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Preface

Modularity has been and continues to be one of the central research topics in
ontology engineering. The number of ontologies available, as well as their size, is
steadily increasing. There is a large variation in subject matter, level of specifica-
tion and detail, intended purpose and application. Ontologies covering different
domains are often developed in a distributed manner; contributions from differ-
ent sources cover different parts of a single domain. Not only is it difficult to
determine and define interrelations between such distributed ontologies, it is also
challenging to reconcile ontologies which might be consistent on their own but
jointly inconsistent. Further challenges include extracting the relevant parts of
an ontology, re-combining independently developed ontologies in order to form
new ones, determining the modular structure of an ontology for comprehension,
and the use of ontology modules to facilitate incremental reasoning and version
control.

Modularity is envisaged to allow mechanisms for easy and flexible reuse,
combination, generalization, structuring, maintenance, collaboration, design pat-
terns, and comprehension. This is analogous to the role of modularity in software
engineering, where there are well-understood notions of modularity that have led
to generally accepted and widely supported mechanisms for the named tasks. In
contrast, modularity for ontologies is still an active research field with open
questions because existing approaches are heterogeneous and less universally
applicable. For ontology engineering, modularity is central not only to reducing
the complexity of understanding ontologies, but also to maintaining, querying
and reasoning over modules. Distinctions between modules can be drawn on the
basis of structural, semantic, or functional aspects, which can also be applied to
compositions of ontologies or to indicate links between ontologies.

In particular, reuse and sharing of information and resources across ontolo-
gies depend on purpose-specific, logically versatile criteria. Such purposes include
“tight” logical integration of different ontologies (wholly or in part), “loose” as-
sociation and information exchange, the detection of overlapping parts, travers-
ing through different ontologies, alignment of vocabularies, module extraction
possibly respecting privacy concerns and hiding of information, etc. Another
important aspect of modularity in ontologies is the problem of evaluating the
quality of single modules or of the achieved overall modularization of an ontol-
ogy. Again, such evaluations can be based on various (semantic or syntactic)
criteria and employ a variety of statistical/heuristic or logical methods.

Recent research on ontology modularity has produced substantial results and
approaches towards foundations of modularity, techniques of modularization and
modular developments, distributed and incremental reasoning, as well as the use
of modules in different application scenarios, providing a foundation for further
research and development. Since the beginning of the WoMO workshop series,
there has been growing interest in the modularization of ontologies, modular
development of ontologies, and information exchange across different modular
ontologies. In real life, however, integration problems are still mostly tackled
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in an ad-hoc manner, with no clear notion of what to expect from the resulting
ontological structure. Those methods are not always efficient, and they often lead
to unintended consequences, even if the individual ontologies to be integrated
are widely tested and understood.

Topics covered by WoMO include, but are not limited to:

What is Modularity?
– Kinds of modules and their properties
– Modules vs. contexts
– Design patterns
– Granularity of representation

Logical/Foundational Studies
– Conservativity and syntactic approximations for modules
– Modular ontology languages
– Reconciling inconsistencies across modules
– Formal structuring of modules
– Heterogeneity

Algorithmic Approaches
– Distributed and incremental reasoning
– Modularization and module extraction
– Sharing, linking, and reuse
– Hiding and privacy
– Evaluation of modularization approaches
– Complexity of reasoning
– Implemented systems

Application Areas
– Modularity in the Semantic Web
– Life Sciences
– Bio-Ontologies
– Natural Language Processing
– Ontologies of space and time
– Ambient intelligence
– Social intelligence
– Collaborative ontology development and ontology versioning

Previous events. The WoMO 2012 workshop follows a series of successful
events that have been an excellent venue for practitioners and researchers to
discuss latest work and current problems. It is intended to consolidate cutting-
edge approaches that tackle the problem of ontological modularity and bring
together researchers from different disciplines who study the problem of modu-
larity in ontologies at a fundamental level, develop design tools for distributed
ontology engineering, and apply modularity in different use cases and applica-
tion scenarios. Previous editions of WoMO are listed below. The links refer to
their homepages and proceedings.
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WoMO 2006. The 1st workshop on modular ontologies, co-located with ISWC
2006, Athens, Georgia, USA. Invited speakers were Alex Borgida (Rutgers)
and Frank Wolter (Liverpool).

http://www.cild.iastate.edu/events/womo.html
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-232

WoMO 2007. The 2nd workshop, co-located with K-CAP 2007, Whistler BC,
Canada. The invited speaker was Ken Barker (Texas at Austin).

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-315

WoRM 2008. The 3rd workshop in the series, co-located with ESWC 2008,
Tenerife, Spain, entitled “Ontologies: Reasoning and Modularity” had a spe-
cial emphasis on reasoning methods.

http://dkm.fbk.eu/worm08
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-348

WoMO 2010. The 4th workshop in the series, co-located with FOIS 2010,
Toronto, Canada. Invited speakers were Simon Colton (London) and Marco
Schorlemmer (Barcelona).

http://www.informatik.uni-bremen.de/%7Eokutz/womo4
http://www.booksonline.iospress.nl/Content/View.aspx?piid=16268

WoMO 2011. The 5th workshop in the series, co-located with ESSLLI 2011,
Ljubljana, Slovenia. Invited speakers were Stefano Borgo (Trento), Stefan
Schulz (Graz) and Michael Zakharyaschev (London).

http://www.informatik.uni-bremen.de/%7Eokutz/womo5
http://www.booksonline.iospress.nl/Content/View.aspx?piid=20369

Organizers of the previous editions and editors of the proceedings were Diego
Calvanese (Bolzano) – 2008; Bernardo Cuenca Grau (Manchester, Oxford) –
2007, 2008, 2010; Peter Haase (Karlsruhe) – 2006; Jie Bao (Rensselaer) – 2010;
Joana Hois (Bremen) – 2010; Vasant Honovar (Iowa State) – 2006, 2007; Oliver
Kutz (Manchester, Bremen) – 2006, 2010, 2011; Ulrike Sattler (Manchester) –
2008; Anne Schlicht (Mannheim) – 2007; Thomas Schneider (Bremen) – 2011;
Luciano Serafini (Trento) – 2008; Evren Sirin, (Clark & Parsia LLC, Washington
DC) – 2008; York Sure (Karlsruhe) – 2006; Andrei Tamilin (Trento) – 2006, 2008;
Michael Wessel (Hamburg) – 2008; Frank Wolter (Liverpool) – 2007, 2008

This volume contains the papers presented at the 6th International Workshop
on Modular Ontologies (WoMO 2012) held on July 24, 2012 in Graz, as a satellite
event of the joint ICBO/FOIS conferences. There were nine submissions. Each
submission was reviewed by three program committee members. The committee
decided to accept eight papers for long or short presentations. The program also
included two invited talks:
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– Thomas Eiter (Vienna University of Technology, Austria)

Distribution and Modularity in Nonmonotonic Logic Programming

– Luciano Serafini (Fondazione Bruno Kessler, Trento, Italy)

Multi Context Logics: a Formal Framework for Structuring Knowledge

Acknowledgments. We would like to thank the PC members and the addi-
tional reviewers for their timely reviewing work, our invited speakers for deliver-
ing keynote presentations at the workshop, and the authors and participants for
contributing to the workshop program. We would also like to thank the organiz-
ers of the ICBO/FOIS conferences for hosting the WoMO workshop, the IAOA
for complimentary registration of invited speakers and one organizer, and the
EasyChair developers for greatly simplifying the work of the program committee.

July 12, 2012
Bremen and Madrid

Thomas Schneider
Dirk Walther
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Distribution and Modularity in
Nonmonotonic Logic Programming

Thomas Eiter

Knowledge-Based Systems Group
Institute of Information Systems,
Vienna University of Technology
eiter@kr.tuwien.ac.at

In the recent years, there has been a trend towards considering computation in a
distributed setting, due to the fact that increasingly not only data is linked via media
such as the internet, but also computational entities which process and exchange data
and knowledge. This leads to the formation of (possibly complex) systems of inter-
linked entities, based on possibly heterogenous formalisms, posing challenging issues
on semantics and computation. The concept of modularity, which in computer science
and engineering is a key to structured program development, naturally links to this
as a tool for defining semantics of distributed systems, and has been widely studied,
e.g., in the area of ontologies. In line with the general development, distribution and
modularity have been also been receiving increased attention in logic programming, at
several levels of language expressiveness, from distributed (plain) datalog to advanced
nonmonotonic logic programming semantics.

In this talk, we shall address the issue of distribution and modularity for logic pro-
gramming under the answer set semantics, which is one of the most widely used se-
mantics for nonmontonic logic programs do date and at the heart of the Answer Set
Programming paradigm for declarative problem solving. It appeared that the issue of
modularity for answer set semantics is nontrivial, due to its nonmonotonicity. For the
same reason, also the issue of efficient distributed evaluation, assuming a reasonable be-
havior of the semantics for a program composed of distributed modules, is a challenging
problem. We shall discuss these issues, pointing out that modularity and distribution ad-
mit different solutions for semantics, depending on the underlying view of a system of
logic programs. We then illustrate this view on particular formalisms that have been
developed at the Vienna University of Technology in the last years, including modular
nonmonotonic logic programs (Modular ASP) and nonmonotonic multi-context sys-
tems (MCS). For these formalisms, various semantics have been developed, as well as
experimental prototype implementations that take local or distributed evaluation into
account, adopting different realization schemes. While considerable progress has been
achieved, further work is needed to arrive at highly efficient solvers.

This work is a joint effort with Minh Dao-Tran, Michael Fink, Thomas Krennwall-
ner and Tri Kurniawan Wijaya, supported by the project P20841 “Modular HEX-Programs”
of the Austrian Science Fund (FWF).
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Multi context logics: a formal framework for
structuring knowledge

Luciano Serafini

Fondazione Bruno Kessler
via Sommarive 18, I-38123, Trento, Italy

serafini@fbk.eu

Multi context logics (MCL) is a formalism that allow to integrate multiple
logical theories (contexts) in a more complex structure called multi context sys-
tem. In the past 20 years multi context logics have been developed for contexts
in propositional logics, first order logics, description logics and temporal logic.
The two principles MCL are locality and compatibility. The principle of local-
ity states that a context axiomatizes in a logical theory a portion of the world,
and that every statement entailed by such a theory is intended to hold within
such a portion of the world. The principle of compatibility instead states that,
since different contexts can describe overlapping portions of world, the theories
they contain must be constrained so that they describe compatible situations.
Following these two principles, the formal semantics of an MCL is the result of
a suitable composition of the semantics associated to each single context. This
takes the name of Local models semantics. The effects of the two principles above
on the inference engines that can be defined on a multi contextual knowledge
base are the following: Locality principle implies that inference rules applied
to knowledge inside a context (aka, local inference rules) allow to infer local
truths; Compatibility principle instead implies that certain facts in a context
can be inferred on the base of other facts present on other compatible contexts.
This information propagation is formalized via a special type of inter contextual
inference rules called bridge rules

In general terms, a multi context logic is defined on a family of logical lan-
guages {Li}i∈I where each Li is used to specify what holds in the i-th context.
The set I of context indexes (aka context names) can be either a simple set,
or a set equipped with some algebraic structure, like total or partial order, and
operations on context indices. The relations and functions defined on I can be
used to specify the organization of contexts in terms of an algebraic structure.
For instance a partial order ≺ no I, can be used to represent that a context is
wider (more general) than another context, e.g., football ≺ sport, means that the
context of sport is more specific that the context of football. To represent what
is true in a scene in different time stamps, we can enrich I with a total order ≺
so that CV Luciano 2010 ≺ CV Luciano 2011 represents the fact that the context
describing Luciano’s curriculum vitæat 2010 precedes the context describing his
CV at 2011.

A model for a multi context logic {Li}i∈I is a pair 〈MI , C〉 composed of a
family of local models MI = {Mi}i∈I , where each Mi is a model of Li, and
a compatibility relation C among the local models. The formal structure of C
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can vary depending on the type of local models and the type of constraints it
is necessary to impose on the local models of different contexts. For this reason
we don’t give a general definition of C, which will be completely defined for
each specific multi context logic. Satisfiability of formulas in Li is defined w.r.t1.
the local models. Namely If φ is a formula of the language Li, then the a multi
context model satisfies i : φ iff Mi |=i φ, where |=i is the satisfiability relation
associated to the local logic Li.

A Multi context theory in a multi context logic LI = {Li}i∈I is a family of
theories {Ti}i∈I , where each Ti is a set of statements in the logics Li, and a set
BR of bridge rules. Intuitively each Ti axiomatizes the constraints on the local
models Mi, while the bridge rules BR axiomatizes the compatibility relations.
Bridge rules are cross logical axioms and their syntactic form depends on the
local logics, so as in the case of the compatibility relation their syntactic depends
on the syntax of each Li.

In my invited talk, I will go through the many possible examples of multi
context logics, starting from the simplest one, the propositional multi context
logics, going through hierarchical meta logics, multi context logics for beliefs and
propositional attitudes, non-monotonic propositional context logics, distributed
first order logics, distributed description logics, and logics for semantic import
and contextualized knowledge repository for the semantic web.
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Structure Formation to Modularize Ontologies

Serge Autexier and Dieter Hutter ?

German Research Center for Artificial Intelligence
Bibliotheksstr. 1, 28359 Bremen, Germany

{autexier|hutter}@dfki.de

Abstract. It has been well recognized that the structuring of logic-
based databases like formal ontologies is an important prerequisite to
allow for an efficient reasoning on such databases. Development graphs
have been introduced as a formal basis to represent and reason on struc-
tured specifications. In this paper we present an initial methodology and
a formal calculus to transform unstructured specifications into structured
ones. The calculus rules operate on development graphs allowing one to
separate specifications coalesced in one theory into a concisely structured
graph.

1 Introduction

It has been long recognized that the modularity of specifications is an indis-
pensable prerequisite for an efficient reasoning in complex domains. Algebraic
specification techniques provide frameworks for structuring complex specifica-
tions and the authors introduced the notion of an development graph [4, 1, 6] as
a technical means to work with and reason about such structured specifications.
Typically ontologies are large and, even if structured, bear the problem of in-
consistencies as any large set of axioms. For instance, the SUMO ontology [7]
turned out to be inconsistent [10]. Recently Kurz and Mossakowski presented
an approach [5] to prove the consistency of an ontology in a modular way using
the (structured) architectural specification in CASL and provide mechanisms to
compose the models of the individual components to a global one. Furthermore,
there has been work [9] to (re-)structure ontologies following locality criteria into
modules which cover all aspects about specific concepts. However, since ontology
languages have simple imports without renaming, duplicated sub-ontologies that
are for instance equal up to renaming remain hidden, thus making the ontolo-
gies unnecessarily large, not only from a modeling point of view, but also from
a verification point of view as the same derived properties must be derived over
an over again.

In this paper we present further steps towards the support for structure for-
mation in large specifications that additionally allows to factorize equivalent
sub-specification, i.e. sub-ontologies. The idea is to provide a calculus and a
corresponding methodology to crystallize intrinsic structures hidden in a speci-
fication and represent them explicitly in terms of development graphs. We start

? This work was funded by the German Federal Ministry of Education and Research
under grants 01 IS 11013B and 01 IW 10002 (projects SIMPLE and SHIP)
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with a trivial development graph consisting of a single node that contains the
entire specification. Step by step, the specification is split to different nodes in
the development graph resulting in an increasingly richer graph. On the oppo-
site, common concepts that are scattered in different specifications are identified
and unified in a common theory (i.e. node).

2 Prerequisites

We base our framework on the notions of development graphs to specify and rea-
son about structured specifications. Development graphs D are acyclic, directed
graphs 〈N ,L〉, the nodes N denote individual theories and the links L indicate
theory inclusions with respect to signature morphisms attached to the links.

This approach is based on the notion of institutions [3] (SignI ,SenI ,ModI ,
|=I,Σ), where (i) Sign is a category of signatures, (ii) Sen : Sign −→ Set
is a functor giving the set of sentences Sen(Σ) over each signature Σ, and
for each signature morphism σ : Σ −→ Σ′, the sentence translation function
Sen(σ) : Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),
(iii) Mod : Signop −→ CAT is a functor giving the category of models over a
given signature, and for each signature morphism σ : Σ−→Σ′, the reduct func-
tor Mod(σ) : Mod(Σ′) −→Mod(Σ), where often Mod(σ)(M ′) is written as
M ′|σ, (iv) |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign| is a satisfaction re-
lation,1 such that for each σ : Σ −→Σ′ in Sign, M ′ |=Σ′ σ(ϕ) ⇔ M ′|σ |=Σ ϕ
holds for each M ′ ∈Mod(Σ′) and ϕ ∈ Sen(Σ) (satisfaction condition).

