
Towards an ambient data mediation system

Kim Tâm Huynh
PRiSM Laboratory

University of Versailles
Saint-Quentin-en-Yvelines

Versailles, France
kth@prism.uvsq.fr

Béatrice Finance
PRiSM Laboratory

University of Versailles
Saint-Quentin-en-Yvelines

Versailles, France
beatrice@prism.uvsq.fr

Mokrane Bouzeghoub
PRiSM Laboratory

University of Versailles
Saint-Quentin-en-Yvelines

Versailles, France
mok@prism.uvsq.fr

ABSTRACT
In this paper, we address the problem of integrating many
heterogeneous and autonomous tiny data sources, available
in an ambient environment (AmI). Our goal is to facili-
tate the development of context-aware and personalized em-
bedded applications on mobile devices. The originality of
the approach is the new ambient mediation architecture
which provides declarative and dynamic services, based on
rules/triggers. These services provide facilities to develop
and deploy ambient applications over devices such as smart-
phones. This paper reports also on our �rst experimental
prototype, combining Arduino+Android.

1. INTRODUCTION
Over the last 20 years there have been some signi�cant

progresses on the miniaturization of hardware components
and wireless networks. The number and capabilities of mo-
bile devices, wireless sensors and sensor networks open new
research �elds and applications. Terms such as the �Web of
sensors�, the �Internet of Things� and �Ambient Intelligence
(AmI)� emphasize the trend towards a tighter connection
between the cyberspace and the physical world.
Today, we are witnessing an unprecedent explosion of mo-

bile data volumes (i.e. ambient data). According to a study
from ABI Research [1], in 2014 the volume of mobile data
sent and received every month by users around the world
will exceed by a signi�cant amount the total data tra�c for
all of 2008. In 2011, 1.08 billion of mobile phone users have a
Smartphone and in the near future they will be surrounded
by many sensors/actuators.
In his survey, Sadri [18] de�nes AmI as �the vision of a

future in which the environments support the people inhab-
iting them. For example, instead of using mice, screens and
keyboards, we may communicate directly with our clothes,
household devices,...� The identi�ed key features of AmI
are: embedment, intelligence, context-awareness, personal-
ization, adaptation and anticipation. It is also mentioned

that �AmI can provide sophisticated support for everyday
living, but the information capabilities it may use for this
purpose can also potentially provide an invisible and com-
prehensive surveillance networks � walls literally can have
ears�. It inevitably opens up issues of privacy risk, accep-
tance and security.
In many ambient environments, data arrives as streams

or as alerts/noti�cations and is only relevant for a period of
time; its interpretation depends on the user's context and
preferences. For instance, an information about a free park-
ing place can be relevant for a user if this information is
recent and if the parking place is nearby the user's location.
Another example is the heat setting to the right tempera-
ture in the room where a given person is in and accordingly
to his/her own comfort preferences.
In the database community, a lot of work has been devoted

to e�ciently monitor huge amount of data streams coming
from sensors that continuously push their data to a �xed
centralized system, without being concerned in privacy, mo-
bility, context-awareness and reactivity. But as soon as a
sensor is linked to my personal life (e.g, my home location,
my traveling itinerary, etc), the applications using the cap-
tured data may become intrusive in my private life. More-
over, in the opposite, as soon as I leave the smart environ-
ment, I may lose the ambient capabilities that may support
my everyday life (e.g. tension and heart beat measurement,
mandatory presence in a certain place). Consequently, the
ambient environment and applications are considered as un-
desirable constraints in some cases and helpful tools in oth-
ers. Since my ambient environment is changing over the time
and over the space (e.g. at home, at work, at the hospital),
the query processing should adapt itself to these two dimen-
sions. As Feng said [10] �AmI imposes strong user-centric
context-awareness requirement on data management�, but
also strong system requirements in terms of hardware con-
straints (i.e. energy consumption, wireless communication).
As seen before, smartphones and the underlying applica-

tions are, under some restrictions, good support for everyday
life. However, their repetitive development from scratch is
time and money consuming, it makes the software evolution
quite di�cult, in particular because components updates are
frequent. We claim that an embedded data management
system for AmI may signi�cantly contribute to ease the de-
velopment and maintenance of such applications.
The contribution of this paper is to propose an ambient

mediation system (called CAIMAN for Context-aware dAta
Integration and M anagement in Ambient eNvironments)
which :

13

• facilitates personalized and contextual integration and
monitoring of heterogeneous data streams through con-
tinuous query execution;

• enables applications to dynamically sense and control,
according to some preferences, the ambient environ-
ment of the user, which is changing over time and
space;

• enables the user to keep some control over his personal
data as the monitoring is done exclusively on his per-
sonal device.

