user to manage the

argumentation process (manually adding assumptions, accepting/rejecting statements,

cutting out parts of reasoning, and so on) in order to investigate the concepts of the

case in details and relevant case law, not by comparing their textual appearance, but

rather by manipulating the concepts expressed in them [5].

4 The Scenario: Consumer Law

In this demonstration of Carneades application, we will examine a piece of Italian

Consumer Law4 by:

 retrieving the case-law concerning a legal concept;

 analyzing the interpretations made by the judge on that case;

 searching possible alternative solutions to the case.

Please notice that, in order to simplify the understanding of the graph, in this

presentation the search for arguments will be "progressive": this means that we will

ask the reasoner to conduct argumentation on statements only to a limited extent, in

order to unveil the argumentation graph step by step. This is done by limiting the

number of nodes that the reasoner can follow before returning results. By raising this

value, it is possible to obtain more detailed or complex graphs in a single step, either

4 Actually regulated through legislative decree n. 206 of September 6th, 2005 - even though

some cases still fall under artt. 1341 and 1342 of Italian Civil Code, which are still in force.

by deepening the search, to resolve exceptions and indirect argumentation paths in a

single step, or by broadening it, to search for more "daring" argumentation paths.

4.1. Modelling of the law

Preliminarily, the two norms involved in the reasoning will be presented:

Article 1341 comma 1 of Italian Civil Code – General contract clauses which

have been unilaterally predisposed by one of the contract parties are efficacious only

if they were known by the other contract party, or knowable by using ordinary

diligence.

Article 1341 comma 2 of Italian Civil Code – Clauses concerning arbitration,

competence derogation, unilateral contract withdrawal, and limitations to: exceptions,

liability, responsibility, and towards third parties, are inefficacious unless they are

specifically signed by writing.

The modelling of this information is based on both the ontology and the rules. In

particular, the ontology contains "static" information on the law (such as the enacting

authority, the subject, the legal concepts contained in the text, the URI of the legal

expression), while the rules classify the material circumstances (in this case, the

contract clauses) which share certain legal statuses as being relevant under that law.

This is an example of a rule stating the relevancy for comma 2 of Article 1341:

<!ENTITY oss "http://www.semanticweb.org/ontologies/2011/8/prova1.owl#">

<rule id="LAW_Art1341co2">

 <head>

 <s pred="Relevant_ExArt1341co2"><v>C1</v> falls under the

 discipline of Article 1341 comma 2 of Civil Code </s>

 <s pred="&oss;considered_by"><v>C1</v> falls under the

 discipline of <i value="&oss;Art1341co2cc">Article 1341 comma 2

 of Civil Code </i></s>

 </head>

 <body>

 <s pred="&oss;applies"><v>C1</v> applies <v>S1</v> </s>

 <s pred="&oss;Oppressive_Status"><v>S1</v> is an oppressive

 status</s>

 <s pred="&oss;applies"><v>C1</v> applies <i

 value="&oss;General"> general status</i> </s>

 <s pred="&oss;applies"><v>C1</v> applies <i

 value="&oss;Unilateral"> unilateral status</i> </s>

 <not>

 <s pred="&oss;applies"><v>C1</v> not applies <i

 value="&oss;SpecificallySigned"> specifically signed</i>

 </s>

 </not>

 </body>

</rule>

Please notice that the rule does not contain the list of

statuses, but rather refers to a class of “Oppressive

statuses” (a naming acknowledged by the legal

doctrine), whose modelling is left to the ontology (Fig.

1). This distribution in the representation of the law

allows an open organization of legal knowledge, while
Fig. 1. Members of the
Oppressive_Status class

at the same time keeping the full expressivity of the rule syntax.

The rule presented above only states which circumstances are subsumed under that

legal rule; successively, another rule comes into play, verifying if any exceptions to

the general rule apply. If not, the consequence of the legal rule (in this case,

inefficacy) is related to the circumstance (the contract clause):

<rule id="LAWCONS_Inefficacy rule">

 <head>

 <s pred="&oss;Inefficacious"> <v>C1</v> Is inefficacious:

 has no effects </s>

 </head>

 <body>

 <and>

 <or>

 <s pred="Relevant_ExArt1341co1"><v>C1</v> falls under the

 discipline of Article 1341 comma 1 of Civil Code </s>

 <s pred="Relevant_ExArt1341co2"><v>C1</v> falls under the

 discipline of Article 1341 comma 2 of Civil Code </s>

 <s pred="Relevant_ExArt1342co2"><v>C1</v> falls under the

 discipline of Article 1342 comma 2 of Civil Code </s>

 </or>

 <not exception="true">

 <s pred="&oss;applies"><v>C1</v> applies <i

 value="&oss;ReproducingLawDisposition"> a law

 disposition</i> </s>

 </not>

 <not exception="true">

 <s pred="&oss;applies"><v>C1</v> applies <i

 value="&oss;International"> an international

 agreement</i> </s>

 </not>

 </and>

 </body>

</rule>

4.2. Modelling of the contract

The material circumstances which are

taken into account by a precedent are

modelled only in the domain ontology

(not in the rules), and semantically

classified depending on its characteristics

(in the case of a contract clause:

containing contract, contract parties,

object of the contract, object of the

clause). Two different properties

represent the relation between a

circumstance (the clause) and a legal

status: "applies", which means that the

status has been recognised by both

parties as applicable to the circumstance,

and "judged_as", which means that status

has been interpreted as being applicable

to the circumstance by a judge. Fig. 2. Properties of a contract clause instance

So, for example, the contract clause ME/LaSorgente_Clause8 (Clause 8 of the

contract between M.E. and "La Sorgente") has the characteristics indicated in Fig. 2.

We can see that "Unilateral", "CompetenceDerogation", "General" are three

characteristics which are acknowledged by both parties; "recalled_by

ME/LaSorgente_box" represents a relation of this clause with another part of the

contract; the "considered_by" property links to the precedent (and therefore the

authority) which produced the subsumptions: a legal status ("NotSpecificallySigned")

and two precedents which have been cited (Cass. 6976/1995 and Cass. 5860/1998). In

the next chapter we will see how this knowledge is managed in Carneades. Finally,

please notice that the clause also applies the status of “CompetenceDerogation”, an

Oppressive_Status.

4.3. Modelling of the case-law

The judicial interpretation instances are modelled both into the domain ontology

and into the rules. The domain ontology contains static knowledge (enacting

authority, object of the case, classification, a URI) as well as "surface" information

such as those presented above: the circumstance taken into consideration, the legal

status under which the circumstance is subsumed, the precedents cited.

The mechanics underlying the judicial interpretation are contained in the rules.

This is an example of a rule representing a judicial subsumption:

<rule id="JINT_RecallNonOppressiveClauses">

 <head>

 <not>

 <s pred="&oss;applies"><v>C1</v> doesn't apply <i

 value="&oss;SpecificallySigned"> specifically signed

 status </i></s>

 </not>

 <s pred="RecallException"> <v>C1</v> is subject to the

 exception</s>

 </head>

 <body>

 <s pred="&oss;recalled_by"><v>C1</v> recalled by <v>B1</v> </s>

 <s pred="&oss;hasfactor"><v>B1</v> has factor <i

 value="&oss;RecallsNonOppressiveClauses"> recalls also non

 oppressive clauses</i></s>

 <s assumable="true" pred="&oss;judged_as"><v>C1</v> applies<i

 value="&oss;Cass.5860/1998">precedent Cass.5860/1998</i></s>

 </body>

</rule>

Please notice the particular role given to the precedent "Cass.5860/1998": it is an

assumption, so it does not prevent the system from suggesting this particular

interpretation (and the precedent) as a result of the reasoning process on cases which

share the other conditions, even if that precedent is not explicitly recalled. At the

same time, if the precedent is directly cited in the case, the system is capable of

putting a stronger accent on that interpretation, not only by assuming its applicability

but by directly stating it.

5 Carneades application

5.1. Reconstructing Precedents and their reasoning

Let’s suppose we have a contract clause which - we are afraid – is oppressive. We

start by querying the system (the ontologies and the rules) to retrieve a list of contract

clauses (object of precedents) which have been considered oppressive – either as an

undisputed fact or following a judicial interpretation (fig. 3).

Fig. 3. The “Find Argument” window of Carneades

Fig. 4. The query results.

Fig. 4 shows the resulting

list.

We take the second example:

ME/LaSorgente_Clause8.

Please notice that this instance

does not represent a legal case,

but rather a contract clause.

Information contained in the

ontology allows us to retrieve

in any moment the details

concerning the case (court,

date, parties, the decision’s text,

and so on) but no such

information will be shown on

the argumentation tree: in it, we

will only find the contract

clause and other material

circumstances related to it (the

contract it is contained in, for

example), legal statuses, and

interpretation instances: only

the elements which are relevant

to the dynamics of the judicial

argumentation, while those who

pertain to the identification of the case are retrievable but not shown here.

We ask the system to tell us if ME/LaSorgente_Clause8 can be considered

“inefficacious”, in the light of applicable laws and judicial interpretations made by the

judge in the precedent, and analyze the result (fig. 5).

The system found two applicable laws to argument the inefficacy of the clause (left

part of fig. 5): if the conditions of one of these two laws are met, and no exception

exists (in this case, possible exceptions - broken lines - are the contract being an

Fig. 4. The query results

Fig. 5. Argumentation PRO the contract clause being inefficacious.

Fig. 6 (a-b). Argumentation PRO the clause being specifically signed.

international contract, and the contract reproducing law dispositions), the clause is

inefficacious. The requirements for a clause to be relevant under one of these two

laws are presented in the central part of fig.5.

In order for the clause to be relevant under Article 1341co1, it must be general,

unilateral and not knowable by the other party by using ordinary diligence (please

notice that, due to a mistake, knowable appears as "knowledgeable" in the figures).

In order for the clause to be relevant under Article 1341co2, it must be general,

unilateral, oppressive and not specifically signed.

The clause was found to be oppressive (since a clause concerning competence

derogation is part of the list of article 1341co2), general and unilateral (dark boxes).

These statements come directly from the ontology set's knowledge base, which means

that the relative information has been

manually inserted in (or inferred by) the

database and it is not possible to further

explain those positions (the "HermiT"

argument followed by dotted lines

pointing to the premise "valid

[ontologyURI]"). The search was not

deep enough to determine whether this

clause is specifically signed or not, nor

whether it was knowable or not (white

boxes).

The next step is to ask Carneades to

produce argumentation towards the

acceptance/rejection of the yet

undecided statements. We start asking to

find arguments PRO the clause being

specifically signed (Fig. 6):

Fig. 6a shows that the requirement for a judicial interpretation towards the specific

signing of the clause is met: the clause is "correctly recalled" and therefore can be

considered as specifically signed following some precedent (unless the "recall

exception" applies).

Fig. 6b explains why the "correctly recalled" premise has been marked as

"accepted" by Carneades: the ME/LaSorgente contract contained a distinct box

(usually placed at the end) which recalls object and number of the oppressive clause,

and the box has been signed by the other party. We do not know if the indication of

both object and number in the distinct box is required for the recall to be considered

as sufficient in the present case (it depends on the precedents that the judge decides to

follow) but it doesn’t matter, as long as our case fulfils the most restrictive

requirement of indicating both the object and the number.

So we found a position to support the specific signing of the clause (the argument

being called "Specific Signing Through Recall"), but – as we can see – it is prone to

an exception which has not yet been explicitly rejected. Before checking it, we want

to see if there is some plausible argumentation path leading to the opposite conclusion

(which means, CON the clause being specifically signed):

In Fig. 7 we see that Carneades found two paths leading to the opposite conclusion,

and therefore the statement “applies ME/LaSorgente_Clause8 SpecificallySigned” has

turned white – and undecided – again.

The bottom argument, called NEGINST_NotSpecificallySigned, is a simple

instantiation of a negation, turning a positive status "notA" into a negative status "A"

(this fiction is necessary to translate between DL-, open-world-based OWL ontologies

and defeasible rules while keeping full OWL expressivity and should be rendered

unnecessary by the implementation of OWL2's Negative Object Property Assertion).

Going further backwards, we see that the statement comes directly from the ontology

set's knowledge base (ME/LaSorgente_Clause8 judged_as NotSpecificallySigned): it

is a judicial interpretation made by the judge on that very clause). So, we now know

that the judge actually interpreted that clause as not having been specifically signed –

But why? To answer that question, we must look at the second argument

(JINT_RecallNonOppressiveClause): we realize that the box which contains the

specific signing contained also clauses which are not oppressive. This, under some

interpretation, may render invalid the signing made on the box: in particular, the

relevant precedent (Cass.1860/1998, which means Cassation Court decision n. 1860

Fig. 7. Argumentation CON the clause being specifically signed.

of 1998) is not only suggested, but thoroughly accepted: this means that the judge,

while interpreting the case where ME/LaSorgente_Clause8 was involved, explicitly

cited that precedent in his decision.

This suggests that the solution taken by the judge was to consider the clause as not

specifically signed, but in order to verify the consistency of this we have to proceed

with one last step: checking if the exception for the PRO argument towards the

specific signing of the clause applies (Fig. 8).

The argumentation graph of Fig. 5 is now complete: the oppressive clause has been

judged as inefficacious, and the graph in Fig. 9shows why - and how it could be that a

similar case gets a different outcome (white arguments):

Fig. 9. The complete argumentation graph

Fig. 8. Argumentation on the acceptation of the exception.

5.2. Suggesting New Argumentation Paths

Finally, we provide a brief example of how Carneades can suggest new

interpretation for known facts, in the light of existing norms and relevant precedents.

We consider the same clause (ME/LaSorgente_Clause8) and ask the system to go

through the analysis of its relevance under article 1342co2 (see fig. 1). Under that

perspective, the clause lacked an acceptable argument PRO or CON its knowability.

We try to find some arguments PRO the knowability and find out that Carneades has

noticed the signed box which recalls clause 8. Using a different legal reasoning, he

takes into account the rule JINT_KnownDocumentRecall, introduced by

TribPiacenza2.1 (a decision which is inside the knowledge base of the Domain

Ontology). Following this interpretation, if a clause is recalled by a document which

is known to the parties, the clause has to be considered knowable. Carneades also

found out that the distinct box is a contractual agreement, and therefore presumes

(dotted green line) that the interpretation TribPiacenza2.1 can be applied to the case.

This specific interpretation of the case ME/LaSorgente was not contained in the

decision text, which does not talk about the profile of knowability (since there is no

judged_as property linking the clause to one of its I/O statuses) and neither it cites the

precedent of TribPiacenza2.1, but nevertheless Carneades suggested this way of

argumenting PRO the target statement.

Fig. 10. Suggested argumentation PRO the clause being knowledgeable.

This could give hints on the practicability of such a strategy in a similar case, or

arise comments on the difference between the legal concepts of "knowability" and

"specific signing" in the terms of the relevance of the number and kind of clauses

which are recalled in a separate document.

6 Other Applications

The example only showed how to model one single case, albeit giving the idea of

which different directions can be taken from there. In this environment, it is in fact

possible to conduct many and more complex activities even with the small number of

cases already contained in the OWL knowledge base: it is possible to query

precedents (such as TribPiacenza2.1) in order to understand the characteristics of the

case, and to compare them to other precedents or to a new case; it is possible to query

about the relevancy of a clause having certain characteristics under a specific norm or

judicial interpretation, and those characteristics can be either manually inserted as

statements in the argumentation graph, or automatically extracted from precedents or

knowledge bases (even outside the Domain Ontology). Finally, the defeasible logics

behind the reasoner and the solid proof standards system - if properly implemented in

the rule engine, and accompanied by an improvement in the reasoner's computability -

can allow a complete analysis of possible exceptions to rules and interpretations,

through a real “positions searching” activity: the system takes - in turns - the part of

the attacker and the defendant and produces arguments PRO and CON the given

statement.

7 Conclusions

The Carneades application presented here was intended to show how an

argumentation system can be used to process semantic data in a complex way. The

arguments construction and the rules representing code- and case-law could never

meet their full potentialities if not supported by a semantically rich knowledge base,

such as the "legal ontology set" presented in section 2.

The present application therefore represents a demonstration of how a shared logics

and syntax for legal rule representation, combined with a standard core ontology for

legal concepts, would constitute the ideal starting point for a totally new conception

of case-law classification, browsing and management.

The application represents an advancement of the work presented at the RuleML

Challenge 2011 [6] because it creates a complete juridical environment in order to

achieve a real benchmark of Carneades' capabilities: the sample (constituted by 27

precedents) has been completely represented in the ontology set and in the rules, thus

heavily stressing the Carneades and OWL reasoners and showing their limits in terms

of computability. Moreover, the ontology set used in the present application was not

specifically modelled upon Carneades, rather representing an effort towards a

standard representation of legal text's contents which ensures isomorphism with the

source document and interoperability with different applications in the rules and

logics layers.

References

1. Boella G., Governatori G., Rotolo A., van der Torre L., A Logical Understanding of

Legal Interpretation. In: KR 2010.

2. Boer, A., Radboud, W., Vitali, F., MetaLex XML and the Legal Knowledge

Interchange Format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.),

Computable Models of the Law, Springer, Heidelberg, pp. 21-41 (2008).

3. Ceci M., Combining Ontology and Rules to Model Judicial Interpretation, RuleML

2012 Doctoral Consortium (under submission).

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. In: Artificial

Intelligence, 77(2), pp. 321-357 (1995).

5. Gordon, T.: Visualizing Carneades argument graphs. In: Law, Probability and Risk,

6(1-4), pp. 109–117 (2007).

6. Gordon, T.: Combining Rules and Ontologies with Carneades. In: Proceedings of the

5th International RuleML2011@BRF Challenge, CEUR Workshop Proceedings, pp.

103-110 (2011).

7. Gordon, T.: Constructing Legal Arguments with Rules in the Legal Knowledge

Interchange Format (LKIF). In: Casanovas, P.: Computable models of the law:

Languages, dialogues, games, ontologies. Berlin: Springer. (Lecture Notes in

Artificial Intelligence 4884), pp. 162-184 (2008).

8. Gordon, T., Governatori, G., Rotolo, A., Rules and Norms: Requirements for Rule

Interchange Languages in the Legal Domain. In: Rule Interchange and Applications,

International Symposium, RuleML 2009, BERLIN, Springer pp. 282 - 296 (2009).

9. Gordon, T., Prakken, H., Walton, D.: The Carneades model of argument and burden

of proof. In: Artificial Intelligence, Vol.171, No.10-15, pp. 875-896 (2007).

10. Gordon, T., Walton, D.: The Carneades Argumentation Framework: using

presumptions and exceptions to model critical questions. In: Dunne, P.E.:

Computational Models of Argument. Proceedings of COMMA 2006: 1st

International Conference on Computational Models of Argument, The University of

Liverpool, UK, 11th - 12th September 2006. IOS Press, Amsterdam (2006).

11. Gordon, T., Walton, D.: Legal reasoning with argumentation schemes. In:

Proceedings of the Twelfth International Conference on Artificial Intelligence and

Law, ACM Press, New York, pp. 137-146 (2009).

12. Palmirani, M., Ceci, M.: Ontology framework for judgement modelling, AICOL

2011.

13. Palmirani, M., Contissa, G., Rubino, R.: Fill the Gap in the Legal Knowledge

Modelling. In: Proceedings of RuleML 2009, pp. 305-314 (2009).

14. Walton, D.: The New Dialectic: Conversational Contexts of Argument. University of

Toronto Press, Toronto/Buffalo (1998).

A model driven approach for bridging ILOG
Rule Language and RIF

Valerio Cosentino1,2, Macros Didonet del Fabro3, Adil El Ghali1,4

1 IBM France
2 AtlanMod, INRIA & EMN, Nantes, France

3 Universidade Federal do Paran, Brazil
4 Lutin UserLab, France

valerio.cosentino@fr.ibm.com, marcos.ddf@inf.ufpr.br,

elghali@lutin-userlab.fr

Abstract. Nowadays many companies run their business using Busi-
ness Rule Management Systems (BRMS), that offer: a clear separation
between decision logic and procedural structure; the ability to modify
a rulebase set rather than processes and the reusability of rules across
applications. All these factors allow a company to quickly react and align
its policies to the ever-changing market needs. Despite these advantages,
different BRMSs can be found on the market, each of them implementing
a proprietary business rule language (ex.: JBoss uses Drools, IBM uses
Ilog Rule Language, etc.). Rule Interchange Format(RIF) is a W3C open
standard aiming at reducing the heterogeneity among business rule lan-
guages, which makes rules less reusable and interchangeable. Our work
is focused on providing an implementation based on a Model Driven
approach for bridging Ilog Rule Language to RIF.