However, the abstractness of the signatures in the definition of institution
(they are just a category) makes it difficult to cope with modularization of signa-
tures. Hence, we equip institutions with an additional structure such that signa-
tures behave more set-like. Institutions with pre-signatures [2] are defined as in-
stitutions equipped with an embedding | | : Sign→ Set, the symbol functor, and
a map sym :

⋃
Σ∈|Sign| Sen(Σ)→ |Set|, such that ϕ ∈ Sen(Σ) iff sym(ϕ) ⊆ |Σ|

for all ϕ ∈ ⋃
Σ∈|Sign| Sen(Σ). The map sym gives the set of symbols used in

a sentence, and sentences are uniform in the sense that a well-formed sentence
is well-formed over a certain signature iff its symbols belong to that signature.
Pre-signatures are sets and pre-signature morphisms σ̄ mapping pre-signatures
are related to corresponding signature morphisms σ.

Given an I-institution with pre-signatures, each node N ∈ N of the graph
is a tuple (sigN , axN , lemN ) such that sigN is a I-pre-signature called the local
signature of N , axN a set of I-sentences called the local axioms of N , and lemN

a set of I-sentences called the local lemmas of N . L is a set of global definition

links M
σ̄ +3 N. Such a link imports the mapped theory of M (by the pre-

signature σ̄) as part of the theory of N . Thus we obtain corresponding notions
of global (pre-)signatures, axioms and lemmata that are defined inductively as
follows:

1 |C| is the class of objects of a category C.
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1. SigD(N) = sigN ∪⋃
M

σ̄ +3 N∈S
σ̄(SigD(M))

2. AxD(N) = axN ∪⋃
M

σ̄ +3 N∈D
σ(AxD(M))

3. LemD(N) = lemN ∪⋃
M

σ̄ +3 N∈D
σ(LemD(M))

A node N ∈ N is globally reachable from a node M ∈ N via a pre-signature

morphism σ̄, D ` M _?
σ̄ +3 N for short, iff 1. either M = N and σ̄ = id is the

identity pre-signature morphism, or 2. M
σ̄′
+3 K ∈ L, and D ` K _? σ̄′′

+3 N ,
with σ̄ = σ̄′′ ◦ σ̄′.

The maximal nodes (root nodes) dDe of a graph D are all nodes without
outgoing links. DomD(N) := SigD(N) ∪ AxD(N) ∪ LemD(N) is the set of all
signature symbols, axioms and lemmata visible in a node N . The local domain
of N , domN := sigN ∪ axN ∪ lemN is the set of all local signature symbols,
axioms and lemmata of N . The imported domain ImportsD(N) of N in D is the
set of all signature symbols, axioms and lemmas imported via incoming definition
links. DomD =

⋃
N∈N DomD(N) is the set of all signature symbols, axioms and

lemmata occurring in D. Analogously we define SigD, AxD, LemD, and AssD.
DomdDe =

⋃
N∈dDeDomD(N) is the set of all signature symbols, axioms and

lemmata occurring in the maximal nodes of D.

A node N has a well-formed signature iff SigD(N) is a valid IN -signature.
A development graph has a well-formed signature iff all its nodes have well-
formed signatures. SiglocD (M) := 〈sigM ∪ sym(axM ) ∪ sym(lemM )〉SigD(M) is the
local signature of N . A node N is well-formed iff it has a well-formed signature
SigD(N) and AxD(N),LemD(N) ⊆ Sen(SigD(N)). A development graph is well-
formed, if all its nodes are well-formed.

Given a node N ∈ N with well-formed signature, its associated class
ModD(N) of models (or N -models for short) consists of those SigD(N)-models

n for which (i) n satisfies the local axioms axN , and (ii) for each K
σ̄ +3 N ∈ S,

n|σ is a K-model. In the following we denote the class of Σ-models that fulfill
the Σ-sentences Ψ by ModΣ(Ψ). A well-formed development graph D := 〈N ,L〉
is valid iff for all nodes N ∈ N ModD(N) |= lemN .

Given a signature Σ and Ax,Lem ⊆ Sen(Σ), a support mapping Supp for
Ax and Lem assigns each lemma ϕ ∈ Lem a subset H ⊆ Ax ∪ Lem such that
(i) Mod〈sym(H)∪sym(ϕ)〉Σ (H) |= ϕ (ii) The relation @⊆ (Ax ∪ Lem)× Lem with
Φ @ ϕ ⇔ (Φ ∈ Supp(ϕ) ∨ ∃ψ.Φ ∈ Supp(ψ) ∧ ψ @ ϕ) is a well-founded strict
partial order. If D is a development graph, then a support mapping Supp is a
support mapping for D iff for all N ∈ D Supp is a support mapping for AxD(N)
and LemD(N).

3 Development Graphs for Structure Formation

As a first step towards structure formation we will formalize requirements on
development graphs that reflect our intuition of an appropriate structuring for
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(formal) ontologies in particular (and formal specifications in general) in the
following principles.

The first principle is semantic appropriateness, saying that the structure of
the development graph should be a syntactical reflection of the relations between
the various concepts in our ontology. This means that different concepts are
located in different nodes of the graph and the links of the graph reflect the
logical relations between these concepts. The second principle is closure saying,
for instance, that deduced knowledge should be located close to the concepts
guaranteeing the proofs. Also the concept defined by the theory of an individual
node of a development graph should have a meaning of its own and provide
some source of deduced knowledge. The third principle is minimality saying
that each concept (or part of it) is only represented once in the graph. When
splitting a monolithic theory into different concepts common foundations for
various concepts should be (syntactically) shared between them by being located
at a unique node of the graph.

In the following we translate these principles into syntactical criteria on devel-
opment graphs and also into rules to transform and refactor development graphs.
In a first step we formalize technical requirements to enforce the minimality-
principle in terms of development graphs. Technically, we demand that each
signature symbol, each axiom and each lemma has a unique location in the de-
velopment graph. When we enrich a development graph with more structure we
forbid to have multiple copies of the same definition in different nodes. We there-
fore require that we can identify for a given signature entry, axiom or lemma a
minimal theory in a development graph and that this minimal theory is unique.
We define:

Definition 1 (Providing Nodes). Let 〈N ,L〉 be a development graph. An

entity e is provided in N ∈ N iff e ∈ Dom〈N ,L〉(N) and ∀M σ̄ +3 N. e 6∈
Dom〈N ,L〉(M). Furthermore,

1. e is locally provided in N iff additionally e ∈ domN holds.

2. e is provided by a link l : M
σ̄ +3 N if not locally provided in N and

∃e′ ∈ Dom〈N ,L〉(M). σ(e′) = e. In this case we say that l provides e from e′.
e is exclusively provided by l iff e is not provided by any other link l′ ∈ L.

Finally, the closure-principle demands that there are no spurious nodes in the
graph that do not contribute anything new to a concept. We combine these
requirements into the notion of location mappings:

Definition 2 (Location Mappings). Let D = 〈N ,L〉 be a development graph.
A mapping locD : DomD → N is a location mapping for D iff
1. locD is surjective (closure)
2. ∀N ∈ N . ∀e ∈ domN . locD(e) = N
3. ∀e ∈ DomD. locD(e) is the only node providing e (minimality)

Furthermore, for a given locD we define loc−1
D : N → 2DomD by loc−1

D (N) :=
{e ∈ DomD|locD(e) = N}. We will write loc and loc−1 instead of locD and loc−1

D
if D is clear from the context.
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Based on the notion of location mappings we formalize our intuition of a
structuring. The idea is that the notion of being a structuring constitutes the
invariant of the structure formation process and guarantees both, requirements
imposed by the minimality-principle as well as basic conditions on a development
graph to reflect a given formal specification or ontology.

Definition 3 (Structuring). Let D = 〈N ,L〉 be a valid development graph,
loc : DomD → N , Σ ∈ |Sign|, Ax,Lem ⊆ Sen(Σ) and Supp be a support
mapping for D. Then (D, loc,Supp) is a structuring of (Σ,Ax,Lem) iff
1. loc is a location mapping for D.
2. let DomdDe = Σ′ ∪Ax′ ∪ Lem′ then Σ = Σ′, Ax = Ax′ and Lem ⊆ Lem′.

3. ∀φ ∈ LemD . ∀ψ ∈ Supp(φ). ∃σ̄. loc(ψ) _?
σ̄ +3 loc(φ) ∧ σ̄(ψ) = ψ

4 Refactoring Rules

In the following we present the transformation rules on development graphs that
transform structurings again into structurings. Using these rules we are able to
structure the initially trivial development graph consisting of exactly one node
that comprises all given concepts step by step. This initial development graph
consisting of exactly one node satisfies the condition of a structuring provided
that we have an appropriate support mapping at hand.

We define four types of structuring-invariant transformations: (i) horizontal
splitting and merging of development graph nodes, (ii) vertical splitting and
merging of development graph nodes, (iii) factorization and multiplication of
development graph nodes, and (iv) removal and insertion of specific links. Split-
ting and merging as well as factorization and multiplication are dual operations.
For lack of space and because we are mainly interested in rules increasing the
structure of a development graph we will omit the formal specification of the
merging and multiplication rules here.

We illustrate our rules with the help of a running example in mathematics.
We start from a flat theory specifying a Ring over two operations + and ×. A
structure (R,+,×) is a Ring, if (R,×) is an abelian group, (R,+) a monoid
and × distributes over +. Furthermore, an abelian group is a monoid for which
additionally commutativity holds and inverse exists. The initial development
graph consists of a single node (without any links) containing all the symbol
definitions, axioms and theorems of the example.

Vertical Split. The first refactoring rule aims at the split of specifications in
different theories. In terms of the development graph a node is replaced by two
nodes one of them importing the other; each of them contains a distinct part
from a partitioning of the specification of the original node. While all outgoing
links start at the top node, we are free to reallocate incoming links to either
node. To formalize this rule we need constraints on how to split a specification
in different chunks such that local lemmata are always located in a node which
provides also the necessary axioms and lemmata to prove it.
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. . .

. . .
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σ̄1 σ̄l

. . .

Vertical Split

Vertical Merge

Fig. 1. Vertical Split and Merge

Definition 4. Let S = (D, loc,Supp) be a structuring of (Σ,Ax,Lem) and N ∈
ND. A partitioning P for N is a set {N1, . . . , Nk} with k > 1 such that 1. sigN =
sigN1 ] . . . ] sigNk , axN = axN1 ] . . . ] axNk , lemN = lemN1 ] . . . ] lemNk

2. sigNi∪axNi∪lemNi 6= ∅ for i = 1, . . . , k. A node Ni ∈ P is lemma independent
iff Supp(ψ) ∩ (axN ∪ lemN ) ⊆ (axNi ∪ lemNi) for all ψ ∈ lemNi .

Definition 5 (Vertical Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem) and P = {N1, N2} be a partitioning for some N ∈ N such
that N1 is lemma independent. Then, the vertical split S wrt. N and P is S ′ =
(D′, loc′,Supp) with D′ = 〈N ′,L′〉 where

N ′ :={N1, N2} ] (N \N)

L′ :={M σ̄ +3 M ′ ∈ L|M 6= N ∧M ′ 6= N} ∪ {N1
id +3 N2}

∪ {M σ̄ +3 N1 | M σ̄ +3 N ∈ L} ∪ {N2
σ̄ +3 M | N σ̄ +3 M ∈ L}

loc′(e) =




N2 if loc(e) = N and e ∈ DomD′(N2)
N1 if loc(e) = N and e 6∈ DomD′(N2)
loc(e) otherwise

such that SigD′(Ni), i = 1, 2, are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)),
i = 1, 2. Conversely, S is a vertical merge of N1 and N2 in S ′.

Horizontal Split. Similar to a vertical split we introduce a horizontal split which
divides a node into two independent nodes. In order to ensure a valid new de-
velopment graph, each of the new nodes imports the same theories as the old
node and contributes to the same theories as the old node did.

Definition 6 (Horizontal Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem), P = {N1, . . . , Nk} be a partitioning for some node N ∈ N such
that each Ni ∈ P is lemma independent and loc−1(N) = domN . The horizontal
split of S wrt. N and P is S ′ = (D′, loc′,Supp) with D′ = 〈N ′,L′〉 where
1. N ′ := {N1, . . . , Nk} ] (N \N)
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Fig. 2. Horizontal Split and Merge

2. L′ := {M σ̄ +3 M ′ ∈ L|M 6= N ∧M ′ 6= N}
∪ {M θ̄ +3 Ni|M θ̄ +3 N ∈ L, i ∈ {1, . . . , k}}

∪ {Ni
τ̄|DomNi+3 M|N τ̄ +3 M ∈ L, i ∈ {1, . . . , k}}

3. loc′(e) := Ni if e ∈ domNi for some i ∈ {1, . . . , k} and loc′(e) := loc(e)
otherwise.

such that SigD′(Ni) are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)) for
i = 1, . . . , k.

Using the transformation rules, the flat initial theory of our running example
can be refactored (cf. Fig. 3). We apply the vertical split rule twice to extract R
and the distributivity law, followed by the horizontal-split rule to separate the
two instances of a monoid. Finally, we apply the vertical-split rule to extract
the extra axioms from Monoid(R,×). We are left with two copies of a monoid
which we like to generalize to a common abstract monoid. This can be achieved
by the following rule.

Factorization The factorization rule allows one to merge equivalent concepts
into a single generalized concept and then to represent the individual ones as
instantiations of the generalized concept. A precondition of this rule is that all
individual concepts inherit the same (underlying) theories.

Definition 7 (Factorization). Let S = (〈N ,L〉, loc,Supp) be a structuring of
(Σ,Ax,Lem). Let K1, . . . ,Kn,M1, . . . ,Mp ∈ N with p > 1 such that sigMj ∪
axMj 6= ∅ and ∃σ̄i,j . Ki

σ̄i,j +3 Mj ∈ L for i = 1, . . . , n, j = 1, . . . , p.

Vertical  
Split (2x) 

Horizontal  
Split 

Distrib(*, +), Comm(*), 
Inverse(*), Monoid(R, +), 
Monoid(R, *), R 

Distrib(*, +) 

R 

Comm(*), Inverse(*),  
Monoid(R, +), Monoid(R, *) 

Distrib(*, +) 

R 

Comm(*), Inverse(*),  
Monoid(R, *) 

Monoid(R, +) 

Distrib(*, +) 

R 

Comm(*), 
Inverse(*),  

Monoid(R, +) Monoid(R, *) 

Vertical  
Split 

Fig. 3. Applying the split rules to our ring example
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. . .

. . . . . .
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σ̄
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. . .

. . . . . .
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Fig. 4. Factorization and Multiplication (with σ̄i,j := θ̄j ◦ σ̄i)

Suppose there are sets sig, ax and lem with (sig∪ ax∪ lem)∩DomD = ∅ and
pre-signature morphisms θ1, . . . , θp and σ1, . . . , σn such that
- ∀e ∈ DomD(Ki). θj(σi(e)) = σi,j(e) and σi,j(e) = e ∨ σi,j(e) 6∈ DomD
- sigMj ⊆ θj(sig) ⊆ DomD(Mj), axMj ⊆ θj(ax) ⊆ DomD(Mj)

- ∀e ∈ lem holds ∃l ∈ {1, . . . p}. θl(e) ∈ lemMl , θi(e) = θj(e) implies i = j and
θj(e) ∈ DomD implies loc(θj(e)) ∈Mj

- there is a support mapping SuppN for ax ∪⋃
i=1,...,n σi(DomD(Ki)) and lem.

Then S ′ = (〈N ′,L′〉, loc′,Supp′) is a factorization of S with respect to M1, . . .,
Mp and SuppN iff

N ′ :={N} ∪ {Nj |j ∈ {1, . . . p}} ∪ N \ {M1, . . .Mp}
with N = 〈sig, ax, lem〉, Nj = 〈∅, ∅, lemMj \ θj(lem)〉

L′ :={K σ̄ +3 K ′ ∈ L|K,K ′ 6∈ {M1, . . .Mp}

∪ {Ki
σ̄i +3 N|Ki

σ̄i,j +3 Mj, j ∈ {1, . . . p}, i ∈ {1, . . . n}}

∪ {N θj +3 Nj|j ∈ {1, . . . p}}

∪ {K τ̄ +3 Nj|K τ̄ +3 Mj ∧ (∀i ∈ {1, . . . n}.K 6= Ki ∧ τ̄ 6= σ̄i,j)

∪ {Nj τ̄ +3 K|Mj
τ̄ +3 K ∈ L, j ∈ {1, . . . p}}

loc′(x) :=





N if x ∈ DomD′(N) \⋃i=1,...,n DomD′(Ki)

Nj if x ∈ DomD(Nj) and ∀K σ̄ +3 Nj. x 6∈ DomD′(K)

loc(x) otherwise.

Supp′ :=Supp ∪ SuppN .

Applying the factorization rule allows us to introduce a generic concept of
monoids which is instantiated to obtain both previous copies of a monoid.

The factorization rule only covers a sufficient criterion demanding that each
theory imported by a definition link to one concept is also imported via definition
links by all other concepts. The more complex case in which a theory is imported
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R 

Comm(*), 
Inverse(*),  

Monoid(R, +) Monoid(R, *) 
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Inverse(*),  

Monoid(R, +) Monoid(R, *) Monoid(G, op) 

Factorization 

Fig. 5. Factorization of our ring example

via a path of links can be handled by allowing one to shortcut a path in a single
global link. This results in the following rule.

