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Abstract. Description logics are a family of logic-based formalisms used
to represent knowledge and reason on it. That knowledge, under the
form of concepts and relationships between them called terminological
axioms, is usually manually entered and used to describe objects in a
given domain. That operation being tiresome, we would like to automat-
ically learn those relationships from the set of instances using datamining
techniques. In this paper, we study association rules mining in the de-
scription logic EL. First, we characterize the set of all possible concepts
in a given EL language. Second, we use those characteristics to develop
an algorithm using formal concept analysis to mine the rules more effi-
ciently.
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1 Introduction

Ontologies are knowledge representation tools used in various domains of appli-
cation. The semantic web, for example, makes an extensive use of them. They
are essentially composed of a list of concepts relevant to a particular domain
and relations (mainly inclusion and equivalence, i.e. hierarchical relations) ex-
isting between them. Description Logics (DL) are increasingly popular logical
frameworks used to represent ontologies and on which is based the OWL1 lan-
guage for the semantic Web. They have a great representation power and allow
powerful reasoning tools. However, the construction of ontologies, usually per-
formed manually by knowledge engineers, is both a tedious and tricky operation.
One of the difficulties is to ensure the consistency and the completeness of the
set of relations between concepts. in order to facilitate this step, we propose to
automatize, at least partially, the process of relation generation.

Based on the lattice theory, Formal Concept Analysis (FCA) is a mathemat-
ical framework that also deals with concepts and their hierarchical relationships.
FCA provides solid theoretical foundations for association rule learning tools.

1 OWL is an acronym for Ontology Web Language, which is a W3C standard
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It therefore seems to be a good natural candidate for this task, i.e. for the au-
tomatic generation of relationships between concepts, from object descriptions,
i.e. from concept instances.

Despite differences between the use of the notion of concept in these two
formalisms, it would be interesting to combine them both and draw benefits
from their mutual advantages. This combination has already been investigated
and two main approaches exist. The first integrates operators of FCA to the
DL framework in order to be able to apply learning algorithms directly to a
knowledge base expressed in DL [4] [8], the second, which corresponds to our
present work, translates data from DL to a form comprehensible by FCA, in
other words, it interprets DL formalism within the lattice theory [2] [3] [7].

We claim that, by using the specific lattice structure of the set of concepts
of description logics, we will be able to modify classical FCA algorithms in
order to build complete and consistent sets of terminological axioms from object
descriptions given as assertions. This work, which constitutes a first attempt in
this direction, will make use of a simple description logic, which is EL. But, the
approach is not restricted to EL; it will certainly be possible to generalize it to
other DL, which will be investigated in further work.

Apart from the introduction and the conclusion, this paper is divided into
four parts. The first briefly recalls the usual definitions in both Description
Logics and Formal Concept Analysis, the second characterizes the structure of
the set of EL-concepts making use of the function Φ that is the set of subsets
of incomparable elements of a language, the third describes a simple association
rule learning algorithm that works within the set of EL-concepts previously
described. It then studies the properties of the set of terminological axioms that
it generates. The last part is dedicated to a brief example, which illustrates the
different notions presented in this paper.

2 Definitions and Recalls

2.1 Description Logics

Descriptions logics are decidable fragments of first-order logic used to represent
and reason on knowledge. Syntactically, every description logic language makes
use of a set of concept namesNC , a set of role namesNR and a set of object names
NO and combines them using constructors to build concept descriptions or, in
short, concepts. The set of constructors used defines the language’s expression
power and the complexity of its reasoning procedures. In this paper, we will
consider the logic EL. In it, every concept name is a concept description and, for
any concept descriptions A and B and any role r, AuB and ∃r.A are also concept
descriptions. Having only two constructors, this logic is one of the simplest.

Semantics are defined by means of interpretations. An interpretation is a pair
I = (∆I , .I) where ∆I is a set of objects called the domain and .I a function
mapping every concept name C to a subset CI of ∆I and every role name r
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to a binary relation rI ⊆ ∆I ×∆I . As such, concepts are defined by the set of
objects which belong to them.

An important notion in description logic systems is the subsumption relation
between concept descriptions. Given two concept descriptions C and D, we say
that D subsumes C (C v D) if the set of objects belonging to C is included in
the set of objects belonging to D (CI ⊆ DI) for all interpretations I. For a given
TBox T , we say that D subsumes C with respect to T (C vT D) if CI ⊆ DI

for every model of T . If C v D and D v C, it gives the definition C ≡ D.
Constructions such as C v D and C ≡ D expressing subsumption relations are
called terminological axioms.

