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ABSTRACT 
We focus on the measure of recommendation stability, which 
reflects the consistency of recommender system predictions.  
Stability is a desired property of recommendation algorithms and 
has important implications on users' trust and acceptance of 
recommendations.  Prior research has reported that some popular 
recommendation algorithms can suffer from a high degree of 
instability.  In this study we propose a scalable, general-purpose 
iterative smoothing approach that can be used in conjunction with 
different traditional recommendation algorithms to improve their 
stability.  Our experimental results on real-world rating data 
demonstrate that the proposed approach can achieve substantially 
higher stability as compared to the original recommendation 
algorithms.  Importantly, the proposed approach not only does not 
sacrifice the predictive accuracy in order to improve 
recommendation stability, but is actually able to provide 
additional accuracy improvements at the same time.  

1. INTRODUCTION 
Recommender systems represent technologies that assist users in 
finding a set of interesting or relevant items [1].  In order to 
provide good recommendations, recommender systems employ 
users’ feedback on consumed items.  This input can include 
explicitly provided feedback in the form of ratings or tags, as well 
as feedback that can be implicitly inferred by monitoring users’ 
behavior such as browsing, linking, or buying patterns.  The most 
common approach to modeling users’ preferences for items is via 
numeric ratings.  The recommendation algorithm then analyzes 
patterns of users’ past ratings and predicts users’ preference 
ratings for new, not yet consumed items.  Once ratings for the new 
items are estimated, the item(s) with the highest estimated 
rating(s) can be recommended to the user. 

In the recommender systems literature, evaluating performance of 
recommendation algorithms has always been a key issue, and 
recommendation accuracy has been the major focus in developing 
evaluation metrics [11,23].  As a result, much of the research in 
the recommender systems area has focused on proposing new 
techniques to enhance the accuracy of recommendation 
algorithms in predicting what users will like, as exemplified by 
the recent $1M Netflix prize competition.  Prediction accuracy 
metrics typically compare the rating values estimated by a 
recommendation algorithm against the actual rating values and 
reflect the closeness of the system’s predictions to users’ true 
ratings.  In addition to recommendation accuracy, researchers 
have proposed a number of alternative types of measures, 
including recommendation coverage, diversity, novelty, 
serendipity, and several others, to evaluate the performance of 
recommender systems [11,23].  Of special interest to us is the 
recently introduced measure of recommendation stability [2], 
which reflects the level of consistency among the predictions 

made by the system.   

According to the definition, stability is the consistent agreement 
of predictions made on the same items by the same algorithm, 
when any new incoming ratings are in complete agreement to 
system’s prior estimations [2].  As has been discussed in prior 
work, stability is an important and desired property of 
recommender systems, and has a number of potential implications 
related to users’ trust and acceptance of such systems [2].   

While providing stable and consistent recommendations is 
important in many contexts, prior research has demonstrated that 
some popular collaborative filtering recommendation algorithms 
can suffer from high degree of instability [2].  This is particularly 
true for the widely used item- and user-based nearest-neighbor 
collaborative filtering approaches.  It has also been shown that 
stability does not necessarily correlate with predictive accuracy 
[2], i.e., different recommendation algorithms can exhibit 
different levels of stability, even though they may have similar 
prediction accuracy.  Thus, maximizing accuracy may not 
necessarily help to improve stability, and vice versa.  For instance, 
a simple heuristic that predicts any unknown user rating as an 
average of all known ratings of that user is perfectly stable [2]; 
however, in most real-world settings this heuristic is outperformed 
by more sophisticated recommendation algorithms in terms of 
predictive accuracy.  Therefore, the main objective of this study is 
to develop an approach that can improve stability of 
recommendation algorithms without sacrificing their accuracy.   

In this paper, we propose a general iterative smoothing approach 
to improve stability of any given recommendation technique.  The 
approach serves as a meta-algorithm, i.e., it can be used in 
conjunction with any traditional recommendation technique.  
Accordingly, the paper evaluates the performance of the proposed 
approach in conjunction with a number of popular and widely-
used recommendation algorithms in terms of their stability as well 
as accuracy on several real-world movie rating datasets.  The 
results show that this meta-algorithmic approach provides 
substantial improvements in recommendation stability as 
compared to the original recommendation algorithms, while 
providing some additional accuracy benefits as well. 

