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ABSTRACT
Web wrappers access databases hidden in the deep web by first
interacting with web sites by, e.g., filling forms or clicking buttons,
to extract the relevant data from the thus unearthed result pages.
Though the (semi-)automatic induction and maintenance of such
wrappers has been extensively studied, the efficient execution and
optimization of wrappers has seen far less attention.

We demonstrate that static and adaptive optimisation techniques,
as used for query languages, significantly improve the wrapper ex-
ecution performance. At the same time, we highlight difference
between wrapper optimisation and common query optimisation for
databases: (1) The runtime of wrappers is entirely dominated by
page loads, while other operations (such as querying DOMs) have
almost no impact, requiring a new cost model to guide the opti-
misation. (2) While adaptive query planning is otherwise often
considered inessential, wrappers need to be optimised during run-
time, since crucial information on the structure of the visited pages
becomes only accessible at runtime. We introduce two basic, but
highly effective optimisation techniques, one static, one adaptive,
and show that they can easily cut wrapper evaluation time by one
order of magnitude. We demonstrate our approach with wrappers
specified in OXPath.
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1. INTRODUCTION
Facing ever growing amounts of information, we are surrounded

by new, exciting opportunities – which we can only realize by au-
tomatizing web data extraction further. But next to reducing the
amount of human assistance in wrapper generation, large-scale ex-
traction tasks also require efficient wrapper execution, particularly
by avoiding unnecessary page loads. To achieve this goal, we have
to statically optimize our wrappers, and even more importantly, we
need to apply some crucial adaptive optimizations during runtime
to exploit information on the underlying page template: For exam-
ple, after learning that following the “contact” link in a given page
template never leads to pages relevant to the extraction task at hand,
we might want to filter the “contact” link.

In response, we propose a framework for static and dynamic
wrappers optimization. We base our optimization on a model, where
wrappers alternate local selection and extraction steps with action
steps, executed on DOM nodes, such as clicking on links. As the
performance of a wrapper is overwhelmingly dominated by the
number of pages loads, our optimizations aim to (1) eliminate ir-
relevant actions, (2) reduce the number of nodes to perform an
action on, and to (3) delay actions in the hope that they will not
be executed due to some predicate failure beforehand. Partly, we
achieve these goals with static optimizations, e.g., by removing ac-
tions which do not lead to any extracted data. Therein, we can
only rely on common assumptions on HTML pages, resulting in
HTML-optimal wrappers. Contrariwise, dynamic optimizations are
performed during wrapper execution, to exploit the commonalities
in the observed action applications, e.g., if an action never yields
relevant results, we stop evaluating it. Hence, dynamic optimiza-
tions exploit the construed template structure of the observed pages,
yielding template-optimal wrappers.

We evaluate our approach with OXPath [4], a wrapper language
which extends XPath with actions, Kleene stars, extraction facili-
ties, and access to the dynamic DOM of the pages under scrutiny,
including all computed styles (briefly introduced in Section 3).

Contributions. (1) Our optimization model describes wrappers
with their execution costs and defines HTML- and template-opti-
mality (Section 2). We start with a number of (2) static optimiza-
tions to eliminate unnecessary actions entirely, or – if unavoidable –
evaluate them as seldom as possible (Sections 4). Subsequently,
we present our (3) dynamic optimizations to reduce the number of
DOM nodes to perform actions upon and to memoize extraction
results (Sections 5). Finally, we (4) apply and (5) evaluate these
optimizations for OXPath (Section 6). After the related work in Sec-
tion 7, we conclude the paper.
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Figure 1: Wrapper plan

2. HTML- & TEMPLATE-OPTIMALITY
Wrappers extract data from many web pages and typically run

several minutes or hours rather than seconds as traditional database
queries. Almost all existing wrapper languages execute wrappers
as a sequence of selection and extraction operations partitioned by
action operations. Selection operations determine which DOM ele-
ments extraction operations or actions are performed on. Extraction
operations specify how to extract those nodes, and action opera-
tions specify browser actions such as submitting a form or clicking
a link. Together we refer to all three as wrapper operations. We
say that action operations partition wrapper executions, as all se-
lection and extraction operations between two such actions involve
the same DOM (resulting from the preceding action). In case of
an, e.g., OXPath wrapper, sequences of XPath steps (selection opera-
tions) and extraction markers (extraction operations) alternate with
action steps.

