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Abstract. A procedure for counting and generating edge covers of
acyclic graphs is presented. The procedure splits acyclic graphs of rooted
trees composed of simple path graphs for which exhibiting and counting
covers can be achieved by linear procedures. The procedure is therefore
the foundation of a linear algorithm for edge counting on acyclic graphs.
It is also believed that the procedure will serve as the basis for a more
complex algorithm for counting edge covers on arbitrary simple graphs.
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1 Introduction

This paper is concerned with the edge covering problem on acyclic graphs [1, 2].
The problem is #P-complete [3-7] and the paper will also consider a combination
of both cyclic and acyclic graphs. Such graphs are a combination of simple paths
and trees involving a special configuration. The edge covering problem may be
divided on counting covers, exhibiting covers (which build a precise covering for
graphs), and the minimum and maximum cover problem. The paper is concerned
only with counting covers for acyclic graphs and the procedure will show how to
precisely recover covers from certain sequences of numbers.

2 Preliminares

The following conventions and results are in common use and can be looked at
[8]. A graph is a pair G = (V, E), where V is a set of vertices and E is a set
of edges that associates any pair of vertices not necessarily distint. The number
of vertices and edges is denoted by v(G) and e(G), respectively. The parametre
v(@G) is called the order whereas e(G) will be the size of the graph. Each vertex
v of a graph has associated a number d¢(v), called the degree of v, and it counts
the number of edges incident on v. A vertex of degree zero is called an isolated
vertex. It will be denoted by §(G), A(G) the minimum and maximum degree of
the vertices of G, respectively.

A subgraph of a graph G is a graph G’such that V/ C V and E' C E.
Subgraphs can be computed by deleting edges and vertices. If e € E, e can
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simply be removed from graph G, yielding a subgraph denoted by G\e; this is
obviously the graph (V, E—e). Analogously, if v € V', G\v is the graph (V —v, E')
where B/ C E. The process of vertex deletion implies removing all edges incident
on the vertex to be removed.

A spanning subgraph is a subgraph computed by deleting only edges while
keeping all its vertices, that is, if S C FE is a subset of E, then a spanning
subgraph of G = (V, E) is G'=G\S.

A path in a graph is a linear sequence of adjacent vertices, whereas a cycle
is a sequence of vertices that can be arranged in a cyclic sequence. A path and
a cycle are simple graphs, where simple graph means a graph that has no loops
and two adjacent vertices are connected by one and only one edge.

An acyclic graph is a graph that contains no cycles. The connected acyclic
graphs are called trees, and a connected graph is a graph that for any two pair
of vertices there exists a path connecting them. It is not difficult to infer that in
a tree there is a unique path connecting any two pair of vertices. A rooted tree
T(v) is a tree T with a given vertex v, called the root of T. The vertices in a
tree with degree equal to one are called leafs. A path graph and a cycle graph
that contain n vertices will be denoted by P,,, C,,, respectively. The path graph
containing n vertices can be precisely defined as the graph P = (Vp, Ep), where
Ve = {v;|i € N*} and Ep = {e;le; = vvip1,1 € N*71}. The notation v;v; s
represents the edge connecting vertex v; to vertex v;;+1. The cycle graph with n
vertices can analogously be defined except that v; = vy,.

An edge cover, or simply an e-cover of a graph G is the edge set of a spanning
subgraph of G. In other words, an edge cover of G = (V, E.) is a subset
E,, C E, that covers all vertices of G. Therefore, the edge cover counting
problem can be simply stated as follows: Given a simple graph G, count the
total number of different edge covers of G. Let us denote the set of e-covers for
a graph G as &g, therefore the number of e-covers is |E].

3 Joining and splitting trees

3.1 Joining graphs

The join concept defined here is different from the join defined in the litera-
ture [8], in the sense that join in this context means simply the ”union” of two
graphs trough a vertex or set of vertices.

Definition 1. The join, denoted by V, of two graphs trough a pair of vertices
is defined as follows. Let G = (V, Eg), H = (Vyy, Eyy) be two graphs such that
VenNVy =0, EoNEy =0, v eV, and u € V. The join operation is obtained
by choosing w ¢ V., w ¢ V; therefore by relabeling u, v in both graphs G and H
to w in such a way that we get the sets of vertices VC;, VA and edges E/G, E}I,
thus

GV H = (V,UVy;,EgUEy) (3.1)
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Clearly, the set Vg, ;; = Vi UVy, of vertices contains the vertex w such that
dava (w)=da(v)+dg(u), this means that the incident edges to w are those that
were incident to both u and v.

