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Abstract. The goal of this research is to devise a method for recognizing 

TimeML noun events in a more effective way. TimeML is the most recent an-

notation scheme for processing the event and temporal expressions in natural 

language processing fields. In this paper, we argue and demonstrate that the de-

pendencies and the deep-level WordNet classes are useful for recognizing 

events. We formulate the event recognition problem as a classification task us-

ing various features including lexical semantic and dependency-based features. 

The experimental results show that our proposed method outperforms signifi-

cantly a state-of-the-art approach. Our analysis of the results demonstrates that 

the dependencies of direct object and the deep-level WordNet hypernyms play 

pivotal roles for recognizing noun events. 

Keywords: Event Recognition, TimeML, TimeBank, WordNet, Natural Lan-

guage Processing, Machine Learning 

1 Introduction 

Automatic event extraction from text is one of the important parts in text mining 

field. There are two types of definitions for events. In the area of topic detection and 

tracking (TDT), an event is defined as an instance of a document level topic describ-

ing something that has happened (Allan 2002). On the other hand, the information 

extraction (IE) field uses a more fine-grained definition of an event, which is often 

expressed by a word or phrase in a document. In TimeML, a recent annotation 

scheme, events are defined as situations that happen or occur and expressed by verbs, 

nominalizations, adjectives, predicative clauses or prepositional phrases (Pustejovsky, 

Castaño, et al. 2003). In this paper, we follow the view of IE, and focus on recogni-

tion of TimeML events. 

Previous studies have proposed different approaches for automatic recognition of 

events, most notably adopting machine learning techniques based on lexical semantic 

classes and morpho-syntactic information around events (Bethard and Martin 2006; 

Boguraev and Ando 2007; Llorens, Saquete, and Navarro-Colorado 2010; March and 

Baldwin 2008; Saurí et al. 2005). In recognizing events, some of the past work used 

top level WordNet classes (Fellbaum 1998) to represent the meanings of events. It 
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turns out, however, that such WordNet classes used as lexical semantic features are 

not sufficient. When WordNet hypernyms within the top four levels (Llorens, 

Saquete, and Navarro-Colorado 2010) or some selected classes (Bethard and Martin 

2006) were used, they could not represent events well. For example, the WordNet 

class event is a representative level-4 class expressing events, but just 28.46% of event 

nouns, i.e., hyponyms of WordNet event class occurring in the TimeBank 1.2 corpus 

are annotated as TimeML events. TimeBank is a corpus containing news articles an-

notated based on the TimeML scheme (Pustejovsky, Hanks, et al. 2003).  

Events can be recognized in different part-of-speech. In this paper, we focus on 

noun event recognition because the previous approaches showed low performances 

for recognizing noun events although nouns cover about 28% of all the events, ac-

cording to our data analysis. For the problem of recognizing event nouns, we propose 

a method of using dependency-based features that exist between an event noun and its 

syntactically related words. In addition, we chose to use deeper level WordNet classes 

than those at the top-4 levels as in the previous work. We show that our proposed 

method outperforms the previous work by running experiments. 

The rest of the paper is organized as follows. Section 2 introduces TimeML and 

TimeBank corpus as a representation and annotation scheme and as a test bed, respec-

tively. It is followed by a discussion of related work for TimeML-based event recog-

nition in Section 3. Section 4 presents our event recognition method using the deep-

level WordNet classes and the dependency-based features. We then discuss our exper-

iments and results in Section 5. Finally, the last section presents our conclusions. 