For any given concept C, role r and object names o and o′, o : C and (o, o′) : r
are called assertional sentences. The constructions o : C means that the object
o belongs to the concept C and (o, o′) : r means that the object o′ fulfills the
role r for the object o.

A knowledge base consists of a TBox and an ABox. The TBox is constituted
of terminological axioms, which we try to learn in this paper, and concept defi-
nitions. The ABox is a set of assertional sentences and can be viewed as a set of
descriptions of objects.

2.2 Formal Concept Analysis

In formal concept analysis (FCA), we call formal context a triplet (O,A,R)
where O is a set of objects, A a set of attributes and R a binary relation between
objects and attributes. We say here that (o, a) ∈ R means that a describes o.

We have at our disposal two functions .′ such as

.′ : 2A 7→ 2O

A′ =
⋂
a∈A
{o ∈ O | (o, a) ∈ R} (1)

and

.′ : 2O 7→ 2A

O′ =
⋂
o∈O
{a ∈ A | (o, a) ∈ R} (2)

A′ is then the set of objects described by every attribute of A and O′ is the
set of attributes describing every object of O. If A ⊆ B, then B′ ⊆ A′ and if
O ⊆ P then P ′ ⊆ O′. As such, those two functions form a Galois Connection.

A formal concept is defined as a pair (E, I) ∈ AO × 2A where E = I ′

and I = E′. We say that E and I are closed. E and I are respectively called
the extent and the intent of the concept. In order to prevent confusion, formal
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concept will not be abbreviated and the term concept will be used exclusively
for DL-concepts.

We call FC(O,A,R) the set of formal concepts we can find in (O,A,R).
We can define an order < (a relation “is more general than”) on this set such
as (E, I) < (F, J) ⇔ (F ⊂ E and I ⊂ J) and the pair (FC(O,A,R), <)
satisfies the properties of a complete lattice. Such a lattice is called a concept
(or Galois) lattice. For example, for a formal context in which O = {a, b, c, d, e},
A = {1, 2, 3, 4, 5} and R = {(a, 2), (a, 4), (b, 3), (b, 5), (c, 1), (c, 2), (c, 4), (d, 2),
(d, 3), (e, 2), (e, 4)} we obtain the following concept lattice.

({},{1,2,3,4,5})

({c},{1,2,4}) ({b},{3,5}) ({d},{2,3})

({a,c,e},{2,4}) ({b,d},{3})

({a,b,c,d,e},{})

Fig. 1. A Concept Lattice

FCA allows us to find implications in the formal context which are ordered
pairs (B,C), often written B → C. An implication B → C holds in a context if
every object described by every attribute in B is also described by every attribute
in C.

Definition 1. We say that a set X ∈ A respects an implication B → C if
B ⊆ X implies C ⊆ X.

An implication B → C follows from a set of implications L if every X ∈ A
that respects every implication in L respects B → C. A set L of implications
is then called a basis if every implication in L holds in the context and every
implication that holds in the context follows from L.

It is a known fact that {X → X ′′ | X ⊆ A} is an implicational basis which
means that, in order to obtain a basis of minimal cardinality, we need only to
find implications whose right-hand side are concept intents. Finding suitable
left-hand side has thus been the subject of many works.

Definition 2. A set X ∈ A is a pseudo-intent of the context (O,A,R) if X is
not a concept intent and, for all pseudo-intent Y ⊂ X, Y ′′ ⊆ X.
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Definition 3. The set of implications {X → X ′′ | X is a pseudo-intent} is
called a Duquenne-Guigues Basis.

The Duquenne-Guigues Basis is the minimal set of implication from which
we can find every other implications that hold through inference.

3 The Set of Concept Descriptions

Before using an association rules learning algorithm, we will study the structure
of the set of concepts one can build with the description logic EL.

We will use Ω to denote the set of terminological axioms A v B in an acyclic
TBox T . NC = AC ∪DC will denote the set of concept names used in T with
AC the set of atomic concepts and DC the set of defined concepts, appearing in
the left hand side of definitions. The set of pairs (C1, C2) such as C1 ≡ C2 will
be called Def(T ). Ω induces a partial order on the set of equivalence classes of
concepts, noted NC≡ , used in axioms (if (x u y v z) ∈ Ω, we will consider there
is some d in DC such as d ≡ x u y). We will simply use b ≤ a for [a]≡ v [b]≡.
(NC≡ ,≤) is then a partially ordered set such as, for all x in NC , [>]≡ ≤ [x]≡.
For clarity purposes, we will now use CN0 to denote a set of concept names
containing a unique representative of each equivalence class together with the
order ≤. Obviously, CN0 is isomorphic to (NC≡ ,≤).