DEFINITION 1. A wrapper plan is a (possibly cyclic) graph
with selection and extraction operations as node labels and action
operations as edge labels, all possibly empty. Aside normal edges,
we distinguish two edges types: Branch edges indicate where re-
sults from one branch are used to filter another branch. Cycle
edges indicate cycles in the evaluation plan. If we eliminate all
cycle edges, a wrapper plan is a directed, acyclic graph with a
dedicated start node.

Figure 1 shows an example plan with actions ai and selection and
extraction operations σi. It contains a cycle, from σ1 to σ4, which
indicates that these expressions are executed as long as they match.
Typically such cycles represent repeated actions, such as clicking
on “next” links to traverse all paginated results obtained after some
query. It also contains a branch at σ1 to indicate that the wrapper
explores the web site in two different ways starting from the page
obtained by {a1}. The branch specifies an additional restriction on
the extracted nodes, indicated by the red, dashed link rejoining the
main branch, and thus acts like predicates in XPath or where clauses
in XQuery. Figure 3 shows branches used to filter another branch.

We call a sequence S of visited pages the page footprint of a
wrapper plan W (or one of its connected subgraphs), if executing
W touches the pages in S in order. A wrapper plan is sequential
if no node has more than one incoming branch edge. We denote
with SUCC(o) the successor to an operation o following only normal
edges, disregarding branch or cycle edges.

For the purpose of this paper, we model the cost of a wrapper
with a rough, static cost model, while our results are easily ad-
justed to richer cost models. We assume that we can estimate se-
lectivity and cost of each operation o, denoted with SELECTIVITY(o)
and COST(o). Then the cost of a wrapper W is:

COST(W ) = ∑
o∈W

s(o)× COST(o)

where

s(o) = s(o′)× SELECTIVITY(o)× STRUCT(o) with o=SUCC(o’)

STRUCT(o) = ∏
incoming edge e


κ if e is a cycle edge
π if e is a branch edge
1 otherwise

As the focus of this paper is not a sophisticated cost model, we
approximate the impact of cycles and branches roughly through
fixed multiplicative factors κ and π (typically, κ = 3 and π = 0.5).

DEFINITION 2. Let W be a wrapper plan. A sequential wrap-
per plan O is HTML-optimal for W, if O produces the same output
as W on all HTML pages and has minimal cost among such plans.
Let C be a cycle in W and P a set of page footprints of C. Then O
is template-optimal to W under C and P if W and O produce the
same output on all page footprints in P while O has minimal cost
among all such sequences.

In the following, we focus on a particular aspect of optimizing
wrapper plans: As shown in [4] and further substantiated in Sec-
tion 6, actions dominate the execution of wrappers, as they lead to
page loading necessitating network communication and page ren-
dering. Thus, we focus on optimizations that reduce the number of
actions to be performed. Corresponding to the two types of opti-
mality introduced above, we introduce static optimizations, based
on HTML schema and usage statistics, as well as dynamic opti-
mizations, adapting a wrapper’s execution according to observa-
tions on already visited pages.

(1) Static schema-based optimization (Section 4): (a) REDUCE
ACTION CONTEXT. The first optimization focuses on reducing the
size of the input set for an action, e.g., by reordering an execu-
tion plan to perform branches without actions first. Since such a
branch may fail, the far more expensive action branch is executed
for a reduced context set. (b) ELIMINATE ACTIONS. If an ac-
tion is followed by operations that never yield results, the action
can be dropped (“dead action”). If an action – as part of a filter –
is followed by operations that always yield results, it can also be
eliminated as the filter has no affect (“tautological action”).

