
Interacting with Linked Data
(ILD 2012)

May 28, 2012, Heraklion, Greece

Workshop co-located with the
9th Extended Semantic Web Conference

Preface

While more and more semantic data is published on the Web, the question
of how typical Web users can access this body of knowledge becomes of cru-
cial importance. Therefore there is a growing amount of research on interaction
paradigms that allow end users to profit from the expressive power of Semantic
Web standards while at the same time hiding the complexity behind an intuitive
and easy-to-use interface. These paradigms range from keyword search, faceted
browsing and exploration to natural language question answering.

Keyword-based semantic search (e.g. provided by Swoogle1 and Watson2)
suffice for simple information lookup. However, keyword queries constitute an
ambiguous and impoverished representation of an information need and do not
fully exploit the expressive power of Semantic Web datamodels and query lan-
guages. Explicit formal queries, on the other hand, allow the user to exploit
the full power and expressiveness of the Semantic Web standards. But they
require schema knowledge and query language expertise, thus are not suitable
for naive users. Faceted browsing interfaces (e.g. Ontogator [16], mSpace [17],
and BrowseRDF [14]), in contrast, do not require domain knowledge or exper-
tise in Semantic Web languages, rather they allow users to navigate through
the dataset and thereby explore its content. However, faceted browsing is often
domain-dependent. Also, in case the user has a clear information need, it is te-
dious to search for the answer manually, not knowing where exactly to look for
it. Similarly, graph visulatization (e.g. IsaViz3, [13]) provides an intuitive access
to understanding semantic data, but often does not scale to large datasets and
is not suitable for searching for an answer to a particular question. In order to
precisely answer particular questions, a lot of research has been conducted on
natural language interfaces (see for instance [4], [5, 6], [7], and [3]), which allow
users to express arbitrarily complex information needs in an intuitive fashion.
They combine progress in the areas of question answering from textual data [8]
and natural language interfaces to databases [9]. The key challenges lie in trans-
lating these information needs into a form such that they can be evaluated using
standard Semantic Web query processing and inferencing techniques, as well as
in scaling question answering approaches to Linked Data.

Despite different goals and different kinds of interaction, the main challenge
involved in interacting with Linked Data is the same for all approaches: dealing
with a heterogeneous, distributed and very large set of highly interconnected
data. The availability of such an amount of open and structured data has no
precedents in computer science and approaches that can deal with the specific
character of Linked Data are urgently needed.

1 http://swoogle.umbc.edu/
2 http://kmi-web05.open.ac.uk/WatsonWUI/
3 http://www.w3.org/2001/11/IsaViz/

III

The Workshop Interacting with Linked Data (ILD) is the second in a series
of workshops exploring approaches towards a powerful and intuitive interaction
with Linked Data. While the first workshop4 focused on question answering,
the scope of ILD 2012 is now broader, including other paradigms for interacting
with Linked Data. The goal of ILD is to bring together research and expertise
from different communities, including NLP, HCI, Semantic Web and Databases,
and to encourage communication across interaction paradigms. To this end, we
issued a call for papers on the following topics:

– Question answering and natural language interfaces to Linked Data

– HCI and Linked Data

– Faceted browsing and exploration

– New interaction metaphors for Linked Data

– Multimodal interfaces to Linked Data

– Disambiguation and inferencing across multiple sources and domains

– Natural language generation

– Discovery on the fly of relevant Linked Data sources

– Efficiency and performance aspects

– Dealing with data and schema heterogeneity

– Summarization and aggregation

– Providing justifications of answers and conveying trust

– Personalization in accessing Linked Data

– User feedback and interaction

– Habitability and usability aspects

We received 11 submissions; to each of them three reviewers were assigned.
On the basis of their reviews, six full papers were accepted for presentations. In
addition, three papers were included as demo presentations.

Accompanying the workshop, we set up the second open challenge on Ques-
tion Answering over Linked Data (QALD-2). It follows the first challenge (QALD-
1) in aiming at facilitating the comparison between different question answering
approaches and systems, and at developing the datasets needed for a standard
evaluation benchmark for semantic question answering systems that focus on the
ability to solve open-ended real life problems over real-world datasets. As part of
this challenge, two independent datasets have been provided: DBpedia 3.7 and
an udpated RDF export of MusicBrainz – together with 100 training questions
for each dataset, annotated with SPARQL queries and corresponding answers,
and 100 test questions for DBpedia as well as 55 test questions for MusicBrainz.
All questions were designed to represent information needs of different complex-
ity that real end users would ask. The datasets as well as all training and test
questions can be accessed from the workshop website:

http://www.sc.cit-ec.uni-bielefeld.de/ild

4 1st Workshop on Question Answering Over Linked Data (QALD-1) at ESWC 2011:
http://www.sc.cit-ec.uni-bielefeld.de/qald

IV

The main goal of the challenge was to get a picture of the strengths, capabili-
ties and current shortcomings of question answering systems, as well as to gain
insight into how question answering approaches can deal with the fact that the
amount of RDF data available on the Web is huge and that this data is dis-
tributed and heterogeneous with respect to the vocabularies and schemas used.
Five question answering systems participated in the test phase of the challenge,
all reporting on the DBpedia question set (where Alexandria used German trans-
lations of the questions and extracted the answers from Freebase, thus suffering
from data mismatches). The results of our online evaluation are given in Table 1.
Alexandria, SemSeK, and QAKiS are described in papers in these proceedings;
MHE was developed by Marek Ciglan5 at the Institute of Informatics at the
Slovak Academy of Sciences.

