
HORUS: an Agent System for Home Automation
Attilio Giordana

Computer Science Department
Universita‘ del Piemonte Orientale

Via Teresea Michel 11, 15121 - Alessandria
Email: attilio@mfn.unipmn.it

Dino Mendola, Andrea Moio, and Davide Monfrecola
Penta Dynamic Solutions

Via Teresa Michel 11, 15121 Alessandria, Italy
Email: dino.mendola@pec.it

Abstract—This paper presents a system for home automation,
called HORUS, which is based on an agent architecture. The
benefits deriving from this type of solution are essentially
three. Firstly, the agent paradigm provides a good abstraction
mechanism for implementing a modular system, easy to con-
figure according to the requirements of a specific application.
The second reason is the possibility of scaling up to complex
applications exploiting parallel and distributed computing on low
power micro-pc. The third reason is load balancing and fault
tolerance. When required, the agents migrate from one host to
another providing fault tolerance and load balancing capabilities.
Some agents are provided with learning capabilities and can learn
the model on the environment where they operate. Finally, the
agents communicate in xml over https and are integrated in a
web environment which offers an ubiquitous access from any kind
of portable device, while providing a secure access. HORUS is
now a commercial product, which provides either a sophisticated
anti-intrusion system, and energy control.

I. INTRODUCTION

This paper describes a distributed system designed for
automation named HORUS1. The characteristic of HORUS,
which distinguishes it from other commercial systems de-
signed for the same task is the agent based architecture, which
is in the line of [1], [2]. This choice is due to several different
reasons. The first one is modularity. Every agent implements
a specific function, and is a self-consistent building block.
Depending on the user needs a site dependent network of
agents is defined in order to implement the required functions.
Several instances of every agent type may be active at the
same time. The second reason is parallel and distributed
computing. The hardware suitable for home automation is
usually based on low power cpus, which may be installed in
a wall-box, but do not provide enough power for complex
applications. Exploiting parallel and distributed computing is
a solution that allows computing intensive applications be
implemented without scaling up to more expensive hardware.
A third reason is fault tolerance [3]. Several home applications,
for instance anti-intrusion, are critical with respect to fault
tolerance. A failure in the system may endanger things and
human beings. Agents may be redundant and migrate from one
computational node to another in order to guarantee the most
critical functionalities. Finally, a last reason is load balancing.
Migrating an agent is the typical way of balancing the load
on a network of hosts.

1Horus is a trademark of Penta Dynamic Solutions

Another important feature of Horus is the user interface,
which is based on a protocol based on XML/HTTP and
provides an ubiquitous access from Internet and from any kind
of fixed of portable device. Moreover, Horus is assisted by a
WEB based configuration module, which supports a technician
in order to design and configure a custom installation.

Finally, an indirect benefit deriving from the modularity
inherent to the agent based architecture, is the possibility of
experimenting innovative methods, like adaptive algorithms
based on a machine learning approach, without compromising
the critical functionalities of the system. In fact, some of this
features are now included in the official release (Horus-3.0),
which is a commercial product, and counts several installations
in domestic end business environments.

II. HORUS ARCHITECTURE

HORUS is implemented as an overlay network of agents
distributed on a TCP/IP network of hosts providing a UNIX
compatible platform like Linux or MacOS. More specifically,
hosts may belong to two categories:

• General purpose mini/micro-pc, offering a full UNIX
environment;

• Custom devices like IP-videocameras and IO-boards,
which provides http based interface and are accessible
as web sites.

The agents are allocated on the general purpose hosts and
communicate over http using an xml based protocol. Custom
hosts, are then included in the agent community as special
agents. The agent communication protocol is extensible in
order to include the characteristic idioms of the custom hosts.
An example of agent network including IO-boards and IP-
videocameras is provided in Figure 1.

