A general framework for representing
preferences

Claudia Zepeda, José Luis Carballido, and Sergio Arzola

Benemérita Universidad Auténoma de Puebla
Facultad de Ciencias de la Computacién
{czepedac, jlcarballido7}@gmail . com

Abstract. In this paper we propose a framework for representing pre-
ference problems. The proposal is based on a logic preference program
composed by two parts: the generator part and the preference part. The
fist part generates the set of alternative solutions and the second part
express the preferences used to obtain the preferred solutions. Moreover,
our approach can use one of two logic programming semantics to obtain
the solutions from the generator part.

Key words: Preferences, logic programming semantics.

1 Introduction

Commonly when we model a problem we obtain a set of alternative solutions,
then preferences are useful to make an election among these different alternatives.
In this respect, we propose a general approach to model preference problems
where we define two parts: the generator part that generates the set of alternative
solutions and the preference part that express the preferences used to obtain the
preferred solutions among the set of alternative solutions.

Our approach has the advantage of defining the generator part as a logic
program that corresponds to the formulation of a problem solving task which
generates the set of alternative solutions of a given problem. Moreover, the set
of alternative solutions can be obtained using the different semantics such as the
stable semantics [9] or the p-stable semantics [14].

It is natural to consider the stable semantics since many preference appro-
aches have been based on it, see for example [5,15,3]. On the other hand, the
p-stable semantics has the advantage of providing models that coincide with
classical models in many cases [14]. Besides, it has been shown that the p-stable
semantics of normal programs can express any problem that can be expressed
in terms of the stable semantics of disjunctive programs in [13].

The preference part allows us to define an order on the set of alternative
solutions of a given problem. Once the alternatives solutions are ordered we can
define the preferred solution as the minimal or maximal solution.

The paper is structured as follows. In Section 2, we introduce some funda-
mental definitions about logic programming and logic programming semantics.
In Section 3 we define our general approach to model preference problems. In

129



Section 4 we describe an example of our proposed approach. Finally in Section 5
we present some conclusions.

2 Background

In this section, we define the syntax of the logic programs that we will use in
this paper. In terms of logic programming semantics, we present the definition
of the stable model semantics and the p-stable model semantics.

2.1 Logic programs

We use the language of propositional logic in the usual way. We consider propo-
sitional symbols: p,q, . ..; propositional connectives: A\,V,—,—, —; and auziliary
symbols: ‘(’,*)’,*.”. Well formed propositional formulas are defined as usual. We
consider two types of negation: strong or classical negation (written as —) and
negation-as-failure (written as —). Intuitively, —a is true whenever there is no
reason to believe a, whereas —a requires a proof of the negated atom. An atom
is a propositional symbol. A literal is either an atom a or the strong negation of
an atom —a.

A normal clause is a clause of the form a <= by A.. . Aby A=bpi1 Ao A=yt
where a and each of the b; are atoms for 1 < ¢ < n + m. In a slight abuse of
notation we will denote such a clause by the formula a <+ BT U =B~ where the
set {b1,...,bn} will be denoted by BT, and the set {bn+1,-..,bntm} will be
denoted by B~. Given a normal clause a < BT U -B~, denoted by r, we say
that a = H(r) is the head and B*(r) U—B~(r) is the body of the clause.

A clause with an empty body is called a fact; and a clause with an empty
head is called a constraint. Facts and constraints are also denoted as a < and
+ BT U B~ respectively. We define a normal logic program P, as a finite set
of normal clauses. The signature of a normal logic program P, denoted as Lp,
is the set of atoms that occur in P. Given a set of atoms M and a signature
L, we define =M = {—a | a € £\ M}. Since we shall restrict our discussion
to propositional programs, we take for granted that programs with predicate
symbols are only an abbreviation of the ground program. From now on, by logic
program or program we will mean a normal logic program when ambiguity does
not arise.

In order to accept literals in our discussion we will manage the strong negation
— as follows: each atom —a is replaced by a new atom symbol a’ which does not
appear in the language of the program and we add the constraint <— a A a’ to
the program.