total answered right partially right precision recall f-measure

SemSeK 100 80 32 7 0.44 0.48 0.46
Alexandria 100 25 5 10 0.43 0.46 0.45
MHE 100 97 30 12 0.36 0.4 0.38
QAKiS 100 35 11 4 0.39 0.37 0.38

Table 1. QALD-2 results on DBpedia

With the ILD workshop and the accompanying open challenge we hope to
establish a series of workshops that aim at coupling current research on interac-
tion paradigms for accessing Linked Data with open challenges that benchmark
question answering approaches and thereby evaluate their success in providing
an easy and intuitive interface to the Semantic Web.

May 2012 Christina Unger
Philipp Cimiano

Vanessa Lopez
Enrico Motta

Paul Buitelaar
Richard Cyganiak

(Organizing Committee ILD 2012)

5 http://ups.savba.sk/~marek/

V

References

1. Kaufmann, E., Bernstein, A.: How Useful Are Natural Language Interfaces to the
Semantic Web for Casual End-Users?. In: Proceedings of the Joint International
and Asian Semantic Web Conference (ISWC/ASWC), pp. 281–294, 2007

2. Kaljurand, K.: ACE View – An Ontology and Rule Editor based on Controlled
English. In: Proceedings of the International Semantic Web Conference (ISWC),
Poster and Demo Proceedings, 2008

3. Cimiano, P., Haase, P., Heizmann, J., Mantel, M., Studer, R.: Towards portable
natural language interfaces to knowledge bases – The case of the ORAKEL system.
Data Knowl. Eng. 65:2, pp. 325–354, 2008

4. Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying Ontologies: A
Controlled English Interface for End-Users. In: Proceedings of the International
Semantic Web Conference (ISWC), pp. 112–126, 2005

5. Lopez, V., Nikolov, A., Sabou, M., Uren, V., Motta, E., D’Aquin, M.: Scaling up
Question-Answering to Linked Data. In: Proceedings of the 17th International Con-
ference on Knowledge Management and Knowledge Engineering (EKAW), 2010

6. Lopez, V., Uren, V., Sabou, M., Motta, E.: Cross ontology query answering on the
semantic web: an initial evaluation. In: Proceedings of International Conference
on Knowledge Capture (K-CAP), pp. 17–24, 2009

7. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k Exploration of Query Candi-
dates for Efficient Keyword Search on Graph-Shaped (RDF) Data. In: Proceedings
of the International Conference on Data Engineering (ICDE), pp. 405–416, 2009

8. Strzalkowsi, T., Harabagiu, S.: Advances in Open Domain Question Answering.
Springer, 2006

9. Minock, M.: C-Phrase: A system for building robust natural language interfaces
to databases. Data Knowl. Eng. 69:3, pp. 290–302, 2010

10. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural Language Interfaces to
Ontologies: Combining Syntactic Analysis and Ontology-based Lookup through the
User Interaction. In: Proceedings of the 7th Extended Semantic Web Conference
(ESWC 2010), Heraklion, Greece, May 31-June 3, 2010, Springer Verlag, 2010

11. Lopez, V., Motta, E., Uren, V.: PowerAqua: Fishing the Semantic Web. In:
Proceedings of the 3rd European Semantic Web Conference, Budva, Montenegro,
2006

12. Lopez, V., Sabou, M., Uren, V., Motta, E.: = Cross-Ontology Question Answering
on the Semantic Web: an initial evaluation. In: Proceedings of the Knowledge
Capture Conference 2009, California, 2009

13. Jacobson, K., Sandler, M.: Interacting With Linked Data About Music. In: Pro-
ceedings of the WebSci’09: Society On-Line, 18-20 March 2009, Athens, Greece,
2009

14. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:
I. Cruz et al.: ISWC 2006. LNCS 4273, pp. 559–572, 2006

15. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for hetero-
geneous Semantic Web repositories. In: I. Cruz et al.: ISWC 2006. LNCS 4273,
pp. 272–285, 2006

16. Hyvönen, E., Saarela, S., Viljanen, K.: Ontogator: Combining view- and ontology-
based search with semantic browsing. In: Proc. of XML Finland, 2003

17. schraefel, m., Wilson, M., Russell, A., Smith, D. A.: mSpace: Improving information
access to multimedia domains with multimodal exploratory search. Comm. of the
ACM 49:4, 2006

Organization

Organizing Committee

– Christina Unger, CITEC, Bielefeld University, Bielefeld, Germany
cunger@cit-ec.uni-bielefeld.de

– Philipp Cimiano, CITEC, Bielefeld University, Bielefeld, Germany
cimiano@cit-ec.uni-bielefeld.de

– Vanessa Lopez, IBM Research, Dublin, Ireland
vanlopez@ie.ibm.com

– Enrico Motta, KMi, The Open University, Milton Keynes, UK
e.motta@open.ac.uk

– Paul Buitelaar, DERI, National University of Ireland, Galway, Ireland
paul.buitelaar@deri.org

