
PSOATransRun: Translating and Running
PSOA RuleML via the TPTP Interchange

Language for Theorem Provers

Gen Zou1, Reuben Peter-Paul1, Harold Boley1,2, and Alexandre Riazanov3

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
gen.zou AT unb.ca, reuben.peterpaul AT gmail.com,

2 Information and Communications Technologies, National Research Council Canada
harold.boley AT nrc.gc.ca,

3 Department of Computer Science & Applied Statistics, UNB, Saint John, Canada
alexandre.riazanov AT gmail.com

Abstract. PSOA RuleML is an object-relational rule language general-
izing POSL, OO RuleML, F-logic, and RIF-BLD. In PSOA RuleML, the
notion of positional-slotted, object-applicative (psoa) terms is used as a
generalization of: (1) positional-slotted terms in POSL and OO RuleML
and (2) frame and class-membership terms in F-logic and RIF-BLD.
We demonstrate an online PSOA RuleML reasoning service,
PSOATransRun, consisting of a translator and an execution engine. The
translator, PSOA2TPTP, maps knowledge bases and queries in the PSOA
RuleML presentation syntax to the popular TPTP interchange language,
which is supported by many first-order logic theorem provers. The trans-
lated documents are then executed by the open-source VampirePrime
reasoner to perform query answering. In our implementation, we use the
ANTLR v3 parser generator tool to build the translator based on the
grammars we developed. We wrap the translator and execution engine
as resources into a RESTful Web API for convenient access. The presen-
tation demonstrates PSOATransRun with a suite of examples that also
constitute an online-interactive introduction to PSOA RuleML.

1 Introduction

Knowledge representation is at the foundation of Semantic Web applications,
using rule and ontology languages as the main kinds of formal languages. PSOA
RuleML is a recently developed rule language which combines the ideas of re-
lational (predicate-based) and object-oriented (frame-based) modeling. In order
to demonstrate the PSOA RuleML semantics, we have implemented an online
PSOA RuleML reasoning service PSOATransRun. It enables PSOA RuleML
deduction using the first order open-source VampirePrime reasoner via the in-
terchange language TPTP (Thousands of Problems for Theorem Provers), which
is supported by many reasoners, especially theorem provers. PSOATransRun is
composed of a translator, PSOA2TPTP, and a run-time environment in the
form of a TPTP-aware execution engine. The translator maps knowledge bases

2 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

and queries of PSOA RuleML in RIF-like Presentation Syntax (PSOA/PS) into
a document in TPTP’s First Order Form (FOF), which is then fed into the
VampirePrime reasoner to deduce the query results.

Our implementation of PSOA2TPTP is built upon the ANTLR v3 parser
generator framework.4 The main components include a lexer, a parser and a
tree walker generated from the input ANTLR grammars. The input document is
first broken up, by the lexer, into a token stream; then converted, by the parser,
into a structured Abstract Syntax Tree (AST); and finally traversed, by the tree
walker, to generate a TPTP document via TPTP Abstract Syntax Objects.

We wrapped the PSOA2TPTP translator and the VampirePrime-based exe-
cution engine as resources into a RESTful Web API, and published a Web site
demonstrating its use.5

2 Preliminaries

2.1 PSOA RuleML

PSOA RuleML [1] is an object-relational rule language generalizing POSL, OO
RuleML, F-logic, and RIF-BLD. In PSOA RuleML, the notion of positional-
slotted, object-applicative (psoa) terms is introduced:

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

This notion generalizes (1) positional-slotted terms in POSL and OO RuleML
and (2) frame and class-membership terms in F-logic and RIF-BLD. In a psoa
term, o is the object identifier (OID) which uniquely identifies the object rep-
resented by the term. A psoa term integrates three types of information: (1)
The class membership o # f makes f the type of instance o; (2) every slotted
argument pi->vi associates o with an attribute pi and its value vi; (3) every
tupled argument [ti,1 ... ti,ni] associates o with a sequence of terms.

2.2 TPTP-FOF and VampirePrime

TPTP is a collection of test problems for automated theorem proving systems
using the problem format of the same name. TPTP-FOF is the dialect allow-
ing the use of arbitrary first-order formulas. A TPTP-FOF problem is a list of
annotated formulas of the form:

fof(name, role, formula, source, useful info).

