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Abstract. Since its development attribute exploration was successfully
applied in different fields, proving itself as a strong tool for knowledge
acquisition. However, the disadvantage of this method is that it can be
applied only for binary data. The growing number of applications of fuzzy
logic in numerous domains including formal concept analysis makes it a
natural wish to generalise the powerful technique of attribute exploration
for fuzzy data. It is this paper’s purpose to fulfill this wish and present
a generalisation of attribute exploration to the fuzzy setting.
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1 Introduction

Attribute exploration, as introduced in [1], is a tool for knowledge discovery by
interactive determination of the implications holding between a given set of at-
tributes. This method is especially useful when the examples, objects having the
considered attributes, are infinite, hardly to enumerate or (partially) unknown.
The user is asked whether some implications (the smallest set of implications
from which all the other implications can be derived) hold. If the answer is affir-
mative, the next implication is considered. If, however, the implication is false,
the user has to provide a counterexample. This method assumes that the user can
distinguish between true and false implications and that he can provide coun-
terexamples for false implications. The result of the attribute exploration is a set
of implications which are true in general for the attributes under consideration
and a representative set of examples for the whole theory.

Attribute exploration was successfully applied in different areas of research,
for a brief overview see Subsection 2.1.

Formal fuzzy concept analysis goes back to [2, 3]. Its need arose by the fact
that objects can have attributes with some truth degree instead of either having
or not having them, reflecting that life is not just black and white. In such a
fuzzy setting one can also be interested in the implications between attributes.
These are formulas like A ⇒ B, where A and B are fuzzy sets of attributes.
Such implications can be interpreted in fuzzy contexts, meaning that if objects
have the attributes from A to at least the degree a, then they also have the at-
tributes from B to at least the degree b. Attribute implications in a fuzzy setting
were mainly developed and investigated by R. Belohlavek and V. Vychodil in
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a series of papers, see for example [4, 5]. Due to the large number of fuzzy at-
tribute implications in a formal fuzzy context, one is interested in the smallest
set of attribute implications, the so-called stem base, from which all the other
implications can be derived. The problem of determining the stem bases for the
crisp case was studied in [6], see also [1]. However, in the fuzzy setting these
stem bases need neither to be unique nor to exist. These facts split the problem
of fuzzy attribute exploration into two cases, as we will see in Sections 3 and 4.
We will show under which conditions an attribute exploration in a fuzzy setting
can be performed successfully. The research in attribute exploration in the fuzzy
setting is still at its beginning. We expect for it at least the same popularity in
applications as its crisp variant has gained.

The article is structured as follows: In Section 2 we give short introductions
to attribute exploration in the crisp setting, fuzzy sets and fuzzy logic, formal
fuzzy concept analysis and implications in such a setting. Section 3 first presents
how the stem bases can be computed in a fuzzy setting using the globalisation
and afterwards it focuses on attribute exploration in such a setting. In Section 4
we treat the same subject as in the section before but this time we use a general
hedge in the residuated lattice for the exploration. The last section contains
concluding remarks and further topics of research.

2 Preliminaries

2.1 Crisp Attribute Exploration

We assume basic familiarities with Formal Concept Analysis and refer the reader
to [1].

Attribute exploration ([1]) permits the interactive determination of the im-
plications holding between the attributes of a given context. However, there are
situations when the object set of a context is too large (possibly infinite) or
difficult to enumerate. With the examples (possibly none) of our knowledge we
build the object set of the context step-by-step. The stem base of this context
is built stepwise and we are asked whether the implications of the base are true.
If an implication holds, then it is added to the stem base. If however, an impli-
cation does not hold, we have to provide a counterexample. While performing
an attribute exploration we have to be able to distinguish between true and
false implications and to provide correct counterexamples for false implications.
This is a crucial point since the algorithm is naive and will believe whatever
we tell it. Once a decision was taken about the validity of an implication the
choice cannot be reversed. Therefore, the counterexamples may not contradict
the so-far confirmed implications. The procedure ends when all implications of
the current stem base hold in general. This way we obtain an object set which
is representative for the entire theory, theory which may also be infinite.