– Richard Cyganiak, DERI, National University of Ireland, Galway, Ireland
richard@cyganiak.de

Program Committee

Lora Aroyo
Sören Auer
Abraham Bernstein
Kalina Bontcheva
Mathieu D’Aquin
Aba-Sah Dadzie
Maarten De Rijke
Tim Finin

Jorge Gracia
Gregory Grefenstette
Peter Haase
Siegfried Handschuh
Andreas Harth
David Karger
Jens Lehmann
Bernardo Magnini

Michael Minock
Guenter Neumann
Natasha F. Noy
Sebastian Rudolph
Krystian Samp
Steffen Staab
Thanh Tran
Haofen Wang

Table of Contents

Putting Linked Data to Use in a Large Higher-Education Organisation . . 9
Mathieu d’Aquin

Facets and Pivoting for Flexible and Usable Linked Data Exploration 22
Josep Maria Brunetti, Rosa Gil, and Roberto Garćıa

Interacting with Statistical Linked Data via OLAP Operations 36
Benedikt Kämpgen, Sean O’Riain, and Andreas Harth

SPARTIQULATION: Verbalizing SPARQL Queries 50
Basil Ell, Denny Vrandečić, and Elena Simperl

Improving Semantic Search Using Query Log Analysis 61
Khadija Elbedweihy, Stuart N. Wrigley, and Fabio Ciravegna

Linguistic Modeling of Linked Open Data for Question Answering 75
Matthias Wendt, Martin Gerlach, and Holger Düwiger

QAKiS @ QALD-2 . 87
Elena Cabrio, Alessio Palmero Aprosio, Julien Cojan, Bernardo
Magnini, Fabien Gandon, and Alberto Lavelli

A System Description of Natural Language Query over DBpedia 96
Nitish Aggarwal and Paul Buitelaar

TypeCraft: Collaborative Databasing and Resource Sharing for Linguists . 100
Dorothee Beermann and Pavel Mihaylov

Author Index . 107

VIII

Putting Linked Data to Use in a Large
Higher-Education Organisation

Mathieu d’Aquin

Knowledge Media Institute, The Open University, Milton Keynes, UK
{m.daquin}@open.ac.uk

Abstract. In this paper, we describe applications built on top of the
Open University’s linked data platform (data.open.ac.uk), from the
point of view of the way they implement particular forms of interactions
with linked data. We especially focus on the common advantages and
pitfalls in interacting with linked data that these applications illustrate,
from both the end-users’ and the developer’s perspectives. We conclude
on suggested steps forwards regarding the ways to facilitate the realisa-
tion and adoption of applications interacting with linked data.

1 Introduction

Building and deploying linked data in a large organisation represents a challenge
at many different levels. Many of the past research and development works have
focused on the publication process for linked data: how to obtain data from
legacy information systems; how to model these data according the linked data
principles; how to link the organisation’s data with external sources; how to
expose the data online for wide accessibility. However, it is becoming more and
more clear that there is a need to investigate another, possibly more important
aspect – the other side of the coin: what are the issues related to interacting
with linked data, from an end-user as well as a developer perspective.

In this paper, we rely on our experience in building, deploying and apply-
ing the Open University’s linked data platform (http://data.open.ac.uk) to
investigate this perspective. Data.open.ac.uk, developed through the LUCERO
project (http://lucero-propject.info), was the first initiative to expose the
public information of a university as linked open data, collecting and providing
access to data from across the institution’s departments1. One of the challenges

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

1 It has since then been followed by a number of other initiatives applying linked
data in the higher-education sector, with high potential impact regarding the reuse

10 M. d’Aquin

related to pioneering the use of linked data in a particular sector is the need
to demonstrate the advantages that it brings to the users of the organisation.
Several applications have been developed that are at different stages of their
lifecycle, and have been deployed for different audiences (in size, technological
awareness, etc.) Through these applications, common benefits as well as the chal-
lenges of providing linked data-based functionalities to ’real users’ are emerging.

In this paper, we discuss some of these applications from the perspective of
the way they provide means to interact with existing linked data sources. We
discuss the lessons learnt from our experience regarding the issues, challenges and
pitfalls of interacting with linked data. We not only consider here the perspective
of the end-users in using the developed applications, but also the ones of the
developers having a more direct interaction with linked data with the purpose
of providing usable functionalities.

2 The Open University’s Linked Data Platform

Data.open.ac.uk is a linked data endpoint that collects data from many different
sources within the organisation, using a variety of different vocabularies and
linking to external sources such as dbpedia.org or geonames.org (see [4]). Data
collection is based on identifying streams of data inside the organisation and,
in collaboration with the data owners, re-modelling the data to fit exposure as
linked data. The architecture of the platform is based on a triple store providing
a SPARQL endpoint, on ad-hoc mechanisms to extract and update data from
the considered streams, and on a basic URI delivery mechanism. The process
is continuous, with more data being exposed whenever new resources are made
available. The current sets of data include:

Course information: This includes information about courses that are cur-
rently on offer at the Open University. The information includes a short
description of the course, information about the levels and number of credits
associated with it, the topics, and the conditions of enrolment (the coun-
tries in which it is available, the dates for registration and the student fees).
Example: http://data.open.ac.uk/course/m366

