

Proceedings of the

Workshop on Recommendation Utility

Evaluation: Beyond RMSE (RUE 2011)

held at the

6
th

 ACM International Conference

on Recommender Systems (RecSys 2012)

9 September 2012

Dublin, Ireland

Edited by

Xavier Amatriain1, Pablo Castells2, Arjen de Vries3,
Christian Posse4, Harald Steck1

1 Netflix, USA
2 Universidad Autónoma de Madrid, Spain

3 Centrum Wiskunde & Informatica, Netherlands
4 Linkedin, USA

i

Preface

Introduction

Measuring the error in predicting held-out user rating values has been by far the dominant offline evaluation

methodology in the Recommender Systems (RS) literature. Yet there seems to be a general consensus in the

community that this criterion alone is far from being enough or even adequate to assess the practical effectiveness

of a recommender system in matching user needs. The end users of recommendations receive lists of items rather

than rating values, whereby recommendation accuracy metrics –as surrogates of the evaluated task– should target

the quality of the item selection, rather than the numeric system scores that determine this selection. Furthermore,

as far as the order of recommended items determines the set of elements that the user will actually consider for

consumption, effectiveness assessment methodologies should target item rankings. For this reason, metrics and

methodologies from the Information Retrieval (IR) field –where ranking evaluation has been studied and stand-

ardized for decades– have started to be adopted by the RS community. Gaps remain between the methodological

formalization of tasks in both fields though, which result in divergences in the adoption of IR methodologies for

RS, hindering the interpretation and comparability of empirical observations by different authors.

On the other hand, there is a growing realization that accuracy is only one among several relevant dimensions of

recommendation effectiveness. The value of novelty, for instance, has been recognized as a key dimension of

recommendation utility for users in real scenarios, in-as-much as the purpose of recommendation is inherently

linked to discovery in many application domains. Closely related to novelty, diversity is also a desirable quality to

enrich the user’s experience and enhance his array of relevant choices. Novelty and diversity are generally posi-

tive for businesses as well, by favoring the diversity of sales and helping leverage revenues from market niches.

As a matter of business performance enhancement, the value added by recommendation can be measured more

directly in terms of on-line click-through rate, conversion rate, sales order size increase, returning customers, in-

creased revenue, etc. On the other hand, web portals and social networks commonly face multiple objective opti-

mization problems related to user engagement, requiring appropriate evaluation methodologies for optimizing

along the entire recommendation funnel, from the initial click to the real user engagement in subsequent down-

stream utilities. Other potentially relevant dimensions of effective recommendations for consumers and providers

may include confidence, coverage, risk, cost, robustness, etc.

While the need for further extension, formalization, clarification and standardization of evaluation methodologies

is recognized in the community, this need is still unmet to a large extent. When engaging in evaluation work, re-

searchers and practitioners are still often faced with experimental design questions for which there are currently

not always precise and consensual answers. Room re-mains for further methodological development and conver-

gence, which motivated the RUE 2012 workshop

The ACM RecSys 2012 International Workshop on “Recommendation Utility Evaluation: Beyond RMSE” (RUE

2012) gathered researchers and practitioners interested in developing better, clearer, and/or more complete evalua-

tion methodologies for recommender systems –or just seeking clear guidelines for their experimental needs. The

workshop provided an informal setting for exchanging and discussing ideas, sharing experiences and viewpoints.

RUE sought to identify and better understand the current gaps in recommender system evaluation methodologies,

help lay directions for progress in addressing them, and contribute to the consolidation and convergence of exper-

imental methods and practice.

ii

Scope and topics

The accepted papers and the discussions held at the workshop addressed, among others, the following topics:

 Recommendation quality dimensions.

 Effective accuracy, ranking quality.

 Novelty, diversity, unexpectedness, serendipity.

 Utility, gain, cost, risk, benefit.

 Robustness, confidence, coverage, usability, etc.

 Matching metrics to tasks, needs, and goals.

 User satisfaction, user perception, human factors.

 Business-oriented evaluation.

 Multiple objective optimization, user engagement.

 Quality of service, quality of experience.

 Evaluation methodology and experimental design.

 Definition and evaluation of new metrics, studies of existing ones.

 Adaptation of methodologies from related fields: IR, Machine Learning, HCI, etc.

 Evaluation theory.

 Practical aspects of evaluation.

 Offline and online experimental approaches.

 Simulation-based evaluation.

 Datasets and benchmarks.

 Validation of metrics.

Specific questions raised and addressed by the workshop included, among others, the following:

 What are the unmet needs and challenges for evaluation in the RS field? What changes would we like to

see? How could we speed up progress?

 What relevant recommendation utility and quality dimensions should be cared for? How can they be cap-

tured and measured?

 How can metrics be more clearly and/or formally related to the task, contexts and goals for which a rec-

ommender application is deployed?

 How should IR metrics be applied to recommendation tasks? What aspects require adjustment or further

clarification? What further disciplines should we draw from (HCI, Machine Learning, etc.)?

 What biases and noise should experimental design typically watch for?

 Can we predict the success of a recommendation algorithm with our offline experiments? What offline met-

rics correlate better and under which conditions?

 What are the outreach and limitations of offline evaluation? How can online and offline experiments com-

plement each other?

 What type of public datasets and benchmarks would we want to have available, and how can they be built?

 How can the recommendation effect be traced on business outcomes?

 How should the academic evaluation methodologies improve their relevance and usefulness for industrial

settings?

 How do we envision the evaluation of recommender systems in the future?

iii

Submissions and Programme

The workshop received 18 submissions, of which 11 were accepted (61%), including 3 full technical papers, 4

position papers, and 4 technical papers presented as posters. The workshop opened with a keynote talk by Carlos

Gómez-Uribe, from Netflix, and included several open discussion sessions. We briefly summarize here the pre-

sented works and held discussions.

The keynote talk, entitled “Challenges and Limitations in the Offline and Online Evaluation of Recommender

Systems: A Netflix Case Study”, provided a comprehensive, inside view of the evaluation of recommendation

technologies in one of the major players in the recommender system industry. Gómez-Uribe explained and dis-

cussed how offline and online (A/B testing) phases, business metrics (cancellation rate, subscriber streaming),

long-term vs. short-term performance measures are handled in an online businesses heavily relying on recom-

mendation technologies.

The papers presented after this cover a wide spectrum of topics, encompassing most of the aspects put forward in

the intended workshop scope. In the full technical papers section, G. Adomavicius and J. Zhang address a new

quality dimension, namely recommendation stability, defined as the consistency of recommendations over small

incremental changes in the input data. A method is proposed to enhance the stability (at the same time as the accu-

racy) of an arbitrary recommender by means of an iterative approach where the system is fed back samples of its

output. F. Meyer et al. propose the distinction of four functions in user activity where a recommender system may

assist: decision, comparison, discovery, and exploration. The authors suggest associating a specific evaluation

metric to each of these dimensions, and a structured evaluation procedure (including the metrics computation) in

offline experiments. M. Habibi and A. Popescu-Belis present a crowdsourcing approach to evaluate the accuracy

of a filtering system which automatically links documents to human speech. The study addresses such issues as

worker’s reliability assessment, inter-worker agreement, and evaluation stability.

In the position papers section, A. Said, D. Tikk et al. present a conceptual framework where evaluation considers

three dimensions: the business model, the user requirements, and technical constraints, corresponding to the view

of the three broad types of stakeholders involved in a recommender application, respectively: vendors, consumers,

and service providers. S. Clerger-Tamayo, J. M. Fernández-Luna and J. F. Huete propose a generalization of

MAE where the error in rating predictions can be weighted in order to focus the evaluation on specific cases of

the user-item space, and identify conditions where recommendation is suboptimal. O. Başkaya and T. Aytekin

study the correspondence between rating-based and content-based inter-item similarity, which is a relevant issue

for metrics that are based on a generic item similarity function (such as the average intra-list dissimilarity for di-

versity evaluation). B. Kille considers the fact that different users may not be equally easy to provide accurate

recommendations for, and proposes measures to assess user difficulty in this perspective.

In the posters section, W. L. De Mello Neto and A. Nowé contrast offline and online evaluation in the context of

recommendation approaches leveraging social network information, considering such issues as transparency and

computational complexity, besides recommendation accuracy. K. Oku and F. Hattori present an approach to en-

hance recommendation serendipity by mixing features from different items as a seed to produce new recommen-

dations. C. E. Seminario and D. C. Wilson report a wide empirical study with the Mahout open source library,

focusing on accuracy and coverage, the tradeoffs between such dimensions, and the variations resulting from

functional enhancements introduced by the authors. L. Peska and P. Vojtas present an experimental study on a

travel agency website, where the extended use of implicit evidence from user interaction as input for recommen-

dation is tested, using clickthrough rate and conversion rate as the primary recommendation performance metrics.

iv

Different issues were addressed in the open discussion sessions during the workshop. A prominently recurrent one

was the gap between offline and online evaluation. Academic research is strongly focused on offline experiments

using rating prediction error or IR metrics, whereas businesses rely on live A/B testing with real customers using

business metrics such as CTR, conversion rate, cancellation rate (equivalently, returning customers), or revenue

increase (in its different measurable forms). With sales and profitability as the obvious common baseline denomi-

nator, the designation of specific core metrics among these seems use-case dependent. Some businesses, such as

Netflix, nonetheless report using offline testing as well, as a preliminary phase prior to online experimentation.

Business-oriented evaluation goals typically require longer-term evaluation cycles, where the effects of a feature

(e.g. on customer loyalty) can only be measured over an extended period of time (several months). Short-term

indicators (such as CTR) are commonly used nonetheless to complement these to some extent.

Some of the pointed out hurdles hindering the connection between academia and industry in this area include the

often discussed difficulty for academic researchers to access real-world large-scale datasets, or the availability of

a feasible procedure where algorithms from academia and data from vendors might get in contact, while meeting

the requirements and constraints of the involved stakeholders (data and algorithm ownership, end-user’s privacy,

etc.). Public evaluation campaigns such as the Netflix Prize, the CAMRa challenges, the plista Contest, were dis-

cussed as very positive moves in this direction, each with their own limitations. Further alternatives were dis-

cussed for setting up some form of evaluation platform where systems could be compared not just for accuracy,

but for scalability (response time). Paolo Cremonesi discussed also an initiative, currently in perspective, which is

aiming in this direction. The open API provided by Mendeley to its data was also described as an available oppor-

tunity for researchers to test their algorithms on massive data. Crowdsourcing approaches were furthermore men-

tioned as an intermediate option, available to researchers, between offline evaluation and full-scale experiments

on real application data.

There seemed to be a general consensus on the inadequacy of RMSE as a proxy for user satisfaction, or any prop-

er view on recommendation utility in general. This was expressed from many perspectives: from conceptual ra-

tionales (the recommender’s task, the user’s goals and interaction paradigm with recommendations in real applica-

tions) to experiences –offline and online evidence in formal or informal case studies– shared by many participants

in the workshop. Several other general concerns were identified regarding the adequacy of different metrics, such

as the fact that different contexts may require different metrics, e.g. navigational recommendation may focus on

accuracy and diversity, whereas discovery-oriented recommendation may emphasize novelty and serendipity. It is

also a common case in industrial contexts that technical requirements and business constraints may have to be

traded off with evaluation needs and may override other concerns and observations in A/B testing. Beyond

RMSE, the general opinion seemed yet to be that researchers in academia should still focus on generic metrics

rather than too specific business-oriented metrics and constraints.

The interest of the workshop theme was underlined, beyond the RUE workshop itself, by the pervading presence

of evaluation as an explicit object of research and discussion in the RecSys conference programme, clearly identi-

fied as an open area where further work is needed.

v

Acknowledgments

The organizers would like to thank the Program Committee members for their high-quality and timely evaluation
of the submissions; the RecSys 2012 organizers (Neil J. Hurley and his team) and workshop chairs (Jill Freyne
and Pearl Pu) for their support in the organization of this workshop; the keynote speaker (Carlos Gómez-Uribe),
all the authors and presenters, for their contribution to a high-quality workshop program; and all participants for
such fruitful discussions and valuable ideas as were exchanged during the workshop. Thanks are due to all such
contributions which made RUE 2012 a successful venue.

Xavier Amatriain

Pablo Castells

Arjen de Vries

Christian Posse

Harald Steck

vi

vii

Organizing Committee

Xavier Amatriain Netflix, USA
Pablo Castells Universidad Autónoma de Madrid, Spain
Arjen de Vries Centrum Wiskunde & Informatica, Netherlands
Christian Posse Linkedin, USA
Harald Steck Netflix, USA

Program Committee

Gediminas Adomavicius University of Minnesota, USA
Alejandro Bellogín Universidad Autónoma de Madrid, Spain
Iván Cantador Universidad Autónoma de Madrid, Spain
Licia Capra University College London, UK
Òscar Celma Gracenote, USA
Charles Clarke University of Waterloo, Canada
Paolo Cremonesi Politecnico di Milano, Italy
Juan Manuel Fernández-Luna Universidad de Granada, Spain
Pankaj Gupta Twitter, USA
Juan F. Huete Universidad de Granada, Spain
Dietmar Jannach University of Dortmund, Germany
Jaap Kamps University of Amsterdam, Netherlands
Neal Lathia University College London, UK
Jérôme Picault Bell Labs, Alcatel-Lucent, France
Filip Radlinski Microsoft, Canada
Francesco Ricci Free University of Bozen-Bolzano, Italy
Fabrizio Silvestri Consiglio Nazionale delle Ricerche, Italy
David Vallet Universidad Autónoma de Madrid, Spain
Paulo Villegas Telefónica R&D, Spain
Jun Wang University College London, UK
Yi Zhang University of California, Santa Cruz, USA

viii

ix

Table of Contents

Keynote talk

Carlos Gómez-Uribe
Challenges and Limitations in the Offline and Online Evaluation of Recommender Systems: A Netflix Case

Study ... 1

Full technical papers

Gediminas Adomavicius and Jingjing Zhang
Iterative Smoothing Technique for Improving the Stability of Recommender Systems 3

Frank Meyer, Françoise Fessant, Fabrice Clérot and Eric Gaussier
Toward a New Protocol to Evaluate Recommender Systems .. 9

Maryam Habibi and Andrei Popescu-Belis
Using Crowdsourcing to Compare Document Recommendation Strategies for Conversations........................ 15

Position papers

Alan Said, Domonkos Tikk, Klara Stumpf, Yue Shi, Martha Larson and Paolo Cremonesi
Recommender Systems Evaluation: A 3D Benchmark .. 21

Sergio Cleger-Tamayo, Juan M. Fernández-Luna and Juan F. Huete
On the Use of Weighted Mean Absolute Error in Recommender Systems .. 24

Osman Başkaya and Tevfik Aytekin
How Similar is Rating Similarity to Content Similarity? .. 27

Benjamin Kille
Modeling Difficulty in Recommender Systems.. 30

Posters

Wolney Leal De Mello Neto and Ann Nowé
Insights on Social Recommender Systems .. 33

Kenta Oku and Fumio Hattori
User Evaluation of Fusion-based Recommender Systems for Serendipity-oriented Recommendation 39

Carlos E. Seminario and David C. Wilson
Case Study Evaluation of Mahout as a Recommender Platform .. 45

Ladislav Peska and Peter Vojtas
Evaluating the Importance of Various Implicit Factors in E-commerce .. 51

x

1

Challenges and Limitations in the Offline and Online

Evaluation of Recommender Systems:

A Netflix Case Study

Carlos Gomez-Uribe
Netflix, USA

cgomez@netflix.com

ABSTRACT
The typical use case of recommendation systems is suggesting items such as videos, songs or articles to users. Evaluating a recommender
system is critical to the process of improving it. In theory the best judges of the quality and effectiveness of a recommender system are the
users themselves, e.g., ideal metrics can describe the intensity and frequency of a user's interaction with the system over the long term. In
practice, however, despite the wide adoption of consumer science based on online A/B testing for the evaluation and comparison of differ-
ent recommender systems, user-derived measurements are often noisy, slow, non-repeatable, and sensitive to a myriad of potential con-
founders. Furthermore, conducting large-scale user experiments for researchers in academia is often impossible. A complementary offline
approach can be used to quickly evaluate and optimize new recommender systems on historical user-generated data. Yet these offline
measurements need not translate directly onto the sought-after online results, such as increases in user engagement. This talk will describe
the blend of offline and online experimentation we use at Netflix to improve upon our recommendation systems, and will discuss some key
challenges and limitations of these approaches that are broadly relevant to the recommender systems field.

2

Iterative Smoothing Technique for Improving Stability
of Recommender Systems

Gediminas Adomavicius
University of Minnesota

gedas@umn.edu

Jingjing Zhang
Indiana University

jjzhang@indiana.edu

ABSTRACT
We focus on the measure of recommendation stability, which
reflects the consistency of recommender system predictions.
Stability is a desired property of recommendation algorithms and
has important implications on users' trust and acceptance of
recommendations. Prior research has reported that some popular
recommendation algorithms can suffer from a high degree of
instability. In this study we propose a scalable, general-purpose
iterative smoothing approach that can be used in conjunction with
different traditional recommendation algorithms to improve their
stability. Our experimental results on real-world rating data
demonstrate that the proposed approach can achieve substantially
higher stability as compared to the original recommendation
algorithms. Importantly, the proposed approach not only does not
sacrifice the predictive accuracy in order to improve
recommendation stability, but is actually able to provide
additional accuracy improvements at the same time.

1. INTRODUCTION
Recommender systems represent technologies that assist users in
finding a set of interesting or relevant items [1]. In order to
provide good recommendations, recommender systems employ
users’ feedback on consumed items. This input can include
explicitly provided feedback in the form of ratings or tags, as well
as feedback that can be implicitly inferred by monitoring users’
behavior such as browsing, linking, or buying patterns. The most
common approach to modeling users’ preferences for items is via
numeric ratings. The recommendation algorithm then analyzes
patterns of users’ past ratings and predicts users’ preference
ratings for new, not yet consumed items. Once ratings for the new
items are estimated, the item(s) with the highest estimated
rating(s) can be recommended to the user.

In the recommender systems literature, evaluating performance of
recommendation algorithms has always been a key issue, and
recommendation accuracy has been the major focus in developing
evaluation metrics [11,23]. As a result, much of the research in
the recommender systems area has focused on proposing new
techniques to enhance the accuracy of recommendation
algorithms in predicting what users will like, as exemplified by
the recent $1M Netflix prize competition. Prediction accuracy
metrics typically compare the rating values estimated by a
recommendation algorithm against the actual rating values and
reflect the closeness of the system’s predictions to users’ true
ratings. In addition to recommendation accuracy, researchers
have proposed a number of alternative types of measures,
including recommendation coverage, diversity, novelty,
serendipity, and several others, to evaluate the performance of
recommender systems [11,23]. Of special interest to us is the
recently introduced measure of recommendation stability [2],
which reflects the level of consistency among the predictions

made by the system.

According to the definition, stability is the consistent agreement
of predictions made on the same items by the same algorithm,
when any new incoming ratings are in complete agreement to
system’s prior estimations [2]. As has been discussed in prior
work, stability is an important and desired property of
recommender systems, and has a number of potential implications
related to users’ trust and acceptance of such systems [2].

While providing stable and consistent recommendations is
important in many contexts, prior research has demonstrated that
some popular collaborative filtering recommendation algorithms
can suffer from high degree of instability [2]. This is particularly
true for the widely used item- and user-based nearest-neighbor
collaborative filtering approaches. It has also been shown that
stability does not necessarily correlate with predictive accuracy
[2], i.e., different recommendation algorithms can exhibit
different levels of stability, even though they may have similar
prediction accuracy. Thus, maximizing accuracy may not
necessarily help to improve stability, and vice versa. For instance,
a simple heuristic that predicts any unknown user rating as an
average of all known ratings of that user is perfectly stable [2];
however, in most real-world settings this heuristic is outperformed
by more sophisticated recommendation algorithms in terms of
predictive accuracy. Therefore, the main objective of this study is
to develop an approach that can improve stability of
recommendation algorithms without sacrificing their accuracy.

In this paper, we propose a general iterative smoothing approach
to improve stability of any given recommendation technique. The
approach serves as a meta-algorithm, i.e., it can be used in
conjunction with any traditional recommendation technique.
Accordingly, the paper evaluates the performance of the proposed
approach in conjunction with a number of popular and widely-
used recommendation algorithms in terms of their stability as well
as accuracy on several real-world movie rating datasets. The
results show that this meta-algorithmic approach provides
substantial improvements in recommendation stability as
compared to the original recommendation algorithms, while
providing some additional accuracy benefits as well.

2. RELATED WORK
Based on how unknown ratings are predicted, recommendation
techniques can be classified into three general categories: content-
based, collaborative filtering, and hybrid [1,3]. Among different
recommendation approaches, collaborative filtering techniques
have been most widely used, largely because they are domain
independent, require minimal, if any, information about user and
item features, yet can still achieve accurate predictions [13,19].

In a typical setting of collaborative filtering recommender
systems, users’ preferences for items are modeled via numeric
ratings. Thus, the recommendation problem is reduced to the
problem of estimating ratings for the items that have not been
seen by a user, and this estimation is usually based on the other
available ratings given by this and/or other users. More formally,
given a set of users U and a set of items I, the entire user-item

Copyright is held by the author/owner(s). Workshop on Recommendation Utility
Evaluation: Beyond RMSE (RUE 2012), held in conjunction with ACM RecSys
2012. September 9, 2012, Dublin, Ireland.

3

s
g
s
r
r
(

A
in
p
m
r
g
m
s
im
f
m

R
a
e
a
R
p
to
T
in
p
in
o
r
o
c
th
r

S
th
s
in
a
tw
s
p
p
a
to
r
p
te
m
p
is
s

w
r
th
c

space is denoted
gave to item i, w
subset of all po
atings, and S\D
ecommendation
u,i)S\D pairs, g

As mentioned ea
n recommender

predictive accur
mean squared er
eport the recom

growing understa
may not give use
systems, and tha
mportant in eva

focus in this pa
measures, recom

Recommendation
among the differ
example where t
and i2, for user
R*(u,i1) and R*
precisely accurat
o the system as

The recommenda
n light of the ne

prediction, R*(u
ncoming rating

other words, tw
ecommender sy

other, if adding
changes the othe
he change in
ecommendation

Specifically, the
he extent to wh

stay the same/si
ncoming rating

agreement with s
wo-phase appro

stability of a rec
prior literature [2
predictive model
are made. Then,
o the original se
atings. In Phas

predictive mode
echnique, and

made. Stability
predictions to co
s called root me

similar fashion a

RMSS ൌ ඨ

where P1 and P
espectively, i.e.,
he same recomm

complete agreem

as S = U × I. L
where Rui is typ

ossible (u,i) pair
D be the set of u
n task is to estim
given U, I, and k

arlier, predictive
systems literatu

racy metrics for
rror (RMSE), w

mmendation accu
anding that good
ers a satisfying e
at some other (co
luating the effec
aper is one of

mmendation stabi

n stability mea
rent predictions m
the system mak
u. Let’s deno

(u,i2). Let’s as
te and, after user
part of the know
ation algorithm

ew data. Would
,i2), and to wha
data was exactly
o predictions R

ystem can be vie
one of them to

er prediction. A
predictions re

n algorithm.

stability of a re
hich the system’
imilar (i.e., are
gs submitted to
system’s prior p
oach (illustrated
commendation a
2]. In Phase 1,
l is built, and pr
 a random subse

et of known ratin
se 2, based on e
el is built us
predictions on
is then measur

ompute their roo
ean squared shif
s RMSE:

 ሺ ଵܲሺ
ሺ௨,ሻ∈భ∩మ

P2 are the predi
, RMSS capture
mendation algor

ment with algorith

Let Rui represent
pically known o
rs. Let D be t
unknown rating
mate unknown
known R(u,i) val

 accuracy has b
ure. One of the
r recommender

which we will us
uracy results. H
d recommendatio
experience using
omplementary)
ctiveness of the

these importan
ility [2].

asures the inhe
made by the sys

kes predictions f
ote the two rati
ssume that pred
r u consumes ite
wn ratings, i.e.,
re-computes all
this change the

at extent, even t
y as predicted b

R*(u,i1) and R*(
ewed as “incons
 the training da

As discussed in
eflects the (in

ecommender sys
’s predictions fo

stable), when
o the system
predictions. Bas
d in Figure 1
algorithm has b
, given a set of
redictions for all
et of system’s pr
ngs as hypotheti
expanded trainin
ing the same
remaining unkn
ed by comparin
t mean squared

ift (RMSS), and

ሺݑ, ݅ሻ െ ଶܲሺݑ, ݅ሻሻ

ictions made in
s the shift in pre

rithm with new r
hm’s own prior e

t rating that user
only for a limite
the set of know
s. Therefore, th
Rui values for a
lues for (u,i) D

een a major foc
most widely use

r systems is ro
se in this paper
owever, there is
on accuracy alon
 the recommend
measures are al
system [23]. O

nt complementa

erent consistenc
stem. Consider a
for two movies,
ng predictions

diction R*(u,i1)
m i1, it gets adde
R(u,i1) = R*(u,i

l other predictio
value of the oth
though the new

by the system?
(u,i2) of the sam
sistent” with eac
ata for the syste
[2], the degree

n)stability of th

stem is defined
or the same item
any and all ne
are in comple

sed on this idea,
) for computin
een introduced

f known ratings,
l unknown ratin
redictions is adde
ical new incomin
ng data, a secon

recommendatio
nown ratings a

ng the two sets
difference, whic
is computed in

ሻଶ	 	| ଵܲ ∩ ଶܲ|ൗ

n Phase 1 and
edictions made b
ratings that are
estimations.

r u
ed

wn
he
all
D.

us
ed

oot
to

s a
ne

der
so

Our
ary

cy
an
i1
as
is

ed
1).
ns

her
wly

In
me
ch

em
of
he

as
ms
ew
ete
, a
ng
in
 a
gs
ed
ng
nd
on
are
of
ch

n a

2,
by
in

Figure

Providi
users’ t
psycho
agents
less in
opinion
is con
Inconsi
a resul
percept
context
recomm
accepta

Prior re
stability
that so
exampl
collabo
Netflix
predicte
after a
identica
signific
scale fo
Thus, t
paper,
that c
recomm

3. IT
3.1 G
High in
each ot
involve
adjustin
based o
improv
iterativ
current
ratings

Figure
smooth
of the
where r
first est
These p
smooth
rating i
both kn
consiste

More s
for eac
based o
contain

e 1. Illustration

ing consistent p
trust and accepta

ology literature, i
with greater flu

nformative than
ns [9], and advic
nsidered less
istent recommen
lt, the decrease
tions of the reco
ts where cons
mender system i
ance and, thus, h

esearch has prov
y of popular re

ome widely used
le, it has be
orative filtering
x movie rating
ed rating will sh

adding to the t
al to the system
cant shift in pred
for the dataset is
techniques for s
we propose a g

can be used
mendation algori

TERATIVE
General Ide
nstability results
ther. We propo
es multiple ite
ng the rating pr
on its other pre

ving consistency
ve smoothing is t
t iteration will b
in subsequent it

2 provides a
hing algorithm, a
overall process.
ratings are know
timated using so
predictions are

hing then starts
in S\D based on
nown as well as
ency between di

specifically, duri
ch unknown user
on training data

n all known ratin

of stability com

predictions has
ance of recomm
it has been show
uctuations in pa

n those with a
ce inconsistent
helpful than

ndations may be
e in users’ trus
ommender system
sistency is vit
s likely to have

harm the success

vided a comprehe
commendation
d algorithms ca
en shown tha
approach can b

g data, meanin
hift by 0.47 star
training data so

m’s current pred
diction, consider
s only 4 stars (i.
stability improv
general-purpose

to improve
ithms.

E SMOOTH
ea
s from prediction
ose an iterative s
erations for re
redictions of a
edictions and, t
y of predicted
that the rating p
be fed back int
terations.

an overview o
and Figure 3 gi
. Given rating
wn, predictions o
ome standard re
denoted as P0.
to iteratively a

n all other rating
s predicted) in o
ifferent predicted

ing the k-th itera
r-item pair (u,i)
aset Dk,u,i. Thi
ngs combined w

mputation, adapte

important impl
mendations. In th
wn that online ad
ast opinions are

more uniform
with past recom
consistent adv
discredited by u
t will further r
m’s competence
tal, the instab
a negative impa

s of the system.

ensive investiga
algorithms [2] a

an be highly un
at RMSS for
be as high as 0

ng that on ave
rs (i.e., by about
ome new ratin

dictions [2]. Th
ring the length o
.e., ratings go fr

vement are need
meta-algorithm

stability of

HING APPR

ns that are incon
smoothing appro

epeatedly and
recommendatio

thus, is explicit
ratings. The k

predictions comp
to the data to p

of the propose
ves a high-level
space S and tra

on unknown rati
commendation a
 The procedure
adjust estimatio

gs in the rating s
rder to proactiv
d ratings.

ation (for any k
)S\D, a model
is dataset is con
with all predictio

ed from [2].

lications on
he consumer
dvice-giving
e considered

m pattern of
mmendations
vice [7,24].
users and, as
reduce their
e [12,17]. In
bility of a
act on users’

ation into the
and showed

nstable. For
user-based

0.47 on the
erage every
t a half-star)

ngs that are
his is a very
of the rating
rom 1 to 5).
ded. In this

mic approach
traditional

ROACH

nsistent with
oach, which
collectively

on algorithm
ly aimed at
key idea of
puted during
predict other

ed iterative
l illustration
aining set D
ings S\D are
algorithm T.
 of iterative
ns for each

space S (i.e.,
ely improve

= 1, 2, …),
fk,u,i is built

nstructed to
ons on user-

4

it
f
th
(

H
a
il
s
it
it
in
s
w

B
u
n
|S
b
r
it

In
p
T
e
it
th
d
d
m
(
it
to
r
T
b
o
v
s
s

tem pairs in S\D
for the prediction
he k-th iteration
u,i) that is stored

ܲሺݑ,

Here R(u,i) repre
and fk,u,i is the p
llustrates the p

smoothing appro
teration is com
teration to comp
n root mean squ

stops either after
when predictions

By definition, in
user-item pair wi
need to be constr
S|–1 ratings as
build a predict
ecommendation
terative smoothi

Iterative Smoo
Inputs: known
Process:
1. Build model
recommendation
2. Apply mode
ratings S\D, i.e.,
3. For each itera

For each unk
a. Construc

and all p
except fo

b. Build mo

c. Make pre

4. Output predic
Output: PK

Fig

n other words, th
proportional to t
This computatio
expensive for m
tem rating space
he Movielens 1

dataset [10], wh
dataset contains
movies. Thus, th
i.e., 1682 x 94
terative smoothi
otal 1.5 million
atings) would

Therefore, apply
be feasible even
overcome this co
variation of th
significant scalab
stability benefits

D computed in th
n on (u,i) as indi
n, each model fk

d as Pk(u,i), i.e.:

ሻݐ ൌ ൜
ܴሺݑ, ݅ሻ

݂,௨,ሺݑ, ݅ሻ

esents the know
prediction mode
process within
oach. The set o
mpared with pre
pute the deviatio
uared difference)
r a fixed, pre-de
s on unknown ra

each iteration, a
ith unknown rati
ructed over the
a training datas
tive model on
n algorithm T, t
ing approach is O

thing Algorithm
n ratings data D

l f0 on known
n algorithm T, i.
el f0 to compu
, P0(u,i) = f0(u,i)
ation k {1, …,
known rating pa
ct dataset Dk,u,i b
predicted ratings
or rating Pk-1(u,i)

Dk,u,i = D ∪ P
odel fk,u,i on data

fk,u,i
ediction on (u, i)

Pk(u, i) =
ctions made in th

ure 2. Iterative s

he complexity o
the size of unkn
onal requiremen

many real-world
e is large and ra
00K dataset is a

hich is consider
100,000 movie

he total number
43), of which 1
ing algorithm on
n predictive mo
need to be co
ing the full itera
for datasets tha

omplexity issue,
he iterative sm
bility improvem
(as will be show

he previous (k-1
cated in Figure 2

k,u,i produces a n

ሻ, ,ݑሺ	ݎ݂ ݅ሻ
ሻ, ,ݑሺ	ݎ݂ ݅ሻ

wn rating that us
el built based on

each iteration
of predictions ma
edictions made
n between the tw
. The iterative s

etermined numb
atings do not cha

a separate model
ing. Thus, in tot
course of K iter

set. If t(x) is th
data sample

then the time c
O(|S\D|Kt(|S|)).

m:
, # of iterations K

ratings D using
e., f0T(D)

ute predictions P
) for (u,i)S\D
 K}

air (u, i)S\D
by including all
 Pk-1 from the pr
), i.e.,

Pk-1\ {Pk-1(u,i)}
aset Dk,u,i using T
T (Dk,u,i)
) and store in P k

= fk,u,i(u, i)
he final iteration

smoothing appro

of iterative smoo
nown ratings in
nt is likely to
scenarios, i.e.,

ating data is spar
a publicly avail
red to be relativ

ratings from 9
of possible ratin

1.5M is unknow
n the Movielens
odels (each bui
onstructed withi
ative smoothing
at are not very l
 in the next sect

moothing algori
ments while reta
wn in the Results

) iteration, exce
2. As the result
new prediction f

∈ ܦ
∈ ܦ\ܵ

ser u gave item
n Dk,u,i. Figure

of the iterativ
ade in the curre

in the previou
wo sets (measure
smoothing proce
er of iterations

ange.

l is built for eve
tal, |S\D|K mode
rations, each usin
he time needed
of size x usin

complexity of th
.