The join operation of two or more graphs by a vertex or set of vertices can
be attained by successive application of definition (1) as follows: Let S = {w;|i €
NF} C V,, be a subset of vertices for a given graph G and H = {H;|i € N¥}
a family of graphs such that H; will be joined through u;, v; € Vy for every
i € N*_ then the join of G with H can be achieved as follows

G\/H:(-”((G\/Hl)\/"-\/Hk,l)Hk:G\/H,‘ (32)
ieNF

The above procedure will be useful to define subgraphs of rooted trees by joining
path graphs through a single vertex.

3.2 Basic subtrees (b-subtree)

Let T'(u) be a rooted tree, with root vertex wu, since in general rooted tree have
vertices v # u with dr(v) > 3 we will define b-subtrees with root vertex v as the
join of path graphs.

Notice that the following definition applies for connected as well as discon-
nected paths only. Let us called the interior of a connected path P which starts

and ends at vertices u, v to be the set V3 = {w eVp ‘ w # u, v}, and the family

Fp of all paths starting at vertex v € V. of arbitrary length e(P) as the set
Fv ={Pldp(z) =2 for all z € V3}.
Let us define the b-subtree M, at vertex v of the rooted tree T'(u) as the join

M,= \/ P (3.3)
peF,

The set V;, C V does not contain only vertices of degree two since they are
somehow connected via a path P of T. Thus, in general, the ending vertices
of P have arbitrary degree. The vertices v # w € Vj, with dr(w) > 3 will
be called free vertices of M, in the sense that M, can only be joined through
those vertices to another b-subtrees. The vertices of degree two are part of Vg,
P € F, whereas of degree one are just leaves. Free vertices can be isolated
and non-isolated vertices, and the join has to be well defined in the sense that
non-isolated vertices are not to be joined.

3.3 Tree graphs as joins of b-subtrees

In order to count e-cover for a given tree T, it is necessary to split the tree
into b-subtrees. It will be shown that is much simpler to calculate e-covers for
b-subtrees, then joining them together will result in e-covers for trees. To split
the tree T into b-subtrees we will take all vertices v € V. such that dr(v) > 3
and define subtrees as the join M, in the same way as in (3.3).
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The split of T'. A vertex w is a neighbour vertex of v if there is a path P € F,
such that w € Vp, dr(w) > 3 and dr(v) > 3. This obviously means that w and
v are connected via P. The set N, = {w € V|w is neighbour of v} is the set of
all neighbour vertices of v.

It is well known that for any tree T'(u), v € Vr(u) there exist a unique path
P connecting v and v. This characteristic of trees allow us to identify vertices by
placing them on levels. Initially, the root vertex will be, by definition, at level 0.
Any other vertex v with dr(v) > 3 will be at level s if the set V3 of the unique
path P connecting v and u, has exactly s — 1 vertices of degree greater than
or equal to three. For example, if v € N, then v is at level s = 1, because by
definition any w € V3 has degree equal to 2, therefore containing no vertices
of degree greater than or equal to three, for the path P connecting v and w.
Therefore, it can be defined the set Vi = {v € Vj|v is at level s,dr(v) > 3},
and the following relation: vertex v is below w (v < w) if v € V;§ and w € V}
with s < ¢. Obviously, u < w for any vertex w € V., with dr(w) > 3.

Definition 2. A w-branch of T(u) with root vertex w is an acyclic sugbraph
S(w) of T(u) such that Vg is the set of all v € V. and there exists a unique P
connecting v to w and u ¢ V. The path P is unique and Ep C Eg C Erp.

The following lemma summarize the splitting process of a tree graph.

Lemma 1. FEvery rooted tree T'(u) at u is the join operation of b-subtree graphs.

Proof. Since T'(uw) is finite then there exist an integer s such that none of w € V£
has vertices of degree greater than or equal to three above. Thus, N, = () and
the end vertex w’ of P for every P € F, holds dp(w’) = 1. If the join of Fy,
is taken we get My, = \/ peF, P yielding only one free vertex which is w itself.