A. The Platform

IP-videocameras are becoming quite popular because of the
possibility of being directly accessible from Internet. In our
case, this solution is appealing because avoids the need of
dedicating a host to serve a videocamera. IP-videocameras
typically offer one, or more, streaming service, accessible at
specific url. Very frequently they implement some elementary
motion detection algorithm, which uploads a videoclip on a
server, any time severe changes in the recorded image are
observed.

ioagent	 mdagent	 recagent	

phoneagent	

netagent	

mngagent	

logagent	

webagent	

Remote	
server	

In
te

rn
et

In

te
rn

al
 L

A
N

Alarm

Event
Command
IO device comm

Internet comm

Fig. 1. Example of agent network.

IO-boards provide the interface toward sensors and actuators
via a set of digital or analogical channels. Many IO-boards
can be installed in a box of the electric plant, and provide
an ethernet interface accessible via cable UTP or Wi-Fi.
In general they implement the stack TCP/IP and can be
polled or commanded via messages encoded in HTML/XML.
Nevertheless the specific message format is strongly dependent
upon the board type.

B. Agent Types

Agents are subdivided into different types characterized by
the function they implement. Agents of the same type in most
cases share the same code, end differentiate the behavior only
in dependence of the configuration parameters. All agents use
a same communication language encoded in XML over http.
Three kinds of messages are defined: Events, Actions, and

Alarms. The former ones simply communicate changes in
sensor or agent status. Actions are commands that force the
destination agent to change its status or to activate some ac-
tuator. Alarms correspond to urgent and potentially dangerous
events, and are processed with priority with respect to the
others.

Agent interaction is event driven and has been designed
in order to guarantee strict real time requirements, as it may
be necessary in a security application. More specifically, the
agent interaction is always atomic. When an agent sends a
message it receives an immediate response, without waiting for
the accomplishing of a remote procedure. In this way, delays
and deadlocks due to chains of requests waiting for a remote
answer are impossible.

Nevertheless, this choice restricts the possible information
content in an answer to the knowledge currently available from
the agent status. No actions are possible in order to increase
the local knowledge before answering.

In the following we will briefly review the different agent
types.

1) Managers: They are the agents responsible for taking
decisions reacting to events received from other agents. (IO-
handlers or MD-agents). They are provided with a knowledge
base encoded in form of production rules. More precisely a
rule has the following general form:

φ→ actions, alarms (1)

where the precondition φ is logic clause on some of the
variables characterizing the agent status, actions is a list
of actions to execute, and alarms is a list of alarm event
to communicate to other agents. Either alarm or action list
may be empty. Moreover, the action list may include internal
actions entailing the immediate change of the manager internal
status.

Managers are typically used for controlling subsystems like
the anti-intrusion and the air conditioning. Depending on the
rule base and the events it receive a manager may instantiate
one or the other functionality.

In addition to the rule base, managers are provided with an
activity program, which defines the activity phases. When a
manager is active it behaves according to the rule base. When
it is not active, only registers the received events but does not
send any alarm, nor execute any action.

2) IO-handlers: Sensors and actuators are interfaced
through IO-boards. Nevertheless, IO-boards communicate us-
ing device specific languages, which does not complain with
HORUS standard. In order to integrate them with the HORUS
agent community, an IO-handler acts as a wrapper, which
provides a standard interface toward the different IO-board
types. Any time a change in an input channel of the IO-board
is detected, an event message is sent to the agents interested
in the specific event. Any time, an action message is received
from another agent, a proper sequence of commands is sent
to the IO-board in order to activate an output channel.

3) Video-camera handlers: Two basic functions can be
implemented using this type of agent:

• Continuous recording according to a specified time
scheduling (REC-agent).

• Motion detection (MD-agent).
The alternative behavior is specified by the parameters into
the configuration files the agent reads at the start up time.

Recording activity simply consists in creating an archive of
videos, which can be consulted when the user want to trace
same event happened in the past. Motion detection, is a more
critical task, which consists in discovering critical events in the
scenario observed by a camera. The first step is accomplished
by the camera itself, which upload a video-clip, in a directory
monitored by an MD-agent, any time some major change is
observed in the scenario. The MD-agent analyzes the video-
clip using a sophisticated vision algorithm and, if it decides
that some critical event actually happened, sends an event
message to the manager in charge of security.