We are interested in the set of every possible concept we can construct with
NC , NR and the constructors u and ∃. Suppose there are two concepts A and
B such as A v B. This means that AI ⊆ BI so A uB ≡ A. Those two concept
descriptions being equivalent we consider they are the same and we do not want
to include both of them in the set of possible concepts. As such, we want the set
of concepts resulting from the conjunction of incomparable elements.

Definition 4. We call Φ(CN0) = {X ⊆ CN0 | x ∈ X ∧ y ∈ X ⇒ x||y} the set
of subsets of incomparable elements of CN0

We call Φ(CN0) the set of subsets of incomparable elements of CN0 and
uA the concept built from the conjunction of the elements of A. For any two
elements C,D ∈ Φ(CN0), we say that C ≤ D if and only if uD v uC. That
is, C ≤ D if and only if for every element c ∈ C there is some d ∈ D such
as c ≤ d. Evidently, Φ(CN0) is isomorphic to the set of ideals of CN0 ordered
by inclusion and its elements are the sets of maximal elements of those ideals.
Φ(CN0) is then a distributive lattice.

Proposition 1. For any two elements A,B ∈ Φ(CN0), A ∧ B = Max({x ∈
CN0 | ∃a ∈ A, ∃b ∈ B, x ≤ a & x ≤ b}) and A ∨B = Max(A ∪B).

u(A ∧ B) corresponds to the least common subsumer of uA and uB and
u(A ∨ B) to the most specific concept subsumed by uA and uB. They can be
easily computed from CN0.

Φ(CN0) being finite and distributive, for all A and B in Φ(CN0), there is a
least element X such as A∨X ≥ B called difference and noted B \A. It is equal
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to Max(↓ B\ ↓ A) where ↓ A is the set of elements lower or equal to elements
of A in CN0.

Proposition 2. For a given linear extension σ of CN0, the relation A B ⇔
B \A = Maxσ(B) defines a spanning tree of the covering graph of Φ(CN0).

The spanning tree gives us, for every element A ∈ Φ(CN0), a unique path
from {>} to A in which A B ⇒ A ≤ B.

Φ(CN0) is the set of different conjunctions of concept names based on the
subsumption relation. However, the TBox can also contain equivalences between
elements of Φ(CN0). If (A,B u C) ∈ Def(T ) then B ≤ A and C ≤ A in
CN0. In Φ(CN0), {A} is thus strictly greater than {B,C}. Those two concepts
being equivalent, every element greater or equal to {B,C} and lower than {A}
is considered redundant.

Definition 5. Φ(CN0)Def(T ) = Φ(CN0) \ {B | (A,B) ∈ Def(T )} is the set of
subsets of incomparable elements of CN0 without the elements corresponding to
right-hand sides of definitions of Φ(C,≤X)Def(T ) the TBox.

Proposition 3. For any two elements A,B ∈ Φ(CN0)Def(T ), A ∧B in
Φ(CN0)Def(T ) is equal to A ∧B in Φ(CN0).

Proposition 4. For all A and B in Φ(CN0)Def(T ), the difference A \ B in
Φ(CN0) is an element of Φ(CN0)Def(T ).

These operations on Φ(CN0)Def(T ) are thus the same than on Φ(CN0). The
differences appear when we try to compute the upper cover of an element D, i.e.
elements immediately greater than D. We call Cand – for candidate – the set of
minimal elements not lower than elements of D in CN0. In Φ(CN0), the upper
cover of D is then {Max(D∪ c) | c ∈ Cand}. In Φ(CN0)Def(T ), if there is some
(L,R) ∈ Def(T ) such as L ≥ Max(D ∪ c) ≥ R, c must be removed from the
list of candidates and L added if it is minimal in Cand \ c. In order to find the
elements following D in the spanning tree of Φ(CN0)Def(T ) induced by some σ
it would then be sufficient to remove the candidates c such as c ≤σ d for some d
in D. The algorithm is as follows :

Algorithm 1

Require: CNn, D
1: Cand = {c ∈ CNn | c ∈Min(CN0\ ↓ D) and ∀d ∈ D, c ≥σ d}
2: for each c ∈ Cand do
3: if ∃(L,R) ∈ Def(T ) such as L ≥Max(D ∪ c) ≥ R then
4: Cand = Min((Cand \ c) ∪ L)
5: end if
6: end for
7: Return {Max(D ∪ c) | c ∈ Cand}
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Now, Φ(CN0)Def(T ) is only the lattice of concepts built from a conjunction
of concept name without roles. However, it gives us informations on the struc-
ture of the set of role-concepts. We know that, for a given role r, A v B ⇒
∃r.A v ∃r.B. The partially ordered set of roles of a depth 1 is then isomorphic

to Φ(CN0)Def(T ). We use CN1
r to denote it. If CN1 = CN0

⋃|NR|
i=1 CN1

ri is the
set of both concept names and roles of depth 1 together with the partial order
induced by Ω, then Φ(CN1)Def(T ) is the lattice of concepts containing roles

up to a depth 1. Recursively, Φ(CNn)Def(T ) where CNn = CN0
⋃|NR|
i=1 CNn

ri
with CNn

ri isomorphic to Φ(CNn−1)Def(T ) is the set of every possible concept
descriptions up to an arbitrary role depth n.