Here, name is a name given to the formula; role specifies the type of intended
use of the formula, e.g. axiom, theorem, conjecture, etc. formula is the formula
body (source and useful info are optional and irrelevant for our translation).
Table 1 shows the most widely used TPTP constructors.
4 http://www.antlr.org/
5 http://198.164.40.211:8082/psoa2tptp-trans/index.html

PSOATransRun: Translating and Running PSOA RuleML 3

Table 1. TPTP Constructors

Symbol Logical Meaning Symbol Logical Meaning
~ not != unequal
& and => implication
| or ?[v1, v2, ...] existential quantifier
= equal ![v1, v2, ...] universal quantifier

VampirePrime is an open source reasoner derived from Vampire [2], a mature
high-performace reasoner for first-order logic. VampirePrime supports not only
standard theorem proving tasks like consistency checking and entailment, but
also query answering using the Incremental Query Rewriting Technique [3].

3 System Architecture

In Figure 1, we present an architectural view of the PSOATransRun framework.
We use Linux for our host environment, and VampirePrime can be re-compiled
for any platform that supports gcc 4.x. We use a Java servlet container to host the
PSOATransRun RESTful-Web-API web application, which we depict in Figure 1
as a Web ARchive (WAR). The RESTful Web API WAR, basically consists of
two JAX-RS6 resources, and a static HTML page application.html. The Web API
depends on the PSOA2TPTP-Translator Java application (see Figure 2) and it is
also packaged into the WAR. The PSOATransRun application component, appli-
cation.html is a static HTML Web page that accesses (via XMLHttpRequests7)
the PSOATransRun RESTful resources (Translate and Execute) and composes
them to provide an experimental PSOA Presentation Syntax (PSOA/PS) pro-
totype for basic reasoning. The design and implementation of the RESTful Web
API is described in more detail in Section 4.2.

The architecture of the PSOA2TPTP translator is depicted in more detail
in Figure 2. The translation consists of four phases:

1. The PSOA/PS lexer feeds off the input document as a character stream and
does lexical analysis, grouping the characters into a stream of tokens.

2. The PSOA/PS parser operates on the token stream emanating from the
lexer, and parsing the grammatical structure while constructing an interme-
diate data structure called Abstract Syntax Tree (AST), which is a highly
structured and condensed version of the input.

3. The tree walker traverses the AST and builds an internal data structure,
TPTP Abstract Syntax Objects (TPTP ASOs), representing semantically
equivalent TPTP formulas, based on the translation rules.

6 JAX-RS is a Java API for RESTful Web Services that facilitates the creation of
Web services according to the Representational State Transfer (REST) architectural
style.

7 Used to send HTTP requests directly to a Web server.

4 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

«JAR»
PSOA2TPTP-
Translator

«bin»
VampirePrime

WEB-INF

translator

TRANS

reasoner

RUN

«Host»
Linux

«Class, JAX-RS»
Translate

«Class, JAX-RS»
Execute

«HTTP»

browser

«HTTP»

«Servlet Container»
JBossWeb

«HTML, JavaScript»
application.html

«WAR»
RESTful-Web-API

PSOATransRun Framework

User

Fig. 1. Architecture of PSOATransRun. The PSOATransRun application, applica-
tion.html, composes the Translate and Execute (Run) resources for PSOA/PS queries.

4. The TPTP renderer reuses an existing parser/renderer library8 for generat-
ing TPTP documents in concrete syntax from TPTP ASOs.

The lexer, parser and tree walker are generated by the ANTLR framework9

from the provided lexer grammar, parser grammar and tree grammar, respec-
tively.

Our intention was to create an application programming interface (API)
and expose our growing set of translation tools and reasoner services over the
World Wide Web via Web services. We chose to apply the REpresentational
State Transfer (REST)10 architectural style when designing our API for practical
8 http://riazanov.webs.com/tptp-parser.tgz
9 ANother Tool for Language Recognition (ANTLR) is a parser generator widely
used for building translators and interpreters for domain-specific languages.
http://www.antlr.org/

10 REST is an architectural style for distributed systems such as the World Wide
Web. A RESTful Web API is an API that conforms to the RESTful architectural
constraints specified in [4]

PSOATransRun: Translating and Running PSOA RuleML 5

Fig. 2. Detailed architectural view of the PSOA2TPTP translator

reasons. While there are other architectural styles for distributed computing
besides REST, RESTful Web APIs tend to be much easier to understand and
use (see [5]).