1 Introduction

The field of BRMS is characterized by a number of normative, open source, or
proprietary systems and languages (Ilog JRules, JBoss Drools, etc.), allowing
the expression of various solutions to business problems at a high abstraction
level, but with heterogeneous sets of capabilities and languages. Rule Interchange
Format (RIF [1]) and Production Rules Representation (PRR [2]) are two stan-
dard proposals respectively developed at the W3C and at the OMG aiming at
providing a level of standardization to the domain. An important difference be-
tween RIF and PRR is that RIF is a standard for distribution of shared rules at
runtime, whereas PRR is a standard for interchanging design-time rules.

This work presents a case study of bridging a business rule language: the Ilog
Rule Language (IRL) to a standard format: the Rule Interchange Format (RIF)
and vice versa. We show how to make it possible with the help of Model Driven
Engineering (MDE [3]).

RIF is the W3C Rule Interchange Format and it is part of the infrastructure
composing the semantic web. It is an XML language for expressing rules that

computers can execute. One of the main goals of RIF is to promote a standard
format to interchange rules between existing rule languages.

Because of the serious trade offs in the design of rule language, RIF provides
multiple versions, called dialects:

– Core: it is the fundamental RIF language. It is designed to be the common
subset of most rule engines

– BLD: it adds to Core dialect logic functions, equality in the then-part, and
named arguments

– PRD: adds a notion of forward-chaining rules, where a rule fires and then
performs some action (adding, updating or retracting some information)

In this work we have implemented transformations for the Core and PRD
dialects. An example of a RIF example is shown in (Fig. 1).

Fig. 1. Example of a rule in RIF

IRL is a formal rule language used inside WebSphere ILOG JRules BRMS.
It supports the two different levels of a full-fledged BRMS: the technical level
targeted at software developers and the business action language targeted at
business users. The technical rules of JRules are written in IRL. The complete
specification of IRL can be found in the JRules documentation [4] an example
of an IRL rule is provided in (Fig. 2).

Fig. 2. Example of a rule in IRL

2 Model Driven Engineering

The primary software artifacts of the MDE approach are models, which are
considered as first class entities. Every model defines a concrete syntax and
conforms to a meta-model (or grammar, or schema), which defines its abstract
syntax. One of the most common operations applied on models is transformation,
which consists in the creation of a set of target models from a set of source models
according to specific rules.

In the work presented in this paper three main tools have been used:

– Ecore allows to handle and create meta-models in Eclipse Modeling Frame-
work (EMF) [5]

– TCS (Textual Concrete Syntax) ([6],[7]) is a bidirectional mapping tool be-
tween meta-models and grammars. It is able to perform both text-to-model
(injections) and model-to-text (extractions) translations from a single speci-
fication. TCS is used to map context-free concrete syntaxes to meta-models.

– ATL (Atlas Transformation Language) [9] is a model transformation lan-
guage specified as both a meta-model and a textual concrete syntax. It al-
lows developers to produce a number of target models from a set of source
models by writing rules that define how to create target models from source
model elements.

3 Transformations

The RIF2IRL transformation takes as input a RIF file, a BOM file (Business
Object Model [4]) and a Dictionary model. The output generates an IRL model
and the related IRL file, generated by a TCS parser.

From the first input, using a TCS parser, a model conforming to an imple-
mentation of the RIF meta-model is extracted. A BOM file is passed to the trans-
formation to resolve the domain information declared inside the RIF file/model.
The related BOM model is extracted out of the BOM file by a TCS parser and
it conforms to the BOM meta-model implemented in [10]. A Dictionary is added
as input parameter in the transformation in order to provide a translation from
the element names declared in the RIF file to the corresponding ones appearing
in the IRL file. The transformation has been implemented in ATL [8] and it
defines how to convert RIF to IRL.

The IRL2RIF transformation takes as input a IRL file and two BOMs and
returns a RIF file. From the first input, a model conforming to the IRL meta-
model is extracted by means of a TCS parser. The first BOM contains the
information of the domain model, while the second one is used to map IRL
functions to the built-in RIF functions for handling dates, numbers, strings, etc.
The output is a RIF model, that is translated into a RIF file by a TCS parser.

4 The demonstration

The IRL2RIF and RIF2IRL transformations will be first demonstrated using a
set of simple examples (Appendix A) that illustrate the main functionalities of

the transformation. We will then show a real world application of the transfor-
mation using data from the Arcelor use-case studied in the ONTORULE project
[11]. In the context of the Rule Xchanger application depicted in the (Fig. 3),
we will focus on the transformation of IRL rule edited using JRules into RIF
rules that will be executed using the Tight engine.

Fig. 3. Rule Xchanger scenario

5 Conclusion

The transformation we intend to demonstrate is a key component in the inter-
operability between two rule languages that has been used in some real world
applications such us the Arcelor use-case. it shows that rule application devel-
oped using commercial BRMS such as JRules can be exported to other platforms
that support the RIF standard.

References

1. Rule Interchange Format http://www.w3.org/TR/rif-overview/
2. Production Rules Representation http://www.omg.org/spec/PRR/1.0/
3. Schmidt, D.C. Model-Driven Engineering. IEEE Computer 39 (2), Feb. 2006.

4. JRules documentation http://pic.dhe.ibm.com/infocenter/dmanager/v7r5/index.jsp
5. Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/
6. Textual Concrete Syntax http://wiki.eclipse.org/TCS
7. Jouault F., Bézivin J., Kurtev I., TCS: a DSL for the Specification of Textual

Concrete Syntaxes in Model Engineering. In proc. of GPCE’06, Portland, Oregon,
USA, pp 249-254

8. Atlas Transformation Language http://www.eclipse.org/atl
9. Jouault F, Allilaire A, Bézivin J, Kurtev I. ATL: a Model Transformation Tool. Sci-

ence of Computer Programming 72(3, Special Issue on Second issue of experimental
software and toolkits EST):31-39, 2008

10. Didonet Del Fabro M., Albert P., Bézivin J., Jouault F., Industrial-strength Rule
Interoperability using Model Driven Engineering, Technical report 6747, INRIA,
Nov. 2008. http://hal.inria.fr/docs/00/34/40/13/PDF/RR6747.pdf

11. Gonzalez-Moriyon G., Final steel industry public demonstrators, ONTORULE De-
liverable D5.5, Jan. 2012

A Annex

Fig. 4. Example 1

Fig. 5. Example 2

Fig. 6. Example 2

A Loose Coupling Approach for Combining
OWL Ontologies and Business Rules

Amina Chniti,1,2 Patrick Albert,1 Jean Charlet2,3

1 CAS France, IBM
{amina.chniti,albertpa}@fr.ibm.com

2 INSERM UMRS 872, Eq 20, 15, Rue de l’école de médecine, 75006, Paris, France
Jean.Charlet@upmc.fr
3 AP-HP, Paris, France

Abstract. In this demonstration we will show two prototypes based
on the BRMS (Business Rule Management System) WODM, (1) The
OWL plug-in and (2) the change-management plug-in. The OWL plug-
in enables authoring and executing business rules over OWL ontologies.
It consists of importing OWL ontologies into WODM and using the all
the functionalities offered by this BRMS to author and execute rules. The
change-management plug-in enables the evolution of business rules with
respect to the ontology changes. This component, implemented basically
using an OWL ontology and rules, detects inconsistencies that could be
caused by an ontology evolution and proposes solution(s), called repair,
to resolve them.
Keywords: Ontology, Business Rule, Consistency maintenance, incon-
sistency.

1 Challenges faced

In the majority of BRMS, Business Models are represented using Object Models
while OWL Ontologies offer a better power of expressiveness. The purpose of
the proposed challenge is to bring the expressiveness of OWL ontologies to busi-
ness users by means of business rules authored in a natural controlled language.
For this, we exploited the infrastructure offered by the BRMS WebSphere Op-
erational Decision Management (WODM) and developed two prototypes : The
OWL Plug-in and the change-management plug-in for WODM. the OWL plug-in
enables authoring and executing business rules over OWL ontologies. It consists
of importing OWL ontologies into WODM and using the all the functionali-
ties offered by this BRMS to author and execute rules. The change-management
plug-in enables the evolution of business rules authored over OWL ontology with
respect to the ontology changes. This component, implemented basically using
OWL ontology and rules, detects rules inconsistencies that could be caused by
an ontology change and proposes solution(s), called repair, to resolve them.

During the development of this work we have been faced to the following
challenges :

– how to enable business users to deal with their business knowledge formalized
using OWL Ontologies?

– How to import OWL ontology into WODM?
– WODM is object model based, how to import the expressiveness and the

reasoning capacity of OWL into such a BRMS?
– How to minimize the loose of information?

Ontologies evolve during their life cycle :
– What is the impact of such evolution on the rules?
– How to make the rule set evolving with respect to the ontology?
– How to maintain its consistency while it evolves?
– How to detect the impact of the ontology evolution on rules?

2 Method

In this section, we will describe the methods we developed to resolve the chal-
lenges described above. These methods are based on WODM.

WODM offers an infrastructure that enables business users to author - in a
controlled natural language - execute and mange business rules in a collaborative
way. As the majority of BRMS, it uses an object oriented models to formalize
the domain knowledge. In WODM, this object oriented model is called BOM
(Business Object Model). The BOM represents the entities of a given business
(e.g. Client, age). It is generated over from the XOM (eXecutable Object Model)
then verbalized. The XOM is the model enabling the execution of rules. It ref-
erences the application objects and data, and is the base implementation of the
BOM. The XOM can be built from compiled Java classes (Java execution object
model) or XML Schema (dynamic execution object model). The verbalization of
the BOM consists of generating a controlled natural language vocabulary (VOC)
which enables to edit the business rules. The VOC, add a layer of terminology
on top of the BOM (e.g. “the client”, “the age of the client”). This vocabulary
is used to compose the text of the rules.

2.1 OWL plug-in

To enable business users to author business rules over OWL ontologies, we de-
veloped the WODM OWL plug-in. This plug-in exploits infrastructure offered
by WODM to import OWL ontologies within it. The main component for au-
thoring rules in WODM is the BOM. For this, we performed a mapping of OWL
concepts (TBox) into the BOM. Thus, when we import an OWL ontology within
WODM, the BOM is automatically generated and the functionalities offered by
the BRMS can be used [1].

Among these functionalities, we will focus on authoring and executing rules.
Once we have the BOM, its verbalization is also available and the business users
are able to edit the business rules in a natural controlled language or using the
decision tables or the decision tree.

To execute business rules authored over ontologies, we performed a second
mapping of OWL/BOM entities to a XOM using Jena . Jena is a Java frame-
work, including an ontology API for handling OWL ontologies, which allows to
generate Java objects from the entities of the ontology. These Java objects then
constitute the XOM. The use of Jena provides an execution layer for the OWL
ontologies. This execution layer provides inference mechanisms on this model
and the mapping of OWL concepts, properties, and individuals to a Java object
model. When the business user launches the rule execution process, the ontology
individuals (ABox) are loaded into the working memory of the rule engine and
mapped into java objects. The rule engine evaluates the rule conditions against
these objects and fires the rules for the objects that meet the condition. During
this process, the ABox mapped into Java Objects, is updated with respect to the
action parts of the fired rules. At the end of the execution process, the “new”
ABox is loaded into the ontology.

Another important point in the process of executing rules is the interaction
between the classification engine and the rule engine. In the following we will
present some examples of this kind of interaction as achieved with the system
presented in this work. The classification engine assigns the type of the individ-
uals, then the rule engine uses this inferred knowledge to trigger a computation
that could not be easily represented in an ontology. In other words, the rule en-
gine asks the classification engine for the type of the individual, then it executes
the rule(s) matching with the returned type.

Example 1: In the ontology, we define the concept CarDriver as a Driver who
has a CarDrivingLicense :

CarDriver ≡ hasDrinvingLicense some CarDrivingLicense
and we declare the following individuals :

Driver(Joe); hasAge(Joe, 20) ; hasName(Joe, ”Joe”)
Person(Toto); hasAge(Toto, 8) ; hasName(Toto, ”Toto”)
Driver(John); hasAge(John, 25) ; hasName(John, ”John”)

then we author the following rule (i.e.car driving license)

car driving license :
IF the age of the driver is more than 18
THEN add the car driving license to the driving licenses of the driver ;

After the execution of this rule, we see in the ontology that for each driver
who is more 18 (i.e. John and Joe), a car driving license is attributed. Then,
we execute the car driver rule, that lists the names of all the car driver in the
ontology. The result is : Joe is a car driver and John is a car driver because of
the reclassification of Joe and John after executing the car driving license rule.

car driver :
THEN print the name of the car driver + ” is a car driver” ;

Example 2 : In the ontology, we also define a concept ChildCarDriver, sub-
class of a concept Child. A ChildCarDriver is a Child who has as father a

CarDriver. Then we define Toto who has father John.

ChildCarDriver subclassOf Child subclassOf Person
ChildCarDiver ≡ hasFather only CarDriver
hasFather(Toto, John)

after executing the car driving license rule, we execute the child car driver
rule that lists the names of all the child car driver. The result is that Toto is a
child car driver because that in the ontology we define a child car driver as a
person who has a car driver as father.

child car driver :
THEN print the name of the child car driver + ” is a child car driver” ;

In the ontology, we also define the concept Contravention that has an
amount, a driver could have 0 or more contraventions and a contravention
amount to pay.

Contravention(c1), Contravention(c2)
hasContravention (John, c1), hasContravention (John, c2)

Using this definition, we author the remove car license rule that removes the
car driving license for each car driver who has a contravention and calculates the
contravention amount to pay. After executing this rule, John will loose his car
license. Thus, when we re-execute the car driver rule and the child car driver
rule, we will only have Joe is a car driver.

remove car license :
definitions

set ’a contravention’ to a contravention ;
set ’a car driver’ to a car driver where the contraventions of this car driver
contain a contravention;
IF ’a car driver’ is not null
THEN remove the car driving license from the driving licenses of ’a car driver’;
for each contravention in the contraventions of ’a car driver’ :
- set the contravention amount to pay of ’a car driver’ to the contravention
amount to pay of ’a car driver’ + the contravention amount of this contraven-
tion ;

In this example, the rule engine uses this inferred knowledge to trigger a
computation that could not be easily represented in an ontology

Example 3 In the ontology, we define the concept Contravention and the
concept RiskyDriver as a Driver who has more than 3 Contravention (a
cardinality restriction), Frank as a RiskyDriver and we give to John 4 Con-
traventions.

RiskyDiver ≡ hasContravention min 3
RiskyDriver(Frank) ; hasName(Frank, ”Frank”)

hasContravention (John, c1), hasContravention (John, c2), hasContravention
(John, c2), hasContravention (John, c4) such as Contravention(c1), Contra-
vention(c2), Contravention(c3). Contravention(c4).

If we execute the risky driver rule that lists the name of the risky driver
we will only see that Frank is a risky driver which means that the classification
engine is not able to classify John, who has four contraventions, as a risky driver.

risky driver :
THEN print the name of the risky driver + ” is a risky driver” ;

2.2 Change-Management plug-in

The change-Management plug-in is for WODM enables to analyse the impact
of ontology evolutions on business business rules. Ontology evolutions consist
of changes that impact an ontology. These changes may be structural changes,
conceptual changes, entity definition changes,. . . Business rules depends on the
entities of the ontology and its evolution has an impact on the rule set that
may causes inconsistencies. Thus, we developed the MDR approach (Model,
Detect, Repair), which ensures the consistency maintenance of business rules
while ontology evolution [3].

The MDR approach is based on design patterns and especially Change
Management Patterns (CMP). This approach has been inspired from ONTO-
EVOAL [2], which deals with the consistency maintenance of OWL ontologies
while they evolve. In our approach the CMPs are proposed to guide the evolu-
tion process of a rule set while maintaining its consistency. They consist of three
categories of patterns :

1. Change Pattern : used to model the ontology change knowledge that are
important to detect its impact;

2. Inconsistency Pattern : used to detect the inconsistencies caused by a change;
3. Repair Pattern : used to propose solutions, called repair, to resolve the in-

consistencies.

The consistency maintenance process that we propose in our approach con-
sists of three steps :

1. Model the change to apply to the ontology using the change pattern;
2. Detect the eventual inconsistency that could be caused using the inconsis-

tency pattern;
3. Propose repair to solve the inconsistency using the repair pattern.

Change pattern is designed using an OWL ontology, called MDROntology,
which model the ontology changes and their description, the inconsistencies that
impact a rule set and their repairs. Each change has constraints to verify to avoid
inconsistencies. Depending on the violated constraint the inconsistencies are
detected using the inconsistency pattern. Thus, the inconsistency patterns are
designed using a set of rules, called Inconsistency Detection Rules (IDR),

which in their condition part define the constraint that each change should ver-
ify and in their action parts define the inconsistency that will be caused by the
change. The repair patterns are also designed using rules, called Repair Rules

(RR), which in their condition parts test on the detected inconsistency and on
the modelled change then, in their action parts assign the repair(s) to apply.
The rules designing the inconsistency and repair patterns have been authored
over the MDROntology using the OWL plug-in (see section 2.1).

Figure 1 illustrates theMDR process. As input of our system, the user mod-
els the change description as MDROntology individuals. The change description
consists of :

– Change type : add, remove, modify;
– Change object : conceptual change (ı.e. subclass change, add concept, remove

property,. . .) or entity definition change (enumeration change, restriction
change, rename entity. . .);

– Change entities : concept or property that will be impacted by the change;
– Impacted rules and the scope of the impact (ı.e. the impacted rule part).

The change type, the change object and the change entities must be provided
manually by the user. The impacted rules and the impacted rule parts are de-
tected automatically. Nevertheless, depending on the change to apply other in-

Fig. 1. MDR process

formation should be given. For example, the new collection of the enumeration

in case of an enumeration change, the new name of an entity in case of a rename
entity change or the new range of a property in case of a range change. . . . In
the following, the general template of a change pattern (see Fig. 1).

When the user launch the consistency maintenance plug-in within WODM,
the modelled changes (MDROntology individuals) are loaded into the working
memory and shown to the user through a user interface. When the user select
one or more changes to apply, the IDRs are fired and detect the inconsistencies
that will be caused. A general template of the inconsistency pattern is given
below :

IF change.changeObject = changeObject

&& change.type = changeType

&& changeConstraint.satisfied = false

THEN change.inconsistency = inconsistency;

After the inconsistency detection and depending on the change to apply,
the RRs are fored and one or more repair are proposed to the user, who will
choose the repair to apply. The chosen repair will be automatically applied after
verifying that it will not causes other inconsistencies. A template of the repair
pattern is given below :

IF change.changeObject = changeObject

&& change.inconsistency = inconsistency

THEN inconsistency.repair = inconsistencyRepair;

3 Discussion

In section 1, we introduced the challenges we faced. In this section we discuss
the challenges we resolved and those that we are trying to resolve.

To enable business users to deal with their business knowledge formalized
using OWL Ontologies, we proposed an approach that consists of importing
OWL ontologies into WODM. This approach enables authoring, in a natural
controlled language, and executing rules over ontologies. Thus, business users
are able to use the domain entities defined in the ontology to define business
decisions using rules.

To import OWL ontologies into WODM, we performed an OWL to BOM
mapping. Thus, when the users import an OWL ontology into WODM, the BOM
is automatically generated and all the functionalities offered by the BRMS can
be used.