2 TimeML and TimeBank Corpus 

TimeML is a robust specification language for event and temporal expressions in 

natural language (Pustejovsky, Castaño, et al. 2003). It was first announced in 2002 in 

an extended workshop called TERQAS (Time and Event Recognition for Question 

Answering System)
1
. It addresses four basic problems: 

 

1. Time stamping of events (identifying an event and anchoring it in time) 

2. Ordering events with respect to one another (lexical versus discourse properties 

of ordering) 

3. Reasoning with contextually underspecified temporal expressions (temporal 

functions such as “last week” and “two weeks before”) 

4. Reasoning about the persistence of events (how long does an event or the out-

come of an event last) 

Fig. 1. Four problems in event and temporal expression markup (Hobbs and Pustejovsky 2003) 

There are four major data components in TimeML: EVENT, TIMEX3, SIGNAL, 

and LINK (Pustejovsky et al. 2007). TimeML considers event as a term for situations 
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that happen or occur or elements describing states or circumstances in which some-

thing obtains or holds the truth (EVENT). Temporal expressions in TimeML are 

marked up with the TIMEX3 tags referring to dates, durations, sets of times, etc. The 

tag SIGNAL is used to annotate function words, which indicates how temporal ob-

jects (event and temporal expressions) are to be related to each other.  The last com-

ponent, LINK, describes the temporal (TLINK), subordinate (SLINK), and aspectual 

relationship (ALINK) between temporal objects. 

Fig. 2 shows an example of TimeML annotation. For an event “teaches”, its type is 

kept in class attribute, and its tense and aspect information is tagged in 

MAKEINSTANCE. The normalized value of temporal expressions “3:00” and “No-

vember 22, 2004” are stored in value attribute in TIMEX3 tag. The signal words “at” 

and “on” make links between events and temporal expressions through TLINK tags. 

 
John 

<EVENT eid="e1" class="OCCURRENCE"> teaches </EVENT> 

<MAKEINSTANCE eiid="ei1" eventID="e1" tense="PRESENT" 

  aspect="NONE" /> 

<SIGNAL sid="s1"> at </SIGNAL> 

<TIMEX3 tid="t1" type="TIME" value="2004-11-22T15:00" 

  temporalFunction="TRUE" anchorTimeID="t2"> 3:00 

  </TIMEX3> 

<SIGNAL sid="s2"> on </SIGNAL> 

<TIMEX3 tid="t2" type="DATE value="2004-11-22"> 

  November 22, 2004 </TIMEX3>. 

 

<TLINK eventInstanceID="ei1" relatedToTime="t1" 

  relType="IS_INCLUDED" signalID="s1"/> 

<TLINK timeID="t1" relatedToTime="t2" 

  reltype="IS_INCLUDED" signalID="s2"/> 

Fig. 2. An example of TimeML annotation (Pustejovsky et al. 2007) 

Among several corpora
2
 annotated with TimeML, TimeBank is most well-known 

as it started as a proof of concept of the TimeML specifications. TimeBank 1.2 is the 

most recent version of TimeBank, annotated with the TimeML 1.2.1 specification. It 

contains 183 news articles and more than 61,000 non-punctuation tokens, among 

which 7,935 are events. 

We analyzed the corpus to investigate on the distribution of PoS (Part of Speech)
3
 

for the tokens annotated as events. As shown in Table 1, most events are expressed in 

verbs and nouns. Sum of the two PoS types covers about 93% of all the event tokens, 

which is split into about 65% and 28% for verb and nouns, respectively. The percent-

ages for cardinal numbers and adjectives are relatively small. They usually express 

quantitative (e.g., “47 %”) and qualitative (e.g., “beautiful”) states. Adverbs and 
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prepositions indicate events when they appear in predicative phrases (e.g., “he was 

here” or “he was on board”). 

Table 1. PoS distribution of event tokens 

PoS tag # Event Coverage 

VB (Verb) 5,171   65.17 % 

NN (Noun) 2,183   27.51 % 

CD (Cardinal Number)    279     3.52 % 

JJ (Adjective)    223     2.81 % 

RB (Adverb)      29     0.37 % 

IN (Preposition)      46     0.58 % 

Misc.        4     0.05 % 

SUM 7,935 100.00 % 

In finding verb events automatically from the TimeBank corpus, Llorens et al. 

(2010)’s work, a state-of-the-art approach, showed high effectiveness in terms of F1 

(0.913). We note, however, its performance in recognizing noun events was just 0.584 

in F1. This clearly indicates that noun even recognition, which is significant by itself, 

is a harder problem that needs to draw more attention and research. 