In the remaining of this paper, Section 2 de�nes the re-
quirements and the constraints imposed on the design of an
ambient mediation system, and presents the architecture of
CÄIMAN. In Section 3, the ambient mediation approach is
described and illustrated through a scenario. In Section 4,
we detail the main components of our system and report on
our experimental prototype combining Arduino+Android.
Section 5 concludes with some open issues.

2. MOTIVATIONS
To develop ambient applications, there is a need of an

ambient data mediation system (ADMS) which allows in-
teroperability between a set of dynamic and loosely-coupled
ambient data sources. An ambient data source is a (�xed or
mobile) communicating object which generates or consumes
continuous (or discontinuous) �ows of data. Among such
objects, we can distinguish a wide spectrum of sensors and
mobile phones as well as any other data services which can
push speci�c data to the applications. In addition to these
data sources, there exist other ambient objects called actu-
ators, that do not exchange data, but simply perform some
actions on other objects. Notice that a single physical object
can play both the role of a data source and actuator. All
ambient physical objects are abstracted by software services
which encapsulate them and make visible their capabilities,
especially their data exchange protocol.
The design choices of our system have been motivated by

the requirements of AmI applications in general, and mo-
bile/ubiquitous users/equipments in particular; the key is-
sue being the continuity of ambient services whatever the
dynamic changes are. In this section we review them and
compare our design choices with existing related work. The
proposed CAIMAN architecture is built on the basis of these
choices.

2.1 The requirements
An ambient information system (AmIS) is a set of data

�ows provided by a collection of ambient objects to achieve
the needs of AmI applications (e.g. intelligent home, intel-
ligent city, health care, mobile social network, etc). Some
AmIS objects can play the role of a mediator which is able to
integrate and interpret data of many ambient data sources,
as well as to perform actions over their environment. Most
of the AmIS data may persist only a few seconds or minutes
in the system, unless the application or the user decides oth-
erwise for various reasons. The main speci�c requirements
imposed to the design of an ADMS are the following :

• Data sources are heterogenous. They may be �xed
or mobile and arbitrarily connect and disconnect from
the mediator, during variable intervals of time. Data
sources have di�erent capacities in terms of storage
and computation.

• The mediator can dynamically connect to the sources
when and as long as they are active (i.e. visible over
the wireless network and ready to provide data).

• The mediator should provide, for each application, the
capability to de�ne its data requirements in terms of
event types, so o�ering a concept of a virtual schema
similarly to conventional mediators, and a mechanism
which handles continuous queries.

• The mediator should be able to aggregate data �ows
originated from the same source and integrate data
�ows originated from di�erent sources on the basis
of speci�c rules provided by the applications. As in
conventional mediators, data heterogeneity should be
transparent to the user, adaptors are aware of data
transformation.

• The mediator should adapt itself to the user's con-
text by continuously searching for the appropriate data
sources. It should also satisfy user's preferences in
terms of data delivery, relevance to domain of inter-
est, privacy, etc.

• The mediator should be aware of energy consump-
tion and manage consequently the connections to the
sources and the usage of its resources.

These requirements clearly distinguish an ambient mediator
from a conventional one [21] where the mediation schema
and the sources are known in advance. Here the environment
is dynamic as data sources enter and leave continuously the
�eld of detection. The personalized and contextual integra-
tion and monitoring of heterogeneous data streams rely on
continuous query evaluation.

2.2 Related work
In this section, we list the CAÏMAN main objectives and

compare them with existing related works.
The �rst goal of CAÏMAN is to provide a high-level declar-

ative approach which permits user applications to interop-
erate over distributed ambient objects. The expected data
streams are relatively small in their length/size. Many for-
malisms for event streams processing and querying have
been proposed, see [9] for a good survey. In Data Stream
Management Systems (DSMS) [4], many CQL-like query
languages which extend SQL have been de�ned. They are
based on the concept of window used to manage and �lter
data streams in a declarative way [5, 14, 8, 13]. In Com-
plex Event Processing (CEP), some formalisms based on
composition operators (i.e. sequence, conjunction, disjunc-
tion,etc), or time-based automata are used. The goal of
CEP is to detect event patterns (i.e. situation) with tempo-
ral constraints in data streams. Today, the two approaches
are seen as complementary [9, 16]. Both approaches focus
on events detections but none on the events reactivity which
is an important feature of AmI applications, e.g. the abil-
ity to identify the context during which active behavior is
relevant and the situations in which it is required. Both ap-
proaches assume that the data (i.e. events) are continuously
pushed to a centralized system known in advance. These as-
sumptions do not �t with our constraints, as the push mode
consume a lot of energy.
In Sensor Databases such as TinyDB [15], data is acquired

