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Abstract.
This paper deals with human-machine conflicts with a special fo-

cus on conflicts caused by an “automation surprise”. Considering
both the human operator and the machine autopilot or decision func-
tions as agents, we propose Petri net based models of two real cases
and we show how modelling each agent’s possible actions is likely to
highlight conflict states as deadlocks in the Petri net. A general con-
flict model is then be proposed and paves the way for further on-line
human-machine conflict forecast and detection.

1 Introduction
There is a growing interest in unmanned vehicles for civilian
or military applications as they prevent the exposure of human
operators to hazardous situations. As the human operator is not
embedded within the system [22] hazardous events may interfere
with the human-machine interactions (e.g. communication break-
downs and latencies). The design of authority sharing is therefore
critical [8] because conflicts between the machine and the human
operator are likely to compromise the mission [14, 23]. Interestingly
these findings are consistent with research in aviation psychol-
ogy: crew-automation conflicts known as “automation surprises”
[18, 19] occur when the autopilot does not behave as expected
by the crew (e.g. the autopilot has disconnected and the pilots,
who are not flying, are not aware of that [12]). These situations
can lead to accidents with an airworthy airplane if, despite the
presence of auditory warnings [1], the crew persist in solving a
minor conflict [2] ”instead of switching to another means or a more
direct means to accomplish their flight path management goals” [26].

In this paper we will consider the human-machine system as a two-
agent system (see figure 1), i.e. the human agent (the operator) and
the automation agent (the autopilot or the embedded decision and
planning functions). Indeed both agents can perform actions so as to
control the physical system, which may be subject to uncontrolled
events (e.g. failures). Notice that an autopilot is considered an agent
because some mode changes can be performed by the autopilot itself
without prior consent of the pilot, and sometimes despite the pilot’s
actions.

Conflicts in a human-machine system stem from the fact that
both agents can decide and act on the physical system and their
actions may not be consistent, either because the expected plan for
the human operator or the machine is not followed anymore, or the
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Figure 1: A human-machine system as a two-agent system

operator has a wrong situation awareness [24], or both. In order
to prevent a mission degradation, the agents’ plans, and possibly
the authority allocation (i.e. which agent is controlling what), have
to be adapted [11]. This is a real challenge as in human-machine
systems the human agent is hardly controllable and no “model” of
the human’s decision processes is available.

We define a conflict as the execution of globally (i.e. at the system
level) incoherent actions i.e. one action tends to take the system to
state Sa and another one tends to take it to state Sb, and Sa 6= Sb.
Locally (i.e. at the single agent level) the actions may be coherent
with a local plan and the conflict may come from a wrong interaction
between the agents. If one agent’s local actions are incoherent (e.g.
because of a failure) either a local diagnosis and reconfiguration are
possible; or they are not (e.g. human operator’s error) and the wrong
behaviour of this agent is likely to create a conflict with the other
agent. Actions in a multi-agent system [9] are incoherent if:
• Physically [21, 20]: at least a depletable or not shareable re-

source3 is the cause of a competition, the agents preemptively take
over the resource. Example: one agent is in charge of the vertical
control of an aircraft and another agent is in charge of the longitudi-
nal control. The thrust is a limited resource and may be not enough
to grant the climbing rate required by the first agent and the turn rate
required by the second one.
• Epistemically [21]: the agents performing the actions do not

share the same point of view on at least two relevant pieces of in-
formation. Example: two agents are both in charge of the vertical
control of an aircraft. They both want to reach altitude 5000 ft. One
agent estimates the current altitude to be at 6000 ft and the other one

3 As resource we generically refer to a physical object, information, task,
goal.



at 4000 ft.
• Logically [20]: at least two goals are logically contradictory, the

agents have opposite desires. Example: two agents are in charge of
the vertical control of an aircraft. The altitude is 4000 ft. One wants
to climb to 6000 ft and the other one wants to descend to 2000 ft.