WODM, or more specifically the BOM, is an Object Model. We cannot im-
port all the expressiveness provided by OWL into such a model. Some con-
structs, such as rdfs:subClassOf, owl:allValuesFrom, owl:inverseOf. . . are
mapped. Some others, such as owl:someValuesFrom, owl: SymmetricProper-

ty, owl:TransitiveProperty cannot be mapped into the BOM but they are
processed at runtime (see Example 2 in section 2.1). Other constructs are neither
mapped into the BOM nor processed at runtime such as owl:minCardinality

(see Example 3 in section 2.1), owl:maxCardinality, owl:complementOf. . . A
complete description of the mapping can be found in [1].

Ontologies evolve during their life cycle. Rules are authored over the ontology
entities and depend on them; this is why an ontology evolution may make the
rule set inconsistent. To make the rule set evolve with respect to the ontology
while maintaining its consistency, we developed theMDR approach, which is a
pattern based approach. The general idea of this approach is that the user mod-
els the ontology change he wants to apply using the change pattern. Then, using
the inconsistency patterns, inconsistencies that may be caused by the change
are detected automatically. Finally, repairs that resolve the inconsistencies are
proposed automatically thanks to the repair Pattern. Nevertheless, in the actual
state of the work, the inconsistency patterns detect only two types of inconsis-
tencies from six. A definition of business rules inconsistencies is done in [3].

There are other challenges to be taken up; how to bring all the power of
expressiveness of OWL to business users without loosing information? In the
MDR approach the inconsistency and repair patterns are defined manually
which is a costly and not an easy task. Is it possible to automatically generate
these patterns depending on the change to apply in a way that we will be able
to detect all the inconsistencies that could impact business rules.

References

1. A. Chniti, S. Dehors, P. Albert, and J. Charlet. Authoring business rules grounded in
owl ontologies. In M. Dean et al. (Eds.), editor, RuleML 2010 : The 4th International
Web Rule Symposium: Research Based and Industry Focused. LNCS 6403, Springer-
Verlag Berlin Heidelberg 2010, 2010.

2. R. Djedidi and M.A. Aufaure. ONTO-EVOAL an ontology evolution approach
guided by pattern modelling and quality evaluation. Proceedings of the Sixth Inter-
national Symposium on Foundations of Information and Knowledge Systems (FoIKS
2010), 2010.

3. M. Fink, A. El Ghali, A. Chniti, R. Korf, A. Schwichtenberg, F. Lévy, J. Pührer,
and T. Eiter. D2.6 consistency maintenance. final report. ONTORULE Delivrable,
http://ontorule-project.eu/deliverables., 2011.

Diamond Debugger Demo: Rete-Based
Processing of Linked Data

Daniel P. Miranker, Rodolfo K. Depena, Hyunjoon Jung,
Juan F. Sequeda, and Carlos Reyna

Department of Computer Science
University of Texas at Austin

{miranker, jsequeda}@cs.utexas.edu
{rudy.depena,polaris79, creynam89}@gmail.com

Abstract. Diamond is a Rete match based system that evaluates SPARQL
queries on Linked Data. The evaluation of SPARQL query predicates is
a useful intermediate milestone for a system ultimately intended to sup-
port full rule-based inference on Linked Data. A byproduct is the inte-
grated graphical rule debugging environment is a first of its kind debug
environment for SPARQL queries.

Keywords: Rete, SPARQL, Linked Data, Semantic Web

1 Background

The Linked Data model is an emerging component of the Semantic Web. The
base layer of the Semantic Web is a representation of a directed labeled graph,
expressed using resource description framework (RDF). Each edge of such a
graph is commonly known as a triple. A triple is composed of a subject, a pred-
icate and an object. The predicate is the edge label. The subject and object are
vertex labels. Each constituent may be a URI. The intention is that labels form
global unique ids and overlay DNS services to identify a particular server that
may provide additional details (semantics) for the URI in the form of additional
triples. The object of a triple may contain a literal. Thus, an RDF graph can
represent complex data, spanning an arbitrary set of Internet servers [6].

Formal semantics for the Linked Data model are still emerging [4, 5]. The
base principles mimic the behavior of hyperlinks in html documents [6]. That is,
like a URL, dereferencing a URI instigates a response from a particular server.
However, in lieu of an HTML document that may contain both text and an
embedded set of URL-based hyperlinks, the server simply returns a set of triples.

One can expect that Linked Data crawlers will be intelligent. To date, all
Linked Data specifications and most related work is limited to RDF. There is no
explicit connection to the schema, ontology and rule layers, (RDFS, OWL, RIF),
of the Semantic Web technology stack. Thus, in Linked Data, any semantic en-
tailment will necessarily be implemented by inference processes associated with
the processes that initiate and control the Linked Data crawlers. For example,

2 Diamond Debugger Demo: Rete-Based Processing of Linked Data

SPARQL 1.1 allows triples to be updated. SPARQL 1.1 also inlucdes entailment
rules that define closure over subclass hierarchies. Unless a system admits to
limiting query and inferance to a potentialy inconsistent cache, it is necessarily
the case that inferance entail freshly collected data.

Architecturally, the intrinsic, incremental behavior of the Rete Match aligns
well with the web crawling aspects of the Linked Data model. This is true if one
is evaluating rule predicates, or just a single predicate. When a Linked Data URI
is dereferenced it returns a set of triples. The values of the triples may include
additional URIs that have not yet been dereferenced. This operational behavior
is identical to the algorithmic behavior of the Rete match per its original context,
the incremental evaluation of changes to working memory in forward-chaining
rule systems. Since an RDF graph is arbitrarily large and dynamic, even if an
implementation references a local cache of prefetched triples, one can anticipate
that any formal semantics will have to be consistent with an evaluation method
that, operationally, crawls the web of Linked Data and reports results prior to
reaching all reachable vertices. I.e. crawling can paused at any time, and the
system evaluated.

Motivated, in part, by the anticipation intelligent Linked Data agents, we
have first built a SPARQL query engine based on the Rete match and archi-
tected the integration of a Rete-based system with link-crawling and caching
components [3]. In Diamond, there is a Rete network object. Each rule predicate
is compiled as an instance of the Rete network object1.

Serendipitously our implementation of a graphical rule debugger is also a
SPARQL query debugger. Those already familiar with graphical debugging en-
vironments for Rete-based inference engines will already be familiar with the
operation and concomitant rendering of the Rete network and its content. This
is not the case for most developers in the SPARQL community.

We anticipate the development of a SPARQL query debugger will, further,
be welcomed by that community as SPARQL queries can be expansive, even
larger than comparable SQL queries. To support this claim, a query from the
Berlin SPARQL Benchmark Suite is reproduced in Figure 1. This benchmark
is distinguished as it provides semantically equivalent queries in SQL, as shown
in Figure 2. The definition of a set of Rete operators for SPARQL follows from
long standing connections made between relational algebra and rule predicates,
and results that prove an expressive equivalence between SPARQL, DatalogNeg
without recursion and relational algebra. [1, 7]

2 The System

The Diamond architecture is illustrated in Figure 3. The Rete network is created,
dynamically, from a runtime library of Rete netword object definitions [7]. The
URI dereferancing object is static. A critical design component is the pair of

1 Optimizations based on sharing Rete network subtrees is anticipated by more sophis-
ticated compilation techniques and providing for the composition of Rete network
object instances.

Diamond Debugger Demo: Rete-Based Processing of Linked Data 3

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>
PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?label ?comment ?producer ?productFeature
?propertyTextual1 ?propertyTextual2 ?propertyTextual3
?propertyNumeric1 ?propertyNumeric2
?propertyTextual4 ?propertyTextual5 ?propertyNumeric4

WHERE
bsbm-inst:ProductXYZ rdfs:label ?label .
bsbm-inst:ProductXYZ rdfs:comment ?comment .
bsbm-inst:ProductXYZ bsbm:producer ?p .
?p rdfs:label ?producer .
bsbm-inst:ProductXYZ dc:publisher ?p .
bsbm-inst:ProductXYZ bsbm:productFeature ?f .
?f rdfs:label ?productFeature .
bsbm-inst:ProductXYZ bsbm:productPropertyTextual1 ?propertyTextual1 .
bsbm-inst:ProductXYZ bsbm:productPropertyTextual2 ?propertyTextual2 .
bsbm-inst:ProductXYZ bsbm:productPropertyTextual3 ?propertyTextual3 .
bsbm-inst:ProductXYZ bsbm:productPropertyNumeric1 ?propertyNumeric1 .
bsbm-inst:ProductXYZ bsbm:productPropertyNumeric2 ?propertyNumeric2 .
OPTIONAL bsbm-inst:ProductXYZ bsbm:productPropertyTextual4

?propertyTextual4
OPTIONAL bsbm-inst:ProductXYZ bsbm:productPropertyTextual5

?propertyTextual5
OPTIONAL bsbm-inst:ProductXYZ bsbm:productPropertyNumeric4

?propertyNumeric4

Fig. 1. BSBM SPARQL Query 2

SELECT pt.label, pt.comment, pt.producer, productFeature, propertyTex1,
propertyTex2, propertyTex3, propertyNum1, propertyNum2,
propertyTex4, propertyTex5, propertyNum4

FROM product pt, producer pr, productfeatureproduct pfp
WHERE pt.nr=XYZ AND pt.nr=pfp.product AND pt.producer=pr.nr

Fig. 2. BSBM SQL Query 2

4 Diamond Debugger Demo: Rete-Based Processing of Linked Data

Fig. 3. Diamond Architecture Diagram

queues. The queues are intended to enable parallel, asynchronous execution of
query evaluation and URI dereferencing. The queues are actively managed to
avoid redundant dereferencing of URIs or redundant processing of triples by the
Rete network. The queue manager is implemented by accumulating triple in an
embedded copy of the Sesame 2 triplestore.

3 Demonstration

For demo purposes we use the benchmark query illustrated in Figure 1. For peda-
gogical purposes the screen shots are created by choosing an illustrative subset of
5 triple patterns. Video can be found at http://ribs.csres.utexas.edu/diamond/.
Figure 4 is a screen shot of the debugger when there are triples that satisfy 4 of
the 5 triple patterns. No triples that satisfy the third triple pattern.

Given the potential for a large number of both triples (data) and triple pat-
terns (SPARQL clauses) the Rete network is rendered seperately from the data
and the contents of the memory nodes. The contents of a memory node is viewed
by clicking on the node in the Rete network, which opens a new window. Users
may open, resize and move such windows anywhere on the screen. To save space,
the figure shows three memory node windows overlayed on the window of the
Rete network. We show, contents of one alpha-memory, that there is a repre-

2 http://www.openrdfȯrg/

Diamond Debugger Demo: Rete-Based Processing of Linked Data 5

Fig. 4. Screenshot of before

Fig. 5. Screenshot of after

6 Diamond Debugger Demo: Rete-Based Processing of Linked Data

sentation of a successful join in the first beta-memory. The remainder of the
network is empty.

Upon a the arrival of a triple that satisfies the third triple pattern the query
becomes satisfied. Figure 5 shows the subsequent state of the Rete network. Each
of the beta memories now has content.

4 Discussion

Although Diamond currently treats a SPARQL query as the predicate of a single
rule, the system is easily extended to process a set of forward-chaining rules.
The overlap of operator level equivalence between SPARQL query predicate
evaluation and rule system evaluation is well established in the literature [1, 2,
8, 9]. The extensibility of the implementation is a byproduct of object-oriented
design principles. Although we have no immediate plans per the investigation
of parallel evaluation of rule systems, we note that the coordination of Rete
network evaluation with the Linked Data crawlers is by means of asynchronous
queues. Thus, the mechanisms for asynchronous concurrent rule evaluation are
in place as well.

Acknowledgments. This research is supported by an NSF grant IIS-1018554.
Juan F. Sequeda was supported by an NSF Graduate Research Fellowship.

References

1. Renzo Angles and Claudio Gutierrez, ‘The expressive power of sparql’, in Interna-
tional Semantic Web Conference, pp. 114–129, (2008).

2. François Bry, Tim Furche, Bruno Marnette, Clemens Ley, Benedikt Linse, and Olga
Poppe, ‘Sparqlog: Sparql with rules and quantification’, in Semantic Web Informa-
tion Management, 341–370, (2009).

3. Charles Forgy, ‘Rete: A fast algorithm for the many patterns/many objects match
problem’, Artif. Intell., 19(1), 17–37, (1982).

4. Olaf Hartig, ‘Sparql for a web of linked data: Semantics and computability’, in
ESWC, pp. 8–23, (2012).

5. Olaf Hartig, Christian Bizer, and Johann Christoph Freytag, ‘Executing sparql
queries over the web of linked data’, in Proceedings of the 8th International Se-
mantic Web Conference, pp. 293–309, (2009).

6. Tom Heath and Christian Bizer, Linked Data: Evolving the Web into a Global Data
Space, Synthesis Lectures on the Semantic Web, Morgan & Claypool Pub., 2011.

7. Daniel P. Miranker, Rodolfo K. Depena, Hyunjoon Jung, Juan F. Sequeda, and
Carlos Reyna, ‘Diamond: A sparql query engine, for linked data based on the rete
match’, in Proc. of the Artificial Intelligence meets the Web of Data Workshop at
ECAI12, (2012).

8. Axel Polleres, ‘From sparql to rules (and back)’, in Proc. of the 16th int. conf. on
World Wide Web, WWW ’07, pp. 787–796, New York, NY, (2007). ACM.

9. Simon Schenk and Steffen Staab, ‘Networked graphs: a declarative mechanism for
sparql rules, sparql views and rdf data integration on the web’, in Proc. of the 17th
int. conf. on World Wide Web, WWW ’08, pp. 585–594, New York, (2008). ACM.

Monitoring BPMN-Processes with Rules in a
Distributed Environment

Lothar Hotz1, Stephanie von Riegen1, Lars Braubach2, Alexander Pokahr2, and
Torsten Schwinghammer3

1 HITeC e.V. c/o Fachbereich Informatik, Universität Hamburg, Germany {hotz,
svriegen}@informatik.uni-hamburg.de

2 VSIS, Fachbereich Informatik, Universität Hamburg, Germany {braubach,
pokahr}@informatik.uni-hamburg.de

3 Uniique AG, Hamburg, Germany
Torsten.Schwinghammer@UniiqueAG.com

Abstract. In this paper, we demonstrate an application of rules in a business
process scenario. As business processes, we consider data-intensive applications
which need to move huge data files from server to server. By using the Business
Process Model and Notation (BPMN) in our application, we enable clearly and
hierarchically represented business processes. Such modeled processes can auto-
matically be executed in a distributed environment with the Jadex open source
middleware. Furthermore, the process execution is monitored with declarative
rules, also implemented with Jadex. The demonstration shows the start of BPMN-
modeled processes and their execution monitoring through logs and rules.

Keywords: Distributed systems, BPMN, rule-based systems, monitoring

1 Introduction

In business intelligence scenarios a huge amount of continuously growing data files
has to be processed in distributed environments. Examples are log file, database, and
campaign management as they are common in banking or telecommunication organiza-
tions. For such tasks, organizations use data integration approaches. However, (Fried-
man et al., 2008) points out that the ". . . commitment for implementing and support-
ing custom-coded or semi-manual data integration approaches is no longer reasonable"
caused by the need for cost control. Consequently, organizations do already use specific
data integration applications, however, for controlling data flows on distributed systems,
manual activities or individual processes are still needed.

The basic principle in such applications consists of an extraction of data files from
an operative system (like a web server), transformation of the data (on a staging server),
and storing it in an analytical platform (like a data warehouse), see Figure 1. Data inte-
gration tools already handle diverse data file formats, however, they blank out that or-
ganizational data primary exist as decentralized, distributed data files. In our approach,
we enable a declarative representation of business processes with the Business Process
Model and Notation (BPMN) (OMG, 2006). With this notation, a user models business

processes on the basis of a predefined application component library. Those compo-
nents implement basic tasks needed for file manipulation or similar activities. Such
modeled processes can directly (i.e. without further coding) be executed in a distributed
environment, such that subprocesses or tasks run on different servers.

In this paper, we focus on the monitoring of business process execution. This mon-
itoring task has the goal to identify interesting occurrences during process execution.
Such occurrences can be normal process execution as well as failing executions like not
finished processes or exceeded average runtime of processes. For this process observa-
tion tasks, we apply a rule-based approach (see (Barringer et al., 2010) for a similar
approach).

Web and Application Server

Staging Server

Evaluation Server

Fig. 1: Example Architecture

We are currently developing a system for automating business processes for gaining
flexibility in process arrangement, quality improvements of data processing, and cost
savings. The system consists of distributed, autonomously acting components, which
are centrally controlled. Besides distributed quality assurance processes and integrative
information life cycle strategy, the system has a process modeling component based on
the BPMN (see Section 2) and a monitoring component (see Section 4), which are pre-
sented in this paper. We use the Jadex system4 as a infrastructure supporting distributed
agents and rules (see Section 3). In Section 5 and with a video5, we demonstrate the
processing of agents and rules with a data staging example.

2 BPMN Example

The de facto standard to graphically model applicable business processes is the Business
Process Model and Notation (BPMN) (OMG, 2006). This notation is suited to formulate
e.g. organizational structures or data models with elements such as events, activities,
gateways, data objects, and transactions arranged in a pool and lanes. We use BPMN in
the business intelligence context for distributed management of processes and data.

4 http://jadex-agents.informatik.uni-hamburg.de
5 http://monitoringrules.dyndns.org/

In the following, we introduce a simple example use case. Figure 1 depicts an ex-
emplary server setting where the first stage of server outputs large amounts of data (for
example customer informations collected by a publicity campaign) which will be pro-
cessed by the staging server. The staging server filters the input data according filters
like e.g. correct addresses. The quality analysis of data provided by the evaluation server
brings the setting to a close.

Fig. 2: BPMN model for data staging example

The notational model of the data processing is described in Figure 2. Before pro-
cessing the collected data, the configuration data for the upcoming copy process has
to be fetched and checked, possible configuration contents might be access credentials.
The copy task is a collapsed subprocess (readily identifiable by the plus), in case of
errors within this subprocess the error event leads to the error handling task. The ex-
panded copy process is shown in Figure 3. After the data processing, the analyzing of
quality (QA) step follows.

The expanded copy subprocess contains the following tasks: First the connection
to a specific server has to be established, and before copying the data the existence
is checked. Since of some data only one version is allowed to exist, a delete task is
integrated via the exclusive gateway. Each task is bonded with a error catching event
leading to the error handling task. Because of server-side connection problems, some
errors might be corrected by a simple retry after a couple of minutes, see the timer event
in Figure 3.

Fig. 3: Inner copy model of staging example

© 2012 Uniique Information Intelligence AG

Basistechnologie aus der Informatik

28

Fig. 4: Active Component

3 Jadex

The implementation platform used in this project is the open source platform Jadex
(Braubach and Pokahr, 2011), which is a middleware for distributed systems. Jadex
uses the new notion of active components for programming distributed systems. An ac-
tive component or instance represents a unification of the component with agent and
service concepts (cf. Fig. 4). The basic idea consists in having autonomously acting and
loosely coupled entities in the sense of the actor model, i.e. communication among en-
tities should be asynchronous and data objects should belong only to one actor to avoid
data inconsistencies caused by concurrent accesses. This world model is combined with
component and service ideas to strengthen the software engineering mechanisms that
can be used to build software systems. The beneficial combination of component and
service approaches has recently been put forward by the service component architecture
(SCA) (Marino and Rowley, 2009), which introduces a component based architecture
description framework for service oriented applications. The SCA component model
defines a component with provided and required service interfaces to clearly state of-
fered functionalities and dependencies. Furthermore, such interfaces allow for hierar-
chical (de)composition of complex software systems and foster reuse of software by
building composites from readily available components. An active component further
combines these SCA component concepts with agent characteristics, mainly it adds
an internal architecture to a component. This internal architecture determines the type
of an active component and the way its behavior has to be programmed. In this way
very different kinds of active components such as BPMN workflows and even cognitive
belief-desire-intention (Rao and Georgeff, 1995) agents can interact seamlessly because
they share the same black-box view of each other.