4 Learning Axioms with Formal Concept Analysis

As we said previously, we take the approach of creating a formal context corre-
sponding to the DL-objects we want to manipulate. More precisely, we use the
formal context (O,A,R) where O is a set of objects, A = Φ(CNn)Def(T ) is the
set of every possible concept descriptions defined in Section 2.2 and R ⊆ O×A
is the relation associating objects to the most specific concept to which they
belong. In that respect, it is very similar to contexts from Logical Concept Anal-
ysis [5] or the work of Baader [1] which also deals with finding implications in
EL.

We re-define the following operators :

.′ : A 7→ 2O

X ′ = {o ∈ O | oRa⇒ X ≤ a} (3)

and

.′ : 2O 7→ A

O′ =
∧
{a ∈ A | o ∈ O ⇒ oRa} (4)

The first operator maps a concept description to the set of objects belonging
to it while the second is the generalization of the most specific concepts describing
the objects, which corresponds to the infimum in the lattice.

Now, if we want to get implications of the form X → X ′′ \ X, we cannot
use the set-theoretic difference directly. The difference B \A in the distributive
lattice defined in the previous section corresponds to the most general concept
whose conjunction with A would be more specific than B. It can also be seen
intuitively as the part of B not covered by A. Thus, in the remainder of this
work, we will use this definition of the difference.

By using the structure of Φ(CNn)Def(T ), we can enumerate concept descrip-
tions and get a set of implications by using the following algorithm :
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Algorithm 2

Require: CNn, σ
1: Open = {{>}}
2: for every minimal element X of minimal role depth in Open do
3: C = X ′′

4: if C 6= X then
5: Update CNn with X → C \X
6: Add elements following X in the spanning tree of Φ(CNn)def(T ) to Open
7: end if
8: end for

Beginning with {>}, the least element of Φ(CNn)def(T ), we classically com-
pute its closure. We then compute the closure of every element of Φ(CNn)def(T )

immediately greater than {>} and so on. Of course, an element of the upper
cover of D should not be considered if it contains an element that does not sub-
sume any description of elements of D′. As soon as X ′′ is different from X a
new implication is found and CNn is updated, adding a new element to DC if
necessary, and X becomes a closed set of the new Φ(CNn)def(T ).

For any minimal element X in Open, the elements of its lower cover are
closed sets. As such, for any Y ⊂ X, Y ′′ ⊆ X. If X 6= X ′′, X is a pseudo-intent.
Thus, by considering a minimal element of Open at every step of the algorithm,
we make sure we obtain the Duquenne-Guigues Basis of the original context. As
a new implication A → B changes the structure of the lattice for role concepts
we must select the minimal elements in ascending role-depth order.

As an element is added to NC for every AuB v C found and AuB becomes
a closed element of the new Φ(CNn)def(T ), the algorithm terminates with CNn

isomorphic to the concept lattice of the formal context minus the maximal formal
concept.

The method we propose in this paper is similar to the one presented by
Rudolph in [6]. However, we feel some important differences must be pointed
out. First, our algorithm immediately considers all concepts up to the maximum
role depth instead of using a different learning phase for each depth. Second,
new implications are immediately included in the background knowledge. We
believe this is especially important for axioms of the form A v B u ∃r.C where
A v B would be found a first time before the step including roles.

5 Example

In our example, NC = {Man, Woman, Father, Mother, Parent, GrandFather,
GrandMother} and NR = {hasChild}. Moreover, we know that

Motherv Woman u Parent

We consider the following set of objects described by concept descriptions
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Bob : Man u Father u Parent u ∃hasChild.Man
Bill : Man
Benjamin : Man u GrandFather u Father u Parent ∃hasChild.(Man u Father u Parent)
Bertrand : Man u GrandFather u Father u Parent u ∃hasChild.(Mother u Parent)
Bernard : Man u Father u Parent u ∃hasChild.Woman
Clara : Mother u ∃hasChild.Woman
Coralie : Mother u GrandMother u ∃hasChild.(Man u Father u Parent)
Claire : Mother u GrandMother u ∃hasChild.(Mother u Parent)
Chloe : Woman

Initially, Open = {>} and CNn is as follows :

>

Father Woman GrandMother Parent ∃hasChild.> GrandFather Man

Mother
... ...