3 Related Work 

EVITA (Saurí et al. 2005) is the first event recognition tool for TimeML specifica-

tion. It recognizes events by combining linguistic and statistical techniques. It uses 

manually encoded rules based on linguistic information as main features to recognize 

events. It also uses WorldNet classes to those rules for nominal event recognition, and 

checks whether the head word of noun phrase is included in the WordNet event clas-

ses. For sense disambiguation of nouns, it utilizes a Bayesian classifier trained on the 

SemCor corpus
4
. 

Boguraev and Ando (2007) analyzed the TimeBank corpus and presented a ma-

chine-learning based approach for automatic TimeML events annotation. They set out 

the task as a classification problem, and used a robust risk minimization (RRM) clas-

sifier (Zhang, Damerau, and Johnson 2002) to solve it. They used lexical and morpho-

logical attributes and syntactic chunk types in bi- and tri-gram windows as features. 

Bethard and Martin (Bethard and Martin 2006) developed a system, STEP, for 

TimeML event recognition and type classification. They adopted syntactic and se-

mantic features, and formulated the event recognition task as classification in the 

word-chunking paradigm. They used a rich set of features: textual, morphological, 

syntactic dependency and some selected WordNet classes. They implemented a Sup-

port Vector Machine (SVM) model based on those features. 

Lastly, Llorens et al. (2010) presented an evaluation on event recognition and type 

classification. They added semantic roles to features, and built the Conditional Ran-
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dom Field (CRF) model to recognize events. They conducted experiments about the 

contribution of semantic roles and CRF and reported that the CRF model improved 

the performance but the effects of semantic role features were not significant. The 

approach achieved 82.4% in F1 in event recognition for the TimeBank 1.2 corpus. It 

is a state-of-the-art approach in TimeML event recognition and type classification. 

4 Event Recognition 

The main goal of our research is to devise an effective method for recognition of 

TimeML noun events. Our proposed method consists of three parts: preprocessing, 

feature extraction, and classification. The preprocessing part analyzes raw text to do 

tokenizing, PoS tagging, and syntactic parsing (dependency parsing). It is done by the 

Stanford CoreNLP package
5
, which is a suite of natural language processing tools. 

Then, the feature extraction part converts the preprocessed data into the feature spac-

es. We explain the details of our feature extraction methods in Subsection 4.1. Finally, 

the classification part determines whether the given noun is an event or not using the 

MaxEnt classification algorithm. 

4.1 Feature Sets 

The feature sets to recognize events consist of three types: Basic Features, Lexical 

Semantic Features, and Dependency-based Features. The Basic Features are based 

on one of the TimeML annotation guidelines – prenominal noun is not annotated as 

events –, and the Lexical Semantic Features are the lemmas and all WordNet hyper-

nyms of target nouns to be classified. Those hypernyms include the deep WordNet 

classes indicating the specific concept of nouns. The Dependency-based Features are 

adopted because syntactically related words tend to serve as important clues in deter-

mining whether or not a noun refers to an event. 

Basic Features. The Basic Features include named entity (NE) tags and an indication 

of whether the target noun is prenominal or not. A personal name and a geographical 

location cannot be an event whereas prenominal nouns are not considered as events 

according to the TimeWML annotation guideline. 

Lexical Semantic Features. The Lexical Semantic Features (LS) is the set of target 

nouns’ lemmas and their all-depth WordNet semantic classes (i.e., hypernyms). Some 

nouns have high probabilities of indicating an event when they are included in a very 

specific WordNet classes. For example, a noun “drop” is always an event regardless 

of its context of a sentence. While the word sense-ambiguity problem arises in map-

ping a token to a synset in WordNet, we ignore the problem and simply use the 

WordNet hypernyms of all the senses. 
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Dependency-based Features. We posit that nouns become events if they occur with 

a certain surrounding context, namely, syntactic dependencies. We use the words and 

their semantic classes related to the target noun through dependency relations. Four 

dependencies we consider are: direct object (OBJ), subject (SUBJ), modifier (MOD), 

and preposition (PREP). 