3.1 The Runtime Platform

The Jadex runtime environment consists of the component container called platform and
an additional tool set mainly used for administration, debugging and testing purposes.
The Jadex platform facilitates the development of distributed systems in the following
ways:

– Distribution transparency is established between components, i.e. a component can
invoke a service of another component without having to know if this component
is local or remote.

– An overlay network is automatically built by platform awareness. This means that
Jadex platforms automatically find each other in local as well as distributed net-
works employing multiple different techniques such as IP broadcasts for local de-
tection. In this way services of new remote platforms can be found and used as
soon as a new platform has been discovered. Of course, the network building can
be customized or disabled for specific customer settings.

– Platform security is assured. On the one hand Jadex introduces security mecha-
nisms to protected the privacy of user data and services by separating awareness
from communication means, i.e. platforms may detect each other but communica-
tion between them is restricted with respect to security settings. On the other hand
application services can be declaratively equipped with security features so that
authentication, confidentiality and integrity of communication partners is ensured.
This is achieved by relying on established security protocols such as SSL.

3.2 Workflows and Rule Support

BPMN workflow support for Jadex consists of a visual editor based on the open source
eclipse stp editor and the workflow engine that is able to execute modeled workflows.
The editor mainly extends the stp version with new input fields for annotating imple-
mentation data that is necessary for executing the workflow. Such modeled workflows
can be directly loaded and executed within Jadex using the BPMN kernel, which enacts
each workflow as a separate active component instance. A workflow can spawn new
subworkflows either locally or on remote platforms and monitor their execution. Fur-
thermore, as workflows are components, they can invoke services of other workflows
or components via their provided service interfaces. Rule support is based on a typical
forward chaining rule engine called Jadex Rules that is similar to JESS and Drools, but
targeted towards a very lightweight engine solution that can be integrated with other
application parts. One reason for such a lightweight solution was the requirement to
be able to execute a rule engine as part of an active component, i.e. due to the actual
number of such components many rule engines have to run concurrently.

4 Monitoring

The duty of the monitoring component is to observe process execution and signal suc-
cessful or failure execution. This monitoring can depend on application specific at-
tributes like duration of process execution time or transfered file size. As common for
a rule-based approach, working memory elements based on templates and rules can be
used for representing the involved data and knowledge. Templates describe via fields
structured data objects. Rules consist of a condition and action part. If some working
memory elements fulfill the condition part of a rule, the rule system executes its action
part.

In our application, while tasks and processes are executed, logs are created within
application components. We differentiate between effective and failure logs. The effec-
tive logs are grouped by BPMN process, micro agent, rule, and task start and end logs.
Every time an agent, BPMN process, or a task is started or will terminate shortly after,

Fig. 5: Template hierarchy

a log will be created. In case of a failure within a task, rule, agent, or BPMN process a
failure log is created. The basic layout of a log consists of the creation time, id, type,
message, and parent id, but each log subtype extends this layout. For an overview of the
currently used log types (implemented as Java classes), see Figure 5.

Working memory elements represent logs in the rule system. Consequently, in the
condition part of a rule, types of logs and their fields can be tested. If a certain combina-
tion of logs was created, i.e. corresponding components were executed, a rule can fire
and, thus, signal its execution with a further log. The rule depicted in Figure 6 creates a
log of type CopyRuleEffectiveLog if two logs of type BeforeCopyTaskEffectiveLog and After-
CopyTaskEffectiveLog of the same process exist. Logs created through rule firing can be
used in further rules for hierarchically testing log structures.

Thus, the application component implementor can model logs of a related type and
rules describing certain effective or failure situations of an application component.

(defrule CopyTaskRuleEffective
;; Matches log-objects of type BeforeCopyTaskEffectiveLog
;; which deal with files of size not equal 0.
?ctlog1 <- (BeforeCopyTaskEffectiveLog

(taskStartTime ?tst)
(sourceFilesize ?sfs)
(processID ?pid1)
(test(!= ?sfs 0)))

;; Matches log objects of type AfterCopyTaskEffectiveLog
;; which deal with of size not equal 0 and has the same
;; processID as above.
?ctlog2 <- (AfterCopyTaskEffectiveLog

(processID ?pid1)
(targetFilesize ?tfs)
(taskEndTime ?tet))

;; Task start time must be less task end time
(test (< ?tst ?tet))
(test (!= ?tfs 0))

=>
;; Creation of a combined working memory element representing
;; the firing of the rule.
(assert (CopyRuleEffectiveLog (logs ?ctlog1 ?ctlog2))))

Fig. 6: Example for a rule, written in CLIPS syntax, monitoring the copy task.

The monitoring component itself is implemented as an agent which continuously
receives logs from the executing application agents (see Figure 7). This happens via so
called LocalMonitoringRepositories and one central MonitoringRepository that store

the logs for later use. Thus, the monitoring component observes the execution of dis-
tributed acting agents in a central way. It further combines the results of the agents’
activities through firing rules.

MonitoringRepository

A1 A2 A3

LocalMonitoring
Repository

LoggingService
RuleSystem

Active instance

A1 A2 A3

LocalMonitoring
Repository

A1 A2

LocalMonitoring
Repository

Agent

Fig. 7: Collecting logs from distributed agents running on different active instances

The monitoring component is part of a distributed business process execution ap-
plication, which is currently under development. The application is implemented with
JAVA and the extension Jadex for distributed agents.

5 Demonstrator

In the demonstrating example, we show the execution of an BPMN-modeled process
for file transfer. For this task, following steps are executed:

– Start of the Logging Service agent that initializes the rule engine and waits for
incoming logs.

– The specific working memory element Clock is initially created for representing the
current time and, thus, enabling time-dependent rule firing.

– The BPMN-process is started by the user. Internally, new agents are created which
follow the process model and execute the related basic component implementation.
During the process execution specific logs are created like BPMNProcessStartLog
and BeforeCopyEffectiveLog.

– Created logs and activated rules can be examined in a rule monitor window.
– Each fired rule creates new logs like the CopyRuleEffectiveLog.
– In a further run-through of the demonstrator another rule fires indicating that a copy

task needs too much time to be processed.

6 Discussion and Summary

Other data integration tools already handle diverse data file formats, however, they blank
out that organizational data primary exist as decentralized, distributed data files. User

of such systems are forced to manually move the data files to appropriate places or to
develop scripts and programs that move them around in distributed systems. To the best
of our knowledge, no other business intelligence software is focusing on the process
execution monitoring via rules. Hereby, processes report their execution via logs (e.g.
start and end logs) and rules observe those for identifying interesting monitoring oc-
currences. This rule-based approach has following advantages. First, we decouple the
execution of the actual processes from their monitoring, i.e. we separate application
logic from monitoring logic. If new interesting occurrences shall be recognized dur-
ing execution the process component implementation has not to be changed but only
rules have to be added. Thus, maintenance shall be simplified. Furthermore, by using
rules, we allow a declarative representation of such interesting situations which can be
modeled by domain experts, in the ideal case, e.g. when domain specific languages are
introduced for rule modeling (see (Laun, 2011)). Such models (rules) can reflect on
single processes as well as combinations of different processes or subprocesses. Sim-
ilarly, results of rule firing can be aggregated through rule chaining. Thus, beside the
typical procedural representation of process’ behavior in BPMN diagrams, rules pro-
vide a declarative representation of the expected outcome of process execution. When
rules are fulfilled, such informations can again be stored in repositories or communi-
cated to user interfaces that present actual states of process execution (e.g. in a business
process browser). The data-driven character of rule-based approaches enables a direct
reaction and evaluation of current situations, like daemons who react actively on data
occurrences. Contrarily, a database approach would need to actively apply queries on a
database.

In this demonstration paper, we present a combination of process modeling based
on BPMN, process execution in a distributed environment, and process execution mon-
itoring with rules. The demonstrator shows how these technologies can successfully be
combined to monitor process execution in a distributed environment.

References
Barringer, H., Rydeheard, D. E., and Havelund, K. (2010). Rule Systems for Run-time Monitor-

ing: from Eagle to RuleR. J. Log. Comput., 20(3):675–706.
Braubach, L. and Pokahr, A. (2011). Addressing Challenges of Distributed Systems Using Active

Components. In Brazier, F., Nieuwenhuis, K., Pavlin, G., Warnier, M., and Badica, C., edi-
tors, Intelligent Distributed Computing V - Proceedings of the 5th International Symposium
on Intelligent Distributed Computing (IDC 2011), pages 141–151. Springer.

Friedman, T., Beyer, Mark, A., and Bitterer, A. (2008). Magic Quadrant for Data Integration
Tools. Technical report, Gartner.

Laun, W. (2011). Domain Specific Languages: Notation for Experts. In International Conference
on Reasoning Technologies (Rules Fest), San Francisco.

Marino, J. and Rowley, M. (2009). Understanding SCA (Service Component Architecture).
Addison-Wesley Professional, 1st edition.

OMG (2006). Business Process Modeling Notation (BPMN) Specification, Final Adopted Speci-
fication.

Rao, A. and Georgeff, M. (1995). BDI Agents: from Theory to Practice. In Lesser, V., editor, Pro-
ceedings of the 1st International Conference on Multi-Agent Systems (ICMAS 1995), pages
312–319. MIT Press.

Loosely-Coupled and Event-Messaged
Interactions with Reaction RuleML 1.0

in Rule Responder

Zhili Zhao1, Kia Teymourian1, Adrian Paschke1, Harold Boley2, Tara Athan3

1 Freie Universität Berlin, Germany
{paschke, zhili, teymourian} AT inf.fu-berlin.de

2 Information and Communications Technologies, National Research Council Canada
Fredericton, NB, Canada

harold.boley AT nrc.gc.ca
3 Athan Services, W Lafayette, IN, USA

taraathan AT gmail.com

Abstract. Reaction RuleML is one of the two major subfamilies of
RuleML and acts as an interchange format for reactive rules and rule-
based event-processing languages. Exemplified with a recent instantia-
tion of Rule Responder, a rule-based inference agent middleware, we
demonstrate the event messaging features of Reaction RuleML, which
supports loosely-coupled interface-based interaction using rule signatures
and decoupled communication via event messages.

1 Introduction

As one of the two major subfamilies of RuleML1, Reaction RuleML2 presents
a general compact rule interchange format for reaction rules, which are used
to declaratively specify the reactive and behavioral logic of distributed systems
and dynamic (Web-based) environments [17]. RuleML has broad coverage and
is designed as an interchange language for the major kinds of (Web) rules. The
RuleML family’s top-level distinction is Deliberation rules vs. Reaction rules [3].
Deliberation rules permit knowledge derivation and subsume further languages
such as Hornlog (hence Datalog), which (syntactically) specialize to condition-
less Fact and conclusion-less Query languages (the latter subsuming Integrity
Constraint (IC) languages). On the other hand, Reaction rules focus on event-
driven (re)actions in distributed and dynamic environments.

Reaction RuleML is intended as a common standard for representing reactive
rules and rule-based complex event processing (CEP) in a platform independent
XML markup language. It provides several layers of expressiveness for adequately
representing reactive logic and for interchanging events (queries, actions, event
data) and rules. As a whole, Reaction RuleML is characterized by the following
features:

1 http://ruleml.org/
2 http://reaction.ruleml.org/

2 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

1. Reaction RuleML Metamodel, Semantic Types and Data Queries. Reaction
RuleML is based on a metamodel and ’pluggable’ ontologies and defines
general concepts such as space, time, event, action situation, process, and
agent in a modularized ontological top-level structure, with a left to right
vertical order in the top-level ontologies. Therefore, it is possible for Reaction
RuleML to support distributed and modularized knowledge bases through
direct coupling via key references within a KB, iri pointers, and support
for query languages.

2. Rule Interface Descriptions with Semantic Profiles and Signatures. Reaction
RuleML separates the interface of a rule from its implementation. The in-
terface describes the functional and non-functional (semantic) properties of
a rule. The implementation, on the other hand, requires more flexibility and
can be modified without any change of its interface.

3. Reaction RuleML Messaging. The interface description language of Reaction
RuleML allows for loosely-coupled interaction with distributed inference ser-
vices and agent KBs. Based on event messaging, Reaction RuleML also sup-
ports decoupled communication via event messages that are produced and
published as Reaction RuleML serializations, e.g. on event streams or event
clouds.

In this paper, exemplified with a recent instantiation of Rule Responder3 [16,
15, 2], we demonstrate the distributed event-messaging interactions of Reaction
RuleML 1.0 in loosely-coupled and de-coupled distributed rule-based agents.
Reaction RuleML acts as a standardized interface description language and in-
terchange format between these semantic agents which run their own platform
specific rule engines and rule-based knowledge base (KB) at their core. The rest
of the paper is organized as follows: Section 2 introduces Reaction RuleML and
its reference application Rule Responder. In Section 3 we present the seman-
tic interpretation and translation between Reaction RuleML as a standardized
rule interchange language and several platform specific rule languages as well
as the platform independent controlled English ACE. Section 4 presents how
distributed event messaging supports loosely-coupled interaction with inference
services/agents. Section 5 deals with decoupled communication via event mes-
sages. Finally, we conclude the paper with a summary in Section 6.

2 Reaction RuleML 1.0

Reaction rules are concerned with the invocation of actions in response to events
and actionable situations [14]. They state the conditions under which actions
must be taken and describe the effects of action executions. In the last decades
various reaction rule languages and rule-based event processing approaches have
been developed, which for the most part have been advanced separately. The
Reaction RuleML standard4 addresses four major reaction rule types: Produc-

3 http://responder.ruleml.org
4 http://reaction.ruleml.org/

Interactions with Reaction RuleML 1.0 in Rule Responder 3

tion Rules (Condition-Action rules), Event-Condition-Action (ECA) rules, Rule-
based Complex Event Processing (CEP) (CEP reaction rules, (distributed) event
messaging reaction rules, query reaction rules etc.), Knowledge Representation
(KR) Event/Action/Situation Transition/Process Logics and Calculi

Reaction rules are defined by a general Rule element which can be specialized
in the different Reaction RuleML branches to the four major types of reaction
rules (and variants of these types). The following example shows the most gen-
eral rule syntax of RuleML with of focus on Reaction RuleML. We use 1- or
2-letter indicators for syntax from Deliberation (D), Reaction (R), or Delibera-
tion+Reaction (DR) RuleML.

<Rule @key @keyref @style>

<!-- rule info and life cycle management, modularization -->

<meta> <!-- DR: (semantic) metadata of the rule --> </meta>
<scope> <!-- R: scope of the rule e.g. a rule module --> </scope>

<!-- rule interface description -->

<evaluation> <!-- R: intended semantic profiles --> </evaluation>
<signature> <!-- R: rule interface signature and modes --> </signature>

<!-- rule implementation -->

<qualification> <!-- R: e.g. qualifying rule declarations, e.g.
priorities, validity, strategy --> </qualification>

<quantification> <!-- DR: quantifying rule declarations,
e.g. variable bindings --> </quantification>

<on> <!-- R: event part --> </on>
<if> <!-- DR: condition part --> </if>
<then> <!-- D: (logical) conclusion part --> </then>
<do> <!-- R: action part --> </do>
<after> <!-- R: postcondition part after action,

e.g. to check effects of execution --> </after>
<else> <!-- DR: (logical) else conclusion --> </else>
<elsedo> <!-- R: alternative/else action,

e.g. for default, exception handling --> </elsedo>
</Rule>

Rule Responder5 [16, 15, 2] is a reference application of Reaction RuleML. It
is supporting distributed semantic multi-agent systems and rule-based inference
services that run rule engines at their core and communicate using (Reaction)
RuleML as a standardized rule interchange format. The Rule Responder Tech-
nical Group of RuleML is focused on implementing use cases that require the
interchange of rule sets and support querying the distributed rule inference ser-
vices. To implement different distributed system/agent topologies and semiotic
structures with their negotiation/coordination mechanisms, Rule Responder in-
stantiations employ three core classes of agents - Organizational Agents (OA),
Personal Agents (PAs), and External Agents (EAs). An OA represents goals
and strategies shared by its virtual organization (of agents) as a whole, using a
rule base that describes its policies, regulations, opportunities, etc. OAs hence
might act as centralized nodes in star-like distributed coordination networks.

5 http://ruleml.org/RuleResponder/

4 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

They often follow an orchestration style execution logic where the OA is a cen-
tralized authority which orchestrates the other PAs. A PA assists a group or
person/agent of the organization, semi-autonomously acting on their behalf by
using a local knowledge base of rules defined by the entity. In decentralized dis-
tributed networks the PAs itself might communicate with each other following
e.g. a choreography style coordination, e.g. for distributed problem solving. EAs
can communicate with the virtual organization by sending messages to the pub-
lic interfaces of the OA. EAs can be human users using, e.g., Web forms or can
be automated services/tools sending messages via the multitude of transport
protocols of the underlying enterprise service bus (ESB) middleware of Rule Re-
sponder. The agents employ ontologies in their rule-based knowledge bases to
represent semantic domain vocabularies, normative pragmatics and pragmatic
context of conversations and actions, as well as the organizational semiotics.

Since the Rule Responder framework has been conceived [16], many instan-
tiations have been developed such as the Health Care and Life Sciences eScience
infrastructure [11], Rule-based IT Service Level Management and the Rule Based
Service Level Agreement (RBSLA) language [13], Semantic Business Process
Management (BPM) [18, 12], WellnessRules(2) [1], PatientSupporter, and Sym-
posiumPlanner systems6.

In this paper, we will employ the SymposiumPlanner 2011 to demonstrate the
distributed event-messaging interactions in Rule Responder. SymposiumPlanner
is a series of Rule Responder instantiations for the Questions&Answers (Q&A)
sections of the websites of the RuleML Symposia since 2007.

3 Translator Service Framework

The design of Rule Responder follows the spirit of the OMG’s Model Driven
Architecture (MDA) approach [11, 15]:

1. On the computational independent level rules are engineered in a Rule Man-
ager user interface in a natural controlled English language using blueprint
templates and user-defined vocabularies and domain-specific translation rules.

2. The rules are mapped and serialized in Reaction RuleML which is used as
platform independent rule interchange format to interchange rules between
Rule Responder inference services (agents) and arbitrary other rule execution
environments.

3. The Reaction RuleML rules are translated into the platform specific rule
language for execution.

Rule Responder provides a translator service framework with Web form inter-
faces accepting controlled natural language inputs or predefined selection-based
rule templates for the communication with external (human) agents on the com-
putational independent level, as well as HTTP Rest and Web service interfaces,

6 http://ruleml.org/SymposiumPlanner/

Interactions with Reaction RuleML 1.0 in Rule Responder 5

which can be used for translation into and from Reaction RuleML. In Rule Re-
sponder SymposiumPlanner 20117, we also implemented a user client supporting
queries in Attempto Controlled English (ACE) [5], which is a rich subset of con-
trolled English designed to serve as a knowledge representation language. The
demonstration of the SymposiumPlanner 2011 user client can be found at8. Be-
fore sending them to Rule Responder, the queries are translated into a discourse
representation structure (DRS) by the Attempto Parsing Engine (APE)9. It is
then fed into an XML parser which translates it into Reaction RuleML by an
ACE2RML translator, which makes use of domain specific semantic vocabularies
and domain rules [21].

On the platform-independent and platform specific level, Reaction RuleML
can be translated or mapped into several domain specific reaction rule languages,
which are run by platform specific rule engines, such as: Prova10, OO jDREW11,
Emerald12, Euler, etc. The translator services are using different translation tech-
nologies such as XSLT stylesheet, JAXB, etc. to translate from and to Reaction
RuleML and are configured in the transport channels of the inbound and out-
bound links of the deployed rule engines on the ESB. That is, incoming Reaction
RuleML messages (receive) are translated into platform-specific rule bases which
can be executed by different platform specific rule engines, e.g. Prova, and out-
going rule bases (send) are translated into Reaction RuleML in the outbound
channels before they are transferred via a selected transport protocol such as
HTTP or JMS, etc.