in a pull mode to avoid battery consumption. The query

14

(i.e. Tiny SQL) is sent through the network and evaluated
in a distributed mode. Sensors are active only when they
are queried. The advantages of this approach is its adapt-
ability to the features of hardware devices and to their con-
straints. The sensor network can contain a large number
of sensors. However, the sensors are homogeneous, they all
have a TinyOS and there is no mechanism of source discov-
ery because the sensors are all known in advance.
The second goal of CAÏMAN is to make the ADMS aware

of the user's context and user's preferences. Again, a lot
of work has been devoted to context and preference-aware
queries by the database community. Traditionally, the inte-
gration of context and preferences in queries is made in two
ways [10]. The query pre-processing consists in enriching the
query with context or preference informations before execut-
ing it. The query post-processing ranks the query's answers
according to these informations. Unfortunately, this mecha-
nism works only for one-time queries and not for continuous
queries in which the notions of pre and post-processing do
not exist. Indeed, in traditional DBMS, data are permanent
and queries are transient. In DSMS, data are transient and
queries permanent as they are continuously evaluated over
the transient data. To our knowledge, no solution has been
proposed to handle the context and the user preferences on
continuous queries.
In existing context-aware frameworks [6], the context man-

ager is generally represented by a centralized server which
is in charge of collecting context information, interpreting
and providing them to the client applications. However in
pervasive environments, there are frequent disconnections
and low connectivity, making this architecture not robust
enough and adequate for this type of application. In the
literature, only few systems [7, 11] have proposed a local
context server to overcome this problem. However, in [11],
the context sources are known in advance and correspond
to built-in sensors. Conversely in [7], the authors have de-
veloped a sentient object model for ad-hoc mobile environ-
ments where the context is only used to adapt the applica-
tion behavior. It doesn't allow to enhance application data
with contextual information. For instance, many applica-
tions need to add the location to the data produced.

2.3 The CAÏMAN architecture
The overview of the CAÏMAN architecture is depicted in

the Figure 1. The resource discovery component facilitates
objects discovery and handles dynamic connections and dis-
connections to these objects. AmIS objects should be able
to rely on their own battery, so short-range wireless com-
munication such as Bluetooth are assumed in CAÏMAN as
these personal area networks are known to have a low con-
sumption of energy. Once, a data source is discovered the
data collectors are responsible for acquiring the data. Data
sources do not push their data continuously, but rather spo-
radically in response to the mediator request. This requests
is done only if the data source can serve the needs of the ap-
plications which have been deployed on top of the mediator.
The originality of our ADMS is to o�er an hybrid approach
combining both the push and the pull modes.
In our environment, we assume that sensors/actuators re-

main passive most of the time with a default behavior un-
less someone requests a service (i.e. light o�, that can be
turned on). All sensors/actuators implement some generic
functions (e.g. services) and some that are optional. Sen-

Figure 1: CAÏMAN

sors can only send data during a period of time �xed by
the mediator, enabling the sensors and actuators to fall au-
tomatically asleep when they have �nished their duty and
thus turn back to their default state.
As the mediator should �t into lite clients such as smar-

phones and function in a complete autonomy, no system
functionality is delegated to a central server. We don't rely
on a global data source registry that might not be avail-
able at all time. Meta-data exchange between AmIS objects
should be done instead at runtime and the context and pro-
�le managers should be local.
CAÏMAN provides a declarative language which allows to

describe most of the system and application semantics which
is based on the ECA (Event-Condition-Action) paradigm
used in active databases [17]. Thus, the rule processor is a
core component of our system. It will be detailed in the next
section. Notice that in this paper our goal is not to propose
yet another query language nor a complex context-aware
model, but rather to select a subset of existing formalisms,
keep them simple and tractable as much as possible to �t
into lite clients.

3. THE AMBIENT MEDIATION APPROACH
In this section, we detail our mediation approach. First,

we describe the di�erent types of ambient sources on which
the CAÏMAN is built on, then the virtual mediation schema
is presented. To understand the approach, we illustrate it
with a scenario. In this scenario, Paul is a student and
lives at the university residence. He wants to bene�t of an
intelligent home behavior, by automatically controlling the
air conditioning of the room where he is located according
to his preferences. He also needs to organize his evenings
and wants to be noti�ed about interesting cultural events
located not far from his current location. In order to do so,
Paul will have to deploy two AmI applications which have
been speci�ed in a declarative manner by some designers.
During the deployment, the declarative description will be
used to instantiate the virtual schema of the mediator, i.e.
the application meta-data as described in the Figure 1.