 VB_OBJ type. A feature is formed with the governing verb, which has the OBJ 

relation with the target noun, and its hypernyms. In “… delayed the game…”, for 

instance, the verb “delay” can describe the temporal state of its object noun, 

“game”. 

 VB_SUBJ type. It is the verb that has the SUBJ relation with the target noun and 

its hypernyms. For example, the verb “occur” indicates that the subject of the verb 

is an event because it actually occurs as in the definition of an event. 

 MOD type. It refers to the dependent words and their hypernyms in MOD relation. 

This feature type is based on the intuition that some modifiers such as temporal ex-

pression reveal the noun it modifies has a temporal state and therefore is likely to 

be an event. 

 PREP type. This is the preposition of a noun. Some prepositions such as “before” 

may indicate that the noun after them occurs at some specific time. 

Sometimes, Dependency-based Features need to be combined with Lexical Seman-

tic Features because a certain syntactic dependency may not be an absolute clue for 

an event by itself but only when it co-occurs with a certain lexical or semantic aspect 

of the target noun. As shown in Table 2, direct objects of “report” are not always 

events (about 32% are not events in the TimeBank corpus). However, then the direct 

object belongs to the WordNet process class, the target noun would be almost always 

an event. In this case, therefore, we need to use a combined feature. 

Table 2. The process class as direct objects and its event ratio in TimeBank 1.2 corpus 

Verb Object (Noun) # of Event  (Ratio) 

“report” WordNet process class   14/14  (100.00%) 

* WordNet process class 153/325  (47.08%) 

“report” *  30/44  (68.18%) 

[*] Indicates the any verbs or nouns 

4.2 Classification 

While the three different types of features make their own contributions in deter-

mining whether a noun is an event, their relative weights are all different. A strict 

classification algorithm categorizes the target nouns based on the weighted features. 

We weight the features with Kullback-Leibler divergence (KL-divergence), which 

is a non-symmetric measure of the difference between two probability distributions 

(Kullback and Leibler 1951) and a popular weighting scheme in text mining. For a 

feature f, its weight is calculated using the formula in (1) where E and ¬E are the dis-



tributions of event and non-event term. PE( f ) and P¬E( f ) are the probabilities of f in 

E and ¬E, respectively. 

      
 

 
ln

E

E

E

P f
W f KL E E P f

P f

    (1) 

Since we decided to use all the WordNet hypernyms as possible features, which 

cause the feature space too large to handle, we need to select more valuable ones from 

the candidate set. We use the weighing method using KL-divergence for this purpose 

and selected top 104,922 features because the cut-off value empirically showed the 

best performance in our preliminary experiment. We measured the performance when 

we applied top-k features, and it was maximized at k = 104,922. 

For our classification algorithm, we considered four popular ones in machine learn-

ing: Naïve Bayes, Decision Tree (C4.5), MaxEnt, and SVM algorithms. Among them, 

the MaxEnt showed the best performance for our classification task. The packages we 

used are Weka (Witten, Frank, and Hall 2011) and Mallet machine learning tools 

(McCallum 2002). 

5 Experiment 

5.1 Comparison with Previous Work 

We first evaluated the proposed method by comparing the previous work, whose 

result is shown in Table 3. We chose two baselines (Bethard & Martin 2006; Llorens 

et al. 2010) that were most recent ones using the TimeBank 1.2 corpus. 

The proposed method shows an improvement of about 22% and 9% in terms of 

precision and recall than the state-of-the-art, respectively, the work of Llorens et al. 

Overall, the proposed method increased the F1 score by about 18% and 13% com-

pared to the two baselines, respectively. The evaluation was done by 5-fold cross 

validation. 

Our classifier used only 85,518 features within the top-8 WordNet classes among 

the 104,922 features mentioned in Section 4.2. In Section 5.3, we describe the cumu-

lative level-8 features in detail. 