4) Alarm communicators: An alarm communicator
(PHONE-agent) is an agent provided with an output device
such as a GSM card, or an IP-phone, which is used to send

alarm messages to a user, or to a security service. Several
kinds of messages can be used ranging from sms to vocal
messages, depending on the user preference. A PHONE-agent
is usually provided with a table that specifies, for every alarm
type, which user must be alerted.

5) Self monitoring subsystem: A key activity of the agent
system is continuous self-monitoring in order to immediately
detect critical failures or tampering attempts, which could
prevent it from reacting to critical events. Two kind of agents
are in charge of this activity:

• NET-agents
• TAMPER-agents
A NET-agent is very simple. It periodically checks the

reachability of an assigned set hosts. If one of them is not
reachable for more than a few seconds it sends an event mes-
sage to a manager. In this way, hardware failures (either natural
or caused by an intruder) of the network components are
immediately detected and communicated to an administrator.

Tampering is a kind of attack aimed at compromising the
sensorial apparatus of a surveillance system. Typical targets are
the infrared detectors and the videocameras. Infrared detectors
are usually provided with an anti-tamper mechanism, which
is interfaced to HORUS using some input channel of an IO-
board. Videocameras are more fragile because many attacks
can be done without a physical contact. TAMPER-agents
periodically check the videocameras functionality by verifying
that the recorded image corresponds to the expectation. Some
more details are provided in Section V.

6) Loggers: Goal of the loggers is to provide a complete
logging of events and alarms to be used for diagnosis. The
type of agent in charge of this activity is the LOG-agent. It
receives alarm and event messages from the other agents and
periodically upload them on a remote server. However, logging
is also accomplished by the WEB-agent, in order to provide
the user with a complete information source. The WEB-agent
is nothing else than a classical web server, which is integrated
in the agent community in order to provide a flexible interface
to the user.

C. Agent Architecture

All agents have a similar architecture organized as an
acyclic forward graph of threads communicating by means of
message queues. The reason for choosing this architecture is to
avoid possible dead-locks or delays on critical sections. Exam-
ples of agents are reported in Figure 2 and 3, corresponding to
an MD-agent and to a manager, respectively. More specifically
the WEB-Thread provides the http interface to the incoming
message from other agents, and is able to immediately answer
without delays. The Trigger thread, accounts for the time flow
and schedules internal actions at prefixed intervals. The Core
thread is agent specific and implements the real work carried
by the agent. Finally, the Destination and the Action threads
are in charge of forwarding event, alarm, and action messages,
to a list of other agents.

The Archive thread, which is presents only in some agents
like MD-agents and REC-agents, is in charge of storing in

the archive the videos acquired from the cameras. Finally, the
Filter thread, visible in the MD-agent architecture, is the one
executing the video analysis checking for events corresponding
to items moving in the scenario. Finally, the Log thread (to
not be confused with the LOG-agent) provides to the other
threads a logging service, on a file, for debugging purposes.

Trigger&Thread&

WEB-Thread&

core-Thread&
des1na1on-

Thread&

log-Thread&

Timer

Command
(set status) Filter-Thread&

archive-
Thread&

Scenario changes Motion detected

Fig. 2. Every agent is organized as a set of threads communicating through
message queues. As an example, the figure describes an MD-agent

Trigger&Thread&

WEB-Thread&

core-Thread&

des1na1on-
Thread&

log-Thread&

Timer
event

Command
(set status)

ac1on-Thread&

Alarm

Command
(action)

Event

Rule&
Knowledge&Base&

Fig. 3. The manager agents are provided with a rule knowledge base.

D. Agent Addressing

Agents communicate via a standard http/tcp protocol. A
critical point is how an agent may find the IP address of
the others agents. In order to support migration and fault-
recovery, the agent addressing mechanism must be dynam-
ically reconfigurable. Nevertheless, the classical method of
using a dynamic DNS-server is fragile, because the failure of
the server would compromise the entire system functionality.
Then a different solution has been implemented.