3.1 The Ambient Sources
Three types of data sources [12] are considered: (1) physi-

cal sources (e.g. GPS built-in sensors, smartphone, external
temperature sensor such Arduino), (2) virtual sources (e.g.
user, agenda alerts, SMS, emails, contacts) and (3) logi-
cal sources which combine physical and virtual sources with

15

information from databases. These sources can be either
�xed (e.g. already embedded in a mobile device where the
mediator is), or dynamic (i.e., another smartphone, a sen-
sor/actuator). Fixed ambient sources are known in advance
and always connected to the mediator, e.g.built-in sensors.
Dynamic ambient sources correspond to sources that ap-

pear and disappear to the mediation system over time due
to the source mobility itself or due to the mobility of the
user which embeds a mediator on his personal smartphone.
If a smartphone is close to a mobile device, a communication
can be established and some messages can be exchanged as
long as the device is reachable. If suddenly it disappears due
to the user mobility, some messages can be lost. Moreover,
the user himself can be an ambient data producer as he/she
behaves like any other sensor (intelligent sensor). For in-
stance, the user is discovering a broken window and wants
the mediation system to inform automatically the technical
sta� in charge of repair.
In the remaining of the paper, we focus more on the dy-

namic data sources. Each one exports its capabilities (e.g.,
metadata) in an XML document as depicted in the Figure
2. Each dynamic source corresponds to a physical device
characterized by an 'id', a 'type' (e.g., Arduino, Android)
and a version number.

Figure 2: Sources Description

3.2 A declarative approach
The declarative approach used in CAÏMAN is ECA. ECA

rules are a generalization of several methods to achieve ac-
tive behavior, such as triggers and production rules. ECA
rules are evaluated in three steps: (1) when an occurrence
of an event is detected, (2) the system evaluates the condi-
tion under which the event is considered relevant, and (3)
if it is veri�ed, the rule action is executed. The separation
between E-C-A is important for many reasons and has been
emphasized by the active database community [17].
When designing a mediator based on the ECA paradigm

it is important to carefully take into account the life cycle of
a rule and the dimensions related to its semantic execution.
Indeed this knowledge is mandatory for those designing an
application. Moreover by separating the dimensions, there
is more �exibility, di�erent behaviors can be proposed for
speci�c applications. In the Figure 3, we summarize them.
Here we shortly explain some of the dimensions. The event
detection and composition and the visible DB states will be
explained in the next section.
There exist many modes of event consumption, among

them we selected two modes more suitable to our environ-
ment:

1. recent: only the most recent instances of any event
are considered; older events are discarded. It is most
suitable for fast-changing environments in which new
events supersede old ones.

Figure 3: Active Rules & their Execution Semantics

2. chronicle: the oldest instances are considered and
then discarded; i.e. events are consumed in a chrono-
logical order. It is preferred when there is a causal
dependency between events.

The granularity of processing de�nes whether the rule pro-
cessor reacts after the detection of each event (instance-
oriented processing) or after a detection of a set of events
(set-oriented processing). An example of instance-oriented
processing is to call emergency after detecting a critical situ-
ation like the unconsciousness of a person. In order to avoid
a false alarm, we can wait for multiple events before call-
ing the emergency. In CAÏMAN, this latter dimension can
be o�ered by de�ning windows on the events arrival. The
rule priorities determines how rules are selected among a
con�ict set of rules (i.e. rules triggered by the same event).
The EC and CA coupling modes indicates when condition
(resp. action) is evaluated after event detection (resp. con-
dition evaluation). The di�erent options are: immediate,
deferred, or detached. CAÏMAN proposes immediate cou-
pling modes. In our system, we do not consider cascading
execution because we assume that our actions have no side
e�ect.
In our experimental prototype, only one semantics is im-

plemented for the rule processor. Rules are evaluated in par-
allel and no cascading executions is allowed, but the event
consumption and the granularity of processing can be pa-
rameterized.

3.3 The Ambient Mediation Schema
The CAÏMAN mediation schema is composed of: (1) a

set of events types, corresponding to the data �ows required
by ambient applications, and events detectors, (2) a context
model and a default user pro�le, and (3) a set of personalized
and contextual continuous queries (de�ned as ECA rules).

3.3.1 Events & Event Detectors
An event type can be either simple (SE) or complex (CE).

A complex event type is a combination of other simple or
complex events types. These event types are de�ned by the
application designer.
Each event type (SE & CE) is de�ned by a set of at-

tributes:

• name: name of the event type,

• lifespan: default time interval during which the event
instance is valid,

• aggrFunction: function which aggregates events to pro-
duce a complex event. For simple events, there is no
aggregation function.

16

Each event type can be instantiated at runtime according to
data �ows arriving to the mediation system. These event

instances (SE & CE) are de�ned by a set of attributes:

• value: event instance value,

• source: source name that captured the event instance,

• raisingDate: moment when the event instance is pro-
duced/observed by its source,

• systemTime: moment when the event instance is de-
tected by the mediation system,

• lifespan: time interval during which the event instance
is valid after its raisingDate,

• raisingLocation: geo-location where an event instance
is produced/observed by its source.