K, algorithm T

g some standard

P0 for unknown

known ratings D
revious iteration

T, i.e.,

k, i.e.,

n PK

oach.

othing algorithm
the rating spac
be prohibitive

anytime the use
rse. For exampl
able movie ratin
vely small. Th
43 users on 168
ngs is about 1.6

wn. If we app
s 100K dataset,
lt on 1.6 millio
in each iteratio
approach may n
large. In order
tion we propose
ithm that offe
ining most of th
s section).

ept
of

for

i,
4

ve
ent
us
ed

ess
or

ery
els
ng
to
ng
he

d

n

D
n,

is
ce.
ely
er-
le,
ng
his
82
M

ply
in
on
on.
not

to
e a
ers
he

Figur

3.2 S
We pr
substan
reduces

Figure
smooth
smooth
multipl
unknow
one mo
upon al

Specifi
built b
ratings
S\D co
predicte
inferen

Here R
As the
produce
Similar
with pr
ends ei
on unkn

The ke
origina
models
a separ
order to

re 3. Illustration

Figure 4. Illus

Scalable Ite
ropose a variati
ntially simplifie
s its computation

5 provides an o
hing algorithm.
hing approach, th
le iterations for
wn rating. How
odel for each unk
ll known ratings

ically, during k-t
based on trainin

D combined wi
omputed in the
ed rating for (

nce approach, def

ܲሺݑ, ሻݐ ൌ

R(u,i) represents
result of the k-th
es a new pred
rly to the origin
redictions made
ither after a fixe
nown ratings co

ey difference b
al iterative smoo
s built within eac
rate model for ev
o properly adjus

of the general it

stration of one sm

rative Smoo
ion of iterative

es the original
nal requirements

overview of the
. Similarly
the proposed sca

repeatedly adju
wever, in each it
known rating, on
s and predicted r

th iteration (for a
ng dataset Dk w
ith all prediction

e previous itera
(u,i) in the k
fined as follows

൜
ܴሺݑ, ݅ሻ,

݂ሺݑ, ݅ሻ, ݂

the known rati
th iteration, for e
diction for (u,i)
al approach, new
in the previous

ed number of ite
nverge (i.e., do n

between this sim
thing algorithm
ch iteration k. T
very unknown r
st the predicted r

terative smoothin

moothing iterati

othing
e smoothing ap
approach and s
s.

proposed scala
to the origin

alable version al
usting estimatio
teration, instead
nly one single m
atings in previou

any k = 1, 2, …)
which contains
ns Pk-1 on user-i
ation. Pk(u,i)
iteration by the
:

,ݑሺݎ݂ ݅ሻ ∈ ܦ
,ݑሺ	ݎ݂ ݅ሻ ∈ ܦ\ܵ

ing that user u g
each (u,i)S\D,
) that is stored
w predictions ar
iteration and th

erations or when
not change).

mplified variati
is the number o

The original algo
rating in the ratin
rating Pk(u,i) usi

ng process.

ion.

pproach that
significantly

able iterative
al iterative
lso involves

ons for each
of building

model is built
us iteration.

), model fk is
 all known
tem pairs in
denotes the
e collective

gave item i.
the model fk

d as Pk(u,i).
re compared
he procedure
n predictions

ion and the
of predictive
rithm builds
ng space, in
ing all other

5

ratings from previous iteration, i.e., all ratings from D as well all
ratings Pk-1(u',i') where (u',i') (u,i).

Scalable Iterative Smoothing Algorithm:
Inputs: known ratings data D, # of iterations K, algorithm T
Process:
1. Build model f0 on known ratings D using some standard
recommendation algorithm T, i.e., f0T(D)
2. Apply model f0 to compute predictions P0 for unknown
ratings S\D, i.e., P0(u,i) = f0(u,i) for (u,i)S\D
3. For each iteration k {1, …, K}

a. Construct dataset Dk by including all known ratings D
and all predicted ratings Pk-1 from the previous iteration,
i.e.,

Dk = D ∪ Pk-1
b. Build model fk on dataset Dk using T, i.e.,

fk T(Dk)
c. For each unknown rating pair (u, i)S\D , make

prediction on (u, i) and store in Pk, i.e.,
Pk(u, i) = fk(u, i)

4. Output predictions made in the final iteration PK

Output: PK
Figure 5. Overview of scalable iterative smoothing approach.

In contrast, the simplified algorithm builds only one predictive
model in each iteration, based on the entire rating matrix. In other
words, predicted rating Pk(u,i) is adjusted using all ratings from
previous iteration, i.e., all ratings from D as well as from Pk-1,
including Pk-1(u,i). Thus, in the simplified algorithm, for any
given rating prediction P1(u,i) in the first iteration, the predictive
model is built on a rating data (i.e., D1) that only differs from the
rating data used in the original algorithm by one additional rating
(i.e., D1\{P0(u,i)}). Because the influence of one additional rating
is often subtle, especially when entire rating space is large (i.e., in
settings with large numbers of users and items), the single overall
model build in the simplified algorithm should produce outcomes
similar to the ones produced by individual models built in the
original algorithm, especially in the first iteration. While the
difference between the original and simplified versions of the
iterative smoothing may slowly increase as the number of
iterations grows, the simplified approach still provides significant
performance improvements (both in stability and accuracy), as
demonstrated by the experimental results later in the paper.

Moreover, the runtime complexity of the simplified algorithm is
much lower, making it much more practical from the scalability
perspective. In particular, as only one overall model is built on all
available ratings (i.e., dataset of size |S|) within each iteration, in
total K models are constructed over the course of K iterations.
Thus, the time complexity of the simplified variation is
O(Kt(|S|)). Comparing this to the complexity of the original
algorithm, O(|S\D|Kt(|S|)), the scalable heuristic offers huge
computational improvements (i.e., by roughly |S\D| times). In this
paper, we use scalable iterative smoothing in our experiments.

4. EXPERIMENTAL RESULTS
4.1 Overall Process
Our experiments test the stability improvements achieved by the
proposed meta-algorithmic approach in conjunction with several
popular collaborative filtering techniques.

The experiments follow the two-phase stability computation from
prior literature [2], discussed in Section 2. We used the standard
train-test data splitting approach and divided known ratings data
D into two sets: training data DT (80%) and validation data DV
(20%), where D = DT DV and DT DV = . Training set DT

was used for building rating prediction models, while validation
set DV was reserved exclusively for evaluating the predictive
accuracy of the final predictions. Similarly, a randomly chosen
half of the unknown rating space ET was dedicated for the stability
evaluation of rating prediction models during the training phase,
and the other half of the unknown rating space EV was reserved
exclusively for proper evaluation of the stability of the final
predictions. Here, S\D = ET EV and ET EV = .

Step 0: Create training and test datasets, i.e., DT, DV, ET, EV.
Step 1: Find the best model parameters:

i. Use a portion (e.g., 75%) of training set DT to build rating
prediction models using iterative smoothing.

ii. Compute model accuracy on other portion (25%) of DT.
iii. Compute model stability on predictions made on ET.
iv. Repeat steps i-iii with various parameter settings for

iterative smoothing (i.e., number of iterations).
v. Find the best parameters for iterative smoothing, i.e., the

specifications that result in best stability and accuracy.
Step 2: Evaluate accuracy and stability of the final predictions

i. Use the best parameter settings for iterative smoothing.
ii. Train the system on the entire training set DT using

iterative smoothing.
iii. Evaluate predictive accuracy on the reserved validation

rating set DV.
iv. Evaluate recommendation stability on the reserved

unknown rating space EV.
Step 3: Report parameter setting(s) as well as the accuracy and
stability of the final predictions.

Figure 6. Overall experimental process.

Additionally, the process of iterative smoothing involves multiple
iterations to adjust the predictions of unknown ratings. One of the
goals in this study is to find whether predictions converge during
the process of iterative smoothing and, if so, when. In addition,
there is possibility that iterative smoothing models can “over-
adjust” rating predictions after a number of iterations, in their
attempt to maximize the performance on training data. Over-
fitting is a well-known phenomenon which occurs when a
predictive model is fine-tuned to fit the training data (including
the random errors, outliers, and noise in the data) too well, which
typically leads to diminished predictive performance on test data.

Therefore, for a given algorithm, it is necessary to find the best
number of iterations to use on a given dataset in the final iterative
smoothing procedure. In order to find the optimal parameter
settings, we further used the standard train-test data splitting
approach internally within the training data to identify the best
parameter values for the proposed approach, i.e., that result in best
accuracy and stability. The overall experiment process is
summarized in Figure 6.

4.2 Recommendation Algorithms
In our experiments, we test the proposed approach in conjunction
with four popular recommendation algorithms: the simple
baseline method, classic user- and item-based variations of
neighborhood-based CF approaches, and the matrix factorization
technique. A brief overview of each technique is provided below.

Baseline. In real-world settings, some users may systematically
tend to give higher ratings than others, and some universally liked
items might receive higher ratings than others. Without
normalization, such user and item effects could bias system’s
predictions. Hence, recommender systems often involve a pre-
processing step to remove these “global effects”. One common
practice is to estimate and remove three effects: the overall mean,
the main effect of an item, and the main effect of a user [4]. Such

6

“global effects” can serve as a baseline estimate for unknown
rating of corresponding user and item, i.e.,

bui = µ + bu + bi ,

where µ is the overall average rating, bu is the average observed
deviation from µ on ratings provided by user u, and bi is the
average observed deviation from µ on ratings given to item i.
Note that, in all of our experiments (i.e., with all other
recommendation algorithms), the ratings data were normalized by
removing these global effects. Moreover, this estimate is often
used as a baseline recommendation technique for comparison with
other recommendation algorithms, i.e., R*(u,i) = bui, and we
investigate its performance in our experiments as well.

User-Based Collaborative Filtering (CF_User). The user-based
nearest-neighbor collaborative filtering approach is a heuristic that
makes predictions of unknown ratings for a user based on the
ratings previously rated by this user’s “nearest neighbors”, i.e.,
other users who have similar rating patterns [6,20]. That is, the
value of the unknown rating for user u and item i is usually
computed as an aggregate of the neighbors’ ratings for the same
item i. The most common aggregation approach is the weighted
sum of the neighbors’ ratings, where the similarity of two users is
used as a weight. I.e., the more similar user u' and target user u
are, the more weight will be carried by the rating provided by user
u' on item i in the weighted sum when computing the prediction.
Predicted rating for user u on item i is computed as:

ܴ∗ሺݑ, ݅ሻ ൌ 	ܾ௨
∑ ௨௩݉݅ݏ ∗ ሺܴሺݒ, ݅ሻ െ ܾ௩ሻ௩∈ேሺ௨,ሻ

∑ ௨௩|௩∈ேሺ௨,ሻ݉݅ݏ|

where N(u,i) is a set of “neighbors” with similar rating patterns to
user u and that have provided ratings for item i, simuv is the
similarity between users u and v, and bui is the baseline estimate
for user u on item i. In our implementation, two users must have
rated at least 3 items in common to allow computation of
similarity between them. The similarity between two users is
calculated as Pearson correlation between rating vectors (based on
the commonly rated items) of the two users. Prediction of each
unknown rating is formulated by combining the preferences of 20
most similar users who have rated the same item.

Item-Based Collaborative Filtering (CF_Item). The user-based
collaborative filtering technique also has an analogous item-based
version, where the ratings of the nearest-neighbor items are used
to predict unknown ratings for a given item. Several studies have
presented empirical evidence that item-based algorithms often
provide better predictive accuracy than user-based methods (e.g.,
[22]). Thus, our experiments also test the standard item-based
collaborative filtering in conjunction with the proposed approach.
Similarly to the settings employed in user-based CF, in our
experiments, two items are required to have been rated by 3
common users to allow similarity evaluation between them, and
20 nearest-neighbor items are used to formulate a prediction.

Matrix factorization (SVD). Matrix factorization technique is a
model-based (as opposed to heuristic-based) collaborative
filtering approach that characterizes items and users via a number
of latent factors inferred from known ratings [8,15]. This
technique models the U×I rating space as a product of two sub-
matrices: user preference matrix (U×L) and item feature matrix
(L×I). Each user and item is described by a vector of L latent
variables. In our experiments L is set to be 20. The user vector
indicates the preference of the user for several latent features, and
the item vector represents an item’s importance weights for the
same latent features. Singular value decomposition (SVD)
techniques are used to decompose original rating matrix into the
two sub-matrices in an optimal way that minimizes the resulting

approximation error. After the two sub-matrices are learned using
known ratings, each unknown rating is estimated as a dot-product
of the corresponding user- and item-factors vectors. Many
variations of matrix factorization techniques have been developed
during the recent Netflix Prize competition (e.g., [14,15,18,21]).
Our experiments focus on the basic underlying version of the
matrix factorization [8]; however, the proposed meta-algorithmic
approach can be applied with any variation of this technique.

4.3 Results: Comparing Iterative Smoothing
with Standard Recommendation Techniques
The objective of the experiment is to compare the performance of
the proposed iterative smoothing approach with standard single-
model recommendation techniques on several real world datasets.

The first dataset we used is the Movielens 100K dataset [10],
which contains 100,000 known ratings on 1682 movies from 943
users (6.3% data density). Our second dataset is a sample
extracted from the Movielens 1M dataset. The original Movielens
1M dataset consists of 1,000,000 ratings for 6040 movies by 3952
users (4.2% data density) [10]. From this dataset we extracted a
random sample of 3000 users and 3000 movies. Resulted dataset
contains 400,627 known ratings (i.e., 4.45% data density). Our
third dataset is sampled from the Netflix 100M dataset used in the
recent Netflix Prize competition [5]. Similarly to the second
dataset, we sub-sampled 3000 random users and 3000 random
movies from the original data file. The result data sample consists
of 105,256 known ratings (i.e., 1.17% data density). The three
datasets used in our experiments come from different sources and
have different data characteristics (i.e., size and sparsity). All
movie ratings in the Movielens and Netflix datasets are integer
values between 1 and 5, where 1 represents the least liked movies,
and 5 represents the most liked movies. The datasets used in this
experiment are summarized in Table 1.

Table 1. Summary of Experimental Datasets.

DataSet Description Users Items Density
Movielens

100K Movie ratings from
Movielens movie

recommender system.

943 1682 6.30%

Movielens
1M

3000 3000 4.45%

Netflix
Movie ratings

distributed by Netflix
company.

3000 3000 1.17%

The procedure of this experiment followed the general
experimental process described in Figure 6. We examined the
prediction accuracy and stability of the final predictions on the
reserved validation datasets (as described in Figure 6, Step 2).
For each recommendation algorithm used in our study, we
compare two approaches: the standard (original) single-model
approach and the scalable version of iterative smoothing
approach. Accuracy and stability numbers (measured by RMSE
and RMSS) of the two approaches on real-world movie rating
datasets are provided in Table 2.

Experimental results are consistent across different datasets. On
all three datasets, our proposed meta-algorithmic iterative
smoothing approach outperformed the original recommendation
techniques in both stability and accuracy in the vast majority of
cases. In particular, on average (i.e., across all datasets), iterative
smoothing provided a dramatic 55% improvement over the
original recommendation algorithms in stability (as measured by
RMSS) for CF_User and CF_Item algorithms. Even for the fairly
stable SVD and baseline techniques, on average, iterative
smoothing was able to further improve RMSS by 14%. In terms
of predictive accuracy, on average, iterative smoothing provided

7

1.4% improvements in RMSE across different algorithms.

Table 2. Iterative Smoothing vs. Standard Techniques.

Method Approach
Accuracy
(RMSE)

Stability
(RMSS)

Movielens
100K

SVD
Standard 0.9437 0.0866
Smoothing 0.9378 0.0779

CF_User
Standard 0.9684 0.4023
Smoothing 0.9586 0.2020

CF_Item
Standard 0.9560 0.3234
Smoothing 0.9320 0.1347

Baseline
Standard 0.9758 0.1148
Smoothing 0.9609 0.0569

Movielens
1M

SVD
Standard 0.8846 0.0804
Smoothing 0.8798 0.0719

CF_User
Standard 0.9393 0.3294
Smoothing 0.9182 0.1145

CF_Item
Standard 0.9135 0.2755
Smoothing 0.8929 0.1089

Baseline
Standard 0.9425 0.0910
Smoothing 0.9346 0.0923

Netflix

SVD
Standard 0.9372 0.1208
Smoothing 0.9363 0.1137

CF_User
Standard 0.9608 0.4610
Smoothing 0.9407 0.2462

CF_Item
Standard 0.9579 0.4394
Smoothing 0.9381 0.2291

Baseline
Standard 0.9622 0.1465
Smoothing 0.9556 0.1351

5. CONCLUSIONS AND FUTURE WORK
This paper introduces a general-purpose, practical meta-
algorithmic approach – based on iterative smoothing – for
improving stability of a variety of traditional recommendation
algorithms. The iterative smoothing approach uses multiple
iterations to repeatedly and explicitly adjust predictions of a
recommendation algorithm based on its other predictions in order
to make them more consistent with each other. We examined the
performance of iterative smoothing approach on several real
world datasets. Our experiments show that the proposed approach
demonstrates effectiveness in their ability to improve stability for
several widely used recommendation algorithms. Perhaps as
importantly, the proposed approach not only does not sacrifice the
predictive accuracy to obtain these stability improvements, but
actually is able to provide some additional accuracy
improvements at the same time.

This work provides several interesting directions for future
research. This study shows that iterative smoothing can improve
stability for different recommendation algorithms, providing
larger improvements for some algorithms and smaller
improvements for some others. Providing some additional
theoretical understanding of what algorithmic and data
characteristics can lead to larger vs. smaller improvements in
recommendation stability for the proposed approach is an
important direction for future work. Another interesting direction
would be to perform user behavior studies to investigate the value
of stable (i.e., as opposed to unstable) recommendations on users’
usage patterns and acceptance of recommender systems.

ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation grant IIS-0546443.

REFERENCES
[1] Adomavicius, G., and Tuzhilin, A. 2005. "Toward the Next

Generation of Recommendation Systems: A Survey of the State-of-
the-Art and Possible Extensions," IEEE Transactions on Knowledge
and Data Engineering, 17, (6), 734-749.

[2] Adomavicius, G., and Zhang, J. 2010. "On the Stability of
Recommendation Algorithms," ACM Conference on Recommender
systems, Barcelona, Spain: ACM New York, NY, USA 47-54.

[3] Balabanovic, M., and Shoham, Y. 1997. "Fab: Content-Based,
Collaborative Recommendation," Comm. of ACM, 40, (3), 66-72.

[4] Bell, R.M., and Koren, Y. 2007. "Scalable Collaborative Filtering
with Jointly Derived Neighborhood Interpolation Weights " Seventh
IEEE International Conference on Data Mining, Omaha, NE, USA.

[5] Bennett, J., and Lanning, S. 2007. "The Netflix Prize," KDD-Cup
and Workshop, San Jose, CA.

[6] Breese, J.S., Heckerman, D., and Kadie, C. 1998. "Empirical
Analysis of Predictive Algorithms for Collaborative Filtering," 14th
Conf. on Uncertainty in Artificial Intelligence, Madison, WI.

[7] D’astous, A., and Touil, N. 1999. "Consumer Evaluations of Movies
on the Basis of Critics' Judgments," Psychology & Marketing, 16,
677–694.

[8] Funk, S. 2006. "Netflix Update: Try This at Home."
[9] Gershoff, A., Mukherjee, A., and Mukhopadhyay, A. 2003.

"Consumer Acceptance of Online Agent Advice: Extremity and
Positivity Effects," J. of Consumer Psychology, 13, (1&2), 161-170.

[10] Grouplens 2011. "Movielens Data Sets."
[11] Herlocker, J.L., Konstan, J.A., Terveen, K., and Riedl, J.T. 2004.

"Evaluating Collaborative Filtering Recommender Systems," ACM
Transactions on Information Systems, 22, (1), Jan, 5-53.

[12] Komiak, S., and Benbasat, I. 2006. "The Effects of Personalization
and Familiarity on Trust and Adoption of Recommendation Agents,"
MIS Quarterly, 30, (4), 941-960.

[13] Koren, Y. 2009. "The Bellkor Solution to the Netflix Grand Prize."
from http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf.

[14] Koren, Y. 2008. "Factorization Meets the Neighborhood: A
Multifaceted Collaborative Filtering Model," ACM Intl. Conf. on
Knowledge Discovery and Data Mining (KDD'08), 426-434.

[15] Koren, Y., Bell, R., and Volinsky, C. 2009. "Matrix Factorization
Techniques for Recommender Systems," IEEE Computer, 42, 30-37.

[16] Macskassy, S.A., and Provost, F. 2007. "Classification in Networked
Data: A Toolkit and a Univariate Case Study," Journal of Machine
Learning R, 8, 935-983.

[17] O'Donovan, J., and Smyth, B. 2005. "Trust in Recommender
Systems," 10th Intl. Conf. on Intelligent User Interfaces.

[18] Paterek, A. 2007. "Improving Regularized Singular Value
Decomposition for Collaborative Filtering," KDDCup, 39-42.

[19] Pilaszy, I., and Tikk, D. 2009. "Recommending New Movies: Even a
Few Ratings Are More Valuable Than Metadata,"Third ACM Conf.
on Recommender systems (RecSys '09), 93-100.

[20] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. 1994.
"Grouplens: An Open Architecture for Collaborative Filtering of
Netnews.," Conf. on Comp. Supported Cooperative Work, 175–186.

[21] Salakhutdinov, R., and Mnih, A. 2008. "Bayesian Probabilistic
Matrix Factorization Using Markov Chain Monte Carlo," 25th Intl.
Conf. on Machine Learning, Helsinki, Finland: ACM, 880-887.

[22] Sarwar, B., Karypis, G., Konstan, J.A., and Riedl, J. 2001. "Item-
Based Collaborative Filtering Recommendation Algorithms," 10th
International WWW Conference, Hong Kong, 285 - 295.

[23] Shani, G., and Gunawardana, A. 2011. "Evaluating
Recommendation Systems," in Recommender Systems Handbook, F.
Ricci, L. Rokach, B. Shapira and P.B. Kantor (eds.). 257-294.

[24] Van Swol, L.M., and Sniezek, J.A. 2005. "Factors Affecting the
Acceptance of Expert Advice," British Journal of Social Psychology,
44, (3), 443-461.

8

Toward a New Protocol to Evaluate Recommender
Systems

Frank Meyer, Françoise Fessant, Fabrice Clérot
Orange Labs

av. Pierre Marzin
22307 Lannion cedex

France

{franck.meyer,francoise.fessant,fabrice.clerot}@
orange.com

Eric Gaussier
University of Grenoble - LIG

UFR IM2AG - LIG/AMA
Grenoble Cedex 9

France

eric.gaussier@imag.fr

ABSTRACT
In this paper, we propose an approach to analyze the performance
and the added value of automatic recommender systems in an
industrial context. We show that recommender systems are
multifaceted and can be organized around 4 structuring functions:
help users to decide, help users to compare, help users to discover,
help users to explore. A global off line protocol is then proposed
to evaluate recommender systems. This protocol is based on the
definition of appropriate evaluation measures for each
aforementioned function. The evaluation protocol is discussed
from the perspective of the usefulness and trust of the
recommendation. A new measure called Average Measure of
Impact is introduced. This measure evaluates the impact of the
personalized recommendation. We experiment with two classical
methods, K-Nearest Neighbors (KNN) and Matrix Factorization
(MF), using the well known dataset: Netflix. A segmentation of
both users and items is proposed to finely analyze where the
algorithms perform well or badly. We show that the performance
is strongly dependent on the segments and that there is no clear
correlation between the RMSE and the quality of the
recommendation.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering
– collaborative filtering, recommender system; H.3.4 [Systems

and Software]: Performance evaluation (efficiency and
effectiveness) – performance measures, usefulness of

recommendation.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords

Recommender systems, Industrial context, evaluation, Compare,
Explore, Decide, Discover, RMSE, utility of recommendation

1. INTRODUCTION
The aim of recommender systems is to help users to find items
that should interest them, from large catalogs. One frequently
adopted measure of the quality of a recommender system is
accuracy (for the prediction of ratings of users on items) [1,14].
Yet in many implementations of recommender system services,
the rating prediction function is either not provided, or not

highlighted when it is provided (in industrial contexts, the
generated recommendations themselves and their utility are more
important than the rating predictions). There is increasing
consensus in the community that accuracy alone is not enough to
assess the practical effectiveness and added-value of
recommendations [8,13]. Recommender systems in industrial
context are multifaceted and we propose to consider them around
the definition of 4 key recommendation functions which meet the
needs of users facing a huge catalog of items: how to decide, how
to compare, how to explore and how to discover. Once the main
functions are defined, the next question is how to evaluate a
recommender system on its various facets? We will review for
each function the key points for their evaluation and the available
measures if they exist. In particular, we will introduce a dedicated
measure for the function "help to discover". This function raises
the question of the evaluation from the point of view of the
usefulness of the recommendation. We will also present a global
evaluation protocol able to deal with the multifaceted aspect of
recommender systems, which requires at least a simple
segmentation of users and items. The remainder of the paper is
organized as follow: the next section introduces the four core
functions of an industrial recommender system. Then the
appropriate measures for each core function are presented as well
as the global evaluation protocol. The last part of the paper is
dedicated to experimental results and conclusion.

2. MAIN FEATURES OF

RECOMMENDER SYSTEMS
Automatic recommender systems are often used on e-commerce
websites. These systems work in conjunction with a search engine
for assistance in catalog browsing to help users find relevant
content. As many users of e-commerce websites are anonymous, a
very important feature is the contextual recommendation of item,
for anonymous users. The purpose of these systems being also to
increase usage (the audience of a site) or sales, the
recommendation itself is more important than the rating predicted.
Moreover, prioritizing a list of items on a display page is a more
important functionality than the prediction of a rating. These
observations, completed with interviews with marketers and
project managers of Orange about their requirements relatively to
recommender systems and an overview of recommender systems
both in the academic and in the industrial fields [10] has led us to
organize the recommender systems' functionalities into 4 main
features:
Help to Decide. Given an item, a user wants to know if he will
appreciate the item. This feature consists of the prediction of a
rating for a user and an item and is today mainstream in academic
literature [14].

Copyright is held by the author/owner(s).
Workshop on Recommendation Utility Evaluation: Beyond RMSE
(RUE 2012), held in conjunction with ACM RecSys 2012. September 9,
2012, Dublin, Ireland.

9

mailto:Eric.Gaussier@imag.fr

Help to Compare. Given several items, a user wants to know
what item to chose. This feature corresponds to a ranking
function. It can be used to provide recommendation lists [5] or to
provide personalized sorting results of requests on a catalog.
Help to Discover. Given a huge catalog of items, a user wants to
find a short list of new interesting items. This feature is usually
called item-based top-N recommendation in the academic
literature [6]. It corresponds to personalized recommendation.
Note that the prediction of the highest rated item is not necessarily
the most useful recommendation [5]. For instance the item with
the highest predicted rating will most likely be already known by
the user.
Help to Explore (or Navigate). Given one item, an (anonymous)
user wants to know what the related items are. This feature
corresponds to the classical item-to-item recommendation to
anonymous users popularized by the e-commerce website
Amazon [9] during catalog browsing. This function is widely used
in the industry because it can make recommendations for
anonymous users, based on the items she consults. It requires a
similarity function between items.

3. EVALUATION OF INDUSTRIAL

RECOMMENDER SYSTEMS
In this section we discuss the appropriate measures for each core
function and a global protocol for the evaluation of the
recommender system. The evaluation is viewed from the
standpoint of the utility of the recommendation for each user and
each item.

3.1 Utility of the recommendation
A good recommender system should avoid bad and trivial
recommendations. The fact that a user likes an item and the fact
that an item is already known by the user have to be distinguished
[7]. A good recommendation corresponds to an item that would
probably be well rated by the user but also an item that the user
does not know. For instance it is worthless recommending to all
users the blockbuster of the year: it should be a good rated movie
on the average, but it is not a useful recommendation as most of
people may have already seen it.

3.2 Item segmentation and user segmentation
Another important issue for an industrial application is to fully
exploit the available catalog, including its long tail, consisting of
items rarely purchased [2]. A system’s ability to make a
recommendation, in a relevant way, for all items in the catalog is
therefore important. However Tan and Netessine [16] have
observed on the Netflix dataset for instance, that the long tail
effect is not so obvious. There's more of a Pareto distribution
(20% of the most rated items represents 80% of the global ratings)
in the Netflix data than a long tail distribution as proposed by
Anderson [2] (where infrequent items globally represent more
ratings). They also noticed that the behavior of the users and the
type of items they purchase are linked. In particular, customers
who watched items in the long tail are in fact heavy users, light
users tend to focus only on popular items. These observations lead
us to the introduction of the notion of segments of items and
users. The definition of the segment thresholds must be relative
and catalog dependant. We will use the terms of light/heavy users
segment and of unpopular/popular item segment instead of using
long tail and short head concepts. In a first step we will use this
simple segmentation to analyze how an industrial recommender
system can help all users both heavy and light and how it can
recommend all items, both popular and unpopular.

3.3 Measures of performance
For our protocol we use a classic train/test split of the data. The
train set will be used to compute statistics and thresholds and to
build a predictive model. The test set will be used to compute the
performance measures. The predictive model should at least be
able to provide a rating prediction function for any couple of user
and item. We will see that to provide the "Help to Explore"
functionality the predictive model also must be able, in some way,
to produce an item-item similarity matrix allowing it to select, for
each item i, its most similar items (the related items). We first
detail the performance measures we use for our protocol,
according to the 4 core functions.
Help to Decide. The main use case is a user watching an item
description on a screen and wondering if he would enjoy it.
Giving a good personalized rating prediction will help the user to
choose. The "help to decide" function can be given by the rating
prediction function and must be measured by an accuracy measure
which penalizes extreme errors. The Root Mean Squared Error
(RMSE) is the natural candidate [14].
Help to Compare. The main use case here is a user getting an
intermediate short list of items after having given her preferences.
This user then wants to compare the items of this short list, in
order to choose the one she will enjoy most. The function needs a
ranking mechanism with a homogeneous quality of ranking over
the catalog. A simple measure is the percentage of compatible
rank indexes. After modeling, for each user u and for each couple
of item (i, j) in the test set rated by u with ru,i≠ru,j, the preference
given by u is compared with the predicted preference given by the
recommender method, using the predicted ratings and .
The percentage of compatible preferences is given by:

 (3-1)

with , where

 is 1 if has the
same sign as and 0 otherwise, and

 is the number of elements of

Help to Discover. The main use case here is a user getting
recommended items: these recommendations must be relevant and
useful. For relevancy our approach is the following: an item i
recommended for the user u
- is considered relevant if u has rated i in the test set with a rating
greater than or equal to u's mean of ratings,
- is considered irrelevant if u has rated i in the test set with a
rating lower than u's mean of ratings
- is not evaluated if not present for u (not rated by u) in the test
set.
The classical measure to evaluate recommendation list is the
precision measure (recall being difficult to apply in the context of
recommendation, as in huge catalogs one does not know all the
items relevant for each user). For each user u:

 (3-2)

Hu stands for the subset of evaluable recommendations in the test
set for u, that is to say the set of couples (u,i), i being the
recommended item to the user u. |Hu| is the size of Hu, in number
of couples (u, i).

10

However the precision is not able to measure the usefulness of the
recommendations: recommending well-known blockbusters,
already known by the user will lead to a very high precision
although this is of very low utility. To account for this, we
introduce here the concept of recommendation impact. The basic
idea is that, the more frequent a recommended item is, the less
impact the recommendation has. This is summarized in Table 1:

Table 1. The notion of recommendation Impact
 Impact of the recommendation

 Impact if the user likes
the item

Impact if the user
dislikes the item

Recommending
a popular item

Low: the item is likely to
be already known at least
by name by the user.

Low: even if the user
dislikes this item he can
understand that as a
popular item this
recommendation is likely
to appear... at least at the
beginning

Recommending
an unpopular
(infrequent)
item

High: the service
provided by the
recommender system is
efficient. The rarest the
item was, the less likely
the user would have
found it alone.

High: not only the item
was unknown and did
not inspire confidence,
but it also was not good.

We then define the Average Measure of Impact (AMI) for the
performance evaluation of the function "Help user to Discover".
The AMI of a recommendation list Z for a user u with an average
of rating is given by:

 (3-3)

Where Hu denotes the subset of the evaluable recommendations in
the test set, Z denotes the set of couples (user, item), representing
a set of recommendations, count(i) the number of logs in the train
set related to the item i, and |I| the size of the catalog of items.
The rarer an item i (rarity being estimated in the train set), the
greater the AMI if i is both recommended and relevant for a user
u. The greater the AMI, the better the positive impact of the
recommendations on u. The AMI will have to be calibrated as we
do not know yet what is a "good AMI". But we can already
compare different algorithms, or different recommendation
strategies (such as post filtering methods to add serendipity) with
this measure.
Help to Explore. The main case here is the item-to-item
recommendation for an anonymous user who is watching an item
description on a screen: the recommender system should propose
items similar to that being watched. We can try to evaluate the
performance of this functionality by associating, with each
context item i, the KNN of i, using an overall precision measure
for the recommended items. But, we will have an issue: it can be
more effective to associate each context item i with N items
optimized only for precision, rather than N items similar to the
context item i. It may be more efficient, to optimize precision, to
associate blockbusters for each source item. In fact we want to
assess the quality of the Help to Explore (navigate) function: we
want a good semantic, meaningful similarity for each associated
item. But only an experiment with real users can assess this
semantic similarity.