The following proposition justifies why we do not have to reconsider the
already confirmed implications:

Proposition 1. ([1]) Let K be a context and P1, P2, . . . , Pn be the first n pseudo-
intents of K with respect to the lectic order. If K is extended by an object g the
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object intent g↑ of which respects the implications Pi → P ↓↑i , i ∈ {1, . . . , n},
then P1, P2, . . . , Pn are also the lectically first n pseudo-intents of the extended
context.

As mentioned in the introductory section, attribute exploration was success-
fully applied in both theoretical and practical research domains. On the one hand
it facilitated the discovery of implications between properties of mathematical
structures, see for example [7–9]. On the other hand it was also used in real-life
scenarios, for instance in civil engineering ([10]), chemistry ([11]), information
systems ([12]), etc.

The algorithm is implemented in different formal concept analytical tools, as
for example in ConExp1 and Conexp-clj2.

There are also further variants of attribute exploration, for instance attribute
exploration with background knowledge for the case that the user knows in ad-
vance some implications between the attributes that hold ([13, 14]). Another
possibility is to perform concept exploration as presented in [15]. By replacing
the implications with Horn clauses from predicate logic one obtains the so-called
rule exploration developed in [16].

2.2 Fuzzy Sets and Fuzzy Logic

In this subsection we present some basics about fuzzy sets and fuzzy logic. The
interested reader may find more details for instance in [17, 3].

A complete residuated lattice with truth-stressing hedge (shortly,
a hedge) is an algebra L := (L,∧,∨,⊗,→,∗ , 0, 1) such that: (L,∧,∨, 0, 1) is a
complete lattice; (L,⊗, 1) is a commutative monoid; 0 is the least and 1 the
greatest element; the adjointness property, i.e., a⊗ b ≤ c⇔ a ≤ b→ c, holds for
all a, b, c ∈ L. The hedge ∗ is a unary operation on L satisfying the following:

i) a∗ ≤ a,

ii) (a→ b)∗ ≤ a∗ → b∗,

iii) a∗∗ = a∗,

iv)
∧

i∈I a
∗
i = (

∧
i∈I ai)

∗,

for every a, b, ai ∈ L (i ∈ I). Elements of L are called truth degrees, ⊗ and →
are (truth functions of) “fuzzy conjunction” and “fuzzy implication”. The hedge
∗ is a (truth function of) logical connective “very true”, see [17, 18]. Properties
(i)-(iv) have natural interpretations, i.e., (i) can be read as “if a is very true,
then a is true”, (ii) can be read as “if a→ b is very true and if a is very true, then
b is very true”, etc. From the mathematical point of view, the hedge operator is
a special kernel operator which controls the size of the fuzzy concept lattice.

A common choice of L is a structure with L = [0, 1], ∧ and ∨ being minimum
and maximum, ⊗ being a left-continuous t-norm with the corresponding→. The

1 http://conexp.sourceforge.net/
2 http://daniel.kxpq.de/math/conexp-clj/
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three most important pairs of adjoint operations on the unit interval are:

Lukasiewicz: a⊗ b := max(0, a + b− 1) with a→ b := min(1, 1− a + b),

Gödel: a⊗ b := min(a, b) with a→ b :=

{
1, a ≤ b
b, a � b

,

Product: a⊗ b := ab with a→ b :=

{
1, a ≤ b
b/a, a � b

.

Typical examples for the hedge are the identity, i.e., a∗ := a for all a ∈ L, and
the globalization, i.e., a∗ := 0 for all a ∈ L \ {1} and a∗ := 1 if and only if a = 1.