Now, for all w € Vi there is at least one neighbour vertex v € V2! of w which
is the root vertex of a b-subtree M, and w is a free vertex of M, as well. Clearly,
M, = bz’gveepe]:UP therefore we can join M, to M, through w as M, V M,,.
In this way, we can take all w € N, and perform the join operation in such a
way that the only free vertex left of M, V M, is v itself. Since v is arbitrary,
this procedure guarantees that all neighbours of vertices at level s — 1 have
been joined to a b-subtree. The procedure is performed for every level and every
branch of T until the root vertex is reached by decreasing s by one unit on each
step. The join operation to get the original tree graph T'(u) can be summarize
in one single expression, thus

T(u):[Mu\/Mw/}\/m \/ [M\/ Mw} (3.4)

w'eNy, UEV;fl welN,

The number of connections on each step depend on the cardinality of IV, V7 for
all s.0J
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4 e-covers on b-subtrees

4.1 Mapping e-covers onto sequences of 0’s and 1’s

Let us consider the family set P of paths graphs of arbitrary degree, connected
or disconnected. Now, if P € P and P = vpe1v1 -+ - V;_16;V; - " * Unn_2€p_1Vn_1,
thus by removing the labels for vertices in P we end up with a sequence
ey -€;---ey_1 of edges representing also the path P as well. The hat sym-
bol " at e; means that P is a disconnected path at position ¢, in other words,
the edge e; does not appear at P. The family will also contain paths with two
or more edges removed, however a path with two consecutive edges removed
cannot belong to P. For instance, the path ejézéseses ¢ P whereas ejézeséqes
does belong to P. In summary, a path P belongs to the family P if V3 has
no isolated vertices but the starting and ending vertices of P can or cannot be
isolated vertices.

Let us also define the set W of sequences w of 0’s and 1’s of arbitrary length.
For example, 01110,011110 € W, etc. The length for a sequence w € W will be
denoted by L(w), and it is defined as the numbers of 1’s appearing in w plus the
number of 0’s in w.

In order to count and build e-cover for paths P by using sequences of 0’1
and 1’s a map ¥ : P — W is defined. If we have any partition I C N where
the edge e;, ¢ € I does not appear in P, which can be indicated by the symbol
é; then ¥ can be defined by replacing those edges appearing in P with 1 and
those that do not appear in P with 0, therefore ¥ : P — W is defined as

(1) (4) (n)
e1---€-ep—>1 -+ 0---1 foralliel.

It is obvious that any sequence w € W can be represented by 19109 ...,
where q1, g2, ... € IN are arbitrary numbers, indicating the number of times that
0 or 1 must appear in the sequence. Of course, if g; = 0 means that the bit with
such exponent has to be removed from the sequence. The set W, however, is
going to be restricted to four types of finite length sequences only, they are of
the form1---1,0---1,1---0and O---0, which will be called of type «, 3, v and
&, respectively. If we set K = {a, 8,7, &} we will be referring to sequences of type
k € K as w". Type w7, for instance, can be described as those sequences that on
first position the bit 1 must appear at least once whereas 0 must also appear at
least once on position £(w?). Similar descriptions apply for the other three types
of sequences. The sequences w?,....w¢ will aditionally have the property that two
consecutive zeros are not allowed to happen in the sequences. Therefore, the four
type of sequences w” can be represented by 1701910 - - - 0195-101%, where p,t > 0,
@ > 1,4 > 1 and the exponent in 0 is always 1.

Definition 3. The sequence w" € W of type k € Kcan be represented by the
sequence 1701910 ---019-101% where p,t > 0, ¢; > 1,1 < i < s—1, s is the
number of 0’s appearing in w" and

(p+t)+s if1<s<2
s—1
p+t)+s+ > ¢ ifs>2
2

K3

L(w") = (4.1)
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The sets of sequences of type w” are denoted by W* for all k € K; to make
emphasis on the length of the sequences, W¥ where n = £(w") will be the set of
sequences of type k and length n. From now on, W will be restricted to the above
four types, that is, let us assumed that W = |J,.. x W* where W* = J,.~; Wy;.
The union is a disjoint union since (),,; W& = 0 for all x such that Wf # 0.