Our solution is to use the underlying item-item similarity matrix
for this evaluation. We can assess the overall quality of the pairs
of similar items by an indirect method: 1. given a predictive
model, find a way to compute similarities between any pair of
items, building an item-item similarity matrix. 2. use an item-item
K-Nearest Neighbors (KNN) model [12] using this matrix. The
assumption is that a good similarity matrix must lead to good
performances for other aspects of the recommendation when used
into an item-item KNN model. This is the approach we take, using
RMSE, precision, and ranking performance measures. For a KNN
type algorithm, this analysis is straightforward and simple: the
similarity matrix is already the kernel of the model. The
algorithms that are not directly based on a similarity measure need
a method for extracting the similarities between the items. For
matrix-factorization-based algorithm, this can correspond to a
method to compute similarities between the factors of the items.

3.4 Evaluation Protocol
The evaluation protocol is then designed thanks to the mapping
between the 4 core functions and the associated performance
measures as summarized in Table 2.

Table 2. Adapted measures for each core function
Functions Quality criterion Measure

Decide Accuracy of the rating prediction
Penalization of extreme errors to
minimize the risk of wrong
decision

RMSE

Compare Good predicted ranking for every
couple of items of the catalog

COMP
% of compatible rank
indexes

Discover Selection for a user the most
preferred items in a list of items
Identification of good/bad
recommendations
Precise, useful, trusted
recommendation

(Precision, not
recommended!)
Average Measure of
Impact (AMI)

Explore Precise recommendations
Identification of good/bad
recommendations

Similarity matrix
leading to good
performances, in
accuracy, relevancy,
usefulness and trust

The following notations are adopted: a log (u, i, r) corresponds to
a user u who rated an item i with the rating r. U is the set of all the
users, I is the set of all the items. Given a dataset D of logs and an
algorithm A, the evaluation protocol we propose is as follow:
Initialization

Randomly split the dataset into 2 datasets train and test

Use the train dataset to generate a model with the algorithm A.

Evaluation

1. For each log (u, i, r) of the test set:
1.1 compute the predicted rating of the model
1.2 compute the predicted rating error

2. Use the RMSE which gives an indicator of the performance of the Help
to Decide function.
3. For each user u of U:

3.1 sort all u's logs of the test set by ratings
3.2 sort all u's logs of the test set by rating prediction
3.3 compute COMP comparing the indexes of u's logs and the
indexes of the predicted ratings of he logs.

11

4. Use the averaged COMP as an indicator of the Help to Compare
function.

5. For each item i of I, compute count(i) which is the number of logs in the
train set referencing i.
6. For each user u of U:

6.1 compute the predicted rating of each item i of I.
6.2 select the top-N highest predicted rating items noted iu,1 to
iu,N which are the Top-N recommended items.

6.3 compute the rating average of u, noted .
6.4 for each recommended item iu,j of u:

6.4.1 check if a corresponding log (u, iu,j,r) exists, If
so the recommendation of iu,j is evaluable else skip
the step 6.4.2.

6.4.2. If r≥ then the recommendation is considered
relevant (and irrelevant in the other case).

6.5 compute the Precision and the AMI for the evaluable
recommendations

7. Use the Precision and the AMI, averaged by users, as the indicators for
the Help to Discover Function
8. Specify a way to compute efficiently, using the model of the algorithm
A, the similarity between every couple of items (i,j).
9. Compute the similarity matrix of all the couple (i, j) for I×I.
10. Use this similarity matrix as the kernel of an item-item K-Nearest
Neighbor model, then run the protocol for the steps 1 to 7 for RMSE,
COMP, AMI and Precision to obtain a 4-dimensional indicator of the
quality of the Help to Explore function.

4. EXPERIMENTS

4.1 Datasets and configuration
Experiments are conducted on the widely used dataset Netflix [3].
This dataset has the advantage of being public and allows
performance comparisons with many others techniques. Agnostic
thresholds are used for segments of users and items, depending of
datasets. We used simple thresholds based on the mean of the
number of ratings to split items into popular items and unpopular
(infrequent) items, and similarly to split users into heavy users
and light users. For instance, on Netflix, using a Train Set of 90%
of the total of logs, the mean of the number of rating for the users
is 190 (heavy users are users who gave more than 190 ratings
otherwise they are light users) and the mean of number of ratings
for the items is 5089 (popular items are items with more than
5089 ratings otherwise they are unpopular items). The number of
generated items for the Top-N recommendation is always N=10.
All our tests are carried out on this configuration: Personal
Computer with 12 GB Ram, processor IntelTM XeonTM W3530 64-
bit-4-core processor running at 2.8 GHz, hard disk of 350 GB. All
algorithms and the benchmark process are written in JavaTM.

4.2 Algorithms
We chose to use 2 models: fast matrix factorization using the MF
algorithm presented in [15] and an item-item KNN algorithm [12].
These algorithms are mainstream techniques for recommender
systems. For MF we analyze the effect of the number of factors,
for the KNN algorithm we analyze the effect of K, the number of
Nearest Neighbor kept in the model. In addition, to compare the
performances of these 2 algorithms, 2 baseline algorithms are also
used:
- a simple default predictor using the mean of items and the mean
of the users (the sum of the two means if available, divided by 2).
This algorithm is also used by the KNN algorithm when no KNN
items are available for a given item to score.

- a random predictor, generating uniform ratings between [1..5]
for each rating prediction.
One industrial requirement of our system was that it could take
into account new items and new users every 2 hours. Considering
other process and I/O constraints, for all the algorithms the
modeling time was then restricted to 1.5 hours. This has
implications for the MF algorithm as on Netflix it always reaches
an optimum between 16 and 32 factors: this is a constant for all
our tests, for all the performances. Beyond 32 factors, MF does
not have enough time to converge. Note that this convergence
may be slow, longer than 24 hours for more than 100 factors on
the Netflix dataset.
Implementations details

Our implementation of MF is similar to those of the BRISMF
implementation [15] with a learning rate of 0.030 and a
regularization factor of 0.008, with early stopping. Learning
process is stopped after 1.5 hours, or when the RMSE increases
three consecutive times (the increase or decrease of the RMSE is
controlled on a validation set consisting of 1.5% of the train set).
We used an implementation of item-item KNN model as
described in [11]. The similarity function is the Weighted Pearson
similarity [4]. All details about implementations can be found in
[10].

5. NUMERICAL RESULTS
The following abbreviations are used for the segmentation of the
performance: Huser: Heavy users, Luser: Light users, Pitem:
Popular items and Uitem: Unpopular items (the meaning of
unpopular is rather "rare", "infrequent"). For MF we analyzed the
number of factors used and for KNN the number of NN kept. The
full results of our experiments are available in [10].

5.1 “Help to Decide” performances
The global default predictor has a RMSE of 0.964 and the global
random predictor has a RMSE of 1.707.
KNN's RMSE performances: Different sizes of neighborhoods
(K) have been tested, compliant with our tasks in an industrial
context. Increasing K generally increases the performances.
However the associated similarity matrix weights must be kept in
RAM for efficiency purposes, which is difficult, if not possible,
with high values of K. For very large catalog applications, the size
of the KNN matrix must be reasonable (up to 200 neighbors in our
tests). The KNN method performs well except when K is small
and except for the light-user-unpopular item segment (Luser
Uitem). There is a significant gap between the RMSE for the
LuserUitem segment (RMSE=1.05) and the RMSE of the heavy-
user-popular-item segment (RMSE=0.8). Clearly, the KNN model
is not adapted to the former, whereas it performs well on the later.
Optimal number of neighbors is around K= 100.

MF's RMSE performances: Different numbers of factors have
been tested. MF has difficulties modeling the Luser-Uitem
segment: on this segment the RMSE never decreases under 0.96.
On the contrary the RMSE for heavy-user-popular-item is close to
0.81, and the two symmetrical segments light-user-popular item
and heavy-user-unpopular-item both have a good (low) RMSE
(0.84 and 0.85). The RMSE decreases when number of the factor
increases up to around 20 factors. After that number, the RMSE
increases. It is a consequence of our time-constrained early
stopping condition. This corresponds to about 140 passes on the
train set. The optimal number of factors seems to be between 16
and 32.

12

5.2 “Help to Compare” performance
The default global predictor has a percentage of compatible rank
indexes (COMP) of 69% and the random global predictor has a
performance of 49.99%.
MF's and KNN’s ranking performances: The results are given
for the time limited version of run for MF. MF outperforms the
KNN model for the light user segments (with a COMP of 73.5%
for MF and 66% for KNN). For the rest, the performances are
similar to those of KNN. The maximum of ranking compatibility
is around 77% for heavy users' segments.

5.3 “Help to Discover” performance

5.3.1 Analysis using the Precision
The global default predictor has a precision of 92.86 % which is
questionable: one can see that a simple Top-10 based on high
rating average is sufficient to obtain good precision performance.
The global random predictor has a precision of 53.04%.
KNNs' precision performances: The precision increases as the
number of K increases. But the results are not significantly better
than that of the default predictor. The precision is better than the
default predictor for only the Huser-Pitem segment and only for at
least K=200. Under K=100, it seems better to use a default
predictor than a KNN predictor for ranking tasks. Nevertheless the
Huser-Pitem segment is well modeled: the precision for 10
generated items for the KNN model is greater than 97% for the
model with 200 neighborhoods.

MF's precision performances: MF has a better behavior than the
KNN model, especially for the light-user-unpopular-item segment
(precision of 96% for F=32 factors, precision of 83% for the KNN
with K>=100).

5.3.2 Analysis using the AMI
The Average Measure of Impact gives slight negative
performances for the random predictor and a small performance to
the default predictor: the default predictor "wins" its impact values
on Unpopular items. Note that the supports for the different
evaluated segments are very different and the weights of the two
popular item segments are significantly higher The KNN model
behaves significantly better that the default predictor for the AMI.
For MF, the behavior is much worse than that a KNN model. In
general, the impact of MF is similar to, or lower than that of the
default predictor. An analysis according to the segmentation gives
a more detailed view of where are the impacts. Numerical results
are summarized in Table 3.

Table 3. AMI according to the segmentation

Best model Huser
Pitem

Luser
Pitem

Huser
Uitem

Luser
Uitem

Global

MF F=32 0.38 0.26 8.93 10.61 0.5

KNN K=100 0.71 0.43 9.59 8.84 2.0

Default Pred 0.29 0.25 21.22 12.31 0.5

Random
Pred

0.00 0.03 -5.13 -0.53 -0.6

Best
algorithm

KNN KNN Default
Predictor

Default
Predictor

KNN

5.4 Summary for Decide, Compare, Discover
Four models have been analyzed: a KNN model, a MF model, a
random model and a default predictor model, on 3 tasks adapted
to a rating-predictor-based recommender system: Decide,

Compare, Discover and on 4 user-item segments: heavy-user-
popular-item, heavy-user-unpopular-item, light-user-popular-item
and light-user-unpopular item. A summary of the results is given
in Table 4. An analysis of the results by segments shows that
globally, KNN is well adapted for the heavy-user segments and
that MF, and the default predictor are well adapted to light-user
segments. Globally, for the tasks "Help to Decide" and "Help to
Compare", MF is the best-suited algorithm in our tests. For the
task "Help to Discover" KNN is more appropriate. Note that a
switch-based hybrid recommender [14], based on item and user
segmentation could exploit this information to improve the global
performances of the system. Finally 3 main facts will have to be
considered:

1. Performances strongly vary according to the different segments
of users and items.

2. MF, KNN and default methods are complementary as they
perform differently across the different segments.

3. RMSE is not strictly linked to other performance measure, as
mentioned for instance in [5].

Table 4. Global results, summary

 Heavy

Users

Popular

items

Heavy

Users

Unpopular

items

Light

Users

Popular

Items

Light

Users

Unpopular

Items

Decide
RMSE

KNN

MF

MF

MF

Compare
%Compatible
preferences

KNN

KNN

MF

MF

Discover
Precision

KNN

MF

Default
Predictor

MF

Discover
Average
Measure of
Impact

KNN

Default
Predictor

KNN

Default
Predictor

When designing a recommender engine, we have to think about
the impact of the recommender: recommending popular items to
heavy users might be not so useful. On the other hand, it can be
illusory to make personalized recommendations of unpopular (and
unknown) items to light (and unknown) users. A possible simple
strategy could be:

- rely on robust default predictors, for instance based on robust
means of items to try to push unknown golden nuggets to
unknown users,

- use personalized algorithms to recommend popular items to
light users,

- finally, use personalized algorithms to recommend unpopular
items of the long tail for heavy "connoisseurs".

5.5 “Help to Explore” performance
To analyze the performance of the "Help to Explore" functionality
we have to compare the quality of the similarities extracted from
the models. We use the protocol defined before: a good similarity
matrix for the task "Help to Explore" is a similarity matrix leading
to global good performances, when used in a KNN model. We
choose a similarity matrix with 100 neighbors for each item: this
is largely enough for item-to-item tasks where generally a page
displays 10 to 20 similar items. Results are presented in Table 5
for the KNN models with K=100, comparing KNN computed on

13

MF's items factors, native KNN and a Random KNN model used
as baseline. As item-item similarity matrix is the kernel of a item-
item KNN model, compute similarities in this case is
straightforward. To compute similarities between items for MF,
we use the MF-based representation of items (the vectors of the
factor of the items), with a Pearson similarity. The KNN model
computed on the MF's factors of the items can be viewed as a MF-
emulated KNN model. Note that as the default predictor model
based on items’ means and users’ means cannot itself produce a
similarity matrix, it is disqualified for this task. For the RMSE, the
MF-Emulated KNN model looses 0.025 point going from 0.844 to
0.870. Compared with other models, it still performs correctly.

Table 5. Quality of an item-item similarity matrix according

to 4 measures: results on Netflix

 Native KNN

K=100

KNN computed on MF's
items factors

K=100, number of
factors=16

RMSE 0.8440 0.8691
Ranking: %
compatible

77.03% 75.67%

Precision 91.90% 86.39%

AMI 2.043 2.025

(Global time
of the modeling task)

(5290 seconds) (3758 seconds)

For the global ranking, the difference between the MF-Emulated
model and the native KNN model is still low, whereas a random
KNN model performs very badly. For the precision, for a Top-10
ranking, the MF-Emulated KNN model performs significantly
worse than a native KNN model. For the Average Measure of
Impact, the MF-emulated KNN model and the native KNN model
perform almost identically. These results show that MF could be
used to implement a similarity function between items to support
the "Help to Explore" function, and that MF could be used as a
component for faster KNN search.

6. CONCLUSION
We have proposed a new approach to analyze the performance
and the added value of automatic Recommender Systems in an
industrial context. First, we have defined 4 core functions for
these systems, which are: Help users to Decide, Help users to
Compare, Help users to Discover, Help users to Explore. Then we
proposed a general off-line protocol crossing our 4 core functions
with a simple 4 users×items segments to evaluate a recommender
system according to the industrial and marketing requirements.
We compared two major state of the art methods, item-item KNN
and MF, with 2 baselines methods used as reference. We showed
that the two major methods are complementary as they perform
differently across the different segments. We proposed a new
measure, the Average Measure of Impact, to deal with the
usefulness and the trust of the recommendations. Using the
precision measure, and the AMI, we showed that there is no clear
evidence of correlation between the RMSE and the quality of the
recommendation. We have demonstrated the utility of our
protocol as it may change

- the classical vision of the recommendation evaluation, often
focused on the RMSE/MAE measures as they are assumed
correlated with the system overall performances,

- and the way to improve the recommender systems to achieve
their tasks.

7. REFERENCES
[1] Adomavicius, G. and Tuzhilin, A. 2005. Toward the Next

Generation of Recommender Systems: A Survey of the State-
of-the-Art and Possible Extensions, IEEE Trans. Knowl.

Data Eng, 17 (6), 2005, pp. 734-749.
[2] Anderson, C. 2006. The Long Tail. Why the future of

business is selling less of more. Hyperion Verlag.
[3] Bennet, J and Lanning, S. 2007. The Netflix Prize, KDD Cup

and Workshop. 2007. www.netflixprize.com.
[4] Candillier, L., Meyer, F., Fessant, F. 2008. Designing

Specific Weighted Similarity Measures to Improve
Collaborative Filtering Systems. ICDM 2008: 242-255.

[5] Cremonesi, P., Koren, Y., and Turrin, R. 2010. Performance
of recommender algorithms on Top-N recommender tasks.
RecSys 2010.

[6] Deshpande, M., and Karypis, G. 2004. Item-based top-N
recommendation algorithms. In ACM Transactions on
Information Systems, 22(1), 143–177.

[7] Herlocker, J. L., Konstan, J. A., Terveen, L.G. and Riedl, J.
2004. Evaluating collaborative filtering recommender
systems. In ACM Transactions on Information Systems 22
(1), 5–53.

[8] Knijnenburg, B. P., Willemsen, M.C., Kobsa, A. 2011: A
pragmatic procedure to support the user-centric evaluation of
recommender systems.RECSYS 2011, 321-324

[9] Linden, G. Smith,.B, and York, J. 2003. Amazon.com
Recommendations: Item-to-Item Collaborative Filtering.
IEEE Internet Computing, 7 (1), 2003, pp. 76-80.

[10] Meyer, F. 2012. Recommender systems in industrial
contexts. ArXiv e-prints. http://arxiv.org/abs/1203.4487.

[11] Meyer; F., Fessant, F. 2011. Reperio: a generic and flexible
recommender system. IEEE/WIC/ACM Conference on Web
Intelligence, 2011.

[12] Sarwar, B., Karypis, G., Konstan, J., and Reidl, J. 2001.
Item-based collaborative filtering recommendation
algorithms. In WWW’01: Proceedings of 10th International
Conference on World Wide Web, pages 285–295.

[13] Schroder, G., Thiele, M. and Lehner, W. 2011. Setting Goals
and Choosing Metrics for Recommender System Evaluation.
UCERSTI 2 -RECSYS 2011

[14] Su, X., and Khoshgoftaar, T.M. 2009. A survey of
collaborative filtering techniques. In Advances in Artificial
Intelligence, 2009.

[15] Takács, G., Pilászy, I., Németh, B., Tikk, D. 2009. Scalable
Collaborative Filtering Approaches for Large Recommender
Systems. Journal of Machine Learning Research 10: 623-656
2009.

[16] Tan, T.F. and Netessine, S. 2011, Is Tom Cruise
Threatened? An Empirical Study of the Impact of Product
Variety on Demand Concentration. ICIS 2011.

14

Using Crowdsourcing to Compare Document
Recommendation Strategies for Conversations

Maryam Habibi
Idiap Research Institute and EPFL

Rue Marconi 19, CP 592
1920 Martigny, Switzerland

maryam.habibi@idiap.ch

Andrei Popescu-Belis
Idiap Research Institute
Rue Marconi 19, CP 592

1920 Martigny, Switzerland
andrei.popescu-belis@idiap.ch

ABSTRACT
This paper explores a crowdsourcing approach to the evalua-
tion of a document recommender system intended for use in
meetings. The system uses words from the conversation to
perform just-in-time document retrieval. We compare sev-
eral versions of the system, including the use of keywords,
retrieval using semantic similarity, and the possibility for
user initiative. The system’s results are submitted for com-
parative evaluations to workers recruited via a crowdsour-
cing platform, Amazon’s Mechanical Turk. We introduce
a new method, Pearson Correlation Coefficient-Information
Entropy (PCC-H), to abstract over the quality of the work-
ers’ judgments and produce system-level scores. We measure
the workers’ reliability by the inter-rater agreement of each
of them against the others, and use entropy to weight the
difficulty of each comparison task. The proposed evaluation
method is shown to be reliable, and the results show that
adding user initiative improves the relevance of recommen-
dations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation, Retrieval models;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation

General Terms
Evaluation, Uncertainty, Reliability, Metric

Keywords
Document recommender system, user initiative, crowdsourc-
ing, Amazon Mechanical Turk, comparative evaluation

1. INTRODUCTION
A document recommender system for conversations pro-

vides suggestions for potentially relevant documents within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s). Workshop on Recommendation
Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with
ACM RecSys 2012, September 9, 2012, Dublin, Ireland.
.

a conversation, such as a business meeting. Used as a vir-
tual secretary, the system constantly retrieves documents
that are related to the words of the conversation, using au-
tomatic speech recognition, but users could also be allowed
to make explicit queries. Such a system builds upon pre-
vious approaches known as implicit queries, just-in-time re-
trieval, or zero query terms, which were recently confirmed
as a promising research avenue [1].

Evaluating the relevance of recommendations produced by
such a system is a challenging task. Evaluation in use re-
quires the full deployment of the system and the setup of
numerous evaluation sessions with realistic meetings. That
is why alternative solutions based on simulations are impor-
tant to find. In this paper, we propose to run the document
recommender system over a corpus of conversations and to
use crowdsourcing to compare the relevance of results in var-
ious configurations of the system.

A crowdsourcing platform, here Amazon’s Mechanical Turk,
is helpful for several reasons. First, we can evaluate a large
amount of data in a fast and inexpensive manner. Second,
workers are sampled from the general public, which might
represent a more realistic user model than the system de-
velopers, and have no contact with each other. However, in
order to use workers’ judgments for relevance evaluation, we
have to circumvent the difficulties of measuring the quality
of their evaluations, and factor out the biases of individual
contributions.

We will define an evaluation protocol using crowdsourcing,
which estimates the quality of the workers’ judgments by
predicting task difficulty and workers’ reliability, even if no
ground truth to validate the judgments is available. This ap-
proach, named Pearson Correlation Coefficient-Information
Entropy (PCC-H), is inspired by previous studies of inter-
rater agreement as well as by information theory.

This paper is organized as follows. Section 2 describes
the document recommender system and the different ver-
sions which will be compared. Section 3 reviews previous
research on measuring the quality of workers’ judgments for
relevance evaluation and labeling tasks using crowdsourcing.
Section 4 presents our design of the evaluation micro-tasks
– “Human Intelligence Tasks” for the Amazon’s Mechanical
Turk. In Section 5, the proposed PCC-H method for measur-
ing the quality of judgments is explained. Section 6 presents
the results of our evaluation experiments, which on the one
hand validate the proposed method, and on the other hand
indicate the comparative relevance of the different versions
of the recommender system.

15

pablo
Retângulo

2. OUTLINE OF THE DOCUMENT
RECOMMENDER SYSTEM

The document recommender system under study is the
Automatic Content Linking Device (ACLD [15, 16]), which
uses real-time automatic speech recognition [8] to extract
words from a conversation in a group meeting. The ACLD
filters and aggregates the words to prepare queries at regu-
lar time intervals. The queries can be addressed to a lo-
cal database of meeting-related documents, including also
transcripts of past meetings if available, but also to a web
search engine. The results are then displayed in an unobtru-
sive manner to the meeting participants, which can consult
them if they find them relevant and purposeful.

Since it is difficult to assess the utility of recommended
documents from an absolute perspective, we aim instead at
comparing variants of the ACLD, in order to assess the im-
provement (or lack thereof) due to various designs. Here, we
will compare four different approaches to the recommenda-
tion problem – which is in all cases a cold-start problem, as
we don’t assume knowledge about participants. Rather, in a
pure content-based manner, the ACLD simply aims to find
the closest documents to a given stretch of conversation.

The four compared versions are the following ones. Two
“standard”versions as in [15] differ by the filtering procedure
for the conversation words. One of them (noted AW) uses
all the words (except stop words) spoken by users during a
specific period (typically, 15 s) to retrieve related documents.
The other one (noted KW) filters the words, keeping only
keywords from a pre-defined list related to the topic of the
meeting.

Two other methods depart from the initial system. One
of them implements semantic search (noted SS [16]), which
uses a graph-based semantic relatedness measure to per-
form retrieval. The most recent version allows user initiative
(noted UI), that is, it can answer explicit queries addressed
by users to the system, with results replacing spontaneous
recommendations for one time period. These are processed
by the same ASR component, with participants using a spe-
cific name for the system (“John”) to solve the addressing
problem.

In the evaluation experiments presented here, we only use
human transcriptions of meetings, to focus on the evalu-
ation of the retrieval strategy itself. We use one meeting
(ES2008b) from the AMI Meeting Corpus [6] in which the
design of a new remote control for a TV set is discussed.
The explicit users’ requests for the UI version are simulated
by modifying the transcript at 24 different locations where
we believe that users are likely to ask explicit queries – a
more principled approach for this simulation is currently un-
der study. We restrict the search to the Wikipedia website,
mainly because the semantic search system is adapted to
this data, using a local copy of it (WEX) that is semanti-
cally indexed. Wikipedia is one of the most popular general
reference works on the Internet, and recommendations over
it are clearly of high potential interest. But alternatively,
all our systems (except the semantic one) could also be run
with non-restricted web searches via Google, or limited to
other web domains or websites.

The 24 fragments of the meeting containing the explicit
queries are submitted for comparison. That is, we want to
know which of the results displayed by the various versions
at the moment following the explicit query are considered

most relevant by external judges. As the method allows
only binary comparisons, as we will now describe, we will
compare UI with the AW and KW versions, and then SS
with KW.

3. RELATED WORK
Relevance evaluation is a difficult task because it is subjec-

tive and expensive to be performed. Two well-known meth-
ods for relevance evaluation are the use of a click-data cor-
pus, or the use of human experts [18]. However, in our case,
producing click data or hiring professional workers for rele-
vance evaluation would both be overly expensive. Moreover,
it is not clear that evaluation results provided by a narrow
range of experts would be generalizable to a broader range
of end users. In contrast, crowdsourcing, or peer collabora-
tive annotation, is relatively easy to prototype and to test
experimentally, and provides a cheap and fast approach to
explicit evaluation. However, it is necessary to consider some
problems which are associated to this approach, mainly the
reliability of the workers’ judgments (including spammers)
and the intrinsic knowledge of the workers [3].

Recently, many studies have considered the effect of the
task design on relevance evaluation, and proposed design
solutions to decrease time and cost of evaluation and to in-
crease the accuracy of results. In [9], several human factors
are considered: query design, terminology and pay, with
their impact on cost, time and accuracy of annotations.
To collect proper results, the effect of user interface guide-
lines, inter-rater agreement metrics and justification analysis
were examined [2], showing e.g. that asking workers to write
a short explanation in exchange of a bonus is an efficient
method for detecting spammers. In addition, in [11], dif-
ferent batches of tasks were designed to measure the effect
of pay, required effort and worker qualifications on the ac-
curacy of resulting labels. Another paper [13] has studied
how the distribution of correct answers in the training data
affects worker responses, and suggested to use a uniform
distribution to avoid biases from unethical workers.

The Technique for Evaluating Relevance by Crowdsourc-
ing (TERC, see [4]) emphasizes the importance of qualifica-
tion control, e.g. by creating qualification tests that must be
passed before performing the actual task. However, another
study [2] showed that workers may still perform tasks ran-
domly even after passing qualification tests. Therefore, it
is important to perform partial validation of each worker’s
tasks, and weight the judgments of several workers to pro-
duce aggregate scores [4].

Several other studies have focused on Amazon’s Mechan-
ical Turk crowdsourcing platform and have proposed tech-
niques to measure the quality of workers’ judgments when
there is no ground truth to verify them directly [17, 19, 7,
10, 12]. For instance, in [5], the quality of judgments for
a labeling task is measured using the inter-rater agreement
and majority voting. Expectation maximization (EM) has
sometimes been used to estimate true labels in the absence
of ground truth, e.g. in [17] for an image labeling task. In
order to improve EM-based estimation of the reliability of
workers, the confidence of workers in each of their judg-
ments has been used in [7] as an additional feature – the
task being dominance level estimation for participants in a
conversation. As the performance of the EM algorithm is
not guaranteed, a new method [10] was introduced to esti-
mate reliability based on low-rank matrix approximation.

16

All of the above-mentioned studies assume that tasks share
the same level of difficulty. To model both task difficulty
and user reliability, an EM-based method named GLAD was
proposed by [19] for an image labeling task. However, this
method is sensitive to the initialization value, hence a good
estimation of labels requires a small amount of data with
ground truth annotation [12].

4. SETUP OF THE EXPERIMENT
Amazon’s Mechanical Turk (AMT) is a crowdsourcing

platform which gives access to a vast pool of online work-
ers paid by requesters to complete human intelligence tasks
(HITs). Once designed and published, registered workers
that fulfill the requesters’ selection criteria are invited by
AMT service to work on HITs in exchange for a small amount
of money per HIT [3].

As it is difficult to find an absolute relevance score for
each version of the ACLD recommender system, we only
aim for comparative relevance evaluation between versions.
For each pair of versions, a batch of HITs was designed with
their results. Each HIT (see example in Fig. 1) contains a
fragment of conversation transcript with the two lists of doc-
ument recommendations to be compared. Only the first six
recommendations are kept for each version. The lists from
the two compared versions are placed in random positions
(first or second) across HITs, to avoid biases from a constant
position.

We experimented with two different HIT designs. The
first one offers evaluators a binary choice: either the first list
is considered more relevant than the second, or vice-versa.
In other words, workers are obliged to express a preference
for one of the two recommendation sets. This encourages de-
cisions, but of course may be inappropriate when the two an-
swers are of comparable quality, though this may be evened
out when averaging over workers. The second design gives
workers four choices (as in Figure 1): in addition to the pre-
vious two options, they can indicate either that both lists
seem equally relevant, or equally irrelevant. In both designs,
workers must select exactly one option.

To assign a value to each worker’s judgment, a binary cod-
ing scheme will be used in the computations below, assigning
a value of 1 to the selected option and 0 to all others. The
relevance value RV of each recommendation list for a meet-
ing fragment is computed by giving a weight to each worker
judgment and averaging them. The Percentage of Relevance
Value, noted PRV , shows the relevance value of each com-
pared system, and is computed by assigning a weight to each
part of the meeting and averaging the relevance values RV
for all meeting fragments.

There are 24 meeting fragments, hence 24 HITs in each
batch for comparing pairs of systems, for UI vs. AW and
UI vs. KW. As user queries are not needed for comparing
SS vs. KW, we designed 36 HITs, with 30-second fragments
for each. There are 10 workers per HIT, so there are 240
total assignments for UI-vs-KW and for UI-vs-AW (with a
2-choice and 4-choice design for each), and 360 for SS-KW.
As workers are paid 0.02 USD per HIT, the cost for the five
separate experiments was 33 USD, with an apparent average
hourly rate of 1.60 USD. The average time per assignment
is almost 50 seconds. All five tasks took only 17 hours to be
performed by workers via AMT. For qualification control we
allow workers with greater than 95% approval rate or with
more than 1000 approved HITs.

5. THE PCC-H METHOD
Majority voting is frequently used to aggregate multiple

sources of comparative relevance evaluation. However, this
assumes that all HITs share the same difficulty and all the
workers are equally reliable. We will take here into account
the task difficulty Wq and the workers’ reliability rw, as it
was shown that they have a significant impact on the qual-
ity of the aggregated judgments. We thus introduce a new
computation method called PCC-H, for Pearson Correlation
Coefficient-Information Entropy.

5.1 Estimating Worker Reliability
The PCC-H method computes the Wq and rw values in

two steps. In a first step, PCC-H estimates the reliability
of each worker rw based on the Pearson correlation of each
worker’s judgment with the average of all the other workers
judgments (see Eq. 1).

rw =

∑A
a=1

∑Q
q=1(Xqwa − ¯Xwa)(Yqa − Ȳa)

(Q− 1)SXwaSYa

(1)

In Equation 1, Q is number of meeting fragments, Xwqa

is the value that worker w assigned to option a of fragment
q, Xwqa has value 1 if that option a is selected by worker
w, otherwise it is 0. X̄wa and SXwa are the expected value
and standard deviation of variable Xwqa respectively. Yqa

is the average value which all other workers assign to the
option a of fragment q. Ȳa and SYa are the expected value
and standard deviation of variable Yqa.

The value of rw computed above is used as a weight for
computing RVqa, the relevance value of option a of each
fragment q, according to Eq. 2 below:

RVqa =

∑W
w=1 rwXwqa∑W

w=1 rw
(2)

For HIT designs with two options, RVqa shows the rel-
evance value of each answer list a. However, for the four
option HIT designs, RVql for each answer list l is formu-
lated as Eq. 3 below:

RVql = RVql +
RVqb

2
− RVqn

2
(3)

In this equation, half of the relevance value of the case
in which both lists are relevant RVqb is added as a reward,
and half of the relevance value of the case in which both
lists are irrelevant RVqn is subtracted as a penalty from the
relevance value of each answer list RVql.

5.2 Estimating Task Difficulty
In a second step, PCC-H considers the task difficulty for

each fragment of the meeting. The goal is to reduce the ef-
fect of some fragments of the meeting, in which there is an
uncertainty in the workers judgments, e.g. because there are
no relevant search results in Wikipedia for the current frag-
ment. To lessen the effect of uncertainty in our judgments,
the entropy of answers for each fragment of the meeting is
computed and a function of it is used as a weight for each
fragment. This weight is used for computing the percentage
of relevance value PRV . Entropy, weight and PRV are de-
fined in Eqs. 4–6, where A is the number of options, and Hq

and Wq are the entropy and weight of fragment q.

17

Figure 1: Snapshot of a 4-choice HIT: workers read the conversation transcript, examine the two answer
lists (with recommended documents for the respective conversation fragment) and select one of the four
comparative choices (#1 better than #2, #2 better than #1, both equally good, both equally poor). A short
comment can be added.

Hq = −
A∑

a=1

RVqalog(RVqa) (4)

Wq = 1 −Hq (5)

PRV a =

∑Q
q=1 WqRVqa∑Q

q=1 Wq

(6)

6. RESULTS OF THE EXPERIMENTS
Two sets of experiments were performed. First, we at-

tempt to validate the PCC-H method. Then, we apply the
PCC-H method to compute PRV for each answer list to con-
clude which version of the system outperforms the others.