4 Implementation

4.1 Translation

The semantics-preserving translation from PSOA RuleML to TPTP has two
phases: (1) Normalization of composite formulas into a conjunction of elementary
constructs and (2) translating them into corresponding TPTP forms.

In the first phase, every psoa formula of the form

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

is split into a conjunction of 1 class membership formula o # f(), m single-
tuple formulas o # Top(ti,1 ... ti,ni) and k (RDF-triple-like) single-slot formu-
las o # Top(pi->vi). The rewriting preserves the semantics since the truth value
of a psoa formula is defined by the conjunction.

In the second phase, we define the translation function τpsoa(·) mapping each
PSOA/PS elementary construct to a TPTP construct as shown in Table 2.

In the translation, we use ‘l’ and ‘Q’ as the prefixes for translated local con-
stants and variables in TPTP, respectively.11 The KB is translated sentence by
sentence using τpsoa(·), while for the query we use a preserved answer predicate
ans to show the bindings of variables. More explanations can be found in [6].
11 In TPTP, constants and variables start with lower case and upper case letters, re-

spectively.

6 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

Table 2. Mapping function τpsoa(·) from PSOA/PS constructs to TPTP constructs

PSOA/PS Constructs TPTP Constructs
_C lC
?v Qv

o # Top(t1...tk) tupterm(τpsoa(o), τpsoa(t1) . . . τpsoa(tk))
o # Top(p -> v) sloterm(τpsoa(o), τpsoa(p), τpsoa(v))

o # f() member(τpsoa(o), τpsoa(f))
a ## b subclass(τpsoa(a), τpsoa(b))
a = b τpsoa(a) = τpsoa(b)

And(f1 ... fn) (τpsoa(f1) & ... & τpsoa(fn))
Or(f1 ... fn) (τpsoa(f1) | ... | τpsoa(fn))

Exists ?v1... ?vn f ? [τpsoa(?v1)...τpsoa(?vn)] : τpsoa(f)
Forall ?v1... ?vn f ! [τpsoa(?v1)...τpsoa(?vn)] : τpsoa(f)

ϕ :- ψ τpsoa(ψ) => τpsoa(ϕ)

4.2 RESTful Web API

Both the translation and execution operations are exposed as RESTful Web
services as shown in Figure 1. This was accomplished by creating two REST
resources: Translate, a REST resource for representing the PSOA2TPTP trans-
lator; Execute, a REST resource for representing a reasoner (VampirePrime). 12

Currently POST is the only HTTP operation supported by these resources along
with application/json (JSON encoding) and text/plain (plain text) Internet me-
dia types.

To translate a PSOA/PS document into a TPTP document, the PSOA/PS
document must be JSON-encoded and sent, in an HTTP POST request, to the
Translate URI; the response is the result of the PSOA2TPTP translator encoded
as a JSON array of TPTP-FOF sentences. See [7] for details.

The Execute Web service allows an application programmer to execute a rea-
soner; the reasoner we use is the VampirePrime reasoner, which accepts TPTP-
FOF sentences as input. Therefore, to query an input knowledge base using
PSOA/PS the application programmer must first request translation and then
send the resulting TPTP-FOF sentences in an HTTP POST request to the
Execute URI. The result will be the plain text output from the reasoner (see
Listings 2-5 in [7]) and the example in the next section.

5 Examples

In this section we demonstrate some examples showing how input knowledge
bases (KBs) and queries are translated into TPTP-FOF and executed by
VampirePrime to get the query results. We start with a simple example with
only ground facts in the KB, followed by an advanced one with rules.
12 Note that the designation of resource is not in and of itself a Web service, which

requires the combination of the resource URI, an HTTP operation and an Internet
media type.

PSOATransRun: Translating and Running PSOA RuleML 7

5.1 Example 1

– Input KB:
Document(
Group(
_f1 # _family(_Mike _Amy _child->_Fred _child->_Jane)
_Amy # _person([_married] [_bcs _mcs _phd] _job->_engineer)

)
)

– Translated KB:
fof(ax01, axiom,

member(lf1, lfamily) & tupterm(lf1, lMike, lAmy)
& sloterm(lf1, lchild, lFred) & sloterm(lf1, lchild, lJane)).

fof(ax02, axiom,
member(lAmy, lperson) & tupterm(lAmy, lbcs, lmcs, lphd)
& tupterm(lAmy, lmarried) & sloterm(lAmy, ljob, lengineer)).