Conflicts are situations where incoherent actions, or their conse-
quences, matter in terms of mission achievement, safety, etc. [21, 5].
We distinguish three classes of conflicts that are directly inspired
by the classification of incoherent actions: logical conflicts, physi-
cal conflicts and knowledge (epistemic) conflicts. Logical conflicts
are when the agents’ goals are logically contradictory and a trade-
off must be found. Note that the goals are not necessarily incom-
patible: an agent’s incapability to accept a trade-off could lead to a
conflict. Game theory techniques have been proposed to solve this
case of conflict [10]. Physical conflicts are when the agents’ goals
are independent but incompatible because of the resources required
to achieve plans and actions that are associated to the goals, therefore
a wise resource sharing is needed. Knowledge conflicts are when the
agents’ goals are coherent [25, 20], and the agents’ information for
decision-making about how to reach the goals is not the same. Such
conflicts may concern agents’ beliefs, knowledge, procedures, opin-
ions.

This paper focuses on knowledge conflicts in human-machine sys-
tems, especially the conflicts caused by “automation surprises”. Sec-
tion 2 will focus on two real cases of “automation surprise”. Our ap-
proach is to assess whether a formal model of those cases could give
us avenues for automatic conflict identification and detection. Petri
nets (see Appendix) have been chosen for formal modelling since
they are well suited to scripted domains with a state dynamics linked
to discrete events. From those two cases, we present a generalized
conflict model (section 3).

2 What the heck is it doing?

This section presents two real cases of human-machine conflicts
caused by “automation surprises”, i.e. the machine agent not behav-
ing as expected by the human agent. The first case – a “kill–the–
capture” surprise with an MD–88 autopilot has been reported by [13]
and investigated by [17, 16]. The second case occurred during an ex-
periment campaign involving one of Onera’s Ressac VTOL UAVs4

in July 2011. For both cases we will show that modelling the agents’
possible actions (i.e. what they have the right to do, especially the
right to take over the authority from the other agent) enables the con-
flict to be identified in a formal way. Both cases will be modelled
with Petri nets.

2.1 The kill-the-capture surprise

The two agents involved are the Autopilot of the MD-88 and the
Pilot. The actions that are considered are the mode transitions of the
Autopilot that are triggered either by the Autopilot-agent or by the
Pilot-agent. Unlike Rushby [16], we do not make any assumption
about a “mental model” of the Pilot, but we take the objective
viewpoint of what the Pilot actually does. For the sake of clarity
only the relevant modes and mode transitions are represented. In our
Petri nets, we use the same colour code as in [17]: green for done by
the Pilot, red for done by the Autopilot
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In the Initial state Alt-Capture mode of the Autopilot is not armed
(initial marking “Alt-Capture not Armed”) – figure 2.

Figure 2: Alt-Capture not Armed

The Pilot sets altitude to Target altitude. This causes Autopilot
Alt–Capture mode to arm, therefore the target altitude set by the Pilot
will not be overshot. The Pilot also sets Pitch mode to VSPD (Vertical
Speed – aircraft climbs at constant rate), then to IAS (Indicated Air
Speed – climb rate adjusted, constant air speed) – figure 3.

Figure 3: Alt-Capture armed and IAS

When target altitude is nearly reached, the Autopilot changes
Pitch mode to Alt Cap (provides smooth levelling off at the desired
altitude) therefore mode Alt-Capture is disarmed, so as Pitch mode
IAS – figure 4.



Figure 4: Alt Cap; Alt-Capture disarmed

The Pilot then changes Pitch mode to VSPD, therefore Pitch mode
Alt Cap is disarmed – figure 5.

Figure 5: Pitch mode VSPD

When event target altitude occurs, state Pitch mode Alt Hold
cannot be reached since neither possible precondition is true (Alt
capture armed or Pitch mode Alt Cap). Therefore event target
altitude is “lost” and the aircraft goes on climbing at the VSPD
indicated by the pilot, – figure 6.

Figure 6: Event target altitude lost – “Oops, it didn’t arm” [13].

The “Oops, it didn’t arm” uttered by the pilot reveals that he does
not understand why the aircraft goes on climbing. In fact, his actions

on the Autopilot modes have destroyed the Autopilot sequence. For-
mally the Petri net is blocked on the Autopilot side (i.e. no transition
can be fired anymore). This is a knowledge conflict [21] as the con-
sequences of the agents’ actions were neither assessed properly nor
explained to one another.

2.2 Rain and automation

The second case of “automation surprise” occurred by chance dur-
ing an experiment involving an Onera Ressac VTOL UAV in July
2011. Indeed the experiment was meant to test some properties of the
Ressac planner and was not an ad-hoc scenario to bring about “au-
tomation surprise”. The UAV mission requires two nominal pilots:
the ground control station pilot (Gp) and the field pilot (Fp). For reg-
ulatory issues a third operator, the security pilot (Sp), can take over
the manual piloting (as long as he wants) to deal with any unexpected
event. About a dozen of other members of the Ressac team were
checking the mission plan execution and performing other tasks.