For example, a user query in ACE format: ”Which papers are full and ac-
cepted?”, which is used to get all full papers accepted by RuleML2011@IJCAI13

is firstly translated into Reaction RuleML:

<?xml version="1.0" encoding="GBK"?>
<RuleML xmlns="http://www.ruleml.org/1.0/xsd"

xsi:schemaLocation="http://www.ruleml.org/reaction/1.0/xsd
http://ibis.in.tum.de/research/ReactionRuleML/1.0/rr.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<oid>

<Ind>Generated message from ACE text "Which papers are full and accepted?".</Ind>
</oid>
<Message directive="query-sync">

<oid>
<Ind>RuleML-2011-IJCAI</Ind>

</oid>
<protocol>

<Ind>esb</Ind>
</protocol>
<sender>

<Ind>User</Ind>
</sender>
<receiver>

7 http://ruleml.org/SymposiumPlanner/documentation.html
8 http://de.dbpedia.org/redirects/ruleml/ACE2ReactionRuleML/index.jsp
9 http://attempto.ifi.uzh.ch/site/

10 http://www.prova.ws/
11 http://www.jdrew.org/oojdrew/
12 http://lpis.csd.auth.gr/systems/emerald/
13 http://www.defeasible.org/ruleml2011/

6 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

<Ind>RuleML-2011-IJCAI</Ind>
</receiver>
<content>

<Atom>
<Rel>getPapers</Rel>
<Ind>full</Ind>
<Ind>accepted</Ind>
<Var>B</Var>

</Atom>
</content>

</Message>
</RuleML>

This example above also indicates the general message syntax of a Reaction
Message [17]. In Reaction RuleML 1.0, each event message (the Message ele-
ment) consists of a conversation identifier (the oid element), a pragmatic context
description (the directive attribute), a transport protocol (the protocol el-
ement), such as HTTP, JMS, SOAP, etc., a sender (the sender element)/receiver
(the receiver element) agent of the message and a message payload (the content
element). When a message is sent from an External Agent, Rule Responder picks
up the message, translates into a domain specific rule language and then sends
it to a target agent. For example, the message of Reaction RuleML mentioned
above is translated into a Prova message via XSLT sheet in SymposiumPlanner
2011, shown as follows:

[httpEndpoint:3,esb,httpEndpoint,query,[getPapers,full,accepted,<2901>]].

Each Prova message describes the messages which are received and sent by
Prova agents and consists of constants, variables, or lists. For more information,
see the Prova 3.0 Users Guide14. After the above Prova message is processed
in the Prova rule engine, the resulting answer will be translated to Reaction
RuleML before sending it to other agents.

Rule Responder’s translation framework also supports the elementary trans-
lation between Drools15 and Reaction RuleML. Drools is a business rule man-
agement system (BRMS) with a forward chaining production rule engine [20].
The production rule pattern of ”when-then” in Drools can be represented by
the pattern of ”if-do” in Reaction RuleML, as shown in Figure 1. For more
implementation details of the translation see [6].

4 Loosely-Coupled Interaction

Reaction RuleML allows distributed event messaging interactions in loosely-
coupled and decoupled distributed rule-based systems such as Web inference
services and semantic agents. In this Section we will demonstrate how event
messaging interaction plays an important role in Rule Responder.

The loosely-coupled interaction leads to a resilient relationship between dis-
tributed agents with some kind of exchange relationship. Each agent makes its

14 http://www.prova.ws/index.html?page=documentation.php
15 http://www.jboss.org/drools

Interactions with Reaction RuleML 1.0 in Rule Responder 7

Fig. 1. The Mappings between Drools and Reaction RuleML

requirements explicit and makes use of the public interface definitions of other
agents for communicating with them, i.e., an agent publishes an interface defi-
nition (containing the public rule signatures), which can be accessed in one or
many concrete ways by other agents - typically by a query to the agent using
one of its public rule interface signatures. Instead of queries and answers, also
an interchange of complete rules and rule bases as mobile rule code to an agent
is possible. Their loosely-coupled dependency and their intended interpretation
and execution semantics is specified by the interface and brings flexibility that
a change in the underlying rule implementation does not necessarily require a
change in the rule signature, except if the rule signature itself changes. More-
over, while the interfaces might be published publicly and can be queried by
requesting agents, the concrete implementation of the rule base might be hid-
den and privately encapsulated in the knowledge base of the agent. Figure 2
demonstrates the loosely-coupled interaction in Rule Responder.

Fig. 2. Loosely-Coupled Communication via Messages to Agent Interface

Reaction RuleML 1.0 employs the Reaction RuleML Interface Description
Language (RuleML IDL) [16] for describing functional and non-functional prop-

8 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

erties of a rule inference service and its rule-based KB. The functional descrip-
tion among others contains the signatures of public rule functions together with
their term modes (input, output or arbitrary terms) and type declarations. For
example, the signature of the aforementioned query of ”getPapers” of Sympo-
siumPlanner 2011 can be described as follows:

<signature>
<Atom>

<Rel>getPapers</Rel>
<Var type="java://java.lang.String" mode="+"/>
<Var type="java://java.lang.String" mode="+"/>
<Var type="java://java.lang.String" mode="-"/>

</Atom>
</signature>

Reaction RuleML distinguishes between the interface of a rule base or rule
and its implementation. The signatures are defined in the interface either directly
together with the implementation in one <Rule> or for better modularization
and information hiding separated from the implementation of the rule on the
level of a RuleML rule base <Rulebase> and asserted rule module <Assert>.
The following example illustrates the use of such signature declarations in the
interface descriptions of rules and distinguishes the interface from the implemen-
tation referring from the interface to the implementation via an XML key-keyref
connection.

<-- rule interface with two alternative interpretation semantics and a signature.
The interface references the implementation identified by the corresponding key -->

<Rule keyref="r1">
<evaluation index="1">

<!-- WFS semantic profile define in the metamodel -->
<Profile type="ruleml:Well-Founded-Semantics" direction="backward"/>

</evaluation>
<evaluation index="2">
<!-- alternative ASS semantic profile define in the metamodel -->
<Profile type="ruleml:Answer-Set-Semantics" direction="backward"/>

</evaluation>
<!-- the signature defines the queryable head of the backward-reasoning rule -->
<signature>

<Atom><Rel>getPapers</Rel><Var mode="+"/><Var mode="+"/><Var mode="-"/></Atom>
</signature>

</Rule>

<!-- implementation of rule 1 which is interpreted either by WFS or by ASS semantics
and onyl allows queries according to it’s signature definition. -->

<Rule key="r1" style="reasoning">
<if>... </if>
<then>

<Atom><Rel>getPapers</Rel><Var>Type</Var><Var>Status</Var><Var>Papers</Var></Atom>
</then>

</Rule>

The signatures can be also defined or just referred to via key-keyref in the
<signature> of a <Rulebase>.

This enables a loosely-coupled interaction with the inference service / agent,
where queries can be posed against the public interface signature and inter-
preted with the intended semantics evaluation. Therefore, the interface also
defines the applicable evaluation semantics, which in the example uses prede-
fined semantic Profiles from the RuleML metamodel. This is in particular

Interactions with Reaction RuleML 1.0 in Rule Responder 9

useful for mobile code, i.e. rule bases which are uploaded to an inference service,
since the underlying rule engine needs to support the intended semantics. It is
also useful for verification and validation [8, 10, 7, 4], explanations, and proofs of
answers to queries which are dependent on the applied semantics.

During the communication, Rule Responder represents the interactions be-
tween distributed agents via constructs for asynchronously sending and receiv-
ing event messages. Therefore it uses Reaction RuleML’s support for messaging
in the CEP Reaction RuleML branch. For sending and receiving (event) mes-
sages, Reaction RuleML 1.0 supports serial messaging CEP reaction rules that
<Receive> and <Send> events in arbitrary combinations. A serial (messaging)
reaction rule starts with a receiving event (<on>) followed by any combination
of conditions (<if>), events (<Receive>), and actions (<Send>) in the body of
the rule for expressing complex event processing logic. This flexibility with sup-
port for modularization and aspect-oriented weaving of reactive rule code is in
particular useful in distributed systems where event processing agents commu-
nicate and form a distributed event processing network, as e.g. in the following
example:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>
<if> prove some conditions, e.g. make decisions on the received data </if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

These Reaction RuleML messaging constructs can directly map to the mes-
saging reaction rules in Prova with: sendMsg predicates to send messages, re-
action rcvMsg rules which react to inbound messages, and rcvMsg or rcvMult
inline reactions in the body of messaging reaction rules to receive one or more
context-dependent multiple inbound event messages, shown as follows:

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)
rcvMsg(XID,Protocol,From,Performative,Paylod|Context)
rcvMult(XID,Protocol,From,Performative,Paylod|Context)

where XID is the conversation identifier. Protocol defines the communication
protocol. From denotes the source of the message. Performative describes the
pragmatic context in which the message is sent. And Payload—Context denotes
the actual content of the event message.

The event messages between distributed agents conversation invoke the rule
functions of the receiving agents if there exists a matching rule interface. For in-
stance, the example given in Section 3 indicates that the receiver agent ”RuleML-
2011-IJCAI” needs to specify an appropriate signature for ”getPapers” queries.
In SymposiumPlanner 2011, the receiver ”RuleML-2011-IJCAI” agent is a Prova
engine, which implements the interface definition via its platform specific rule
syntax: interface(getPapers(Type, Status, Papers),getPapers(”+”, ”+”, ”-”), ”re-
turn related papers of RuleML-2011@IJCAI.”). This public interface can be
queried in backward-reasoning style in a Prova engine and a ”no further answers”
message will be sent to the sender if there is no suitable public interface is found:

10 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

% look-up interface
processMessage(XID,From,Primitive,[X|Args]):-

not(interface([X|Args],ModeDeclarations,Description)),
sendMsg(XID,esb,From,"answer", noPublicInterface(interface([X|Args]))),
sendMsg(XID,esb,From,"no_further_answers", [X|Args]),
fail().

The implementation of a rule interface can be implemented by arbitrary rule
agents, which might have different levels of expressiveness. For example, the
implementation of the interface ”getPapers” in Prova is shown as follows:

getPapers(XID, Type, Status, Papers):-
sysTime(CT),

@paperType(Type)
getAcceptedPapers(Papers)[validate(CT)].

validate(CT) :-
compare(CT,’>’,datetime(2011,5,31,0,0,0)).

@paperType(full)
getAcceptedPapers(Papers) :-

QueryString = ’
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
SELECT ?paper ?title

FROM <http://de.dbpedia.org/redirects/ruleml/ruleml2011.rdfs>
WHERE {

?paper a ?type .
?paper dc:title ?title .

FILTER (?type = <http://ruleml.org/ontology#FullPaper>) .
}

’,
sparql_select(QueryString,[title(Papers)]).

@paperType(short)
getAcceptedPapers(Papers) :-

QueryString = ’
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
SELECT ?paper ?title

FROM <http://de.dbpedia.org/redirects/ruleml/ruleml2011.rdfs>
WHERE {

?paper a ?type .
?paper dc:title ?title .

FILTER (?type = <http://ruleml.org/ontology#ShortPaper>) .
}

’,
sparql_select(QueryString,[title(Papers)]).

...

Prova supports modularization of its knowledge base and allows constructing
metadata based views on the knowledge base, so called scopes. For example, the
annotation ”@paperType(Type)” on the followed goal literal ”getAcceptedPa-
pers(Papers)” is a scope constraint which applies the goal literal only on the tar-
get rule with matching metadata (”@paperType(full)”, ”@paperType(short)”,
etc.) during unification, i.e. there must be a match between the value given for
the annotation @paperType and the value listed for the key in the target rule

Interactions with Reaction RuleML 1.0 in Rule Responder 11

of getAcceptedPapers. In the example, it would bind the metadata annotation
values ”full”, ”short”, etc. to the variable ”Type”. The metadata can act as an
explicit scope for constructive queries (creating a view) on the knowledge base
and enables scoped (meta) reasoning with the semantic annotations. Besides,
Prova supports literal guards which act as additional precondition constraints.
In the above example, the goal literal is only available ”after 31st, May, 2011”,
which is defined by the guard ”[validate(CT)]” and its implementation as a rule
”validate(CT):- compare(CT,’¿’,datetime(2011,5,31,0,0,0)).”.

Reaction RuleML 1.0 provides corresponding expressiveness for metadata
annotations <meta>, scope definitions <scope> and guards <guard>, which can
be defined on the global level of a rule module and rule base as well as on the
level of rules and literals. Scopes defined on the level of rule bases/modules set
the context in which the knowledge of the rule base/module is applied, i.e. all
queries and goal literals automatically apply within the scope. Nested scopes can
be defined which override and specialize the outer (global) scopes, e.g. a scope
within a rule <Rule> and on a particular goal literals <Atom> within the body of
a rule. Scopes are e.g. useful to implement and distinguish different (behavioral)
roles of a rule-based agent as scoped rule modules in the agent’s knowledge base.
Scopes are also useful to implement reactive workflow logics and (transactional)
update logics [9].

5 Decoupled Interaction

The event messaging in Rule Responder also enables completely decoupled inter-
action via standardized Reaction RuleML event messages. Here some agents are
event producers which publish events, e.g. in an event stream or in an event cloud
/ data source, irrespective of the event consumers. Other agents are consumers
which try to detect and consume relevant events on those streams applying rule-
based complex event processing techniques. That is, in difference to the loosely-
coupled interaction, where the events are sent directly to other agents and the
interaction with them takes place in a loosely-coupled way according to their
interface definitions, the events in the decoupled scenario are just published, but
there is no direct interaction with the consumers of those events.

For the decoupled interaction the message content itself is an event. Like
for rules, the generic syntax pattern for an Event again distinguishes between
the general event information, the event interface with the signature defining
the event pattern (event type) and the concrete implementation in terms of an
event instance.

<Event @key @keyref @iri @type>
<!-- event info and life cycle management, modularization -->

<oid> <!-- R: event instance object id --> </oid>
<meta> <!-- R: (semantic) metadata of the event --> </meta>
<scope> <!-- R: scope of the event --> </scope>

<!-- event pattern description -->
<evaluation> <!-- R: semantics: selection, consumption policies --> </evaluation>
<signature> <!-- R: event pattern declaration --> </signature>

<!-- event instance -->
<qualification> <!-- R: e.g. qualifying event declarations, e.g.

12 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

priorities, validity, strategy --> </qualification>
<quantification> <!-- R: quantifying rule declarations --> </quantification>

<content> <!-- R: event instance content --> </content>
</Event>

Reaction RuleML 1.0 provides the support for rule-based event processing
and semantic complex event processing. With its typed logic, RuleML provides
the support for (re)using external temporal, spatial, situation, event, and ac-
tion ontologies and a metamodel which can be applied in the definition of se-
mantic event/action types and temporal and spatial relations [3, 17]. Reaction
RuleML defines a library of typical event, action, interval algebra operators and
generic elements such as Event, Action , Situation, Time, Location, Interval,
Operator. The type of these generic elements can be defined by an @type refer-
ence to external ontologies, e.g. to the Reaction RuleML metamodel (see [17]).
For instance, <Operator type="ruleml:Sequence"> instead of <Sequence>.
The following example shows a complex event pattern definition:

<Event key="ce2" type="ruleml:ComplexEvent">
<signature> <!-- pattern signature definition -->

<Sequence>
<!-- atomic event -->
<signature>

<Event type="ruleml:SimpleEvent">
<signature><Atom>...event_A...</Atom></signature>

</Event>
</signature>
<!-- nested complex event referenced by @keyref -->
<signature><Event type="ruleml:ComplexEvent" keyref="ce1"/></signature>
<!-- Common Base event selected via xpointer/xpath query in iri attribute -->
<signature>

<Event type="cbe:CommonBaseEvent" iri="cbe.xml#xpointer(//CommonBaseEvent)"/>
</signature>

</Sequence>
</signature>

</Event>

<Event key="ce1">
<signature> <!-- event pattern signature -->

<Concurrent>
<Event><meta><Time>...t3</Time></meta><signature>...event_B</signature></Event>
<Event><meta><Time>...t3</Time></meta><signature>...event_C</signature></Event>

</Concurrent>
</signature>

</Event>

Such a complex event pattern definition can be used for event detection in
the <on> part of a reaction rule of a rule-based event consuming agent:

<Rule style="active">
<on><Event keyref="ce2"/></on>
...
<do> ... </do>

</Rule>

These Reaction RuleML rules for Complex Event Processing (CEP) can be
translated and executed e.g. in Prova. For an overview on typical (complex)
event pattern functions and their implementations see [19]16.

16 slides at http://goo.gl/E30Vu

Interactions with Reaction RuleML 1.0 in Rule Responder 13

In our SymposiumPlanner demo scenario we consume and process the events
of the symposium, such as the news from the Twitter feed, calendar events
(deadlines etc.), etc. We apply a typical publish-subscribe approach where users
can subscribe their information needs in terms of (complex) event pattern to
the rule-based semantic event processing agents. The agents actively inform the
subscribers if they detect the relevant event patterns by continuously processing
the published events on the news feeds.

6 Summary

In this paper, we presented how the standardized Reaction RuleML 1.0 inter-
change format supports loosely-coupled and de-coupled event-messaged interac-
tions in the rule-based semantic multi-agent system Rule Responder. We demon-
strated several expressiveness features of Reaction RuleML 1.0 on the example
of the Symposium Planner use case. We also showed how the computational
independent (natural) language Attempto Controlled English (ACE) is used to
construct user queries against rule-based KBs in distributed Rule Responder
agents (inference services), which are using Reaction RuleML as an intermedi-
ary platform-independent language between the computational independent user
interface language (ACE) and the platform-specific execution languages (Prova,
OO jDrew, Drools, ...).

References

1. Harold Boley, Taylor Osmun, and Benjamin Craig. Social Semantic Rule Sharing
and Querying in Wellness Communities. In Asuncin Gmez-Prez, Yong Yu, and
Ying Ding, editors, The Semantic Web, volume 5926 of Lecture Notes in Computer
Science, pages 347–361. Springer Berlin / Heidelberg, 2009.

2. Harold Boley and Adrian Paschke. Rule Responder Agents Framework and In-
stantiations. In Atilla Eli, MamadouTadiou Kon, and MehmetA. Orgun, editors,
Semantic Agent Systems, volume 344 of Studies in Computational Intelligence,
pages 3–23. Springer Berlin Heidelberg, 2011.

3. Harold Boley, Adrian Paschke, and Omair Shafiq. RuleML 1.0: The Overarching
Specification of Web Rules. In RuleML, pages 162–178, 2010.

4. Jens Dietrich and Adrian Paschke. On the Test-Driven Development and Valida-
tion of Business Rules. In ISTA, pages 31–48, 2005.

5. Norbert E. Fuchs, Kaarel Kaljurand, and Gerold Schneider. Attempto Controlled
English Meets the Challenges of Knowledge Representation, Reasoning, Interoper-
ability and User Interfaces. In Geoff Sutcliffe and Randy Goebel, editors, FLAIRS
Conference, pages 664–669. AAAI Press, 2006.

6. Tichomir Jabarski. Design and Development of A Translator Framework for Rule
Languages Based on RuleML, Master Thesis. Master’s thesis, Free University
Berlin, 2012.

7. A. Paschke, J. Dietrich, A. Giurca, G. Wagner, and S. Lukichev. On Self-
Validating Rule Bases. In Int. Semantic Web Enabled Software Engineering Work-
shop (SWESE’06), 2006.

14 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

8. Adrian Paschke. The ContractLog Approach Towards Test-driven Verification and
Validation of Rule Bases - A Homogeneous Integration of Test Cases and Integrity
Constraints into Dynamic Update Logic Programs and Rule Markup Languages
(RuleML). In IBIS, TUM, Technical Report 10/05, 2005.

9. Adrian Paschke. ECA-RuleML: An Approach Combining ECA Rules with Tem-
poral Interval-based KR Event/Action Logics and Transactional Update Logics.
CoRR, abs/cs/0610167, 2006.

10. Adrian Paschke. Verification, Validation and Integrity of Distributed and Inter-
changed Rule Based Policies and Contracts in The Semantic Web. In In Second
International Semantic Web Policy Workshop (SWPW06), pages 2–16, 2006.