2.2 Logic programming semantics

Here, we present the definitions of three logic programming semantics. Note that
we only consider 2-valued logic programming semantics.

130



Definition 1. A logic programming semantics S is a mapping that assigns to a
program P a subset of 257 .

We sometimes refer to logic programming semantics as semantics, when no
ambiguity arises. The semantics that we consider in this paper are: the stable
model semantics [9] (denoted by stable), and the p-stable model semantics [14]
(denoted by p-stable). From now on, we assume that the reader is familiar with
the notion of an interpretation and validity [16].

Stable semantics The stable semantics was defined in terms of the so called
Gelfond-Lifschitz reduction [9] and it is usually studied in the context of syntax
dependent transformations on programs. The following definition of a stable
model for normal programs was presented in [9].

Definition 2. Let P be any program. For any set M C Lp, let PM be the
definite program obtained from P by deleting each rule that has a literal =l in its
body with I € M, and then all literals —l in the bodies of the remaining clauses.
Clearly PM does not contain —, then M is a stable model of P if and only if M
is a minimal model of PM.

Ezample 1. Let M = {b} and P be the following program: {b < —a, ¢ +
—b, b <, c < a}. Notice that PM has three models: {b}, {b,c} and {a,b,c}.
Since the minimal model among these models is {b}, we can say that M is a
stable model of P.

p-stable semantics Before defining the p-stable semantics (introduced in [14]),
we define some basic concepts. Logical inference in classic logic is denoted by I-.
Given a set of proposition symbols S and a theory (a set of well-formed formulas)
I, '+ S if and only if Vs € S, I' - s. When we treat a program as a theory,
each negative literal —a is regarded as the standard negation operator in classical
logic. Given a normal program P, if M C Lp, we write P I M when: P - M
and M is a classical 2-valued model of P.

The p-stable semantics is defined in terms of a single reduction which is
defined as follows:

Definition 3. [1/] Let P be a program and M be a set of literals. We define
RED(P,M)={a+ BTuU=(B"NM)|a+ Btu-B~ € P}

Ezample 2. Let us consider the program P; = {a <~ -bA-¢, a <+ b, b+ a}
and the set of atoms My = {a,b}. We can see that RED(P, M) is: {a < —b, a +
b, b+ a}.

Next we present the definition of the p-stable semantics for normal programs.

Definition 4. [1}] Let P be a program and M be a set of atoms. We say that
M is a p-stable model of P if RED(P, M) It M. We use p-stable to denote the
semantics operator of p-stable models.

131



Example 3. Let us consider again P, and M; of Example 2. Let us verify whether
M is a p-stable model of P;. First, we can see that M; is a model of Py,
i.e., for each clause C' of P, M; evaluates C' to true. We also can verify that
RED(Py, M) - M; . Then we can conclude that RED(P;, My) I- M;. Hence,
M is a p-stable model of P;.

The following examples illustrate how to obtain the p-stable models. The first
example shows a program with a single p-stable model, which is also a classical
model. The second example shows a program which has no stable models and
whose p-stable and classical models are the same.

Ezample J. Let P = {q + —q}. Let us take M = {q} then RED(P, M) = {q +
—¢}. It is clear that M models P in classical logic and RED(P, M) = M since
(=g — q) — q is a theorem in classical logic with the negation —, now interpreted
as classical negation. Therefore M is a p-stable model of P.

Ezample 5. Let P = {a < —b, a <+ b, b+ a}. We can verify that M = {a, b}
models the clauses of P in classical logic. We find that RED(P, M) = P. Now,
from the first and third clause, it follows that (b — b) where the negation
- is now interpreted as classical negation. Since (—=b — b) — b is a theorem
in classical logic, it follows that RED(P, M) = M. Therefore, M is a p-stable
model of P.

It is worth mentioning that there exists also a characterization of the p-stable
semantics in terms of the paraconsistent logic G%, interested readers can see [13,
14].

