
 An Ontology of Software Evolution

Author Xiaowei Wang

Supervisors John Mylopoulos, Nicola Guarino

Studies/Stage 1st year PhD student

Affiliation University of Trento

E-Mail xwang@disi.unitn.it

Aims and Objectives

This paper aims at clarifying and formalizing the concepts relating to software evolution,
creating shared knowledge of software evolution. To achieve this goal, we propose an ontology
of software evolution, for the first time in the research community, based on the analysis of the
previous work. With this ontology, we hope to make the implicit knowledge explicit to people,
providing guidance for the work of researchers, practitioners and managers.

Problem Statement

In modern society, people heavily rely on software in almost every aspect of human life.
Because of the high speed of change in the society, software is forced to change rapidly to
adapt to the new environment. To survive in this environment, software systems have to evolve,
and consequently the work of maintenance and refactoring of the software systems occupies a
large amount of the human and financial resource. Although several taxonomies were proposed,
software engineering still depends on stakeholders’ intuition and experience, and the concepts
used in this domain are still ambiguous. Trying to bridge this gap, we aim to build such a new
ontology of software evolution, based on which a lot of terms misinterpreted in the community
could be clarified and unified.

Research Questions

To build an ontology of software evolution, initially we have to define several core concepts
showed as the following list:

1. the concept of artificial
2. the concept of software as sub-concept of artificial
3. the concepts of species and individual
4. the concepts of software species and software individual
5. the concept of software evolution happening in the software species level
6. the concept of software maintenance happening in the software individual level
7. other related concepts (e.g. software adaptation, software refactoring) happening in

software species or individual level

Theory Fundamentals

We take DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) as our starting
point [1], which is a fundamental ontology describing basic concepts and knowledge. Besides
this, we borrow the ideas about species from Mahner’s work [2], and the ideas about artifactual
system from Guarino’s work [3]. Furthermore, our work will be based on analyzing and reusing
history taxonomies and ontologies in this domain. Finally, to develop a formal ontology, the
OntoClean methodology may be used as guidance [4].

Preliminary Research Results

Intuitively, software may be interpreted as a tool. Comparing with a hammer, software is only a
different tool processing different functions. To discuss about the evolution of software, we have
to study the whole life cycle of software covering five main activities in software engineering,
and these activities are communication, planning, modeling, construction and deployment. From
this perspective, this paper redefines the concept of software by reusing and refining these five
activities into five components showed in Table 1.

Abbreviation Software component

D Domain knowledge

R Requirement

S Specification

Des Design

I Implementation

Table 1. Software components
According to the view of requirement engineering, requirements are some desired properties
that a user may want, and specifications are the characteristics of a machine, together with the
domain knowledge, which could fulfill the requirements. This relationship may be represented in

a formula as “D, S ⊢ R” [5]. However, it is missing the developing dimension without which we
will lose the capability of describing the activities relating to the developing process (e.g.
maintenance, refactoring and other activities). To compensate this missing, the formula may be
enlarged into:

(D, S ⊢ R) ∧ (Des ⊢ S) ∧ (I ⊢ Des)

In the sub-formula “(Des ⊢ S)”, “Des” means the technical design which can realize the
functions defined by the specifications; on the other hand, in the sub-formula “(I ⊢ Des)”, “I”
means the implementation with source codes which can realize the technical design.
In this paper, we insist that software evolution only happens in class level, hence it could be
described by the differences between the new and old version of the software. We take a
version as a species which defines the laws for its members. These laws are represented in
specifications in requirement engineering, hence when we talk about software evolution, we are
really talking about the change in specifications. According to this view, software evolution can
be represented as S is changed into S’ according to the formula we have already defined.
The changes in specifications may be caused by changes in domain assumption, or by changes
in requirement. According to the changes in specifications, new design and source code may be
developed in the next iteration in software developing, and the new formula may be rewritten

into “(D’, S’ ⊢ R’) ∧ (Des’ ⊢ S’) ∧ (I’ ⊢ Des’)”.

References

1. Masolo, C., et al., WonderWeb Deliverable D17: The WonderWeb Library of Foundational
Ontologies (preliminary report), 2003, Laboratory For Applied Ontology - ISTC-CNR Via Solteri,
38 38100 Trento Italy. p. 38-38.

2. Mahner, M., What is a species? Journal for General Philosophy of Science, 1993. 24(1): p. 103-
126.

3. Vieu, L., S. Borgo, and C. Masolo, Artefacts and Roles: Modelling Strategies in a Multiplicative
Ontology, in Proceedings of the 2008 conference on Formal Ontology in Information Systems:
Proceedings of the Fifth International Conference (FOIS 2008)2008, IOS Press. p. 121-134.

4. Guarino, N. and C. Welty, Evaluating ontological decisions with ontoclean. Communications of
the Acm, 2002. 45(2): p. 61-65.

5. Zave, P. and M. Jackson, Four dark corners of requirements engineering. ACM Trans. Softw. Eng.
Methodol., 1997. 6(1): p. 1-30.