2. RELATED WORK 
Based on how unknown ratings are predicted, recommendation 
techniques can be classified into three general categories: content-
based, collaborative filtering, and hybrid [1,3].  Among different 
recommendation approaches, collaborative filtering techniques 
have been most widely used, largely because they are domain 
independent, require minimal, if any, information about user and 
item features, yet can still achieve accurate predictions [13,19].   

In a typical setting of collaborative filtering recommender 
systems, users’ preferences for items are modeled via numeric 
ratings.  Thus, the recommendation problem is reduced to the 
problem of estimating ratings for the items that have not been 
seen by a user, and this estimation is usually based on the other 
available ratings given by this and/or other users.  More formally, 
given a set of users U and a set of items I, the entire user-item 
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ratings from previous iteration, i.e., all ratings from D as well all 
ratings Pk-1(u',i') where (u',i')  (u,i).   

Scalable Iterative Smoothing Algorithm: 
Inputs:  known ratings data D, # of iterations K, algorithm T  
Process: 
1. Build model f0 on known ratings D using some standard 
recommendation algorithm T, i.e., f0T(D) 
2. Apply model f0 to compute predictions P0 for unknown 
ratings S\D, i.e., P0(u,i) = f0(u,i) for (u,i)S\D 
3. For each iteration k  {1, …, K} 

a. Construct dataset Dk by including all known ratings D 
and all predicted ratings Pk-1 from the previous iteration, 
i.e.,  

Dk = D ∪ Pk-1 
b. Build model fk on dataset Dk  using T, i.e.,  

fk  T(Dk) 
c. For each unknown rating pair (u, i)S\D , make 

prediction on (u, i) and store in Pk, i.e., 
Pk(u, i) = fk(u, i) 

4. Output predictions made in the final iteration PK 

Output: PK 
Figure 5. Overview of scalable iterative smoothing approach. 

In contrast, the simplified algorithm builds only one predictive 
model in each iteration, based on the entire rating matrix.  In other 
words, predicted rating Pk(u,i) is adjusted using all ratings from 
previous iteration, i.e., all ratings from D as well as from Pk-1, 
including Pk-1(u,i).  Thus, in the simplified algorithm, for any 
given rating prediction P1(u,i) in the first iteration, the predictive 
model is built on a rating data (i.e., D1) that only differs from the 
rating data used in the original algorithm by one additional rating 
(i.e., D1\{P0(u,i)}).  Because the influence of one additional rating 
is often subtle, especially when entire rating space is large (i.e., in 
settings with large numbers of users and items), the single overall 
model build in the simplified algorithm should produce outcomes 
similar to the ones produced by individual models built in the 
original algorithm, especially in the first iteration.  While the 
difference between the original and simplified versions of the 
iterative smoothing may slowly increase as the number of 
iterations grows, the simplified approach still provides significant 
performance improvements (both in stability and accuracy), as 
demonstrated by the experimental results later in the paper.   

Moreover, the runtime complexity of the simplified algorithm is 
much lower, making it much more practical from the scalability 
perspective.  In particular, as only one overall model is built on all 
available ratings (i.e., dataset of size |S|) within each iteration, in 
total K models are constructed over the course of K iterations.  
Thus, the time complexity of the simplified variation is 
O(Kt(|S|)).  Comparing this to the complexity of the original 
algorithm, O(|S\D|Kt(|S|)), the scalable heuristic offers huge 
computational improvements (i.e., by roughly |S\D| times).  In this 
paper, we use scalable iterative smoothing in our experiments.   

4. EXPERIMENTAL RESULTS 
4.1 Overall Process 
Our experiments test the stability improvements achieved by the 
proposed meta-algorithmic approach in conjunction with several 
popular collaborative filtering techniques.   

The experiments follow the two-phase stability computation from 
prior literature [2], discussed in Section 2.  We used the standard 
train-test data splitting approach and divided known ratings data 
D into two sets: training data DT (80%) and validation data DV 
(20%), where D = DT  DV and DT  DV = .  Training set DT 

was used for building rating prediction models, while validation 
set DV was reserved exclusively for evaluating the predictive 
accuracy of the final predictions.  Similarly, a randomly chosen 
half of the unknown rating space ET was dedicated for the stability 
evaluation of rating prediction models during the training phase, 
and the other half of the unknown rating space EV was reserved 
exclusively for proper evaluation of the stability of the final 
predictions.  Here, S\D = ET  EV and ET  EV = .   