It is clear that £, C P; since ¥ is well defined then if it can be proved that
Ep = W’l(Wg( p)) then it can be inferred that the calculation of e-covers for P
is equivalent to the computation of set of sequences of type w®.

Lemma 2. Let P € P be a path of length e(P), o) the set of sequences of
type w* of length e(P) with k € K then | J, ., !F_l(Wf(P)) is the set of e-covers
of P.

Proof. Tt follows from definition (3) and Eq. (4.1).

In lemma (2), it is allowed to have path graphs having the start, the end or
both vertices to be isolated vertices. From lemma (2), it is obvious that |€p| =
|We"‘( P)| therefore finding and counting e-covers for path graphs is equivalent to
find and count sequences of type w € Wf( Py For an example of how ¥ operates

on paths, see the example shown in Fig.(1).

PscépCP

14

w* €EWipy CW 10101

Fig. 1. Example of a path P with edges ez and es removed and its corresponding
sequence via the map V.

4.2 Counting sequences

It will be seen, that it suffices to calculate WS for all n € IN, since the other
types of sequences can be calculated from it. Computing [W¢| is based on the
partition of an integer n into r parts. The problem of integer partitions is being
around since G. H. Hardy and Ramanujan gave an asymptotic approximation
to the number of partitions of an integer. This paper is not concerned with the
theoretical implications of integer partitions, but to the pure calculation task of
partitions and its number instead. Therefore, the algorithm described in [9] will
be used to exhibit all partitions of a given number n, that yields a sequence of
type wt.

Definition 4. A partition of a number [ into s — 1 parts is a s — 1-tuple q =
(q1, ..y gs—1) such that >, q; = l. The ¢; can be repeated within the sum . g;.
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If{qi, ..., gm} is the set of all distint ¢; in q for some m, and A ={)\q,, ..., Aq,. }
is the set of all integers such that q; appears N, times within . q; then

1= Xggi. s=1+> A (4.2)

AeA
S At = Y. ¢ will be denoted by |q| and dim(q) =s—1 and Qs = {q | |q| =
l,dimq=s—1}.

The generation of partitions of an integer is not an easy task. The research on
the subject has produced functions from which asymptotic approximations can
be given to count partitions, i.e., asymptotic approximations to p(l, s — 1) which
counts the total number of different partitions with respect to |q].

A different matter is to exhibit explicitly the partitions of an integer which is
also difficult, even though the authors in [9] propose an algorithm to do so. The
function p(l, s — 1), on the other hand returns the number of different partitions
of [ into s — 1 parts, let us say [ = ¢1 + -+ 4+ ¢s—1. It is therefore necessary to
take into account a combination of the ¢; for a given partition. Let us assume
that we have calculated all different partitions of [ into s — 1 parts and that they
are given by the sequences of numbers ¢1, ..., ¢s—1 while its number is given by
p(l, s —1). The g; are also assumed to repeat in the partition A4, times and that
the g; have been ordered such that ¢; < -+ < g, thus I = > Ag,qi, 1 < i <m
for some m € IN, and ;" | Ag, = s— 1. It is well know, that the total number of
non-repeated partitions generated for a given sequence ¢, ...,¢s—1, denoted by

tq, is given by fiq = (>~ )\qi)!/ [T, (Ag,)! which takes into account q1, ..., gs—1
itself. The set of all different m-tuples generated from g¢1, ..., ¢s—1 will be denoted
by § = {q.|las| = l,dim(qs) = s — 1} where g5 = (¢o(1)s s Go(s—1)) and
o €8S, C S,. The set S, is the usual set of permutations of N whereas S; is
the set of permutations of the set N°~1 such that |S;| = fiq. Clearly, o € S, such
that o(i) = ¢ for all 4 implies that q € § and Qs = qua q.