Research publications: This includes metadata for the research articles and
other publications authored by Open University researchers, as available on
the publication repository of the university (ORO, see http://oro.open.

ac.uk). An article typically includes information about the authors, dates,
abstract and venue of the publication.
Example: http://data.open.ac.uk/oro/29916

Podcasts: This includes the metadata for audio and video podcasts produced
and made openly available by the Open University as open educational
resources (see http://podcast.open.ac.uk). A typical podcast entity in-
cludes a short description, the topics, a link to a representative image and to

and interoperability of educational resources from across universities (see http://

linkeduniversities.org)

Putting Linked Data to Use in a Large Higher-Education Organisation 11

a transcript if available, as well as information about the course the podcast
might relate to and license information regarding the content of the podcast.
Example: http://data.open.ac.uk/podcast/218dce44a4ed17b36ada50
d18b866b03

Open Educational Resources: This includes metadata about units of Open
Educational Resources made available by the Open University through its
OpenLearn system (see http://openlearn.open.ac.uk). A typical ’Open-
LearnUnit’ includes a short description of the units, the topics, tags used to
annotate the resource, its language, as well as the course it might relate to,
and the license that applies to the content.
Example: http://data.open.ac.uk/openlearn/m366_2

Youtube videos: This includes metadata about videos published by the Open
University on Youtube, as promotional videos or open educational resources.
Such metadata include a short description of the video, the tags that were
used to annotate the video, the collection it might be part of and a link to
the related course if relevant.
Example: http://data.open.ac.uk/page/youtube/A7BA7C1155BE887E/

1E5D9A1BA21BDC51

University buildings: This includes information about the building owned by
the University. The Open University being a distance learning education, be-
sides the main campus located in Milton Keynes, it also includes regional
centres located in different locations across the UK territory. Building de-
scriptions include their address (including links to the corresponding admin-
istrative areas in http://data.ordnancesurvey.co.uk/), a picture of the
building and the sub-divisions of the building into floors and spaces.
Example: http://data.open.ac.uk/location/building/rbedrb

Library catalogue: This includes metadata about items available at the Open
University’s library that relate to Open University courses (textbooks and
setbooks). The description of each item includes information about the top-
ics, the authors, the publisher and ISBN, as well as the course it relates to.
Example: http://data.open.ac.uk/library/406973

Other specific data: Other datasets are also included that concern specific
research projects (e.g., the Open Arts Archive – http://openartsarchive.

org/) or specific departments of the Open University (e.g. the FOAF profiles
of people from the Knowledge Media Institute – http://people.kmi.open.

ac.uk).

3 Applying Linked Data at the Open University

Amongst the many applications developed on top of the data.open.ac.uk plat-
form (see e.g. [3]), we choose to describe here the ones that had a concrete
deployment and impact on different categories of users of the Open University,
focusing on our experience regarding benefits and issues at the level of interact-
ing with the data, both from an end-user perspective, and from a developer’s
perspective.

12 M. d’Aquin

3.1 The ’Study at the OU’ Mobile Application

“Study at the OU” the website of the Open University that contains the descrip-
tion of the courses and qualifications that can be obtained from the University
(see http://www3.open.ac.uk/study/). A mobile application was recently de-
veloped by the communication services of the University so that this course
catalogue and additional information about the topics covered can be accessed
from various types tablets and smartphones (see Figure 1). As part of this ap-
plication, it is possible to select a topic and obtain information both about the
courses available on this topic, and about the related resources such as pod-
casts, Youtube videos and OpenLearn units. This last feature is implemented
using data.open.ac.uk, simply querying resources that are directly related to
the topic being considered, or for resources attached to courses that are related
to this topic.

Since its launch in January 2012, this part of the application has been ac-
cessed more than 25,000 times.

Fig. 1. Screenshots of the ’Study at the OU’ application on an Android phone.

From the users’ perspective, while connecting to relevant resources could
be a very valuable feature, especially for prospective students, there is no indi-
cation that this has been realised with linked data. In other terms, without
knowing the underlying information architecture, there is no reason not to be-
lieve that this functionality was realised using more common technologies. The
added value here is however that such a simple and straightforward feature re-
quires the combination of information coming from different, and mostly isolated
systems (the course database, the podcast system, etc.), which are seamlessly
integrated through linked data.

Putting Linked Data to Use in a Large Higher-Education Organisation 13

It is from the developers’ perspective however, that the benefits of in-
teracting with linked data to build such an application is appearing obvious.
Indeed, providing the same feature using the usual information infrastructure of
the Open University would have required accessing and connecting to many dif-
ferent systems that use different platforms, technologies, formats, conventions,
etc. It would also have required an ad-hoc integration of the data, with an ad-
ditional level of complexity.

It is still a problem however for developers used to more common technologies
to make use of linked data technologies such as SPARQL (http://www.w3.org/
TR/rdf-sparql-query/), and to integrate them with their usual development
environment. The solution adopted here was to create an intermediary view
generating an ad-hoc XML descriptions of the relevant information from the
results of pre-established SPARQL queries. This also allowed the inclusion of
caching mechanisms, to avoid adding unnecessary overhead to the SPARQL
query engine to process identical queries from potentially thousands of users.