Table 3. Comparison with the proposed method and previous works 

Approach Precision Recall F1 

Bethard & Martin (2006) 0.729 0.432 0.543 

Llorens et al. (2010) 0.727 0.483 0.584 

Proposed Method 0.950 0.577 0.718 

5.2 Contribution Analysis 

We ran additional experiments to understand the roles of the individual feature 

types. In order to show relative importance of Lexical Semantic Features (LS), De-



pendency-based Features (VB_OBJ, VB_SUBJ, MOD, and PREP types), we meas-

ured performance changes caused by excluding one feature type at a time. 

As shown in Table 4, VB_OBJ and MOD features are judged to be most important 

because the performance was decreased most significantly. The effects of the other 

features were not as great, but cannot be disregarded as they always contribute to the 

overall performance increase. 

Table 4. Contributions of individual feature types 

Feature Type Precision Recall F1 

ALL 0.950 0.577 0.718 

  - LS 0.958 (+0.8%) 0.561 (-1.6%) 0.708 (-1.0%) 

  - VB_OBJ 0.939 (-1.1%) 0.517 (-6.0%) 0.667 (-5.1%) 

  - VB_SUBJ 0.944 (-0.6%) 0.554 (-2.3%) 0.698 (-2.0%) 

  - MOD 0.941 (-0.9%) 0.524 (-5.3%) 0.673 (-4.5%) 

  - PREP 0.940 (-1.0%) 0.564 (-1.3%) 0.705 (-1.3%) 

5.3 The Effect of Deep-level WordNet Classes 

To investigate the effect of deep-level WordNet classes, we observed the perfor-

mance changes incurred by increasing the cumulative WordNet depth within which 

features were generated. Depth fifteen, for example, means all the hypernyms of the 

matched word are considered as features. The results are presented in Fig. 3. 

 

Fig. 3. Performance per cumulative WordNet depth 

In this figure, the y-axis on the left represents the performance of event recognition 

in terms of precision, recall, or F1, and the y-axis on the right shows the numbers of 

features that vary when we apply the cumulative WordNet depth, which is represented 

by the x-axis. 
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Regardless of the depth of WordNet classes, the classifier reached the high preci-

sion over 0.9, but the recall varied quite widely. Recall increased with the rise of class 

depth, and it rose to the peak at top-8 level. The recall and F1-scores were 0.577 and 

0.718, respectively. 

The number of features increased continuously up to the level 13, but stayed the 

same beyond that. The number of features was 104,922, but the classifier used only 

85,518 features at level 8 (where the performance was the best). From these results, 

we expect that there is a proper level of ontology to recognize events, which is shown 

to be level 8 in WordNet classes. 

6 Conclusion 

In this paper, we propose a TimeML noun event recognition method using syntac-

tic dependency and WordNet classes and show their effect using the TimeBank col-

lection. We chose to focus on noun events because they were recognized poorly in the 

previous research although they constitute about 28% of the events. The problem of 

recognizing such events was formulated as a classification task using lexical semantic 

(lemma and WordNet hypernyms) and dependency-based features. 

Our experimental results show that the proposed method is better than the previous 

approach in recognizing TimeML noun events. The performance increase in terms of 

F1 measure is from 0.584 to 0.718, which we consider very significant. Through our 

analysis, we arrive at the conclusion that using dependency-based features and deep-

level WordNet classes are important for recognizing events. We also showed that 

recall was increased significantly by using the hypernym features from lower depth of 

the WordNet hierarchy. A performance increase in recall for event detection, mainly 

due to the accurate handling of nouns and to effectiveness of the proposed classifica-

tion method, would be translated into wider coverage of event-related triples in Se-

mantic Web. 

Although the proposed method showed encouraging results compared to the previ-

ous approaches, it still has some limitations. One issue is on the level of WordNet or 

an ontology for expanding the feature set because the current method requires too 

large feature space. Another one is word sense disambiguation that we ignored entire-

ly in the current work. Although we obtained some performance increase with deeper 

levels, it’s not clear how much more gain we will get with sense disambiguation. We 

are currently working on these two issues.  
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