In order to make an initial validation of the workers judg-
ments, we compare the judgments of individual workers with
those of an expert. For each worker, the number of frag-
ments for which the answer is the same as the expert’s an-
swer is counted, and the total is divided by the number
of fragments to compute accuracy. Then we compare this
value with rw, which is estimated as the reliability mea-
surement for each worker’s judgment. The percentage of
agreement between each worker vs. the expert ew and the
rw for each worker for one of the batches is shown in Table 1,
with an overall agreement between these two values for each
worker. In other words, workers who have more similarity
with our expert also have more inter-rater agreement with
other workers. Since in the general case there is no ground
truth (expert) to verify workers judgments, we rely on the
inter-rater agreement for the other experiments.

Firstly, equal weights for all the user evaluations and frag-
ments are assigned to compute PRV s for two answer lists of
our experiments, which are shown in Table 2.

Table 1: Percentage of agreement between a single
worker and the expert, and a single worker and the
other workers, for the KW system and 4-choice HITs

Worker # ew rw

1 0.66 0.81
2 0.54 0.65
3 0.54 0.64
4 0.50 0.71
5 0.50 0.60
6 0.50 0.35
7 0.41 0.24
8 0.39 0.33
9 0.36 0.34
10 0.31 0.12

In this approach, it is assumed that all the workers are
reliable and all the fragments share the same difficulty. To
handle workers’ reliability, we consider workers with lower
rw as outliers. One approach is to remove all the outliers.
For instance, the four workers with lowest rw are considered
outliers and are deleted, and the same weight is given to the
remaining six workers. The result of comparative evaluation
based on removing outliers is shown in Table 3.

In the computation above, an arbitrary border was defined
between outliers and other workers as a decision boundary
for removing outliers. However, instead of deleting work-
ers with lower rw, which might still have potentially useful
insights on relevance, it is rational to give a weight to all
workers’ judgments based on a confidence value. The PRV
for each answer list of four experiments based on assigning
weight rw to each worker’s evaluation, and equal weights to
all meeting fragments are shown in Table 4.

18

Table 2: PRV s for AW-vs-UI and KW-vs-UI pairs
All workers and
fragments with
equal weights

2-choice
HITs

4-choice
HITs

AW-vs-UI
PRV AW 30% 26%
PRV UI 70% 74%

KW-vs-UI
PRV KW 45% 35%
PRV UI 55% 65%

Table 3: PRV s for AW-vs-UI and KW-vs-UI pairs
Six workers and
fragments with
equal weights

2-choice
HITs

4-choice
HITs

AW-vs-UI
PRV AW 24% 13%
PRV UI 76% 86%

KW-vs-UI
PRV KW 46% 33%
PRV UI 54% 67%

In order to show that our method is stable on different
HIT designs, we used two different HIT designs for each
pair as mentioned in Section 4. We show that PRV con-
verges to the same value for each pair with different HIT
designs. As observed in Table 4, PRV s of AW-vs-UI pair
are not quite similar for two different HIT designs, although
the answer lists are the same. In fact, we observed that, in
several cases, there was no strong agreement among workers
to decide which answer list is more relevant to that meeting
fragment, and we consider that these are “difficult” frag-
ments. Since the source of uncertainty is undefined, we can
reduce the effect of that fragment on the comparison by giv-
ing a weight to each fragment in proportion of the difficulty
of assigning RVql. The PRV values thus obtained for all ex-
periments are represented in Table 5. As shown there, the
PRV s of AW-vs-UI pair are now very similar for 2-HIT and
4-HIT tasks. Moreover, the difference between the system
versions is emphasized, which indicates that the sensitivity
of the comparison method has increased.

Moreover, we compare the PCC-H method with the ma-
jority voting method and the GLAD method (Generative
model of Labels, Abilities, and Difficulties [19]) for estimat-
ing comparative relevance value through considering task
difficulty and worker reliability parameters. We run the
GLAD algorithm with the same initial values for all four
experiments. The PRV s which are computed by majority
voting, GLAD and PCC-H are shown in Table 6.

As shown in Table 6, PRV s which are computed by the
PCC-H method for both HIT designs are very close to those
of GLAD for the 4-choice HIT design. Moreover, the PRV
values obtained by the PCC-H method for the two different
HIT designs are very similar, which is less the case for ma-
jority voting and GLAD. This means that PCC-H method
is able to calculate the PRV s independent of the exact HIT
design. Moreover, the PRV values calculated using PCC-H
are more robust since the proposed method is not dependent
on initialization values, as GLAD is. Therefore, using PCC-
H for measuring the reliability of workers judgments is also
an appropriate method for qualification control of workers
from crowdsourcing platforms.

The proposed method is also applied for comparative eval-
uation of SS-vs-KW search results (semantic search vs. key-

Table 4: PRV s for AW-vs-UI and KW-vs-UI pairs
All workers with
different weights
and parts with
equal weights

2 choices
HIT design

4 choices
HIT design

AW-vs-UI
PRV AW 24% 18%
PRV UI 76% 82%

KW-vs-UI
PRV KW 33% 34%
PRV UI 67% 66%

Table 5: PRV s for AW-vs-UI and KW-vs-UI pairs
All workers with
different weights
and fragments
with different
weights
(PCC-H method)

2-choice
HITs

4-choice
HITs

AW-vs-UI
PRV AW 19% 15%
PRV UI 81% 85%

KW-vs-UI
PRV KW 23% 26%
PRV UI 77% 74%

word-based search). The PRV s are calculated by three dif-
ferent methods as shown in Table 7. The first method is the
majority voting method which considers all the workers and
fragments with the same weight. The second method assigns
weights computed by PCC-H method to measure PRV s, the
third one is the GLAD method. Therefore the SS version
outperforms the KW version according to all three scores.

7. CONCLUSION AND PERSPECTIVES
In all the evaluation steps, the UI system appeared to pro-

duce more relevant recommendations than AW or KW. Us-
ing KW instead of AW improved PRV by 10 percent. This
means that using UI, i.e. when users ask explicit queries in
conversation, improves over AW or KW versions, i.e. with
spontaneous recommendations. Nevertheless, KW can be
used as an assistant which suggests documents based on the
context of the meeting along with the UI version, that is,
spontaneous recommendations can be made when no user
initiates a search. Moreover, the SS version works better
than the KW version, which shows the advantage of seman-
tic search.

As for the evaluation method, PCC-H outperformed the
GLAD method proposed earlier for estimating task difficulty
and reliability of workers in the absence of ground truth.
Based on the evaluation results, the PCC-H method is ac-
ceptable for qualification control of AMT workers or judg-
ments, because it provides a more stable PRV score across
different HIT designs. Moreover, PCC-H does not require
any initialization.

The comparative nature of PCC-H imposes some restric-
tions on the evaluations that can be carried out. For in-
stance, if N versions must be compared, this calls in theory
for N ∗ (N − 1)/2 comparisons, which is clearly impracti-
cal when N grows. This can be solved if a priori knowl-
edge about the quality of the systems is available, to avoid
redundant comparisons. Moreover, an approach to reduce
the number of pairwise comparisons required from human
raters proposed in [14] could be ported to our context. For

19

Table 6: PRV s computed by the majority voting, the
GLAD, and the PCC-H methods

Methods Majority voting, GLAD, PCC-H
pairs 2-choice HITs 4-choice HITs

AW-vs-UI
PRV AW 30%, 23%, 19% 26%, 13%, 15%
PRV UI 70%, 77%, 81% 74%, 87%, 85%

KW-vs-UI
PRV KW 45%, 47%, 23% 35%, 23%, 26%
PRV UI 55%, 53%, 77% 65%, 77%, 74%

Table 7: PRV s for SS-vs-KW
Method Majority voting, GLAD, PCC-H

pair 4-choice HITs

SS-vs-KW
PRV SS 88%, 88%, 93%

PRV KW 12%, 12%, 7%

progress evaluation, a new version must be compared with
the best performing previous version, looking for measur-
able improvement, in which case PCC-H fully answers the
evaluation needs.

There are instances in which the search results of both
versions are irrelevant. The goal of future work will be to
reduce the number of such uncertain instances, to deal with
ambiguous questions, and to improve the processing of user-
directed queries by recognizing the context of the conver-
sation. Another experiment should improve the design of
simulated user queries, in order to make them more realis-
tic.

8. ACKNOWLEDGMENTS
The authors are grateful to the Swiss National Science

Foundation for its financial support under the IM2 NCCR
on Interactive Multimodal Information Management (see
www.im2.ch).

9. REFERENCES
[1] J. Allan, B. Croft, A. Moffat, and M. Sanderson.

Frontiers, challenges and opportunities for information
retrieval: Report from SWIRL 2012. SIGIR Forum,
46(1):2–32, 2012.

[2] O. Alonso and R. A. Baeza-Yates. Design and
implementation of relevance assessments using
crowdsourcing. In Proceedings of the European
Conference on Information Retrieval (ECIR), pages
153–164, 2011.

[3] O. Alonso and M. Lease. Crowdsourcing 101: Putting
the “wisdom of the crowd” to work for you. WSDM
Tutorial, 2011.

[4] O. Alonso, D. Rose, and B. Stewart. Crowdsourcing
for relevance evaluation. SIGIR Forum, 42:9–15, 2008.

[5] J. Carletta. Assessing agreement on classification
tasks: The kappa statistic. Computational Linguistics,
22:249–254, 1996.

[6] J. Carletta. Unleashing the killer corpus: experiences
in creating the multi-everything AMI Meeting Corpus.
Language Resources and Evaluation Journal,
41(2):181–190, 2007.

[7] G. Chittaranjan, O. Aran, and D. Gatica-Perez.
Exploiting observers’ judgments for nonverbal group
interaction analysis. In Proceedings of the IEEE

Conference on Automatic Face and Gesture
Recognition (FG), 2011.

[8] P. N. Garner, J. Dines, T. Hain, A. El Hannani,
M. Karafiat, D. Korchagin, M. Lincoln, V. Wan, and
L. Zhang. Real-time ASR from meetings. In
Proceedings of Interspeech, pages 2119–2122, 2009.

[9] C. Grady and M. Lease. Crowdsourcing document
relevance assessment with mechanical turk. In
Proceedings of the NAACL-HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s
Mechanical Turk, pages 172–179, 2010.

[10] D. R. Karger, S. Oh, and D. Shah. Budget-optimal
crowdsourcing using lowrank matrix approximations.
In Proceedings of the Allerton Conference on
Communication, Control and Computing, 2011.

[11] G. Kazai. In search of quality in crowdsourcing for
search engine evaluation. In Proceedings of the
European Conference on Information Retrieval
(ECIR), pages 165–176, 2011.

[12] F. K. Khattak and A. Salleb-Aouissi. Quality control
of crowd labeling through expert evaluation. In
Proceedings of the NIPS 2nd Workshop on
Computational Social Science and the Wisdom of
Crowds, 2011.

[13] J. Le, A. Edmonds, V. Hester, and L. Biewald.
Ensuring quality in crowdsourced search relevance
evaluation : The effects of training question
distribution. In Proceedings of the SIGIR 2010
Workshop on Crowdsourcing for Search Evaluation,
pages 17–20, 2010.

[14] X. Llorà, K. Sastry, D.E. Goldberg, A. Gupta, and
L. Lakshmi. Combating user fatigue in iGAs: Partial
ordering, support vector machines, and synthetic
fitness. In Proceedings of the Conference on Genetic
and Evolutionary Computation (GECCO ’05), pages
1363–1370, 2005.

[15] A. Popescu-Belis, E. Boertjes, J. Kilgour, P. Poller,
S. Castronovo, T. Wilson, A. Jaimes, and J. Carletta.
The AMIDA automatic content linking device:
Just-in-time document retrieval in meetings. In
Proceedings of Machine Learning for Multimodal
Interaction (MLMI), pages 272–283, 2008.

[16] A. Popescu-Belis, M. Yazdani, A. Nanchen, and
P. Garner. A speech-based just-in-time retrieval
system using semantic search. In Proceedings of the
49th Annual Meeting of the ACL, pages 80–85, 2011.

[17] P. Smyth, U. M. Fayyad, M. C. Burl, P. Perona, and
P. Baldi. Inferring ground truth from subjective
labeling of venus images. In Advances in Neural
Information Processing Systems (NIPS), pages
1085–1092, 1994.

[18] P. Thomas and D. Hawking. Evaluation by comparing
result sets in context. In Proceedings of the 15th ACM
International Conference on Information and
Knowledge Management (CIKM), pages 94–101, 2006.

[19] J. Whitehill, P. Ruvolo, T.-F. Wu, J. Bergsma, and
J. Movellan. Whose vote should count more: Optimal
integration of labels from labelers of unknown
expertise. In Advances in Neural Information
Processing Systems (NIPS), pages 2035–2043. 2009.

20

Recommender Systems Evaluation: A 3D Benchmark

Alan Said
TU Berlin

alan@dai-lab.de

Domonkos Tikk
Gravity R&D

domonkos.tikk@gravityrd.com

Yue Shi
TU-Delft

y.shi@tudeft.nl

Martha Larson
TU-Delft

m.a.larson@tudelft.nl

Klara Stumpf
Gravity R&D

klara@gravityrd.com

Paolo Cremonesi
Politecnico di Milano

paolo.cremonesi@polimi.it

ABSTRACT
Recommender systems add value to vast content resources
by matching users with items of interest. In recent years,
immense progress has been made in recommendation tech-
niques. The evaluation of these has however not been matched
and is threatening to impede the further development of rec-
ommender systems. In this paper we propose an approach
that addresses this impasse by formulating a novel evalua-
tion concept adopting aspects from recommender systems
research and industry. Our model can express the quality
of a recommender algorithm from three perspectives, the
end consumer (user), the service provider and the vendor
(business and technique for both). We review current bench-
marking activities and point out their shortcomings, which
are addressed by our model. We also explain how our 3D
benchmarking framework would apply to a specific use case.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Retrieval models

1. INTRODUCTION & MOTIVATION
Recommender systems identify items suitable for specific

users in large content collections. Despite recent commer-
cial and research efforts, a systematic evaluation model that
addresses and considers all aspects and participants of the
recommender system is still missing. In this paper we propose
a 3D Recommender System Benchmarking Model that covers
all dimensions that impact the effectiveness of recommender
systems in real-world settings. The concept builds on a study
of benchmarking settings from research and industry and
provides a common comparison of recommender systems,
independent of setting, data and purpose. Our benchmarking
concept captures three evaluation aspects which are shared
in all recommender systems, independent of whether they
are research systems or industrial products. As three main
evaluation dimensions we identify user requirements, business
requirements and technological constraints, each represented
by a set of qualities which ensure the general applicability of
these procedures. For each particular recommendation prob-
lem, the instantiation and relevance of these requirements
should be specified.

The motivation behind this framework is the growing im-
portance of recommender systems. Users cannot be assumed
to have the necessary overview to specify their information

Copyright is held by the author/owner(s).
Workshop on Recommendation Utility Evaluation: Beyond RMSE (RUE
2012), held in conjunction with ACM RecSys 2012 September 9, 2012,
Dublin, Ireland

needs in vast content collections. However, with a variety
of data and the recommendation task, the comparison of
algorithms, approaches and general concepts becomes infea-
sible due to the inherent differences in requirements, design
choices, etc. This calls for a comprehensive benchmarking
framework that sets data- and task-specific requirements
driven by particular real-world applications.

The benefits of benchmarking. Benchmarks formulate
standardized tasks making it possible to compare the perfor-
mance of algorithms. They have been highly successful in the
areas of information retrieval, e.g. Text Retrieval Conference
(TREC) [12] and the multimedia retrieval ImageCLEF [7],
TRECVid [9] and MediaEval [6]. Benchmarks yield two types
of benefits; (1) they serve to support the development of new
technologies in the research community [9,11] and (2) they
create economic impact by bringing research closer to the
market [8].

Existing recommendation benchmarks. Today’s
benchmarks are limited by their simplified views of users and
of data. The problem setting of the Netflix Prize1, ground-
breaking at its time, was focused on a single functional re-
quirement : the qualitative assessment of recommendation
was simplified to the root mean squared error of predicted
ratings. Its simplified view treated users as needing no fur-
ther output from the recommender system than a rating
on individual items. The data set was equally restricted to
user ratings, additional information available in a real-world
recommender system environment were not considered. Fur-
thermore, the Prize did not take non-functional requirements
into account, which arise from business goals and technical
parameters of the recommendation service, though aspects
as scalability, reactivity, robustness and adaptability are key
for the productive operation of recommender systems.

The series of context-aware movie recommendation
(CAMRa) challenges explored the usefulness of contextual
data in recommendations. The 2010 challenge2 provided spe-
cial features on the movie mood, movie location, and intended
audience (Moviepilot track), as well as social relationship be-
tween users and user activities on a movie-related social site
(Filmtipset track). The time of the recommendation was also
considered as context (Week track). Although the challenges
expanded the data sources used, the evaluation translated
real-world user needs into the classification accuracy metrics
to evaluate the system in the contest, and non-functional
requirements of the solutions were not investigated.

The limitations of the Netflix Prize and CAMRa series are
characteristics of currently existing benchmarks and data
sets. The concept presented in this paper approaches this

1
http://www.netflixprize.com

2
http://www.dai-labor.de/camra2010/challenge/

21

http://www.netflixprize.com
http://www.dai-labor.de/camra2010/challenge/

B
us

in
es

s
M

od
el

s

User Requirements

Te
ch

nic
al

Con
str

ain
ts

Figure 1: The three proposed evaluation axes.

challenge by placing central focus on real-world user needs;
large, heterogeneous, multi-source data sets and evaluating
both functional (quality-related) and non-functional (tech-
nical and business goals-related) requirements.

2. 3D RECOMMENDATION EVALUATION
In order to extend the state of the art of evaluation, we

propose a concept for evaluation metrics that incorporates the
needs from all perspectives in the recommendation spectrum.
The concept defines a set of benchmarking techniques that
select the correct combination of (i) data sets, (ii) evaluation
methods and (iii) metrics according to a three dimensional
requirement space: business models, user requirements and
technical constraints, see Fig. 1.

Business models allow a company to generate revenue.
Different models lead to different requirements in terms of
the expected value from a recommender system. For instance,
in a pay-per-view video-on-demand business model, the goal
of the recommender system is to increase sales to allow the
company to maximize revenues. However, in subscriber-based
video-on-demand business models, the driving forces may be
to get users to return to the service in the future (a typical
showcase where recommender systems help [1]). Business
models may be influenced by the choice of the objective
function in the recommender algorithm; prediction-based or
ranking-based functions reflect different business metrics.

User requirements reflect users’ perspectives. Recom-
menders are assets for user satisfaction and persuasion, i.e.,
they try to influence a user’s attitude or behavior [4], the
usability of the systems affect the user’s perception of the sys-
tem. Recommendations may have different goals, e.g. reduce
information overload, facilitate search, and find interesting
items increasing the quality and decreasing the time of the
decision-making process.

Technical constraints. Recommender systems in real-
life must take into account a number of technical requirements
and constraints. These can be classified as data and system
constraints, scalability and robustness requirements. Data
constraints relate to the service architecture, e.g. satellite
TV lacks a return channel for feedback, hindering the use
of collaborative filtering algorithms. System constraints
derive from hardware and/or software limitations, e.g. in a
mobile TV scenario, the processing power in the hand-held
device is limited; excluding resource-heavy algorithms on
the client side. Scalability requirements derive from the
need of instant recommendations to all users on all items.
These requirements are particularly strict in linear TV, where
viewers are used to quick responsiveness. Robustness re-
quirements are needed to create good services, able to work
in case of data or component failure in distributed systems.

3. EVALUATION SETTING

3.1 Current evaluation methodologies
Existing evaluation methods for recommender systems can

be classified into system-oriented evaluation, user-oriented
evaluation or a combination of both [3].

In system-oriented evaluation (off-line) users are not
involved in the evaluation, instead, a data set is partitioned
into training and test sets. Using the training set, data points
in the test set are predicted. In user-oriented evaluation
(on-line) feedback from users interacting with the system is
collected by explicit questions or implicit observing.

Competitions and challenges built around recommender
systems are mostly organized to find the most accurate mod-
els. As described in Table 1, recommender systems are mostly
evaluated off-line and often, the business value of the tech-
nologies is not examined. Even though the accuracy may
influence user satisfaction and revenue increase indirectly,
there exists no way to evaluate the dimensions of user require-
ments and business models. In most of the cases, the off-line
evaluation scheme is chosen. Algorithms are often evalu-
ated by error, ranking or classification accuracy measures.
Many challenges (e.g. Netflix Prize) use explicit ratings to
profile users, other recommender scenarios (e.g. item-2-item
recommendation) are not addressed. Technical constraints
are uncommon in contests, the exception being the RecLab
Prize3. If a certain method performs well on a data set, the
integrability in a real-world system is still not addressed.
This deficiency is partially solved by online testing methods
(as seen in CAMRa): recommender systems were tested in a
real environment, but an objective metric to show the real
applicability of the tested system is missing. In the RecLab
Prize, the evaluated metric is revenue increase generated
by the system. The organizers also specified non-functional
requirements to be eligible for the semi-final (top 10 teams),
but user requirements are not considered. These approaches
all contain metrics and methods moving towards our 3D
model, but none of them provide a comprehensive model.

3.2 Currently existing metrics
On-line evaluation is the only technique able to measure

the true user satisfaction; conducting such evaluations is
however time consuming, and cannot be generally applied,
rather only to limited scenarios [2]. Contrary, off-line testing
has the advantage to be immediate, and easy to perform
on several data sets with multiple algorithms. The question
is whether differences between the off-line performance of
algorithms can be carried over to differentiate their online
performance in various recommendation situations.

Classification metrics measure how well a system is able
to classify items correctly, e.g. precision and recall. Predic-
tive metrics measure to what extent a system can predict
ratings of users. As rated items have an order, predictive
accuracy metrics can be used to measure the item ranking
ability. Coverage metrics measure the percentage of items
for which the system can make recommendations [13]. Con-
fidence metrics measure how certain the system is of the
accuracy of the recommendations. Additionally, many rec-
ommender systems algorithms use learning rate metrics
in order to gradually increase quality.

A recommender system can recommend accurate items,
have good coverage and diversity and still not satisfy a user,
if they are trivial [10]. The state-of-the-art of the evalua-
tion metrics of recommendation reflects different recommen-
dation tasks. Diversity, novelty, serendipity and user

3
http://overstockreclabprize.com/

22

http://overstockreclabprize.com/

Table 1: An overview of some recommender system-related contests from the perspective of our 3D evaluation

Challenge Task(s) Metric Mode User Business Technical
Netflix Prize minimize rating prediction error RMSE off-line indirect: error measure not addressed not addressed
KDD-Cup’07 1: predict who rated what

2: predict number of ratings
RMSE off-line not addressed detect trends & pop-

ular items
not addressed

RecLab Prize Increase revenue revenue lift online &
off-line

not addressed revenue lift response/learning
time, scalability

KDD-Cup’11 minimize rating prediction error
split popular/unpopular items

RMSE
ErrorRate

off-line indirect: error measure
find interesting or irrele-
vant items

not addressed not addressed

KDD-Cup’12 prediction followed users
click trough rate prediction

MAP@3
MAE, AUC

off-line exploring interesting users
& sources

not addressed
ad targeting (CTR)

not addressed

CAMRa’10 context-aware; 1: temporal, 2:
emotional, 3: social

MAP, P@N,
AUC

off-line
& online

contextual information in-
fluences preference

not addressed not addressed

CAMRa’11 group recommendation
rater identification

ErrorRate off-line group & target recommen-
dation

indirect: satisfaction not addressed

CAMRa’12 find users for specific items impact on-line split interesting and irrel-
evant content

increase audience not addressed

satisfaction are especially difficult to measure off-line. Di-
versity is important for the usefulness of a recommendation
and therefore there is a need to define an intra-list similarity
metric [13]. Novelty and serendipity are two dimensions of
non-obviousness [3].

3.3 Possible Extensions of Methods & Metrics
Real-world recommender systems should satisfy (1) func-

tional requirements that relate to qualitative assessment of
recommendations and (2) non-functional requirements speci-
fied by the technological parameters and business goals of the
service. Functional and non-functional requirements should
be evaluated together: without the ability to provide accurate
recommendations, no recommender system can be valuable.
As poor quality has adverse effects on customers, it will not
serve the business goal. Similarly, if the recommender does
not scale with a service, not being able to provide recom-
mendation in real time, neither users nor service provider
benefit from it. Thus, a trade-off between these requirements
is needed for an impartial and comprehensive evaluation of
real-world recommenders. Scalable recommenders provide
good quality recommendations independently of the data
size, growth and dynamic. They are able to (1) process huge
volumes of data during initialization using computation re-
sources linearly scalable with data size; and (2) serve large
amounts of parallel recommendation requests in real time
without significant degradation in service quality. In our
model, scalability is found on the technical requirement axis.

Reactivity ensures good recommendations in real-time
where the time threshold depends on the use case, typically
in the range of 10–1000 ms. Adaptability is important to
react for changes in user preferences, content availability
and contextual parameters. In our 3D model, reactivity and
adaptability belong to the user requirement axis.

Robustness is needed to handle partial, missing or cor-
rupted data both in the system initialization and operational
phases. Robustness belongs to the business axis of our model.

Generally speaking, none of the requirements are mutu-
ally exclusive, instead, optimization should be based on a
combination of them – adapted for the setting in which the
recommender system will be deployed [5].

This example of a Video-on-Demand (VoD) service from
the IPTV industry serves as a potential scenario for our
model. Business goals include increased VoD sales and cus-
tomer retention, but may have additional aspects (promoting
content). The technical constraints are partly specified by
the middleware and the hardware/software configuration of
the service provider, these all influence the response time of

the service which is crucial. Via the service interface, the user
gets recommendations based on the context, which might be
translated into different recommendation tasks. From a user
perspective, easy content exploration and context dependent
recommendation may be the most important aspects.

4. CONCLUSION
We proposed a 3D Recommender System Benchmarking

model that extends the state-of-the-art and addresses both
functional and non-functional real-word application-driven
aspects of recommender systems. Following the proposed
concept, the benchmarking activities within the community
will encompass the full range of other recommender system
use cases and algorithmic approaches. The comprehensive
evaluation methodology will boost the development of more
effective recommender systems, and make it possible to focus
research resources productively and for industry technology
providers to increase the uptake of recommender technology.

5. REFERENCES
[1] M. B. Dias, D. Locher, M. Li, W. El-Deredy, and P. J. Lisboa.

The value of personalised recommender systems to e-business: a
case study. In RecSys ’08. ACM, 2008.

[2] M. Gorgoglione, U. Panniello, and A. Tuzhilin. The effect of
context-aware recommendations on customer purchasing
behavior and trust. In RecSys ’11, pages 85–92. ACM, 2011.

[3] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Trans. Inf. Syst., 22(1), 2004.

[4] R. Hu. Design and user issues in personality-based
recommender systems. In RecSys ’10. ACM, 2010.

[5] T. Jambor and J. Wang. Optimizing multiple objectives in
collaborative filtering. In RecSys ’10. ACM, 2010.

[6] M. Larson, M. Soleymani, P. Serdyukov, S. Rudinac,
C. Wartena, V. Murdock, G. Friedland, R. Ordelman, and
G. J. F. Jones. Automatic tagging and geotagging in video
collections and communities. In ICMR ’11. ACM, 2011.

[7] H. Müller. ImageCLEF experimental evaluation in visual
information retrieval. Springer, Heidelberg, 2010.

[8] B. Rowe, D. Wood, A. Link, and D. Simoni. Economic impact
assessment of NIST’s text retrieval conference (TREC)
program. Technical report, July 2010.

[9] A. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns
and TRECVid. In MIR ’06, 2006.

[10] L. Terveen and W. Hill. Beyond recommender systems: Helping
people help each other. In HCI in the New Millennium.
Addison-Wesley, 2001.

[11] T. Tsikrika, J. Kludas, and A. Popescu. Building reliable and
reusable test collections for image retrieval: The Wikipedia
Task at ImageCLEF. IEEE Multimedia, 99(PrePrints), 2012.

[12] E. M. Voorhees. Overview of TREC 2005. In TREC, 2005.
[13] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.

Improving recommendation lists through topic diversification.
In WWW ’05. ACM, 2005.

23

On the use of Weighted Mean Absolute Error in
Recommender Systems

S. Cleger-Tamayo
Dpto. de Informática.

Universidad de Holguín, Cuba
sergio@facinf.uho.edu.cu

J.M. Fernández-Luna & J.F. Huete
Dpto. de Ciencias de la Computación e I.A.

CITIC – UGR Universidad de Granada, Spain
{jmfluna,jhg}@decsai.ugr.es

ABSTRACT
The classical strategy to evaluate the performance of a Rec-
ommender System is to measure the error in rating predic-
tions. But when focusing on a particular dimension in a
recommending process it is reasonable to assume that ev-
ery prediction should not be treated equally, its importance
depends on the degree to which the predicted item matches
the deemed dimension or feature. In this paper we shall ex-
plore the use of weighted Mean Average Error (wMAE) as
an alternative to capture and measure their effects on the
recommendations. In order to illustrate our approach two
different dimensions are considered, one item-dependent and
the other that depends on the user preferences.

1. INTRODUCTION
Several algorithms based on different ideas and concepts

have been developed to compute recommendations and, as
a consequence, several metrics can be used to measure the
performance of the system. In the last years, increasing ef-
forts have been devoted to the research of Recommender
System (RS) evaluation. According to [2], “the decision on
the proper evaluation metric is often critical, as each met-
ric may favor a different algorithm”. The selected metric
depends on the particular recommendation tasks to be an-
alyzed. Two main tasks might be considered: the first one,
with the objective of measuring the capability of a RS to
predict the rating that a user should give to an unobserved
item, and the second one is related to the ability of an RS
to rank a set of unobserved items, in such a way that those
items more relevant to the user have to be placed in top
positions of the ranking. Our interest in this paper is the
measurement of the capability of a system to predict user
interest in an unobserved item, so we focus on rating predic-
tion.

For this purpose, two standard metrics [3, 2] have been
traditionally considered: the Mean Absolute Error (MAE)
and the Root Mean Squared Error (RMSE). Both metrics
try to measure which might be the expected error of the

Acknowledgements: This work was jointly supported by the
Spanish Ministerio de Educación y Ciencia and Junta de Andalucía, under
projects TIN2011-28538-C02-02 and Excellence Project TIC-04526,
respectively, as well as the Spanish AECID fellowship program.

Copyright is held by the author/owner(s). Workshop on Recommendation
Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with
ACM RecSys 2012. September 9, 2012, Dublin, Ireland. .

system, RMSE being more sensitive to the occasional large
error: the squaring process gives higher weight to very large
errors. A valuable property of both metrics is that they take
their values in the same range as the error being estimated,
so they can be easily understood by the users.

But, these metrics consider that the standard deviation of
the error term is constant over all the predictions, i.e. each
prediction provides equally precise information about the er-
ror variation. This assumption, however, does not hold, even
approximately, in every recommending application. In this
paper we will focus on the weighted Mean Absolute Error,
wMAE, as an alternative to measure the impact of a given
feature in the recommendations1. Two are the main pur-
poses for using this metric: On the one hand, as an enhanced
evaluation tool for better assessing the RS performance with
respect to the goals of the application. For example, in the
case of recommending books or movies it could be possible
that the accuracy of the predictions varies when focusing on
past or recent products. In this situation, it is not reason-
able that every error were treated equally, so more stress
should be put in recent items. On the other hand, it can
be also useful as a diagnosis tool that, using a “magnifying
lens”, can help to identify those cases where an algorithm is
having trouble with. For both purposes, different features
shall be considered which might depend on the items, as
for example, in the case of a movie-based RS the genre, the
release date, price, etc. But also, the dimension might be
user-dependent considering, for example, the location of the
user, the users’ rating distribution, etc.

This metric has been widely used for evaluation of model
performance in several fields as meteorology or economic
forecasting [8]. But, few have been discussed about its use
in the recommending field; isolately several papers use small
tweaks on error metrics in order to explore different aspects
of RS [5, 7]. Next section presents the weighted mean abso-
lute error, illustrating its performance considering two differ-
ent features, user and item-dependent, respectively. Lastly
we present the concluding remarks.

2. WEIGHTED MEAN ABSOLUTE ERROR
The objective of this paper is to study the use of a weight-

ing factor in the average error. In order to illustrate its func-
tionality we will consider simple examples obtained using
four different collaborative-based RS (using Mahout imple-
mentations): i) Means, that predicts using the average rat-

1A similar reasoning can be used when considering squared
error, which yields to the weighted Mean Root Squared Er-
ror, wRMSE.

24

pablo
Retângulo

ings for each user; ii) LM [1], following a nearest neighbors
approach; iii) SlopeOne [4], predicting based on the average
difference between preferences and iv) SVD [6], based on a
matrix factorization technique. The metric performance is
showed using an empirical evaluation based on the classic
MovieLens 100K data set.

A weighting factor would indicate the subjective impor-
tance we wish to place on each prediction, relating the error
to any feature that might be relevant from both, the user or
the seller point of view. For instance, considering the release
date, we can assign weights in such a way that the higher the
weight, the higher importance we are placing on more recent
data. In this case we could observe that even when the MAE
is under reasonable threshold, the performance of a system
might be inadequate when analyzing this particular feature.

The weighted Mean Absolute Error can be computed as

wMAE =

PU
i=1

PNi
j=1 wi,j × abs(pi,j − ri,j)PU

i=1

PNi
j=1 wi,j

, (1)

where U represents the number of users; Ni, the number
of items predicted for the ith-user; ri,j , the rating given by
the ith-user to the item Ij ; pi,j , the rating predicted by
the model and wi,j represents the weight associated to this
prediction. Note that when all the individual differences are
weighted equally wMAE coincides with MAE.