Step 0: Create training and test datasets, i.e., DT, DV, ET, EV. 
Step 1: Find the best model parameters: 

i. Use a portion (e.g., 75%) of training set DT to build rating 
prediction models using iterative smoothing. 

ii. Compute model accuracy on other portion (25%) of DT. 
iii. Compute model stability on predictions made on ET. 
iv. Repeat steps i-iii with various parameter settings for 

iterative smoothing (i.e., number of iterations).  
v. Find the best parameters for iterative smoothing, i.e., the 

specifications that result in best stability and accuracy.   
Step 2: Evaluate accuracy and stability of the final predictions 

i. Use the best parameter settings for iterative smoothing.   
ii. Train the system on the entire training set DT using 

iterative smoothing. 
iii. Evaluate predictive accuracy on the reserved validation 

rating set DV. 
iv. Evaluate recommendation stability on the reserved 

unknown rating space EV. 
Step 3: Report parameter setting(s) as well as the accuracy and 
stability of the final predictions. 

Figure 6. Overall experimental process. 

Additionally, the process of iterative smoothing involves multiple 
iterations to adjust the predictions of unknown ratings.  One of the 
goals in this study is to find whether predictions converge during 
the process of iterative smoothing and, if so, when.  In addition, 
there is possibility that iterative smoothing models can “over-
adjust” rating predictions after a number of iterations, in their 
attempt to maximize the performance on training data.  Over-
fitting is a well-known phenomenon which occurs when a 
predictive model is fine-tuned to fit the training data (including 
the random errors, outliers, and noise in the data) too well, which 
typically leads to diminished predictive performance on test data.   

Therefore, for a given algorithm, it is necessary to find the best 
number of iterations to use on a given dataset in the final iterative 
smoothing procedure.  In order to find the optimal parameter 
settings, we further used the standard train-test data splitting 
approach internally within the training data to identify the best 
parameter values for the proposed approach, i.e., that result in best 
accuracy and stability.  The overall experiment process is 
summarized in Figure 6.   

4.2 Recommendation Algorithms 
In our experiments, we test the proposed approach in conjunction 
with four popular recommendation algorithms: the simple 
baseline method, classic user- and item-based variations of 
neighborhood-based CF approaches, and the matrix factorization 
technique.  A brief overview of each technique is provided below. 

Baseline.  In real-world settings, some users may systematically 
tend to give higher ratings than others, and some universally liked 
items might receive higher ratings than others.  Without 
normalization, such user and item effects could bias system’s 
predictions.  Hence, recommender systems often involve a pre-
processing step to remove these “global effects”.  One common 
practice is to estimate and remove three effects: the overall mean, 
the main effect of an item, and the main effect of a user [4].  Such 
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“global effects” can serve as a baseline estimate for unknown 
rating of corresponding user and item, i.e.,   

bui = µ + bu + bi , 

where µ is the overall average rating, bu is the average observed 
deviation from µ on ratings provided by user u, and bi is the 
average observed deviation from µ on ratings given to item i.  
Note that, in all of our experiments (i.e., with all other 
recommendation algorithms), the ratings data were normalized by 
removing these global effects.  Moreover, this estimate is often 
used as a baseline recommendation technique for comparison with 
other recommendation algorithms, i.e., R*(u,i) = bui, and we 
investigate its performance in our experiments as well. 