To make an agreement with sequences we will define in advanced two sets
of integers, namely Ly, S, for a given n € N as Lps = {s —1,...,n — s — 2},
Sn = {2, ..., sp} for some integer s € Sy, sy, € N. The number s, is particularly
special since it counts the number of zeros appearing in a sequence of type w”
and strongly depends on the number n. For such reason its calculation is done
in lemma (3). Thus, by restricting [ to the range L, and s € §,, we define the
following sets in terms of Q;, therefore

6.- 1 U au=lJ o (1.3)

SG/S\n l€ELys SG/S\n

There is a map between the set @s and set of sequences W¢, defined by & :
Qs, — W¢ which maps any q = (Mg, 1, -, Agn qN) € Qsn) tow € WE of the
)\1 )\N

——— ———
form 0190---01%0---019 ... 019% 0. This map will be used in section (4.2) to
calculate WE.
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Cardinality of W. The following lemma gives the theoretical estimation of
the integer s,, which at the same time will allow us to calculate the cardinality
of the sets W*, k € K and therefore e-covers for any path graph P of arbitrary
size.

Lemma 3. Let w® € W< be a sequence of type a, w® = 1Pwé1t, n = L(w®) =
p+t+ L(ws) with w® € W then 1 < L(w®) < n — 2 and the mazimum
number s, of zeros appearing in wé is given by s, = ”T’2 if n is even and
sn = 251 if nis odd. Therefore, Wfl_p_t = 9(Qs, ), |W7§L—p—t| = |Qs,

we = {1pw€1t wé € Wﬁ_p_t}.

and

Proof. If w € W2 and w = 1Pw¢1! for some w® € W¢ and n = L(w®) =
p+t+ L(w?) then the maximum value that £(w®) can have is when p =¢ =1
which is n — 2. This means that s + ZZ ¢ < n— 2. Now the minimum value
that ), ¢; can take is when ¢; = 1 for all ¢ = 1,...,s — 1, thus we have that
s+(s—1) < s+ ,¢ <n—2 from which immediately follows that (s — 1) <
>:% < n—s—2 If nis odd, the maximum number of zeros s attain its
maximum when ¢; = 1 for all ¢ and s+ ), ¢; = 2s — 1 is odd. Since, n is odd
thus n — 2 is odd too, then 2s — 1 = 2k + 1 — 2 = 2k — 1 which implies that
s = k. It turns out that s = 251, If now n = 2k is even then n — 2 = 2(k — 1) is
even. The only way to get s + ), ¢; even and s reaches its maximum value it is
necessary that g; = 2 for some 7 and the others s — 2 terms are equal to 1, thus
s+>°, ¢ = s+(s—2)+2 = 2(k—1) from which immediately follows that s = 252,
The relationship |Wflfp7t| = |Q., | follows from the fact that Wﬁfpft = 9(Q,,)

and definition (4.3). It is obvious that W2 = {1pw51t ‘ wt € Wﬁfpft}. O

The cardinality of W< is not straightforward since p, t must be taken into ac-
count. Its calculation is performed in the next lemma which is the main result,
together with the above lemma, for computing e-covers for paths of arbitrary
length.

Lemma 4. The cardinality of W5 can be calculated as

Sn

Wal =143 (Y In—1-(s+a])]) (4.4)

—1 ~
° qus

Proof. By using lemma (3), every w® € W can be written down as w® = 1Pw1?
for some p,¢ € IN, and fixed w® € W5_,_, such that n = p + t + £(w¢). This is
equivalent to t = n — p — L(w®) then w* = 1P0E1n-P-L(W")  Since wo € we,
n = L(w*) < oo and p > 1 then p must reach a maximum value, which is
attained when n — p — £L(w®) = 1, that is pmax = 7 — L(w®) — 1. In other words,
the number of times that w® can be shifted to the right within w® in order to
generate a new sequence from w® is n — £(w®) — 1. Let us define the following
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set w® = {1pw51”*”*£(w5) 1<p<n-1- E(wg)}-, clearly L(a) = n for all
a € wt and |[w®| =n — 1 — L(w). It turns out that W2 = U wt.
wEeWs_,_,
From lemma (3) the maximum number of zeros that w® can have is s, there-
fore
Sn

wel=1+3 S ]

s=1 ¢ 13
w ewﬁ(wf)

:1+Zn: Y In—1-Lwd)

s=1 13
wEW[’(wg)

Sn

=1+) > [n-1-L(%a)

s=1 AN

qe Qs

Sn

:1+Z Z[n—l—(s+|q|)] (4.5)
s=1 A
qEQs
The number 1 appearing in in Eq. (4.5) is counting the only sequence where no
zeros are present. This is w = 171¢ with £(w) =n. O

Lemma 5. [WJ| = Wa_,|, WE] = [Wa_,| and [WE| = Wa_,|

Proof. Tt follows from lemma (4). O

Theorem 1. Let P a path of size e(P) then Ep = U, cx O~ (Wi py) and |Ep| =
e IWeip)l-

Proof. Tt follows from lemmas (2), (3), (4) and (5).