The lifespan is a metadata which can be provided by the
event source or assigned by the application. Event instances
are relevant during a limited period of time. Pervasive en-
vironments can cause delays between the raising date of an
event instance and the time for treating this instance. Con-
sequently the validity V of an event ei is de�ned by:

V (ei) =

{
1 if raisingDate(ei) + lifespan(ei) < currentT ime)

0 otherwise

The raisingLocation is a useful notion for many location-
aware applications. Indeed, the location can in�uence the
relevance of a given event instance. For example, an event
��ood� detected far away from a user can be irrelevant for
him.
Once event types are de�ned, one should specify how and

when event instances are created or captured. This is done
by specifying event detectors. Depending on the event type
and on the target data source, an event detector may be
de�ned in various ways: a listener, a lookup function or any
other procedure able to transform a speci�c signal into a
semantic event.
For our scenario, the designers have separately de�ned

three simple event types : UnvalidTemperature, UnvalidHu-
midity and Advertisement, with respectively a default lifes-
pan of 5 min, 5 min and 1 week, and one complex event
type UncomfortableSituation with its associated aggregate
function Foo as depicted in the Figure 4. For each event,
the designer must de�ne a detector. Here, we only give the
simple event detector DT on temperature expressed as a
CQL query and the complex event detector US expressed
as a CEP-like manner. Others are omitted as they can be
expressed in a similar way.

3.3.2 Context Model
According to [20], there exist six di�erent models for rep-

resenting the context information. Some models like the
ontology-based model is very expressive and allows power-
ful context processing. However in CAÏMAN the model used
is the simple key-value model as it should be embedded.
Following our previous work [3], we de�ne a context by

�ve dimensions : spatial , temporal, environmental, equip-
ment and user state.

1. The spatial dimension is an important characteristics
of mobile and pervasive environments. Indeed, de-
pending on how much the user is mobile, the system
will react di�erently. For instance, if a user is highly

Figure 4: Simple & complex event detectors

mobile, he will not have time to establish proper con-
nections with all equipments around him. The other
important aspect is the location. It can be expressed
in many ways depending on the application: GPS co-
ordinates, an address, or a locality label (e.g. Room
305B, Administration Building). The spatial informa-
tion can be provided by GPS built-in sensors or mobile
networks or derived from Google Maps or databases.

2. The temporal dimension is an important information
that can be used for personalizing an application. For
instance, a user can be interested to receive events only
in the morning. Designers can change the notion of
moment in the core context, e.g. when the morning
begins and ends. This information can be provided
by the phone clock (i.e. date, time) or derived from
context de�nition (i.e. moment).

3. The environmental dimension concerns all the sensors
describing the environment of the user (e.g. temper-
ature, humidity, luminosity). This information is im-
portant when the environment is �xed, for example a
smart home.

4. The equipment dimension characterizes all informa-
tion about the media used by the user to interact with
the application: the used device (e.g. type, battery au-
tonomy, memory storage, computing power) and the
connectivity (e.g. type of connection, rate). This di-
mension is important to adapt dynamically the system
accordingly with the equipment constraints (e.g. low
battery, uncertain connectivity).

5. The user state dimension allows to know if a user is
available or not, and how he feels. In our case, we are
more interested in the user availability which can have
an impact on the system behavior.

Designers have to provide the context model used by their
application and the set of context rules to the mediator that
can compute the current context. For that, a list of context
models is proposed with default context rules. For example,
if the application designer is interested in the location infor-
mation, there exists a rule associated with this dimension
which captures the GPS coordinates from the smartphone
GPS sensor every minute. However designers can also write
their own context rules and submit them to the mediator.

3.3.3 Profile Model
The survey [19] highlights the di�culty of choosing the

good representation for the user preferences: qualitative or

17

quantitative. The quantitative approach allows a total order
between preferences but is not intuitive because this implies
that the user put weights on his preferences. While the
qualitative approach is very intuitive but makes di�cult the
usage because there is not necessarily a total order between
preferences. In CAIMAN the user preferences considered are
viewed as dynamic criteria by the application. Thus there
is no order between preferences as all preferences must be
considered by the application.
Following the de�nition given in [3], a user pro�le is or-

ganized into several dimensions, possibly decomposed into
sub-dimensions. Each dimension and its sub-dimensions
contain a set of attributes and their values on which prefer-
ences are expressed. We retain four important dimensions:

1. Personal data contains all information about the user
(e.g. his name, his address, his birthday). This dimen-
sion may also contain data on social groups to which
the user belongs to (e.g. student, professor).