Every agent is provided with a thread (not described in
Figure 2 and 3), which runs in background and maintains a
local addressing map of the active agents in the local network.
Periodically, an agent announces, in broadcast over UDP, its
name and its IP address to all agents listening on the internal
network. When an agent receives the address of another agent,
it updates the corresponding entry (see Figure 4) and the Time
To Live (TTL) value is set to the maximum.

The TTL of all entries is decremented according to the cpu
clock. If it expires before receiving a new announcement from

Agent name Address TTL

Manager1 192.168.1.15 90

Netagent1 192.168.1.15 37

MD-agent1 192.168.1.25 19

MD-agent2 192.168.1.15 72

……………. …………….. ……..

Address Handler
Address

Broadcast
to the net

Address
communication
from the other

agents

Address table

Fig. 4. Address manager thread

the corresponding agent, this one is considered inactive. In
order to prevent the possibility for false messages poisoning
the address tables, all messages communicating IP address
are authenticated using a standard signature protocol based
on RSA.

III. WEB INTERFACE AND UBIQUITOUS ACCESS

The interface to Horus is provided by the WEB-agent, which
is a traditional web server. In the standard configuration is
located in the same local network where the agent system is
installed. Nevertheless, if required, it can be located in any
place in Internet (e.g., in a cloud).

Two kinds of interface are provides by the web server.
One is designed for assisting a technician accomplishing an
HORUS installation. The other offers an ubiquitous access to
HORUS from any kind of portable or fixed device provided
with a web browser.

A. Horus Configurator

An example of HORUS configuration interface is provided
in Figure 5. The configuration module has been designed
in order to assist a technician during the steps necessary to
customize the agent system for a specific installation. No
specific knowledge in programming is assumed, but only a
technical background concerning the installed components:
sensors, actuators and videocameras.

B. Horus Access

The user interaction with the Agent system is provided by
a set of dynamic pages, which automatically adapt to the
browser and to the specific circumstances. The web pages are
constructed considering the size of the display of the device
the user is connecting from and possibly the urgency. In case
of emergency, the first item on the display is a synthetic
description of what happened. Example of the pages generated
for an i-phone end for a tablet are provided in Figure 6
and 7. In order to guarantee secure connections from every
Internet access point, the connection is over https and requires
a certificate pre-installed on the access device.

Fig. 5. Example of Horus Configurator interface

Fig. 6. Horus interface for a 3G phone

IV. DYNAMIC RECONFIGURATION

Agent allocation to hosts may be dynamically changed in
order to handle fault-tolerance and load balancing. In fact,
it is very simple to migrate the activity of an agent from
a host to another. When dynamic reconfiguration is required

Fig. 7. Examples of Horus interface for a netbook

the code of all agent types is always installed on the hosts,
which are potentially involved in the reconfiguration process.
Agents have a soft status, which can be reconstructed in a
short time by interacting with the other agents. Then, migrating
an agent does not requires to migrate the agent memory, but
simply requires to start a new copy of the agent in a host
while the old copy stops. The mechanism, which handles the
addressing table, automatically notifies the new address to the
other agents.

In the current HORUS release, fault-tolerance and load
balancing are handled using a very simple mechanism. Critical
agents, like managers may be duplicated on different hosts.
However, the two copies have assigned a different behavior.
One copy works as master, while the second copy works as
backup in stand by. When a backup agent does not receive the
address notification from the master copy, so that the TTL in
the address table expires, automatically switches to a master
behavior. When the original master begins again to notify its
address, the backup agent switches back to its original role.
This mechanism implements fault-tolerance. Load balancing
can be obtained by commanding the two agent copies to switch
their role. Currently, this mechanism is controlled manually
through a page of the configuration module. Nevertheless, the
next release should provide a policy for automatically handling
load balancing.

V. ADAPTIVE CAPABILITIES

Some agents are provided with learning capabilities in order
to adapt automatically to the environment where HORUS is
installed. More specifically they are the agents dedicated to
anti tampering of the video-surveillance sub-system and to the
motion detection.