Let L be the structure of truth degrees. A fuzzy set (L-set) A in a uni-
verse U is a mapping A : U → L, A(u) being interpreted as “the degree
to which u belongs to A”. If U = {u1, . . . , un}, then A can be denoted by
A = {a1/u1, . . . ,

an /un} meaning that A(ui) equals ai for each i ∈ {1, . . . , n}.
Let LU denote the collection of all fuzzy sets in U . The operations with fuzzy
sets are defined component-wise. For example, the intersection of fuzzy sets
A,B ∈ LU is a fuzzy set A ∩ B in U such that (A ∩ B)(u) = A(u) ∧ B(u) for
each u ∈ U , etc. Binary fuzzy relations (L-relations) between G and M can be
thought of as fuzzy sets in the universe G×M . For A,B ∈ LU , the subsethood
degree is defined as

S(A,B) :=
∧
u∈U

(A(u)→ B(u)),

which generalises the classical subsethood relation ⊆. Therefore, S(A,B) repre-
sents a degree to which A is a subset of B. In particular, we write A ⊆ B iff
S(A,B) = 1.

2.3 Formal Fuzzy Concepts and Concept Lattices

In the following we give brief introductions to Formal Fuzzy Concept Analysis
[2, 3].

A triple (G,M, I) is called a formal fuzzy context if I : G×M → L is
a fuzzy relation between the sets G and M and L is the support set of some
residuated lattice. Elements from G and M are called objects and attributes,
respectively. The fuzzy relation I assigns to each g ∈ G and each m ∈ M the
truth degree I(g,m) ∈ L to which the object g has the attribute m. For fuzzy
sets A ∈ LG and B ∈ LM the derivation operators are defined by

A↑(m) :=
∧
g∈G

(A(g)∗ → I(g,m)), B↓(g) :=
∧

m∈M
(B(m)→ I(g,m)), (1)

for g ∈ G and m ∈ M . Then, A↑(m) is the truth degree of the statement “m
is shared by all objects from A” and B↓(g) is the truth degree of “g has all
attributes from B”. The operators ↑,↓ form a so-called Galois connection with
hedges ([19]). A formal fuzzy concept is a tuple (A,B) ∈ LG×LM such that
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A↑ = B and B↓ = A. Then, A is called the (fuzzy) extent and B the (fuzzy)
intent of (A,B). We denote the set of all fuzzy concepts of a given context
(G,M, I) by B(G∗,M, I). Concepts serve for classification. Consequently, the
super- and subconcept relation plays an important role. A concept is called
superconcept of another if it is more general, i.e., if it contains more objects. More
formally, (A1, B1) is a subconcept of (A2, B2), written (A1, B1) ≤ (A2, B2), iff
A1 ⊆ A2 (iff B1 ⊇ B2). Then, we call (A2, B2) the superconcept of (A1, B1).
The set of all fuzzy concepts ordered by this concept order forms a complete fuzzy
lattice (with hedge), the so-called fuzzy concept lattice which is denoted by
B(G∗,M, I) := (B(G∗,M, I),≤), see [20].

The fuzzy lectic order ([21]) is defined as follows: Let L = {l0 < l1 < · · · < ln}
be the support set of some residuated lattice. For a := (i, j) and b := (h, k), where
a, b ∈M × L, we write

a ≤ b :⇐⇒ (i < h) or (i = h and lj ≥ lk).

For B ∈ LM and (i, j) ∈M × L we define

B ⊕ (i, j) := ((B ∩ {1, 2, . . . , i− 1}) ∪ {aj/i})↓↑.

Furthermore, for B,C ∈ LM define

B <(i,j) C :⇐⇒ B ∩ {1, . . . , i− 1} = C ∩ {1, . . . , i− 1} and B(i) < C(i) = aj .

We say that B is lectically smaller than C, written B < C, if B <(i,j) C for
some (i, j). As in the crisp case we have that B+ := B⊕ (i, j) is the least intent
which is greater than a given B with respect to < and (i, j) is the greatest with
B <(i,j) B ⊕ (i, j).