Definition 8 (Transitive Enrichment). Let S := (〈N ,L〉, loc,Supp) be a

structuring of (Σ,Ax,Lem), K,N ∈ N and there is a path K _?
σ̄ +3 N between

both. Then, (〈N ,L ∪ {K σ̄ +3 N}〉, loc,Supp) is a transitive enrichment of S.

Definition links in a development graph can be redundant, if there are al-
ternatives paths which have the same morphisms or if they are not used in any
reachable node of the target. We formalize these notions as follows:

Definition 9 (Removable Link). Let S = (D, loc,Supp) (D = 〈N ,L〉) be a
structuring of (Σ,Ax,Lem). Let l ∈ L and D′ = 〈N ,L\{l}〉. l is removable from
S and S ′ = (D′, loc,Supp) is a reduction of S iff

1. ∀l′ : M
σ̄ +3 N. if l′ provides exclusively σ(e) from some eDomD(M) then

e ∈ DomD′(N) and l 6= l′;

2. ∀e ∈ DomD.∀M ∈ DGRootsD. if loc(e) _?
σ̄ +3M then there exists M ′ ∈

dD′e such that loc(e) _?
σ̄ +3M ′;

3. ∀φ ∈ LemD. Supp(φ) ⊆ DomD′(N) and ∀SiglocD (N) ⊆ DomD′(N).

Theorem 1 (Structuring Preservation). Let S := (D, loc,Supp) (D = 〈N ,L〉)
be a structuring of (Σ,Ax,Lem). Then
1. every horizontal split of S wrt. some N ∈ N and partitioning P of N ,
2. every horizontal merge of S wrt. nodes {N1, . . . , Nk} ⊆ N ,
3. every vertical split of S wrt. some N ∈ N and partitioning P of N ,
4. every factorization of S wrt. nodes M1, . . .Mp ∈ N ,
5. every multiplication of S wrt. N ,
6. every transitive enrichment of S, and
7. every reduction of S

is a structuring of (Σ,Ax,Lem).

5 Refactoring Process

The refactoring rules presented above provide the necessary instruments to ex-
ternalize the structure inherent in a given flat theory. Nevertheless we need
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Char
Sig. char, A,B, . . . , Z
Ax. ∀x : char. x = A ∨ · · · ∨ Z
Lem. —

String
Sig. str, strnil, addc
Ax. ∀c : char, x : str. strnil 6= addc(c, x)

∀x : str. x = strnil ∨ ∃c : char, y : str.
x = addc(c, y)
∀c, c′ : char, x, x′ : str. addc(c, x) = addc(c′, x′)
→ c = c′ ∧ x = x′, . . .}

Lem. —

Stringops
Sig. strapp, strlen
Ax. strlen(strnil) = 0

∀c : char, x : str. strlen(addc(c, x)) = succ(x)
∀x : str. strapp(strnil, x) = x, . . .

Lem. ∀x, y, z : str. strapp(strapp(x, y), z)
= strapp(x, strapp(y, z)), . . .

Nat
Sig. nat, 0, succ
Ax. ∀x : nat. 0 6= succ(x)

∀x : nat. x = 0 ∨ ∃y : nat. x = succ(y), . . .
Lem. —

Natlist
Sig. nlist, natnil, addn
Ax. ∀n : nat, x : nlist. natnil 6= addn(n, x)

∀x : nlist. x = natnil
∨ ∃n : nat, y : nlist. x = addn(n, y)
∀n, n′ : nat, x, x′ : nlist. addn(n, x) = addn(n′, x′)
→ n = n′ ∧ x = x′, . . .

Lem. —

Natlistops
Sig. natapp, nlen
Ax. nlen(natnil) = 0

∀n : nat, x : nlist. nlen(addn(n, x)) = succ(x)
∀x : nlist. natapp(natnil, x) = x, . . .

Lem. ∀x, y, z : nlist. natapp(natapp(x, y), z)
= natapp(x, natapp(y, z)) . . .

Fig. 6. Heuristic motivated partitioning of a flat theory

appropriate heuristics to determine suitable partitions for horizontal or vertical
splits, in order to group together strongly related entities and afterwards make
explicit analogous groupings of entities by factorization. One heuristic is, for
instance, to group together all axioms and lemmas exclusively devoted to a spe-
cific sort. E.g. all axioms about characters, or all axioms about natural numbers.
From there we carve out those entities about a different sort including an already
classified sorts, and so on. Examples for these are strings or natural numbers,
and in the next iteration lists of strings (cf. Fig. 6). These identified subsets
can then be further partitioned into those defining the basic datatype and the
(inductive) functions and predicates over these. This separates the definition of
lists of natural numbers from the append functions on these, for instance.

Such heuristics guide the application of the horizontal and vertical split rules.
From there we can identify nodes with isomorphic local entries and, using the
transitivity and reduction rules together with further applications of the split
rules try to enable the application of the factorization rule.

We illustrate the refactoring process with the help of a further example,
where we start with flattened theories, and step by step carve out the intrinsic
structure. The example from Fig. 6 is about lists of natural numbers, strings
formed over characters and length functions operating on such lists. All the
signature symbols, axioms, and lemmas occur in a single node in the initial
development graph. For sake of readability we partition the set of these entities
into pairwise disjunct subsets and name them accordingly (cf. [8])

Fig. 7 illustrates the structure formation process for this example. In the
first step the definitions of Nat and Char are separated from the rest by applying
the vertical split rule twice. In the next steps we form the individual theories of
String and Stringops respectively. Notice that Stringops includes strlen counting
characters in a string such that Stringops has to import Nat. After applying again
a vertical split we obtain the theories of Natlist and Natlistops. Since the local
axioms of String and Natlist are renamings of each other we factorize these local
axioms to a new theory of generic lists.
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8. Transitive Link (2x) 9. Factorization 

Fig. 7. Lists

Genlist
Sig. list, nil, add
Ax. ∀n : elem, x : list. nil 6= add(n, x)

∀x : list. x = nil
∨ ∃n : elem, y : list. x = add(n, y)
∀n, n′ : elem, x, x′ : list. add(n, x) = add(n′, x′)
→ n = n′ ∧ x = x′, . . .

Lem. —

This node consists of the renamed
local axioms of String (or Natlist,
respectively) plus the necessary sig-
nature definitions to obtain a well-
formed development graph node.
This theory is imported via defini-
tion links to String and Natlist using corresponding pre-signature morphisms
to map it to list of chars and numbers, respectively. Both, String and Natlist
have now empty local signatures and axioms. In Fig 7 we indicate those nodes
with empty local signature, empty local axioms and empty local lemmata by a
light-gray color of the node name.

6 Related Work

There is related work to (re-)structure ontologies (after flattening) following lo-
cality criteria into modules containing all knowledge about specific concepts.
However, since ontology languages have simple imports without renamings, du-
plicated sub-ontologies that are for instance equal up to renaming remain hidden.
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To excavate these ontologies requires other heuristics than pure logic based ones
to guide the structuring process, and therefore we deliberately did not impose
specific criteria how to apply the rules beyond the minimal conditions that the
dependency relations among concepts, relations and facts and derived facts and
relations is preserved. It is easy to see that the modularizations of ontologies not
including derived lemmas obtained by using the locality criteria from [9] can
be constructed with our rules by starting from a single flattened ontology and
singling out the modules.

7 Conclusion

Based on the definition of structurings as concise development graphs, we pre-
sented transformation rules that allow one to make explicit common structures
hidden in a flat theory in terms of development graphs. It provides a framework
to modularize flattened ontologies in a useful way as illustrated by two simple
examples. An implementation is planned to provide an interactive tool to mod-
ularize and factorize large ontologies as well as (semi-)automatic procedures.
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Abstract. Since large monolithic ontologies are difficult to handle and
reuse, ontology modularization has attracted increasing attention. Sev-
eral approaches and tools have been developed to support ontology mod-
ularization. Despite these efforts, a lack of knowledge about character-
istics of modularly organized ontologies prevents further development.
This work aims at characterizing modular ontologies. Therefore, we ana-
lyze existing modular ontologies by applying selected metrics from soft-
ware engineering in order to identify recurring structures, i.e. patterns
in modularly organized ontologies. The contribution is a set of four pat-
terns which characterize modularly organized ontologies.
Keywords: modularization, patterns, modules, ontology.

1 Introduction

Difficulties in reusing and maintaining large monolithic ontologies have resulted
in an increasing interest in modularizing ontologies. In the past, several ap-
proaches and tools (e.g., SWOOP1, NeOn Toolkit2) have been proposed to sup-
port the modularization of ontologies. Each of these approaches and tools re-
spectively incorporates its own definition and notion of modular ontologies and
criteria underpinning ontology modularization [5]. This proliferation is mainly
due to the fact that the area of ontology modularization appears to be still in its
infancy. Thus, it lacks the mature, well-defined, well-understood, and commonly
agreed upon definitions and concepts as sociated with modularization in the area
of software engineering [19]. This lack of knowledge about ontology modulariza-
tion and, particularly, the lack of knowledge about characteristics of modular
ontologies prevents its further development. Being able to characterize modular

1 http://www.mindswap.org/2004/
2 http://neon-toolkit.org/wiki/Main_Page
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ontologies would allow for (1) comparing different modularization approaches,
(2) assessing the quality of modular ontologies with respect to manually modu-
larized ontologies, (3) customizing ontology modularization by providing mod-
ularization criteria, and (4) improving the area of ontology modularization as a
whole.
The goal of this work is to characterize modularly organized ontologies to con-
tribute to a better understanding of ontology modularization. For this purpose,
we (1) extract a number of existing ontologies from the web, (2) select and
adopt metrics from software engineering in order to both (3) identify recurring
structures (patterns) in modularly organized ontologies and (4) characterize the
identified patterns. The contribution is a set of four patterns, which characterize
modularly organized ontologies.
The rest of this paper is organized as follows: Section 2 provides an introduction
to ontology modularization and reviews related work. Section 3 reports on the
research design whereas section 4 presents and discusses the results. Section 5
draws a conclusion and points to future avenues of research.

2 Ontology Modularization

2.1 Modular Ontologies

The main idea of modular ontologies originates from the general notion of modu-
lar software in the area of software engineering. Correspondingly, ontology modu-
larization can be interpreted as decomposing potentially large and monolithic on-
tologies into (a set of) smaller and interlinked components (modules). Therefore,
an ontology module can be considered as a loosely coupled and self-contained
component of an ontology maintaining relationships to other ontology modules.
Thereby, ontology modules are themselves ontologies [4].
In general, ontology modularization aims at providing users of ontologies with
the knowledge they require, reducing the scope as much as possible to what is
strictly necessary. In particular, ontology modules (1) facilitate knowledge reuse
across various applications, (2) are easier to build, maintain, and replace, (3)
enable distributed engineering of ontology modules over different locations and
different areas of expertise, and (4) enable effective management and browsing
of modules [12].

2.2 Approaches for Ontology Modularization

In recent years, the problem of ontology modularization has attracted more and
more attention and, thus, several different approaches for modularizing ontolo-
gies appeared. These approaches can be classified in two main categories.
The first main category comprises approaches that focus on the composition of
existing ontologies by means of integrating and mapping ontologies. On the one
hand, approaches addressing integration of existing ontologies are owl:import,
partial semantic import, e.g., [8, 5], package-based description logics, e.g., [2].
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On the other hand, mapping approaches basically aim at (inter-)linking sets of
ontology modules. The following approaches can be assigned to these two for-
malisms: distributed description logics, e.g., [17, 3], ε-connections, e.g., [15, 10].
Other approaches establish the relationship between various modular ontology
formalisms [9] in order to have special syntax in the ontology languages for a
modeling perspective.
The second main category comprises approaches for modularizing ontologies in
terms of ontology partitioning and ontology module extraction. On the one hand,
ontology partitioning aims at splitting up an existing ontology into a set of on-
tology modules. Approaches for partitioning ontologies are proposed by [13, 11]
whereas [18] proposes a tool. On the other hand, ontology module extraction,
which is also called segmentation [16] or traversal view extraction [14], aims at
reducing an ontology to its relevant sub-parts. Approaches for ontology module
extraction are the subject of [14, 16], and the PROMPT tool [14]. More details
of this category of approaches are discussed in [5].

2.3 Criteria for Ontology Modularization

Criteria for modularizing ontologies generally aim at characterizing modular on-
tologies. To the best of our knowledge, only [5] explicitly deals with criteria
for ontology modularization. Therefore, [5] distinguishes between criteria origi-
nating in software engineering, logical criteria, local criteria, structural criteria,
quality of modules, and relations between modules. First, criteria from soft-
ware engineering comprise encapsulation and coherence whereas logical criteria
include local correctness and local completeness. Structural criteria, which are
also discussed by [6], focus on size and intra-module coherence. It is proposed to
determine the quality of modules in terms of module cohesion, richness of the
representation, and domain coverage. At least, to assess the relation between
modules the criteria of connectedness, redundancy, and inter-module distance
can be applied. Against this background, the evaluation of ontology modular-
ization respectively applies a subset of the proposed set of criteria with respect
to different scenarios and ontology modularization techniques.
Based on best practices in Ontology Engineering, ontology design patterns (ODPs)
simplify ontology design by providing a ”modelling solution to solve recurrent
ontology design problems” [1]. Several types of ODPs has already been iden-
tified, e.g., logical patterns that are used to solve problems of expressivity, or
naming patterns that are conventions for naming elements. Among these types,
architectural ontology design patterns (AODPs) aim at describing the overall
shape of the ontology. More precisely, external AODPs describe the modular
architecture of an ontology by considering a modular ontology as an ontology
network. Involved ontologies are considered as modules and are connected by the
import operation. A semantic web portal3 has been proposed as a repository for
ODPs. Unfortunately, to our knowledge, no work has been done on proposing
and describing external AODPs.

3 http://ontologydesignpatterns.org
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3 Approach

In order to characterize reoccurring structures in modularly organized ontologies,
the following approach establishes a methodological basis to guide the research
program of this work. This approach comprises six subsequent steps:

1. Search step: the goal of the first step is to gather modularly organized

ontologies. We use the Semantic Web gateway Watson4 to search for available
modular ontologies from the WWW. The search query focused on import-
relationships between ontologies covering the same domain. The result is a
set of 77 modularly organized ontologies.

2. Cleaning up step: the second step aims at cleaning up the initial search
results in order to establish a thorough basis for further experiments. This
is necessary because the set of 77 modular ontologies is afflicted with redun-
dancies and incompleteness. This results in a set of 38 modular organized
ontologies constituting a thorough basis for characterizing ontology modu-
larization.

3. Selection of metrics step: the third step selects a set of appropriate met-
rics to characterize modularly organized ontologies. The modular ontologies
could be described by various indicators such as the distribution of classes,
the network of links between modules, the number of internal links in mod-
ules, etc. In general, the literature provides a plethora of various metrics,
which could be applied for characterising modular ontologies. As a starting
point, this work focuses on metrics originating in the area of software en-
gineering, due to its maturity. In particular, this work adopts the following
metrics from software engineering, which are easier to compute, in order to
characterize modular ontologies [7]: (i) size of the module: the number
of classes and properties (object and datatype properties), (ii) cohesion of
the module: this metric is a value which is between 0 and 1 and is specified
as follows:

* Hierarchical Class Cohesion (HCC): the number of direct and indirect
hierarchical class links.

HCC = 2∗(NdHC+NidHC)
NC2−NC

where:NdHC: Number of direct Hierarchical relationships between Classes,
NidHC: Number of indirect Hierarchical relationships between Classes,
and NC: Number of Classes.

* Role Cohesion (RC): the number of direct and indirect hierarchical role
links.

RC = 2∗(NdR+NidR)
NRoles2−NRoles

where: NdR: Number of direct roles between Classes, NidR: Number of
indirect roles between Classes, and NRoles: Number of Roles.

4 http://watson.open.ac.uk/
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* Object Property Cohesion (OPC): the number of classes which have been
associated through the particular object property (domain and range).

OPC =
2∗
∑NRoles

i=1
NdC(ri)∗NrC(ri)

NRoles∗(Nc2−NC)

where: NdC(ri): Number of ontology Classes in the domain of the role
ri, NrC(ri): Number of ontology Classes in the range of the role ri, NC:
Number of Classes, and NRoles: Number of Roles.

The cohesion measure is computed as follows:

Cohesion = α∗HCC+β∗RC+δ∗OPC
α+β+δ

where: α, β and δ specify the impact of each type of hierarchical class, role
or object property cohesion. In our case, we choose α = β = δ = 1.
(iii) coupling of the module: it takes an estimation of the inter-dependency
of different modules and is specified as follows:

* Hierarchical class dependency (HCD): the number of all direct and indi-
rect hierarchical class relationships to foreign ontologies.

HCD = 1
2 ∗ (NedHCNdHC + NeidHC

NidHC )
where: NedHC: Number of direct Hierarchical class dependencies be-
tween local classes and external classes, and NeidHC: Number of indi-
rect Hierarchical class dependencies between local classes and external
classes.