In order to illustrate our approach, we shall consider two
factors, assuming that wi,j ∈ [0, 1].
• Item popularity: we would like to investigate whether
the error in the predictions depends on the number of users
who rated the items. Two alternatives will be considered:

i+ The weights will put more of a penalty on bad pre-
dictions when an item has been rated quite frequently
(the items has a high number of ratings). We still pe-
nalize bad predictions when it has a small number of
ratings, but we do not penalize as much as when we
have more samples, since it may just be that the lim-
ited number of ratings do not provide much informa-
tion about the latent factors which influence the users
ratings. Particularly, for each item Ii we shall consider
its weight as the probability that this item were rated
in the training set, i.e. wi = pr(Ii).

i– This is the inverse of the previous criterion, where we
put more emphasis on the predictions over those items
with fewer ratings. So the weights are wi = 1− pr(Ii).

• Rating distribution: It is well known that the users
does not rate the items uniformly, they tend to use high-
valued ratings. By means of this feature we can measure
whether the error depends on the ratings distribution or not.
Particularly, we shall consider four different alternatives:

rS+ Considering the overall rating distribution in the sys-
tem, putting more emphasis on the error in the pre-
dictions on those common ratings. So the weights are
wi = prS(ri), ri being the rating given by the user to
the item Ii.

rS– Inversely, we assess more weight to the less common
ratings, i.e. wi = 1− prS(ri).

rU+ Different users can use a different pattern of rating, so
we consider the rating distribution of the user, in such

a way that those common ratings for a particular user
will have greater weights, i.e. wi = prU (ri).

rU– The last one assigns more weight to the less frequent
rating, i.e. wi = 1− prU (ri).

Figures 1-A and 1-B present the absolute values of the
MAE and wMAE error for the four RSs considered in this
paper. Figure 1-A shows the results where the weights
are positively correlated to the feature distribution, whereas
Figure 1-B presents the results when they are negatively cor-
related. In this case, we can observe that by using wMAE we
can determine that error is highly dependent on the users’
pattern of ratings, and weaker when considering item pop-
ularity. Moreover, if we compare the two figures we can
observe that all the models perform better when predicting
the most common ratings. In this sense, they are able to
learn the most frequent preferences and greater errors (bad
performance) are obtained when focusing on less frequent
rating values. Related to item popularity these differences
are less conclusive. In some sense, the way in which the user
rates an item does not depend of how popular the item is.

2.1 Relative Weights vs. Relative Error
Another different alternative to explore the benefits of us-

ing the wMAE metric is to consider the ratio between wMAE
and MAE. In this sense, denoting as ei,j = abs(pi,j − ri,j),
we have that wMAE/MAE is equal to

wMAE/MAE =

P
i,j wi,jei,j/

P
i,j ei,jP

i,j wi,j/N
.

Taking into account that we restrict the weights to take its
value in the [0, 1] interval, the denominator might represent
the average percentage of mass of the items that is related
to the dimension under consideration whereas the numerator
represents the average percentage of the error coming from
this feature. So, when wMAE > MAE we have that the
percentage of error coming from the feature is greater than
its associated mass, so the the system is not able to predict
properly such dimension. When both metrics are equal this
implies that the expected error is independent of the feature.

In Figure 1-C we present the values of the wMAE/MAE
where, again, we can see that there exists a dependence be-
tween the rating and the error. The error associated to the
common ratings are less than the relative importance of this
feature in the system whereas for less common ratings the
system is not able to perform good predictions, being greater
the relative error than its associated weights. This situation
does not hold when considering item popularity.

Figures 1-D and 1-E present an scatter plot that relates
the relative weights (horizontal axis) to the relative error
(vertical axis) for each user in the system and for each RS
used2. Particularly, in Figure 1-D we are considering rU+
as weighting factor. Note that, since there are 5 possible
ratings, the relative weight is equal to 0.2 when all the rat-
ings are equally probable and its value increases with the
importance of the most used ratings. In this figure we can
see that both percentage of mass and the percentage of er-
ror are positively correlated, being wMAE/MAE < 1 for
most of the users. Moreover, there is a trend to improve the
predictions for those users with higher relative mass (for ex-
ample, we can see how the regression line for the LM model
2We have included all the users with at least 10 predictions.

25

Figure 1: Using wMAE in recommendations: absolute and relative values.

Means LM Slope One SVD
0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

MAE ru+ rS+ iS+ A

Means LM Slope One SVD
0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95
MAE rU- rS- iS-

B

rU+ rU- rS+ rS- i+ i-
0,600

0,650

0,700

0,750

0,800

0,850

0,900

0,950

1,000

1,050

1,100

Means LM Slope One SVD C

0,1 0,2 0,3 0,4 0,5 0,6 0,7
0,1

0,2

0,3

0,4

0,5

0,6

0,7

relative weight

re
la

tiv
e

er
ro

r

LM Lineal (LM) SO SVD
D

0,0005 0,0010 0,0015 0,0020 0,0025 0,0030 0,0035
0,0005

0,0010

0,0015

0,0020

0,0025

0,0030

0,0035

0,0040

relative weight

re
la

tiv
e

er
ro

r
E

rU+ rU- rS+ rS- i+ i-
0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

LM Slope One SVD
F

gets further away3 from the line y=x). In some way we can
conclude that recommendation usefulness of the rating dis-
tribution is consistent for all the users and RS models. On
the other hand, Figure 1-E considers i+ as weights. In this
case, although weights and error are positively correlated,
there exists significant differences between different users.
This result is hidden in the global measures.

2.2 Relative Comparison Among Models
Although wMAE might give some information about how

the error has been obtained, there is no criterion about what
a good prediction is. In order to tackle this situation we pro-
pose the use of the relative rather than the absolute error,
i.e. the weighted Mean Absolute Percentage Error, wMAPE.
Then, given two models, M1 and M2, the relative metric is
defined as wMAEM1/wMAEM2. In this metric, the less
the value, the greater the improvements. Thus, if we fix the
model M2 to be a simple model (as the average rating) we
obtain the wMAE values in Figure 1-F. From these values,
we can obtain some conclusions as for instance that LM fits
better the common user’s preferences (rU+), whereas Slope
One and SVD are more biased toward the overall rating dis-
tribution in the system (rS+). Similarly, we found that bet-
ter improvements, with respect to the average ratings, are
obtained when focusing on less frequent ratings. Finally,
with respect to item popularity all the models obtain bet-
ter improvements when considering the most popular items,
although these differences are less significant.

3. CONCLUSIONS
In this paper we have explored the use of weighted Mean

Average Error as a means to measure the RS’s performance
by focusing on a given dimension or feature, being able to

3The other models perform similarly, but we have decided
to not include these regression lines due to clarity reasons.

uncover specific cases where a recommendation algorithm
may be having suboptimal performance. This is a very use-
ful way to know the origin of the errors found in the rec-
ommendations and therefore useful for improving the RSs,
although its main problem is that it is not absolute as MAE.

4. REFERENCES
[1] S. Cleger-Tamayo, J.M. Fernández-Luna and J.F.

Huete. A New Criteria for Selecting Neighborhood in
Memory-Based Recommender Systems. Proc. of 14th
CAEPIA’11, pp. 423-432. 2011.

[2] A. Gunawardana and G. Shani. A Survey of Accuracy
Evaluation Metrics of Recommendation Tasks. Journal
of Machine Learning Research 10, pp. 2935-2962. 2009.

[3] J.L. Herlocker, J.A. Konstan, L.G. Terveen and J.T.
Riedl. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. 22, 1. 2004, pp. 5-53.

[4] D. Lemire and A. Maclachlan. Slope One Predictors for
Online Rating-Based Collaborative Filtering. Proc. of
SIAM Data Mining (SDM’05), 2005

[5] P. Massa and P. Avesani. Trust metrics in
recommender systems. Computing with Social Trust,
pp. 259-285 Springer 2009.

[6] B.M. Sarwar, G. Karypis, J. Konstan and J. Riedl.
Incremental SVD-Based Algorithms for Highly
Scaleable Recommender Systems. 5th International
Conf. on Computer and Information Technology. 2002.

[7] T. Jambor and J. Wang. Goal-driven collaborative
filtering: A directional error based approach. In Proc.
ECIR’2010. pp. 407-419. 2010.

[8] C.J. Willmot. Statistics for the Evaluation and
Comparison of Models. Journal of Geophysical
Research, 90. pp. 8995-9005, 1985.

26

How Similar is Rating Similarity to Content Similarity?

Osman Başkaya
Department of Computer Engineering

Bahçeşehir University
İstanbul, Turkey

osman.baskaya@computer.org

Tevfik Aytekin
Department of Computer Engineering

Bahçeşehir University
İstanbul, Turkey

tevfik.aytekin@bahcesehir.edu.tr

ABSTRACT
The success of a recommendation algorithm is typically mea-
sured by its ability to predict rating values of items. Al-
though accuracy in rating value prediction is an important
property of a recommendation algorithm there are other
properties of recommendation algorithms which are impor-
tant for user satisfaction. One such property is the diversity
of recommendations. It has been recognized that being able
to recommend a diverse set of items plays an important role
in user satisfaction. One convenient approach for diversifi-
cation is to use the rating patterns of items. However, in
what sense the resulting lists will be diversified is not clear.
In order to assess this we explore the relationship between
rating similarity and content similarity of items. We discuss
the experimental results and the possible implications of our
findings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Experimentation, Measurement

Keywords
diversity, recommender systems, collaborative filtering

1. INTRODUCTION
Recommender systems help users to pick items of interest

based on explicit or implicit information that users provide
to the system. One of the most successful and widely used
technique in recommender systems is called collaborative fil-
tering (CF) [7]. CF algorithms try to predict the ratings of
a user based on the ratings of that user and the ratings of
other users in the system. The performance of collabora-
tive filtering algorithms is typically measured by the error

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s). Workshop on Recommendation
Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with
ACM RecSys 2012. September 9, 2012, Dublin, Ireland.

they make in predicting the ratings of users for items. Al-
though accuracy of predictions is an important aspect of
recommender systems, it is not the only one. Recently, in-
creasing the diversity of recommendation lists have gained
attention among researchers in the field [8, 2]. To be able
to recommend a diverse set of items to a user is important
with respect to user satisfiability because a recommendation
list consisting of one type of item (e.g., movies only from the
same genre) might not be very satisfactory even if the ac-
curacy of rating prediction is high. But here there is one
issue. We need to define a metric for measuring the diver-
sity of a recommendation list. Then we can try to optimize
the recommendation list based on this metric. One possible
metric for measuring the diversity of a recommendation list
of a particular user is described in [2]. This metric measures
the diversity as the average dissimilarity of all pairs of items
in a user’s recommendation list. Formally, it can be defined
as follows:

D(R) =
1

N(N − 1)

∑
i∈R

∑
j∈R,j 6=i

d(i, j), (1)

where R is the recommendation list of a user and N = |R|.
d(i, j) is the dissimilarity of items i and j which is defined
as one minus the similarity of items i and j.

We think that average dissimilarity is a reasonable way to
measure the diversity of a list of items. However, the impor-
tant part is how to define d(i, j), i.e., the dissimilarity of two
items which is unspecified in equation (1). The problem is
not to choose a similarity metric such as Pearson or cosine.
The problem is whether we can use the rating patterns (vec-
tors) of items in order to measure their similarity. And if we
use these rating patterns, in what respect the recommenda-
tion lists will be diversified? For example, if it is a movie
recommender system, will the recommendation lists contain
more movies from different genres or will the content of the
movies get diversified?

In order to answer these questions we will compare rating
similarity with two types of content similarities which we
will define below. We hope that the results we discuss will
shed some light on these types of questions and stimulate
discussion on diversification.

2. RELATED WORKS
In hybrid recommendations content information is used in

order to increase the accuracy of rating predictions especially
for items whose ratings are too sparse. For example [3, 5,
6] use content information collected from sources such as

27

Wikipedia and IMDB in order to improve the accuracy of
rating predictions. These works indirectly show that there is
indeed some positive relationship between rating similarity
and content similarity. Otherwise, it was not possible to
increase the prediction accuracy using content information.
Another paper which comes close to our concerns is [1]

Here, the authors propose a new algorithm for diversifying
recommendation lists. Their algorithm uses rating patterns
of movies for diversification. They evaluate the results by
looking at how well the recommendation lists are diversified
with respect to genre and movie series they belong. They
report that the resulting lists’ diversity increase in both re-
spects (genre and series). However, to the best of our knowl-
edge there are no direct comparisons between rating and
content similarity. In this paper we examine directly these
two types of similarities.

3. ITEM CONTENT GENERATION
In our experiments we use Movielens1 (1M) data set. In

order to compare movies’ rating patterns to their contents
we first need to generate movie content information. We use
two sources of information to this end. One source of content
information comes from Wikipedia articles corresponding to
movies in the Movielens dataset. The other source of con-
tent information comes from genre information which are
provided in the dataset. Details of content generation are
given below.

3.1 Content Generation from Wikipedia
The Movielens dataset contains 3883 distinct movies and

6040 users. Some of these movies are not rated by any user.
Also some of the movies have no corresponding entries in
Wikipedia. After discarding these movies we are able to
fetch 3417 (approximately 88% of all movies) movie articles
from Wikipedia.
In this work we only use the text of each Wikipedia article

(we do not use link structure or category information of
articles). The text of a Wikipedia article consists of parts
such as “Plot”, “Cast”, and “Release”. We do not include
“References” and “See also” parts of the text since they may
contain information which is unrelated to the content of the
movies. After extracting the text of each document we apply
some basic preprocessing steps such as stemming and stop-
words removal. We use a vector space model to represent
text documents.

3.2 Genre Information
As a second source of content we use the genre keywords

(such as adventure, action, comedy, etc.) provided by the
Movielens dataset. Each movie in the dataset is associated
with one or more genre keywords. We define the genre sim-
ilarity between two movies using the Jaccard metric given
below:

J(i, j) =
|Gi ∩Gj |
|Gi ∪Gj |

(2)

where Gi and Gj are genre sets of items i and j.

4. EXPERIMENTS
In the first set of experiments we try to understand the

relation between movie rating patterns and content gener-
ated from the corresponding Wikipedia articles. We have
1http://www.grouplens.org/node/73

two matrices: one is the Movie-User matrix which holds
the ratings of users on movies and the other is the Movie-
TFIDF matrix which holds the tf-idf weights for each docu-
ment. For evaluation we use the following methodology. For
each movie we find the most similar 100 movies using the
Movie-User matrix (rating neighborhood) and the most sim-
ilar 100 movies using Movie-TFIDF matrix (content neigh-
borhood). We then find the number of common items in
these two neighborhoods. It turns out that on average there
are 14.74 common movies in the two neighborhoods. If we
generate the neighborhoods randomly this value turns out
to be around 2.80. Randomization tests show that this dif-
ference is significant (p < 0.01).

We run the same experiment with different neighborhood
sizes (20 and 50) but the percentages of the number of com-
mon items in the rating and content neighborhoods turn
out to be similar to the percentages we get when we use a
neighborhood of size 100.

We also test whether there is a relationship between the
number of ratings and the correspondence between rating
and content similarity. To see this we find the rating and
content neighborhoods of those movies which have similar
number of ratings. To do this we divide the movies into rat-
ing intervals according to the number of ratings they have:
movies which have ratings between 1-100, between 101-200,
and so on. If an interval has less than 20 movies, we merge
it with the previous one in order to increase the significance
of the results. Figure 1 shows the average number of com-
mon items in the rating and content neighborhood sets of
movies as a function of rating intervals. Interestingly, Fig-
ure 1 shows a clear linear correlation, i.e., as the number of
ratings increases the number of common items in the con-
tent and rating neighborhood of movies also increases. One
possible explanation of this positive linear correlation might
be this. Generally, there is a positive relationship between
the number of ratings and the popularity of a movie. This
means that popular movies receive ratings from many dif-
ferent people with different tastes. Hence the rating pat-
terns of popular movies reflect a diverse set of characteris-
tics. Wikipedia movie articles also have rich contents reflect-
ing different characteristics of movies. This might explain
why a movie’s rating neighborhood approaches to its content
neighborhood as the number of ratings increase.

In the next set of experiments our aim is to understand
the relationship between movie rating patterns and movie
genres provided in the Movielens dataset. Genre keywords
provide limited information compared to Wikipedia articles.
Because Wikipedia articles contain terms that give informa-
tion not only about the genre of a movie but also about the
director, starring, musical composition, etc.

In order to measure the relationship between movie rating
patterns and genres we applied a similar methodology. For
each movie m we find the most similar 100 movies using
the Movie-User matrix (that is the rating neighborhood)
and find the Jaccard similarity (as defined in equation 2)
between movie m and movies in its rating neighborhood.
The average Jaccard similarity value turns out to be 0.43.
If we generate the rating neighborhood randomly we find a
Jaccard value around 0.17. Randomization tests show that
this difference is significant (p < 0.01).

We also test whether there is a relationship between the
number of ratings and genre similarity. Similar to the ex-
periment we described above we divided the movies into rat-

28

Figure 1: Average number of common movies as a
function of rating intervals.

Figure 2: Average Jaccard index as a function of
rating intervals.

ing intervals according to the number of ratings they have.
Then for each movie m in a rating interval we calculate the
Jaccard similarity value between the movie m and its rat-
ing neighborhood of 100 movies then calculate the averages
per rating interval. Figure 2 shows these average values as
a function of rating intervals. Here, we again have an in-
teresting case. There is a negative linear correlation which
means that the more a movie has ratings the more its rating
similarity diverges from its genre similarity.
The reason underlying these results might be this. Movies

which have limited number of ratings (unpopular movies)
are generally watched by the fans of that genre. For exam-
ple, a fan of sci-fi movies may also watch an unpopular sci-
fi movie. So, unpopular movies generally get ratings from
the same set of users who are fans of that movie’s genre.
And this makes the rating vectors of those movies (same
genre movies) similar to each other. On the other hand if
a movie is popular than it gets ratings from a diverse set of
users which causes their rating neighborhoods diverge from
its genre.

5. CONCLUSION
We should note at the outset that the conclusions pre-

sented here are not conclusive. Different experiments on
different datasets and with different item types need to be
done in order to drive more firm conclusions. However, we
hope that these experiments and results will stimulate dis-
cussion and further research.

In this work we examined the relationship between rating
similarity and content similarity of movies in the Movielens
dataset. We examined two kinds of content: one of them
is the tf-idf weights of movie articles in Wikipedia and the
other is the genre keywords of movies provided by the Movie-
lens dataset.

We found that to a certain degree there is a similarity be-
tween rating similarity and Wikipedia content similarity and
also between rating similarity and genre similarity. However,
we leave open to discussion the magnitude of these similari-
ties. We also found that as the number of ratings of a movie
increases its rating similarity approaches to its Wikipedia
content similarity whereas its rating similarity diverges away
from its genre similarity.

According to these results if diversification is done based
on the rating patterns of movies then the recommendation
lists will likely be diversified with respect to the content
of movies to some extent. So, if no content information is
available or it is difficult to get it, it might be useful to use
rating patterns to diversify the recommendation lists.

To this analysis we plan to add latent characteristics of
items generated by matrix factorization methods [4]. We
plan to explore the correspondences among similarities de-
fined over rating patterns, contents, and latent characteris-
tics of items.

6. REFERENCES
[1] R. Boim, T. Milo, and S. Novgorodov. Diversification

and refinement in collaborative filtering recommender.
In CIKM, pages 739–744, 2011.

[2] N. Hurley and M. Zhang. Novelty and diversity in
top-N recommendation - analysis and evaluation. ACM
Trans. Internet Techn, 10(4):14, 2011.

[3] G. Katz, N. Ofek, B. Shapira, L. Rokach, and G. Shani.
Using wikipedia to boost collaborative filtering
techniques. In RecSys, pages 285–288, 2011.

[4] Y. Koren, R. M. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

[5] A. Loizou and S. Dasmahapatra. Using Wikipedia to
alleviate data sparsity issues in Recommender Systems,
pages 104–111. IEEE, 2010.

[6] P. Melville, R. J. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In AAAI/IAAI, pages 187–192, 2002.

[7] J. B. Schafer, D. Frankowski, J. L. Herlocker, and
S. Sen. Collaborative filtering recommender systems. In
The Adaptive Web, pages 291–324, 2007.

[8] M. Zhang and N. Hurley. Avoiding monotony:
improving the diversity of recommendation lists. In
RecSys, pages 123–130, 2008.

29

Modeling Difficulty in Recommender Systems

Benjamin Kille, Sahin Albayrak
DAI-Lab

Technische Universität Berlin
{kille,sahin}@dai-lab.de

ABSTRACT
Recommender systems have frequently been evaluated with
respect to their average performance for all users. However,
optimizing such recommender systems regarding those eval-
uation measures might provide worse results for a subset of
users. Defining a difficulty measure allows us to evaluate and
optimize recommender systems in a personalized fashion.
We introduce an experimental setup to evaluate the eligibil-
ity of such a difficulty score. We formulate the hypothesis
that provided a difficulty score recommender systems can be
optimized regarding costs and performance simultaneously.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information filtering, Retrieval mod-
els, Search process, Selection process; H.3.4 [Information
Technology and Systems Applications]: Decision sup-
port

General Terms
Algorithms, Design, Experimentation, Measurement, Hu-
man factors

Keywords
difficulty, recommender systems, user modeling, evaluation

1. INTRODUCTION
Evaluating a recommender system’s performance repre-

sents a non-trivial task. The choice of evaluation measure
and methodology depends on various factors. Modeling the
recommendation task as rating prediction problem favors
measures such as root mean squared error (RMSE) and
mean absolute error (MAE) [7]. In contrast, mean aver-
age precision (MAP) and normalized discounted cumulative
gain (NDCG) qualify as evaluation measures for an item
ranking scenario [12]. In either case, two recommendation

Copyright is held by the authors/owner(s).
Workshop on Recommendation Utitlity Evaluation: Beyond RMSE (RUE
2012), held in conjunction with ACM RecSys 2012 September 9, 2012,
Dublin, Ireland.
.

algorithms are compared with respect to their average per-
formance on the full set of users. This entails that all users
are treated equally. However, we argue that the difficulty of
recommending items to users varies. Suppose we consider a
recommender system with two users, Alice and Bob. Alice
has rated a large number of items. Bob has recently started
using the system and rated a few items. The system rec-
ommends a number of items to both of them. Alice and
Bob rate the recommended items. Suppose we attempt to
evaluate two recommender algorithms based on those rat-
ings, denoted as R1 and R2. Assume that R1 predicts Al-
ice’s ratings with an error of 0.8 and Bob’s ratings with an
error of 0.9. On the other hand, we observe R2 to devi-
ate 1.0 for Alice and 0.8 for Bob, respectively. Averaging
the errors, we obtain 0.85 for R1 and 0.9 for R2. Still, R2

predicts Bob’s ratings better even though his preferences ex-
hibit higher sparsity compared to Alice’s. Besides the num-
ber of ratings, there are further factors discriminating how
well an recommendation algorithm perform for a given user.
We introduce the notion of difficulty in the context of rec-
ommender systems. Each user is assigned a difficulty value
reflecting her expected evaluation outcome. Users with high
errors or disordered item rankings receive a high difficulty
value. Contrarily, we assign low difficulty values to users
exhibiting low errors and well ordered item rankings. Rec-
ommender systems benefit from those difficulty value two-
fold. First, optimization can target difficult users who re-
quire such efforts. On the other hand, the recommender
system can provide users with low difficulty values with rec-
ommendations generated by more trivial methods. Recom-
mending most popular items represents such an approach.
Second, difficulty values enable the system to estimate how
likely a specific user will perceive the recommendations as
adequate. Thereby, the system can control interactions with
users, e.g. by asking for additional ratings to provide better
recommendations for particularly difficult users.

2. RELATED WORK
Adomavicius and Tuzhilin reveal possible extensions to

recommender systems [1]. They mention an enhanced un-
derstanding of the user as one such extension. Our work
attempts to contribute to this by defining a user’s difficulty.
Hereby, the system estimates a user’s likely perception of
the recommendations. The methods performing best on the
well-known Netflix Prize Challenge had applied ensemble
techniques to further improve their rating prediction accu-
racy [3, 11]. Both do not state an explicit modeling of rec-
ommendation difficulty on the user-level. However, ensem-

30

pablo
Retângulo

ble techniques involve an implicit presence of such a con-
cept. Combining the outcome of several recommendation
algorithms does make sense in case a single recommenda-
tion algorithm fails for a subset of users. Such an effect is
consequently compensated by including other recommenda-
tion algorithms’ outcomes. Bellogin presents an approach
to predict a recommender systems performance [4]. How-
ever, the evaluation is reported on the system level aver-
aging evaluation measures over the full set of users. Our
approach focuses on predicting the user-level difficulty. Ko-
ren and Sill introduced a recommendation algorithms that
outputs confidence values [8]. Those confidence values could
be regarded as difficulty. However, the confidence values are
algorithm specific. We require the difficulty score’s valid-
ity to generally hold. The concept of evaluation considering
difficulty has been introduced in other domains. Aslam and
Pavlu investigated estimation of a query’s difficulty in the
context of information retrieval [2]. Their approach bases
on the diversity of retrieved lists of documents by several
IR systems. Strong agreement with respect to the docu-
ment ranking indicates a low level of difficulty. In contrast,
highly diverse rankings suggest a high level of difficulty. He
et al. describe another approach to estimate a query’s dif-
ficulty [6]. Their method compares the content of retrieved
documents and computes a coherence score. They assume
that in case highly coherent documents are retrieved the
query is clear and thus less difficult than a query resulting in
minor coherency. Genetic Algorithms represent another do-
main where difficulty has received the research community’s
attention. However, the difficulty is determined by the fit-
ness landscape of the respective problem [5, 6]. Kuncheva
and Whitaker investigated diversity in the context of a clas-
sification scenario [9]. Concerning a query’s difficulty, di-
versity has been found an appropriate measure [2]. We will
adapt two diversity measures applied in the classification
scenario for determining the difficulty to recommend a user
items.

3. METHOD
We strive to determine the difficulty of the recommenda-

tion task for a given user. Formally, we are looking for a
map δ(u) : U 7→ [0; 1] that assigns each user u ∈ U a real
number between 0 and 1 corresponding to the level of diffi-
culty. For one recommendation algorithm the difficulty for
a given user could be simply determined by a (normalized)
evaluation measure, e.g. RMSE. However, such a difficulty
would not be valid for other recommendation algorithms.
In addition, recommender systems optimized with respect
to the item ranking would likely end up with different dif-
ficulty values. We adapt the idea of measuring difficulty
in terms of diversity to overcome those issues. We assume
the recommender systems comprises several recommenda-
tions methods, denoted A = {A1, A2, . . . , An}. Each such
An generates rating predictions along with item rankings
for a given user u. We choose RMSE to evaluate the rat-
ing predictions and NDCG to assess the item ranking, re-
spectively. We measure a user’s difficulty by means of the
diversity of those rating predictions and item rankings. For
that purpose, we adjusted two diversity metrics introduced
by Kuncheva and Whitaker for classification ensembles [9].
We alter the pair-wise Q statistics to fit the item ranking
scenario. Regarding the rating prediction we adapt the dif-
ficulty measure θ.

3.1 Q statistics
Applied to the classification ensemble setting, theQ statis-

tics base on a confusion matrix. The confusion matrix con-
fronts two classifiers in a binary manner - correctly classified
versus incorrectly classified. We need to adjust this set-
ting to fit the item ranking scenario. Table 1 illustrates the
adjusted confusion matrix. We count all correctly ranked
items as well as all incorrectly ranked items for both recom-
mendations algorithms. Subsequently, the confusion matrix
displays the overlap of those items sets. Equation 1 rep-
resents the Q statistic derived from the confusion matrix.
Note that the Q statistic measures diversity in between two
recommender algorithms. Hence, we need to average the Q
statistic values obtained for all comparisons in between the
available algorithms. Equation 2 computes the final diver-
sity measure.

Qij(u) =
N11N00 −N01N10

N11N00 +N10N01
(1)

QA(u) =

(
|A|
2

)−1 ∑
Ai,Aj∈A

Qij (2)

3.2 Difficutly measure θ

Kuncheva and Whitaker introduce the difficulty measure
θ as a non-pairwise measure [9]. θ allows us to consider
several recommendation algorithms simultaneously. We it-
erate over the set of withhold items for the given user. At
each step we compute the RMSE for all recommendation
algorithms at hand. Thereby, we observe the variance in
between all recommender algorithms’ RMSE values. The
average variance displays how diverse the user is perceived
by the set of recommendation algorithms. Equation 3 cal-
culates θ. I denotes the set of items in the target user’s test
set. The σ(i) function computes the variances in between
the recommendation algorithms’ RMSE values for the given
item.

θ(u) =
1

|I|
∑
i∈I

σ(i) (3)

3.3 Difficulty measure δ

We attempt to formulate a robust difficulty measure for
recommender systems. Therefore, we propose a combination
of the Q statistic and θ. As a result, both RMSE and NDCG
are considered. The more recommendation algorithms we
include the more robust the final difficulty value will be.
Equation 4 displays a linear combination of both measures.
The parameter λ ∈ [0; 1] controls the weighting. λ = 1
allows to focus on the ranking task. The absence of rating
values might require such a setting.

δ(u|A) = λ ·QA(u) + (1− λ) · θ(u) (4)

4. EXPERIMENTAL SETTING
We will evaluate the proposed difficulty measure δ and

subsequently outline the intended experimental protocol. Sev-
eral data sets, such as Movielens 10M, Netflix and Last.fm
provide the required data. We will implement item-based

31

Ai: rank(k) ≤ rank(l) Ai: rank(k) > rank(l)

Aj : rank(k) ≤ rank(l) N11 N10

Aj : rank(k) > rank(l) N01 N00

Where rank(k) ≤ rank(l) is true.

Table 1: Adjusted confusion matrix

and user-based neighborhood recommenders, matrix factor-
ization recommenders along with slope-one recommenders.
All those recommendation methods do not require data ex-
cept user preferences. As a first step, we split each data sets
in three partitions. The first partition will be used for train-
ing and the second partition to assign each user a difficulty
score according to Equation 4. Finally, the third partition
will be used as evaluation data set. The subset of users
with comparably low difficulty score will receive recommen-
dations based on a non-optimized recommendation method
such as the most popular recommender. The subset of users
with medium difficulty score will receive recommendations
generated by slightly optimized recommender algorithms.
Finally, the particularly hard users will receive recommenda-
tions generated by highly optimized recommenders. We will
compare both required efforts and recommendation quality
against approaches dealing with all users in the same ways.
Such approaches will include optimizing recommenders to
perform well averaged over the full set of users and recom-
mending all users with trivial recommenders, for instance
most popular recommendations. Our hypothesis is that the
difficulty score will allow us to achieve lower costs along with
a comparably high recommendation quality by selecting an
appropriate recommendation algorithm for a given user. In
addition, we will observe what user characteristics determine
her difficulty.

5. CONCLUSION AND FUTURE WORK
We introduced the notion of difficulty in the context of

recommending items to users. Measuring that task’s dif-
ficulty on user-level allows a more personalized optimiza-
tion of recommender systems. Users with comparably low
difficulty scores receive adequate recommendations without
much efforts. On the other hand, users with a compara-
bly high difficulty score may be asked to provide additional
data to improve the system’s individual perception. A com-
bination of the Q statistic and the difficulty measure θ -
both adjusted to fit the recommendation scenario - allows
us to measure the difficulty for a given user. The calculation
requires a sufficiently large data set containing user prefer-
ences on items along with a set of implemented recommen-
dation algorithms. We introduced an experimental setting
that we will use to evaluate the presented methodology in
section 4. In addition, we intend to apply pattern recog-
nition techniques to find correlations between the difficulty
score and user characteristics. For instance, the number
of ratings is known to correlate with the difficulty for new
users (”cold-start problem”) and users with a large number
of items (”power-users”) [10].

6. ACKNOWLEDGEMENTS
This work is funded by the DFG (Deutsche Forschungs-

gemeinschaft) in the scope of the LSR project.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transaction on Knowledge and Data Engineering,
17(6):734–749, 2005.

[2] J. A. Aslam and V. Pavlu. Query hardness estimation
using jensen-shannon divergence among multiple
scoring functions. In Proceedings of the 29th European
conference on IR research, ECIR’07, pages 198–209,
2007.

[3] R. M. Bell and Y. Koren. Lessons from the netflix
prize challenge. SIGKDD Explor. Newsl., 9(2):75–79,
2007.

[4] A. Bellogin. Predicting performance in recommender
systems. In Proceedings of the fifth ACM conference
on Recommender systems, pages 371–374. ACM, 2011.

[5] M. Hauschild and M. Pelikan. Advanced
neighborhoods and problem difficulty measures. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages
625–632, 2011.

[6] J. He, M. Larson, and M. De Rijke. Using
coherence-based measures to predict query difficulty.
In Proceedings of the IR research, 30th European
conference on Advances in information retrieval,
ECIR’08, pages 689–694, 2008.

[7] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

[8] Y. Koren and J. Sill. Ordrec: an ordinal model for
predicting personalized item rating distributions. In
Proceedings of the fifth ACM conference on
Recommender systems, RecSys ’11, pages 117–124,
New York, NY, USA, 2011. ACM.

[9] L. Kuncheva and C. Whitaker. Measures of diversity
in classifier ensembles and their relationship with the
ensemble accuracy. Machine Learning, 51:181–207,
2003.

[10] A. Said, B. Jain, and S. Albayrak. Analyzing
weighting schemes in collaborative filtering: Cold
start, post cold start and power users. In 27th ACM
Symposium On Applied Computing (SAC ’12), New
York, NY, USA, 2012. ACM.