Example 1. Consider the formal fuzzy context (G,M, I) given in Figure 1. Us-
ing the Lukasiewicz logic with the identity as hedge we obtain 15 formal fuzzy
concepts. For example ({Mo, T,0.5 /W}, {c, r}) is a fuzzy concept. We could
name it the concept of cold and rainy days because of its intent. Then, Mon-
day, Tuesday and partially Wednesday belong to this concept, i.e., they are cold
and rainy days. Another example is ({0.5/W, Th, F}, {w}) which corresponds to
warm days. Yet another example are the warm and partially rainy days given
by ({0.5/W, Th,0.5 /F}, {w,0.5 /r}). The fuzzy concept lattice is displayed on the
left side in Figure 2. For better legibility we did not use all the labels. Using the
globalisation instead of the identity, we obtain 10 formal fuzzy concepts which
are displayed on the right in Figure 2. The concepts obtained through the global-
isation need not be a subset of those obtained with the identity. In this example
this case does not appear. Using the Gödel structure one obtains 13 concepts
with the identity and 10 with the globalisation.

2.4 Fuzzy Implications and Non-redundant Bases

As already mentioned, fuzzy implications were studied in a series of papers by
R. Belohlavek and V. Vychodil, for instance in [4, 5].
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warm (w) cold (c) rainy (r)

Monday (Mo) 0 1 1
Tuesday (T) 0 1 1

Wednesday (W) 0.5 0.5 1
Thursday (Th) 1 0 0.5

Friday (F) 1 0 0

Fig. 1. Example of a fuzzy formal context
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0.5/w

w

Fig. 2. Formal fuzzy concept lattices

A fuzzy attribute implication (over the attribute set M) is an expression
A⇒ B, where A,B ∈ LM . The verbal meaning of A⇒ B is: “if it is (very) true
that an object has all attributes from A, then it also has all attributes from B”.
The notions “being very true”, “to have an attribute”, and logical connective
“if-then” are determined by the chosen L. For a fuzzy set N ∈ LM of attributes,
the degree ||A⇒ B||N ∈ L to which A⇒ B is valid in N is defined as

||A⇒ B||N := S(A,N)∗ → S(B,N).

If N is the fuzzy set of all attributes of an object g, then ||A ⇒ B||N is the
truth degree to which A ⇒ B holds for g. For a set N ⊆ LM , the degree
||A⇒ B||N ∈ L to which the implication A⇒ B holds in N is defined by

||A⇒ B||N :=
∧

N∈N
||A⇒ B||N .

For a fuzzy context (G,M, I), let Ig ∈ LM (g ∈ G) be a fuzzy set of attributes
such that Ig(m) = I(g,m) for each m ∈ M . Clearly, Ig corresponds to the row
labelled g in (G,M, I). The degree ||A⇒ B||(G,M,I) ∈ L to which A⇒ B holds
in (each row of) K = (G,M, I) is defined by

||A⇒ B||K = ||A⇒ B||(G,M,I) := ||A⇒ B||N ,
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where N := {Ig | g ∈ G}. Denote by

Int(G∗,M, I) := {B ∈ LM | (A,B) ∈ B(G∗,M, I) for some A}

the set of all intents of B(G∗,M, I). Since N ∈ LM is the intent of some concept
if and only if N = N↓↑, we have Int(G∗,M, I) = {N ∈ LM | N = N↓↑}.
The degree ||A ⇒ B||B(G∗,M,I) ∈ L to which A ⇒ B holds in (the intents of)
B(G∗,M, I) is defined by

||A⇒ B||B(G∗,M,I) := ||A⇒ B||Int(G∗,M,I).

Lemma 1. ([22]) Let (G,M, I) be a fuzzy context. Then,

||A⇒ B||(G,M,I) = ||A⇒ B||B(G∗,M,I) = S(B,A↓↑)

for each fuzzy attribute implication A⇒ B.