2. Domain of interest is generally the central dimension
of the user pro�le, it represents the user domain of in-
terest and preferences. For example, the domain of in-
terest may be the types of events the user is interested
in and the preferences on how/when event instances
are received or treated.

3. Resource discovery contains the user preferences on
the remote resources (i.e. type of resource, associated
data collectors, related security issues and all meta
data useful to understand data stream semantics). An
example can be receiving events only from sources lo-
cated in the same place as the user.

4. System adaptation groups user preferences on how the
system should adapt to the user context or to its own
behavioral parameters. An example can be to disable
the resource discovery component during the night. A
set of preference rules can also be de�ned to adapt
the system behavior in case of low battery, that is
either disabling some functionalities or changing the
frequency of the captured data.

In the same way as the context, designers specify a default
user pro�le for their application. The Figure 5 describes
the application default pro�le set by the designers for our
scenario. We have gathered the pro�le of each application
into a global one, but in reality each application has its own.
$name and $$name variables represent respectively a string
or a set of strings.

Figure 5: User Pro�le

For each application, the designer has speci�ed the re-
source discovery constraints. Indeed, to control the tem-
perature in a room, we are only interested by sensors and

actuators located in the same room where the user is cur-
rently located. Some variables have a default value set by
the designer. If not, they will be �lled by the user when
installing his application on his mobile device. For instance,
the default temperature variables are ($1=18°, $2=22°) for
the day time and ($13=16°,$4=18°) for the night. In the
same manner, advertisements relevant to a user are those
within $6='15km'. Others variables are set by the user.
For instance, Paul decides to change the default value $6 to
25km, and set the $$5 to (`music','sport').

3.3.4 Application ECA Rules
The last task of the designer consists in de�ning his set of

ECA application rules. For example, let's consider the fol-
lowing rules de�ned in the Figure 6 that model our scenarii.
As said before rules are contextual and personalized. Thus,
the context and the user pro�le can be either explicitly used
by designers in their rules and in particular in the condition,
or implicitly used by the system during the runtime when
speci�ed within the user pro�le.
The �rst rule of the smart o�ce scenario explicitly uses the

user pro�le and in particular the UserPref.Temperature.min
and UserPref.Temperature.max variables described above.
As these variables are context-dependent (i.e. day or night),
their values are changing over time. So, they will be instan-
tiated just before evaluating the rule condition.
In the second rule, a user receives advertisements. Here

no condition is speci�ed; however one will be added by the
system at runtime since an implicit preference has been de-
�ned on this event type in the default pro�le. The reason
why the condition is not directly written in the rule, is to
allow the user to change his condition at any time. Here,
users receive advertisements relevant to their personal topics
and within the required distance. When an event is relevant
for the user, he is informed by email.

Figure 6: Rule Examples

Up to now, we have given some intuitions of our rule lan-
guage, now the semantics of rules is brie�y described.
The granularity of processing (e.g. instance or set-oriented)

is de�ned as a window. The default window [Now] is a time-
based window of size 1 and corresponds to the instance-
oriented. Others windows are de�ned as in any continu-
ous query language and correspond to the set-oriented. For
instance, �range 5 min� represents all events that appear
within the last �ve minutes. Notice that we do not allow
unbounded windows. The visible state of conditions and
actions is de�ned by the window and the event type. The
event consumption mode is de�ned as a �xed parameter of
the mediator and is taken into account in event detectors
that specify how to raise events.
Some generic actions are possible and are de�ned by a

template. The �rst action �inform($who,$how,$what)� in-
forms a user or a group of users, or an application through a

18

delivery mode (i.e. local, wireless, email, SMS), of a partic-
ular message or event. We separate messages from events,
messages are generated to users and de�nitively leave the
system, by opposition to events that will be �ltered and re-
injected later in a mediator that can interpret them. The
action �activate($type, $service, $serviceparameters)� acti-
vates a service with some parameters on a speci�c actuator
type that satis�es some user preferences.

4. THE CAÏMAN MEDIATION SYSTEM
In this section, we brie�y describe the behavior of the

main components of our system at runtime. Thus, we as-
sume that AmI applications have been deployed on the smart-
phone, and that their default pro�le, detectors and rules
have been transmitted to the mediator and uploaded in the
application metadata database.

4.1 Data Collectors & Actuator Commands
As the data sources are heterogeneous, a set of generic

data collectors and actuator commands are needed to al-
low communications with the mediation system. The Data
Collectors are used to collect and transform any kind of het-
erogeneous data so it can be understood and integrated in
the mediator. Each source is bound with one instance of a
data collector that is responsible for querying and control-
ling this data source. All communications are asynchronous.
Another issue also considered is the data transformation as
the data provided by a source is not necessarily compati-
ble to the coding, format, unit and scale of the expected
data at the mediator level. The data collector is in charge
of transforming these raw data into events, thus it activates
the simple event detector associated with the source.
Actuator Commands allows the mediator to transform

commands into real actions on the environment through ac-
tuators services.

