
Incremental Maintenance Of Dynamic Datalog Programs
- Extended Abstract -

Raphael Volz1,2, Steffen Staab1 and Boris Motik2

(1) Institute AIFB, University of Karlsruhe
{volz,staab}@aifb.uni-karlsruhe.de

(2) WIM, Forschungszentrum Informatik (FZI)
{volz,motik}@fzi.de

1 Introduction

This paper is an extended abstract of [5], which discusses the incremental maintenance
of materialized ontologies in a rule-enabled Semantic Web. The reader may wonder
how this relates to Datalog, a language that has been proposed in the deductive data-
base context. However, the semantics underlying Web ontology languages can often be
realized by translating the ontology into appropriate Datalog programs. Therefore, our
solution for incrementally maintaining materialized ontologies actually builds on the
incremental maintenance of dynamic Datalog programs.

Materialization generally allows to speed up query processing and inferencing by
explicating the implicit entailments which are sanctioned by the rules of the program.
The complexity of reasoning with Datalog is thereby shifted from query time to up-
date time. We assume that materialization techniques will frequently be important for
the Semantic Web to achieve a scalable solutions, since read access to is predominant
in a Web setting. Central to materialization are maintenance techniques that allow to
incrementally update a materialization when changes occur.

We present a novel solution that allows to cope with changes in rules and facts for
Datalog programs. To achieve this we extend a known approach for the incremental
maintenance of views (intentional predicates) in deductive databases. We show how
our technique can be employed for a broad range of existing Web ontology languages,
such as RDF/S and subsets of OWL.

Our technique can be applied to a wide range of ontology languages, namely those
that can be axiomatized by a set of rules in Datalog with stratified negation. The chal-
lenge that has not been tackled before is dealing with updates and new definitions of
rules. However, our solution extends a declarative algorithm for the incremental main-
tenance of views [4] that was developed in the deductive database context.

2 Datalog and Web ontology languages

Since the early days of the Semantic Web, many systems have tried to reason with Web
ontology languages using rule-based systems, e.g. Triple [3]. To do so, a particular Web



ontology language is axiomatized via a static set of rules which capture the semantics
specified for a particular ontology language. For example, the following rule is part of
the Datalog axiomatization of RDF/S:

t(A,subClassOf,C) :- t(B,subClassOf,C), t(A,subClassOf,B).(rdfs8)

This rule assumes that ontology and knowledge base is stored in a single ternary
predicatet, i.e. the extension oft stores all triples that constitute a particular RDF graph.
In order to apply our techniques we have to distinguish assertions from entailments. We
achieve this by turning the predicatet into a completely intensional predicate (view)
that is derived from the explicitly asserted information. Hence, asserted RDF triples
constitute a separate extensional predicate, saytExt, andt is derived fromtExt via a
rule:t(X, Y, Z) :- tExt(X, Y, Z).

The set of rules is typically not immutable. With the advent of higher layers of the
Semantic Web stack, i.e. the rule layer, users can create their own rules. Hence, we
are facing a scenario where not only base facts can change but also the set of rules.
This requires the ability to maintain dynamic Datalog programs. Besides support for a
rule layer, this ability is also required for approaches where the semantics of the on-
tology language is not captured via a static set of rules but instead compiled into a
set of rules. Such an approach is for example required by Description Logic Programs
(DLP) [1], where OWL ontologies are translated to logic programs. Other implementa-
tions of knowledge representation languages, e.g. O-Telos and F-Logic , have also been
achieved via such a compilation. Consequently, a change to the ontologies class and
property structure will result in a change of the compiled rules. Again, it is necessary to
be able to maintain a materialization in case of such a change.

3 Changing facts

Figure 1: Changes to a RDF/S taxonomy and its materialization



Let’s consider the effects of adding and removing a subClassOf relationship in the
taxonomy presented in Figure 1 with respect to the presented rule, which implements
the transitive closure of therdfs:subClassOf relationship, and a rule that links the
intensional predicatet with ground facts. We can easily see that : (a)b is no longer
a subclass ofc, viz. the text(b, subClassOf, c) fact is deleted. (b)h is asserted to be a
subclass ofd, hence atext(h, subClassOf, d) fact is inserted.