There are five piloting modes (cf Table 1), one is totally automated
(Nominal autopiloting- Autonav), three are partially automated
modes and have been developed by Onera (Nominal autopiloting-
Operator flight plan, Nominal manual- high level, Nominal manual-
assisted), and the last one is a direct piloting mode (Emergency man-
ual) using the on-the-shelf equipment of the vehicle (Yamaha RMax).
This last mode can be engaged only by the Safety pilot who has al-
ways pre-emption rights, activating an exclusion switch cutting off
the automatism. Notice that the Ressac software architecture has no
visibility on the state of the switch. Flight phase transitions are al-
lowed only in Nominal autopiloting mode.

Automation Gp Fp Sp Phase achievement
Nominal autopiloting- Autonav * *

Nominal autopiloting- Operator flight plan * * * *
Nominal Manual- high level * *
Nominal Manual- assisted * *

Emergency Manual *

Table 1: Piloting modes, agents’ involvement and phase achievement

So two nominal modes are possible i.e. Nominal autopiloting and
Nominal manual piloting. When Nominal autopiloting is engaged,
Ressac flies autonomously according to its plan, i.e. for this particular
experiment:

• Phase 1: heading from the initial position to waypoint alpha
• Phase 2: heading from waypoint alpha to waypoint beta
• Phase 3: heading from waypoint beta to waypoint gamma

The following Petri nets represent the actions (transitions) and
states (places) of the Ressac software agent (right) and of the hu-
man operator agent, i.e. what happens on the Gp’s interface and the
possible actions of the Sp (left). The procedure to follow (see fig-
ure 7 left) matches the plan (see figure 7 right) except the fact that
it includes the case of the Sp taking control of Ressac to deal with
an emergency: in that case the procedure is stopped. Initial state is
human agent and software agent both in the state Phase 1.

In the Nominal autopiloting configuration the occurrence of Event
A (waypoint alpha reached by Ressac) fires transition Phase 1/Phase
2 for the software agent. This transition emits Event B (information
waypoint alpha reached displayed on the Gp interface) which updates
the procedure: human agent state is Phase 2, so as software agent
state.



Phase 2/ Phase 3 operates the same way with Event C (waypoint
beta) and D (information displayed on the Gp interface and proce-
dure updated).

Figure 7: Initial state

What happened in July 2011 is the following sequence: Ressac
was flying Phase 1 heading for waypoint alpha, when it began to
rain. This random event made the Safety pilot Sp take over the
control on Ressac. On the Petri net of figure 8 transition Random
event is fired by the human agent and Emergency manual place is
marked.

Figure 8: Rain and emergency manual mode

While operating Ressac manually in order to make it land, the Sp
unintentionally flew it over waypoint alpha. Therefore Event A is
generated, and the software agent engages Phase 2 (figure 9).

Figure 9: Software state update

Event B is emitted but lost on the human agent side, since one
precondition (Nominal autopiloting) is no longer verified (figure 10).

Figure 10: Lost of the event for the procedure update

The rain stopped and the Sp decided that the nominal plan could
be resumed. Transition Emergency manual to Nominal autopiloting
is fired (figure 11). The nominal plan was resumed (Phase 2) and
Ressac headed waypoint beta. The human operators, who were
expecting Phase 1 to be resumed, did not understand what Ressac
was doing and began to panic. This is again a knowledge conflict
[21] in which the human operators considered the behaviour of the
machine as a failure. Indeed none of the test team members properly
interpreted the behaviour of Ressac.

Figure 11: What the heck is it doing?

Notice that the marking of the Petri net (figure 11) is such that:
(i) place Phase 2 is marked on the software agent side whereas place
Phase 1 is marked on the human agent side ; (ii) one place Nominal
piloting is marked (software agent side) whereas the other one is not
marked (human agent side). Nevertheless it is a matter of semantic
inconsistencies and not of formal inconsistencies within the Petri net
model. Indeed for case (ii), the two places Nominal piloting do not
represent the same state, otherwise a unique place would have been
used: one is the software agent state and the other one is the human
agent state.