3.2 Supporting the ‘Research Excellence Framework’ Activities

The ‘Research Excellence Framework’ (REF) is the process applied to evaluate
and assess the quality of research in UK universities (see http://www.hefce.

ac.uk/research/ref/). As part of this process, each university is required to
submit to their corresponding funding body a report summarising the research
carried out at the university in various disciplines. In order to achieve this, 18
different panels have been formed at the Open University (to cover the disciplines
in which the Open University is carrying-out research), in charge of identifying
individual researchers with a selection of their publication to be part of the
submission.

To support this work, an application was developed (see Figure 2) to be
used by individual researchers to select what they considered to be their ‘best’
publications (since 2008), to indicate to which discipline they are associated,
and to annotate their selected publications to include supporting statements for
their selection (describing their significance, originality, etc.) This application
has already been accessed by about 600 researchers concerned with the REF at
the Open University, and a similar application is being developed at the moment
to support the work of the 18 panels.

The application uses linked data to obtain for each individual researcher,
the list and description of their publications in the recent years, as well as to
connect them with information regarding their role in the organisation and the
faculty/department they relate to. The captured information (selection of pub-
lications and their annotations) is also processed according to linked data prin-
ciples and technologies, creating another (private) triple store

From the users’ perspective, the main advantage of using linked data in
this application is that information about their publications is directly obtained
and integrated with other information, without them having to provide any ad-
ditional input. Their linked data identifier (i.e., their URI) is directly derived

14 M. d’Aquin

Fig. 2. Partial screenshot of the interface for researchers to annotate their publications
for the REF.

from the login name they use to access the application (as well as all other sys-
tems on the Open Universities intranet), meaning that the relevant publications
are displayed directly as they access the application. The use of linked data is in
principle, as in the previous section, hidden from the user. However, some ele-
ments can sometimes create confusion due to the different modelling of the data
from the original sources. In the original source for example, while each author is
associated with a unique ID, their name is recorded separately for each publica-
tion. In the linked data version, the names are all aggregated under the person’s
ID, meaning that each publication might appear slightly differently than in the
original source (ORO). This also means that errors that can be very localised in
the original source (a typo in the name of an author in one of their publications),
might have a larger impact in the linked data version. Similarly, the application
relies on the fact that each person and each publication is associated with a
stable and unique identifier. This is however a strong assumption which, even
considering well curated sources, is often hard to achieve (e.g., people changing
user IDs, publications entered multiple times, etc.)

Here again, it is from the developers’ perspective that the advantages
of relying on linked data technologies and principles are the most obvious. In-
deed, this allows to build on top of existing data and process various sources
in an homogeneous way. Also, in producing new data (selections and annota-
tions of publications), linked data technologies allow more flexibility and agility
than with traditional, relational database systems: ‘adding a field’ in the data is
trivial and does not require any database administration task, just adding data
according to the newly considered ontological property. This is even more facil-
itated with the appearance of robust implementations of the SPARQL Update
(http://www.w3.org/TR/sparql11-update/) language (on which this applica-
tion relies), allowing the homogeneous use of the HTTP protocol both for query-
ing and updating a triple store. Adding and integrating new sources of data is
also made easier, as long as this information is provided using URIs consistent

Putting Linked Data to Use in a Large Higher-Education Organisation 15

with the ones already in use, and the produced data is naturally reusable to
build further applications.

Many issues appear here however that are not usually present when using
more traditional technologies. One of them concerns the way to deal with incom-
plete data. Indeed, in applications like the one considered here that rely on a set
of established queries, assumptions are made regarding certain properties of the
data, which are never made explicit. For example, it is expected that every pub-
lication is associated with the list of authors. In case this assumption is not valid,
and some publications do not have a list of authors, these publications would
simply not appear in any result, making it difficult to recognise that a potentially
problematic issue have emerged. This adds to the difficulty of knowing whether
a problem that is identified at the level of the application originates from the
application, the linked data representation or the original sources. Dealing with
such issues generates more complexity in the querying process, as well as in the
development/maintenance of the application.

3.3 Understanding Research Communities at the Open University

In the continuity of the application described in the previous section, another
application was developed to help research managers within the university in
understanding and monitoring their research communities. Called RADAR (Re-
search Analysis with DAta and Reasoning), this application makes use of infor-
mation about research publications from ORO (as above), as well as other sources
regarding the positions of researchers, their projects, funding, supervision his-
tory, etc. to visualise different indicators of research activities for individuals and
groups.

Two parts of the application were developed. The first one relies on a generic
framework for the visualisation and exploration of linked data sets, which is
parametrised by an ontology of the particular domain of the application. It uses
basic ontological reasoning to classify individuals into different classes, and uses
automatically generated charts and tag clouds to visualise the distribution of val-
ues of the properties in individual classes (see Figure 3). In our case, the classes
correspond for example to different categories of academic staff (senior/junior
researchers, lecturers, professors, etc.) or different types of projects (internal,
national, european, etc.) The indicators being visualised here correspond for ex-
ample to the amount of funding received, the number of publications, of projects
or the number of supervised students.

The second part of the application uses the same data and indicators, but
displays graphs specifically conceived for the application in research community
analysis, considering for example the distribution of the number of publications
per year, or the overlap between the publications of a group of co-authors (see
Figure 4).