User-Based Collaborative Filtering (CF_User).  The user-based 
nearest-neighbor collaborative filtering approach is a heuristic that 
makes predictions of unknown ratings for a user based on the 
ratings previously rated by this user’s “nearest neighbors”, i.e., 
other users who have similar rating patterns [6,20].  That is, the 
value of the unknown rating for user u and item i is usually 
computed as an aggregate of the neighbors’ ratings for the same 
item i.  The most common aggregation approach is the weighted 
sum of the neighbors’ ratings, where the similarity of two users is 
used as a weight.  I.e., the more similar user u' and target user u 
are, the more weight will be carried by the rating provided by user 
u' on item i in the weighted sum when computing the prediction.  
Predicted rating for user u on item i is computed as: 

ܴ∗ሺݑ, ݅ሻ ൌ 	ܾ௨௜ ൅
∑ ௨௩݉݅ݏ ∗ ሺܴሺݒ, ݅ሻ െ ܾ௩௜ሻ௩∈ேሺ௨,௜ሻ

∑ ௨௩|௩∈ேሺ௨,௜ሻ݉݅ݏ|
 

where N(u,i) is a set of “neighbors” with similar rating patterns to 
user u and that have provided ratings for item i, simuv is the 
similarity between users u and v, and bui is the baseline estimate 
for user u on item i.  In our implementation, two users must have 
rated at least 3 items in common to allow computation of 
similarity between them.  The similarity between two users is 
calculated as Pearson correlation between rating vectors (based on 
the commonly rated items) of the two users.  Prediction of each 
unknown rating is formulated by combining the preferences of 20 
most similar users who have rated the same item.   

Item-Based Collaborative Filtering (CF_Item).  The user-based 
collaborative filtering technique also has an analogous item-based 
version, where the ratings of the nearest-neighbor items are used 
to predict unknown ratings for a given item.  Several studies have 
presented empirical evidence that item-based algorithms often 
provide better predictive accuracy than user-based methods (e.g., 
[22]).  Thus, our experiments also test the standard item-based 
collaborative filtering in conjunction with the proposed approach.  
Similarly to the settings employed in user-based CF, in our 
experiments, two items are required to have been rated by 3 
common users to allow similarity evaluation between them, and 
20 nearest-neighbor items are used to formulate a prediction.   

Matrix factorization (SVD).  Matrix factorization technique is a 
model-based (as opposed to heuristic-based) collaborative 
filtering approach that characterizes items and users via a number 
of latent factors inferred from known ratings [8,15].  This 
technique models the U×I rating space as a product of two sub-
matrices: user preference matrix (U×L) and item feature matrix 
(L×I).  Each user and item is described by a vector of L latent 
variables.  In our experiments L is set to be 20.  The user vector 
indicates the preference of the user for several latent features, and 
the item vector represents an item’s importance weights for the 
same latent features.  Singular value decomposition (SVD) 
techniques are used to decompose original rating matrix into the 
two sub-matrices in an optimal way that minimizes the resulting 

approximation error.  After the two sub-matrices are learned using 
known ratings, each unknown rating is estimated as a dot-product 
of the corresponding user- and item-factors vectors.  Many 
variations of matrix factorization techniques have been developed 
during the recent Netflix Prize competition (e.g., [14,15,18,21]).  
Our experiments focus on the basic underlying version of the 
matrix factorization [8]; however, the proposed meta-algorithmic 
approach can be applied with any variation of this technique.   

4.3 Results: Comparing Iterative Smoothing 
with Standard Recommendation Techniques 
The objective of the experiment is to compare the performance of 
the proposed iterative smoothing approach with standard single-
model recommendation techniques on several real world datasets.   

The first dataset we used is the Movielens 100K dataset [10], 
which contains 100,000 known ratings on 1682 movies from 943 
users (6.3% data density).  Our second dataset is a sample 
extracted from the Movielens 1M dataset.  The original Movielens 
1M dataset consists of 1,000,000 ratings for 6040 movies by 3952 
users (4.2% data density) [10].  From this dataset we extracted a 
random sample of 3000 users and 3000 movies.  Resulted dataset 
contains 400,627 known ratings (i.e., 4.45% data density).  Our 
third dataset is sampled from the Netflix 100M dataset used in the 
recent Netflix Prize competition [5].  Similarly to the second 
dataset, we sub-sampled 3000 random users and 3000 random 
movies from the original data file.  The result data sample consists 
of 105,256 known ratings (i.e., 1.17% data density).  The three 
datasets used in our experiments come from different sources and 
have different data characteristics (i.e., size and sparsity).  All 
movie ratings in the Movielens and Netflix datasets are integer 
values between 1 and 5, where 1 represents the least liked movies, 
and 5 represents the most liked movies.  The datasets used in this 
experiment are summarized in Table 1.   