4.2 Resource discovery & Bindings
Due to the numerous communicating objects that enter

and leave the �eld of detection because of the user mobility,
there is a need of a Resource Discovery component which is
continuously aware of the equipment's environment.
Ambient data sources may connect and disconnect arbi-

trarily. As the mediator cannot rely on a centralized re-
sources registry, the resource discovery service is de�ned as
a seeking function which detects the surrounding objects,
identi�es them through some metadata exchange and estab-
lishes connections to them if they are relevant at least for
one active application deployed on the mediator.
As connections/disconnections can be frequent, the re-

source discovery component stores a history of all the dis-
covered sources with their version number. This version
number is useful to know if the source has changed since
the last time it was discovered. This is to avoid unnecessary
metadata exchanges. The history plays the role of a local
resource registry which can be deleted at anytime, since it
can be rebuilt at runtime.
Before communicating with a data source, one should

know if the information it contains is relevant. For doing
so, a matching is made between the source metadata and a
part of the mediation schema. At the same time the context
and pro�le information is used to select only the sources in

a given location and at a given time, according to the pref-
erences of the application or the user. Once the source is se-
lected and a communication established, a dynamic binding
enables to link the data source to the mediator, by instan-
tiating the suitable data collector.

4.3 Profile & Context Manager
As many context-aware systems [6], the mediation system

proposed makes a separation between the context acquisi-
tion, the context processing, and the context information
usage. In fact, data collectors are in charge of retrieve con-
text raw data, the context manager processes these data
to infer context information which will be stored and used
by applications and in particular application rules. These
context information are also used by the pro�le manager to
derive the active pro�le (i.e., all pro�le information which
is valid for this current context). Indeed, the user pro�le
is composed of a static part and a dynamic part. In the
�rst one, the pro�le information doesn't change frequently
while the second one depends on a context that can change
rapidly. As we have seen in the Figure 5, the user pro�le can
be contextual and it will be the role of the context and pro�le
managers to keep the active pro�le up to date for the ap-
plication. For simplicity reasons, an assumption is made on
de�ning a contextual pro�le. Only If-then-else statements
are allowed in order to avoid con�icts between contextual
predicates. Only one active pro�le is valid at any instant of
time. Notice also that all variables can be changed at any
time by the user, via a simple interface on his smartphone.

4.4 Rule Processor
The Rule Processor is an idempotent service to which

ECA rules with their associated detectors are submitted. As
said earlier, it is important to follow rule execution seman-
tic as described in the Figure 3. The query processor relies
on a multi-threaded execution framework. The approach we
follow is, in a way, very similar to what has been proposed
by Krämer [14] and especially their SweepArea that models
a dynamic data structure to manage a collection of events
of the same type. ECA rules act as continuous queries over
collection of events and react over their environment when
a situation is encountered.
As events of the same type can be used in many rules,

events are not removed when used for triggering a rule.
Thus, a garbage collector is necessary and events are re-
moved from the dynamic structure when their lifespan has
expired. In order to avoid triggering multiple times a rule
with the same events, each rule has a context summarizing
the past execution. When the rule processor is looking for
the rules that can be triggered, it uses the context which is
also computed in a continuous way. Only the most recent
event is kept for each dimension.

4.5 The prototype
Smartphones as well as computers cannot really sense the

world. For AmI environments, there is a need for tools for
making computers that can sense and control more of the
physical world than any other desktop computer. This is the
role of the Arduino [2] platform to sense the environment by
receiving input from a variety of sensors and to a�ect its sur-
roundings by controlling lights, motors, and other actuators.
A �rst prototype combining Arduino and Android validating
the approach has been implemented. Many sensors and ac-
tuators have been prototyped. The CAÏMAN mediator and

19

many simple AmI applications can be deployed on an AN-
DROID platform. For the time being, data collectors and
actuators are operational, as well as the resource discovery.
Simple and complex event detectors, as well as simple ECA
rules are supported. When the validity of events expires, the
garbage collector automatically deletes the events. We are
currently integrating the context and the user pro�le within
the rules. The user agrees or not to install an AmI applica-
tion on top of CAÏMAN. He can turn it on/o� whenever he
wants to. He can also checked the types and the number of
events, the mediator is currently monitoring.