[11] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Major
components of the gravity recommendation system.
SIGKDD Explorations, 9(2), 2007.

[12] S. Vargas and P. Castells. Rank and relevance in
novelty and diversity metrics for recommender
systems. In Proceedings of the fifth ACM conference
on Recommender systems, RecSys ’11, pages 109–116,
New York, NY, USA, 2011. ACM.

32

Insights on Social Recommender System

Wolney L. de Mello Neto
Vrije Universiteit Brussel

CoMo Lab
Brussels, Belgium

wdemello@vub.ac.be

Ann Nowé
Vrije Universiteit Brussel

CoMo Lab
Brussels, Belgium

ann.nowe@vub.ac.be

ABSTRACT
Recommender Systems (RS) algorithms are growing more
and more complex to follow requirements from real-world
applications. Nevertheless, the slight improvement they of-
ten bring may not compensate the considerable increase in
algorithmic complexity and decrease in computational per-
formance. Contrarily, context aspects such as social aware-
ness are still not much explored. In view of that, this paper
proposes insights on how to possibly achieve more efficient
and accurate predictions for recommendations by exploring
multiple dimensions of a RS architecture. A framework is
designed, comprised of a Facebook application called My-
PopCorn and some scenarios of user neighborhood RSs are
proposed. The first one investigates how to recommend
movies based on a narrowed subset of collaborative data,
extracted from the social connections of the active user.
Secondly, connections between users enable a solution for
the cold-start problem. Preferences from social connections
are aggregated, producing a temporary profile of the new
user. Finally, a third dimension is explored regarding evalu-
ation metrics. Results from traditional evaluation by offline
cross-validation are compared to measuring prediction ac-
curacy of online feedback data. These insights propose how
community-based RS designs might take advantage of so-
cial context features. Results show that all three proposed
solutions perform better assuming some conditions. Social
neighborhoods can often provide representative data for col-
laborative filtering user-neighborhood techniques, improving
a lot the RS performance in terms of computational com-
plexity metric without compromising prediction accuracy.
Assuming a user has a dense social network, the cold-start
problem can be easily tackled. Finally, rating prediction ac-
curacy performs better when evaluated online than by offline
cross-validation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Search and Retrieval]: Collabora-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s). Workshop on Recommendation
Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with
ACM RecSys 2012. September 9, 2012, Dublin, Ireland.
.

tive Filtering; D.2.8 [Software Engineering]: Metrics—
complexity measures, performance measures

Keywords
Recommender System, Collaborative Filtering, Social Rec-
ommenders, Cold-Start Problem, Evaluation Metrics

1. INTRODUCTION
Our generation faces several tough challenges within the

current peta-, exa- or even zettabyte information era. Every
day we deal with huge amounts of information whose ma-
nipulation and storage struggles even on high-end computer
technologies. Shifting from the point of view of computer
capacity to an average single person, the problem gets even
worse due to human being limitations. Online services are
examples of big data resources with increasing importance in
our lives. About two years ago, Google’s search engine used
to process approximately half of the entire written works of
mankind per day [6]. Nowadays, it is impossible to avoid
such reality while working, studying, and entertaining your-
self. Perhaps this information overload comes with high cost,
nevertheless, high benefit as well.

Movie domain is a great context where information over-
load is a high potential pain point to be explored. Moreover,
Netflix movie streaming service is a good motivation for this
work due to two main reasons. Firstly, figures disclosed in
[1] mention 75% of their sales come from recommendations.
Secondly, [1] reveals the decision of not implementing com-
mercially the algorithm with around 10% improvement in
prediction accuracy, winner of US$ 1 million prize[8]. Tak-
ing these facts into account, what would be the most poten-
tial path to explore within the field of RSs? Is accuracy the
most important metric to take into account? What about
computational complexity and transparency? What about
online instead of offline evaluation methods?

Rather than building upon complex RS methods, this pa-
per investigates a social framework for developing state-of-
the-art RS. Aiming at current main challenges, this paper
proposes contributions on how to tackle some of its most rel-
evant issues based on possibilities enabled by social context
information. The three explored RS challenges are: (i) per-
formance issues related to scalability of recommender sys-
tems; (ii) lack of knowledge about new users, known as cold
start problem; and (iii) definition of good evaluation meth-
ods.

Some insights are discussed based on how social-graph
data enable a good implementation of a user neighborhood
RS algorithm, focusing not only on prediction accuracy but

33

pablo
Retângulo

also on other metrics such as scalability, computational com-
plexity and transparency. These insights lead to 3 hypothe-
ses listed below:

i. A user’s social neighborhood is sufficiently representa-
tive to provide efficient, in the sense of computational
complexity, and effective recommendations, in terms
of prediction accuracy;

ii. Social neighborhood connections can derive assump-
tions about new users taste, avoiding the cold-start
problem;

iii. Online evaluation of transparent recommendations should
be a valid metric within social RSs.

2. RELATED WORK
In the introduction of the latest survey in RS field, [15]

highlights current challenges for RSs. Some of them are
investigated hereby, such as follows:

Scalability In real-world applications, the number of in-
stances might often steeply increase in multiple dimensions
such as number of users, items and, in turn, user-item pref-
erence signals. Despite being a good scenario for some RS
algorithms to achieve better accuracy, bigger datasets may
lead to a great increase in computational complexity.

[7] proposes an evaluation of top-N recommendation algo-
rithms. Item-based RS is proposed as an alternative for non-
scalable user-based recommenders, since it performs bet-
ter when there are many more users than items. Some
other item-based RSs avoiding scalability problems within
memory-based CF algorithms are compared in [16].

Regarding model-based CF techniques, [17] follows a rea-
soning that is similar to the solution presented in Section
4.1, since both look for a narrowed neighborhood which
does not to compromise general performance. Whereas the
cited papers are based on clustering techniques, our heuris-
tic consists of narrowing the database to a subset of user
social-graph connections. Although scalability is an intrin-
sic disadvantage to user-based RS, the proposition of a local
neighborhood might overcome this drawback. User-based
RS is adopted since it enables some features related to the
social RSs, such as transparent explanations for each recom-
mendation;

Data Sparsity It is among the main bottlenecks for RSs.
The lack of information is a big problem, especially during
first interactions of a new user. This scenario is defined as
the cold start or new user problem, which is traditionally
solved by requiring initial user information before any rec-
ommendation is given. Nevertheless, this interaction is time
consuming, since the user has to look for a couple of items
to rate. To improve that, [14] has compared 6 techniques
to generate this first list of items, aiming to maximize the
percentage of rated items out of all items presented to a new
user.

Besides requiring this first interaction with the RS, one
could think of a temporary user profile in order to enable
initial recommendations. [11] explores trust networks and
propose the incorporation of preferences from trusted users.
Nevertheless, the new user still has to explicitly provide in-
formation about who are his/her trusted users. Our work
retrieves implicit information from social networks, regard-
less trust measurements. The method consists of retrieving

social connections and building a virtual profile based on ag-
gregation methods, originally proposed for group RSs. [13]
describes 10 aggregation methods and empirically concludes
that social-based think is the best basis for generating an
artificial preference profile. The author claims that Least
Misery, Average and Average without Misery are the most
human-like reasoning techniques, achieving very good re-
sults.

Transparency Users eventually question themselves about
the reasoning behind a recommendation. They are more in-
clined to accept and evaluate better once they understand
how an item has been suggested to him or her. Neverthe-
less, it is not always possible to provide such a transpar-
ent explanation. [9] presents a survey on content-based RS
and compares them to CF techniques also in terms of trans-
parency. The authors claim CF techniques are a black box,
and it is indeed the truth for most cases. In the case of
user-neighborhood RSs, although RSs could tell to the ac-
tive user about people with close taste that influenced the
recommendation, privacy issues may not allow such trans-
parency. In view of this challenge, this paper counteracts
the affirmation made by the previously cited survey. It is
possible to give explanation on user-based collaborative fil-
tering technique once one assumes not having privacy issues,
a tractable scenario within social networks, where connec-
tions previously agree on sharing some information. Besides
this proposal, some solutions to tackle CF limitations related
to transparency are proposed in [4].

Evaluation One of the main modules of a RS design,
evaluation strategy is a critical and subjective aspect to be
shaped throughout the whole process of building and main-
taining a RS. Even though most papers adopt accuracy as
the most important metric, one should consider many other
evaluation criteria, as presented in [5]. Computational com-
plexity is one metric highlighted in the insight presented in
Section 4.1. Transparency is enabled by social context, as
discussed in Section 3.1.3. Besides exploring metrics, this
paper also focus on questioning methods (see Section 4.3).
Offline and online methods should be compared while mea-
suring rating prediction accuracy.

2.1 Social Recommenders
In view of all issues previously listed and the fact some

state-of-the-art architectures might not be that attractive
for commercial purposes, this paper dives into a RS de-
sign that is gaining special attention: Social RSs. Also
called community-based recommenders, the basic architec-
ture embeds context data into either collaborative filtering
or content-based algorithms, improving the RS performance.
According to [15], community-based paradigm is still a hot
topic and it is not possible to find a consensus about whether
social recommenders have better performance. [19] presents
a broad survey on social recommenders. One could see so-
cial data in two ways: (i) unweighted social graph; (ii) or a
more complex weighted social-graph. The former has been
selected for this paper experiments based on empirical con-
clusions made by [2] while comparing CF and Social Filter-
ing. Similarities between friends were in average higher than
the same correlation measurement between non-connected
users. Moreover, both weighted and basic social RSs per-
formed the same or better than pure collaborative filtering
RSs for the referred case.

Further than looking at social connections, the latter is

34

Table 1: MyPopCorn and GroupLens datasets.
Users Ratings Movies

MyPopCorn 129 14k 3k
GroupLens 72k 10M 10k

a trust-based RS that focuses on weighted relationships. A
clear comparison between social RS and trust-based RS is
defined in [10]. Moreover, [3] highlights the possibility of ex-
plaining recommendations based on social connections and
the fact active users rate better the RS in case of existing
such transparency. Finally, the social RS described hereby
profits from an unweighted social graph.

3. FRAMEWORK
As claimed in [15, pg 15], the context in which a RS is

developed and its expected features determine the optimal
algorithm to be adopted. Parameters such as movie do-
main, social community context, rating strategy and sparse
data were definitely crucial to come up with the final ar-
chitecture described hereby. A Facebook application called
MyPopCorn1, the RS front-end, and a social based imple-
mentation of user neighborhood CF algorithm compose the
current framework, to be presented in the two following sec-
tions.

3.1 MyPopCorn, a Facebook app as Front-End
The idea of building this movie recommender system and

making it available on a social network is due to the fact
social graph enables proposed recommendation experiments
based on social neighborhoods. Moreover, the capability of
recommending to an active user and receiving an online feed-
back on rating prediction accuracy on recommended items
is decisive to benchmark the implemented algorithms.

MyPopCorn is a web movie recommender system. Some
of its interfaces are composed as follows:

First screen presents a brief description of the main fea-
tures before the user joins the application. After that, an
active user can check statistics about top users and friends;

MyTaste is where a user can rate movies. Recommendation-
wise, this is one of the main interactions with the user, in
which RS collects data;

My Friends’ Taste presents a list of friends and their
respective number of ratings. The more ratings each friend
has, the bigger his or her basket gets.

3.1.1 Social-Graph Data
The first collaborative data with ratings over movies were

taken from GroupLens 10M dataset. From that point, the
database was increased with ratings from users of MyPop-
Corn. Information about users, friendships are also made
persistent into the same database. The dataset used for the
experiments is summarized in Table 1.

In a very short timeframe, the application was accepted
by a good number of users. Almost 130 active users have
been exploring the application during 2 months time. Figure
1 illustrates all users who contributed for the experiments
carried out into this paper. The more movies a user rates,
the bigger the node is represented in the social graph. The
average degree of connections in this graph was 10.543.

1http://mypopcorn.info/

Figure 1: Social Graph representation of MyPop-
Corn database.

3.1.2 Rating Strategy
In MyPopCorn, the user can choose a rating from 1 to

5 ‘stars’. Asymmetric labels were defined for each of the 5
stars to achieve a more homogeneous judgment, namely Bad,
Regular, Good, Great and Masterpiece. Test users reported
good feedback on the proposed rating strategy claiming this
discrete labeled design is certainly more intelligible, where
users can have a hint of what each rating value may rep-
resent. While following such design, this research aims at
reducing subjectivity that is intrinsic to rating process, the
core interaction responsible for obtaining the main input of
a Collaborative Filtering RS. This strategy also prevents the
necessity of the RS to normalize user ratings.

3.1.3 Recommendation Strategy
Recommendations are generated from two implementa-

tions of user neighborhood recommenders, such as follows:

• Provided by a traditional user-based RS. The neigh-
borhood calculated among all users in the database;

• Provided by a social-graph user-based RS. A social
neighborhood is based on the set of active user friends,
to be described in more details in the next section.

A shuffled list of recommendations generated by both RS
implementations is presented to the user. Movie description
and a continuous predicted value is presented. Therefore,
recommendations are seen as a regression and not a clas-
sification problem within this framework. Finally, at the
bottom of the frame one can see the explanation about each
recommendation(see Figure 2). In the first example on light
blue background, a message informs the recommendation
was “Based on all MyPopCorn database“. Alternatively, the
second message informs that is was “Based on friends with
closest taste“, followed by the list of users Friend X and
Friend Y.

Figure 2: Recommendation strategy in MyPopCorn.

35

This system is designed to give the most transparent rec-
ommendations possible. In view of that, the reasoning be-
hind the RS can be better understood by presenting the
real number as predicted rating value. Furthermore, ex-
plaining the recommendation with a list of users will trans-
form a formerly impersonal recommendation into a social
passive interaction between friends. Due to privacy issues,
presenting this list is only possible for the social neighbor-
hood approach, where content sharing among users is agreed
in advance.

3.2 Movie RS Back-End
The final architecture of the social-graph recommender

was developed on top of the user-based RS implementation
provided in Mahout2. User neighborhood CF paradigm has
close reasoning to social user behavior, being the most rel-
evant criterion that influenced this design choice. In pos-
session of information about users taste, this user-centered
method focus on comparing similarity among users. Fur-
thermore, friendship data will be essential to enable modifi-
cations on the original algorithm. Insights on how to profit
from social context information in different dimensions will
be addressed below.

4. INSIGHTS ON RS CHALLENGES
As the title suggests, solutions to the current RS chal-

lenges listed in Related Work are described in this section.
Each of the following implemented scenarios tackle three
main challenges previously mentioned, namely computational
complexity issues of scalable user-neighborhood RSs; sparse
data about new users, known as cold start problem; and
definition of optimal evaluation methods for transparent and
non-transparent recommendations.

4.1 Social Neighborhood
The idea of narrowing the dataset to a subset of users

aims to tackle scalability constraints and increase real-time
performance, two issues that are intrinsic to user-based RS
[7]. Assuming that calculating an active user’s neighborhood
(comprised of k similar users) among his or her social con-
nections might be representative enough, good recommenda-
tions could be achieved without the necessity of comparing
a user preference vector with all other users in the database.
This hypothesis is based on a related work comparing the
correlation between users similarity and the binary fact of
being or not being friends[2]. It was observed that similar-
ities between friends are in average higher than the same
correlation measurement between non-connected users.

Experiments were performed in order to investigate the
three insights proposed above. A standard user-based neigh-
borhood RS setup is incrementally modified from the current
insight until the third one. This scenario focus on predict-
ing ratings contained in a training set comprised of 5% of all
14.367 ratings provided by MyPopCorn users. The reason
for not adding any rating from GroupLens into the training
set of the standard neighborhood is allow a fair comparison
between both neighborhoods. By applying two strategies,
namely Standard full neighborhood and hereby proposed
Social one, some hypotheses are tested: (i) Real-time rec-
ommendation performance will become much more efficient
while adopting social neighborhood; (ii) Rating prediction

2Apache Mahout machine learning library

accuracy from social neighborhood recommendations will be
as much precise as in the standard method.

For the proposed experiment methods, standard neighbor-
hood RS performs around 70k calculations, the number of all
users in the merged dataset. In the case of social neighbor-
hood, the number of comparisons is relative to the degree of
each node (user) in the social graph, which varies from 0 to
49 for MyPopCorn dataset with an average degree of 10.543.
Concerning average runtime, whereas prediction process for
one rating takes around 950.55 ms for standard neighbor-
hood, after narrowing the search space to the set of social
connections, it takes in average 69.975 ms, 92.63% lower.
Regarding accuracy, Figure 3 presents prediction accuracy
error for this new neighborhood compared to the standard
implementation. Both implementations were compared by
varying the size of the neighborhood k while experimenting
two values of threshold t=1 and t=2. This threshold defines
the minimum number users in the neighborhood that rated
a same candidate item. When t=2, the items rated by only
one user in the neighborhood are not taken into account.

Figure 3: Standard and Social Neighborhoods pre-
diction accuracy (RMSE).

The minimum RMSE = 0.8385664 was obtained by Stan-
dard neighborhood (k=3,t=2). Besides that, Social (k=2,t=2)
achieved RMSE = 1.018598. Surprisingly, rating prediction
accuracy also improved. Except for values of k neighbors
equal to 2 and 3, Social Neighborhood outperforms, in av-
erage, the standard method, confirming the first hypothesis
for this scenario. Besides that, the value of threshold t=2
performs better. The fact of accepting only items rated by
at least two users might have increased the confidence on
preference data, achieving better accuracy results. On the
contrary, hypothesis 2 was surprisingly refuted. Instead of
performing almost the same as in the original approach, So-
cial Neighborhood can significantly outperform prediction
accuracy for k > 3. While increasing the value of k, such so-
cial neighborhood enables a more accurate predictions and,
probably, reaching higher serendipity.

Remark: This approach is not available for people with
no or few friends, suffering from the cold start problem, to
be solved next.

36

4.2 Social Aggregation for Cold-start Problem
One of the main issues related to RS, the cold-start prob-

lem or new-user problem prohibit some active users to re-
ceive recommendations. In the dataset used for all experi-
ments, 21 users out of 129 have rated less than 10 movies,
while others more than a thousand. These users with few
ratings are almost unable to receive any recommendation.

Instead of adopting the classic approaches such as content-
based or presenting a list to be rated as from the first user
interaction, this paper proposes a solution based on social-
graph information. It is based strategy from group RS based
on aggregating user profiles. One could see this problem
following the quote “Tell me who your friends are and I will
tell you who you are“. This reasoning is also motivated by
the work carried out in [2], where social filtering is explored
and conclusions reinforce the suggested heuristic. Likewise,
[?] developed a probabilistic RS and achieved good results
in experiments where active users were recommended items
based on the preferences of his or her social connections.
On the contrary, the idea presented in this paper follows
the same reasoning of absorbing social context data into
the system to solve the cold-start problem, nevertheless, by
different means (based on group RS) and in a different RS
implementation technique (user neighborhood RS).

Among some aggregation techniques mentioned in the Re-
lated Work, Average without Misery is adopted, since it finds
a balance between the Least Misery and Average. It pre-
serves the main advantages of both aggregation strategies
originally applied to group RS and now reflected in the ag-
gregated virtual profile to be considered by our single-user
RS. It follows the human-like reasoning in which a group of
people tend to select items that please, in average, most per-
sons involved. Moreover, it excludes items once rated below
a defined threshold, as described by [13]. The same author
proposed such aggregation for solving the cold-start problem
in [12], although in a different RS paradigm. Experiments
were run in order to test the following hypothesis: (i) Rec-
ommendation accuracy for aggregated virtual social profile
performs not much worse than cross-validation of real rat-
ings. Hence, it would be a feasible solution to the cold-start
problem.

The social neighborhood method was adopted with pa-
rameters k=4 and t=1, so that the most number of pre-
dictions are enabled. The idea here is to investigate how
many active users had the cold-start problem, meaning their
neighborhoods were empty. While repeating the experi-
ments from last section in 5% of MyPopCorn ratings dataset,
around 103 users were in the testset. Nevertheless, RS could
not estimate any rating for 13 users due to empty neighbor-
hood issue. 6 users had no social connections, what can
not be solved by the method proposed here. The remaining
7 users had their ratings predicted with accuracy error of
RMSE = 1.69588.

One should raise the question that this is not much data,
referring to the tiny set of 7 users. In view of that, an-
other experiment has been run on 50% of ratings in MyPop-
Corn dataset. Ratings of 44 users experiencing the cold-
start problem were hidden iteratively in order to be pre-
dicted by the RS. Foreach of the 44 users, the RS generated
a virtual profile based on aggregating all ratings from their
friends, including those removed in order to artificially cause
the cold-start problem. Only 8 new users(18%) could not be
helped by this method of aggregation due to the fact of hav-

ing no social connections. Prediction accuracy error was
RMSE = 1.37461.

Compared to the accuracy evaluated in the experiments
of previous sections (RMSE = 1.173435 for k=4, t=1),
this proposed solution to the cold-start problem has de-
creased performance in around 20%, considering the RMSE
= 1.37461. In view of that, the proposed solution is con-
sidered to be a good alternative for social RSs. Besides
not compromising the prediction accuracy significantly, this
method should be considered in terms of how efficient the RS
can deal with new users that are not interested in providing
many ratings as from the first interaction. Despite not be-
ing an objective metric, the ability of solving the cold-start
should be incorporated into RS evaluation.

4.3 Comparison of Evaluation Methods
While the first insight focuses on the two objective evalua-

tion metrics, namely prediction accuracy and computational
complexity, this insight focuses on transparency, a subjective
metric, and evaluation methods. The most popular evalua-
tion metric throughout RS state-of-the-art, prediction accu-
racy benchmark is often based on offline cross-validation and
error calculation over Root Mean Squared Error - RMSE. In
view of that, this third and last section compares offline and
online methods of calculating estimation accuracy together
with more transparent recommendations based on social ex-
planation. One hypothesis is that this online method might
make offline approach suboptimal for the context of social
recommenders. Instead of cross-validation, one should con-
sider the social factor involved within online evaluation. Due
to the strategy of recommending a list of movies whose pre-
dicted ratings might not be always high and to make it more
transparent, the predicted value is presented to the active
user. Assuming that not many people tend to converge with
the RS prediction, this strategy will not bias the compari-
son. Actually, we believe there are people who also try to
diverge from what has been predicted.

The current experiment intends to test the effect of ex-
plained recommendations, as previously described in [18],
but now in the context of social RSs, as defined in the fol-
lowing hypothesis: (i) Assuming social RSs where recom-
mendations based on social connections are explained, rat-
ing estimation accuracy achieve better results if evaluated
online, instead of offline.

Besides RMSE, metrics such as novelty or serendipity were
taken into account while choosing higher values of k other
than the ones that reached minimum accuracy, shown in
Figure 3. Although the same number of recommendations
with standard and social neighborhood were generated, ac-
tive users gave more feedback on the social ones. 119 online
feedbacks were provided, as presented in Table 2 in compar-
ison with the traditional offline method.

As Table 2 shows, Standard Neighborhood method achieved
a prediction accuracy of 1.0646 and Social Neighborhood RS
setup achieved better rating prediction accuracy of RMSE
= 0.9952. Both of them presented an improvement when
evaluated online other than offline. The decrease in RMSE
was of 14.16% and 6.64%.

Hypothesis was confirmed by the numbers shown in Table
2. Surprisingly, online evaluation accuracy with Standard
Neighborhood improved better (14.16%) than 6.64% gain
achieved by Social Neighborhood strategy. Finally, results
have shown that, in average, RSs tend to present better

37

Table 2: Online evaluation of social and standard
neighborhood.

Std. N. Social N.
Setup k=8, t=2 k=4, t=2
Offline
RMSE 1.240429 1.066049
Online
RMSE 1.064686 0.995211
Improvement 14.16% 6.64%

accuracy results in online evaluations than offline for both
explained and non-explained recommendations.

5. CONCLUSIONS
This paper first discussed the computational requirements

intrinsic to user neighborhood RS, by nature a non-scalable
algorithm. Based on the two most important evaluation
metrics, state space reduction enabled a decrease of 92.63%
in computational complexity, while not compromising accu-
racy. Instead, the latter also improved.

Social graph was essential to enable a solution to the cold-
start problem. Tested with success in group RS, Average
without Misery enabled creation of virtual profiles based on
active users network. Results confirmed the proposed hy-
pothesis, indicating this solution as a good alternative to
this issue while presenting a decrease on prediction accu-
racy of only 20% by cross-validation.

Another important achievement was caused by transpar-
ent recommendations. Results from the third insight turn
prediction accuracy by cross-validation an even more ques-
tionable benchmark method. Both neighborhood formation
methods presented a considerable improvement of 6.64%
and 14.12%. While choosing online evaluation methods, one
could have better conclusions about the RS quality.

6. ACKNOWLEDGMENTS
This research is part of a master studies sponsored by

Monesia: MObility Network Europe-Southamerica: an Insti-
tutional Approach, an Erasmus Mundus External Coopera-
tion Window.

Thanks Lucas Carvalho, researcher at Federal University
of Sergipe - Brazil, for cooperating on the development of
the Facebook application named MyPopCorn.

7. REFERENCES
[1] X. Amatriain and J. Basilico. Netflix

recommendations: Beyond the 5 stars, 2012.

[2] G. Groh and C. Ehmig. Recommendations in taste
related domains: collaborative filtering vs. social
filtering. In Proceedings of the 2007 international
ACM conference on Supporting group work, pages
127–136. Citeseer, 2007.

[3] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel,
S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on
social relations. In Proceedings of the third ACM
conference on Recommender systems, pages 53–60.
ACM, 2009.

[4] J. Herlocker and J. Konstan. Explaining collaborative
filtering recommendations. of the 2000 ACM
conference on, pages 241–250, 2000.

[5] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems
(TOIS), 22(1):5–53, 2004.

[6] D. Infographic. Visualizing the petabyte age, 2010.

[7] G. Karypis. Evaluation of item-based top-n
recommendation algorithms. In Proceedings of the
tenth international conference on Information and
knowledge management, pages 247–254. ACM, 2001.

[8] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[9] P. Lops, M. Gemmis, and G. Semeraro. Content-based
recommender systems: State of the art and trends.
Recommender Systems Handbook, pages 73–105, 2011.

[10] H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King.
Recommender systems with social regularization. In
Proceedings of the fourth ACM international
conference on Web search and data mining, pages
287–296. ACM, 2011.

[11] P. Massa and P. Avesani. Trust-aware collaborative
filtering for recommender systems. On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and
ODBASE, pages 492–508, 2004.

[12] J. Masthoff. Modeling the multiple people that are
me. User Modeling 2003, pages 146–146, 2003.

[13] J. Masthoff. Group modeling: Selecting a sequence of
television items to suit a group of viewers. User
Modeling and User-Adapted Interaction, 14(1):37–85,
2004.

[14] A. Rashid, I. Albert, D. Cosley, S. Lam, S. McNee,
J. Konstan, and J. Riedl. Getting to know you:
learning new user preferences in recommender systems.
In Proceedings of the 7th international conference on
Intelligent user interfaces, pages 127–134. ACM, 2002.

[15] F. Ricci, L. Rokach, and B. Shapira. Introduction to
recommender systems handbook. Recommender
Systems Handbook, pages 1–35, 2011.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295. ACM,
2001.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering. In
Proceedings of the Fifth International Conference on
Computer and Information Technology, pages
158–167, 2002.

[18] N. Tintarev and J. Masthoff. Designing and evaluating
explanations for recommender systems. Recommender
Systems Handbook, pages 479–510, 2011.

[19] P. Victor, M. Cock, and C. Cornelis. Trust and
recommendations. Recommender Systems Handbook,
pages 645–675, 2011.

38

User Evaluation of Fusion-based Approach for
Serendipity-oriented Recommender System

Kenta Oku
College of Information Science and Engineering,

Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu City

Shiga, Japan
oku@fc.ritsumei.ac.jp

Fumio Hattori
College of Information Science and Engineering,

Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu City

Shiga, Japan
fhattori@is.ritsumei.ac.jp

ABSTRACT
In recent years, studies have focused on the development of
recommender systems that consider measures that go be-
yond simply the accuracy of the system. One such measure,
serendipity, is de�ned as a measure that indicates how the
recommender system can �nd unexpected and useful items
for users. We have previously proposed a fusion-based rec-
ommender system as a serendipity-oriented recommender
system. In this study, we improve upon this system by con-
sidering the concept of serendipity. Our system possesses
mechanisms that can cause extrinsic and intrinsic accidents,
and it enables users to derive some value from such acci-
dents through their sagacity. We consider that such mech-
anisms are required for the development of the serendipity-
oriented recommender system. The key idea of this system is
the fusion-based approach, through which the system mixes
two user-input items to �nd new items that have the mixed
features. The contributions of this paper are as follows:
providing an improved fusion-based recommender system
that adopts a fusion-based approach to improve serendip-
ity; practically evaluating the recommender system through
user tests using a real book data set from Rakuten Books;
and showing the e�ectiveness of the system compared to
recommender systems on websites such as Amazon from the
viewpoint of serendipity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Fil-
tering

General Terms
Experimentation

Keywords
Recommender systems, Serendipity-oriented recommender
systems, Serendipity

Copyright is held by the author/owner(s). Workshop on Recommendation
Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with
ACM RecSys 2012. September 9, 2012, Dublin, Ireland.

1. INTRODUCTION
In recent years, several studies have focused on the de-

velopment of recommender systems that consider measures
beyond simply the accuracy of the system, such as the nov-
elty, diversity, and serendipity [1][2]. This is because these
studies have found that users are not always satis�ed with
recommender systems with only high accuracy�they desire
for the systems to consider various other viewpoints, too.
In an attempt to satisfy this need, in this study, we fo-

cus on the serendipity. Serendipity means "the ability to
make unexpected and valuable discoveries by accident." We
thus de�ne a serendipitous item as something unexpected
and valuable, and we believe that such an item can diver-
sify users' interest regardless of their experiences, thus mak-
ing their lives richer. This study therefore aims to develop
a serendipity-oriented recommender system that provides
users with serendipitous items.
First, it is necessary to gain some insight into the origi-

nal meaning of the word "serendipity." The word "serendip-
ity" originated from a story called "The Three Princes of
Serendip" [3], which tells the story of three princes. These
princes discovered a series of novel things during the course
of various and unexpected events on their journeys, which
they attributed to their luck. Horace Walpole, who read
this story, stated that "the princes were always making dis-
coveries, by accidents and sagacity," to describe which he
coined the word "serendipity," which means "the ability to
make unexpected discovery by accidents and sagacity" [4].
In light of Walpole's de�nition, we believe that a serendipity-
oriented recommender system should possess an interface
that has mechanisms that output "unexpected discoveries"
based on the input of "accidental events" experienced by the
users and the sagacity of the users.
In addition, [4] states that accidents are of two types: "ex-

trinsic" and "intrinsic." For example, a well-known serendip-
itous discovery is that of gravity�it is stated that "Newton
had an inspiration of the notion of universal gravitation at
the sight of an apple that fell from a tree"[5]. In this event,
the apple falling from the tree can be considered an "ex-
trinsic accident," that is, one that occurs regardless of the
action of a person. Another example of a serendipitous dis-
covery is that made by Koichi Tanaka, which won him the
Nobel Prize in Chemistry in 2002. Although he realized
that he had accidentally used glycerin instead of acetone
as a sample, he continued his experiments in order to ob-
serve the results. This led to him discovering an unknown
phenomenon. In this event, the discovery of the unknown

39

phenomenon can be considered an "intrinsic accident," that
is, one that results from the action of a person with the
positive expectation of something. It is of great importance
to derive some value from these accidents. In this light, a
person's sagacity plays a crucial role.
The above-described examples suggest that a serendipity-

oriented recommender system should have an interface con-
sisting of the following mechanisms:

(a) A mechanism that causes extrinsic accidents.

(b) A mechanism that causes intrinsic accidents.

(c) A mechanism that enables users to derive some value
from accidents through their sagacity.

In this study, we have proposed a fusion-based recommender
system to satisfy these requirements. The key idea of this
system is adopting a fusion-based approach for discovering
serendipitous items by mixing two user-input items together.
As described at the beginning of this section, we de�ne
a serendipitous item as an unexpected and valuable item.
Speci�cally, the following items are relevant to serendipitous
items:

• Items that can excite the user's interest for the �rst
time although he/she does not know about them and
he/she would not be able to discover them by him-
self/herself.

• Items that can excite the user's interest for the �rst
time although he/she thought that he/she was not in-
terested in them.

• Items that can attract the user's interest after being
displayed by the system.

We also de�ne a high-serendipity recommender system that
can recommend more serendipitous items to users.
By using our proposed fusion-based recommender system,

a user can mix two items together in the system interface to
create something new from something existing in a manner
analogous to mixing colors, ingredients, or sounds. The act
of mixing also entails the following:

a) We can intuitively expect mixed results from a combi-
nation of inputs. On the other hand, some combina-
tions can yield unexpected results.

b) Because our curiosity may be aroused by the intu-
itive comprehensibility and unexpectedness of the act
of mixing, we might feel like being creative and mixing
various combinations of inputs.

Characteristic (a) corresponds to the mechanism that causes
intrinsic accidents because unexpected results may be pro-
duced by mixing materials together with the expectation of
some positive results. Characteristic (b) corresponds to the
mechanism that enables us to derive some value from ac-
cidents through our sagacity in that we can select valuable
inputs from among the given inputs.
Figure 1 shows the interface of the fusion-based recom-

mender system for book recommendation. When the user
clicks [Random], [Search], [Popular], and [New] buttons, the
system randomly provides the user with corresponding books
from the book database. Randomly providing books corre-
sponds to the mechanism that causes extrinsic accidents.

Figure 1: Interface of Fusion-based Recommender System.