Table 1. Summary of Experimental Datasets. 

DataSet Description Users Items Density 
Movielens 

100K Movie ratings from 
Movielens movie 

recommender system. 

943 1682 6.30% 

Movielens 
1M 

3000 3000 4.45% 

Netflix 
Movie ratings 

distributed by Netflix 
company. 

3000 3000 1.17% 

The procedure of this experiment followed the general 
experimental process described in Figure 6.  We examined the 
prediction accuracy and stability of the final predictions on the 
reserved validation datasets (as described in Figure 6, Step 2).  
For each recommendation algorithm used in our study, we 
compare two approaches: the standard (original) single-model 
approach and the scalable version of iterative smoothing 
approach.  Accuracy and stability numbers (measured by RMSE 
and RMSS) of the two approaches on real-world movie rating 
datasets are provided in Table 2.   

Experimental results are consistent across different datasets.  On 
all three datasets, our proposed meta-algorithmic iterative 
smoothing approach outperformed the original recommendation 
techniques in both stability and accuracy in the vast majority of 
cases.  In particular, on average (i.e., across all datasets), iterative 
smoothing provided a dramatic 55% improvement over the 
original recommendation algorithms in stability (as measured by 
RMSS) for CF_User and CF_Item algorithms.  Even for the fairly 
stable SVD and baseline techniques, on average, iterative 
smoothing was able to further improve RMSS by 14%.  In terms 
of predictive accuracy, on average, iterative smoothing provided 

7



1.4% improvements in RMSE across different algorithms.   

Table 2.  Iterative Smoothing vs. Standard Techniques. 

Method Approach 
Accuracy 
(RMSE) 

Stability 
(RMSS) 

Movielens 
100K 

SVD 
Standard 0.9437 0.0866 
Smoothing 0.9378 0.0779 

CF_User 
Standard 0.9684 0.4023 
Smoothing 0.9586 0.2020 

CF_Item 
Standard 0.9560 0.3234 
Smoothing 0.9320 0.1347 

Baseline 
Standard 0.9758 0.1148 
Smoothing 0.9609 0.0569 

Movielens  
1M 

SVD 
Standard 0.8846 0.0804 
Smoothing 0.8798 0.0719 

CF_User 
Standard 0.9393 0.3294 
Smoothing 0.9182 0.1145 

CF_Item 
Standard 0.9135 0.2755 
Smoothing 0.8929 0.1089 

Baseline 
Standard 0.9425 0.0910 
Smoothing 0.9346 0.0923 

Netflix 

SVD 
Standard 0.9372 0.1208 
Smoothing 0.9363 0.1137 

CF_User 
Standard 0.9608 0.4610 
Smoothing 0.9407 0.2462 

CF_Item 
Standard 0.9579 0.4394 
Smoothing 0.9381 0.2291 

Baseline 
Standard 0.9622 0.1465 
Smoothing 0.9556 0.1351 

5. CONCLUSIONS AND FUTURE WORK 
This paper introduces a general-purpose, practical meta-
algorithmic approach – based on iterative smoothing – for 
improving stability of a variety of traditional recommendation 
algorithms.  The iterative smoothing approach uses multiple 
iterations to repeatedly and explicitly adjust predictions of a 
recommendation algorithm based on its other predictions in order 
to make them more consistent with each other.  We examined the 
performance of iterative smoothing approach on several real 
world datasets.  Our experiments show that the proposed approach 
demonstrates effectiveness in their ability to improve stability for 
several widely used recommendation algorithms.  Perhaps as 
importantly, the proposed approach not only does not sacrifice the 
predictive accuracy to obtain these stability improvements, but 
actually is able to provide some additional accuracy 
improvements at the same time.   

This work provides several interesting directions for future 
research.  This study shows that iterative smoothing can improve 
stability for different recommendation algorithms, providing 
larger improvements for some algorithms and smaller 
improvements for some others.  Providing some additional 
theoretical understanding of what algorithmic and data 
characteristics can lead to larger vs. smaller improvements in 
recommendation stability for the proposed approach is an 
important direction for future work.  Another interesting direction 
would be to perform user behavior studies to investigate the value 
of stable (i.e., as opposed to unstable) recommendations on users’ 
usage patterns and acceptance of recommender systems.  
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