* Hierarchical role dependency (HRD): the number of all direct and indi-
rect hierarchical role relationships to foreign ontologies.

HRD = 1
2 ∗ (NdHRNdHR + NeidHR

NidHR )
where NdHR: Number of direct roles dependencies between local classes
and external classes, and NeidHR: Number of indirect roles dependen-
cies between local classes and external classes.

* Object property dependency (OPD): the number of roles that associate
external classes to local ones.

OPD = NeRoles
NRoles

where: NeRoles: Number of all roles that have an external class in their
domain or range, NRoles: Number of all existing roles in the ontology.

* Axiom dependency (AD) : a role or a class is associated to an external
ontological element through an inclusion axiom.

AD =

∑NAxioms

i=1
externalAssociationNumber(axmi)∑NAxioms

i=1
LS(axmi∗RS(axmi)

where: LS(axm): the size of the left sides of the axiom axm, RS(axm):
the size of the right sides of the axiom axm, LSE(axm): the number
of external elements in the left sides of the axiom axm, RSE(axm):
the number of external elements in the right sides of the axiom axm, and
externalAssociationNumber(axm): the number of all external ontologi-
cal elements that have been associated through the axiom axm to internal
elements. externalAssociationNumber(axm) = LSE(axmi)∗RS(axmi)
+ LS(axmi) ∗RSE(axmi) - LSE(axmi) ∗RSE(axmi).
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The coupling measure is computed as follows:

Coupling = α∗HCD+β∗HRD+δ∗OPC+γ∗AD
α+β+δ+γ

where, in our case, α = β = δ = γ = 1
4. Metrics implementation step: the fourth step implements the selected

metrics. The computation was performed by the OWL API5 and the reasoner
HermiT6. This step sets up the (technical) evaluation framework.

5. Analysis step: the fifth step is the analysis of the basic population of mod-
ularly organized ontologies.

6. Result step: the sixth step involves synthesis and discussion of the results
from the analysis in order to characterize modular ontologies.

4 Results and Discussion

A set of four patterns, which characterize M odular Ontologies MO, are proposed
using previous metrics (size, cohesion and coupling). This section presents and
discusses the results and the characteristics of each kind of pattern.

4.1 Pattern type 1: 1 module importing n modules

Pattern 1 contains one module which imports n other modules. For instance (Fig-
ure 1), the module WildNET.owl imports several modules such as Animal.owl,
AnimalSighting.owl, BirdObservers.owl, Birds.owl, etc. The pattern that we pro-
pose conforms to an aggregation. This pattern establishes a relationship be-
tween a single module and a set of modules in the same ontology. This link is
unidirectional. Applying the size metric (Table 1), the first part of the ontol-

Fig. 1. 1 module importing n modules

ogy (one module) is very small (the module WildNET.owl contains 0 concepts)

5 http://owlapi.sourceforge.net/
6 http://hermit-reasoner.com/
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and the second part (N modules) is not structured and is respectively bigger
in size. Applying the cohesion and coupling metrics (see Table 1), Pattern 1
has a high cohesion compared to the coupling metric. We consider the pattern
cohesion metric to be an indicator of the degree to which the elements in the
module belong together. The idea of this pattern is that the concepts grouped
in an ontology should be conceptually related for a particular domain in order
to achieve common goals.

Metrics Size Cohesion Coupling

MO11

WildNET.owl 0 0,25 0
SnakeSightings.owl 18331 1 0,25

Snakes.owl 95 0,5 0,25
Sites.owl 8 1 0,25

Observers.owl 7 0,53 0,25
Geography.owl 16 0,41 0,25
Combined.owl 3497 0,67 0,12

ClimateSensors.owl 255 0,61 0,6
ClimateReadings.owl 63 0,5 0,25

Climate.owl 24 0,61 0,15
BirdSites.owl 437 1 0,25

BirdSightings.owl 10401 1 0,5
Birds.owl 1745 0,5 0,25

BirdObservers.owl 303 0,5 0,25
AnimalSighting.owl 26 0,66 0,25

Animal.owl 9 0,82 0,11

Table 1. Results of Pattern 1 to n

4.2 Pattern type 2: n modules importing 1 module

Pattern 2 contains n modules, which respectively import one module. For in-
stance (Figure 2), there are three independent modules importing one mod-
ule, which containes general knowledge (biopax-level1.owl). The pattern that we
propose corresponds to inheritance. This pattern establishes a correspondence
between a set of modules and a single module in the same ontology. This corre-
spondence is unidirectional. Applying the three metrics (Table 2), the first part
of pattern 2 (n modules), biopax-example-ecocyc-glycolysis.owl, biopax-example-
Xwnt-b-catenin.owl and Xwnt-b-catenin xref have a high coupling metric with
regard to the second part of the pattern (one module) biopax-level1.owl. This
means that pattern 2 is characterized by the interconnections between modules.
The degree of coupling depends on how complicated the connections are and
on the type of connections between modules. As we can see, the second part of
pattern 2 has a high cohesion because it encloses all other modules, which are
strongly related.
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Fig. 2. n modules importing 1 module

Metrics Size Cohesion Coupling

MO21

biopax-example-ecocyc-glycolysis.owl 2139 0,20 0,72
biopax-example-Xwnt-b-catenin.owl 236 0 0,2

biopax-level1.owl 285 0,25 0,13
Xwnt-b-catenin xref 265 0 0,2

Table 2. Results of Pattern n to 1

4.3 Pattern type 3: n modules importing n-1 modules

Pattern 3 contains n modules, which import n-1 modules. For instance (Figure 3),
we have three dependent modules: dublincore.owl, terms.owl and dcmitype.owl.
The correspondence between modules is bidirectional. The distinguishing charac-
teristic of Pattern 3 is that the n modules each import each other. Applying size,

Fig. 3. n modules importing n-1 modules

cohesion and coupling metrics (Table 3), the module dublincore.owl has a small
size (0 concepts) with regard to other modules dcmitype.owl and terms.owl. All
modules have the same degree of relatedness of concepts (cohesion) 20%. The
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coupling metric of the module dublincore.owl is null. In this case, pattern 3 is
transformed to pattern 1 and has the same characteristics.

Metrics Size Cohesion Coupling

MO32

dcmitype.owl 21 0,20 0,02
dublincore.owl 0 0,20 0

terms.owl 47 0,20 0,25

Table 3. Results of Pattern n to n-1

4.4 Pattern type 4: Pattern mix

Pattern 4 combines all previous patterns (Patterns 1, 2 and 3). For instance
(Figure 4), we find partterns 1 (5 * Pattern 1) and 2 (3 * Pattern 2). The
proposed pattern is pattern mix. The correspondence can be undirectional
and bidirectional. The major characteristic of this type of pattern is the highest

Fig. 4. Combination of patterns 1, 2, and 3

coupling metric with regard to the cohesion one. Two modular ontologies iso-
metadata and iso-19115, have the same size, cohesion and coupling but they do
not have a relationship like import.

4.5 Occurrence of Pattern Types

Having introduced and defined four types of patterns in order to characterize
modularly organized ontologies, we consider how often these types of patterns

24



Metrics Size Cohesion Coupling

MO41

iso-metadata 2214 0,02 0,15
iso-19108 159 0,08 0,16
iso-19103 224 0,15 0,16
iso-19115 2214 0,02 0,15

Table 4. Results of Pattern mix

respectively occur. Figure 5 provides an overview of the occurrence of the differ-
ent types of patterns in a population of 38 modularly organized ontologies. It is

Fig. 5. Occurrence of Pattern Types

interesting to observe that pattern type 1 accounts for about 37%. The reason
for this may be the fact that this type of pattern appears to be very intuitive. It
could therefore be concluded that it implicitly constitutes the rationale under-
lying a large part of (semi-)automatic or manual approaches for modularizing
ontologies. Similarly, pattern type 4 also accounts for about 37% of the basic pop-
ulation, i.e. 14 modularly organized ontologies. Pattern type 4 combines Pattern
1, Pattern 2, and Pattern 3. On the one hand, it is obvious that not all modu-
larly organized ontologies have a rather straightforward structure, which could
be easily characterized. This is especially true when assuming (semi-)automatic
or manual modularizing approaches, which do not use clear and precisely de-
fined criteria. And even when these criteria are clearly and precisely defined, the
modularly organized ontologies could also have such a structure depending on
the overall purpose of modularization. On the other hand, it is interesting to
see that even more complex structures can (almost completely) be characterized
by more simple and straightforward structural forms. Moreover, pattern type 2
and pattern type 3 equally account for about 13%, i.e. 5 modularly organized
ontologies. This is particularly interesting because pattern type 2 is reasonable.
This is due to the fact that it appears obvious that there exists an ontology that
is of significance for several other ontologies. On the contrary, pattern type 3 is
much less reasonable than pattern type 2. It is really hard to understand why
ontology modules respectively import each other.
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In this context, it can be observed that domain ontologies combine a clear struc-
ture and organization. This means that modularization of domain ontologies tend
to rely on pattern type 1 or pattern type 2. In contrast, it appears that top-level
ontologies (which represent relevant knowledge to a particular domain such as
medical domain) have a less straightforward structure and organization partic-
ularly when compared to domain ontologies (which represent upper (generic)
ontologies, covered the knowledge of many domain types such as Biomedical
ontology, Dolce). An example for this is dublincore.owl, terms.owl and dcmi-
type.owl, which can be characterized by pattern type 3 (Figure 3).

5 Conclusion and Future Work

This work aims at characterizing modularly organized ontologies to contribute
to a better understanding of ontology modularization. We introduced the no-
tion of modular ontologies, reported on approaches for ontology modularization,
and reviewed existing efforts to characterize modular ontologies. To characterize
modular ontologies, we followed an approach comprising six consecutive steps.
This approach mainly includes the extraction and selection of modular ontolo-
gies, the selection of a set of metrics from software engineering to analyse modu-
lar ontologies, and the evaluation of the analysis results. The evaluation results
in a set of four patterns, which allow for characterizing the modular organization
of ontologies. These patterns show amongst other things that modularly orga-
nized domain ontologies have a clear structure whereas top-level ontologies tend
to have a rather confusing modular organisation.
In the future work, we aim at using firstly further Semantic Web gateways such
as Falcons or Swoogle to identify and extract additional ontologies to gain a
larger basic population. Second, extending the set of metrics and applying them
to the ontologies should provide further insights to modular ontologies. Third, it
would be interesting to create a comparison framework to conduct experiments
with different modularization approaches, comparing them to each other or to
manually modularized ontologies.
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Abstract. Recently, an overall trend towards increasing complexity of
ontologies could be observed, not only in terms of domain modeling,
where the complexity should correspond to the information to be mod-
eled, but also as regards the addition of further information, which could
be modeled as external resources to the domain model and linked to its
relevant elements. This concerns the addition of terminological and lin-
guistic information to the description of classes and properties of ontolo-
gies. To respond to this development, we propose a functional approach
to the modularization of ontologies, based on terminological, linguistic,
and conceptual functions each module fulfills. Only the conceptual ele-
ments and their structural properties should remain in the domain model,
whereas the formalized terminology and linguistics are described in inde-
pendent modules referencing the domain models. We provide examples
of such complexity in Knowledge Representation systems, discuss related
work, and present our approach to modularization in detail.

Keywords: ontology, terminology, linguistics, lexicon, LabelNet, SKOS,
TBX, TMF, lemon

1 Introduction

Nowadays, ontologies in general not only contain domain knowledge but further
information central to various tasks of ontology-based systems. For instance,
terminological and linguistic details are substantially different in nature from the
former and usually encoded in labels adjoined to IDs of classes and properties.

There is a growing realization among many researchers that it might not
be the best practice to encapsulate such information within the description of
classes and properties of domain ontologies. Proposals have already been made
for the separation of terminology and lexicon from domain ontologies and for
strategies on the linking of this information to the elements of the domain model
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in a more principled way [1–6]. Our approach to modularization can be consid-
ered functional, as it is based on the functions the terminological and linguistic
elements used in the context of domain models fulfill. Several tasks such as
supporting Information Systems (IS), semantic annotation, lexicographic appli-
cations, translation, localization among many others benefit from encapsulated
and reusable functions as presented herein.

The need to cull content of labels in ontologies has increased with more pos-
sibilities to linguistically process labels, adding linguistic annotations to their
textual content and thereby more complexity to the ontology. As a result, re-
usability and sharing of the information accumulated is considerably impeded
since navigation through the entire ontology is required in order to find linguis-
tically annotated terms that are relevant to ontology-driven applications.

Therefore, following a series of similar proposals [1–3], extending and speci-
fying some points made, we suggest a strict modularization of domain ontologies
in a class hierarchy, a terminology, and a linguistic component, all represented
in RDF/OWL and related to each other by means of the Simple Knowledge Or-
ganization Scheme of the W3C (SKOS) and similar linking mechanisms. Thus, a
lexical entry can be used by several terminologies, terms of which are employed
in different specific ontologies.

The proposed model largely facilitates the detection of interrelations among
ontologies, rendering the formation of new ontologies on the basis of existing
independently built ones faster and less complicated, because the model strips
ontologies to their core and most essential elements. It equally aims at more
compact terminologies and lexicons used in relation with domain modeling, since
variants of these can be more easily detected and collapsed onto harmonized sets.
Thus, our three-module system represents a mechanism for increasing flexibility
in reusing ontologies as well as domain-specific lexicons and terminologies.

2 Steadily Growing Complexity of Ontologies

A class defined in the RadLex ontology3 serves to exemplify the growing com-
plexity in ontologies. As can be seen in the example below, the class RID 13218
contains all information about its superordinate class and the related properties.
Furthermore, information on natural language expressions associated with the
class (synonym, NonEnglish Name, Preferred Name, ORIG Preferred Name, Def-
inition) as well as other knowledge sources, i.e., FMAID 67112, were accumulated
to form one single ontology class. The knowledge source refers to the Founda-
tional Model of Anatomy (FMA)4. Upon looking at the entry in the FMA ontol-
ogy, it can quickly be inferred that elements have just been duplicated, such as
the definition, synonym, the (German) Non-English part and the label (preferred
name).

3 Version 3, http://bioportal.bioontology.org/ontologies/2027?p=terms
4 The URL for the indicated ID is http://bioportal.bioontology.org/ontologies/
44507/?p=terms&conceptid=fma\%3AImmaterial_anatomical_entity
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<class>
<name>RID13218</name>
<type>anatomy_metaclass</type>
<own_slot_value>

<slot_reference>FMAID</slot_reference>
<value value_type="string">67112</value>

</own_slot_value>
<own_slot_value>

<slot_reference>Synonym</slot_reference>
<value value_type="string">immaterial physical anatomical
entity</value>

</own_slot_value>
<own_slot_value>

<slot_reference>Non-English_name</slot_reference>
<value value_type="string">immaterielles körperliches
anatomisches Wesen</value>

</own_slot_value>
<own_slot_value>

<slot_reference>Preferred_name</slot_reference>
<value value_type="string">immaterial anatomical entity</value>

</own_slot_value>
<own_slot_value>

<slot_reference>ORIG_Preferred_Name</slot_reference>
<value value_type="string">immaterial anatomical entity</value>

</own_slot_value>
<own_slot_value>

<slot_reference>Definition</slot_reference>
<value value_type="string">Physical anatomical entity which is a
three-dimensional space, surface, line or point associated with a
material anatomical entity. Examples: body space, surface of heart,
costal margin, apex of right lung, anterior compartment of
right arm.</value>

</own_slot_value>
<own_slot_value>

<slot_reference>Is_A</slot_reference>
4 <value value_type="class">RID13441</value>

</own_slot_value>
<own_slot_value>

<slot_reference>Has_Subtype</slot_reference>
<value value_type="class">RID13221</value>
<value value_type="class">RID13250</value>
<value value_type="class">RID13291</value>
<value value_type="class">RID13307</value>
<value value_type="class">RID15845</value>
<value value_type="class">RID13217</value>

</own_slot_value>
<own_slot_value>

<slot_reference>:ROLE</slot_reference>
<value value_type="string">Concrete</value>

</own_slot_value>
<superclass>RID13441</superclass>

</class>

[Example of growing complexity in ontologies by means of a RadLex class.]

It seems that the RadLex ontology in this particular case reuses many el-
ements of FMA, as the focus of RadLex is rather on phenomena that can be
observed in correlation with specific organs and not the organs themselves.
While this integration of terminological and linguistic knowledge in the field of
anatomy is obviously a good move, re-using established terminology, it appears
that it could be more beneficial to provide this pool of information independently
from the ontologies modeling the domain. Clear links between the original ontol-
ogy and terms used as well as linguistic data substantially improve the level of
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re-usability and readability of semi-structured or definitional natural language
expressions across a large number of ontologies (or taxonomies).

3 Related Models

Several approaches and models emphasize the importance of separating concep-
tual, terminological, and lexical information. Some concentrate on the termino-
logical aspect [6, 9], while others focus on the lexical aspect [10, 4]. Buitelaar
et al. [10] propose a model called LexInfo and suggest adding lexical, morpho-
syntactic, and chunking information to the labels of ontology classes. The authors
design an OWL representation scheme for this set of linguistic information and
its linking to ontology classes. LexInfo supports in this among other aspects the
ontology-based semantic annotation of text.