Example 2. Consider once again the fuzzy context given in Figure 1. Using the
Lukasiewicz logic and the globalisation as the hedge we have ||c⇒ r||(G,M,I) = 1,
i.e., this is a true implication. However, in the fuzzy case, there are implications
which are valid to a certain degree different from 1, for instance we have the
implication ||c ⇒ {0.5/w, r}||(G,M,I) = 0.5. We obtain the same truth value
for these implications also by using the identity. Consider the Gödel logic with
the globalisation. For example, we have the implication ||w, r ⇒ c||(G,M,I) = 1
but using the identity this implication holds with the truth value 0. This is
due to the fact that we have {w, r}↓↑ = {w, r, c} with the globalisation and
{w, r}↓↑ = {w, r} with the identity.

Due to the large number of implications in a fuzzy and even in a crisp formal
context, one is interested in the stem base of the implications. The stem base
is a set of implications which is non-redundant and complete. The problem for
the fuzzy case was studied in [5, 22, 23]. Neither the existence nor the uniqueness
of the stem base for a given fuzzy context is guaranteed in general. How these
problems can be overcome is the topic of the rest of this subsection. For a more
detailed description we refer the reader to the papers cited above.

Let T be a set of fuzzy attribute implications. A fuzzy attribute set N ∈ LM

is called a model of T if ||A ⇒ B||N = 1 for each A ⇒ B ∈ T . The set of all
models of T is denoted by Mod (T ), i.e.,

Mod (T ) := {N ∈ LM | N is a model of T}.

The degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows from T is
defined by ||A⇒ B||T := ||A⇒ B||Mod(T ). T is called complete (in (G,M, I))
if ||A ⇒ B||T = ||A ⇒ B||(G,M,I) for each A ⇒ B. If T is complete and no
proper subset of T is complete, then T is called a non-redundant basis.

Theorem 1. ([5]) T is complete iff Mod (T ) = Int(G∗,M, I).

As in the crisp case the stem base of a given fuzzy context can be obtained
through the pseudo-intents.
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Definition 1. P ⊆ LM is called a system of pseudo-intents if for each
P ∈ LM we have:

P ∈ P ⇐⇒ (P 6= P ↓↑ and ||Q⇒ Q↓↑||P = 1 for each Q ∈ P with Q 6= P ).

For each (G,M, I) there exists a unique system of pseudo-intents, if ∗ is the
globalisation and M is finite (this does not hold for the other hedges in general).

Theorem 2. ([22]) T := {P ⇒ P ↓↑ | P ∈ P} is complete and non-redundant.
If ∗ is the globalization, then T is unique and minimal.

3 Fuzzy Attribute Exploration with Globalisation

Attribute exploration is a very powerful tool. However, its theoretical basis lies
in Proposition 1 which represents its key to success. Thus, the crucial step is to
generalise this proposition to the fuzzy setting. After developing the theoretical
ingredients for a successful attribute exploration in a fuzzy setting, we turn our
attention to its practical parts. First, we develop an appropriate algorithm for
this technique and afterwards illustrate the method by an example.

In case we choose for ∗ the globalisation, then the formalisation of pseudo-
intents from Definition 1 becomes: P ⊆ LM is a system of pseudo-intents if

P ∈ P ⇐⇒ (P 6= P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q & P ). (2)

Theorem 3. ([22]) Let L be a residuated lattice with globalization. Then, for
each (G,M, I) with finite M there is a unique system of pseudo-intents P given
by (2).

For Z ∈ LM we put

ZT∗
:= Z ∪

⋃
{B ⊗ S(A,Z)∗ | A⇒ B ∈ T and A 6= Z},

ZT∗
0 := Z,

ZT∗
n := (ZT∗

n−1)T
∗
, for n ≥ 1,

where B ⊗ S(A,Z)∗ is computed component-wise, and we define an operator
clT∗ on L-sets in M by

clT∗ (Z) :=

∞⋃
n=0

ZT∗
n .

Theorem 4. ([5]) If ∗ is the globalisation, then clT∗ is an L∗-closure operator
and

{clT∗ (Z) | Z ∈ LM} = P ∪ Int(X∗, Y, I).