(2) Dynamic template-based optimization (Section 5): Many
sites contain very similar pages, as those pages are often generated
from a commonly shared template. For those pages, we can then
(a) REPLAN by replacing paths with action-free paths if they are
equivalent on the given set of pages. (b) RECALL the results of
entire sub-plans, if the same context node is reached from different
pages (e.g., through links that point to the same fixed page).

3. OXPATH
Suppose you are looking for an apartment in the city center, not

larger than 70 m2, newly refurbished, with balcony and garage,
preferably close to a bus stop and a school for your children. All
this information is readily available on the web, but even modern
aggregators will fail to (1) cover the entire market, and to (2) in-
terlink the offered properties with background knowledge, such as
schools. Although many extraction languages exist, they either fail
to support interactions with modern scripted sites, or do not scale
well enough to drive large extraction tasks. Hence, in solving such
problems, we often have no choice but to manually extract, aggre-
gate, and rank that information – a tedious and often unmanageable
task due to the size of the relevant data.

To overcome these drawbacks, we designed OXPath, an exten-
sion of XPath, which facilitates interactions with modern web ap-
plications for the sake of data extraction: (1) Actions perform user
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interactions, such as clicking on a link or hoovering with a mouse
over some element, to reach all data supplied by modern scripted
sites. Actions are either absolute (with an added /), where nav-
igation continues at the root of the page retrieved by the action,
or contextual, in which navigation continues from the element the
action is performed upon. (2) Dynamic DOM access enable us to
wrap modern web applications, as their scripts modify the pages at
hand continuously. Accessing the dynamic DOM, OXPath wrappers
can exploit, e.g., neighborhood relations or colors. (3) Extraction
markers designate the data to be extracted and organize this data,
e.g., as XML or RDF document. (4) Kleene star expressions en-
able iterations, e.g., following all next links to reach all entries of a
paginated result list. Aside a balanced set of language features, we
designed OXPath to be easily embedded into host languages such
as Java or JavaScript, and to be highly parallelizable. We proved
that OXPath satisfies optimal bounds on the number of page buffers,
while simultaneously minimizing the number of visited pages.

Figure 2 showcases all OXPath extensions mentioned above, mark-
ing all actions (1) with red encircled numbers: Lines 1-2 fill and
submit the search form, wherein field() selects only visible (2)
input elements to identify the text field and search button. Line
3 realizes the iteration over the set of result pages by repeatedly
clicking the “Next” link (4). Lines 4-5 extract a result record and
its author and title (3), Lines 6-8 navigate to the cited-by page and
extract the papers. The expression yields nested records as in the
following.

<paper><title>The diameter of the world..</title>
2 <authors>R Albert, H Jeong, ...</authors>

<cited_by>
4 <title>Emergence of scaling in ... </title>

<authors>AL Barabasi...</authors></cited_by>
6 <cited_by> .....</paper>

For details on OXPath, cf. [4].

Wrapper plans for OXPath. To build a wrapper plan from
an OXPath expression E, we segment E into actions and action-
free chunks. Then, we form an automaton with actions on edges,

and action-free chunks on nodes, to obtain a wrapper plan, meeting
Definition 1. For example, consider the query

doc(’url’)//div[a/{click/}//div[a/{click/}//h1~=’Person’)]
2 [@class=’woman’]]

[@class=’person’][h1[1]:<name>]
4 [@title=’phoneNumber’]

which returns all div elements that (1) have at least one anchor el-
ement a pointing to a page with at least one div element, which
must (a) contain at least one further a child pointing a page with an
h1 element containing the string ’Person’, and (b) contain a class

attribute with value=’woman’. Each original div must also (2) fea-
ture a class attribute with value=’person’, (3) have at least one h1

child. On the first of these, we apply the extraction marker <name>,
and finally, the original div must (4) have a title attribute with
value=’phoneNumber’.