However, this has the following consequences tot: It eliminates the links between
(a,c), (a,g), (b,c) and (b,g). Since the factstext(d, subClassOf, c) andtext(e, subClassOf, d)
exist, alternative derivations also exist for the links (e,c), (e,g), (f,c) and (f,g). These al-
ternative derivations have to be taken into account in our approach. The insertion yields
three new derivations namely links between (h,c), (h,d) and (h,g).

Several algorithms (e.g. [4, 2]) have been presented for the incremental mainte-
nance of views (or intensional predicates) in the deductive database context. The most
common procedure is to compute the changes (differentials) to views in three steps:
Firstly, to overestimate the consequences of deletions, so a super set of the facts that
are eventually deleted is computed for deletion. Secondly, a rederivation step prunes
those computed deletions from the set of deletions for which alternative derivations
(via some other rules defining the view) exist. Thirdly, the consequences of insertions
to extensional predicates are added to the view, if applicable.

Our approach is based on the approach of [4], which realizes the DRed (delete and
rederive) algorithm presented in [2] in a purely declarative way. Basically, the original
program is rewritten into a maintenance program which is evaluated instead of the old
program, viz. a set of maintenance rules is generated.

4 Changing rules

Our core contribution is to update a materialization if the definition of intensional pred-
icates changes, viz. rules that define the predicate are added or removed. Our solution
has two main components. Firstly, the materialization itself has to be maintained. Sec-
ondly, the maintenance rules for a predicatep themselves have to be maintained. We
will only discuss the first component in the following.

Adding and removing rules requires the reevaluation of all other rules that define
the same predicates. It does not suffice to simply change the maintenance rules which
are generated for dealing with changes in facts, since these maintenance rules (in their
original form) are only activated when changes to the extension of a predicate occur.
Therefore we have to generate additional maintenance rules. Our solution is based on
the creation of a temporary predicatepTemp, which is used to calculate the extension of
a predicatep using the changed set of rules. Hence,pTemp is axiomatized using the up-
dated rule set that defines a predicatep. Of course, this has to incorporate some changes
into the rule set, for example self-references of the predicate have to be substituted by
the temporary predicate.Then,pTemp is incorporated into the maintenance program us-



ing a new set of maintenance rules and interacts with the existing machinery that deals
with changes in facts.

Our approach has that serious drawback that a change in rules might require to
recompute the whole program, for example if all rules define a single triple predicate
only as it is often done to axiomatize RDF/S. Naturally, this situation corresponds to
the simple strategy of recomputing a materialization from scratch.

For this case we propose theselection-based optimization, which improves the
maintenance process by limiting the part of the database which takes part in the eval-
uation. Our optimization splits predicates into multiple predicates depending on split
points. Split points are given by constants that occur at a certain argument position of a
predicate. A Datalog program is then transformed into an equivalent program, such that
all references top where a split point occurs are replaced by the new split predicates.
After splitting, we can ignore all rules that do not define those split predicates which
are affected by the change and use our old machinery without having to recompute
everything.

5 Conclusion

We have presented the ideas underlying our approach to incremental maintenance of
dynamic Datalog programs. We invite the reader to have a closer look to our full paper
[5], which presents the technical details and the results of a first performance evalu-
ation, which demonstrates the feasibility of our approach. Our open-source Java im-
plementation is part of the KAON Datalog engine, which is available for download at
http://kaon.semanticweb.org/.

We believe that materialization will become a central technique for achieving scal-
ability in Distributed Semantic Systems such as presented by the Semantic Web. We
have shown how our approach can be used with current means for specifying semantics
in the Semantic Web. As we present a generic solution, future developments, e.g. for
the rule layer of the Semantic Web, are likely to benefit from our technique as well.

References

1. B. Grossof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. InProceedings of WWW 2003, Budapest, Hungary,
May 2003.

2. A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintaining views incrementally. InACM
SIGMOD Conference on Management of Data, 1993.

3. Michael Sintek and Stefan Decker. TRIPLE - A Query, Inference, and Transformation Lan-
guage for the Semantic Web. InInternational Semantic Web Conference (ISWC), June 2002.

4. Martin Staudt and Matthias Jarke. Incremental maintenance of externally materialized views.
In VLDB’96, pages 75–86, 1996.

5. Raphael Volz, Steffen Staab, and Boris Motik. Incremental Maintenance of Materialized On-
tologies. In2nd Int.Conf. on Ontologies and Databases (ODBASE), Sicily, Italy, October
2003.


	Introduction
	Datalog and Web ontology languages
	Changing facts
	Changing rules
	Conclusion