Fig. 2. CNn at Step 0 (irrelevant role-concepts omitted)

>′′ = ∅ so there is no new implication.

Open = {Woman, Father, GrandMother, Parent, ∃hasChild.>, GrandFather,
Man}

Woman′′ = ∅ so there is no new implication.

Open = {Father, GrandMother, Parent, ∃hasChild.>, GrandFather, Man,
Mother, {Woman, Father}, {Woman, GrandMother}, {Woman, Parent}, {Woman,
∃hasChild.>}, {Woman, GrandFather}, {Woman, Man}}

Father′′ ={Father, Man, Parent, ∃hasChild.>} so The implication Father →
{Man, Parent, ∃hasChild.>} is added.

CNn is then updated.
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>

Woman GrandMother Parent Man ∃hasChild.> GrandFather

Mother Father
... ...

Fig. 3. CNn at Step 3 (irrelevant role-concepts omitted)

Open = {GrandMother, Parent, ∃hasChild.>, GrandFather, Man, Mother,
{Woman, Father}, {Woman, GrandMother}, {Woman, Parent}, {Woman, ∃hasChild.>},
{Woman, GrandFather}, {Woman, Man}, {Father, GrandMother}, {Father, Grand-
Father}, {Father, ∃hasChild.Parent}, {Father, ∃hasChild.Woman}, {Father, ∃hasChild.Man}}

Others implications are then found for GrandMother, Parent, ∃hasChild.>,
{Woman, Parent}, GrandFather, {Father, ∃hasChild.Parent}, {Man, Parent},
{Mother, ∃hasChild.Parent}, {Father, ∃hasChild.Parent}. The algorithm termi-
nates with CNn in the following state.

>

Woman Parent Man

Mother ∃hasChild.Parent Father

GrandMother GrandFather

Fig. 4. CNn at the end of the algorithm (irrelevant role-concepts omitted)

Note that ∃hasChild.> does not appear in CNn because it has been found
equivalent to Parent.

The following terminological axioms have been found :

Father ≡ Parent u Man
Mother ≡ Parent u Woman

GrandMother ≡ Mother u ∃hasChild.Parent
GrandFather ≡ Father u ∃hasChild.Parent

∃hasChild.> ≡ Parent
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6 Conclusion

As mentionned in the introduction, this research aims at completing the TBox
with terminological axioms learned from assertions contained in an ABox. Our
approach translates data from DL formalism, that is instances of the ABox,
to a form homogeneous to FCA, i.e. to lattices. More precisely, by using the
lattice structure of the set of concepts of description logics, we modify classical
FCA algorithms in order to build complete and consistent sets of terminological
axioms from object descriptions given as assertions.

In this paper, we have restricted our approach to EL. We have shown that
the set of EL-concept descriptions, ordered by the subsumption relation, is iso-
morphic to a certain subset – that depends on the definitions of the TBox –
of the lattice of ideals of the partially ordered set of equivalence classes built
on the union of concept names and role concepts. We then proposed a simple
algorithm exploiting this structure to learn terminological axioms from exam-
ples. Every implication found in the data is added to the TBox. We can easily
make this algorithm interactive. More precisely, it is possible to change it into
an attribute exploration-like algorithm in which experts are asked about each
axiom and may give counterexamples. In this work, we dealt with description
logic EL but the main idea of considering sets of incomparable concepts names
is also valid for DLs with the concept ⊥ or the constructor ∀. However, it no
longer works with constructors such as the negation because it adds new con-
straints between concept names. More complex DL languages will be the subject
of future investigations on our part.

References

1. Franz Baader and Felix Distel. A finite basis for the set of el-implications holding
in a finite model. In In ICFCA, vol.4933 of LNAI, pages 46–61. Springer Verlag,
2008.

2. Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. Completing
description logic knowledge bases using formal concept analysis. In In Proc. of
IJCAI 2007, pages 230–235. AAAI Press, 2007.

3. Franz Baader and Baris Sertkaya. Applying formal concept analysis to description
logics. In Peter Eklund, editor, Concept Lattices, volume 2961 of Lecture Notes in
Computer Science, pages 593–594. Springer Berlin / Heidelberg, 2004.

4. Felix Distel. Learning Description Logic Knowledge Bases from Data Using Methods
from Formal Concept Analysis. PhD thesis, Technische Universität Dresden, 2011.
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