The user can also select an interesting book as a material
from the displayed books based on his/her sagacity, and then
drag-and-drop it into a base book, which is also selected by
the user. The system then provides the user with books pos-
sessing mixed features of the two books. Although the user
can select books to mix with some expectation, some book
combinations may yield unexpected results. This may cause
intrinsic accidents. The user can repeatedly and creatively
use the system to see various mixing results until he/she
is satis�ed with the results. In this process, serendipitous
items are interactively provided to the user.
We have already developed a predecessor to the proposed

fusion-based recommender system[6]. In this study, we have
improved upon the system interface and internal process-
ing based on the deeper idea of serendipity, and we have
evaluated this system from the viewpoint of practical use.
The contributions of this study are as follows:

• developing the improved fusion-based recommender sys-
tem that adopts a fusion-based approach for improving
the serendipity;

• experimentally evaluating the practical usability of the
recommender system using a real book data set from
Rakuten Books;

• showing the e�ectiveness of the system compared to
recommender systems on websites such as Amazon
from the viewpoint of serendipity.

2. RELATED WORK
Herlocker et al. [1] suggested that recommender systems

with high accuracy do not always satisfy users. Therefore,
they suggested that recommender systems should be eval-
uated not only by their accuracy but also by various other
metrics such as novelty, diversity, and serendipity.
Several studies have already focused on serendipity in the

context of recommendation. Ziegler et al. [7][8] suggested
that diversifying recommendation lists improves user satis-
faction. Toward this end, they proposed topic diversi�cation

40

based on an intra-list similarity metric. Sarwar et al. [9]
suggested that serendipity might be improved by removing
obvious items from recommendation lists. Berkovsky et al.
[10] proposed group-based recipe recommendations. They
suggested that recipes loved by a group member are likely
to be recommended to others, which may increase serendip-
ity.
Hijikata et al. [11] and Murakami et al. [2] proposed

recommendation methods that predict novelty or unexpect-
edness. The former study proposed collaborative �ltering,
which predicts unknown items for a target user based on
known/unknown pro�les explicitly acquired from the user,
and showed that such �ltering can improve novelty by pro-
viding unknown items to the user. The latter study pro-
posed a method that implicitly predicts unexpectedness
based on a user's action history. They introduced a pref-
erence model that predicts items the user likes and a habit
model that predicts items habitually selected by the user.
The method estimates the unexpectedness of recommended
items by considering the di�erences between the models.
The disadvantage of these methods is that they need to ob-
tain models or pro�les for an individual user. Our proposed
system, however, does not have these requirements. It can
instantly recommend serendipitous items based on items the
user has just selected.
Murakami et al. [2] and Ge et al. [12] introduced mea-

sures for evaluating the unexpectedness and serendipity of
recommender systems.
The former study assumed that unexpectedness is the dis-

tance between the results produced by the system to be eval-
uated and those produced by primitive prediction methods.
Here, primitive methods include recommendation methods
based on user pro�les or action histories. Based on this no-
tion, they proposed unexpectedness for measuring the unex-
pectedness of recommendation lists and unexpectedness_r
to take into account the rankings in the lists. The latter
study also propose unexpectedness following the notion of
the former study.
In our previous study[6], we evaluated our recommender

system based on Murakami et al.'s evaluation metrics. How-
ever, we did not evaluate the system through tests involving
real users to determine its serendipity. In contrast, in this
study, we evaluate our proposed fusion-based recommender
system through experiments involving real users.

3. FUSION-BASED RECOMMENDER SYS-
TEM

In this section, we describe our proposed fusion-based rec-
ommender system. This system has an interface that con-
sists of the aforementioned mechanisms for recommending
serendipitous items (Figure 1).
As shown in Figures 1 , a user selects a base item from

items displayed in views and drags-and-drops another ma-
terial item onto the base item. Then, the system mixes
these two items and outputs recommended items that have
features of both, which we de�ne as fusion. The user can
repeatedly perform fusion by reselecting the base items and
researching the material items until he/she obtains accept-
able results. During this process, the user may interactively
discover serendipitous items.
In Section 3.1, we describe the book database used as

the recommendation content in this study. In Section 3.2,

we describe the system interface and the user interactions
related to the above mechanisms. Finally, in Section 3.3, we
show fusion methods as the internal processing of the fusion.

3.1 Book database
In this study, we consider books as the recommendation

content; in the future, of course, we intend to apply the sys-
tem to various contents such as music, movies, and recipes.
We collected Japanese book data using Rakuten Books book
search API1 from Rakuten Books2. We obtained data for
667,218 books between Dec. 27, 2011, and Feb. 10, 2012.
The book data consists of the attributes of isbn, title,

sub_title, author , sales_date, item_url , review_count ,
review_average, books_genre_id . We created a book table
consisting of these attributes, in addition to the following
tables:

• book − phrase(isbn, phrase, idf)

• book − author(isbn, author)

• book − genre(isbn, genre_id)

Here, the book − phrase table contains phrases from book .title
and book .sub_title for each book. In Section 3.1.1, we ex-
plain how phrases are extracted. The book − author table
contains the authors of each book. The book − genre table
contains the genre id of each book. Rakuten Books has 800
genres such as "novels and essays" and "sciences, medical
sciences, and technologies," each of which consist of four-
level categories. The genre id is a unique id that corresponds
to each genre.

3.1.1 Phrase extraction from book data
The system extracts phrases using Chasen3, a Japanese

morphological analyzer, from book .title and book .sub_title
for each book. We heuristically selected "nouns," "verbs,"
"adjectives," "adverbs," and "unknown words" as target
parts of speech. Here, the system extracts also compound
words such as "cognitive psychology" that are treated as one
phrase.

3.2 System interface
Figure 1 shows the interface of the proposed system, which

implements mechanisms (a), (b), and (c) mentioned above.

(a) Mechanism that causes extrinsic accidents.
The system implements [random], [search], [popular], and

[new] buttons, which cause extrinsic accidents. When the
user clicks each button, the system randomly searches for
k corresponding books from the book database. The books
are displayed in input item views I, II, and III in Figure 1.
Table 1 lists the processes that are called when each button
is clicked.
When the user moves the mouse cursor over the books dis-

played in the views, the book information ("title," "sub ti-
tle," "authors," "publication date," and "genres") are shown
in a pop-up window. When the user right-clicks the books,
he/she can view detailed information from the site of Rakuten
Books through an external browser.

1Rakuten Books book search API (in Japanese):
http://webservice.rakuten.co.jp/api/booksbooksearch/
2Rakuten books (in Japanese):
http://books.rakuten.co.jp/book/
3Chasen (in Japanese): http://chasen.naist.jp/hiki/ChaSen/

41

Table 1: Search processing by each button.
Button Processing Target view
Random Searching k books from the book

database at random.
Input item
view I

Search Searching k books at random from
books whose title or sub_title includes
keywords input in the text box.

Input item
view II

New Searching k books at ran-
dom from books satisfying
review_count × review_average ≥ θ.

Input item
view III

Popular Searching k books at random from
books saled last one month.

Input item
view III

(b) Mechanism that causes intrinsic accidents.
The system implements a fusion mechanism as an inter-

face that causes intrinsic accidents.
The user can select a base item by double-clicking a book

from among the books in the input item view or recommen-
dation item view. The base item is considered as the basis
when performing fusion.
The user can select a material item from among the books

in the same two views. The material item is used for per-
forming fusion with the base item. When the user drags-
and-drops the material item onto the base item, fusion of
the two items is performed. The system then displays the
items outputted by the fusion in the recommendation item
view. In Section 3.3, we de�ne three fusion methods. The
system displays items outputted by each fusion method in
the corresponding recommendation item view I, II, or III.

(c) Mechanism that enables users to derive some value
from accidents through their sagacity.
In mechanism (b), the user can select a base item and a

material item from among the books deemed interesting in
the views. Such intuitive selection of books may correspond
to his/her sagacity.
Here, the type of book that can be selected depends on

the user. When performing fusion, the user can select items
that are suitable for his/her preferences as well as items that
are considered interesting.

3.3 Fusion method
As shown in Section 3.2 (b), fusion is performed using

the base and the material item when the user drags-and-
drops the material item onto the base item. We de�ne the
following three methods as fusion methods. In this section,
bookA, bookB , and book denote the base item, material item,
and recommended item, respectively.

phrase − phrase fusion.
The phrase − phrase fusion method searches for a maxi-

mum of m books whose book .title or book .sub_title includes
at least one phrase from the phrase list bookA.phraseList in
bookA and at least one phrase from the phrase list
bookB .phraseList in bookB . The searched books are shown
in recommendation item view I. Figure 2 (a) shows an exam-
ple of fusion for bookA�"Equation loved by a doctor"�and
bookB�"Magic for cleaning up giving palpitations of life."
In this case, the system displays "Magic doctor" based on
"doctor" in bookA and "magic" in bookB .

phrase − genre fusion.
The phrase−genre fusion method searches for a maximum

Figure 2: Example of each fusion method.

of m books whose book .title or book .sub_title includes at
least one phrase from the phrase list bookA.phraseList in
bookA and whose book .genre_id corresponds to at least one
genre from the genre list bookB .genre_idList in bookB . The
searched books are shown in recommendation item view II.
Figure 2 (b) shows an example of the fusion of bookA�
"Management"�and bookB�"Equation loved by a doctor."
In this case, the system displays "If a female student who is a
manager of high-school baseball team reads `Management',"
whose book .title or book .sub_title includes "management"
and whose book .genre_id corresponds to bookB .genre_id
(i.e., "[novels and essays � Japanese novels]").

phrase − author fusion.
The phrase − author fusion method searches for a maxi-

mum of m books whose book .title or book .sub_title includes
at least one phrase from the phrase list bookA.phraseList in
bookA and whose book .author corresponds to at least one
author from the author list bookB .authorList in bookB . The
searched books are shown in recommendation item view III.
Figure 2 (c) shows an example of the fusion of bookA�
"Neuroscience of language"�and bookB�"Excitement of
science by Kenichiro Mogi." In this case, the system displays
"Neuroscience class we want to take the best in the world,"
whose book .title or book .sub_title includes "neuroscience"
and whose book .author corresponds to bookB .author (i.e.,
"[Kenichiro Mogi]").

4. EXPERIMENTS
In this section, we show the experimental results of user

tests of our proposed fusion-based recommender system. We

42

implemented this system using Java and Processing as the
evaluation system. In the experiments, we selected books
as recommendation contents and created the book database
described in Section 3.1 using MySQL.

4.1 Experimental method
Nine subjects (eight males and one female) participated

in our study. Their age is from 20 to 23. They had av-
erage computer skills and used the Internet regularly (ev-
ery day/nearly every day). They also used online shopping
websites such as Amazon very rarely (a few times so far) or
rarely (a few times a month). They read books rarely (a few
times a month) or moderately (once to three times a week).
The experimental procedure is as follows:

(1) We explain the recommender system to be used to each
subject and provide them with the task "Find three
books you want to read on holidays."

(2) Each subject carries out the task using the assigned
system (without time limitation).

(3) If the subject �nds suitable books, he/she marks them
(at most 3 books). We call these books the main rec-
ommended books.

(4) If the subject �nds books that are not suitable but are
interesting, he/she marks them (any number of books).
We call these books the sub-recommended books.

(5) The subject �nishes the task when he/she �nds three
main recommended books. However, he/she can �nish
the task if he/she is satis�ed or satiated with even less
than three books.

(6) After the task is �nished, the subject answers all the
questions listed in Table 2 for each recommended book.

(7) The subject performs the same steps for each recom-
mender system.

Section 4.2 discusses the recommender systems used in the
experiments. Each subject uses the various recommender
systems in a di�erent order to cancel any e�ect that might
otherwise be produced.
Table 2 lists the questions about the recommended books.

Here, the subjects answered Q1 using a three-level scale
{3:unknown, 2:known but never read, 1:have been ever read},
and Q2 to Q4 using a �ve-level scale {5:strongly agree,
4:agree, 3:neither agree nor disagree, 2:disagree, 1:strongly
disagree}. With regard to "by myself" in Q4, we explained
to the subjects that "if you think that you can easily �nd
the book by using existing search engines (e.g., Google, Ya-
hoo!) or by using a genre or keyword search at online/real
book stores or libraries by yourself, the book is regarded as
`�ndable book by myself'."
After all tasks were �nished, the subjects answered ques-

tions, �this system excited my interest and enabled me to
discover somthing new,� which is related to serendipity of
the recommender systems using the same �ve-level scale.

4.2 Comparative systems
We choose Amazon4, a large online store with recom-

mender systems, for comparison with our proposed system.

4amazon.co.jp (Japanese site): http://www.amazon.co.jp/

Table 2: Questions for recommended books.
No. Question
Q1 I did not know this book.
Q2 I have been interested in this book before the system

presented it to me.
Q3 This book excited my interest for the �rst time.
Q4 I think that I could not �nd this book by myself.

Figure 3: Separate evaluation of sub-recommended book.

We considered two types of systems�Amazon search and
recommend (A-RS) and Amazon ranking (A-Rank)�as base-
line systems. In this section, we explain the utilization of
the baseline systems and the proposed system.

Amazon search and recommend (A-RS).
The subjects are allowed to only use keyword and genre

search method on the Amazon site, following which they can
use the recommendation list (a list shown under "Customers
Who Bought This Item Also Bought"). We encouraged the
subjects to refer to the entire recommendation list because
toward the end, the list potentially includes unexpected but
interesting books. Amazon's recommendation method is im-
plemented by item-based collaborative �ltering[13].

Amazon ranking (A-Rank).
The subjects are allowed to only refer to the ranking of

"Best Sellers" and "New Releases." They are also allowed
to refer to the ranking in each category.

Fusion-based recommender system (F-RS).
We explained the system interface, described in Section

3.2, and how it is used to the subjects in advance. How-
ever, we did not explain the details of the internal process-
ing of the fusion method, described in Section 3.3, because
we would like to observe whether the subjects can gradually
understand the same through trial and error.
Here, we used k = 4, θ = 1000, and m = 3, as mentioned

in Section 3.2 and Section 3.3.

4.3 Results

4.3.1 Evaluation of sub-recommended books
We analyzed what type of books were marked as sub-

recommended books. Figure 3 shows the overall results of
the subjects' ratings for Q1�Q4 from Table 2 about sub-
recommended books. The �gure shows the averages of the
ratings for each recommender system.

43

As described in Section 1, the �rst de�nition of serendip-
itous items is "items that can excite the user's interest for
the �rst time although he/she does not know about them
and he/she would not be able to discover them by him-
self/herself." From this viewpoint, we evaluated the systems
based on not only the discoverability but also whether the
recommended items excited the users' interest. Therefore,
from the viewpoint of serendipity, we analyzed how many
items that satis�ed the conditions of books that "Q1: I did
not know this book," "Q4: I think that I could not �nd this
book by myself," and "Q3: This book excited my interest
for the �rst time" could be found by each system. If the
rating of a book for Q1 = 3, Q4 ≥ 4, and Q3 ≥ 4, we assign
it a score of "1," otherwise we assign a score of "0." Figure
3 shows the averages. We found signi�cant di�erences be-
tween the average of F-RS and those of A-RS and A-Rank
by a t-test with a signi�cance level of 5%.
The second de�nition of serendipitous items is "items that

can excite the user's interest for the �rst time although
he/she thought that he/she was not interested in them."
From this viewpoint, we analyzed how many items that sat-
is�ed the conditions of books that "Q2: I have not been
interested in this book" and "Q3: This book excited my in-
terest for the �rst time" could be found by each system. If
the rating of a book for Q2 ≤ 2 and Q3 ≥ 4, we assign it
a score of "1," otherwise we assign a score of "0." Figure
3 shows the averages. We found signi�cant di�erences be-
tween the average of F-RS and that of A-RS by a t-test with
a signi�cance level of 1%. In addition, we found signi�cant
di�erences between the average of F-RS and that of A-Rank
with a signi�cance level of 5%.
Although A-RS recommends books related to the browsed

book through item-based collaborative �ltering, there is lit-
tle possibility of the recommended book being largely against
the user's interest because of its high accuracy. Meanwhile,
because A-Rank recommends popular books, the user may
already know the recommended books if they belong to gen-
res the user is interested in. On the other hand, the fusion-
based recommender system can recommend books that are
occasionally against the user's interest depending on the se-
lection of the material item. This is why the system showed
high discoverability, although this involves some risks. In
addition, because the recommended books are still relevant
to the base item, the user may be interested in them. This
is why the fusion-based recommender system was superior
from the viewpoint of serendipity.

4.3.2 Evaluation of systems
We focus on the question about serendipity, "this system

excited my interest and enabled me to discover something
new." The average of the subjects' ratings were 3.00 for A-
RS, 2.67 for A-Rank, and 4.22 for F-RS. From this view-
point, the proposed system signi�cantly outperformed A-RS
and A-Rank with a signi�cance level of 5%. This result in-
dicates that the proposed system can provide serendipitous
items related to "items that can attract the user's interest
after being displayed by the system," which is one of the
de�nitions of serendipitous items.

5. CONCLUSION
In this study, we improved upon our fusion-based rec-

ommender system based on the deeper idea of serendipity.
This system possesses mechanisms that cause extrinsic and

intrinsic accidents and enables users to derive some value
from accidents through their sagacity. The key idea of the
system is the fusion-based approach, through which the sys-
tem mixes two user-input items to �nd new items that have
the mixed features.
We experimentally evaluated the fusion-based

recommender system through user tests using a real book
data set from Rakuten Books. The experimental results
showed the e�ectiveness of this system compared with the
recommender systems used on the Amazon website from the
viewpoint of serendipity. We would like to enhance its in-
terfaces and make the fusion methods more intuitive and
understandable for the users.

6. ACKNOWLEDGEMENT
This work was supported by a Grant-in-Aid for Young

Scientists (B) (23700132).

7. REFERENCES
[1] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl.

Evaluating collaborative �ltering recommender systems. ACM
Transactions on Information Systems (TOIS), Vol. 22, No. 1,
pp. 5�53, 2004.

[2] Tomoko Murakami, Koichiro Mori, and Ryohei Orihara.
Metrics for evaluating the serendipity of recommendation lists.
New Frontiers in Arti�cial Intelligence, pp. 40�46, 2008.

[3] Elizabeth Jamison Hodges. Three Princes of Serendip.
Atheneum, 1964.

[4] Shigekazu Sawaizumi, Osamu Katai, Hiroshi Kawakami, and
Takayuki Shiose. Use of serendipity power for discoveries and
inventions. Intelligent and Evolutionary Systems, Studies in
Computational Intelligence, Vol. 187, pp. 163�169, 2009.

[5] Royston M. Roberts. Serendipity: Accidental Discoveries in
Science. Wiley, 1989.

[6] Kenta Oku and Fumio Hattori. Fusion-based recommender
system for improving serendipity. In Proceedings of the
Workshop on Novelty and Diversity in Recommender Systems
(DiveRS 2011), at the 5th ACM International Conference on
Recommender Systems (RecSys 2011), pp. 19�26, 2011.

[7] Cai-Nicolas Ziegler, Georg Lausen, and Lars Schmidt-Thieme.
Taxonomy-driven computation of product recommendations. In
Proceedings of the Thirteenth ACM conference on Information
and knowledge management - CIKM '04, p. 406, New York,
New York, USA, 2004. ACM Press.

[8] C.N. Ziegler, S.M. McNee, J.A. Konstan, and Georg Lausen.
Improving recommendation lists through topic diversi�cation.
In Proceedings of the 14th international conference on World
Wide Web, pp. 22�32, New York, New York, USA, 2005. ACM.

[9] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Reidl. Item-based collaborative �ltering recommendation
algorithms. In Proceedings of the 10th international conference
on World Wide Web, pp. 285�295, New York, New York, USA,
2001. ACM.

[10] Shlomo Berkovsky and Jill Freyne. Group-based recipe
recommendations: analysis of data aggregation strategies. In
Proceedings of the fourth ACM conference on Recommender
systems, pp. 111�118. ACM, 2010.

[11] Y. Hijikata, T. Shimizu, and S. Nishida. Discovery-oriented
collaborative �ltering for improving user satisfaction. In
Proceedings of the 13th international conference on Intelligent
user interfaces, pp. 67�76. ACM, 2009.

[12] Mouzhi Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond
accuracy: evaluating recommender systems by coverage and
serendipity. In Proceedings of the fourth ACM conference on
Recommender systems, pp. 257�260. ACM, 2010.

[13] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative �ltering. IEEE
Internet Computing, Vol. 7, No. 1, pp. 76�80, January 2003.

44

Case Study Evaluation of Mahout as a Recommender
Platform

Carlos E. Seminario
Software and Information Systems Dept.

University of North Carolina Charlotte
cseminar@uncc.edu

David C. Wilson
Software and Information Systems Dept.

University of North Carolina Charlotte
davils@uncc.edu

ABSTRACT
Various libraries have been released to support the devel-
opment of recommender systems for some time, but it is
only relatively recently that larger scale, open-source plat-
forms have become readily available. In the context of such
platforms, evaluation tools are important both to verify and
validate baseline platform functionality, as well as to pro-
vide support for testing new techniques and approaches de-
veloped on top of the platform. We have adopted Apache
Mahout as an enabling platform for our research and have
faced both of these issues in employing it as part of our
work in collaborative filtering. This paper presents a case
study of evaluation focusing on accuracy and coverage eval-
uation metrics in Apache Mahout, a recent platform tool
that provides support for recommender system application
development. As part of this case study, we developed a new
metric combining accuracy and coverage in order to evaluate
functional changes made to Mahout’s collaborative filtering
algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval–Information filtering

General Terms
Algorithms, Experimentation, Measurement

Keywords
Recommender systems, Evaluation, Mahout

1. INTRODUCTION
Selecting a foundational platform is an important step in

developing recommender systems for personal, research, or
commercial purposes. This can be done in many different
ways: the platform may be developed from the ground up,
an existing recommender engine may be contracted (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright is held by the author/owner(s). Workshop on Recommen-
dation Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction
with ACM RecSys 2012. September 9, 2012, Dublin, Ireland.
Copyright 2012 ...$10.00

OracleAS Personalization1), code libraries can be adapted,
or a platform may be selected and tailored to suit (e.g.,
LensKit2, MymediaLite3, Apache Mahout4, etc.). In some
cases, a combination of these approaches will be employed.

For many projects, and particularly in the research con-
text, the ideal situation is to find an open-source platform
with many active contributors that provides a rich and var-
ied set of recommender system functions that meets all or
most of the baseline development requirements. Short of
finding this ideal solution, some minor customization to an
already existing system may be the best approach to meet
the specific development requirements. Various libraries have
been released to support the development of recommender
systems for some time, but it is only relatively recently
that larger scale, open-source platforms have become readily
available. In the context of such platforms, evaluation tools
are important both to verify and validate baseline platform
functionality, as well as to provide support for testing new
techniques and approaches developed on top of the platform.
We have adopted Apache Mahout as an enabling platform
for our research and have faced both of these issues in em-
ploying it as part of our work in collaborative filtering rec-
ommenders.

This paper presents a case study of evaluation for rec-
ommender systems in Apache Mahout, focusing on metrics
for accuracy and coverage. We have developed functional
changes to the baseline Mahout collaborative filtering algo-
rithms to meet our research purposes, and this paper exam-
ines evaluation both from the standpoint of tools for baseline
platform functionality, as well as for enhancements and new
functionality. The objective of this case study is to evaluate
these functional changes made to the platform by comparing
the baseline collaborative filtering algorithms to the changed
algorithms using well known measures of accuracy and cov-
erage [6]. Our goal is not to validate algorithms that have
already been tested previously, but to assess whether, and
to what extent, the functional enhancements have improved
the accuracy and coverage performance of the baseline out-
of-the-box Mahout platform. Given the interplay between
accuracy and coverage in this context, we developed a uni-
fied metric to assess accuracy vs. coverage trade-offs when
evaluating functional changes made to Mahout’s collabora-
tive filtering algorithms.

1http://download.oracle.com/docs/cd/B10464 05/bi.904/
b12102/1intro.htm
2http://lenskit.grouplens.org/
3http://www.ismll.uni-hildesheim.de/mymedialite/
4http://mahout.apache.org

45

pablo
Texto digitado

pablo
Texto digitado

pablo
Retângulo

2. RELATED WORK
Revisiting evaluation in the context of recommender plat-

forms has received recent attention in the thorough evalua-
tion of the LensKit platform using previously tested collabo-
rative filtering algorithms and metrics, as reported in [2]. A
comprehensive set of guidelines for evaluating recommender
systems was provided by Herlocker et al [6]; these guidelines
highlight the use of evaluation metrics such as accuracy and
coverage and suggest the need for an ideal “general cover-
age metric” that would combine coverage with accuracy to
yield an overall “practical accuracy” measure. Many of these
evaluation metrics and techniques have also been covered re-
cently in [12].

Recommender system research has been primarily con-
cerned with improving recommendation accuracy [7]; how-
ever, other metrics such as coverage [10, 4] and also novelty
and serendipity [6, 3] have been deemed necessary because
accuracy alone is not sufficient to properly evaluate the sys-
tem. Mcnee et al [7] states that recommendations that are
most accurate according to the standard metrics are some-
times not the most useful to users and outlines a more user-
centric approach to evaluation. The interplay between ac-
curacy and other metrics such as coverage and serendipity
creates trade-offs for recommender system implementers and
this has been widely discussed in the literature, e.g., see [4,
3] and our previous work discussing trade-offs between ac-
curacy and robustness [11].

3. SELECTING APACHE MAHOUT
To support our research in collaborative filtering, sev-

eral recommender system platforms were surveyed, includ-
ing LensKit, easyrec5, and MymediaLite. We selected Ma-
hout because it provides many of the desired characteristics
required for a recommender development workbench plat-
form. Mahout is a production-level, open-source, system
and consists of a wide range of applications that are useful
for a recommender system developer: collaborative filtering
algorithms, data clustering, and data classification. Mahout
is also highly scalable and is able to support distributed pro-
cessing of large data sets across clusters of computers using
Hadoop6. Mahout recommenders support various similarity
and neighborhood formation calculations, recommendation
prediction algorithms include user-based, item-based, Slope-
One and Singular Value Decomposition (SVD), and it also
incorporates Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) evaluation methods. Mahout is read-
ily extensible and provides a wide range of Java classes for
customization. As an open-source project, the Mahout de-
veloper/contributor community is very active; the Mahout
wiki also provides a list of developers and a list of websites
that have implemented Mahout7.

3.1 Uncovering Mahout Details
Although Mahout is rich in documentation, there are im-

plementation details on how Mahout works that could only
be understood by looking at the source code. Thus, for clar-
ity in evaluation, we needed to verify the implementation
of baseline platform functionality. The following describes
some of these details for Mahout 0.4 ‘out-of-the-box’:

5http://easyrec.org/
6http://hadoop.apache.org/
7https://cwiki.apache.org/MAHOUT/mahout-wiki.html

Similarity Weighting: Mahout implements the classic Pear-
son Correlation as described in [8, 5]. Similarity weighting is
supported in Mahout and consists of the following method:

scaleFactor = 1.0 - count / (num + 1);
if (result < 0.0)

result = -1.0 + scaleFactor * (1.0 + result);
else

result = 1.0 - scaleFactor * (1.0 - result);

where count is the number of co-rated items between two
users, num is the number of items in the dataset, and result
is the calculated Pearson Correlation coefficient.

User-Based Prediction Algorithm: Mahout implements a
Weighted Average prediction method similar to the approach
described in [1], except that Mahout does not take the abso-
lute value of the individual similarities in the denominator,
however, it does ensure that the predicted ratings are within
the allowable range, e.g., between 1.0 and 5.0.

Item-Based Prediction Algorithm: Mahout implements a
Weighted Average prediction method. This approach is sim-
ilar to the algorithm in [9], except that Mahout does not
take the absolute value of the individual similarities in the
denominator, however, it does ensure that the predicted rat-
ings are within the allowable range, e.g., between 1.0 and
5.0. Also, Mahout does not provide support for neighbor-
hood formation, e.g., similarity thresholding, for item-based
prediction.

Accuracy Evaluation calculation: Mahout executes the
recommender system evaluator specified at run time (MAE
or RMSE) and implements traditional techniques found in
[6, 12]. For MAE, this would be,

MAE =

∑n
i=1 | ActualRatingi − PredictedRatingi |

n
(1)

where n is the total number of ratings predicted in the test
run.

3.2 Making Mahout Fit for Purpose
Through personal email communication with one of the

Mahout developers, we were informed that Mahout intended
to provide basic rating prediction and similarity weighting
capabilities for its recommenders and that it would be up
to developers to provide more elaborate approaches. Sev-
eral changes were made to the prediction algorithms and
the similarity weighting techniques for both the user-based
and item-based recommenders in order to meet our specific
requirements and to match the best practices found in the
literature, as follows:

Similarity weighting: Defined as Significance Weighting in
[5], this consists of the following method:

scaleFactor = count/50.0;
if (scaleFactor > 1.0) scaleFactor = 1.0;
result = scaleFactor * result;

where count is the number of co-rated items between two
users, and result is the calculated Pearson Correlation co-
efficient.

User-user mean-centered prediction: After identifying a
neighborhood of similar users, a prediction, as documented
in [8, 5, 1], is computed for a target item i and target user
u as follows:

pu,i = ru +

∑
vεV simu,v(rv,i − rv)∑

vεV | simu,v |
(2)

46

where V is the set of k similar users who have rated item i,
rv,i is the rating of those users who have rated item i, ru is
the average rating for the target user u over all rated items,
rv is the average rating for user v over all co-rated items,
and simu,v is the Pearson correlation coefficient.

Item-item mean-centered prediction: A prediction, as doc-
umented in [1], is computed for a target item i and target
user u as follows:

pu,i = ri +

∑
jεNu(i) simi,j(ru,j − rj)∑

jεNu(i) | simi,j |
(3)

where Nu(i) is the set of items rated by user u most similar
to item i, ru,j is u’s rating of item j, rj is the average rating
for item j over all users who rated item j, ri is the average
rating for target item i, and simi,j is the Pearson correlation
coefficient.

Item-item similarity thresholding: This method was added
to Mahout and used in conjunction with the item-item mean-
centered prediction described above. Similarity threshold-
ing, as described in [5], defines a level of similarity that is
required for two items to be considered similar for purposes
of making a recommendation prediction; item-item similar-
ities that are less than the threshold are not used in the
prediction calculation.

Coverage and combined accuracy/coverage metric: As sug-
gested in [6], the easiest way to measure coverage is to select
a random sample of user-item pairs, ask for a prediction for
each pair, and measure the percentage for which a predic-
tion was provided. To calculate coverage, code changes were
made to Mahout to provide, for each test run, the total num-
ber of rating predictions requested that were unable to be
calculated as well as the total of number of rating predic-
tions requested that were actually calculated; the sum of
these two numbers is the total number of ratings requested.
Coverage was calculated as follows:

Coverage =
Total#RatingsCalculated

Total#RatingsRequested
(4)

Code changes were also made to calculate a combined accu-
racy and coverage metric as defined in Section 4.

4. ACCURACY AND COVERAGE METRIC
The metrics selected for this case study, accuracy and cov-

erage, were chosen because they are fundamental to the util-
ity of a recommender system [10, 6]. Although other metrics
such as novelty and serendipity can, and should, be used in
conjunction with accuracy and coverage, our objective was
to evaluate the very basic requirements of a recommender
system. Our implementation of coverage, referred to as pre-
diction coverage in [6], measures the percentage of a dataset
for which the recommender system is able to provide predic-
tions. High coverage would indicate that the recommender
system is able to provide predictions for a large number of
items and is considered to be a desirable characteristic of
the recommender system [6]. A combination of high accu-
racy (low error rate) and high coverage are indeed desirable
by users and system operators because it improves the util-
ity or usefulness of the system from a user standpoint [10,
6].

What constitutes ‘good’ accuracy or coverage, however,
has not been well defined in the literature: studies such
as [10, 4, 5] and many others, endeavor to maximize accu-
racy (achieve lowest possible value) and/or coverage (achieve

highest possible value) and view these metrics on a rela-
tive basis, i.e., how much the metric has increased or de-
creased beyond a baseline value based on empirical results.
Furthermore, the interplay between accuracy and coverage,
i.e., coverage decreases as a function of accuracy [4, 3], cre-
ates a trade-off for recommender system implementers that
has been discussed previously but not been developed thor-
oughly. Inspired by the suggestion in [6] to combine the cov-
erage and accuracy measures to yield an overall “practical
accuracy” measure for the recommender system, we devel-
oped a straightforward “AC Measure” that combines both
accuracy and coverage into a single metric as follows:

ACi =
Accuracyi
Coveragei

, (5)

where i indicates the ith trial in an evaluation experiment.

Figure 1: Illustration of the AC Measure

The AC Measure simply adjusts (upward) the Accuracy
according to the level of Coverage metrics found in an ex-
perimental trial and is agnostic to the accuracy metric used,
e.g., MAE or RMSE. Using a family of curves for the Mean
Absolute Error (MAE) accuracy metric, Figure 1 illustrates
the relationship between accuracy, coverage, and the AC
Measure. As an example, following the “MAE : 0.5’’ curve
we see that at 100% coverage, the AC Measure is 0.5, and
at 10% coverage, the AC Measure has increased to 5. The
intuition behind this metric is that when the recommender
system is able to provide predictions for a high percentage
of items in the dataset, the accuracy metric more closely
indicates the level of system performance; conversely, when
the coverage is low, the accuracy metric is “penalized” and is
adjusted upwards. We believe that the major benefit of the
AC Measure is that it formulates a solution for addressing
the trade-off between accuracy and coverage and can be used
to create a ranked list of results (low to high) from multiple
experimental trials to find the best (lowest) AC Measure for
each set of test conditions. The simplified visualization of
the combined AC Measure shown in Figure 1 is an additional
benefit. For our evaluation purposes, the use of a combined
metric was ideal in addressing the inherent trade-offs be-
tween accuracy and coverage, especially in the cases where
accuracy is found to be high when coverage is low; we posit
that the AC Measure will also be useful for other researchers
performing evaluations using accuracy and coverage.