3 General approach for defining preferences

Now we define our approach to model preference problems. The proposed appro-
ach defines a preference program that can be seen as the union of a logic program
called the generator-program that corresponds to the generator part and a set
of preference rules that corresponds to the preference part. From the generator
part we obtain the set of alternative solutions based on a logic programming
semantics. From the preference part we obtain the preferred solution. Now, we
give a description of each part.

A generator-program is a normal logic program that corresponds to the for-
mulation of a problem solving task which generates the set of alternative solu-
tions of a given problem. This logic program could be obtained following some
methodology for declarative problem solving, for example the methodology called
generate and test (see [2]), it also could be a program obtained according to
an existing approach to model update problems (such as [1,7]), argumentation
problems (such as [6,12, 4, 11]), planning problems (such as [10, 8, 2] etc.).

Example 6. Let P be the following normal logic program which is an example
of generator program.

a+.

¢+ —b.

b+ —c.

132



Given a generator logic program P and a logic programming semantics X, we
are going to denote as X-model a stable model or a p-stable model, depending
on the semantics X.

Example 7. Let us consider the generator logic program P of Example 6 and let
X be the stable semantics. Hence the stable-models of P are M; = {a,b} and
]Lfg = {a, C}.

On the other hand, in order to specify preferences we introduce a new con-
nective, x, called preference operator. A preference rule specifies the preferences
for something.

Definition 5. A preference rule is a formula of the form: py * --- % p, where
P1,---,Pn are atoms called options.

In a preference rule, the most preferred option is the first left and the less
preferred option is the last to the right.
Now, we present the definition of a preference program.

Definition 6. We say that P is a preference program if it corresponds to the
union of a generator-program denoted as Gen(P), and a set of preference rules
denoted as Pref(P).

Ezample 8. Let P be the following preference program.

axb.
a < —C.
b+ —d.

Gen(P) corresponds to the second and third rules of P, while Pref(P) co-
rresponds to the first rule of P.

Now, we define the X-models of a preference program.

Definition 7. Let P be a preference program. We say that a set of atoms M is
an X-model of P if M is an X-model of Gen(P).

Therefore the X-models of the preference program P of Example 8 are M; =
{a,b} and M> = {a, c} according to the Example 7.

The preference rules of a preference program allow us to define an order on
the set of alternative solutions of a given problem and then obtain the preferred
solution. Formally, given a preference program P, a partial order <p based on
the set of preference rules Pref(P) gives a partial order on the set of X-models
of P. Consequently, the minimal (or maximal) X-models will be the preferred
X-models, according to the given partial order. In the next section we describe
an example of our approach proposed, where we define a particular partial order
and the stable semantics is used.

133



4 An instance of our preference approach

Here, we describe an example of our proposed approach. We define formally, the
two parts of a preference program, namely the Generator-Program and the pre-
ference rules. Besides, we define a particular partial order to obtain the preferred
models.

The generator-Program is a normal logic program that corresponds to the
formulation of a problem solving task which generates the set of alternative
solutions of a given problem.

A preference rule is a formula of the form p; * --- % p,, where py,...,p, are
atoms.

Here, we say that P is a preference program if it corresponds to the union
of a generator-program denoted as Gen(P), and one preference rule denoted as
pref(P).

Now we define the partial order to obtain the most preferred X-model of a
preference program based on the preference rule.

Definition 8. Let P be a preference program, and let M and N be two X-models
of P. Let py * - - - * p, be the preference rule of P. The X-model M is preferred
to the X-model N, denoted as N < M, if

1. there exists i = min(1 < k < n) such that p; € M and p; € N, and
2. forallj<i, (pj €M andp; € N) or (p; € M and p; ¢ N).

Now, we provide the definition of the most preferred X-model of a preference
program.

Definition 9. Given an X-model M of a normal program P, we say that M is
the most preferred X-model of P if there is no other X-model N of P such that
M < N.

Example 9. Let X be the stable semantics. Let P be the following preferred
program:

bxc.

a .