According to this theorem, if ∗ is the globalisation, then we can obtain all
intents and all pseudo-intents of a given fuzzy context by computing the fixed
points of clT∗ . In [5] an algorithm for the computation of all intents and all
pseudo-intents in lectic order was proposed. Therefore, the following result holds:
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Proposition 2. Let L be a residuated lattice with hedge and let ∗ be the glob-
alisation. Further, let P be the unique system of pseudo-intents of the fuzzy
context (G,M, I) such that P1, P2, . . . , Pn ∈ P are the first n pseudo-intents in
P with respect to the lectic order. If (G,M, I) is extended by an object g the

object intent g↑ of which respects the implications Pi → P ↓↑i , i ∈ {1, . . . , n},
then P1, P2, . . . , Pn remain the lectically first n pseudo-intents of the extended
context.

Proof. Easy, by induction on the number of pseudo-intents in P.

With this result we are able to generalise the attribute exploration algorithm
to the fuzzy setting, as displayed below.

(1) L := ∅; A := ∅
(2) if (A = A↓↑)
(3) then add A to Int(K)
(4) else Ask expert whether ||A⇒ A↓↑||K = 1
(5) If yes, add A⇒ A↓↑ to L
(6) else ask for counterexample g and add it to K
(7) end if
(8) do while (A 6= M)
(9) for i = n, . . . , 1 and for l = maxL, . . . ,minL with A(i) < l do

(10) B :=clT∗ (A)
(11) if (A↘ i = B ↘ i) and (A(i) < B(i)) then
(12) A := B
(13) if (A = A↓↑)
(14) then add A to Int(K)
(15) else Ask expert whether ||A⇒ A↓↑||K = 1
(16) If yes, add A⇒ A↓↑ to L
(17) else ask for counterexample g and add it to K
(18) end if
(19) end if
(20) end for
(21) end do

Fig. 3. Algorithm for attribute exploration with globalisation

The first intent or pseudo intent is the empty set. If it is an intent, add it to
the set of intents of the context. Otherwise, ask the expert whether the impli-
cation is true in general. If so, add this implication to the stem base else ask
for a counterexample and add it to the context (line 2− 6). Until A is different
from the whole attribute set, repeat the following steps: Search for the largest
attribute i in M with its largest value l such that A(i) < l. For this attribute
compute its closure with respect to the clT∗ -closure operator and check whether
the result is the lectically next intent or pseudo-intent (line 9 − 12). Thereby,
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A↘ i := A ∩ {1, . . . , i− 1}. If the result is an intent, add it to the set of intents
(line 13 − 14), otherwise ask the user whether the implication provided by the
pseudo-intent holds. If the implication holds, add it to the stem base otherwise
ask the user for a counterexample (line 15− 17).

The algorithm generates interactively the stem base of the formal fuzzy con-
text. As in the crisp case we enumerate the intents and pseudo-intents in the
lectic order. Hence, we go through the list of all such elements. Due to Propo-
sition 2 we are allowed to extend the context by objects whose object intents
respect the already confirmed implications. This way, the pseudo-intents already
used in the stem base do not change. Hence, the algorithm is sound and correct.

Example 3. We want to explore the size and distance of the planets. We include
some of them into the object set and obtain the context given in Figure 4. In this
example we will be using the Lukasiewicz logic with the globalisation as hedge.

small (s) large (l) far (f) near (n)

Earth 1 0 0 1
Mars 1 0 0.5 1
Pluto 1 0 1 0

Fig. 4. Initial context

We start the attribute exploration. The first pseudo-intent is ∅ and we are
asked

All objects have the attribute s to degree 1?

This is of course not true and we provide a counterexample:

small (s) large (l) far (f) near (n)

Jupiter 0 1 1 0.5

The next pseudo-intent is n and we are asked

Objects having attribute n to degree 1 also have attribute s to degree 1?

This is a true implication and we confirm it. The next pseudo-intent is {f,0.5 /n}
which yields the following question:

Objects having attribute f and n to degree 1 and 0.5, respectively,
also have attribute l to degree 1?

This is a true implication and we confirm it. The algorithm proceeds with

Objects having attribute l to degree 0.5 also have the attributes
l, f, n to degree 1, 1, 0.5, respectively?