Preventing tampering of videocameras is critical and impor-
tant problem, which has been investigated by many authors,
as reviewed in [4]. Nevertheless, no completely satisfactory
solutions, capable of dealing any environmental condition have
been found in the literature [4], [5], in spite of the claims made.
For this reason, a new algorithm has been implemented[6].
Differently from others approaches to the same problem[4],
[5], which focuses on the detection of abrupt changes occur-
ring owing to a tamper, the anti-tamper algorithm we propose
is based on a model of the correct behavior of the visual
apparatus. The model accounts for a set of items, which
must be detectable under different light conditions during the
day and the night. When these item are not detectable for a
given period of time a security warning is sent to the house
administrator. The model is automatically learned by observing
the environment, without intervention by side of the user. The
initial training period last about three days. Then the learning
process continues as a long term background activity, in order
to account for the environmental changes due to the different
condition of light in the different seasons, while the agent is
already operational.

Another agent type, which is provided of adaptive capabil-
ities is the one devoted to motion detection. As described in
Figure 2 this kind of agent is provided with a filter, which

analyzes the video-clips, generated by the camera when the
motion detection is triggered, in order to distinguish moving
items corresponding to intrusions from false alarms. The filter
thread is provided with a short term model of the world (dif-
ferent from the long term one used by the anti tamper agent),
which is continuously updated using an adaptive algorithm.
In this way the agent is able to detect major changes in the
scenario, which activate a deeper analysis of the image aimed
at detecting blobs corresponding to moving objects. Blobs are
then classified into alarms or non-alarms. The classifier is an
SVM [7] trained from a set of positive and negative examples.

Finally, a new agent, not yet included in HORUS, is now
under development. Its aim is to provide a behavioral model of
devices like appliances, which will be exploited in the Power
management sub-system. This kind of agent is based on a
Dynamic Bayesian network [8]

VI. CONCLUSION

In this paper, we described commercial system based on
an agent architecture, which is now operational in houses
and shops. Commercial systems are necessarily based on
consolidated methods, which make them less advanced than
one could expect, considering the state of the art emerging
from the literature. Nevertheless, HORUS, due to the critical
tasks it needs to face, incorporates a number of advanced
features, which have been a key aspect for its success. More
specifically, the agent based architecture has been fundamental
to implement modularity, scalability and fault-tolerance. More-
over, features inherently originating from the agent system
literature, such adaptability, have been included in the most
recent HORUS release.

REFERENCES

[1] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-oriented smart-home archi-
tecture based on osgi and mobile-agent technology,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C, vol. 37, no. 2, pp. 193–205,
2007.

[2] W. Shen, Q. Hao, S. Wang, Y. Li, and H. Ghenniwa,
“An agent-based service-oriented integration architecture for
collaborative intelligent manufacturing,” Robot. Comput.-Integr. Manuf.,
vol. 23, no. 3, pp. 315–325, Jun. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.rcim.2006.02.009

[3] S. Kumar, “The adaptive agent architecture: Achieving fault-tolerance us-
ing persistent broker teams,” in In Proceedings of the Fourth International
Conference on Multi-Agent Systems. IEEE Computer Society, 2000, pp.
159–166.

[4] A. Saglam, “Adaptive camera tamper detection for video surveillance,”
June 2009.

[5] E. Ribnick, S. Atev, O. Masoud, N. Papanikolopoulos, and R. Voyles,
“Real-time detection of camera tampering,” in Proceedings of the IEEE
International Conference on Video and Signal Based Surveillance, ser.
AVSS ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
10–. [Online]. Available: http://dx.doi.org/10.1109/AVSS.2006.94

[6] A. Moio, “An anti-tampering algorithm bbased on an ai approach,” 2012,
technical report TR-02-12.

[7] J. Shawe-Taylor and N. Cristianini, Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[8] V. Mihajlovic and M. Petkovic, “Dynamic bayesian networks: A
state of the art,” Enschede, 2001, dMW-project. [Online]. Available:
http://doc.utwente.nl/36632/