The KB has two psoa formulas as facts. The first fact has one tuple for the
family’s adults, where _Mike _Amy is equivalent to [_Mike _Amy], a short-
cut allowed only in single-tuple psoa terms; it has two slots for the family’s
children. The second fact has two tuples, of lengths 1 and 3, and also a
slot. The two formulas are first broken into two conjunctions of elementary
constructs, and then mapped to two TPTP conjunctions according to the
function τpsoa(·) defined in the last section.

– Query 1.1: _Amy # _person(_job->_engineer)
– Translated Query:

fof(query, theorem,
((member(lAmy, lperson) & sloterm(lAmy, ljob, lengineer))
=> ans)).

– VampirePrime Output:
Proof found.
...
... | «ans» ...
The translated query is combined with the translated KB into a document
and executed by VampirePrime. In the output, «ans» indicates that the
queried fact is true. Note that this query is a ground fact, so that the task
here is to prove the fact rather than asking for variable bindings, which we
will show next.

– Query 1.2: _Amy # _person(_job->?Job)
– Translated Query:

fof(query, theorem,
((member(lAmy, lperson) & sloterm(lAmy, ljob, QJob))
=> ans("?Job", QJob))).

– VampirePrime Output:

8 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

Proof found.
...
... | «ans»("?Job = ",lengineer) ...

This query asks for the job of _Amy, and the answer «ans»("?Job = ",lengineer)
means ?Job can unify with _engineer.

5.2 Example 2

– Input KB:
Document(
Group (
Forall ?X ?Y ?Z (

?X # _person(_descendent->?Z) :-
And(?X # _person(_child->?Y) ?Y # _person(_descendent->?Z))

)
Forall ?X ?Y (

?X # _person(_descendent->?Y) :- ?X # _person(_child->?Y)
)
_Tom # _person(_child->_Amy _job->_professor)
_Eva # _person(_child->_Amy)
_Amy # _person([_married] [_bcs _mcs _phd] _child->_Fred)
_Fred # _person(_school->_UNB)

)
)

– Translated KB:
fof(ax01,axiom,(

! [QZ,QY,QX] :
((member(QX,lperson) & sloterm(QX,lchild,QY)
& member(QY,lperson) & sloterm(QY,ldescendent,QZ))

=> (member(QX,lperson) & sloterm(QX,ldescendent,QZ))))).
fof(ax02,axiom,(

! [QY,QX] :
((member(QX,lperson) & sloterm(QX,lchild,QY))
=> (member(QX,lperson) & sloterm(QX,ldescendent,QY))))).

fof(ax03,axiom,
(member(lTom,lperson) & sloterm(lTom,lchild,lAmy)
& sloterm(lTom,ljob,lprofessor))).

fof(ax04,axiom,
(member(lEva,lperson) & sloterm(lEva,lchild,lAmy))).

fof(ax05, axiom,
(member(lAmy, lperson) & tupterm(lAmy, lbcs, lmcs, lphd)
& tupterm(lAmy, lmarried) & sloterm(lAmy,lchild,lFred))).

fof(ax06,axiom,
(member(lFred,lperson) & sloterm(lFred,lschool,lUNB))).

PSOATransRun: Translating and Running PSOA RuleML 9

The KB has two rules and four facts. The facts shows the information of
_Tom, _Eva, _Amy, _Fred. The rules define the descendent relationship.

– Query 2.1: ?Ancestor # _person(_descendent->?Who)

– Translated Query:
fof(query,theorem,(

! [QWho,QAncestor] :
(sloterm(QAncestor,ldescendent,QY)
=> ans("?Ancestor = ",QAncestor,"?Y = ",QWho)))).

– VampirePrime Output:
Proof found.
...
... | «ans»("?Ancestor = ",lAmy,"?Who = ",lFred) ...
...
... | «ans»("?Ancestor = ",lEva,"?Who = ",lAmy) ...
...
...
...
... | «ans»("?Ancestor = ",lEva,"?Who = ",lFred) ...
...
The query asks for all the descendent pairs <?Ancestor, ?Who> in the KB,
and the output «ans»("?Who = ",lMike) and «ans»("?Who = ",lTom) from
VampirePrime means gives all the unifications.

– Query 2.2:
And (?Ancestor1 # _person(_descendent->_Fred)

?Ancestor2 # _person(_descendent->_Fred))
– Translated Query:

fof(query,theorem,(
! [QAncestor2,QAncestor1] :
((member(QAncestor1,lperson)
& sloterm(QAncestor1,ldescendent,lFred)
& member(QAncestor2,lperson)
& sloterm(QAncestor2,ldescendent,lFred))
=> ans("?Ancestor1 = ",QAncestor1,
"?Ancestor2 = ",QAncestor2)))).