11. Adrian Paschke. Rule Responder HCLS eScience Infrastructure. In Proceedings of
the 3rd International Conference on the Pragmatic Web: Innovating the Interactive
Society, ICPW ’08, pages 59–67, New York, NY, USA, 2008. ACM.

12. Adrian Paschke. A Semantic Rule and Event Driven Approach for Agile Decision-
Centric Business Process Management - (Invited Paper). In ServiceWave, pages
254–267, 2011.

13. Adrian Paschke and Martin Bichler. Knowledge Representation Concepts for Au-
tomated SLA Management. Decision Support Systems, 46(1):187–205, 2008.

14. Adrian Paschke and Harold Boley. Rules Capturing Events and Reactivity. In
Adrian Giurca, Dragan Gasevic, and Kuldar Taveter, editors, Handbook of Re-
search on Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches, pages 215–252. IGI Publishing, May 2009.

15. Adrian Paschke and Harold Boley. Rule Responder: Rule-Based Agents for The
Semantic-Pragmatic Web. International Journal on Artificial Intelligence Tools,
20(6):1043–1081, 2011.

16. Adrian Paschke, Harold Boley, Alexander Kozlenkov, and Benjamin Larry Craig.
Rule responder: RuleML-based Agents for Distributed Collaboration on The Prag-
matic Web. In ICPW, pages 17–28, 2007.

17. Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian, and Tara Athan. Re-
action RuleML 1.0: Standardized Semantic Reaction Rules. In Proceddings of
RuleML 2012, 2012.

18. Adrian Paschke and Alexander Kozlenkov. A Rule-based Middleware for Business
Process Execution. In Multikonferenz Wirtschaftsinformatik, 2008.

19. Adrian Paschke, Paul Vincent, Alexandre Alves, and Catherine Moxey. Tutorial
on Advanced Design Patterns in Event Processing. In DEBS, pages 324–334, 2012.

20. L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Drools. VDM Verlag Dr. Mueller
AG & Co. Kg, 2010.

21. Zhili Zhao, Adrian Paschke, Chaudhry Usman Ali, and Harold Boley. Principles of
The SymposiumPlanner Instantiations of Rule Responder. In Proceedings of The
5th International Conference on Rule-based Modeling and Computing on The Se-
mantic Web, RuleML’11, pages 97–111, Berlin, Heidelberg, 2011. Springer-Verlag.

1

Graph-based rule editor

Maciej Nowak, Jaroslaw Bak, Czeslaw Jedrzejek

Institute of Control and Information Engineering,
Poznan University of Technology,

M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland
{firstname.lastname}@put.poznan.pl

Abstract. In this paper we present a prototypical implementation of a graphical
tool for creating rules. This tool uses a graph-based Palantir tool environment as
a user interface to model rule conditions and conclusions. It is also used to visu-
alize data and results of reasoning. We present a process of converting graph
models stored in an XML format file into the Jess knowledge base and rules.
Results obtained in the reasoning process are presented to the user in the same
form as source data.

Keywords. graphical rule representation, Jess, Palantir, reasoning

1 Introduction

Rule engines are becoming one of the most commonly used technologies in both
business and engineering projects. The usage of rule engines enables the reasoning
process which enriches gathered data and searching methods, utilizing pattern match-
ing applied in rules. Rules and rule engines are successfully used in: expert systems,
business processes, data integration and transformation, and in other applications
requiring intelligent data processing. Despite the clear advantages of rule-based tech-
nologies, there are many software application areas where they occur in a relatively
simple form, e.g. by using filters. In the area of criminal analysis, the addition of rules
to investigation systems would enable analysts to discover very complex crime
schemes, totally beyond the capacity of traditional systems.

A wide range of rule environments have been proposed, each with its own syntax
and semantics for a rule engine and interface. The process of acquiring this
knowledge can be simplified with the use of a graphical representation of rules and a
user-friendly interface.

The main aim of this demo paper is to present a graph-based tool, in which an un-
trained analyst is able to construct a set of simple rules and use them in order to obtain
new (inferred) information. The rules constitute the expert’s knowledge of a given
domain, while facts represent data. Both rules and facts are expressed graphically in
the form of directed graphs. Rules can be applied to facts using a reasoning engine.
After the inference process, a user gets the result which can be a graph with:

• the addition of new objects and/or relations,
• the modification of existing objects and/or relations,

2

• the lack of objects and/or relations that were deleted.
The paper is organized as follows. Section 2 presents the main overview of the

proposed approach and related work. Section 3 describes a prototypical implementa-
tion and applied tools. Section 4 demonstrates an example which reflects a fragment
of analysis of the real-world crime case. Section 5 contains concluding remarks.

2 Graph-based Rule Representation

2.1 Existing methods

Graphical rule representation and creation has been the subject of research con-
ducted by many investigators and companies. Some efforts have sought to standardize
graphical notations, for example: Unified Modeling Language/Object Constraints
Language (UML/OCL) [5], UML-based Rule Modeling Language (URML) [6] or
Object Role Modeling (ORM) [7]. Among them, the ORM language is the most intui-
tive and easy to use for people who are not familiar with the complex syntax of rules
and UML/OCL. The ORM concepts were adopted [8] also in the SBVR (Semantics of
Business Vocabulary and Business Rules) standard [8]. Our ideas are based on ORM
and graph-based representation. Other popular rule representations include: decision
tables, decision trees and eXtended Tabular Trees [10].

Tools that implement graphical rules representation are:
• Visual Rules [11] – supports building flow rules and decision tables using rich

and intuitive graphical editors.
• Drools Guvnor [12] – provides many ways of representing rules: guided editor

(easy to use, but not graphical), guided decision tables creation, rule flows
(which represent the flow of logic).

• VisiRule [13] – is an extension to Win-Prolog which supports building deci-
sion models using a graphical paradigm. It offers graphical representation of
forward chaining rules, with access to Prolog.

• OntoStudio Graphical Rule Editor [14] – is based on ObjectLogic [15] inter-
nally. It supports drawing rule diagrams, which consist of concepts, attributes
of these concepts and relations between them. It does not allow the compari-
son of variables (only comparisons between values and variables are allowed).

In this work we give only a short overview of the main differences. Detailed com-
parisons among the mentioned standards will be presented elsewhere.

In most of the current approaches, rules are created to control data workflows and
making decisions, while we apply rules to discover new information and to process
data. Accordingly, one rule (LHS and RHS respectively) is represented by two
graphs. Tools like Visual Rules, Drools Guvnor etc. are rule authoring frameworks
while our approach is only an attempt to integrate rules and data in one graph-based
form and perform reasoning. Such work, to the best of our knowledge, has not yet
been done for the Jess engine.

3

2.2 Overview of the approach

The main goal of this paper is to present the graph-based tool, in which a user can:
import data, construct rules, perform reasoning and obtain results. Rules and data,
represented graphically, can be more easily understood by an untrained analysts and
by engineers without intensive training. Our aim is to provide an easy-to-use and
easy-to-understand analytical tool which can be used in many domains where rules
and graphs can be employed to support a user’s work.

The process of rule creation consists of creating two graphs which will later serve
as sides of the constructed rule: the LHS (left hand side, called the body) and the RHS
(right hand side, called the head). In our approach rules should be understood as if
LHS then RHS statements. These rules (expressed in the Jess language) can be used to
infer new information in a given rule-based knowledge base.

The LHS is built from condition elements (patterns) that need to be fulfilled in or-
der to execute instructions written in the RHS. There are two types of conditions: the
(non-) existence of a fact in the knowledge base with specified attributes, and the
relationship between two attributes of existing facts. The execution of the rule may
cause one of the following results: modification or removal of an existing fact, or
addition of a new one. These operations are defined in the RHS of a rule.

It is possible to represent conditions from the body of a rule in a graphical form,
more precisely in a graph. The graph consists of nodes and edges. The nodes are
graphical representation of objects from the Palantir ontology (see Section 3.1), and
the edges are the relations between them. Objects can have many properties; the type
of an object is the most important one. Relations do not possess properties other than
a type. The presence of an object in the graph means that a representing fact should
exist in the knowledge base with attributes equal to the properties of the object. The
presence of an object or a relation on a red background means that these artefacts
should not exist in the knowledge base. The red colour on the graph expresses the
negation of existence of objects or relations.

The construction of a rule is made with the following steps (within the Palantir en-
vironment):

1. A user creates a graph which constitutes the body of the rule, the conditions.
The user creates objects and relations between them. Values of objects’ prop-
erties, variables and constraints are specified in the Rule Creation Panel
(RCP).

2. The user creates another graph, a modification of the first one which consti-
tutes the head of a rule. The user adds/removes/modifies objects or relations of
this graph. Conclusions - changes in the knowledge base after the application
of the rule - can be modelled as the difference between two graphs.

Such an approach allows modelling of rules depending on object types, relations
between them and values of objects’ properties. It allows comparing attributes’ values
with each other, which is a significant advantage over some other tools (e.g. OntoStu-
dio). There is no graphical way of presenting the comparison on the graph, so the only
solution is to present it in the corresponding panel. For this purpose, we use a simple
tab called Rule Creation Panel, which is presented in Figure 1.

4

Figure 1. Attributes and relationships of selected objects (highlighted in yellow).

Created rules need to be applied to the working memory built from facts. In this
paper we present a converter (see Section 3.3), which transforms rules and data to the
Jess engine according to the structure expressed in the Palantir ontology. After the
reasoning process, a user obtains results presented on a new graph (in comparison to
the source data graph).

In the Jess language, we represent objects and relations from the graph as triples
(as in RDF) [16] in order to express dependencies between objects and their attrib-
utes. The triple consists of subject, predicate and object. Each relation (edge) from the
graph is mapped as the predicate, with its starting point as the subject and the ending
point as the object of a triple. Each subject (node) has a set of properties, where: the id
of the node constitutes the subject; property name corresponds to the predicate; and
the value constitutes the object (in triple-based representation). Such an approach can
be compared to the OWL Web Ontology Language, where ObjectProperties represent
relations between objects and DatatypeProperties represent links from individuals
(objects) to data values. Employing the triple-based representation we are able to
apply OWL ontology in the future.

We have defined mapping for a bidirectional transformation between Palantir and
Jess, executed by the XMLtoJess converter. Table 1 presents available expressions,
with examples in the Jess language and graph elements.

The authors of this paper have successfully used rule engines in the past [16, 18,
19]. They were used during investigations of a number of cases. For some economic
crime, the complete model of a crime investigation was constructed. That allowed
achieving a result in a fully automatic way, but each time the rule set was made by a
programmer experienced in the Jess language after consultation with a business spe-
cialist. We want to shorten this process with the help of the proposed system, and to
increase analytical flexibility by including new elements of crime schemes.

5

The introduction of the rule engine offers not only the possibility of reasoning
about complex dependencies, but also to performing queries. Any graph containing
nodes and edges can be entered as a search phrase. Rule engine will search the whole
knowledge base for a given set of conditions, and return all objects that meet the spec-
ified requirements.

Table 1. Representations of main elements, using a Graph and RCP panel, in the Jess code.
Element Graph and RCP panel representation Jess code

Object

(triple (subject ?Y)

(predicate "Object Type")

(object "GBOrganization"))

Relation

(triple (subject ?TaxPaid)

(predicate "relation-By Com-

pany")

(object ?Y))

Attribute Value

(triple (subject ?TaxPaid)

(predicate "property-Value")

(object ?paidval))

Comparison of

attribute values

(test (> ?oblgval ?paidval))

Declaration of

non-existence

(red background)

(not (triple

(subject ?TaxPaid)

(predicate "Object Type")

(object "MoneyTransfer")))

Distinction of

Variables

(test (neq ?X ?Y))

Addition of an

object/relation/

attribute

New object/relation/attribute on the RHS

(We add a new object/relation/attribute to a

graph.)

(assert (triple

(subject ?TaxObligation)

(predicate "Object Type")

(object "MoneyTransfer")))

Modification of

existing object/

relation/attribute

Modified object/relation/attribute on the RHS

(We modify an object/relation/attribute in a

graph.)

(modify ?f

(object "DefaultingTrader"))

Removal of

object/relation/

attribute

Lack of object/relation/attribute on the RHS

(We delete object/relation/attribute from a graph.)

(retract ?f)

3 Technologies Used

3.1 Palantir Government Graph Application

Palantir Government [1] is a Java-based platform for analysing and visualizing da-
ta. It is widely used by financial (Palantir Finance) and government agencies. It is

6

capable of importing data structured in many various formats (such as Excel), and,
due to the Palantir Dynamic Ontology (PDO) [2], objects inside the platform possess
some semantic background meaning, which can be easily transformed into rules. The
PDO is very simple; it only indicates that two objects are connected with a certain
relation (represented then on a graph by an icon or relation).

Graph is the most sophisticated part of the Palantir Platform. It provides visualiza-
tion of input data, with the structure defined in the given ontology. Properties of each
object are not visible directly on the graph; they are reachable under the "Browser"
tab. It is possible to export information from the graph into an external XML file,
which is an essential element of the integration with a rule engine.

3.2 The Jess Rule Engine

Jess [3] is a rule engine and rule-based environment for building expert systems. It
uses an enhanced version of the Rete [4] algorithm, which processes rules and facts in
a very efficient way. Jess supports forward and backward chaining, working memory
queries and many other useful features. Jess is provided as a library written in the
Java language. It can easily be embedded into other Java applications. We applied
Jess and its forward reasoning as extensions to the Palantir Government tool.

3.3 XMLtoJess Converter

XML is used as the interchange format between Jess and Palantir modules. Rule
engines require input knowledge in form of facts, and that is why XMLtoJess con-
verter is an essential part of the presented method.

The XMLtoJess converter is used to extract objects and relations stored in a Palan-
tir XML (pXML) document generated from Palantir and create the Jess knowledge
base. pXML format is the default output structure of the Palantir Platform. It holds
information about objects in the Graph and all properties related to selected objects.

4 Example

In this section, we provide an example which reflects part of the analysis of a real-
world crime case, the VAT carousel crime, also called the Missing Trader Intra-
Community crime (MTIC). It is a sophisticated international fraud exploiting Value
Added Tax (VAT) evasion, in order to create large amounts of unpaid VAT liabilities
and VAT repayment claims connected with them. More information can be found on
the demo site [17] and in [18].

Figure 2 depicts a graphical representation of the rule presented on the next page
(where letters are used as shortcuts: s – subject, p – predicate, o – object).

(defrule VATFraudsterRule
 ?f <- (triple (s ?Z) (p "Object Type") (o "GBOrganization"))
 (triple (s ?TaxObligation) (p "Object Type") (o "MoneyTransfer"))
 (triple (s ?TaxObligation) (p "property-Transfer Type") (o "Taxobligation"))
 (triple (s ?TaxObligation) (p "property-goodsItemCode") (o ?good1))

7

 (triple (s ?TaxObligation) (p "relation-Of Company") (o ?Z))
 (triple (s ?TaxObligation) (p "property-Value") (o ?oblgval))
 (triple (s ?TaxPaid) (p "Object Type") (o "MoneyTransfer"))
 (triple (s ?TaxPaid) (p "property-Transfer Type") (o "Taxpayment"))
 (triple (s ?TaxPaid) (p "property-goodsItemCode") (o ?good1))
 (triple (s ?TaxPaid) (p "relation-by Company") (o ?Z))
 (triple (s ?TaxPaid) (p "property-Value") (o ?paidval))
 (test (> ?oblgval ?paidval))
 (test (neq ?TaxObligation ?TaxPaid))
 =>
 (modify ?f (object "VATFraudster")))

This rule modifies the icon of the company which pays obligatory tax, less than it
should be. As a result, this company is called a VAT fraudster. Unfortunately, the
Palantir Government tool limits objects to one type (some additional types can be
deduced only by an engineer according to the given Palantir Dynamic Ontology).

Figure 2. An exemplary VAT fraudster rule.

5 Conclusions

In this paper we have demonstrated a tool which supports graph-based creation of
rules for the Jess engine. The tool integrates data and rules in the Palantir Government
tool. Graph-based representation is convenient and intuitive for an untrained analysts.
Such tool can be used in many domains where rules and graphs can be employed to
support a user in her/his work.

Because of copyright issues connected with the Palantir Government application,
we provide only the presentation which contains screenshots of executing the example

 LHS RHS

8

concerning an analysis of a real-world criminal case. The presentation with a more
detailed description is available on the demo site [17].

Acknowledgement. This work was supported by DS-MK 45-102/12 and 45-
085/11 DS-PB grants.

References

1. Palantir Government Platform, http://palantir.com/government

2. Palantir Dynamic Ontology,

https://wiki.palantir.com/pgdz/palantir-dynamic-ontology-properties.html

3. Jess (Java Expert System Shell), http://jessrules.com/

4. Forgy C., Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem, Artifi-

cial Intelligence, 19, pp. 17-37, 1982.

5. Object Constraint Language (OCL), v2.0. http://www.omg.org/spec/OCL/2.0/

6. UML-based Rule Modelling Language, http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

7. Halpin T.: Object-Role Modeling: an overview, 2001,

http://www.orm.net/pdf/ORMwhitePaper.pdf

8. Lukichev S., Jarrar M.: Graphical Notations for Rule Modeling. In: A. Giurca, D. Gasevic, and K.

Taveter (Eds), Handbook of Research on Emerging Rule-based Languages and Technologies: Open

Solutions and Approaches, IGI Publishing, 2009

9. Semantics of Business Vocabulary and Business Rules, http://www.omg.org/spec/SBVR/1.0/

10. Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof Kaczor. 2011. Overview of knowledge formaliza-

tion with XTT2 rules. In Proceedings of the 5th international conference on Rule-based reasoning,

programming, and applications (RuleML'2011), Nick Bassiliades, Guido Governatori, and Adrian

Paschke (Eds.). Springer-Verlag, Berlin, Heidelberg, 329-336.

11. Visual Rules, http://www.visual-rules.com/business-rules-management-software-rules-engine.html

12. Drools Guvnor Rules Authoring,

http://docs.jboss.org/drools/release/5.4.0.Final/drools-guvnor-docs/html/ch04.html

13. VisiRule, http://www.lpa.co.uk/vsr.htm

14. OntoStudio Graphical Rule Editor,

http://ontorule-project.eu/showcase/OntoStudio_Graphical_Rule_Editor

15. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object oriented and frame-based

languages. J. ACM, 42(4):741–843, 1995.

16. Bak J., Jedrzejek C., Falkowski M.: Usage of the Jess Engine, Rules and Ontology to Query a Rela-

tional Database. In Proceedings of the 2009 International Symposium on Rule Interchange and Appli-

cations (RuleML '09), Guido Governatori, John Hall, and Adrian Paschke (Eds.). Springer-Verlag,

Berlin, Heidelberg, 216-230.

17. Demo site: http://draco.kari.put.poznan.pl/ruleml2012/

18. Jedrzejek C., Bak J., Falkowski M., Cybulka J., Nowak M., On the Detection and Analysis of VAT

Carousel Crime, in: Frontiers in Artificial Intelligence Applications, vol. 235, Proceedings of JURIX

2011: The Twenty-Fourth Annual Conference Legal Knowledge and Information Systems, pp. 130 –

134, IOS Press, 2011

19. Nowak M., Jedrzejek C., Bak J., Szwabe A., A rule-based expert system for building evidence in

VAT-carousel, Proceedings MISSI’12, Multimedia and Internet Systems: New Solutions, in print.

RuleTheWeb!: Rule-based Adaptive User
Experience ?

Adrian Giurca12, Matthias Tylkowski2 and Martin Müller2

1 Dept. of Databases and Information Technology,
2 Binary Park

Brandenburg University of Technology,
P.O. 101344, 03013 Cottbus, Germany

Abstract. During the last years the business rules industry proliferated
as rules were recognized as a practical tool for solving real-world prob-
lems. Nowadays, many research communities develop rule languages and
rule systems as well as rule markup languages and interoperability tools.
However, due to the necessary high level of knowledge and complexity of
tools, rules are yet designed only inside of narrow and high-skilled com-
munities. After more than a decade of research on Semantic Web, and
after initiatives of the main industry players, the Web is fast evolving
into a world of objects as content creators started enriching their pages
with semantic annotations. This paper presents an application using sim-
ple rules to enrich the user navigation experience on the web. We show
a demo of adaptive user experience based on semantic data and reaction
rules aiming to enable social rules designed and shared by web users.