The Terminae [5] model suggests having two distinct, but interlinked high
levels of classes within ontologies: one for the hierarchy of concepts (and asso-
ciated relations), and one for (a list of) terms that point to the concepts they
denote. Thus, the concept level world gets cleaner and, for example, the very
cumbersome manner of encoding synonyms and other related terms as it is done
in RadLex (see RadLex example above) can be avoided, since synonyms are en-
coded on the terminological level of the ontology. One major advantage of this
approach is that a subset of a terminology can more easily be identified and re-
used in other (domain) ontologies. Reymont et al. [9] provide an example of the
application of Terminae in the automotive domain. We note that in Terminae
the lemma and part-of-speech information is encoded within the term classes.

A third approach, suggesting the merging of LexInfo and Terminae is CTL
[2]. CTL applies the full model of LexInfo to each word in a term. Thereby it
completely takes lexical information out of the descriptions of both domain and
term classes. This leads to three layers of description within the ontology, where
a meta-class has three main subclasses describing domain-class, terminology, and
linguistic hierarchies. The linguistic layer is based on and extends LexInfo. How-
ever, CTL neither proposed a formalization nor an implementation, but instead
generally described such an approach. Both Terminae and CTL accumulate the
different modules (meta-classes) in one ontology, which supports an internal view
on the interaction between them, rendering linking of terms to other ontologies
more difficult.

Some approaches emphasize the added benefit of a combination of all three
modules for specific tasks (e.g. [7]). Bodenreider [7] makes use of existing termi-
nologies, ontologies, and lexicons for text mining in biomedicine. The emphasis
here is on already existing not perfectly compatible resources and the specific
task of text mining.

All approaches above agree that natural language processing and subsequent
linguistic annotation of the terms used in labels are necessary. In order to ensure
interoperability and re-usability, we use standardized models. The Terminolog-
ical Markup Framework (TMF), defined in ISO 16642, ensures the re-usability
of terminological data across applications and the TermBase eXchange (TBX)
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format of ISO 30042 represents a best practice for the practical exchange of ter-
minology. In line with ISO 704, we take a concept oriented approach towards
terminology, defining terminology as concepts and their designations in a specific
domain. Consequently, a term is a verbal designation denoting a general concept
in a specific domain. The lemon model [4] we discuss below proposes a way to
obtain the results of natural language processing and annotation in a modular
RDF representation.

4 Modularization of Ontology Labels

We propose LabelNet, a model that modularizes each lexical, linguistic, and ter-
minological function related to ontology labels, establishing a net of interlinked
terms with highly detailed information at each level. Term entries in a separate
OWL-DL encoded TBX- and TMF-compliant terminology relate semantically to
corresponding ontology classes or other conceptual elements and represent the
terminological information in detail. Each token5 of every term entry links to
a lexical entry, i.e., to a lemma6, syntactic information, and possible additional
resources such as further ontologies. Fig. 1 exemplifies the structure of Label-
Net and shows how each of its modules can be interlinked using SKOS. The
example data has been taken from an ontology based on the Belgian National
Bank (BNB) taxonomy. Time concepts are linked to the W3C time ontology,
e.g., “more than one year” is an interval.

The lexical entries are represented by using partially the lemon model [4],
which is described in the next section. The semantics of the list of tokens con-
tained in a term is established by referring to the ontology elements on the basis
of the term ID in the terminological entries.

By separating the several layers into modules we achieve a more complete and
highly detailed perspective of ontology labels. The separation of lexical entries
and terms into lexicons and terminologies provides a higher degree of re-usability.
In addition, it facilitates a number of computations over these labels, such as
the usage of a certain lemma in terms pointing to concepts/role IDs.

4.1 The lemon Model

lemon provides a model that can encode lexical information, using among others
RDF, URIs and linking mechanisms, so that language data can be exchanged
for example in the Linguistic Linked Open Data cloud7. The model aims at
a strict separation of ‘world knowledge’ (describing domain objects that are

5 Tokens can be defined as all meaningful elements in a text that result from the
process of tokenization, i.e., breaking up text into words, phrases, symbols or other
meaningful elements. The ordered collection box in Fig. 1 contains lists of tokens as
they appear in the terms used in the exemplified labels.

6 A lemma represents the canonical form of a set of words called lexemes. For example,
accrue is the lemma of accrued, accruing, accrues, etc.

7 http://linguistics.okfn.org/resources/llod/

32



Fig. 1. Simplified example of LabelNet

referenced by lexical objects) from ‘word knowledge’ (describing lexical objects).
It is itself modular, having a core component that can be supplemented with a set
of modules to be used, extended, or ignored as required as illustrated in Fig. 2.
For example, a morpho-syntactic module can be attached to the core, specifying
specific values for words used in the term, such as gender (feminine, masculine,
neuter), number (singular, plural, dual) and case (nominative, accusative, etc).
As this model in essence enables the creation of a lexicon for a given ontology, it
is called an ontology lexicon model. lemon as such does not provide an explicit
terminological level and refers directly from the lexical entry (in lemon a lexical
entry represents the whole content of a label) to an ontology element. In contrast,
LabelNet stresses the need and the practicability of a terminological level, we
re-use only the non-referential part of the lemon model.

4.2 Lexicon Module

While lemon offers a highly interesting perspective, we think that there are still
some shortcomings, or possible improvements. A first case is the fact that lemon
supports tokenization of terms included in labels, but not the establishment of
the relation between a token represented as a standalone lexical information
and the terms in which it can occur. Consequently, we propose an extension
that allows for a single lemma to include the information that it is part of a
term, in the position specified by the tokenization process. Thereby, the word
“Verbindlichkeiten” (German for amounts payable or liabilities), for example,
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Fig. 2. Simplified representation of the lemon model [4]. The link between lexical and
ontology information is established by the reference link

will be linked to a (possibly) substantial number of terms used in various domains
(see Fig. 1). In doing so, we can generate a new kind of WordNet, taking into
account the inclusion of relevant words in a category of terms. Adopting the
idea of lemon, we model only lexical and linguistic information in this separate
module, linking to semantic values on the basis of the term ID, which itself links
to an ontology element.

As a matter of fact, lemon entries allow only one semantic reference. The
lemon model represents the content of labels of one ontology at a time. But
frequently one and the same term is used in different (even related) ontolo-
gies/taxonomies. In this case, two or more lemon entries would be required,
leading to redundant lexical/linguistic information only differing in the entry
point to elements of different ontologies. One entry pointing to many ontologies
represents a more efficient approach. This would also ease generalization over
the semantics of such terms.

In case different terms are used in concepts of different ontologies, but a
skos:exactMatch can be established between these concepts, lemon does not
provide the means to express the lexical semantic relationship between these
terms. As a result, SKOS has to be used as a linking means between those
concepts, thereby indirectly establishing the lexical semantic relationship, such
as synonymy, between different terms.

Apart from linking different entries or elements of individual modules, certain
constraints need to be reflected. For example, in German and English only the
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plural of ”Verbindlichkeit/liability” might be used within the context of financial
reporting. One possibility in lemon would be to select only terms in which the
word ”Verbindlichkeit” appears in its plural form ”Verbindlichkeiten”. Another
possibility, which has our preference, would be to associate a feature structure
with the lemma we have extracted from the tokens of the ontology labels, in
which additional linguistic information can be encoded. Keeping thus the basic
lexicon small, i.e., containing mainly lemmas, and using well-defined feature
structures as labels for the edges going from one lemma to a more complex term
containing the lemma. We suggest having the constraints expressed in SKOS,
linking between a lemma and a term (see Fig. 1):

lemma:Verdbindlichkeit -> [plural, feminine, nominative case] -> t1(T3)

The above line expresses that only the plural and nominative form of “Verbind-
lichkeit”, which is feminine, can be used in combination with a term (at least
the term “T3”’) related to a business reporting ontology.

4.3 Terminology in OWL-DL

Terminologies as such consist of terms denominating concepts, their definitions
and concept relations. In case of SKOS, these elements are utilized towards build-
ing controlled vocabularies, whereas the TermBase eXchange (TBX) format of
ISO TC 37 can be described as discourse-oriented terminology [8]. In controlled
vocabularies, terms have to be classified as preferred, synonyms being mapped to
preferred terms for retrieval purposes. In case of the discourse-related resources,
many synonyms are permitted and the attribute “preferred” can be assigned
for a prescriptive usage. Wright et al. [8] state that terminologies always relate
to special language, “designating multiple preferred terms subject to multiple
pragmatic constraints”. Thus, the former differs from the latter in that it repre-
sents varying conceptual information and semantics with a focus on information
retrieval, whereas discourse-oriented terminological resources are more adequate
for the purpose at hand.

In our model the terminology is supposed to be reusable for other tasks
such as translation, ontology population, ontology building, ontology evolution
to name but a few. Instead of using status attributes such as preferred, alterna-
tive, and hidden, TBX allows for the use of subset information such as project,
application, customer to clarify the difference between synonyms [8].

Terminologies provide greater multiplicity than only rdfs:labels. Terms
and natural language information acquired for and within the process of ontology
building are often lost in the final representation due to a required univocity of
each label. Constructing a net of ontology labels and their synonyms acquired
in the building of ontologies and extraction of information results in a domain-
specific, formalized, and reusable resource for ontologies.

Another reason for transferring natural language information from the ontol-
ogy to terminologies can be found in its ability to represent conceptual relations
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different from ontological relations and thus, enhance the representation of in-
formation with linguistic details. For example, a financial reporting ontology
classifies liquid assets as sibling of key balance sheet figures, the latter of which
being the parent to assets. In contrast, hypernymic relations in the terminology
see assets as top node, whereas liquid assets is one of its children.

TBX is an XML-encoded markup language for the interchange of terminolog-
ical information. Due to reasons of cardinality and variation its transformation
to RDF, i.e., SKOS, turns out to be difficult as described in detail in [8]. Instead
of mapping TBX to RDF a member of the OWL family of languages is more ad-
equate to the task. The cardinality of OWL-Lite, however, is restricted to 0 and
1, which in case of many term entries might constitute a problem to be solved
with OWL-DL and its ability to allow arbitrary values for cardinality. All core
elements of the terminology are children of the top node owl:datcat to signify
that all subclasses are data categories and interlinked by means of properties
such as unionOf and owl:equivalentClass. A detailed description of render-
ing TBX in OWL-DL would go beyond the scope of this paper, a representation
of terminology in OWL-DL is to be found in [6].

4.4 Step by Step to Modularized Ontologies

Our architectural decisions and selections have been described above, but the
specification of the process of obtaining each resource and achieving modular-
ization has yet to be detailed. The main input to building the initial ontology
is financial information, such as annual reports of companies, reporting stan-
dards (e.g. IFRS, GAAP, XBRL, etc.), stock exchange websites. We extract
details from the named sources and build an initial ontology. Furthermore, the
extracted information represents the input for the terminology, where all syn-
onyms are depicted. On the basis of the ontology and the terminology, the lexicon
is established. So at the core of the following steps lies the formalization of the
extracted knowledge in a domain ontology representing our input.

1. Extract labels/terms and linguistic analysis of terms (tokenization, lemma-
tization, morphological analysis, tagging, parsing, etc).

2. Extract all lemmas, create or map to an existing lemma in a (multilingual)
lexicon to collect all lemmas that are used in all possible labels of all possible
ontologies.

3. Encode lemmas in lemon. Add a data structure on top of each lemma, which
lists all the tokens in all labels in which the lemma is reproduced. This
linking also reflects the morpho-syntactic features of the token according to
its analysis.

4. Record all morpho-syntactic and lexico-syntactic information and patterns
in the corresponding addition to the linguistic module.

5. All identical labels are stored as a unique element in a terminology container.
Specify term entries as to their conceptual relations and establish proper
definitions or adapt definitions existing in the ontology.
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6. Each lemon represented term is associated with a data structure, i.e., ter-
minology, that points to a variety of ontology elements in which those terms
have been introduced.

7. Eliminate all the labels and other linguistic information from the ontology,
flattening class entries to domain specific details.

As a result, we have two interlinked ontologies of lemmas and terms as used
in ontologies/taxonomies. Thereby, we obtain a subset of language data, which
is used in domain ontologies. This can be used in order to analyze textual docu-
ments and to annotate them semantically, populate ontologies, or support trans-
lations with semantics to name but a few. On the other hand, we have a means
for testing ontology mapping or merging.

5 Linking all Modules

The main linking device between ontologies is SKOS, such as the linking between
the financial reporting ontology and the time ontology in the example provided
in Fig. 1. Especially with multilingual ontologies the individual concepts and
their matching by means of SKOS is important. Oftentimes, the pivotal role of
English as a source language leads to translations of labels instead of proper
localizations. In case of financial reporting standards it is indispensable to take
local legal and political regulations affecting the standard into consideration,
as the Belgian reporting standard in French might differ substantially from the
reporting standard used in France, especially in the use and interpretation of
applied French terms.

By conceptualizing the knowledge in each language individually, the ontology
is actually created in each language and not simply translated. Thereby, we are in
the position of linking for example the English concept pfs_AmountsPayableMore
OneYear to the corresponding Italian concept itcc-ci_DebitiEsigibiliOltre
EsercizioSuccessivo by employing skos:exactMatch, which implicitly links
the term “Debiti Esigibili Oltre l’Esercizio Successivo” to the English term. For
existing monolingual ontologies this proposal might serve as a method for merg-
ing several monolingual ontologies by establishing links.

The domain ontology represents the starting point for the linking, containing
the initial SKOS links to the terminology, as the terminology might be treated
as ontology represented in OWL-DL. From the terminology references to the
lexicon holding all individual lemmas can be established. At the same time the
terminology represents the interface to lexico- and morpho-syntactic patterns as
well as syntactical information as such and all tokens, the result from the process
of tokenization.

One part of the linking process is the representation of lexico- and morpho-
syntactic patterns and information to support the evolution and extension of
existing domain ontologies. Thereby, the construction of new labels is largely
facilitated on the basis of the structure of existing labels.

Syntactic information is represented by combining tokens and dependency
information of individual terms. Basically, syntactic categories are determined
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on the basis of part of speech tagging and phrasal categories are used for syntactic
labels. For example N-NP = (length=1, token[1]=N, head=token[1]) represents
the term “Verbindlichkeiten”, which has the syntactic category “Noun” and the
phrasal category “Noun Phrase” with a length of one and token1. For the purpose
of standardization, these categories are mainly taken from the ISOcat database8.

Especially for information extraction in combination with ontology evolu-
tion the representation of lexico-syntactic patterns is essential, such as lexico-
syntactic ontology design patterns9 and the famous Hearst patterns. One ex-
ample for their use is the recognition of relations among entities during infor-
mation extraction. The following sentence has been taken from the Interna-
tional Financial Reporting Standard (IFRS): “The statement of financial posi-
tion (sometimes called the balance sheet) includes an entity’s assets, liabilities
and equity as of the end of the reporting period”10. The lexico-syntactic equiv-
alence <NP class> call in passive <NP class> relation between “statement of
financial position” and “balance sheet” enables us to realize that both terms
point to the same ontology concept as synonyms, however, including a descrip-
tion of their difference in the definition of the terminology. The Hearst pattern
[NP0] [VBG include] [NP1] [NP2]... indicates that “assets, liabilities and
equity” can be modeled as subClassOf “statement of financial position”.

6 Conclusion and Future Directions

Modular and encapsulated domain, linguistic, and lexical functions for knowl-
edge modeling enable the support of several IS-related as well as Natural Lan-
guage Processing (NLP)-driven tasks. Each modularized resource, i.e., ontology,
terminology, or lexical information, can either be used as part of the interlinked
model we presented or as individual resource for other purposes. One aspect for
further improvement certainly is the linking device between the modules, which
could be optimized towards an enhanced interoperability with other systems and
among the resources themselves.
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Abstract Extracting a subset of a given OWL ontology that captures
all the ontology’s knowledge about a specified set of terms is a well-
understood task. This task can be based, for instance, on locality-based
modules (LBMs). These come in two flavours, syntactic and semantic,
and a syntactic LBM is known to contain the corresponding semantic
LBM. For syntactic LBMs, polynomial extraction algorithms are known,
implemented in the OWL API, and being used. In contrast, extracting
semantic LBMs involves reasoning, which is intractable for OWL 2 DL,
and these algorithms had not been implemented yet for expressive onto-
logy languages.
We present the first implementation of semantic LBMs and report on
experiments that compare them with syntactic LBMs extracted from
real-life ontologies. Our study reveals whether semantic LBMs are worth
the additional extraction effort, compared with syntactic LBMs.