– VampirePrime Output: Proof found.
...
... | «ans»("?Ancestor1 = ",lAmy,"?Ancestor2 = ",lAmy) ...
...
... | «ans»("?Ancestor1 = ",lAmy,"?Ancestor2 = ",lEva) ...
...
...
... | «ans»("?Ancestor1 = ",lTom,"?Ancestor2 = ",lEva) ...
...

– Query 2.3:

10 G. Zou, R. Peter-Paul, H. Boley, and A. Riazanov

And (?Ancestor1 # _person(_descendent->?Who)
?Ancestor2 # _person(_descendent->?Who))

– Translated Query:
fof(query,theorem,(

! [QAncestor2,QWho,QAncestor1] :
((member(QAncestor1,lperson)
& sloterm(QAncestor1,ldescendent,QWho)
& member(QAncestor2,lperson)
& sloterm(QAncestor2,ldescendent,QWho))
=> ans("?Ancestor1 = ",QAncestor1,

"?Who = ",QWho,"?Ancestor2 = ",QAncestor2)))).
– VampirePrime Output: Proof found.

...

... | «ans»("?Ancestor1 = ",lAmy,"?Who = ",lFred,"?Ancestor2 = ",lAmy)

...

......

... | «ans»("?Ancestor1 = ",lTom,"?Who = ",lAmy,"?Ancestor2 = ",lEva)

...

......

... | «ans»("?Ancestor1 = ",lTom,"?Who = ",lFred,"?Ancestor2 = ",lEva)

...

...

6 Conclusions and Future Work

PSOATransRun is the first implementation of PSOA RuleML. It translates a
PSOA/PS knowledge base and queries into semantically equivalent TPTP doc-
uments, and then executes them through the VampirePrime reasoner to obtain
the query results. Future work on the project includes: (1) Extend the capability
of PSOATransRun to support all PSOA RuleML constructs; (2) build a complete
benchmark suite for testing PSOA RuleML reasoners; (3) deploy PSOATrans-
Run in real applications, e.g. the Clinical Intelligence use case [8], where PSOA
rules are used to define semantic mappings for a hospital data warehouse.

The wiki page on PSOA RuleML13 documents the ongoing development of
PSOATransRun, gives further examples, and links to the online system. Users
of PSOATransRun are encouraged to send their email feedback to the authors.

References

1. Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-Slotted, Object-
Applicative Rules. In Bassiliades, N., Governatori, G., Paschke, A., eds.: RuleML
Europe. Volume 6826 of LNCS., Springer (2011) 194–211

13 http://wiki.ruleml.org/index.php/PSOA_RuleML

PSOATransRun: Translating and Running PSOA RuleML 11

2. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Com-
munications 15(2-3) (2002) 91–110

3. Riazanov, A., Aragao, M.A.: Incremental Query Rewriting with Resolution. Cana-
dian Semantic Web II (2010)

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

5. DuVander, A.: New Job Requirement: Experience Building
RESTful APIs. http://blog.programmableweb.com/2010/06/09/
new-job-requirement-experience-building-restful-apis/ (July 2010)

6. Zou, G., Peter-Paul, R., Boley, H., Riazanov, A.: PSOA2TPTP: A Reference Trans-
lator for Interoperating PSOA RuleML with TPTP Reasoners. In Bikakis, A.,
Giurca, A., eds.: RuleML 2012. LNCS, Springer, Heidelberg (2012) 264–279

7. Zou, G., Peter-Paul, R.: PSOA2TPTP: Designing and Prototyping a Transla-
tor from PSOA RuleML to TPTP Format. Technical report http://psoa2tptp.
googlecode.com/files/PSOA2TPTP_Report_v1.0.pdf.

8. Riazanov, A., Rose, G.W., Klein, A., Forster, A.J., Baker, C.J.O., Shaban-Nejad,
A., Buckeridge, D.L.: Towards Clinical Intelligence with SADI Semantic Web Ser-
vices: a Case Study with Hospital-Acquired Infections Data. In: Proceedings of the
4th International Workshop on Semantic Web Applications and Tools for the Life
Sciences. SWAT4LS ’11, New York, NY, USA, ACM (2012) 106–113