This implication is not true for our planet system and we give a counterexample:
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small (s) large (l) far (f) near (n)

Uranus 0.5 0.5 1 0

The following four implications are true, so we will confirm them:

0.5/l⇒ f,

l, f ⇒0.5 /n,
0.5/s,0.5 /n⇒ s, n,

s,0.5 /l, f ⇒ l, n.

And the attribute exploration has stopped. Now we have an extended formal
fuzzy context, namely the one containing Jupiter and Uranus besides the ob-
jects given in Figure 4. Note that we did not have to include all the planets
into the object set, just a representative part of them. The other planets with
their attributes are displayed in Figure 5. These objects contain just redundant
information and the knowledge provided by them is already incorporated into
the stem base of the extended context.

small (s) large (l) far (f) near (n)

Mercury 1 0 0 1
Venus 1 0 0 1
Saturn 0 1 1 0.5

Neptune 0.5 0.5 1 0

Fig. 5. Superfluous planets

4 Fuzzy Attribute Exploration with General Hedges

As the title of this section suggests, we will now turn our attention to attribute
exploration with general hedges. After introducing the necessary background
information, we will focus on the exploration. As it turns out, there are several
obstacles that make a straight-forward generalisation of attribute exploration
in such a setting impossible. At the end of the section we will discuss which
approaches may lead to a successful exploration. However, it is also an open
question whether an exploration in such a setting is desirable.

The computation of the systems of pseudo-intents for general hedges was
studied in [23]. For a fuzzy context (G,M, I) we compute the following:

V := {P ∈ LM | P 6= P ↓↑}, (3)

E := {(P,Q) ∈ V × V | P 6= Q and ||Q⇒ Q↓↑||P 6= 1}. (4)
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In case of a non-empty V , G := (V,E ∪ E−1) is a graph. For Q ∈ V , P ⊆ V
define the following subsets of V :

Pred (Q) := {P ∈ V | (P,Q) ∈ E},

P red (P) :=
⋃
Q∈P

Pred (Q).

Described verbally, Pred (Q) is the set of all elements from V which are prede-
cessors of Q (in E). Pred (P) is the set of all predecessors of any Q ∈ P.

We will compute the systems of pseudo-intents through maximal independent
sets. Therefore, the following result is useful:

Lemma 2. ([23]) Let ∅ 6= P ⊆ LM . If V \ P =Pred (P), then P is a maximal
independent set in G.

The next theorem characterises the systems of pseudo-intents of a fuzzy con-
text using general hedges:

Theorem 5. ([23]) Let P ⊆ LM . P is a system of pseudo-intents if and only if
V \ P = Pred(P).

It is well-known that the maximal independent sets of a graph can be effi-
ciently enumerated in lexicographic order with only polynomial delay between
the output of two successive independent sets ([24]). In [25] it was shown that
the pseudo-intents cannot be enumerated in lexicographic order with polynomial
delay unless P = NP. These two results do not contradict each other because
they address different issues. The first one in encountered when we enumerate
the maximal independent sets of the graph G which is the input of the cor-
responding algorithm. These sets correspond to the systems of pseudo-intents.
Whereas the result from [25] is for the globalisation and takes as input a formal
context enumerating its pseudo-intents.

In the following we will exemplify the computation of the systems of pseudo-
intents. Afterwards, we illustrate how an attribute exploration with general
hedge could be performed.

Example 4. We start with a very simple example. Let ({g}, {a, b}, I) be the
formal fuzzy context with I(g, a) = 0.5 and I(g, b) = 0. Further, we use the
three-element Lukasiewicz chain with ∗ being the identity. First, we compute V
as given by (3) and obtain

V = {{0.5/a,0.5 /b}, {0.5/b}, {}, {0.5/a, b}, {b}, {a}}.