1 Introduction

Extracting a subset of a given OWL ontology that captures all the ontology’s
knowledge about a specified set of concept and role names is an interesting task
for various applications, and it is by now well-understood [2,10,11]. In general,
we consider a setting where, for a given signature, we want to determine a (small)
subset of a given ontology such that any axiom over the signature entailed by
the ontology is also entailed by the subset. For expressive logics, this task can
be implemented by making use of the notion of locality, and results in what is
known as locality-based modules (LBMs) [2]. Locality comes in many different
flavours, in particular there are notions of syntactic and semantic locality. A
syntactic LBM is known to contain the corresponding semantic LBM, but might
also contain extra axioms which are, because they are not in the semantic LBM,
superfluous for entailments over the given signature. Algorithms for the extrac-
tion of syntactic LBMs are known that run in time that is polynomial in the size
of the ontology (thus much cheaper than reasoning), implemented in the OWL
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API, and being used. In contrast, despite the fact that algorithms for extracting
semantic LBMs are known, until now and to the best of our knowledge, they had
not yet been implemented. Moreover, these involve entailment checking, and are
thus intractable for expressive profiles of OWL 2.

We present the first implementation of semantic LBMs and report on exper-
iments that compare them with syntactic LBMs extracted from real-life onto-
logies. The contributions of this paper are as follows: we show with statistical
significance that, for almost all members of a large corpus of existing ontologies,
there is no difference between any syntactic LBM and its corresponding semantic
LBM. In the few cases where differences occur, these differences are modest and
not worth the increased computation time needed to compute semantic LBMs.
In addition, we isolate two types of axioms that lead to differences, where one
is a simple tautology that can, in principle, be detected by a straightforward
addition to the syntactic locality checker. Furthermore, our results show that
the extraction of semantic LBMs, which is in principle hard, seems feasible in
practice. The lesson we learn from these results is that “Cheap is Great”!

2 Preliminaries

We assume the reader to be familiar with OWL and the underlying description
logic SROIQ [1,8], and will define the central notions around locality-based
modularity [2].

Let NC be a set of concept names, and NR a set of role names. A signature
Σ is a set of terms, i.e., a set Σ ⊆ NC ∪ NR of concept and role names. We can
think of a signature as specifying a topic of interest. Axioms that only use terms
from Σ can be thought of as “on-topic”, and all other axioms as “off-topic”. For
instance, if Σ = {Animal,Duck,Grass, eats}, then Duck v ∃eats.Grass is on-topic,
while Duck v Bird is off-topic.

Any concept, role, or axiom that uses only terms fromΣ is called aΣ-concept,
Σ-role, or Σ-axiom. Given any such object X, we call the set of terms in X the
signature of X and denote it with X̃.

Given an interpretation I, we denote its restriction to the terms in a signature
Σ with I|Σ . Two interpretations I and J are said to coincide on a signature Σ,
in symbols I|Σ = J |Σ , if ∆I = ∆J and XI = XJ for all X ∈ Σ.

There are a number of variants of the notion of conservative extensions, which
capture the desired preservation of knowledge to different degrees. We focus on
the deductive variant.

Definition 1. LetM⊆ O be SROIQ-ontologies and Σ a signature.

(1) O is a deductive Σ-conservative extension (Σ-dCE ) ofM if, for all SROIQ-
axioms α with α̃ ⊆ Σ, it holds thatM |= α if and only if O |= α.

(2) M is a dCE-based module for Σ of O if O is a Σ-dCE ofM.

Unfortunately, deciding in general if a set of axioms is a module in this sense
is hard or even impossible for expressive DLs [6,12], and finding a minimal one
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is even more so. However, “good sized” modules that are efficiently computable
have been introduced [2]. They are based on the locality of single axioms, which
means that, given Σ, the axiom can always be satisfied independently of the
interpretation of the Σ-terms, but in a restricted way: by interpreting all non-Σ
terms either as the empty set (∅-locality) or as the full domain4 (∆-locality).

Definition 2. A SROIQ-axiom α is called ∅-local (∆-local) w.r.t. signature Σ
if, for each interpretation I, there exists an interpretation J such that I|Σ =
J |Σ , J |= α, and for each X ∈ α̃ \ Σ, XJ = ∅ (for each C ∈ α̃ \ Σ, CJ = ∆
and for each R ∈ α̃ \Σ, RJ = ∆×∆).

It has been shown in [2] thatM⊆ O and all axioms in O \M being ∅-local
(or all axioms being ∆-local) w.r.t. Σ ∪ M̃ is sufficient for O to be a Σ-dCE of
M. The converse does not hold: e.g., the axiom A ≡ B is neither ∅- nor ∆-local
w.r.t. {A}, but the ontology {A ≡ B} is an {A}-dCE of the empty ontology.

Furthermore, locality can be tested using available DL-reasoners [2], which
makes this problem considerably easier than testing conservativity. However,
reasoning in expressive DLs is still complex, e.g. N2ExpTime-complete for
SROIQ [9]. In order to achieve tractable module extraction, a syntactic ap-
proximation of locality has been introduced in [2]. The following definition cap-
tures only the case of SHQ-TBoxes and can straightforwardly be extended to
SROIQ ontologies.

Definition 3. An axiom α is called syntactically ⊥-local (>-local) w.r.t. signa-
ture Σ if it is of the form C⊥ v C, C v C>, C⊥ ≡ C⊥, C> ≡ C>, R⊥ v R
(R v R>), or Trans(R⊥) (Trans(R>)), where C is an arbitrary concept, R is an
arbitrary role name, R⊥ /∈ Σ (R> /∈ Σ), and C⊥ and C> are from Bot(Σ) and
Top(Σ) as defined in Part (a) (resp. (b)) of the table below.

(a) ⊥-Locality Let A⊥, R⊥ /∈ Σ, C⊥ ∈ Bot(Σ), C>
(i) ∈ Top(Σ), n̄ ∈ N \ {0}

Bot(Σ) ::= A⊥ | ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | >n̄ R.C⊥ | ∃R⊥.C | >n̄ R⊥.C

Top(Σ) ::= > | ¬C⊥ | C>
1 u C>

2 | >0R.C

(b) >-Locality Let A>, R> /∈ Σ, C⊥ ∈ Bot(Σ), C>
(i) ∈ Top(Σ), n̄ ∈ N \ {0}

Bot(Σ) ::= ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | >n̄ R.C⊥

Top(Σ) ::= A> | > | ¬C⊥ | C>
1 u C>

2 | ∃R>.C> | >n̄ R>.C> | >0R.C

It has been shown in [2] that ⊥-locality (>-locality) of an axiom α w.r.t.
Σ implies ∅-locality (∆-locality) of α w.r.t. Σ. Therefore, all axioms in O \M
being ⊥-local (or all axioms being >-local) w.r.t. Σ ∪ M̃ is sufficient for O to
be a Σ-dCE ofM. The converse does not hold; examples can be found in [2].

For each of the four locality notions, modules of O are obtained by starting
with an empty set of axioms and subsequently adding axioms from O that are Σ-
non-local. In order for this procedure to be correct, the signature against which
4 Or, in the case of roles, the set of all pairs of domain elements.
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locality is checked has to be extended with the terms in the axioms that are
added in each step, so that the resulting moduleM consists of all the non-local
axioms with respect to Σ ∪ M̃. Definition 4 (1) introduces locality-based mod-
ules, which are always dCE-based modules [2], although not necessarily minimal
ones. Modules based on syntactic (semantic) locality can be made smaller by
iteratively nesting >- and ⊥-extraction (∆- and ∅-extraction), and the result
is still a dCE-based module [2,13]. These so-called >⊥∗-modules (∆∅∗-modules)
are introduced in Definition 4 (3).

Definition 4. Let x ∈ {∅, ∆,⊥,>}, yz ∈ {>⊥, ∆∅}, O an ontology and Σ a
signature.

(1) An ontology M is the x-module of O w.r.t. Σ if it is the output of Al-
gorithm 1. We writeM = x-mod(Σ,O).

(2) An ontologyM is the yz-module of O w.r.t. Σ, writtenM = yz-mod(Σ,O),
ifM = y-mod(Σ, z-mod(Σ,O)).

(3) Let (Mi)i>0 be a sequence of ontologies such that M0 = O and Mi+1 =
yz-mod(Σ,Mi) for every i > 0. For the smallest n > 0 withMn =Mn+1,
we callMn the yz∗-module of O w.r.t. Σ, writtenM = yz∗-mod(Σ,O).

Algorithm 1 Extract a locality-based module
Input: Ont. O, sig. Σ, x ∈ {∅,∆,⊥,>} Output: x-moduleM of O w.r.t. Σ

M ← ∅; O′ ← O
repeat

changed ← false
for all α ∈ O′ do

if α not x-local w.r.t. Σ ∪ M̃ then
M←M∪ {α}; O′ ← O′ \ {α}; changed ← true

until changed = false
returnM

As for (1), it has been shown in [2] that the outputM of Algorithm 1 does
not depend on the order in which the axioms α are selected.5 Furthermore,
the integer n in (3) exists because the sequence (Mi)i>0 is decreasing (more
precisely, we have M0 ⊃ · · · ⊃ Mn = Mn+1 = . . . ). Due to monotonicity
properties of locality-based modules, the dual notions of ⊥>∗- and ∅∆∗-modules
are uninteresting because they coincide with those of >⊥∗- and ∆∅∗-modules.

Roughly speaking, a ∆- or >-module for Σ gives a view from above because
it contains all subclasses of class names in Σ, while a ∅- or ⊥-module for Σ gives
a view from below since it contains all superconcepts of concept names in Σ.

Modulo the locality check, Algorithm 1 runs in time cubic in |O| + |Σ| [2].
Modules based on ⊥/>-locality are therefore a feasible approximation for mod-
ules based on ∅/∆-locality. In both cases, modules are extracted axiom by axiom

5 Our algorithm is a special case of the one in [2, Figure 4].
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but, as said above, the ∅/∆-locality check is more complex. A module extractor
is implemented in the OWL API6 and SSWAP7. To summarize:

1. Given an ontology O, the semantic moduleMsem
Σ for a signature Σ is con-

tained in the corresponding syntactic moduleMsyn
Σ for the same seed signa-

ture.8 This means that in principle more unnecessary axioms for preserving
entailments over Σ can end up in syntactic modules rather than in semantic
modules.

2. The extraction of a syntactic module can be done in polynomial time w.r.t.
the size of the ontology O. In contrast, the extraction of a semantic module
is as hard as reasoning.

3 Experimental design

The main aim of this paper is to investigate how well syntactic locality approx-
imates semantic locality. In particular, we want to see how (un)likely it is that
syntactic locality-based modules are larger than semantic locality-based ones
and how large these differences are. We also want to understand empirically how
much more costly semantic locality is in terms of performance.

Selection of the Corpus. For our experiments, we have built a corpus containing:
(1) from the TONES repository,9 those ontologies that have already been studied
in a previous work on modularity [4]: Koala, Mereology, University, People, mini-
Tambis, OWL-S, Tambis, Galen; (2) all ontologies from the NCBO BioPortal
ontology repository.10

We then filter out all those the ontologies for which at least one of the fol-
lowing problems occurs: the ontology is impossible to download; the .owl file
is corrupted when downloaded; the file is not parseable; the ontology is incon-
sistent. Furthermore, due to time constraints, we exclude from this preliminary
investigation all ontologies whose size exceeds 10, 000 axioms.

This selection results in a corpus of 156 ontologies, which greatly differ in
size and expressivity [7], as summarized in Table 3. For a full list of the corpus,
please refer to the technical report: http://arxiv.org/abs/1207.1641

Repository Range of expressivity Range #axs. Range sig. size
BioPortal ALCN -SHIN (D)/SOIN (D) 38–4,735 21–3,161
TONES AL-SROIF(D)/SHOIQ(D) 13–9,629 14–9,221

Table 1. Ontology corpus

6 http://owlapi.sourceforge.net
7 http://sswap.info
8 Recall that ⊥-syntactic modules approximate ∅-semantic modules, while >-syntactic
modules approximate ∆-semantic modules.

9 http://owl.cs.manchester.ac.uk/repository/
10 http://bioportal.bioontology.org
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Comparing Syntactic and Semantic Locality. In order to compare syntactic and
semantic locality, we want to understand:

1. whether, for a given seed signature Σ, the semantic Σ-module is likely to be
smaller than the syntactic Σ-module, and if so by how much,11

2. how feasible the extraction of semantic modules is.

Here, we focus on the two corresponding notions of ∅-semantic locality and
⊥-syntactic locality. In particular, ⊥-syntactic locality has been throughly in-
vestigated in previous work [3], and it has proven to have many interesting
properties. A completion of the investigation described in this paper for all fun-
damental notions of modules is planned in our future work.

Due to the recursive nature of the locality-based module extraction algorithm,
we want to investigate locality both on a

– per-axiom basis: given an axiom α and a signature Σ, is it likely that α is
semantically ∅-local w.r.t. Σ but not syntactically ⊥- local w.r.t. Σ?

– per-module basis: given a signature Σ, is it likely that ⊥-mod(Σ,O) 6=
∅-mod(Σ,O)? If yes, is it likely that the difference is large?

Hence we need to pick, for each ontology in our corpus, a suitable set of sig-
natures, and this poses a significant problem. First, we do not yet have enough
insight into what typical seed signatures are for module extraction. One could
assume that large ones are rarely relevant for module extraction—why bother
with extracting a large module—but this still leaves a large, i.e., exponential
space of possible seed signatures. If m = #Õ, there are 2m possible seed signa-
tures for which axioms can be tested for locality and for which modules can be
extracted. Hence a full investigation is infeasible.

One could assume that the comparison between semantic and syntactic mod-
ules could be easier since many signatures can lead to the same module. In other
words, the statistically significant number of modules w.r.t. the total number
of modules is not larger than that of seed signatures needed w.r.t. the total
number of seed signatures. In previous work [4,5], however, modules have been
studied with respect to how numerous they are in real-world ontologies. The
experiments carried out suggest that the number of modules in ontologies is, in
general, exponential w.r.t. the size of the ontology. Moreover, the extraction of
enough different modules can be hard, because by looking just at seed signatures
there is no chance to avoid the extraction of the same module many times. In
particular, for a module M there can be exponentially many seed signatures
w.r.t. #M̃ that generateM [3].

As a consequence, we compare the two kinds of locality of axioms—both
on a per-axiom basis and a per-module basis—w.r.t. random signatures. To
avoid any bias, we select a random signature as follows: we set each named
entity E in the ontology to have probability p = 1/2 of being included in the
signature. Thus each seed signature has the same probability to be chosen. For
ontologies whose signature exceeds 9 entities, in order to get results where the
11 Recall that the semantic Σ-module is always a subset of the syntactic Σ-module.
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true proportion of differences between the two notions of locality lies in the
confidence interval (±5%) with confidence level 95%, we have to select only 400
random signatures [14]. That is, we need to test only 400 random signatures to
have a confidence of 95% (±5%) that the differences/equalities we observe reflect
the real ones.

Non-random seed signatures. Amodule, in general, does not necessarily show any
internal coherence: intuitively, if we had an ontology describing some knowledge
from both the domains of Geology and of Philosophy, we could still extract the
module for the signature Σ = {Epistemology, Mineral}. This module is likely
to be the union of the two disjoint modules for Σ1 = {Epistemology} and
Σ2 = {Mineral}. This combinatorial behaviour can lead to exponentially many
modules in the size of the signature of the ontology and indeed, as mentioned
above, the number of modules in ontologies seems to be exponential [4,5].

In contrast to general modules, genuine modules can be called coherent: they
are defined as those modules that cannot be decomposed into the union of two
different modules. Notably, there are only linearly many genuine modules in the
size of the ontology O, and the set of genuine modules is a base for all general
modules: any module is either genuine or the union of genuine modules. The
linear bound on the number of genuine modules is due to the fact that, for each
genuine x-moduleM, there is an axiom α such thatM = x-mod(α̃,O).

Thus genuine modules can be said to be interesting modules that we can
fully investigate. Hence in addition to the above mentioned investigation of ⊥-
and ∅-modules for random signatures, we also look at all axiom signatures.

In summary, we test:

(T1) for random seed signatures Σ,
(a) for each axiom α in our corpus, is α semantically ∅-local w.r.t. Σ but

not syntactically ⊥- local w.r.t. Σ?
(b) is ⊥-mod(Σ,O) 6= ∅-mod(Σ,O)? If yes, we determine the difference and

its size.
(T2) for each axiom signature from our corpus, is ⊥-mod(α̃,O) 6= ∅-mod(α̃,O)?

If yes, we determine the difference and its size.

4 Experimental comparison

No differences. The main result of the experiment is that, for 151 of the 156
ontologies we tested, no difference between ⊥- and ∅-locality can be observed.
These 151 ontologies exclude the two NCBO BioPortal ontologies EFO (Ex-
perimental Factor Ontology) and SWO (Software Ontology), as well as Koala,
miniTambis, and Tambis. More specifically, for every generated seed signature,
the corresponding ⊥- and ∅-module agree, and every axiom is either ⊥- and
∅-local, or neither. This statement applies to all randomly generated seed sig-
natures as well as for all axiom signatures – which are seed signatures for all
genuine modules. We can therefore draw the following conclusions for the 151
ontologies with respect to (T1) and (T2) above.
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(T1) Given an arbitrary seed signature Σ, there is no difference (a) between
⊥- and ∅-locality of any given axiom w.r.t. Σ and (b) between the ⊥- and
∅-modules for Σ, both times at a significance level of 0.05.