5. CONCLUSION
In this paper, we have presented the di�erent require-

ments posed by ambient environments and proposed an am-
bient mediation system called CAÏMAN. As we have seen,
a declarative approach based on ECA rules is proposed.
The main originality is that it combines in an elegant way
the context, the user pro�le and the continuous queries to-
gether. Some dimensions of the pro�les can be integrated
and changed at anytime by the user. Another important
contribution of our work is that it is based on personal mo-
bile devices and local computation that better ful�ll the user
privacy. To our knowledge CAIMAN is the �rst ambient
mediation system embedded in a smartphone o�ering such
functionalities.
Some open issues still remain to be considered such as

how to adapt the system if the context is critical (i.e., low
battery), what to do when many mediators are acting in
a con�icting way on speci�c resources, how an event that
has been sent several times by di�erent data sources can be
discovered to avoid repeating the same actions again and
again.

Acknowledgment

This work is partially funded by the French National Agency
for Research (ANR) project under grant KISS (2011-INSe-
005-03).

6. REFERENCES
[1] ABI research. http://www.abiresearch.com/press/

1466-In+2014+Monthly+Mobile+Data+Traffic+Will+

Exceed+2008+Total.
[2] Arduino site. www.arduino.cc.
[3] S. Abbar, M. Bouzeghoub, D. Kostadinov, S. Lopes,

A. Aghasaryan, and S. Betge-Brezetz. A personalized
access model: concepts and services for content
delivery platforms. In Proc. of the 10th Int. Conf. on
Information Integration and Web-based Applications
and Services., pages 41�47, New York, USA, 2008.

[4] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom. STREAM:
the Stanford stream data manager (demo). In Proc. of
the ACM SIGMOD Int. Conf. on Management of
data, pages 665�665, New York, USA, 2003.

[5] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: semantic foundations and
query execution. The VLDB Journal, 15(2):121�142,
2006.

[6] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. Int. J. Ad Hoc Ubiquitous
Comput., 2(4):263�277, 2007.

[7] G. Biegel and V. Cahill. A framework for developing
mobile, context-aware applications. In Proc. of the 2nd
IEEE Int. Conf on Perv. Comp. and Comm.
(PerCom'04), pages 361�, Washington, USA, 2004.

[8] I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J.
Miller, and N. Tatbul. SECRET: a model for analysis
of the execution semantics of stream processing
systems. Proc. VLDB Endow., 3(1-2):232�243, Sept.
2010.

[9] M. Eckert, F. Bry, S. Brodt, O. Poppe, and
S. Hausmann. A CEP Babel�sh: Languages for
Complex Event Processing and Querying Surveyed. In
S. Helmer, A. Poulovassilis, and F. Xhafa, editors,
Reasoning in Event-Based Distributed Systems,
volume 347 of Studies in Computational Intelligence,
pages 47�70. Springer Berlin / Heidelberg, 2011.

[10] L. Feng, P. P. M. Apers, and P. W. Jonker. Towards
context-aware data management for ambient
intelligence. In 15th Int. Conf. on Database and
Expert Systems Applications, pages 422�431, 2004.

[11] T. Hofer, W. Schwinger, M. Pichler,
G. Leonhartsberger, J. Altmann, and
W. Retschitzegger. Context-awareness on mobile
devices - the hydrogen approach. In Proc. of the 36th
Annual Hawaii Int.Conf. on Syst. Sci. (HICSS'03),
pages 292.1�, Washington, DC, USA, 2003.

[12] J. Indulska and P. Sutton. Location management in
pervasive systems. In Proc. of the Australasian inf.
sec. workshop conf. on ACSW frontiers, pages
143�151, Darlinghurst, Australia, Australia, 2003.

[13] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke,
J. Widom, H. Balakrishnan, U. Çetintemel,
M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a
streaming SQL standard. Proc. VLDB Endow.,
1(2):1379�1390, Aug. 2008.

[14] J. Krämer and B. Seeger. Semantics and
implementation of continuous sliding window queries
over data streams. ACM Trans. Database Syst.,
34(1):4:1�4:49, 2009.

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122�173, 2005.

[16] A. Margara and G. Cugola. Processing �ows of
information: from data stream to complex event
processing. In Proc. of the 5th ACM int. conf. on
Distributed event-based system, DEBS '11, pages
359�360, New York, NY, USA, 2011. ACM.

[17] N. W. Paton and O. Diaz. Active database systems.
ACM Comput. Surv., 31(1):63�103, 1999.

[18] F. Sadri. Ambient intelligence: A survey. ACM
Comput. Surv., 43(4):36:1�36:66, Oct. 2011.

[19] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey
on representation, composition and application of
preferences in database systems. ACM Trans.
Database Syst., 36(3):19, 2011.

[20] T. Strang and C. L. Popien. A context modeling
survey. In UbiComp 1st Int. Workshop on Advanced
Context Modelling, Reasoning and Management, pages
31�41, September 2004.

[21] G. Wiederhold. Mediation in information systems.
ACM Comput. Surv., 27(2):265�267, 1995.

20