From the users’ perspective, the advantages and issues related to the
generic part of the RADAR applications appear very clearly. On the one hand,
the application is driven by an ontology, which means that only integrating more

16 M. d’Aquin

Fig. 3. Screenshot of the ‘generic’ part of the RADAR application, showing distribu-
tions of indicators for sub-classes of members of KMi.

Fig. 4. Screenshot of the ‘specific’ part of the RADAR application, showing distribu-
tions of indicators for a particular group of researchers.

Putting Linked Data to Use in a Large Higher-Education Organisation 17

knowledge into it is sufficient to make it better structured and more comprehen-
sive. There is an advantage also in having an homogeneous representation for
different types of objects, and in having a comprehensive view of all the different
indicators and types of data available. It is however a lot more demanding for
end-users, as the interface would often include irrelevant elements. Its generic
aspect (meaning that it can be applied similarly to other datasets, in other
domains) also means that he organisation and navigational structure of the ap-
plication is guided by the modelling in the data, which is often not natural to
end-users. Finally, it makes the visualisations presented harder to interpret, as
they do not necessarily refer to the notions considered in the domain.

The specific part of the application was developed to counter the deficiencies
of the generic view, by showing visualisations more directly relevant, more un-
derstandable and often more complex than what the generic part could do. While
this has clearly been welcomed by users, the main issue with this part is that it
is necessarily limited not only to the specific data and domain being considered,
but also to the views that the developers of the application implemented.

From the developers’ perspective, it is natural to think that the generic
version of the application is more difficult to build, as it requires to abstract from
the domain and data-specific assumptions that can be made with the specific
version. It is however also more customisable, as many changes can be brought
into it by modifying the data or the ontology on which it relies. This introduces
a number of issues however, at the level of the usability of the application as
mentioned above, as, without such assumptions being explicitly made, many of
the results being shown to the user cannot be properly interpreted.

The specific part of the application naturally suffers from the inverse issues:
while its interface design is guided by the requirements of the specific task, it
requires significant efforts to be extended to support other visualisations or tasks.
It is in this sense closer to the application presented in Section 3.2.

3.4 Investigating the Presence of the Open University in the Media

This last application is based on data collected in addition to what is available
from data.open.ac.uk. It relies on systems used by the Media Relation ser-
vices to collect clippings from news items mentioning the Open University and
its members. The data collected concern the publication/channel where a news
item has been issued, general metadata about the news item and possible addi-
tional information regarding researchers, lecturers or other members of staff of
the Open University cited or who contributed to the news item. Links are also
created to data.open.ac.uk (regarding people) and to dbpedia.org (regarding
the publications and channels that provided the news items).

An application has been created that allows members of the Open University
to create charts and reports on top of this data. A ‘chart generation’ interface
is provided that allows to create filters and identify categories to be visualised
based on properties and values in the data. Once configured, the interface creates
a linkable and embedable chart that can be customised, and is dynamically
updated based on changes in the data (see the example Figure 5).

18 M. d’Aquin

Fig. 5. Charts showing the distribution of topics of news items mentioning the Open
University and published through channels owned by the BBC.

Here, two different types of users need to be considered. For the users of the
chart, the results are reasonably straightforward, as the charts can be embedded
into dedicated interfaces that implement dashboards and navigation mechanisms
that are understandable in the partiular context. This application also clearly
demonstrates the benefits of linked data, especially through exploiting the links
with external sources of data (in the example Figure 5, the information about
topics and number of corresponding news items is provided by the local data,
while the information regarding the channels owned by the BBC is provided by
dbpedia.org).

The other type of users are the ones creating the charts using the configu-
ration interface. This interface requires to be able to understand and follow the
properties used in the data for different types of objects. In other terms, while
it is generic and can be used to generate charts from any linked data endpoint,
it needs for the user to be familiar with the schema used in the data, the partic-
ular properties of the data, and with the specificities of their linked data-based
modelling.

From the developers’ perspective, this application represent an example
of a generic application, but which is used to generate specific, customisable
visualisations. In this sense, it completely abstract from any specificities of the
data being considered, but on the other hand, cannot provide much guidance to
the users with respect to the use of the data, and to the interpretation of the
results.

Putting Linked Data to Use in a Large Higher-Education Organisation 19

4 Conclusions: Challenges and Pitfalls of Interacting
with Linked Data, and Steps Fowards

The four applications presented above represent concrete experiences of devel-
opments relying on linked data that have been actually deployed and used in
an environment more accustomed to proprietary, corporate software relying on
more common information systems and data management solutions. As such,
they illustrate common challenges and pitfalls that interacting with linked data
can generate, from both the end-users’ perspective and the developers’ perspec-
tives. In this section, we summarise the general notions that appear from such
experiences to require attention, which we believe help identifying important
directions for research into interacting with linked data.

First, it appears clearly that linked data should be hidden from the end-
users. While this might appear trivial, this is not an easy goal to achieve: from
our experience, we can see that most of the advantages of linked data should
appear obvious to the application developers, but should as much as possible
not need to be understood by the end users. This of course concerns purely
technical elements such as URIs, RDF and SPARQL, but also more conceptual
considerations, such as the integration of multiple sources of data or the use of
reasoning. This is the case of our “Study at the OU” app and of the REF support
application, where little issues appear on the end-user side. In RADAR and
the media relation applications on the contrary, whenever the technology is too
present, and even if it is to provide advanced features, it introduces confusion for
the users. In other terms, while it is often still needed to convince stakeholders
of the value of linked data, applications that are technological demonstrators
tend to have little value to the users, and the technology should be essentially
be considered from the point of view of the developers.