4.3 e-covers for b-subtrees

Let us consider a path P = e;---e,—1 of size n = e(P). In order to count
e-covers for b-subtrees we will consider e-covers for P and subpaths of P. That
is, we will count the e-covers for P, P\e;, P\ez and P\{ej, ez}, from theorem
(1) this is equivalent to consider all sequences of type «, 3, v and &. For every
P path we associate a 4-tuple {|ap|,|Bpl, |vp|, |£p]), where |ap| = (W2, |Bp| =
Wil = Wil lvel = W3 = IWi_i] and [Ep| = W5| = W5, The set ap,
is the set of e-covers for P when vy, v, are not isolated vertices; Bp is the set
of e-covers for P\ey, that is when vertex v; is isolated; similarly vp, £p are sets
of e-covers when both v,, and vy, v, are isolated vertices, respectively. From the
above discussion we can define a function 7" : M, — IN*, that for paths P
becomes V'(P) = (Jap|, |Bpl; |vrl, |€p|) Whereas for b-subtrees is defined in the
following theorem. From definition of the numbers |ap|,...,| p]| it is clear that
lap| + [Bp| + [vp| + [Ep] = |Ep]

71



Theorem 2. Let M, be an b-subtree that is M, = \/ P such that all free

peF,
vertices of M, have been covered either by a path P or another b-subtree then
ro1) = T1 Iepl = 1 leel. TT I€pl.0.0) (4.6)
peF, peF, peF,

The first coordinate in Eq. (4.6) gives the total number of e-covers if M,, where
a single graph, that is the v vertex was the root vertex. The second coordinate
in Eq. (4.6) gives the total number of e-covers in such a way that v remains an
isolated vertex. This means that M, has to be joined to another b-subtree via
the vertex v from below.

5 e-covers for trees

The calculation of e-covers for trees will be given inductively on the number of
vertices with degree greater than or equal to three. If T = T'(u), a given tree
graph with root vertex w is non-trivial in the sense that dr(u) > 3 and at least
one v € Vi holds dr(v) > 3 then the set £ can be inductively constructed by
joining b-subtrees. Let us consider the sets qu_l and V; for some s € IN; for
every v € VTS*1 there are partitions I, J C Qs = {1,..,|V;3|} such that v; € N,
and v < v; for all 4 € I U J. Additionally, some of the v; are free vertices, let us
say v; for all ¢ € I whereas for all ¢ € J, v; are leaves which correspond to vertices
belonging to N,\{v;}icr. If we denote by P the path that ends at v and by P;
the path that starts at v and ends at v; then Y(P) = (|ap|,|8p|, |vrl|; P,

T(P) = (lar],1Br . el |¢r) for i € T and T(P) = (|ar],|87].0,0) for
i € J. Clearly, we have that F, = {P;};c1us, therefore

M,= \/ P, &y = | Win, (5.1)
eIuJ iEILIJ{J
KE

where K = {«,3,7,&}. The join of M, and the path P is done according to

rule (3.4), that is P\/ M, = PV ( \ P;), however counting e-covers of the
v ieluJ
resulting b-subtree is done according to the following recursive procedure. Let us

make tp = Y (P) and ty; = V(M) = (am, Bm, Y, Envr) and define the following
contracting functions cq (tp, ty) = (ap + Bp)(an + M) — Bpym, Cﬂ(thtM) =
(ap + Bp)(Bum +&m) — Brém, ey(tp, ty) = (vp + &p)(am +var) — ymép and
finally cf(tp,tM) = (vp + &p) (B + Enr) — Ep&nr. We can therefore define a
recursive function to count e-covers of the join of a path P and a b-subtree M,
as follows

C(tPatM) = <Ca(tP7tM)aCﬁ(tp7tM)aC’)/(tP7tM>7Cg(tP7tM>> (5.2)

The main idea in the process of join and counting e-covers for tree graphs lies on
the join operation, the recursive relation (4.6), Eq. (5.1) and Eq. (5.2). The join
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of P and the b-subtree graph M, means the replacement of 7'(P), the 4-tuple
before the join operation associated to P, by c(tp,ty ) after performing the
join operation.