In this expression, we have a number of predicates, with two
predicates nested inside the first one, as translated directly into the
wrapper plan, shown in Figure 3. Note the dashed red branch edges
indicating that their results are used to filter the results on the main
branch. The order of applying these predicates corresponds to the
order in which the branch edges rejoin their main branch. For op-
timizing OXPath expressions, we have to describe the selectivity
SELECTIVITY(o) and COST(o) of individual OXPath operations o. For
both, we rely on standard estimates for XPath and HTML.

4. STATIC: ACTIONS LAST
In this section, we focus on static optimization striving for HTML-

optimality, i.e., optimizations which are valid on all HTML docu-
ments (Definition 2). To that end, we (1) reorder branches (i.e.,
predicates in the XPath sense) to perform selective predicates with-
out actions before those with actions, and we (2) eliminate actions
in case of dead and tautological actions. For space reasons, we fo-
cus on the first case, as dead and tautological action elimination can
be addressed with standard XPath containment [10] for OXPath.

Let W be a sequential wrapper plan with a sequence S of nodes
each with incoming branch edges, but connected into a path through
normal edges. We further assume a function FIXED(p) that de-
termines if p may be commuted with other branches. In OXPath,
FIXED(p) holds only for branches containing extraction markers or
positional functions (i.e., position() or last()). All other branches
can be commuted as necessary. Then, S = ~p0q1~p1q2 . . .qn~pn where
q1, . . . ,qn are fixed branches in S and ~pi a sequence of commutable
ones. We sort each ~pi by cost. In most cases, this means moving
predicates without actions first, predicate with actions last as the
cost of action execution dominates the overall wrapper cost.

Recall the example from Section 3 with the wrapper plan shown
in Figure 3. The following wrapper is obtained by reordering the
predicates, both in the outer case and in the inner one.

doc(’url’)//div[@class=’person’]
2 [a/{click/}//div[@class=’woman’]

[a/{click/}//h1~=’Person’)]]
4 [h1[1]:<name>]

[@title=’phoneNumber’]

It is not possible to move the last two predicates before the one
with the actions, as the one starting with h1 contains an extraction
marker and thus partitions the set of predicates.

Our cost model with π = 0.5 suggests that the additional predi-
cates, applied before the action execution, lead to 50% less action
executions each, thus leading to only 25% of the second click ac-
tions compared to the naive case. In this example, however, the re-
duction is actually even more significant, since the reordered pred-
icates preclude almost all matching links from being followed.
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5. ADAPTIVE: RE-PLAN AND RECALL
Wrapping template-based websites usually involves dynamically

generated pages, which are similar in structure but different in con-
tent. Also, different pages link to a certain number of common
pages, e.g., “contact us” info or details pages for products. There-
fore, for long running wrappers, e.g., for the exhaustive extraction
from a products website, it is possible to (1) collect statistics at run-
time to replan successive (sub-)parts of the evaluation that belong
to the same template, and (2) recall previously stored results when
sub-expressions repeatedly access the same pages.

For (1) we focus here on replanning expressions in Kleene stars
as we are likely to encounter many pages on which to evaluate
this expression and those pages are likely to be part of the same
template. The aim is to find an expression for the selection in the
Kleene-star that involves less actions, yet is equivalent on these
template pages. E.g., the wrapper may want to extract all products
with an image on their details page. Unfortunately, that requires
navigation to the details page. However, on many product web
sites this may be already recognisable on the result page, e.g., as all
products with a certain class or with a placeholder image (an image
of a certain URL). The wrapper author or induction system may
nevertheless prefer the prior expression as it expresses the users in-
tent and is likely to be more robust (class and IDs often change in
template pages due to redesign or obfuscation). However, at run-
time we can verify that the more specific wrapper yields the same
results, yet performs significantly less actions.

For (2) we focus on tabling page URIs (and parameters) and
reuse the tabled entries if the same page is accessed again (in the
context of the same expression). This avoids all evaluation start-
ing on that page. We, furthermore, add a number of heuristics that
allow us to use the tabled result without even having to go to the
tabled page.