¢ < —b.

b+ —c.

We can verify that P has two stable-models, {a,b} and {a,c}. We also can
verify that the stable-model {a,b} is preferred to the stable-model {a,c}, i.e.,
{a,¢} < {a,b} and that {a,b} is also the most preferred stable-model of P.
When X is the p-stable semantics we can also verify that the p-stable models
and the most preferred p-stable-model coincide with the stable models and the
most preferred stable-model.

134



5 Conclusion

When we model a problem we can obtain a set of alternative solutions, then
preferences can be useful to find feasible solutions. We proposed an approach for
representing preference problems. The proposal is based on a logic preference
program composed by two parts: the generator part and the preference part.
Our approach can use the p-stable semantics or the stable semantics to obtain
the set of alternative solutions from the generator part.

Acknowledgement

This research has been supported by the Fondo Sectorial SEP-CONACyT,
Ciencia Bésica Project (Register 101581).

References

1. F. Banti, J. J. Alferes, and A. Brogi. A principled semantics for logic program up-
dates. In Workshop on Nonmonotonic Reasoning, Action and Change. Eighteenth
International Joint Conference on Artificial Intelligence, 2003.

2. Chitta Baral. Knowledge Representation, reasoning and declarative problem solving
with Answer Sets. Cambridge University Press, Cambridge, 2003.

3. G. Brewka, I. Niemeld, and T. Syrjanen. Implementing ordered disjunction using
answer set solvers for normal programs. In Proceedings of the 8th European Work-
shop Logic in Artificial Inteligence (JELIA 2002), pages 444-455, Cosenza, Italy,
2002.

4. José Luis Carballido, Juan Carlos Nieves, and Mauricio Osorio. Inferring Preferred
Extensions by Pstable Semantics. Revista Iberomericana de Inteligencia Artificial,
13(41):38-53, 2009.

5. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A Classification and Survey
of Preference Handling Approaches in Nonmonotonic Reasoning. Computational
Intelligence, 20(2):308-334, 2004.

6. Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321-358, 1995.

7. T. Eiter, M. Fink, G. Sabattini, and H. Thompits. Considerations on Updates
of Logic Programs. In Manuel Ojeda-Aciego and Luis Moniz Pereira Inman
P. de Guzmén, Gerhard Brewka, editors, Logics in Artificial Intelligence, FEuro-
pean Workshop, JELIA 2000., Malaga, Spain, September 2000. Springer Verlag.

8. Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres.
Planning under incomplete knowledge. In Proceedings of the First International
Conference on Computational Logic, pages 807-821, London, UK, July 2000.
Springer-Verlag.

9. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

135



10.

11.

12.

13.

14.

15.

16.

Michael Gelfond and Vladimir Lifschitz. Representing actions in extended logic
programs. In K. Apt, editor, Joint International Conference and Symposium on
Logic Programming, pages 579-573. MIT Press., 1992.

Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés. Preferred Extensions as
Stable Models. Theory and Practice of Logic Programming, 8(4):527-543, July
2008.

Juan Carlos Nieves, Mauricio Osorio, and Claudia Zepeda. A schema for generating
relevant logic programming semantics and its applications in argumentation theory.
Fundamenta Informaticae, 106(2-4):295-319, 2011.

Mauricio Osorio, José R. Arrazola, and José Luis Carballido. Logical weak com-
pletions of paraconsistent logics. J. Log. Comput., 18(6):913-940, 2008.

Mauricio Osorio, Juan Antonio Navarro, José Arrazola, and Verénica Borja. Logics
with common weak completions. Journal of Logic and Computation, 16(6):867—-890,
2006.

T. Cao Son and E. Pontelli. Planning with preferences using logic programming.
In Proceedings of the Logic Programming and Nonmonotonic Reasoning, 7th Inter-
national Conference (LPNMR 200/), pages 247260, Fort Lauderdale, FL, USA,
2004.

Dirk van Dalen. Logic and Structure. Springer, Berlin, second edition, 1980.

136