Second, there is an elusive trade-off to be found between developing generic,
reusable frameworks that can be applied on a large variety of datasets and
domains, and specific applications that are meant to work only with certain
datasets. Indeed, while the value of reusable components is quite obvious, and
making this possible is one of the strong benefits of linked data, the RADAR
application clearly shows that achieving an intuitively useable application that
relies on a generic template for navigation and presentation of the data is
close to impossible. Most applications of linked data nowadays are closer to
the “Study at the OU” app or to the REF application: applications working
in a close environment with a clearly defined and understood set of datasets
and queries. These applications tend to be disappointing as they cannot benefit
from the openness of linked data and the possibility to integrate data which
might originate from other organisations, possibly at run-time. As a conclu-
sion, rather than a complete, generic application framework like what was at-
tempted with the generic part of RADAR, we believe that what is needed are
libraries of reusable and highly customisable interface components that rely on
generic linked data resources, but can be flexibly integrated to create specific
application interfaces in specific scenarios. The chart creation feature repre-
sented by the media relation application can be seen as an example of such

20 M. d’Aquin

a library. Other initiatives exist that provide initial building blocks, such as the
SPARK (http://km.aifb.kit.edu/sites/spark/) javascript library, the SIM-
ILE timeline and map widgets (http://simile-widgets.org/), as well as more
general visualisation components, such as Fusion [2] or the Linked Data API2.

Third, it appears clearly that one of the obstacles to building reusable in-
terface components based on linked data is the openness and flexibility of the
data model on which linked data relies. At a higher level, integrating data from
external sources represent a major challenge, as interaction needs to implement
a trade-off between control and the potentially infinite possibilities that opening
the interface to unknown data can bring. More concretely, many tasks require
assumptions related to the data, which are rarely made explicit and formalised.
For example, most of the applications we have considered make the assumption
that each entity appearing in the interface are associated with a human readable
label. It is often the case that, if not requiring that there is only one human read-
able label for each entity, the application will make a choice between the ones
available, either randomly or using domain- and data-specific criteria. Similarly,
while operational and functioning in most situations, it is clear that the charts
generated by the media relation application can only make sense under certain
conditions. For example, if entities can be associated with more than one iden-
tifier, this would generally lead to these entities being counted as if they were
multiple entities. Also, charts showing distributions of data would be misleading
if not all the entities considered have the same number of values for the visu-
alised property or if some of them do not provide values. In other terms, while the
fact that the formalisms underlying linked data do not make the closed-world
assumption or the unique-name assumptions is at the basis of their openness
and flexibility, it makes them less exploitable as part of generic data processes.
Our suggestion related to this process would be to create a way to annotate
datasets (including such annotations for example in the Void [1] descriptions of
the datasets) related to the particular ‘characteristics’ of the datasets that can
be exploited by data processing/visualisation mechanisms, including for exam-
ple “local unique-name assumptions” indicating that the instances of a certain
class are non-redundant, as well as expressions similar to integrity constraints
(e.g., that there is necessarily a value of a given property for the instances of a
given class). Being able to rely on such characteristics would make it more fea-
sible for generic interface components, as previously suggested, to provide some
levels of guaranties regarding their interpretability and usability when applied
on particular data.

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets
– On the Design and Usage of voiD, the ’Vocabulary of Interlinked Datasets’. In:
Proc. of Linked Data on the Web, WWW 2009

2 http://code.google.com/p/linked-data-api/

Putting Linked Data to Use in a Large Higher-Education Organisation 21

2. Araújo, S., Houben, G.-J., Schwabe, D., Hidders, J.: Building Linked Data Appli-
cations with Fusion: A Visual Interface for Exploration and Mapping. In: ISWC
Posters and Demos (2010)

3. Zablith, F., d’Aquin, M., Brown, S., Green-Hughes, L.: Consuming Linked Data
Within a Large Educational Organization. In: Proc. of the Second International
Workshop on Consuming Linked Data (COLD), ISWC 2011

4. Zablith, F., Fernández, M., Rowe, M.: The OU Linked Open Data: Production and
Consumption. In: ESWC Workshops Proceedings, Linked Learning 2011

Facets and Pivoting for Flexible and Usable
Linked Data Exploration

Josep Maria Brunetti, Rosa Gil, and Roberto Garćıa

Universitat de Lleida, Jaume II, 69. 25001 Lleida, Spain
{josepmbrunetti,rgil,rgarcia}@diei.udl.cat

Abstract. The success of Open Data initiatives has increased the amount
of data available on the Web. Unfortunately, most of this data is only
available in raw tabular form, what makes analysis and reuse quite dif-
ficult for non-experts. Linked Data principles allow for a more sophis-
ticated approach by making explicit both the structure and semantics
of the data. However, from the end-user viewpoint, they continue to be
monolithic files completely opaque or difficult to explore by making te-
dious semantic queries. Our objective is to facilitate the user to grasp
what kind of entities are in the dataset, how they are interrelated, which
are their main properties and values, etc. Rhizomer is a tool for data
publishing whose interface provides a set of components borrowed from
Information Architecture (IA) that facilitate awareness of the dataset at
hand. It automatically generates navigation menus and facets based on
the kinds of things in the dataset and how they are described through
metadata properties and values. Moreover, motivated by recent tests
with end-users, it also provides the possibility to pivot among the faceted
views created for each class of resources in the dataset.