The above discussion leads to the following theorem, which summarize the
process of building and counting e-cover for a given tree graph.

Theorem 3. Given a tree graph T the set Ep can be calculated by means of
theorem (1), (2), Eq. (5.1) and the recurrence relation (5.2) therefore can also
be obtained the cardinality of .

Ezample 1. To illustrate the usage of theorem (3), the tree graph shown in Fig.
(2) is considered. The graph T'(u) has two vertices v and w of degree three

T b-subtrees

M, M, My
Py,
Py,
Py, Py,
Py Pug
Py

Fig. 2. A rooted tree T(u) with root vertex w and its decomposition into b-subtrees
M,, M, and M,,.

therefore T'(u) is the join of b-subtrees, namely M,,, M, and M, as shown in
Fig. (2), that is T = (My Vy, My) Vo My, where My, = Py, V Py,, M, =
P, VP, and M,, = P,, V P,, V P,,. For illustration purposes, calculation will
be done only for P,, since it is the largest path in 7" that shows the technique
developed in the paper. First of all, e(P,,) = 8 thus W§ with k € K have
to be obtained. From lemma (3), ss = 3, 55 = {2,3} then the sets Lgs are
Lss = {1,2,3,4}, Ls3 = {2,3}. Firstly, by definition of sequences of type w®
we have Wfﬂ = {wf =010 - 1910 35" ¢; = 5} with s € 35 and j € Lg,.
Therefore, W§+j = {w¢|q1 = j} = {0190|j € Lsa}, whereas W§+j = {w8|q1 +
g2 = j,j € Lss}. The partitions of integers 2 and 3 into two parts is the set
Qs = {(1.1),(1,2),(2,1)} therefore W§,, = {0190} = {010,..,011110} and
W5,; = {01010,010110,011010}.

The W§ can be calculated as 1Pw®1! where p, t as in lemma (3)
and w® € Us WEH. Thus W§ becomes the list of sequences 11111111,
lo111111,...,11111101, 10101111, 11010111, 11101011, 11110101, 10110111,

11011011, 11101101 10111011, 11011101, 10111101, 10101011, 11010101,
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10101101, 10110101 from which results by counting them |Wg| = 21. On
the other hand, because we are to join P,, with M, at w we have to con-
sider sequences of type [ which is obviously the set Wg whose cardinality
is 13. The sequences of type £ used in the calculations are in bold type for-
mat to highlight its usage. From theorem (4.6), T'(P,,) = (21,13,0,0). Simi-
larly, T(sz) = (1,1,0,0) T(Pm) = (1,1,0,0), T(Pvz) = (1,1,0,0) T(PM) =

(1,1,1,0), Y (Py,) = (1,0,0,1), T'(Py,) = (1,1,0,0). Once again from theo-

rem (4.6), T(My) = ((21+ 13/)(1 +1)—(13)(1),(13)(1),0,0) = (55,13,0,0),
r(M,) = <3,1,0,0>. In order to join M, to P, and M, to P,, Eq. (5.2)

is used to replace T(P,,), Y (P,,) with the new values. Thus, Y (P,,) =
C(T(Pul)v T(Mw» = (123,68,0,0), T(Puz) = C(T(Puz)v T(Mv» = (4,3,0,0).
To conclude the exercise we calculate '(M,,) by using Eq. (4.6) as T(M,,) =
((123468)(4 4+ 3)(1 + 1) — (68)(3)(1), (68)(3)(1),0,0) = (2470,204,0,0). Thus
|Ex| = 2470 since the 204 number is counting the combinations when w is not
covered. The number of e-covers for T is too big to write down every single cover
of T', however they can be built from the sequences above.

6 Conclusions

A procedure for counting e-covers for acyclic graphs has been presented. It is
believed that the procedure could be implemented into a linear algorithm albeit
the procedure to built covers for a given tree graph is much more complex.
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