Re-plan by Adaptive Rewriting. Let W be a sequential wrap-
per plan with a cycle C, where P is a footprint of C during an eval-
uation of W , such that P forms a template cluster [7], i.e., a set of
pages likely from the same template. We have C =σ0{a1}a1 . . .{an}σn
where each σi is an action-free expression (possibly involving branches)
and each ai is an action. Then we build a new sequential wrap-
per W ′ as optimisation of W by replacing σi with σ ′i , such that
σ ′i is more selective than σi, yet σ ′0{a1} . . .{an}σ ′n is template-
equivalent to C under P . Hence, W ′ is template-equivalent to W
under P and has lower cost (in particular it executes less actions).

How do we obtain σ ′i ? Unfortunately, both inferring the regular
structure (or DTD) for P [1] and the optimization of wrappers in

presence of such a schema are computationally highly expensive
tasks, provably intractable for rich wrapper languages going well
beyond navigational XPath [10]. Since we are adapting the wrapper
plan during execution, such complete optimization approaches are
infeasible, and hence, we choose a set of simple local heuristics,
instead. The local heuristics generate alternative expressions for
selecting the final node set selected by each σi using attributes such
as id and class, the direct children or parents, the content etc. We
use these expression generators also to determine if P is a template
cluster (rather than more complete methods such as [7]): If we can
find succinct expressions for most σi there is a good likelihood that
the pages come from the same template.

To illustrate the process, consider an example from the real-
estate domain, where we want to extract the URLs to floor plans.
Unfortunately, many real estate websites, particularly aggregators,
present floor plans mixed with photos of the property. Therefore, a
user, tasked with generating a wrapper to extract floor plans, may
create the following wrapper: After clicking on all image links, it
checks on the resulting page for a floor plan (by considering the alt
text not available on the first page).

//li//div//a/img/{click/}//img[@alt ~= "floor
plan"]:<A=string(@src)>

It is part of a wrapper that cycles on all properties of the web-
site at hand. Properties on a page are located by //li, while their
respective picture sections are grouped in a descendant div as im-
age links (a elements with contained images). These links point to
pages with the actual image in full resolution. We identify it using
it’s alt text (i.e., tooltip) that contains the phrase “floor plan”.

This is an easy to understand and probably rather robust wrap-
per, however, it requires one action (and thus page load) for every
image. When executing this wrapper, the system finds that in all
the pages touched by the cycle, the floor plan images can actually
identified already on the initial page: They occur only in specific
li’s that represent offers and have data-ajax attributes. Although
together this forms a very specific selection expression it is also a
very fragile expression (as, e.g., the IDs are often auto-generated
and the data-ajax attributes are an artefact of using a specific gen-
eration library). Thus neither human wrapper authors nor wrapper
induction systems are likely to generate these expressions. At run-
time, however, we do not care about robustness across different
runs and thus use the more fragile, but less expensive selection:

//li[@id ~=
’listing_’]//a/img[@data-ajax]/{click/}//img[@alt~=
"floor plan"]:<A=string(@src)>
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Figure 4: Evaluation of Re-plan Optimization

With the new wrapper, we only execute one action per floor
plan (rather than one per image). The new wrapper is significantly
cheaper according to the cost model in Section 2, which estimates
that only 2π of the context nodes in the original wrapper will also
be context nodes for {click/} in the new wrapper, i.e., a reduction
by 75%. For the actual web site (zoopla.co.uk) the reduction is
actually over 90%.

Recall by Action Tabling. For the second optimization, we re-
call the results of expressions already evaluated on pages touched
repeatedly by a wrapper plan. Let E = σ1a1ρ be a connected sub-
graph of a wrapper plan W where σ1 is some action-free expres-
sion, a1 an action, and ρ the rest of a branch in the wrapper plan.
For recall, we maintain a table that maps action expressions, such
as a1, together with URLs of the resulting pages to the results of
evaluating the rest of the wrapper branch (here: ρ) on those pages.
An entry is only created if an action yields a new page (rather than
modifications to an existing one).