Identifying conflicts through semantic inconsistencies would in-
volve an explicit enumeration of all possible inconsistencies, which
is hardly possible. Therefore what is relevant here from a formal
point of view is not the semantic inconsistencies but the fact that
the human agent part of the Petri net model is blocked (Event B will
never occur again and Phase 2 will never be marked).

The next section will focus on a generalization of agent conflict
representation, detection and solving.

3 Towards a model of human-automation conflict

3.1 Conflict model

In a multi-agent system different agents are often interested in the
knowledge of the same state variables. Those variables can seman-



tically describe the physical environment state or the agent inter-
nal state. The values of those state variables can be affected by the
agents’ actions.

Let us consider two agents A1 and A2 that both have the right to
act on a common device to change its state. The state of the device
must be successively S1 then S2 and the agents must always have
the same knowledge about the device state. The initial state is S1 In
figure 12, both agents’ knowledge is the same, i.e. the device state is
S1 (left). The result of the firing of T1 is that both agents’ knowledge
is that system state is S2 (right). Note that transition T1 represent a
synchronization of both agents about their shared decision.

(a) (b)

Figure 12: Two-agent system, correct design

As far as figure 13 is concerned, A2 need A1 to fire transition
T2, i.e. both agents’ knowledge must be S1 to make the device
evolve to S2. On the contrary the firing of transition T1 only makes
A1’s knowledge state evolve to S2 (transition T1 is “hidden” from
A2)(left). If T1 is fired, the result is that A1’s knowledge is S2
whereas A2’s is S1 and transition T2 is dead (right). This is a conflict.

(a) (b)

Figure 13: Two-agent system, incorrect design

3.2 Conflict solving

In figure 13 T1 is a ‘hidden transition” so far as agent A2 cannot see
it neither the consequences of its firing. That is the case for the “Rain
and automation” example, figure 10.

Two solutions are then possible. The first one is to remove T1, i.e.
agent A1 has no right to fire T1. In this case we get the ideal case
in figure 12, we allow only shared decisions represented by transi-

tion T1. The second solution is to inform A2 of the firing of T1, see
figure 14.

Figure 14: Two-agent system, another correct design

If A2 is a human operator the effect of a transition on his knowl-
edge is not sure: the feedback he receives from the other agent can be
lost or misinterpreted. A pseudo-firing [3] for T1 can model this kind
of uncertainty, see figure 15 (left). The firing of T1 leads to the un-
certain marking for the agent A2 state represented in figure 15 (right)
by empty markers.

(a) (b)

Figure 15: Two-agent system, A2 is human. Pseudo firing on correct
design

For that reason the second solution proposed (inform the other
agent) has an uncertain effect if A2 is human. This kind of transi-
tion is considered as a vulnerability by some researchers [7]. In other
works the not nominal effect of a transition can be restored informing
the human operator again or differently [6].

4 Conclusion and further work

Starting from two real cases of “automation surprises”, we have
shown that a formal model allows us to characterize a Human-
Machine conflict: for both cases the Petri net model features a dead-
lock (i.e. at least one transition cannot be fired). We have then pro-
posed a general Petri net based conflict model that paves the way
for automatic conflict detection through “hidden” transitions identi-
fication and liveliness properties checking. We have also given two
possible design solutions to prevent conflicts: share the decision or
inform the other agent.

Nevertheless if the agent being informed is human the problem of
the correct reception and interpretation of the information has to be
considered. Therefore uncertainty has to be modelled so as to feed an
estimator of the human agent’s knowledge state: such an estimator,



which is further work, can be based on the human agent’s actions and
“internal state” [15].

Current work focuses on further aircraft autopilot-pilot interaction
modelling – especially some cases that led to accidents – so as to
put to the test the generic conflict model we have proposed. The next
steps will be on-line conflict forecast and detection and experiments
in our flight simulator.

5 Appendix: Petri Nets
A Petri net < P, T, F,B > is a bipartite graph with two types
of nodes: P is a finite set of places; T is a finite set of transi-
tions [4]. Arcs are directed and represent the forward incidence
function F : P × T → N and the backward incidence function
B : P × T → N respectively. An interpreted Petri net is such
that conditions and events are associated with places and transitions.
When the conditions corresponding to some places are satisfied, to-
kens are assigned to those places and the net is said to be marked.
The evolution of tokens within the net follows transition firing rules.
Petri nets allow sequencing, parallelism and synchronization to be
easily represented.
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