(T2) Given any axiom signature Σ, there is no difference between the ⊥- and
∅-modules for Σ.

In the case of the 151 ontologies, the extraction of a ∅-module (with tautology
tests performed by FaCT++) often took considerably longer than the extraction
of the corresponding ⊥-module. For example, for MoleculeRole, the largest of
the 151 ontologies, times to extract a ⊥-module (test all axioms for ⊥-locality,
respectively) ranged between 27 and 169ms (21 and 77ms, respectively), while
the extraction of a ∅-module (test of all axioms for ∅-locality, resp.) took up
to 6× as long, on average 2.7× (2.0×, resp.). It is also worth noting that the
ontologies Galen and People, which are renowned for having particularly large
⊥-modules [2,5], are among those without differences between ⊥- and ∅-locality.

Differences. For the five ontologies where differences between ⊥- and ∅-modules
(or -locality) occur, we isolated two types of culprits – axioms which are not
⊥-local w.r.t. some signature Σ, but which are ∅-local w.r.t. Σ. Type-1 culprits
are simple tautologies that have accidentally entered the “inferred view” – i.e.,
closure under certain entailments – of two ontologies. They do not occur in the
original “asserted” versions and can, in principle, be detected by a slightly refined
syntactic locality check. Type-2 culprits are definitions of concept names via a
conjunction that satisfies certain conditions explained below. There are not many
type-1 and type-2 axioms in the affected ontologies, and the observed differences
are comparably small. Table 2 gives an overview of the differences observed.

Type-1 culprits are axioms InverseObjectProperties(P, InverseOf(P)),
where P is a role. This translates into the tautology P ≡ (P−)− in DL nota-
tion. Such an axiom is therefore ∅-local w.r.t. any signature. However, it behaves
differently for ⊥-locality: if the signature Σ contains P, then both sides of the
equation are neither in Bot(Σ) nor in Top(Σ), hence the axiom is considered
non-local; otherwise, both sides are ⊥-equivalent, hence the axiom is local.

Type-1 axioms occur in the “inferred view” of the ontologies EFO and SWO.
Table 2 shows the relatively modest differences caused by these axioms. In all
cases, there are no other axioms in the differences. This means that no differences
occur for the non-inferred original versions of EFO and SWO.

Type-2 culprits are complex definitions A ≡ C of a concept name A where
C is a disjunction that contains both a universal and an existential (or min-
imum cardinality) restriction on the same role. This affects the ontologies Koala,
miniTambis, and Tambis. The effect is best illustrated for Koala, which contains
exactly one such axiom, namely M ≡ S u ∀c.F u ∀g.{m} u =3 c.>, where we
have abbreviated the concept names MaleStudentWith3Daughters, Student,
Female, the roles hasChildren, hasGender, and the nominal male. Now if the
signature against which the axiom is tested for locality contains {S, c, g} but
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Ontology #axs #differences difference time culprit
sizes ratio type and
#axs rel. avg. frequency

SWO 3446 T1 a 400 6–22 0–1% 3.31 1 (30×)
T1 b 400 23–29 1–2% 5.11
T2 3446 3–1 1–5% 5.86

EFO 6008 T1 a 400 8–24 0–1% 1.42 1 (32×)
T1 b 400 13–30 0–1% 1.38
T2 128 1–4 9–17% —

Koala 42 T1 a 0 0 0% — 2 (1×)
T1 b 2 1 3% —
T2 0 0 0% —

miniTambis 170 T1 a 68 1–2 1–3% — 2 (3×)
T1 b 93 1–4 1–3% —
T2 26 1–7 6–75% —

Tambis 592 T1 a 58 1–3 0–1% 3.31 2 (11×)
T1 b 229 2–11 0–2% 5.01
T2 191 4–41 2–26% —

Table 2. Overview table of differences observed. The columns show: the ontology name;
the overall number of axioms; the name of the test (see list on Page 7); the number of
cases with differences; the number of axioms in the differences (absolute and relative
to the ⊥-case); the average time ratio ∅ : ⊥ (“—” indicates that no reliable statement is
possible: the time for ⊥ is only a few, often 0, milliseconds); the type of culprit present
and the number of axioms of this type.

neither M nor F, then this axiom is not ⊥-local because none of the conjuncts on
the right-hand side is in Bot(Σ). On the other hand, this axiom is a tautology
when M and F are replaced by ⊥: the conjunction ∀c.⊥u=3 c.> cannot have any
instances, regardless of how c is interpreted.

For Koala, this effect only causes two singleton differences between sets of
local axioms for the randomly generated seed signatures, as shown in Table 2.
For axiom signatures, there is no difference. Interestingly, this effect does not
propagate to modules: for all signatures, ⊥- and ∅-modules are the same. The
reason might be that (a) g is used in many axioms and is thus very likely to
contribute to the extended signature during module extraction, and (b) then the
axiom defining F is no longer local, which “pulls” F into the extended signature,
preventing the observed effect.

In miniTambis and Tambis, this effect is much stronger and affects a large
proportion of modules, as shown in Table 2. The differences in these cases do
not only consist of culprit axioms, but also of axioms that become non-local
after the signature has been extended by the terms in the culprit axioms. Still,
the size of the differences is mostly modest while, for Tambis, the ∅-locality test
(∅-module extraction) takes on average over three times (five times) as long as
the ⊥-locality test (⊥-module extraction).
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5 Conclusion and Outlook

Summary. We obtain two main observations from the experiments carried out.

– In practice, there is no or little difference between semantic and syntactic
locality. That is, the computationally cheaper syntactic locality is a good
approximation of semantic locality.

– Though in principle hard to compute, semantic modules can be extracted
rather fast in practice.

These results suggest that it is questionable to conclude that semantic locality
should be preferred to syntactic locality. In terms of computation time, there is
often a benefit in using syntactic locality: the average speed-up compared to the
extraction of a semantic-locality based module is by a factor of up to 6. For
some particular module pairs, it is higher by an order of magnitude. The gain
in module size is zero or so small that it is hard to justify the extra time spent.
In particular, there is no gain in size for the ontologies Galen and People, which
are “renowned” for having disproportionately large modules [2,5].

Our results are interesting not only because they provide an evaluation of
how good the cheap syntactic locality approximates semantic locality, but also
because they enabled us to fix bugs in the implementation of syntactic modular-
ity. For example, earlier data from the experiment have shown that reflexivity
axioms had been treated incorrectly by the syntactic locality checker.

Future Work. It is evident that this work is preliminary. It investigates only
the differences between the related notions of ⊥- and ∅-locality. We plan to ex-
tend the same study to other notions of locality, in particular, nested modules
(>⊥∗- vs. ∆∅∗-modules) – these notions are the most economical in terms of
module size. Moreover, we want to extend the investigation to the remaining
larger ontologies in the BioPortal repository and further large ontologies, e.g.,
some versions of the NCI Thesaurus12. Preliminary results with a version that
is not among the regular releases show differences due to type-2 culprits, but we
have not included them here because the differences disappear after removing
axioms that were introduced due a problem with object and annotation proper-
ties when the ontology file is parsed by the OWL API. This behaviour is yet to
be investigated and explained.

Another interesting extension is to modify the seed signature sampling. Cur-
rently, the random variable “size of the seed signature generated” follows the
binomial distribution with expected value m/2 and variance m/4. Hence, most
signatures in the sample have size aroundm/2; small and large signatures are un-
derrepresented. For example, for one ontology with 915 terms, all signature sizes
lay between 422 and 509. One might argue that, for big ontologies, the typical
module extraction scenario does not require large seed signatures – but it does
sometimes require relatively small seed signatures, for example, when a module
is extracted to efficiently answer a given entailment query of typically small size.
12 Downloadable from http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
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On the other hand, large modules resulting from larger seed signatures may be
more likely to differ. We therefore plan an alternative seed signature sampling
via bins for average signature sizes: repeat the current sampling procedure scaled
to several subintervals of the range of possible signature sizes.

Our current results answer the question whether there is a significant differ-
ence between the two locality notions with respect to a given signature. It is also
interesting to ask the same question relative to a given module. To answer it, the
sampling of modules instead of seed signatures requires further investigation.

Acknowledgment. We thank Rafael Gonçalves and the anonymous reviewers for
helpful comments.
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Abstract. The Distributed Ontology Language (DOL), currently being
standardised within the OntoIOp (Ontology Integration and Interoper-
ability) activity of ISO/TC 37/SC 3, aims at providing a unified frame-
work for (1) ontologies formalised in heterogeneous logics, (2) modular
ontologies, (3) links between ontologies, and (4) annotation of ontologies.
This paper focuses on the LoLa ontology, which formally describes DOL’s
vocabulary for logics, ontology languages (and their serialisations), as
well as logic translations. Interestingly, to adequately formalise the logi-
cal relationships between these notions, LoLa itself needs to be axioma-
tised heterogeneously—a task for which we choose DOL. Namely, we use
the logic RDF for ABox assertions, OWL for basic axiomatisations of
various modules concerning logics, languages, and translations, FOL for
capturing certain closure rules that are not expressible in OWL4, and cir-
cumscription for minimising the extension of concepts describing default
translations.

1 The Distributed Ontology Language (DOL) – Overview
An ontology in the Distributed Ontology Language (DOL) consists of modules
formalised in basic ontology languages, such as OWL (based on description logic)
or Common Logic (based on first-order logic with some second-order features).
These modules are serialised in the existing syntaxes of these languages in order
to facilitate reuse of existing ontologies. DOL adds a meta-level on top, which
allows for expressing heterogeneous ontologies and links between ontologies.5
Such links include (heterogeneous) imports and alignments, conservative exten-
sions (important for the study of ontology modules), and theory interpretations
(important for reusing proofs). Thus, DOL gives ontology interoperability a for-
mal grounding and makes heterogeneous ontologies and services based on them
amenable to automated verification.

DOL is standardised within the OntoIOp (Ontology Integration and Interop-
erability) activity of ISO/TC 37/SC 36. The international working group com-
prises around 50 experts (around 15 active contributors so far), representing
4 For the sake of tool availability it is still helpful not to map everything to FOL.
5 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

6 TC = technical committee, SC = subcommittee
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a large number of communities in ontological research and application, such
as different (1) ontology languages and logics (e.g. Common Logic and OWL),
(2) conceptual and theoretical foundations (e.g. model theory, proof theory),
(3) technical foundations (e.g. ontology engineering methodologies and linked
open data), and (4) application areas (e.g. manufacturing, bio-medicine, etc.).
For details and earlier publications, see the project page at http://ontoiop.org.

The OntoIOp/DOL standard is currently in its final working draft stage and
will be submitted as a committee draft (the first formal standardisation stage)
in September 2012.7 The final international standard ISO 17347 is scheduled for
2015. The standard specifies syntax, semantics, and conformance criteria:

Syntax: abstract syntax of distributed ontologies and their parts; three concrete
syntaxes: a text-oriented one for humans, XML and RDF for exchange among
tools and services, where RDF particularly addresses exchange on the Web.
Here, we will use the DOL text syntax in listings but also explain the RDF
vocabulary; for further details on the DOL syntaxes, see [6].

Semantics: (1) a direct set-theoretical semantics for the core of the language,
extended by an institutional and category-theoretic semantics for advanced
features such as ontology combinations (technically co-limits), where basic
ontologies keep their original semantics; (2) a translational semantics, em-
ploying the semantics of the expressive Common Logic ontology language for
all basic ontologies, taking advantage of the fact that for all basic ontology
languages known so far translations to Common Logic have been specified
or are known to exist8; (3) finally, there is the option of providing a collapsed
semantics, where the semantics of the meta-theoretical language level pro-
vided by DOL (logically heterogeneous ontologies and links between them)
is not just specified in semiformal mathematical textbook style, but once
more formalised in Common Logic, thus in principle allowing for machine
verification of meta properties. For details about the semantics, see [9].

Conformance criteria provide for DOL’s extensibility to other basic ontology
languages than those considered so far, including future ones. (1) A basic on-
tology language conforms with DOL if its underlying logic has a set-theoretic
or, for the advanced features, an institutional semantics. Similar criteria ap-
ply to translations between languages. (2) A concrete syntax (serialisation)
of a basic ontology language conforms if it supports IRIs (Unicode-aware
Web-scalable identifiers) for symbols and satisfies further well-formedness
criteria. (3) A document conforms if it is well-formed w.r.t. one of the DOL
concrete syntaxes, which particularly requires explicitly mentioning all logics
and translations employed. (4) An application essentially conforms if it is ca-
pable of processing conforming documents, and providing logical information
that is implied by the formal semantics.

7 The standard draft itself is not publicly available, but ISO/TC 37 has passed a
resolution to make the final standard document open, as has been done with the
related Common Logic standard [3].

8 Even for higher-order logics this works, in principle, by using combinators.
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2 A Graph of Logic Translations
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Fig. 1. The logic translation graph for the DOL-conforming languages

Fig. 1 is a revised and extended version of the graph of logics and translations
introduced in [8]. New nodes include UML class diagrams, OWL-Full (i.e. OWL
with an RDF semantics instead of description logic semantics), and Common
Logic without second-order features (CL−). We have defined the translations
between all of these logics in earlier publications [9, 8]. The definitions of the
DOL-conformance of some central standard ontology languages and translations
among them will be given as annexes to the standard, whereas the majority will
be maintained in an open registry (cf. Sec. 3). Sec. 4 provides a more fine-grained
view on translations (and projections).

3 A Registry for Ontology Languages and Mappings

The OntoIOp standard is not limited to a fixed set of ontology languages. It
will be possible to use any (future) ontology language, logic, serialisation, or
mapping (translation or projection) with DOL, once its conformance with the
criteria specified in the standard has been established. This led to the idea of
setting up a registry to which the community can contribute descriptions of any
such languages, logics, serialisations, or mappings. In the current, early phase
of the standardisation process, we are maintaining this registry manually. With
the release of the final international standard, everyone will be able to make
contributions, which an editorial board will review and approve or reject. Fig. 2
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translatable to
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Fig. 2. Subset of the OntoIOp registry, shown as an RDF graph

shows a subset of the OntoIOp registry: a subgraph of Fig. 1 in the “logic”
column, as well as related ontology languages and serialisations. Note that the
relation between ontology languages and logics generally is not bijective: e.g.
first-order logic is supported by various languages such as Common Logic, TPTP
and CASL.

Any entry of the registry shall be identified by an IRI, so that DOL ontologies
can refer to it. At these IRIs, when treated as URLs, there shall be a machine-
readable description of the resource according to the linked data principles (cf.
[5]), so that, e.g., any agent given a basic ontology can find out the languages
this ontology can be translated into (cf. Sec. 6 for an example), or that for
any language translation, its definition as well as implementations are available.
The most widely supported format for linked data is RDF; we have realised the
RDF vocabulary for the OntoIOp registry as a subset of the vocabulary used for
serialising DOL ontologies as RDF.9

Starting with a plain RDFS vocabulary, we soon realised that we could de-
liver added value to tools supporting DOL by encoding additional information
about the semantics of, e.g., translations into the vocabulary using some OWL
constructs, and eventually arrived at a richer formalisation that goes beyond

9 RDF only allows for describing, not for fully formally defining logics and translations.
To that end, we are planning to alternatively offer full formalisations in the richer
OMDoc language from the same IRIs.
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OWL: the LoLa ontology. To realise the benefit of a machine-comprehensible
representation of this semantics in a rich ontology language, consider DOL’s
understanding of an ontology language translation: Unless a direct translation
on the language level has been specified (e.g. from Common Logic to CASL),
one can translate an ontology from a language La to La′ if the expressivity of
these languages is exactly captured by two logics Lo and Lo′, and Lo can (possi-
bly transitively) be translated to Lo′. In a plain RDF graph, this would require
multiple lookups.

4 Architecture of the LoLa Ontology

LoLa, the ontology of logics and languages, is implemented as a heterogeneous
ontology in DOL, consisting of the following modules:

– An OWL core provides classes and properties for the basic concepts, includ-
ing a basic axiomatisation.

– We use additional FOL axioms for closure rules not expressible in OWL,
such as non-expressible role compositions.

– We use circumscription [7, 1] for minimising the extension of default trans-
lations.

The OntoIOp registry, is implemented as an RDF dataset, acting as the
ABox of the LoLa ontology. The OntoIOp registry is available through a collec-
tion of linked data IRIs in the paths http://purl.net/dol/{logics,languages,

serializations,translations}, e.g. http://purl.net/dol/logics/SROIQ for the
logic SROIQ. We made it originally available in RDF/XML, the most widely
supported linked data format, but other syntaxes can be provided as well. It
can be browsed with frontends like uriburner; try, e.g., http://linkeddata.

uriburner.com/about/html/http/purl.net/dol/logics/SROIQ.