1 Background

Five years ago, in a blog posting [12], Ora Lassila was pointing out that Semantic
Web may not be only about data but also there is significant work to do with
respect of ”systems that work on users’ behalf”:

For a long time (longer than I have worked on the Semantic Web) I
have wanted to build systems that work on users’ behalf. Semantic Web
is one of the enabling technologies, a means to an end, and not the end
itself. Every time I look critically at the current use of (information)
technology, I cannot help but wonder how it is possible to actually get
away with the approach taken today (where substantial burden is placed
on the users).

The Semantic Web community developed an amazing set of knowledge rep-
resentation languages such as Resource Description Framework (RDF) (See [23]
for a hub of resources), and Web Ontology Language (OWL)[22], query lan-
guages such as SPARQL [26], and thousand of well established tools. However,

? This research is supported by ESF-EXIST grant No. 03EGSBB066, CatchThis:
Conjoint-Analyse in Sozialen Netzwerken

most of the applications were centered on creating and querying Linked Data,
i.e., to connect related data that wasn’t previously linked using URIs and RDF.
There is a little publicly available work with respect of building Semantic Web
applications which use business intelligence to connect various web documents
according with user preferences.

1.1 Application Vocabularies

Ontology experts developed a large amount of web vocabularies such as FOAF
[18], DOAP [17] GoodRelations [19] just to mention some of them. There are
many projects aiming to process large amount of semantic data (big data projects).
Recently, initiatives such as Web Data Commons3 published extracted semantic
data from several billion web pages4.

However, one of the main difficulties to use this data comes from the large
number of vocabularies that are involved, as SPARQL queries must be aware of
vocabularies. Along with the Facebook Open graph Initiative https://developers.
facebook.com/docs/opengraph/, in June 2011, Google, Bing and Yahoo! launched
a common initiative, http://schema.org towards a unique web vocabulary to
be used in semantic annotations:

A shared markup vocabulary makes easier for webmasters to decide on
a markup schema and get the maximum benefit for their efforts. So, in
the spirit of sitemaps.org, search engines have come together to provide
a shared collection of schemas that webmasters can use.

Initiatives such as http://getSchema.org already report large amount of web
sites using this vocabulary. We expect that, due to the increasing revenues of the
content creators when using Schema.org annotations, this vocabulary will spread
very fast on the Web content. Therefore our application focuses on this vocabu-
lary although only little change would be needed to support other vocabularies
too. Recently Microsoft and others announced submission to standardization of
the Open Data Protocol http://www.odata.org/.

1.2 Business Rules

Some of our previous work (see [6]) reported on rule-based processing of semantic
data annotations of HTML pages by considering annotation languages such as
RDFaLite [15]. We emphasized that using rules one can significantly enrich the
user interaction experiences on the Web. In addition, by offering new information
in ways not originally planned, such application contributes to creation of linked
data too. Specifically business rules can be successful involved when it comes
to capture user’s interaction with web pages towards running various business
processes such as:

3 http://webdatacommons.org/
4 Notice that the extracted data does not come in standard RDF as they use an RDF

triple extension, N-Quads. Basically they augment the RDF triple with another
component which is the URI from where the triple was extracted

https://developers.facebook.com/docs/opengraph/
https://developers.facebook.com/docs/opengraph/
http://schema.org
http://getSchema.org
http://www.odata.org/
http://webdatacommons.org/

– Developing groups of navigational items that are meaningful to users. This
includes the development of the most sensible set of navigational menu items,
e.g., Whenever the user clicks more than 3 times a menu item add this item
to the fast access menu items.

– Giving concepts from a vocabulary (Schema.org) on a page, show related
linked data, e.g. If the user loads financial news, then offer him a three
months subscription to Financial Times.

– Showing concepts visually, e.g. When the user loads specific news about
weather forecast, then deliver him a map of related weather events at the
location.

– Allow user to add calendar events related to visited pages, e.g. If the user
loads a conference web site then ask him to add event to calendar and show
him travel opportunities.

– Allow user to annotate the page, e.g., If the page is loaded more than 5
minutes then on close ask user to annotate the page with tags/ratings.

It is easily to see that such kind of rules may also involve events that occurs
in the web browser, therefore RuleTheWeb! application uses both production
rules and reaction rules. The readers may notice that when the rules are based
on a unique vocabulary they can be far fast shared between various actors.

2 The Challenge

Enriching user navigation experience is not a novel paradigm. Web publishers
can use various available tools such as Outbrain5 or Linkwithin6, just to mention
some, to embed related content in their web pages. However, this experience is
related to the publishers and not the readers of the web content. These appli-
cation do not include user preferences as they embed related content only
by processing the web site content and, as they are commercial products, there
is no information on the models and the technology they use to create related
data. However there is also research work on similar web pages mostly fea-
turing machine learning concepts and using similarity measures (metric-based,
feature-based, or probabilistic). By contrary, RuleTheWeb! employs user pref-
erences, Semantic Web annotations and behavioral targeting to create the best
related content towards a semantic navigation on the web. In addition, because
the semantic annotations are extracted on the fly and rules are always up to
date there is no inconsistency between cached data (such as existent crawled
summaries or raw data on the server side of other solutions) and the actual sta-
tus. When content creators update their web sites and the user visit them, of
course, RuleTheWeb! delivers immediate and up to date related content.
RuleTheWeb! is enriching the reader experience by considering the semantic of
the visited page and user’s own preferences encoded as rules.

5 https://www.outbrain.com/
6 http://www.linkwithin.com/

https://www.outbrain.com/
http://www.linkwithin.com/

Fig. 1. Google Enriching Search Results

Big players such as Google already come up with enriching the search related
content as depicted in Figure 1. This results may be related to Schema.org
initiative or may not.

3 RuleTheWeb! - The Application

RuleTheWeb! is related to the W3C use cases of Linked Data Incubator [21]
basically to the generic case of social recommendations7 allowing users to benefit
on the linked data recommendations with respect of the web sites they visit and
the activities they perform. The related data to be offered is real-time computed
by the application.

The actual implemented demo scenario included the second use case de-
scribed in Section 1.2 i.e., when the current loaded page contains specific Schema.org
product annotations8, the application will suggest related product offers and re-
lated reviews, from various service providers.

Basically, when a user navigates the web using a browser employing RuleTheWeb!,
they will receive recommendations as soon as the page information matches one
of their rulesets. The rulesets are automatically loaded from the rule repository
and the user is able to choose between various rulesets. The application uses two
main categories of rulesets:

1. Rule-based user preferences. Rules are computed on top of userpreferences
via logic-based conjoint analysis, [25], [7], [8], [9].

2. Social Web Rules users can create/generate/share rules. Social Web Rules
forms an application field of social rules theory [4] being a basic form of

7 http://www.w3.org/2005/Incubator/lld/wiki/Use_Case_Social_

Recommendations
8 See http://schema.org/Product and http://getschema.org for more examples

http://www.w3.org/2005/Incubator/lld/wiki/Use_Case_Social_Recommendations
http://www.w3.org/2005/Incubator/lld/wiki/Use_Case_Social_Recommendations
http://schema.org/Product
http://getschema.org

human interaction. Users are always motivated to (1) use publicly available
rules meeting their goals - public rules are powerful because we tend to
believe our friends before believing a marketing message from a brand. (2)
create their own private rules and (3) share rules with the community. People
like to share because (a) it brings valuable and entertaining content to others;
(b) is a way of self definition; (c) is a source of growing their relationships
in the community. A work in progress is a rulestore API allowing consumers
to manage web rules.

3.1 The Rule Language

The rule repository stores RuleML, [24] rules while the rules in the secondary
storage are JSON rules [5]. Developed in 2012, JSON rules version 2, uses doc-
ument object model (DOM) event types [14] as underlining events vocabulary
and a condition language build on the HTML5 DOM Core [10]. This version
features five types of conditions:

1. JavaScript Boolean conditions - to capture any experience that can be in-
duced by running JavaScript code in the browser as rule condition. For exam-
ple, document.getElementById(’id’).value=="container" is a JavaScript
Boolean condition evaluating true if the current document has an element
with id="container".

2. Descriptions - to offer a simple format to express conditions with respect of
the current document structure. For example the description:

{

"type":"input",

"context":"$E",

"constraints": [

{

"propertyName" : "id",

"operator" : "EQ",

"restriction" : { "type": "String", "value" : "

postalCode"}

},

{

"propertyName" : "nodeValue",

"operator" : "MATCH",

"restriction" : { "type": "Regex", "value" : "/^\d

{5}$/"}

},

{

"bind" : "$V",

"propertyName" : "nodeValue"

}

]

}

will bound variable $E to the specific input element, if such element exists
and its value encodes a postal code following a specific structure described
by a regular expression (its value is bound to variable $V). The language
keywords include names such as tagName, nodeValue, id, class, about,
property, vocab, typeof, itemscope, itemtype, itemprop to address the
corresponding DOM and HTML5 (including RDFa 1.1 Lite and Microdata)
attributes.

3. XPath conditions - to offer fast access to any content of the current doc-
ument. For example, $X in html/table[1]/tr[2] will bound the variable
$X to a collection of table data, the second row of the first table in the current
document.

4. Equality. The traditional equality between two logical terms.
5. Built-in predicates. Built-in predicates do not follow any specific schema,

they are simple Boolean JavaScript expressions. Failure to evaluate such a
JavaScript expression is interpreted as logical false.

JSON Rules actions are close to JavaScript function calls as such there is
very much freedom on implementing both state change actions and environ-
ment change actions. This solution covers the RIF Production Rule Dialect [13]
standard actions too:

– State change actions:
1. We experience an assert fact action when create a new element/attribute
2. A retract fact action when we delete a DOM element/attribute
3. A retract all slot values when we delete specified all attributes of a DOM

Element
4. A retract object action when deleting an attribute of a DOM Element

– Environment change actions:
1. An execute action when we run JavaScript code.

The reader may notice that while RuleML is a large family of rule languages
allowing rules to be defined in top of any vocabulary, JSON rules are defined
using a specific vocabulary based on Schema.org, the Facebook Open Graph and
the Document Object Model (DOM). As DOM is an universal specification for
all web pages the main benefit is that such rules can be immediately shared
between users. However, JSON-Rules does not aim to offer standard actions
(allowing for any JavaScript function call) and its actual implementation sticks
to only a set of predefined possible actions.

This way we keep close to the approach of RDF rules [2] as well on some
principles of publishing rules online [3]. The JSON rule model is depicted by
Figure 2.

3.2 A Simple Scenario

When users like to enrich their experience on visiting web sites discussing movies
they can use RuleTheWeb! and load a specific ruleset from the rules repository
(either their private ruleset or a public ruleset). For example, such a ruleset may
contain rules implementing cases like below:
Whene the visited page contains Schema.org Movie annotations, then

Fig. 2. RuleTheWeb: The Core Data Model

1. show related movies by the same genre.
2. show related films with the same genre and created in the same year.
3. show a trailer of the movie and background information. Also offer the sound-

track, the latest news about the movie as well as statistical information.
4. show film suggestions from the same director.
5. show related film directed by the same director, in the same year.
6. show background information about the producer.
7. show background information about the music creator and offer related music

composed by the same person.

The rule repository returns JSON Rules. The Example 1 shows a possible rule
describing a part of the above scenario:

Example 1 (A JSON Rule).

{

"id": 3,

conditions: [

{

"type":"Element",

"context":"$T",

"constraints": [

{

"propertyName" : "itemscope",

"operator" : "NEQ",

"restriction" : { "type": "String", "value" : "null"}

},

{

"propertyName" : "itemtype",

"operator" : "EQ",

"restriction" : { "type": "URL", "value" : "http ://

schema.org/Movie"}

},

{

"type":"Element",

"context":"$_",

"constraints": [

{

"propertyName" : "itemprop",

"operator" : "EQ",

"restriction" : { "type": "String", "value" : "name"}

},

{

"propertyName" : "parentNode",

"operator" : "EQ",

"restriction" : "$T"

},

{

"bind" : "$Y",

"propertyName" : "nodeValue"

}

],

"actions": [

"invoke(’youtube ’, $Y +’ trailer ’)",

"invoke(’imdb ’, $Y)",

"invoke(’amazon ’, $Y + ’ soundtrack ’)",

"invoke(’googlenews ’, $Y)",

"invoke(’wolframalhpa ’, $Y)"

]

}

Action invoke is an environment change action (included in the standard
execute action of RIF-PRD). The conditions of the rule are related to the DOM
content and, as usual, must be satisfied to execute the intended actions.

The actions are invoked sequentially but the final result, including possible
state change i.e. changes into the current DOM (the working memory), will take
place at the end of all action calls and the environmental effect may be a sum
of all actions to be executed.

When elements annotated with http://schema.org/Movie (bound to $T)
have a child annotated with the property name ($Y is bound to the text node
”Francis Ford Coppola”) then the conditions are satisfied. For example when
the DOM contains the below fragment all rule conditions are satisfied:

...

<div itemscope itemtype="http :// schema.org/Movie">

...

Francis Ford Coppola

...

</div>

...

While the above example uses HTML5 Microdata annotations [16], JSON-
Rules language also supports RDFa 1.1. Lite annotations [15]. This is quite

simple, as RDFa 1.1. lite is very close to Microdata, basically by using typeOf

instead of itemtype and property instead of itemprop.

3.3 On Rule Execution

RuleTheWeb! does not employ a rule engine. Rather, the rules are directly com-
piled to executable JavaScript code. Also, the way the actions are executed is
part of the compiling technology which is in development.

3.4 How to use it

To install the application please visit https://ruletheweb.org. After a success-
ful installation one must see an explanation page offering a brief introduction on
how to use the extension.

Fig. 3. RuleTheWeb! introduction page

The Figure 4 illustrates the application by showing activities on web sites
such as Google Shopping and YouTube. When watching a movie or a trailer on
YouTube one can receive additional information of that movie from imdb.com.
When navigating on Google Shopping and search for a desired product, RuleTheWeb!
offers additional information like reviews or specifications.

3.5 Architecture

The application architecture is depicted by Figure 5. All rulesets are loaded by
the application from a rule repository based on RuleML serializations.

https://ruletheweb.org

Fig. 4. Related news on YouTube pages and helping on buying products

The Client The client components are depicted by Figure 5.
Browser current window. The current DOM, containing semantic annota-

tions, acts as a facts provider: the semantic data is extracted and these are the
facts to be matched with rule conditions.

RuleTheWeb. It compiles rules to JavaScript code and execute them under
usual conditions. The rule execution result is sent to the Service Layer towards
executing the actions. The execution result is used by the Formatter module to
create the desired presentation.

Secondary Storage. The secondary storage combines two different kinds of
rules: Shared rules from the rule repository and private rules that the user created
himself. The user can decide to upload his custom created rules to the rule
repository to publicly share them with other users.

The server side The server side has two main components: (a) A rule reposi-
tory infrastructure with the main role of serving user-defined rulesets and (b) a
service processor with the main role to process rule actions.

3.6 Notes on Implementation

RuleTheWeb! is implemented as a standard client-server application invoking a
server service from a web based application (the client) under the same specific
session. A sequence diagram, depicted by Figure 6, describes the basic execution
process. The client-server communication is Ajax based.

The Ruleset object is serialized to the browser secondary storage. As usual,
a ruleset is a collection of rules designed to fulfill a goal.

The PageData object implements the logic of rules working memory, i.e. it
manages the facts on which the rules are matched.

The Log object implements the logic of actions to be executed. Basically,
when a ruleset is active, the Log object stores all actions effects to be performed.
Notice that the actions will not be executed immediately when they are fired by
some rule but at the end of the entire ruleset execution. Therefore this object
will also deal with the order of action effects.

Browser

User

Browser
Page

Secondary
Storage

Rule RepositoryRule Repository

retrieve
shared Ruleset

RuleTheWeb

Store
shared Ruleset

Interacts
with

create user rules

Share user
rules

Load rules

Interacts with

ServerServer

Perform Rule action

Retrieve Rule action response

Fig. 5. RuleTheWeb! Architecture

RuleTheWeb Server

openConnection(credentials)

sendSessionId()

getRuleset(sessionId)

sendRuleset(sessionId)Ruleset

createRuleSet()
PageData

createPageData(cd:DOM)

storePageData(pd:PageData):Boolean

run(pd:Pagedata, rs:Ruleset):Log

Log

applyLog(l:Log):void

closeSession(sessionId)

Fig. 6. RuleTheWeb: Basic RuleSet Execution

The RuleTheWeb! Firefox demo uses the storage only available for exten-
sions9. In addition, there are two other kinds of storages that the application
is using: (a) The session storage10, used to store the state of the application
(disabled or enabled). This storage remains valid over the browser session and
settings are restored when the browser is restarted, and (b) the DOM Storage11,
persistent as long as the actor stays on the same page.

4 Conclusion and Future Work

This demo as a proof-of-concept gave insight how rules can be used together
with semantic annotated content on web pages to enrich the user web surfing
experience. There is an ongoing work to define a complete data model of cap-
turing user preferences by investigating the capabilities of data collection offered
by modern communication tools such as online media and social networking.
Such model aims to capture most of widely accepted preference properties with
respect to behavioral economics concepts [11] such as heuristic, i.e. consumers
make decisions based on approximate rules and not strict logic (see also [20] for
an interesting use case).

Because this application uses rulesets created by third parties according with
the user profile they store, future work will offer users to change and store their
own rules. While writing rules typically requires professional expertise, our goal
is to allow users to write simple rules while experts may contribute to complex
rules as well as to rule curation.

In addition, for the content creators, the application will be offered as a stan-
dalone JavaScript application to be added to the web pages whereas a browser
extension with respect of these pages will no longer be necessary.

Acknowledgements

We would like to gratefully acknowledge Prof. Daniel Baier, head of department
of Marketing and Innovation and Prof. Ingo Schmitt, head of department of
Databases and Information Technology for their useful insights.

References

1. Y. Aytar, M. Shah, J. Luo. Utilizing Semantic Word Similarity Measures for Video
Retrieval, IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2008), 24-26 June 2008, Anchorage, Alaska, USA.

2. T. Berners-Lee, D. Connolly, E. Prud’homeaux, Y. Scharf. Experience with N3
rules, W3C Rules language Workshop April 2005, http://www.w3.org/2004/12/
rules-ws/paper/94/ .

9 https://developer.mozilla.org/en/Storage
10 https://developer.mozilla.org/en/Session_store_API
11 https://developer.mozilla.org/en/DOM/Storage

http://www.w3.org/2004/12/rules-ws/paper/94/
http://www.w3.org/2004/12/rules-ws/paper/94/
https://developer.mozilla.org/en/Storage
https://developer.mozilla.org/en/Session_store_API
https://developer.mozilla.org/en/DOM/Storage

3. H. Boley: Are Your Rules Online? Four Web Rule Essentials. Advances in Rule
Interchange and Applications, International Symposium, RuleML 2007, Orlando,
Florida, October 25-26, 2007, pp. 7-24, http://www.cs.unb.ca/~boley/papers/
RuleEssentials.pdf.

4. T.R. Burns, and T. Dietz (1992) Cultural Evolution: Social Rule Systems, Selec-
tion, and Human Agency. International Sociology 7:250-283.

5. A. Giurca and E. Pascalau (2008). JSON Rules. In G. J. Nalepa and J. Baumeister
(Eds.) Proceedings of 4th Knowledge Engineering and Software Engineering, KESE
2008, collocated with KI 2008, Spetember 23, 2008, Kaiserlautern, Germany, CEUR
Workshop Proceedings Vol 425.

6. A. Giurca, E. Pascalau (2009). Building Intelligent Mashups. Tutorial at 32nd An-
nual Conference on Artificial Intelligence (KI 2009), September 15-18, 2009, Pader-
born, Germany, https://docs.google.com/View?id=dcff8ncf_181gxb3ss65.