Unfortunately, this still requires that the action is performed each
time, though all actions in ρ are skipped. To avoid the initial ac-
tion, we use a simple heuristic for recognizing nodes on which an
action for sure leads to a new page and we can determine that page
from the node. For space reasons, we only give a sample of these
heuristics: (1) For simple links, i.e., a’s with an href attribute, but
no event handlers, we table the value of the href (properly resolved
in case of relative URIs). (2) For simple forms, i.e., forms with an
action URL and no event handlers, we also table the value of the
action attribute.

To illustrate this, consider a wrapper on rightmove.co.uk that
aims to extract properties together with contact information about
the agent. Unfortunately, those contact information are available
only from the “Contact us” page, which remains the same for the
same agent. Thus, in the following wrapper, we table the href at-
tributes of the .contactUs links and recall of extracted agent infor-
mation, if the same href is encountered again.

//a.contactUs/{click/}//div[1]:<agent>
2 [.//li.agency:<name=string(.)>][.//li.addr:<addr=string(.)>]

Rather than one action for each of the over 650,000 properties, we
thus only perform one for each of the about 10,000 agents.

6. EVALUATION
We show the effectiveness of the presented optimization tech-

niques, using OXPath as wrapping language.

Static. In this experiment on rightmove.co.uk, the largest ag-
gregator for the real estate in UK, we extract the addresses of prop-
erties offered by agents supplying more than 100 sale offers. To
this end, we apply the following expression on each result page:
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Figure 5: Evaluation of Recall Optimization

//div[.//div.branchlogo/a/img/{click/}
2 //img[@title=’Properties for sale’]/{click/}

//div#resultcount[number(.)>100]]Ê
4 [@class=’summarymaincontent’]Ë

//span.displayaddress:<addr=string(.)>

This expression visits all div elements, and – in the assumption
that these div-s represent indeed offers – attempts to navigate to
the agent’s logo next to each property, click it, click another im-
age to reach all the agent’s offers to finally check the number of
these offers. Next, the expression also checks that the div has class

’summarymaincontent’, before extracting the relevant address.
We apply static optimizations (Section 4) to reorder adjacent

predicates to minimize the impact of actions. Since predicate Ê
contains actions while Ë is action free, our static optimization pro-
duces an equivalent expression by reordering them such that Ë
precedes Ê. Hence, the wrapper avoids clicking on logos which
are not part of property summaries – avoiding many unnecessary
page loads. Also, if the template changes, dropping or changing
the ’summarymaincontent’ class, thus spoiling the wrapper, we avoid
loading pages without extracting any data at the end.

The evaluation of the original expression takes on a single re-
sult page 60 seconds in average, while our optimized expression
terminates in 2 seconds on average.

Re-plan. spareroom.co.uk/flatshare/oxford lists rooms for
rent, that we want to extract as records R, each described with a
div#summary node on the page. To this end, we run several times
the following wrapper Qx, parametrized with x, an upper iteration
bound we use to scale the impact of adaptive rewriting.

(//a#next/{click/})*{0,x}//div#summary:<R>
2 [.//div[last()]/a/{click/}//h1.about:<contactUs=string(.)>]

Among other attributes (omitted for brevity), we also extract con-
tact information visiting the website’s about page by clicking on
the corresponding link. This link is located at the bottom of the
listed rooms (last div), searched for via //div[last()]/a. As a re-
sult, we select too many links and need to identify the targeted data
by matching h1 elements on the visited pages afterwards. This is
a common situation, especially with wrappers generated by some
(un-)supervised tool.

As shown in Figure 4, a naive evaluation is very wasteful in time
due to the number of unnecessary actions. Indeed, after observing a
number of pages generated from the same template, our wrapper is
dynamically optimized in considering only those links which lead
to successful data extraction. In our case, we re-plan by replacing
//div[last()]/a with //div[last()]/a[position()=1 | @name], i.e.,
selecting only links in first position or with attribute name.



Recall. For this experiment, we run the following expression Qx,
again on the UK real-estate aggregator rightmove.co.uk.