The OWL core of the LoLa ontology comprises classes for ontology languages,
logics, mappings (translations or projections) between ontology languages and
between logics, as well as serialisations. The LoLa properties relate all of the
former classes to each other, as shown in Fig. 2, e.g. an ontology language to
the serialisations that it supports, or to the logic that exactly formalises its
expressivity, or an ontology language mapping to the logic mapping it has been
derived from.

Fig. 3 shows the top-level classes of LoLa’s OWL module, axiomatising logics,
languages, and mappings to the extent possible in OWL. Concerning meta-level
classes (that is, classes for describing the graph of languages and logics), Fig. 2
already has illustrated the interplay of ontology languages, logics and serialisa-
tions.

Object-level classes (that is, classes providing the vocabulary for expressing
distributed ontologies) comprise ontologies, their constituents (namely entities,
such as classes and object properties, and sentences, such as class subsumptions),
as well as links between ontologies.
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Fig. 3. Top-level classes in the OWL ontology

Mappings are modelled by a hierarchy of properties corresponding to the dif-
ferent types of edges in Fig. 1. For example, object properties such as translatableTo
model the existence of a translation between two languages. mappableToLanguage
models the fact that a language can be mapped to another one.

However, this only allows for covering the default translations between logics.
E.g., we can express that the default translation from SROIQ to F-logic is a
model-expansive comorphism. Besides further alternative translations that the
community may contribute, there is, however, also another translation, which can
be obtained from our graph, by composing the SROIQ →FOL= and FOL=→F-
logic translations, resulting in a subinstitution. For expressing such alternatives,
LoLa additionally reifies mappings into classes, whose hierarchy corresponds to
that of the mapping properties.

Fig. 4 shows the inferred class hierarchy below the class Mapping, as computed
within protégé. Notice that our ontology produces several cases of multiple
inheritance. Mappings are split along the following dichotomies:

– logic mapping versus ontology language mapping, cf. Fig. 2.
– translation versus projection: a translation embeds or encodes an ontology

into another one, while a projection is a forgetful operation (e.g. the projec-
tion from first-order logic to propositional logic forgets predicates with arity
greater than zero). Technically, the distinction is that between institution
comorphisms and morphisms [4].

– plain mapping versus simple theoroidal mapping [4]: while a plain mapping
needs to map signatures to signatures, a simple theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatisation of a transitivity predicate for roles etc.

Moreover, we have a class DefaultMapping for mappings that are assumed auto-
matically as default when no mapping is given in a certain context.

Other classes concern the accuracy of the mapping, see [8] for details. These
classes have mainly been introduced for the classification of logic mappings; how-
ever, via the correspondence between logics (mappings) and ontology languages
(mappings), they apply to ontology languages as well. Sublogics are the most
accurate mappings: they are just syntactic subsets. Embeddings come close to
sublogics, like injective functions come close to subsets. If the model translation
is surjective (“model expansion”) or even bijective, the mapping is faithful in
the sense that logical consequence is preserved and reflected, that is, inference
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systems and engines for the target logic can be reused for the source logic (along
the mapping). (Weak) exactness is a technical property that guarantees this
faithfulness even in the presences of ontology structuring operations [2].

The full OWL ontology is available at http://purl.net/dol/1.0/rdf#; it serves,
as said above, simultaneously as an RDF vocabulary for the linked dataset
that constitutes the OntoIOp registry, and for serialising DOL ontologies in
RDF—therefore the “rdf” name.

Fig. 4. The part of the OWL ontology concerning mappings

5 Putting It Together in DOL

DOL allows us to put together the pieces collected so far. First, we specify that
the RDF registry conforms with the OWL ontology. This is achieved by projecting
the registry from RDF to OWL10, and stating an interpretation of theories of
this into the OWL ontology.

We use circumscription [7, 1] for minimising the extent of the class Default-
Translation and thus implementing a closed world assumption. This feature
has been integrated into DOL in a logic independent way: in OWL, it has the
effect that classes and object properties are minimised, while in first-order logic,
extensions of predicates are.

10 Basically, this projection turns the RDF graph into an OWL ABox. Impredicativity
is escaped from by splitting names that are used in several roles into several distinct
names.
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Furthermore, we use first-order logic to formulate logical axioms that exceed
the expressiveness of OWL. We here use the Common Logic Interchange For-
mat (CLIF) [3]. One such axiom states that supported logics propagate along
language translatability; see the ontology LoLaRules below.

%prefix( : <http://purl.net/dol/>

dol: <http://purl.net/dol/1.0/rdf#>

log: <http://purl.net/dol/logics/>

ser: <http://purl.net/dol/serializations/>

trans: <http://purl.net/dol/translations/> )%

distributed-ontology LoLa

%% projecting the RDF ABox to OWL

ontology ABox = registry hide along RDF2OWL end

%% TBox

ontology TBox = dol: end

%% the RDF registry conforms with the OWL ontology

interpretation conformant : ABox to TBox end

%% integrating RDF ABox with OWL TBox while minimising default mappings

logic log:OWL syntax ser:OWL/Manchester

ontology MinimizedABox =

ABox and TBox

minimize DefaultMapping %% circumscription-like minimisation

end

%% first-order rules for infering new facts in the registry

logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology LoLaRules =

(forall (subLa superLa lo)

(if (and (dol:translatableTo subLa superLa)

(dol:mappableToLanguage subLa superLa)

(dol:supportsLogic subLa lo))

(dol:supportsLogic superLa lo)))

...

end

%% combining OWL ontology with first-order rules

logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology LoLa =

dol: translate with OWL2CommonLogic

and

LoLaRules

end
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6 Using LoLa to Query the OntoIOp Registry

DOL-conforming applications can explore and query the OntoIOp registry to
find out useful information about the logics and languages of concrete given
ontologies, or about logics and languages in general.

The following query in the SPARQL RDF query language, e.g., returns all
languages a given ontology is translatable to:

PREFIX dol: <http://purl.net/dol/1.0/rdf#>

SELECT DISTINCT ?target-language WHERE {

# first determine, by querying the ontology itself, its language

<http://ontohub.org/ontologies/my-ontology>

dol:language ?theLanguageOfTheGivenOntology .

# find out everything the language is translatable to

?theLanguageOfTheGivenOntology

dol:translatableTo ?targetLanguage ;

# just to be sure: We are only interested in mappings to languages.

dol:mappableToLanguage ?targetLanguage .

# (The use of two properties is owed to the orthogonal design of LoLa.)

}

This query assumes that both the information about the ontology and about
the OntoIOp registry are available in RDF and ready to be queried as SPARQL.
At the moment this cannot be taken for granted; however, we are working on
Ontohub, an ontology repository engine, which we will, at the same time, also
use to host the OntoIOp registry instead of the current static file deployment
[6].

Aiming at wide tool support, the linked data graph that we deploy has all
inferences of the LoLa ontology applied; this means in particular that, from a
translation between two logics, it is inferred that the corresponding ontology
languages are translatable into each other, and that the transitive closure of
the translation graph has been computed. Therefore, the query shown above
operates on a plain RDF graph, and the query engine does not have to have
further inferencing support built in.

The following query focuses exclusively on the OntoIOp registry. It answers
a frequent question in knowledge engineering: Which logic is the right one for
formalising my conceptual model? For the sake of this example, we focus on
knowledge representability and thus assume that a logic is suitable if it has
translations from and to many other logics. This ignores questions of availability
of reasoners for the respective logics, of tools performing the translations, and of
their performance. Such information is not yet available in the OntoIOp registry
itself, but could be compiled in a separate linked dataset that the registry would
link to.

PREFIX dol: <http://purl.net/dol/1.0/rdf#>

SELECT ?logic, COUNT(?targetLogic) AS ?t, COUNT(?sourceLogic) AS ?s WHERE {

?logic a dol:Logic ;

dol:translatableTo ?targetLogic ;

dol:translatableFrom ?sourceLogic .

} ORDER BY ?t, ?s
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7 Conclusion and Future Work

We have presented LoLa, an ontology of logics, languages, and mappings be-
tween them. This ontology formalises the semantics not only of these aspects of
the Distributed Ontology Language DOL, but also of the vocabulary employed
in the OntoIOp registry for extending the DOL framework with further logics,
languages and mappings. LoLa is a heterogeneous ontology consisting of a core
OWL module, which declares the vocabulary and provides a basic formalisation,
a Common Logic module providing additional first-order rules; furthermore we
employ DOL’s logic-independent circumscription facility to minimise the exten-
sion of default translations. Along with our plans to publish not only machine-
comprehensible descriptions of logics and mappings, but full formalisations, we
will also expand LoLa to formalise further features of the DOL language, such as
the vocabulary that describes the accuracy of a mapping (cf. Sec. 4).
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Ontologies have established themselves as a powerful tool to enable knowledge 
sharing, and a growing number of applications have benefited from the use of ontolo-
gies as a means to achieve semantic interoperability among heterogeneous, distributed 
systems [1]. With the evolution of cooperative and distributed systems, and the emer-
gence of the semantic Web, ontologies have become an indispensable resource. The 
number of ontologies available on the Web has also increased due to the appearance 
of several tools that assist users in creating their ontologies. This has posed problems 
of understanding and reuse of those resources already difficult to design. A solution 
was then proposed by the knowledge engineers namely modularization. Ontology 
modularization is crucial to support knowledge reuse on the ever increasing semantic 
Web [2]. However, modularization methods that serve the reuse goal are often in-
tended for humans to assist them in building new ontologies, rather than for applica-
tions that need only a relevant part of an existing ontology. Moreover, modules ob-
tained are always subject to verification and maintenance by humans to validate the 
semantic consistency of their contents. Unlike previous studies, we investigate in this 
paper how a modularization based on semantic comparison, may provide a module 
directly reusable by the application that requests it. Our contribution is twofold. On 
the one hand, it allows an application to extract and use a module that covers a sub-
domain from an ontology that covers a wider knowledge area, regardless of its struc-
ture and the formalism with which it is expressed. On the other hand, the user is re-
lieved from manually estimating the meaning of the components of the ontology, after 
the modularization process.  

The modularization approach we propose is part of the decomposition approaches 
of monolithic ontologies [3,4]. It is an extraction method since 
it aims to extract a relevant ontology module. The method should allow the user to 
express its needs by entering the concepts which interest him. The result is a fragment 
composed of concepts and relations that are relevant to the module i.e., which are in 
strong semantic relationship with the concepts submitted by the user. We define a 
strong semantic relationship between two concepts, as one of the six logic functions 
as follows: 
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─ Identity relationship: it is a semantic relation between two concepts that have the 
same syntax, the same attributes and operations. Example: Identity (Person, Per-
son). 

─ Synonymy relationship: it is a semantic relation between two concepts that express 
the same meaning. Example: Synonymy (Person, Individual). 

─ Classification Is-a relationship: two concepts where one is expressing a particular 
case of the other. Example: Is-a (Student, Person). 

─ Homonymy relationship: the same concept can have two different meanings. Ex-
ample: Homonymy (Bug, Bug). The first one means an insect. The second one 
means a fault in a computer system. 

─ Equivalence relationship: a semantic relationship between two concepts that play 
the same role. Example: Equivalence (Teacher, Professor). 

─ Antonymy relationship: is used between two concepts totally disjoint. Example: 
Antonymy (Registered, Visitor). 

For example, in an ontology that describes the human anatomy, the user is only in-
terested in the anatomy of the foot. The method should extract a coherent module, 
semantically rich on the foot, from the ontology of departure. 

Our approach is based on two basic steps: 

─ 1  step: Identifying concepts that are in strong semantic relationship with external 
concepts. 

st

─ 2  step: composition of the module based on the concepts identified in Step 1. All 
concepts that appear in the definition of the concepts identified are considered part 
of the module. 

nd

The goal is to allow a program to extract automatically a single part of an ontology 
without human intervention and without restrictions on the ontology structure. This 
will help programs to satisfy their requirements by reusing directly ontology portions. 
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To deal with autonomous agents’ knowledge and subjective beliefs in open, het-
erogeneous and inherently distributed settings, we need special formalisms that
combine knowledge from multiple and potentially heterogeneous interconnected
contexts. Each context contains a chunk of knowledge defining a logical theory,
called ontology unit). While standard logics may be used, subjectiveness and
heterogeneity issues have been tackled by knowledge representation formalisms
called contextual logics or modular ontology languages (e.g. [1] [2]).Nevertheless,
in distributed and open settings we may expect that different ontology units
should be combined in many different, subtle ways without making any assump-
tion about the disjointness of the domains covered by different units. To address
this issue we need to increase the expressivity of the language used for defining
correspondences.Towards this goal, we have been motivated to propose the rep-
resentation framework EDDL

HQ+ SHIQ (or simply E − SHIQ).

The EDDL
HQ+ SHIQ framework. Given a finite index set of units’ identifiers

I, each unit Mi consists of a TBox Ti, RBox Ri, and ABox Ai in the SHIQ
fragment of Description Logics[3].

Given an i ∈ I, let NCi , NRi and NOi be the sets of concept, role and
individual names respectively. For some R ∈ NRi

, Inv(R) denotes the inverse
role of R and (NR ∪ {Inv(R)|R ∈ NR}) is the set of SHIQ-roles. The set of
SHIQ-concepts is the smallest set constructed by the constructors in SHIQ.
Cardinality restrictions can be applied on R, given that R is a simple role. An
interpretation Ii = 〈∆Ii

i , ·Ii〉 consists of a domain ∆Ii
i 6= ∅ and the interpretation

function ·Ii which maps every C ∈ NCi
to CIi ⊆ ∆Ii

i , every R ∈ NRi
to

RIi ⊆ ∆Ii
i × ∆Ii

i and each a ∈ NOi to an element aIi ∈ ∆Ii
i . Elements and

axioms in unit Mi are denoted by i : c. Each Tbox Ti contains generalized
concept inclusion axioms, RBox Ri contains role inclusion axioms, and ABox
Ai contains assertions for individuals and their relations [3].

Towards combining knowledge in different units, the proposed framework
allows the connection of units via: (a) concept-to-concept subjective correspon-

dences [1] specified by onto-bridge rules i : C
w→ j : G, or into-bridge rules

i : C
v→ j : G, where i 6= j ∈ I. (b) Individual subjective correspondences

i : ai
=7→ j : bj , where ai ∈ NOi and bj ∈ NOj . The above mentioned subjective

correspondences concern the point of view of Mj . (c) Link-properties [2](or ij-
properties, i, j ∈ I ), which can be related via ij-property inclusion axioms, be
transitive and, if they are simple, be restricted by qualitative restrictions. The
sets of ij -properties’ names, i.e. the sets εij , i, j ∈ I, are not necessarily pair-
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wise disjoint, but disjoint with respect to NCi
, and NOi

. A set of ij -properties
connecting concepts of Mi with concepts of Mj , is defined as the set Eij = εij ,
i 6= j ∈ I, and in case i = j, it is the set Eij = εij ∪ {Inv(E)|E ∈ εji}, where εij
is the set of (local to Mi) role names. ij -properties are being used for specifying
concepts (so called i−concepts) in the Mi unit.

Transitive axioms are of the form Trans(E; (i, j)), where E ∈ Eij ∩ Eii, E
is transitive in Mi and transitive ij-property. Transitivity axioms and the finite
set of inclusion axioms for ij -properties form the ij -property box Rij (if i = j,
Rii = Ri). The combined property box RBox R is a family of ij -property
boxes. A combined TBox is a family of TBoxes T= {Ti}i∈I . A distributed ABox
A = {Ai}i∈I , includes a collection of individual correspondences, and property
assertions of the form (a ·Eij · b), where Eij ∈ Eij . A distributed knowledge base
Σ is composed as Σ = 〈T,R,B,A〉, where B = {Bij}i 6=j∈I is the collection
of bridge rules between ontology units. Each Rij , is interpreted by a valuation

function ·Iij that maps every ij -property to a subset of ∆Ii
i × ∆

Ij

j . Let Iij =

〈∆Ii
i , ∆

Ij

j , ·Iij 〉, i, j ∈ I. It must be noted that, for a specific i ∈ I and a property
E in the i-th unit, this property may be shared between different ij -property
boxes (i.e. for different j’s). In this case, the denotation of E is

⋃
j∈I E

Iij . A

domain relation rij , i 6= j from ∆Ii
i to ∆

Ij

j is a subset of ∆Ii
i × ∆

Ij

j , s.t. for

each d ∈ ∆Ii
i , rij(d) ⊆ {d′|d′ ∈ ∆

Ij

j }, and in case d′ ∈ rij(d1) and d′ ∈
rij(d2), then d1 = d2. For a subset D of ∆Ii

i , rij(D) denotes ∪d∈Drij(d). A
domain relation represents only equalities, i.e. each d1 ∈ rij(d) is equal to the
other individuals in rij(d). The distributed knowledge base is interpreted by a
Distributed Interpretation, I s.t. I = 〈{Ii}i∈I , {Iij}i,j∈I , {rij}i 6=j∈I〉.

We have specified a sound and complete distributed Tableau algorithm that
has been implemented by extending the Pellet reasoner 3. The instance retrieval
algorithm for the framework has been presented in [4].
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