7. A. Giurca, I. Schmitt, and D. Baier. Performing Conjoint Analysis within a Logic-
based Framework. Proc of IEEE Federated Conference on Computer Science and
Information Systems, (FedCSIS2011), Szczecin, Poland, 18-21 September, 2011.

8. A. Giurca, I. Schmitt, and D. Baier.Can Adaptive Conjoint Analysis perform in a
Preference Logic Framework? The 8th workshop on Knowledge Engineering and
Software Engineering (KESE8) at the ECAI 2012 Montpellier, France, August
27-31, 2012.

9. A. Giurca, I. Schmitt, and D. Baier. Adaptive Conjoint Analysis. Training Data:
Knowledge or Beliefs? A Logical Perspective of Preferences as Beliefs. Proc of
IEEE Federated Conference on Computer Science and Information Systems, (Fed-
CSIS2012), Wroclaw, Poland, 9 - 12 September, 2012.

10. A. Le Hors, P. Le Hgaret, L. Wood, G. Nicol, J. Robie, M. Champion, S. Byrne.
Document Object Model (DOM) Level 3 Core Specification, Version 1.0, W3C
Recommendation 07 April 2004, http://www.w3.org/TR/DOM-Level-3-Core/.

11. D. Kahneman, and A. Tversky (1979). Prospect theory: An analysis of decisions
under risk. Econometrica 47 (2): 263-291.

12. O. Lassila. Semantic Web Soul Searching, Blog posting , March 19, 2007.
http://www.lassila.org/blog/archive/2007/03/semantic_web_so_1.html last
retrieved: June 10, 2012.

13. C. de Sainte Marie, G. Hallmark, A. Paschke. RIF Production Rule Dialect, W3C
Recommendation 22 June 2010, http://www.w3.org/TR/rif-prd/.

14. D. Schepers, J. Rossi, B. Höhrmann,P. Le Hgaret, T. Pixley. Document Object
Model (DOM) Level 3 Events Specification, W3C Working Draft 31 May 2011,
http://www.w3.org/TR/DOM-Level-3-Events/ .

15. Manu Sporny. RDFa 1.1. Lite, W3C Candidate Recommendation, http://www.

w3.org/TR/rdfa-lite/
16. * * * HTML5. A vocabulary and associated APIs for HTML and

XHTML, http://www.whatwg.org/specs/web-apps/current-work/multipage/

microdata.html. last retrieved: June 20, 2012.
17. * * * DOAP: Description of a Project, https://github.com/edumbill/doap/wiki

last retrieved: June 10, 2012.
18. * * ** Friend Of A Friend, http://semanticweb.org/wiki/FOAF, last retrieved:

June 20, 2012.
19. Good Relations: a Web vocabulary for e-commerce, http://www.

goodrelations-vocabulary.org/, last retrieved: June 20, 2012.
20. L. Lee, S. Frederick and D. Ariely (2006), Try It, Youll Like It: The Influence of

Expectation, Consumption, and Revelation on Preferences for Beer. Psychological
Science. Vol. 17, No. 12: 10541058.

http://www.cs.unb.ca/~boley/papers/RuleEssentials.pdf
http://www.cs.unb.ca/~boley/papers/RuleEssentials.pdf
https://docs.google.com/View?id=dcff8ncf_181gxb3ss65
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.lassila.org/blog/archive/2007/03/semantic_web_so_1.html
http://www.w3.org/TR/rif-prd/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/rdfa-lite/
http://www.w3.org/TR/rdfa-lite/
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
https://github.com/edumbill/doap/wiki
http://semanticweb.org/wiki/FOAF
http://www.goodrelations-vocabulary.org/
http://www.goodrelations-vocabulary.org/

21. Library Linked Data Incubator Group: Use Cases. http://www.w3.org/2005/

Incubator/lld/wiki/UseCases, last retrieved: June 20, 2012.
22. * * * Ontology Web Language, W3C, http://www.w3.org/OWL/, last retrieved:

June 10, 2012.
23. * * * Resource Description Framework, W3C, http://www.w3.org/RDF/, last re-

trieved: June 10, 2012.
24. * * * The RuleML Initiative, http://ruleml.org, last retrieved: June 10, 2012.
25. I. Schmitt, and D. Baier. Logic Based Conjoint Analysis using the Commuting

Quantum Query Language, Proc. of Conference of the German Classification So-
ciety (GfKl2011), August 31 to September 2, 2011, Frankfurt am Main, Germany.

26. * * * SPARQL 1.1 Query Language, W3C Working Draft 05 January 2012, http:
//www.w3.org/TR/sparql11-query/, last retrieved: June 15, 2012.

http://www.w3.org/2005/Incubator/lld/wiki/UseCases
http://www.w3.org/2005/Incubator/lld/wiki/UseCases
http://www.w3.org/OWL/
http://www.w3.org/RDF/
http://ruleml.org
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

1

 PLIS+: A Rule-Based Personalized Location
Information System

Iosif Viktoratos1, Athanasios Tsadiras1, Nick Bassiliades2,

1Department of Economics, 2Department of Informatics,
Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece

{viktorat, tsadiras, nbassili}@auth.gr

Abstract. In this paper, the idea of providing personalized, location-based infor-
mation services via rule-based policies is demonstrated. After a short introduction,
an innovative Personalized Location Information System (PLIS+) is designed and
implemented. PLIS+ delivers personalized and contextualized information to us-
ers according to rule-based policies. More specifically, many categories of points
of interest (for example shops, restaurants) have rule-based policies to expose and
deploy their marketing strategy on special offers, discounts, etc. PLIS+ evaluates
these rules on-the-fly and delivers personalized information according to the us-
er’s context and the corresponding rules fired within this context. After discussing
the design and the implementation of PLIS+, illustrative examples of PLIS+ func-
tionality are presented. As a result, PLIS+ proves that combining contextual data
and rules can lead to powerful personalized information services.

Keywords: RuleML, Rules, Location Based Services, Context, Points of Interest,
Jess.

1 Introduction

1.1 Rule-based Information Services and related work

Latest information services adopt rule based approaches so as to enable higher
quality context perception. Rule-based systems are more autonomous because they are
capable of understanding context changes and responding accordingly without user
intervention [1].

As a result, up-to-date Location Based Services (LBS) combine semantics (ontol-
ogies, rules) with smartphone’s capabilities (GPS, sensors) tο deliver contextualized
up-to-date information [2-5] to users. Thus, LBS have become a popular sector of
everyday life and they are used consistently by millions of people for navigation,
tracking, information, even in emergency situations [6].

2

1.2 Motivation-Overview

The aim of the presented work is to combine semantics with location information ser-
vices to deliver personalized and contextualized information services to users. A sys-
tem called “Personalized Location Information System” or PLIS+ was implemented
for this purpose. PLIS+ is an extended version of the PLIS system that is presented in
[7]. It can be accessed at http://tinyurl.com/ca42fwj

A rule-based approach was followed for PLIS+ implementation, based on discus-
sion in section 1.1 Core component of PLIS+ is RuleML, a powerful markup language
(XML with a predefined Schema) which supports various types of rules such as
deductive, reactive and normative. As an XML-based language, RuleML addresses
the issues of interoperability and flexibility among different systems on the web, by
allowing rules to be encoded in a standard way [8]. Last but not least, because of the
fact that PLIS+ users are capable of adding rules at run-time, an xml-based user
friendly language is desirable.

PLIS+ could easily be combined with most of existing approaches and differs by
enabling a dynamic rule base that offers users the option to add rules at run time. A
detailed demonstration of the system is included in the following sections.

2 Design, Implementation and technical details

In everyday life, in order to deploy their specific business strategy, many points of
interest (as businesses) adopt a rule-based policy (e.g. special offers). The general
idea is to combine POI’s policies with user’s context to deliver ‘qualitative’ informa-
tion. A general interface for connection between POI owners and potential customers-
users is provided. Every time a user logs into the system to search for a point of inter-
est, PLIS+ gets user’s context (profile, location, day, time), evaluates the rules associ-
ated with nearby POIs and delivers personalized information to user, depending on
the rules fired. Users can also become owners of various POIs and after that they are
capable of inserting their own rule base policy for those POIs. The general idea is il-
lustrated in Figure 1.

Fig. 1 General design of system

3

To be more specific, PLIS+ offers the following functionalities illustrate in Figure 2:

A: User’s Registration:
 A1. User registers to the system by completing a registration form so as PLIS+ to

build a profile (registration time user).
 A2. User profile data such as first name, last name, occupation, gender, age, city,

state, etc are stored in the database.
B: Insertion of Points of Interest:
 B0. After a user has logged in, the system obtains user position and retrieves near-

est POI’s from external sources such as Google Places API. If information of a POI
is already in the system, PLIS+ updates its related data with the latest information.

 B1. User is capable (by becoming POI owner) of attaching to existing places at-
tributes and explicit rules relevant to those attributes. In detail, user is able to assert
a rule base which contains any attribute related to his POIs and then assert rules
concerning these attributes. For example a restaurant owner asserts a policy which
contains data (related to his business) such as Pizza 10€, Spaghetti 8€, Minimum
order 5€ and along with above data, relevant rules such as “if a person is a student
and hour is after 18:00, then Pizza price is 8€”.Furthermore, a user is of course ca-
pable of inserting his/her own POIs accompanied by their own rule based policy.
Alternatively, place owners can upload their rule base to their website and insert
the relevant link. The editing of the corresponding rule base is authorized only to
the POI’s owner.

 B2. All data and rules concerning the POI are saved to the corresponding data-
base. Except from this, files containing rule bases are kept to the server.

C: Presentation of Personalized information. To present the personalized informa-
tion to the end user, the following steps are made:

 Step C1:
a. After registration, user is able to log into the system by entering his/her user-
name and password.
b. System checks user profile database for authentication.

 Step C2: Java Server Pages (JSP) collects user context (profile, location, time, day)
attribute values (run time user).

 Step C3:
a. For every POI, rules (if any) are being fetched (by JSP), along with relevant
attribute values (for example price, etc).
b. Rules (after being transformed to a machine understandable language), POI
data and user context attribute values are asserted to the Jess rule engine.

 Step C4: Jess rule engine evaluates rules using the asserted facts and updates
POIs’ data according to the rules fired depending on user’s context. The new data
are fetched by JSP.

 Step C5: Finally, data transfer to client is performed for visualization and presen-
tation of personalized information. It’s worth mentioning that a user-oriented inter-
face has been implemented so as the run-time user to become capable of understand-
ing the general idea of PLIS+. First of all, different markers are applied for better il-
lustration. In detail, except from the standard red marker for POIs, a) a yellow marker

4

indicates that the place contains a rule base but no rule fired for current user, b) a
green marker indicates that the place contains a rule base and rules were fired for the
current user, c) a crown over the marker indicates that the current user is also the POI
owner of this place. Moreover, when a person clicks on a place additional information
appears in a message explaining which rules were fired and why or in the case that no
rule was fired for the specific POI, which rules exist for the place (if any).

Basic component of PLIS+ is Reaction RuleML, a subcategory of RuleML. It is
used for rule representation. This subcategory was chosen because such kinds of
policies are usually represented by production rules and Reaction RuleML is suitable
for that task [9]. Reaction RuleML also supports both deductive rules, i.e. rules which
derive data at their RHSs, and event-based rules, i.e. rules which are activated by spe-
cific events, such as user actions or temporal events. Therefore, Reaction RuleML
could be easily used to express a multitude of rule-based calculations and data pro-
cessing for business strategies.

On the other hand, to implement a system like PLIS+, an inference engine is
needed in order rules to be executed by a machine. Jess was chosen to implement the
core of PLIS+, because of the fact that it is a lightweight rule engine and connects
well with web technologies, which were needed for PLIS+ system implementation
[10]. So for example, after the translation from RuleML to Jess, the rulebase for the
POI with the following characteristics: a) pizza: 10€, b) spagheti: 8€, c) minimum or-
der: 5€ and d) a rule considering “pizza price decreased to 8€ after 18:00 for students”
is represented as shown below:

(bind ?fact (assert (place (pizza 10) (Spaghetti 8)
(minimum_order 5))))
(defrule decreased_pizza_price
 (declare (salience 10))
 (person (hour ?d) (occupation student))(test (> ?d 18))
=>(modify ?fact (pizza 8))
(store EXPLANATION "Pizza price decreased to 8€ after 18:00 for students"))

Rules in RuleML format transformed to Jess rules by using XSLT [11]. XSL
technology is used massively to transform XML documents. Another core technology
of PLIS+ is Java Server Pages (JSP). The vast majority of rule engines such as Jess,
Drools, Prova [12] are not only server-oriented (for security issues) but also java-
based. JSP implementation fulfills both criteria. Moreover, JSP can be easily embed-
ded into html documents and is heavily used along with client-oriented technologies
such as JavaScript for visualization.

5

Fig. 2 PLIS+ functionalities

3 Demonstration of PLIS+

This section includes a demonstration of the PLIS+ system. A random user profile
snapshot is used as an example (Table 1). On the other hand two random places from
the database selected for testing (Table 2). Table 2 shows the attributes and also the
rules that were attached to these places.

Table 1. A random user profile.

Profile Environment

 Name Occupation Gender Age Time Day Location
User A Susan Student Female 26 20:12 Friday LocationA

Table 2.Two random places.

 Name
Asserted

Data
Rule 1 Rule 2

Place A
Cafe

Delmundo
Coffee:3€

Ice-cream: 5€

Coffee price reduced
to 2€ for students

which are closer than
200m after 22:00

Half prices for coffee and
ice-cream (1.5 and 2.5€) for

women on Fridays after
18:00 o’clock

Place B
Verona
pizza

pizza:10€
fish:12€

minimum or-
der:5€

40% discount
(6€) into pizza price

for students

special prices for pizza (8€)
and a decreased minimum

order (4€) for women under
35 years old which are

closer than 500m

As it was previously referred, PLIS+ gets user profile, evaluates rules and displays

personalized information. When user A (“Susan”) logs into the system she is able to
click on places displayed by green markers (places containing rules that fired accord-
ing to current user profile), so as to understand which rules fired for her and why

6

(Figure 3). Taking Place A (Table 2) as an example, rule 2 is fired (because she is a
woman, the day is Friday and current time is after 18:00). PLIS+ updates attribute
values according rule 2 and delivers contextualized information to Susan (Figure 4).
Coffee and ice-cream price for Susan are 1.5 and 2.5€ after rule 2 execution. She is
also capable of understanding why a rule fired with the rule explanation field.

Fig. 3. PLIS+ Starting screen

Similarly, both rules were fired for place B. Susan is a student (Rule 1 criterion)
and she is a woman under 35, closer than 500m from place B (Rule 2 criteria, assum-
ing that location A is closer than 500m). According to Rule 2, minimum order for cur-
rent user is 4€, but there is a confliction for pizza price (pizza price is 6€ according to
rule 1 and 8€ according to the second). PLIS+ handles rule confliction problems by
applying priorities according to assertion turn. A Rule which was inserted first has a
higher priority. Taking those under consideration pizza price for Susan is 6€ and relat-
ed information displayed as in Figure 5.

This example illustrates how the delivered information is displayed to the end us-
er and the capabilities of PLIS+ concerning a) gender, b) day, c) location, d) occupa-
tion, e) time, f) a non-applicable rule case and g) rule confliction.

Fig. 4. Information for Susan concerning Place A.

7

Fig. 5. Information for Susan concerning place B

4 Limitations and comparison with related works

A limitation of the proposed system is the fact that users can add data and rules con-
cerning these data only in textual form. Furthermore, no rule sharing between place
owners or a rule recommendation operation is supported. Moreover, there are some
security issues concerning place owners operations. For example, an authentication
process validating that the user who is becoming POI owner is the actual place owner
would be desirable. In addition to this, a rule validation operation would be useful.

Concerning comparison with related approaches described in section 1 PLIS+
differs by letting users adding and editing rules at run time. It is a fully dynamical
service where users can add an unlimited number of data and rules, and consequently
it becomes more and more intelligent and autonomous as soon as new data and rules
are asserted to the system. On the other hand, many rule based approaches adopt more
complex rule bases in relation to PLIS+. Last but not least, by using RDF and OWL
such kind of services can be more flexible.

5 Conclusions and Future Work

Location-Based Services are currently popular, enjoying both commercial and scien-
tific interest. An important part of LBS is the points of interest, and as mentioned,
most of them can have their explicit rule policies. Taking these facts under considera-
tion, embedding rules dynamically to location-based information systems can offer a
boost to the quality of delivered information. PLIS+ combines location-based technol-
ogies with rule-based technologies to demonstrate the viability of this idea.

PLIS+ implementation can evolve in various ways. First of all, because of the fact
that POI owners are unfamiliar with RuleML, a user-friendlier environment has to be
implemented. Either a form-based interface will be implemented, or otherwise a
ruleml editor [13] will be embedded, so as place owners to become capable of adding
and editing rules without much effort. Additionally, system should propose rules that

8

other owners have added previously and run time owners-users should be capable of
choosing between existing rule sets.

Furthermore, in our future plans is to use OWL and/or RDF data (as in linked da-
ta) to represent user profiles and POI related information, for greater flexibility.
Moreover, recommendation algorithms depending on the retrieved information (after
the rules fired) would be useful. Additionally, future work will also focus on security
and interoperability issues. Besides these, a mobile application e.g. for a smartphone,
can be implemented and integrated with the native context sensing devices (e.g. GPS,
compass, etc.). In addition, experimental testing of the system is in progress by mak-
ing PLIS+ public.

References

1. Lassila, O. Applying Semantic Web in Mobile and Ubiquitous Computing: Will Policy-
Awareness Help? Semantic Web and Policy Workshop (2005)

2. D.Serrano, R. Hervás, J. Bravo. Telemaco: Context-aware System for Tourism Guiding
based on Web 3.0 Technology. International Workshop On Contextual Computing and
Ambient Intelligence in Tourism (2011)

3. N.Tryfona, D. Pfoser: Data Semantics in Location-based Services. Journal on Data Se-
mantics III, vol. 3534, pp. 168–195 (2005)

4. lliam V. Woensel, S. Casteleyn and O. Troyer.Applying semantic web technology in a mo-
bile setting: the person matcher,” Web Engineering, pp. 506- 509(2010)

5. Van Woensel, W., Casteleyn, S., and Troyer, O. A framework for decentralized, context
aware mobile applications using semantic web technology. In Proc. of the Confederated In-
ternational Workshops and Posters On the Move to Meaningful Internet Systems. Springer,
88-97. (2009)

6. S. Steiniger, Moritz N., Alistair E.: Foundation of Location Based Services. Lecture Notes
on LBS (2006)

7. Viktoratos I., Tsadiras A. and Bassiliades N. Personalizing Location Information through
Rule-Based Policies accepted for presentation to RuleML 2012

8. Yuh-Jong Hu, Ching-Long Y., Wolfgang L.: Challenges for Rule Systems on the Web.
RuleML '09 Proc. of the 2009 International Symposium on Rule Interchange and
Applications (2009)

9. Paschke A., Kozlenkov A., Boley H.: A Homogenous Reaction Rule Language for Com-
plex Event Processing, 2nd International Workshop on Event Drive Architecture and Event
Processing Systems (EDA-PS 2007), Vienna, Austria, (2007)

10. Ernest Friedman-Hill: Jess in Action.Rule-Based Systems in Java. Manning Publications.
ISBN-10: 1930110898, pp. 32-33(2003)

11. Gregory Sherman: A Critical Analysis of XSLT Technology for XML Transformation.
Senior Technical Report. (2007)

12. S. Liang, P. Fodor, H. Wan, M. Kifer: OpenRuleBench:An Analysis of the Performance of
Rule Engines. WWW 2009 Madrid(2009)

13. E. Kontopoulos, N. Bassiliades, G. Antoniou, A. Seridou: Visual Modeling of Defeasible
Logic Rules with Dr-VisΜo. Intern. Journal on Artificial Intelligence Tools, 17(5), pp. 903–
924, 2008.

	Rule Based Business Process Compliance
	Guido Governatori, Sidney Shek
	RuleTheWeb!: Rule-based Adaptive User Experience