//(a[contains(string(.),’next’)]/{click/})*{0,x}
2 //div.clearfix:<R>//div.branchlogo/img/{click/}
[//div#branchdetails/img/@alt:<agent=string(.)>]

4 [/following-sibling::div.phone[1]:<num=string(.)>]

We extract a record R for each listed property, including the agent’s
name and phone number. To reach this data, we first click on the
agent’s logo in each property //div.branchlogo/img to open a fur-
ther page where we extract the relevant data. Throughout evalua-
tion, the same contact data is likely to be extracted multiple times.
As described in Section 5, tabling is applicable to sub-expressions
preceding actions. In this case, we retain the result of evaluating
//div.branchlogo/img together with the image’s src attribute value.
Thus, once retained, we reuse the same data instead of re-executing
the necessary but now redundant actions. Figure 5 compares the
time of naive versus optimized evaluation with an increasing num-
ber of loops. While the naive evaluation is basically linear in the
number of loops, the optimized evaluation varies irregularly, as it
depends on the hit rate of the ongoing tabling. But in any case,
it takes significantly less time, with a more pronounced effect at
greater iteration numbers, cutting the evaluation time more than
half at 20 iterations.

7. RELATED WORK
Though web wrapper induction and maintenance is an exten-

sively studied problem, this is not the case for wrapper optimiza-
tion. In most cases, optimization is performed as an integral part of
wrapper induction [14, 8], however, optimizing more for coverage
and precision of the wrapper than for efficiency. In [3], e.g., can-
didate wrapping rules are filtered based on the expected schema of
the data to be extracted, improving the precision of the wrapper.

One might suspect that the wrappers created by wrapper induc-
tion systems are close to optimal and thus further optimization is
not necessary. However, learning efficient tree patterns or XPath
queries is fundamental to many wrapper approaches, while prov-
ing to be inherently hard [12], even more so in presence of nega-
tive examples. This theoretical concern is underlined by the poor
performance of existing wrapper engines demonstrated in [4]. In-
deed, the results of this paper illustrate that, considering the vast
resources used even by efficient wrapper engines such as OXPath,
wrapper optimisation can have significant impact.

Many wrapper induction systems are based partially on standard
XML query languages such as XPath or (less frequently) XQuery
and can thus profit from existing optimization techniques for these
languages. XPath optimization can be distinguished into static, syn-
tactic rewriting techniques, such as [11, 10, 5], and cost-based plan
selection as considered in [6, 2]. However, in most wrapping sce-
narios the cost of action steps dominates all other costs, yet actions
are not part of XPath or XQuery and thus existing techniques are
only pertinent to action-free parts. Optimizing action-free parts,
however, has only little overall impact.

Our static and dynamic optimization methods are both variants
of well-known query optimization techniques. The static optimiza-
tion is an instance of the selection ordering problem [9], which
refers to the problem of determining an order for applying a given
set of commutative selection predicates (filters) to all tuples of a re-
lation. The dynamic optimization is an instance of adaptive query
planning [9] and of tabling techniques used for the evaluation of
recursive or fixpoint languages [13]. However, neither has been
applied to web wrappers before, where the presence of browser ac-
tions significantly affects their application. E.g., for tabling, it is

sufficient to store the results for each unique page, as in-page se-
lection and extraction does not significantly affect the overall per-
formance, leading to smaller and more efficient tables.

8. CONCLUSION
We have introduced wrapper optimization as problem in its own

right, observing two idiosyncrasies: (1) The number of page loads
dominates the wrapper performance, such that preexisting tech-
niques from, say, XPath optimization, apply, but only if they are
driven by and adapted to a suitable cost model. (2) Since many
wrappers operate on pages generated from templates, the full po-
tential of wrapper optimization can only be exploited at runtime,
after observing relevant facts on the underlying template.

After showing the effectiveness of a fundamental set of optimiza-
tions in this paper, in our future work, we will fully implement our
approach, possibly with a refined cost model, altogether with fur-
ther optimizations.
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