Afterwards, we compute the binary relation E as given by (4) which is displayed
in Figure 6. Considering the undirected diagram of Figure 6 we obtain the graph
G. There, we have four maximal independent sets, namely

P1 = {{}, {0.5/a, b}, {a}},
P2 = {{0.5/b}, {a}},
P3 = {{b}, {a}},
P4 = {{0.5/a,0.5 /b}, {a}}.
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P1 and P3 do not satisfy the condition of Theorem 5 and are therefore not

{0.5/a,0.5 /b}

{0.5/b}

{}

{0.5/a, b}

{b} {a}

Fig. 6. Binary relation E for (G,M, I)

systems of pseudo-intents. P2 and P4 do satisfy this condition and hence they
are systems of pseudo-intents yielding the stem bases displayed in Figure 7.

T2 T4

(1) 0.5/b ⇒ a (3) 0.5/a,0.5 /b ⇒ a
(2) a ⇒0.5 /b (4) a ⇒0.5 /b

Fig. 7. Stem bases

Now we could start an attribute exploration, for instance in T2. The algorithm
would ask us:

Objects having attribute b to degree 0.5 also have attribute a to degree 1?

Let us answer this question affirmatively. The next question is:

Objects having attribute a to degree 1 also have attribute b to degree 0.5?

We deny this implication and provide a counterexample, namely the object h
with I(h, a) = 1 and I(h, b) = 0. This counterexample obviously respects the
already confirmed implication so the context is extended by the new object h.
For this extended context we can compute the sets V and E. The binary relation
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{0.5/a,0.5 /b}

{}{0.5/b} {b} {0.5/a, b}

Fig. 8. Binary relation E for the extended context

E for the extended context is given in Figure 8. From this graph we obtain four
maximal independent sets, three of which form systems of pseudo-intents. The
stem bases which they induce are displayed in Figure 9. At the beginning we

T p
2 T pp

2 T ppp
2

(5) 0.5/b ⇒ a (6) {} ⇒0.5 /a (8) {b} ⇒ a
(7) 0.5/a, b ⇒ b

Fig. 9. Stem bases of the extended context

have confirmed implication (1) from Figure 7. However, this implication is now
not present any more in the stem bases T pp

2 and T ppp
2 . This is also reflected in

the stem base T4. Even though the counterexample respects implication (3), the
pseudo-intent belonging to this implication also disappears.

Concluding, by extending the context with objects which respect the already
confirmed implications, the latter may disappear from the stem base of the
extended context. Hence, we do not have an analogon of Proposition 2 for general
hedges.

The attribute exploration with general hedges raises a lot of questions and
open problems. First of all it is unclear whether such an exploration is desirable.
We have more than one stem base for a context. These bases are equally pow-
erful with respect to their expressiveness. The major problem however is how
to perform an attribute exploration successfully. It is an open problem how to
enumerate the pseudo-intents obtained by general hedges such that the already
confirmed implication still remain in the stem base of the extended context. One
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could for instance make some constraints on the counterexamples. However, such
an approach is not in the spirit of attribute exploration.

5 Conclusion

We presented a generalisation of attribute exploration to the fuzzy setting. The
problem is two-sided. If one uses the globalisation in the residuated lattice, the
stem base is unique. For such a setting the results regarding the exploration
from the crisp case can be transferred without problems and one can perform
successfully an attribute exploration with attributes having fuzzy values. Us-
ing hedges different from the globalisation one obtains more than one system
of pseudo-intents. This alone would not cause such a big problem. The major
difficulty comes with the fact that the already confirmed pseudo-intents are not
necessarily pseudo-intents of the extended context. This is therefore an open
problem, how to perform an attribute exploration using a general hedge.

In the future we will focus on the problem regarding the general hedge and
on extensions of this method, as for instance on fuzzy attribute exploration with
background knowledge. There, the user can enter in advance some implications
which he/she knows to hold between the attributes. Using such background
knowledge one usually has to provide less examples and answer to fewer ques-
tions.

We are expecting that the method will have many practical applications, as
its crisp variant has. Therefore, we will also focus on applications using attribute
exploration in a fuzzy setting.
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