47

5. EXPERIMENTAL DESIGN
The objective of this case study was to understand Ma-

hout’s baseline collaborative filtering algorithms and evalu-
ate functional changes made to the platform using accuracy
and coverage metrics. The main intent of making functional
changes to Mahout recommender algorithms was to bring
the Mahout algorithms in line with best practices found in
the literature. Therefore, the overall hypothesis to be tested
in this case study was that the modified algorithms improve
Mahout’s ‘out-of-the-box’ prediction accuracy for both user-
based and item-based recommenders while maintaining rea-
sonable coverage.

5.1 Datasets and Algorithms
The data used in this study were the MovieLens datasets

downloaded from GroupLens Research8: the 100K dataset
with 100,000 ratings for 1,682 movies and 943 users (re-
ferred to as ML100K in this study) and the 10M dataset
with 10,000,000 ratings for 10,681 movies and 69,878 users
(referred to as ML10M in this study). Ratings provided in
these datasets consist of integer values between 1 (did not
like) to 5 (liked very much).

For User-based (see §3.1), Mahout uses Pearson Corre-
lation similarity (with and without similarity weighting),
Neighborhood formation (similarity thresholding or kNN),
and Weighted Average prediction. This was tested against
a modified algorithm (see §3.2) consisting of Pearson Cor-
relation similarity (with and without similarity weighting),
Neighborhood formation (similarity thresholding or kNN),
and Mean-centered prediction. For Item-based (see §3.1),
Mahout uses Pearson Correlation similarity (with and with-
out similarity weighting), no Neighborhood formation, and
Weighted Average prediction. This was tested against a
modified algorithm (see §3.2) consisting of Pearson Corre-
lation similarity (with and without similarity weighting),
Neighborhood formation (similarity thresholding), and Mean-
centered prediction.

5.1.1 Test Cases
In order to test the overall hypothesis, the following test

cases were developed and executed for both user-based and
item-based recommenders using the ML100K and ML10M
datasets:

1. Mahout Prediction, No weighting
2. Mahout Prediction, Mahout weighted
3. Mahout Prediction, Significance weighted
4. Mean-Centered Prediction, No weighting
5. Mean-Centered Prediction, Mahout weighted
6. Mean-Centered Prediction, Significance weighted

5.1.2 Accuracy and Coverage Metrics
We used Mahout’s MAE evaluator to measure the accu-

racy of the rating predictions. For prediction coverage, we
used dataset training data to estimate the rating predictions
for the test set; the random sample of user-item pairs in our
testing was 30K pairs for ML100K and 25K pairs for ML10M
(see §3.2). AC Measures were calculated for all test cases.

5.1.3 Dataset Partitioning
The Mahout evaluator creates holdout 9 partitions accord-

ing to a set of run-time parameters. For the tests using the
8http://www.grouplens.org
9Holdout is a method that splits a dataset into two parts, a

ML100K dataset, the training set was 70% of the data, the
test set was 30% of the data, and 100% of the user data was
used; a total 30K rating predictions from 943 users were re-
quested for each test set. For the tests using the ML10M
dataset, the training set was 95% of the data, the test set
was 5% of the data, and 5% of the user data was used; a
total 25K rating predictions from 3180 users were requested
for each test set.

5.1.4 Test Variations
Various similarity thresholds and kNN neighborhood sizes

were executed for each test case in order to understand and
evaluate the corresponding behavior of the recommenders.
For User-based recommender testing, similarity thresholds
of 0.0, 0.1, 0.3, 0.5, and 0.7 and kNN neighborhood sizes of
600, 400, 200, 100, 50, 20, 10, 5, and 2 were tested. For
Item-based recommender testing, in addition to using no
similarity thresholding, similarity thresholds of 0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, and 0.7 were tested.

6. RESULTS AND DISCUSSION

6.1 ML10M Results
Figures 2 and 3 show the results of test cases 1 through

6 for user and item-based algorithms, respectively10. The
key results of the experiment, for both user-based and item-
based algorithms unless otherwise noted, were as follows:

1. MAE for mean-centered prediction with significance
weighting is a significant improvement (p<0.01) over MAE
for Mahout prediction, regardless of weighting, across simi-
larity thresholds (except item-based at similarity threshold
of 0.7) and kNN neighborhood sizes (except user-based at
kNN of 2, not shown).

2. Mahout similarity weighting does not significantly im-
prove (p<0.01) Mahout prediction MAE over prediction with
no similarity weighting (except Mahout prediction for user-
based and item-based at a similarity threshold of 0.4, not
shown). This would indicate that Mahout similarity weight-
ing is not very effective as a weighting technique, especially
as compared to significance weighting.

6.2 ML100K Results
The results and trend lines for the ML100K experiment

are similar to ML10M. The key results, for both user-based
and item-based algorithms unless otherwise noted, were:

1. MAE for mean-centered prediction with significance
weighting is a significant improvement (p<0.01) over MAE
for Mahout prediction, regardless of weighting, across simi-
larity thresholds and kNN neighborhood sizes (except user-
based at kNN of 400).

2. Mahout similarity weighting does not significantly im-
prove (p<0.01) Mahout prediction MAE over prediction with

training set and a test set, and the partitioning is performed
by randomly selecting some ratings from all, or some, of the
users. The selected ratings constitute the test set, while the
remaining ones are the training set.

10The following curves are superimposed over each other be-
cause the values are very similar: MAE results for mean-
centered prediction (no weighting and Mahout weighted),
MAE results for Mahout prediction (No weighting and
Mahout weighted), Coverage results for Mahout predic-
tion and mean-centered prediction (No weighting and Ma-
hout weighted), Coverage results for Mahout prediction and
mean-centered prediction (both Significance weighted).

48

Figure 2: User-based Mahout Recommender Re-
sults for ML10M, Test cases 1 through 6

no similarity weighting (except Mahout prediction for user-
based and item-based at a similarity threshold of 0.4).

6.3 Discussion
As hypothesized, results for both of the ML100K and

ML10M experiments show significant improvements in MAE
using the mean-centered prediction algorithm with signifi-
cance weighting compared to the Mahout baseline predic-
tion algorithm. However, when coverage is considered, the
“best” MAE results may need a second look. Can an MAE
of 0.5 or less be considered “good” when the associated cov-
erage is in the single digits? In this case, the recommender
system may only be able to provide recommendations to a
very small subset of its users and is a situation that must
be avoided by system operators. To help address the ac-
curacy vs. coverage trade-off, combined measures such as
the AC Measure (Section 4), can help by considering both
accuracy and coverage simultaneously. For the ML10M ex-
periment, we determined that the lowest MAE for the User-
based algorithm using mean-centered prediction with sig-
nificance weighting was 0.578 at a similarity threshold of
0.7 and coverage of 0.833%; the AC Measure for this result
is calculated as 69.42. Similarly, the lowest MAE for the
Item-based algorithm using mean-centered prediction with
significance weighting was 0.371 at a similarity threshold of
0.7 and coverage of 1.02%; the AC Measure for this result is
calculated as 36.32. In each of these cases, the exceedingly
high values for the AC Measure indicate that these results
are not very desirable in a recommender system.

Figures 4 and 5 show the AC Measure results for user and

Figure 3: Item-based Mahout Recommender Re-
sults for ML10M, Test cases 1 through 6

item-based algorithms using ML10M, respectively. Rather
than show all 30 results for each algorithm (5 similarity
thresholds x 2 prediction methods x 3 weighting types), we
show only the results with calculated AC Measure values
less than 1.0; therefore, the lowest MAE results reported
above for user-based and item-based algorithms are clearly
beyond the range of this chart. We found that the best
combined accuracy/coverage results were found at higher
levels of coverage and lower levels of similarity threshold,
i.e., the best (lowest) AC Measure for user-based was 0.688
at a similarity threshold of 0.1 and for item-based was 0.665
at a similarity threshold of 0.0, both using mean-centered
prediction and significance weighting. We can also see that,
with few exceptions, mean-centered prediction is improved
over the Mahout prediction for the same similarity weight-
ing and similarity threshold. We observed similar results
using the ML100K dataset where the best (lowest) AC Mea-
sure for user-based was 0.765 and for item-based was 0.746,
both at a similarity threshold of 0.0 and both using mean-
centered prediction and significance weighting. These re-
sults demonstrate that the “best” MAE may not always be
the lowest MAE, especially when coverage is also considered;
furthermore, recommender system settings such as similarity
weighting and neighborhood size also need to be considered
during system evaluation.

Other observations of our experiments that match results
reported in [5] and serve to validate our evaluation and in-
crease our confidence in the results are: (a) In general, signif-
icance weighting improves prediction MAE, as compared to
predictions using Mahout similarity weighting or no similar-

49

Figure 4: AC Measure for selected User-based re-
sults (lower is better)

Figure 5: AC Measure for selected Item-based re-
sults (lower is better)

ity weighting; (b) As the similarity threshold increases, MAE
for mean-centered prediction with significance weighting im-
proves and coverage degrades, whereas MAE and coverage
both degrade for Mahout prediction with Mahout weighting;
(c) Coverage decreases as neighborhood size decreases.

7. CONCLUSION
Our case study of Mahout as a recommender system plat-

form highlights evaluation considerations for developers and
also shows how straightforward functional enhancements im-
proves the performance of the baseline platform. We eval-
uated our changes against current Mahout functionality us-
ing accuracy and coverage metrics not only to assess base-
line results, but also to provide a view of the trade-offs be-
tween accuracy and coverage resulting from using different
recommender algorithms. We reported cases where the low-
est MAE accuracy results were not necessarily always the
‘best’ when coverage results were also considered, and we
instrumented Mahout for a combined accuracy and cover-
age metric (AC Measure) to evaluate these trade-offs more
directly. We believe that this case study will provide use-
ful guidance in using Mahout as a recommender platform,

and that our combined measure will prove useful in evalu-
ating algorithm changes for the inherent trade-offs between
accuracy and coverage.

8. REFERENCES
[1] C. Desrosiers and G. Karypis. A comprehensive survey

of neighborhood-based recommendations methods. In
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook. Springer,
2011.

[2] M. D. Ekstrand, M. Ludwig, J. A. Konnstan, and
J. T. Riedl. Rethinking the recommender research
ecosystem: Reproducibility, openness, and lenskit. In
Proceedings of the 5th ACM Recommender Systems
Conference (RecSys ’11), October 2011.

[3] M. Ge, C. Delgado-Battenfeld, and D. Jannach.
Beyond accuracy: Evaluating recommender systems
by coverage and serendipity. In Proceedings of the 4th
ACM Recommender Systems Conference (RecSys ’10),
September 2010.

[4] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers,
B. Sarwar, J. Herlocker, and J. Riedl. Combining
collaborative filtering with personal agents for better
recommendations. In Proceedings of the 16th National
Conference on Artificial Intelligence (AAAI-99), July
1999.

[5] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proceedings of the ACM
SIGIR Conference, 1999.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22(1):5–53, 2004.

[7] S. Mcnee, J. Riedl, and J. Konstan. Accurate is not
always good: How accuracy metrics have hurt
recommender systems. In Proceedings of the
Conference on Human Factors in Computing
Systems(CHI 2006), April 2006.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: an open architecture for
collaborative filtering of netnews. In Proceedings of the
ACM CSCW Conference, 1994.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the World Wide Web
Conference, 2001.

[10] B. M. Sarwar, J. A. Konstan, A. Borchers,
J. Herlocker, B. Miller, and J. Riedl. Using filtering
agents to improve prediction quality in the grouplens
research collaborative filtering system. In Proceedings
of the ACM 1998 Conference on Computer Supported
Cooperative Work (CSCW ’98), November 1998.

[11] C. E. Seminario and D. C. Wilson. Robustness and
accuracy tradeoffs for recommender systems under
attack. In Proceedings of the 25th Florida Artificial
Intelligence Research Society Conference
(FLAIRS-25), May 2012.

[12] G. Shani and A. Gunawardana. Evaluating
recommendation systems. In F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook. Springer, 2011.

50

Evaluating Various Implicit Factors in E-commerce
Ladislav Peska

Department of software engineering
Charles University in Prague

Malostranske namesti 25, Prague, Czech Republic

peska@ksi.mff.cuni.cz

Peter Vojtas
Department of software engineering

Charles University in Prague
Malostranske namesti 25, Prague, Czech Republic

vojtas@ksi.mff.cuni.cz

ABSTRACT
In this paper, we focus on the situation of a typical e-commerce

portal employing personalized recommendation. Such website

could, in addition to the explicit feedback, monitor many different

patterns of implicit user behavior – implicit factors. The problem

arises while trying to infer connections between observed implicit

behavior and user preferences - while some connections are

obvious, others may not.

We have selected several often used implicit factors and

conducted online experiment on travel agency web site to find out

which implicit factors could replace explicit ratings and (if there

are more of them) how to combine their values. As utility

functions determining recommending efficiency was selected click

through rate and conversions rate.

Our experiments corroborate importance of considering more

implicit factors and their different weights. The best individual

results were achieved by means of the scrolling factor, the best

combination was Prior_to method (lexicographical ordering

based on factor values).

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval -

Information Filtering

General Terms
Measurement, Human Factors.

Keywords
Recommender systems, implicit factors, user feedback,

e-commerce success metrics

1. INTRODUCTION
Recommending on the web is both an important commercial

application and popular research topic. The amount of data on the

web grows continuously and it is nearly impossible to process it

directly by a human. The keyword search engines were adopted to

cope with information overload but despite their undoubted

successes, they have certain limitations. Recommender systems

can complement onsite search engines especially when the user

does not know exactly what he/she wants. Many recommender

systems, algorithms or methods have been presented so far. We

can mention Amazon.com recommender [12] as one of the most

popular commercial examples. Recommender systems varies in

both type (Collaborative, Content-based, Context, hybrid, etc.),

input (user feedback types, object attributes, etc.) or output. We

suggest [17] for detailed recommender systems taxonomy.

The explicit feedback (given by the user consciously e.g. rating

objects with stars) is often used in research and also in some

commercial applications. Although it is quite easy to understand

and refers very well to the user’s preference, it also has

drawbacks. The biggest ones are its scarcity and unwillingness of

some users to provide any explicit feedback [7]. Contrary to the

explicit feedback, the implicit feedback (events triggered by a user

unconsciously) can provide abundant amount of data, but it is

much more difficult to understand the true meaning of such

feedback.

The rest of the paper is organized as follows: review of some

related work is in section 2. In section 3 we describe our model

of user preferences and in section 4 method how to learn it.

Section 5 contains results of our online experiment on a travel

agency website. Finally section 6 concludes our paper and points

to our future work.

1.1 Motivation
In this paper we focus on an e-commerce website employing

personalized object recommendation – e.g. travel agency. On such

site we can record several types of user implicit feedback such as

page-view, actions or time spent on page, purchasing related

actions, click through or click stream, etc. Each of these factors is

believed to be related to the user’s preference on an object.

However this relation can be non-trivial, dependant on other

factors, etc. In this work, we focus on if and how such relations

could be compared against each another. Our second aim is how

to use or combine them in order to improve recommendations.

1.2 Contribution
The main contributions of this paper are:

 Evaluation of recommendation based on various

implicit factors using typical e-commerce success

metrics.

 A generic model that combines various types of user

feedback.

 Experiments with several combining methods (average,

weighted aggregation and prioritization).

 Gathered data for possible future off-line experiments.

Copyright is held by the author/owner(s). Workshop on Recommendation

Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction with

ACM RecSys 2012. September 9, 2012, Dublin, Ireland.

51

2. RELATED WORK
The area of recommender systems has been extensively studied

recently. Much effort has been made for creating different

recommendation algorithms e.g. [3], [4], [5] and designing whole

recommender systems e.g. [6], [15] and [16]. Our work is

prependable to some of those systems as we can supply them with

a single-value object rating based on more implicit factors instead

of using explicit user’s object rating or only single implicit factor.

A lot of recommendation algorithms aims to do decompose the

user’s preference on the object into the preference of the object’s

attributes [3], [4], [5] and [15], which can be a future extension

to our work.

Some authors employ context information while deciding about

true meaning of the user feedback e.g. Eckhardt et al. [2] proposes

that good rating of an object is more relevant when the object

appears among other good objects. Joachims et al. [8] proposes

“Search Engine Trust Bias” while observing that the first result of

a search engine search has higher click through rate than the

second one, even if the results were swapped – so the less relevant

result was shown at the first place.

Important for our research is the work of Kiessling et al. on the

Preference SQL system e.g. [10]. The Preference SQL is an

extension of SQL language allowing user to specify directly

preferences (or so called “soft constraints”) and to combine them

in order to receive best objects. We use three described

combination operators: Prior to (hierarchical), Ranking and

Pareto in our model of user preference.

Several authors studied various aspects of implicit feedback: quite

common are studies about comparing implicit and explicit

feedback e.g. Claypool et al. [1] using adapted web browser or

Jawaheer et al. [7] on an online music server. Using only an

implicit feedback based utility function is a common approach

when it is impossible to get explicit feedback [6], [14]. Lee and

Brusilovsky proposed job recommender directly employing

negative implicit feedback [11]. In our case we have focused on e-

commerce recommenders, so we have used two typical e-

commerce utility functions – Click Through Rate and user

Conversion Rate. In contrast to several studies e.g. [1] who

studied behavior of closed, small group of users (who installed

special browser) on the open web, we have focused on the single

website and all its users which in result let us to gather more

feedback data and introduce more various feedback factors.

For our experiments, we use the UPComp [13] recommender

deployable into the running e-commerce applications. Compared

to our previous work [14], we have conducted larger on-line

experiment, revised utility functions in our learning method and

introduced new model of user preference.

3. MODELS OF USER PREFERENCE
We assume that any feedback is in the form Feedback(user,

object, feedback type, value). At this stage of our research, we do

not employ preference relations or feedback related to the object

groups (e.g. categories) and object attributes.

We based our models on work of Kiessling et al. and their model

of user preferences in Preference SQL [10]. The authors defined

several patterns on how to express preferences (soft conditions)

on a single attribute e.g. “prize around 2000” or “Highest

distance”, etc. Each soft condition assigns to each object value

from [0, 1] interval. Then they defined three types of operators

combining soft conditions together:

- Preferring Operator: preferring one (or more) condition against

others.

- Ranking Operator to combine conditions by a ranking function.

At this time we use weighted average as a ranking.

- Pareto Operator for combining equally important conditions, or

conditions where their relation is unknown. We plan to use this

operator in our future work.

In our research, we have replaced the soft conditions by the

implicit factors forming the Preference algebra model. Each

implicit factor value has assigned preference value from [0, 1]

interval – currently we simply linearly normalize the space

between highest and lowest factor values. Those preference values

can be then freely combined with the operators e.g.:

Scrolling PRIOR TO Avg(Time, MouseClicks)

We will demonstrate behavior of our model on a small two-

dimensional example: Table 1 contains four sample objects and

their scrolling and time on page feedback for fixed user (data

already normalized into [0, 1]). They are visualized on Figure 1:

as it can be seen, we will receive different top-k for their various

combinations.

Table 1: example objects and their scrolling and time on page

implicit factor values.

Object Amount of scrolling Time on page

Object1 1.0 (e.g 10 times) 0.4 (e.g. 200sec)

Object2 0.7 (e.g 7 times) 1.0 (e.g. 500sec)

Object3 0.8 (e.g 8 times) 0.6 (e.g. 300sec)

Object4 0.4 (e.g 4 times) 0.3 (e.g. 150sec)

Figure 1: Combining single implicit factor values into the

preference for objects from Table 1.

4. LEARNING PREFERENCE MODEL
The idea behind our learning model is following: If we use a fixed

recommendation methods supplied with various implicit factor

data and then compare the effectivity of the recommendations, we

can estimate how successful each implicit factor is.

For the purpose of our experiment, we have divided our learning

model into two phases: in the first phase, we have learned

successfulness of the considered implicit factors (see Table 2 for

their list and description). In the second phase we have

implemented several methods combining various implicit factors

together based on the Preference algebra model.

52

Table 2: Description of the considered implicit factors for

arbitrary fixed user and object

Factor Description

PageView Count(OnLoad() event on object detail page)

MouseActions
Count(OnMouseOver() events on object detail

page)

Scroll Count(OnScroll() events on object detail page)

TimeOnPage Sum(time spent on object detail page)

Purchase Count(Object was purchased)

Open
Count(Object detail page accessed via link from

recommending area)

Shown Count(Object shown in recommending area)

In both phases we have measured success of the recommendations

according to the two widely used e-commerce success metrics:

 Conversion rate - #buyers / #users

 Click through rate (CTR) - #click through / #shown

objects by the recommending method

As we stand on the side of the e-shop owner, we determine that

the main task for the recommender system is to increase the shop

owner’s profit. It is possible to measure the profit directly as an

utility function, however we did reject this method for now and

use only conversion rate measuring overall goal (purchase)

achievements. In this stage of our work we mainly focus on

convincing user to buy any product rather then convince him/her

to buy product B instead of A (see table 3 – the overall conversion

rates are rather low and need to be improved prior to the other

goals).

As the conversion rate should evaluate the overall success of the

whole system, the CTR refers directly to the success of the

recommendation itself.

5. EXPERIMENT
We have conducted an online experiment on the SLAN tour travel

agency website1 to confirm our ideas. We have exchanged the

previous random recommendations on the category pages for our

methods. The experiment lasted for 2 months in February and

March 2012. We have collected data from in total 15610 unique

users (over 200 000 feedback events). We first describe in Figure

2 the simplified diagram of the travel agency e-shop. We

recognize four important states of user interaction with the e-shop:

 User is creating conjunctive query Q (either implicitly e.g. by

viewing category pages or explicitly via search interface).

 The (possibly very large) set of objects OQ is response to Q.

The objects are recommended at this state. We recommend

some objects from OQ to the user (membership in OQ set is

necessary condition, each recommended object from OR has

to fulfill).

 User is viewing detail of the selected object o. We believe

that most of the interesting user feedback should be recorded

in this phase.

 User purchased the object o, which is the criterion of success

for us.

1 http://www.slantour.cz

Figure 2: The simplified state diagram of an e-commerce site:

User enters the site in STATE I. or II. He/she can either navigate

through category or search result pages – updating query Q,

receiving new recommended objects OQ and OR (STATE I.) or

proceeds to the detail of an object (STATE II.). The object can be

eventually purchased (STATE III.).

The Figure 3 depicts the schema of our experiment.

Figure 3: General schema of our experiment. When user visits the

website for the first time, he receives userID, whenever he access

page with recommendations, the component selects the

recommending method according to the userID. The experiment

results for each method are computed from user feedback (Click

throughs, purchases).

5.1 UPComp recommender
The UPComp (user preference component) is an independent e-

commerce recommender. It consists of a database layer storing

user feedback, server-side computing user preference and

recommendations and client-side which captures the user events

and shows recommended objects. Among UPComp main

advantages belong:

 Easy deployable to a various e-commerce systems

regardless to the domain of objects.

 Large (extendible) set of recorded user behavior.

 Several recommending methods which can be

combined together.

In the current experimental setting, we have used only a small

portion of UPComp capabilities (ObjectRating and Collaborative

methods, recommending objects for known category). For more

complex description see [13].

53

5.2 Single implicit factors
For the first learning phase we have created a total of seven

variants of ObjectRating recommending method, each based on

one implicit factor (PageView(), MouseActions(), Scrolling(),

TimeOnPage(), Purchases(), ClickThrough() and

ClickThrough()/Shown() rate). Each variant of ObjectRating

method used the same recommendation algorithm, but based on

only one feedback type data. We have also added Random()

method recommending random objects from the current category

as a baseline. Each unique user received recommendations based

only on one of these methods all the time he visited the website.

The method is determined as userID mod K, where K is number of

possible methods.

The ObjectRating method calculates for each object (o) the object

rating as the sum of feedback values of given type (f) from all

users U. The score is then normalized into [0, 1] (see pseudo SQL

code below).

 SELECT (SUM(value) / MAX(SUM(value)) as ObjectRating
FROM Feedback
WHERE Object = o and FeedbackType = f

We have selected this simple method, because we wanted to avoid

the problems suffered by more complex methods (e.g. Cold Start

Problem). On the other hand, this decision decreases variability of

recommendations, so we want to use also other methods in our

future work.

Table 3. shows results of the first phase of our experiment. Anova

test proves statistically significant differences in Click through

rate (p-value < 0.001), but the differences in the Conversion rate

were not statistically significant (probably due to relatively small

number of purchases – 106 buyers in total).

Rather surprising is the supreme position of the Scrolling()

method comparing to the e.g. Claypool et al. [1]. However in

contrast to the Claypool et al. the most of our object detail pages

overflows typical browser visible area. However important

controls like purchase button are visible in top of the page,

scrolling is necessary to see some additional information like

accommodation details, all hotel pictures, trip program, etc. On

sites with bookmark-style design with no or a little scrolling

needs, opening an in-page bookmark should be considered as a

similar action to our scrolling event. Also time spent on page

seems to improve recommendations (despite the results of e.g.

Kelly and Belkin [9]).

Table 3. Results of the experiment’s first phase. * significant

improvement over Random() (TukeyHSD, 95% confidence).

Method Conversion rate
Click through

rate (CTR)

Random() (baseline) 0.97% 3.02%

PageView() 1.34% 4.11%*

MouseActions() 0.96% 4.15%*

TimeOnPage() 1.71% 4.50%*

Scrolling() 1.98% 4.94%*

Purchases() 1.39% 4.06%

ClickThrough() 0.84% 4.32%*

ClickThrough/Shown() 1.70% 4.38%*

5.3 Combining implicit factors
Following to the first phase, we have defined our three main tasks

and perform experiments to receive at least initial answers/results

for them:

T1. Measure whether combined methods produce better

recommendations than the single-factor ones.

T2. Measure whether various combination functions affect

recommendation effectivity.

T3. How to use our results in more complex recommending

methods.

Table 4: Results of combined methods: AVG stands for average,

in Weighted_AVG we use the factor’s placement in the CTR

results as weight, similarly Prior_to prioritize first factor against

second, etc. * significant improvement over Random()

(TukeyHSD). ** significant impr. over AVG(best 3 factors)

(TukeyHSD). *** significant impr. over Scrolling() (t-test).

Method
Conversion

rate
CTR

Random() (baseline1) 0.97% 3.19%

Scrolling() (baseline2) 1.07% 4.36% *

AVG(all factors) 1.41% 4.54% *

AVG(best 3 factors) 1.35% 3.95%

Weighted_AVG(best 3 factors) 1.49% 4.95% *,**

Prior_to(best 3 factors) 1.05% 5.12% *,**,***

Collaborative+ Weighted_AVG

(all factors)
0.95% 4.64% *

Again Conversion rate unfortunately did not provide us with any

significant results, so we have focused on the CTR. The combined

methods overall achieved better results than the Scrolling(), but

only the Prior_to() was significantly better. Almost every method

outperforms Random() recommendation.

For the Task 2, we have compared Weighted average, Priorization

and Average methods on the best three implicit factors, where

both Weighted average and Priorization methods receives

significantly better results than Average in Click through rate.

Both Prior_to and Weighted_AVG significantly outperformed

AVG method, from which can be concluded that there are

important differences in various single implicit factors

performance and that combination function should weight

somehow the single factors performance. However even though

the Prior_to CTR results were better than Weighted_AVG, the

difference was not significant enough, so we can not yet make a

conclusion about which combination method is the best.

For the third task, we have slightly changed our experiment

schema (see Figure 2), where we have exchanged the

ObjectRating() method for UserObjectRating(User, Object,

Feedback type) calculating object rating separately for each

relevant user (see pseudo SQL code below).

SELECT (SUM(value) / MAX(SUM(value)) as ObjectRating
 FROM Feedback
 WHERE User = u and Object = o and FeedbackType = f
UPComp then calculated standard user-to-user collaborative

filtering. The method results (see Table 4, Collaborative+

Weighted_AVG) were though rather moderate. The method

outperforms AVG, Scrolling and Random in CTR, however the

difference was not significant enough and other simple methods

54

(e.g. Prior_to) achieved better results. One of the possible

problems was the higher computational complexity of this method

resulting in higher response time which could reduce the user's

interest in the objects presented in recommending area. This

method can be in future compared / replaced with e.g. object-to-

object collaborative filtering with precomputed similarity as

described in [12].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have discussed the problem of using more

various implicit factors and how to formulate user’s preference

from them. We have adapted the Preference algebra model to this

task, selected several possibly good implicit factors and organized

a small online experiment to verify our ideas. The experiment

results showed that the most of our proposed factors outperforms

baseline recommendation and that it is important to use more

various implicit factors combined accordingly to their

performance.

The usage of e-commerce success metrics (especially CTR) to

determine success of recommendations provided us with

interesting results, so we plan to continue using Click through rate

as a success metrics (conversions due to the relatively small

number of purchases only in large scale experiments).

 Our research on this field is in its early stage, so there is both

space for more experiments (e.g. with negative implicit feedback,

dependencies between various factors, temporal aspect of user’s

preference and behavior, etc.) and for possible improvements in

our experimental settings (e.g. replacing recommending methods,

extend the implicit factors set, etc.).

However our main task should be to move from such experiments

into a working recommender system based on implicit preferences

with various (dynamic) importances.

7. ACKNOWLEDGMENTS

The work on this paper was supported by Czech projects SVV-

2012-265312, MSM 0021620838 and GACR 202-10-0761.

REFERENCES
[1] Mark Claypool, Phong Le, Makoto Wased, and David

Brown. 2001. Implicit interest indicators. In Proceedings of

the 6th international conference on Intelligent user

interfaces (IUI '01). ACM, New York, NY, USA, 33-40.

[2] Eckhardt A., Horváth T., Vojtáš P.: PHASES: A User Profile

Learning Approach for Web Search. In Proc. of WI 2007,

Silicon Valley, CA, IEEE Computer Society, pp. 780-783

[3] Alan Eckhardt, Peter Vojtáš: Combining Various Methods of

Automated User Decision and Preferences Modelling. MDAI

'09 172-181. Springer-Verlag Berlin, Heidelberg, 2009.

[4] Alan Eckhardt, Peter Vojtáš. 2009. How to learn fuzzy user

preferences with variable objectives. In proc. of

IFSA/EUSFLAT Conf. 2009: 938-943.

[5] Jill Freyne, Shlomo Berkovsky, and Gregory Smith. 2011.

Recipe recommendation: accuracy and reasoning. In

Proceedings of the 19th international conference on User

modeling, adaption, and personalization (UMAP'11).

Springer-Verlag, Berlin, Heidelberg, 99-110.

[6] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008.

Collaborative Filtering for Implicit Feedback Datasets. In

Proc. of ICDM '08. IEEE Computer Society, Washington,

DC, USA, 263-272.

[7] Gawesh Jawaheer, Martin Szomszor, and Patty Kostkova.

2010. Comparison of implicit and explicit feedback from an

online music recommendation service. In Proc. of

HetRec'10. ACM, New York, NY, USA, 47-51.

[8] Thorsten Joachims, Laura Granka, Bing Pan, Helene

Hembrooke, Filip Radlinski, and Geri Gay. 2007. Evaluating

the accuracy of implicit feedback from clicks and query

reformulations in Web search. ACM Trans. Inf. Syst. 25, 2,

Article 7 (April 2007). DOI=10.1145/1229179.1229181

[9] Kelly, D. & Belkin, N. J. Display time as implicit feedback:

understanding task effects Proceedings of the 27th ACM

SIGIR conference on Research and development in

information retrieval, ACM, 2004, 377-384

[10] Kießling, W.; Endres, M. & Wenzel, F. The Preference SQL

System - An Overview. IEEE Data Eng. Bull., 2011, 34, 11-

18

[11] Lee, D. H. & Brusilovsky, P. Reinforcing Recommendation

Using Implicit Negative Feedback In Proc. of UMAP 2009,

Springer, LNCS, 2009, 422-427

[12] Linden, G.; Smith, B. & York, J. Amazon.com

recommendations: item-to-item collaborative filtering

Internet Computing, IEEE, 2003, 7, 76 - 80

[13] Ladislav Peska, Alan Eckhardt, and Peter Vojtas. 2011.

UPComp - A PHP Component for Recommendation Based

on User Behaviour. In Proceedings of WI-IAT '11, IEEE

Computer Society, Washington, DC, USA, 306-309.

[14] Ladislav Peska and Peter Vojtas. 2012. Estimating

Importance of Implicit Factors in E-commerce. To appear on

WIMS 2012, http://ksi.mff.cuni.cz/~peska/wims12.pdf

[15] Pizzato, L.; Rej, T.; Chung, T.; Koprinska, I. & Kay, J.

RECON: a reciprocal recommender for online dating

Proc. of RecSys'10, ACM, 2010, 207-214

[16] Symeonidis, P.; Tiakas, E. & Manolopoulos, Y. Product

recommendation and rating prediction based on multi-modal

social network. Proc. of RecSys'11, ACM, 2011, 61-68

[17] Bo Xiao and Izak Benbasat. 2007. E-commerce product

recommendation agents: use, characteristics, and impact. MIS

Q. 31, 1 (March 2007), 137-209.

55

	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

	paper4.pdf
	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

	paper5.pdf
	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

	paper6.pdf
	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

	paper9.pdf
	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

	paper11.pdf
	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

	paper10.pdf
	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