Keywords: Semantic Web, Linked Data, Human-Computer Interaction, usabil-
ity, interaction

1 Introduction

Though the amount of available following the Linked Data principles [2] is rapidly
increasing, from the end-user perspective, the view continues to be that the
available datasets are monolithic files completely opaque, or that can only be
explored using complex semantic queries. The objective should be now to try
to make all this data more usable so users facing a dataset can easily grasp

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

Facets and Pivoting for Flexible and Usable Linked Data Exploration 23

what kind of entities are in there, how they are interrelated, what are their main
properties and values, etc.

This way, users that are not experts in Semantic Web technologies can search,
browse and analyse the data. This will increase the awareness of the data cur-
rently available in the Web and also facilitate the development of new and in-
novative applications on top of it. The overall outcome is that available data
increases its impact and the society as a whole benefits more from data open-
ness.

The best approach to make a dataset more usable to a wider range of users
is to use some sort of Web publishing tool. At least, this kind of tools usually
provides a HTML rendering for each resource in the dataset. Each HTML page
lists all the properties for the corresponding resource. Pages are interlinked based
on the connections among resources and the user can follow HTML links to
browse through them. However, this feature is only useful if the user has some
a priori knowledge about the dataset, especially the URI identifier of a given
resource. There is no way to get at least an overview of the kind of resources in
the dataset.

Our proposal is to draw from the experience accumulated in the Information
Architecture (IA) domain [14] and reuse and adapt existing IA components to
provide this kind of guide to users. These components are well known to Web
users, as they are present in most web pages: navigation bars, facets, sitemaps,
breadcrumbs, etc.

This approach is being applied in Rhizomer, a tool capable of publishing a
Linked Data dataset while facilitating user awareness of its content. It is also
being evaluated with end-users as part of a User Centred Design development
process. Iterative evaluations have motivated and guided the introduction of new
features, like pivoting, and validated improvements in the usability.

The rest of this paper is organised as follows. First, the related work is
presented in Subsection 1.1. Then, the approach is introduced in Section 2,
detailing the Information Architecture components used to implement it. In
Section 3, an improvement is presented, motivated by a first round of evaluations
with end-users. It is the possibility to use facets to pivot around the resource
types in the dataset. An evaluation of this feature is also included in this section.
Finally, conclusions and future plans are presented in Section 4.

1.1 Related Work

Publishing and presenting Linked Data in an accessible way for users has been
addressed by several projects. The first tool that comes to mind when trying
to realize what a dataset is about is a Semantic Web browser. Dadzie et al. [6]
analyzed some of those projects finding that most of them are designed only for
tech-users and they do not provide an overview of the data.

Browsers are especially useful when dealing with a dataset published as
Linked Data because they provide a smooth browsing experience through the
graph, e.g. Disco [4] or Tabulator [3]. However, they do not provide additional
support for getting a broader view of the dataset being browsed, just a view

24 J. M. Brunetti, R. Gil, R. Garćıa

on the current resource. With Explorator [1] it is possible to browse a dataset
available through a semantic queries service. Though Explorator makes it pos-
sible to browse the dataset by combining search, facets or operations on sets of
resources, it is still difficult to get a broader view on the dataset other than a
list of all the classes or properties used.

In some cases it is also possible to get more informative components like
facets, e.g. /facet [10]. However, in some cases, facets are pre-computed and just
available for a given dataset as in the case of the DBPedia Faceted Browser [9].

Visor [15] is a generic data explorer that allows pivoting to related instances.
Despite it provides a hierarchical overview of the dataset, it is complicated to
filter resources because there isnt any faceted interface. Parallax [11] also pro-
vides the possibility to pivot to related types and a faceted browser, but it works
only with the Freebase dataset.

Other alternatives are Content Management Systems (CMS) or Wikis with
semantic capabilities. Some mainstream CMSs and wiki systems have started to
incorporate semantic technologies. The most significant case is the last version
of Drupal1 that provides features such as semantic metadata storage, querying,
importation or rendering. The same applies to semantic wikis, such as Seman-
tic MediaWiki [12], that makes it possible to mix wiki mark-up with semantic
annotations. However, semantic CMSs and wikis are intended more for content
creation than for importing and exploring existing ones.

There are also specialised tools that publish existing datasets as Linked Data.
For instance, Pubby2 builds a Linked Data frontend with dereferenceable URIs
for the subjects in the served dataset and content negotiation. It also features
a metadata extension that provides provenance information. However, in both
cases, the frontends provided are just like those Semantic Web browsers have.

To conclude, it is also possible to consider platforms for semantic data storage
and publishing like OpenLink Virtuoso3. In addition to the data store, there is
an HTML frontend that provide a basic faceted view for the datasets. However,
its interface is not intuitive at all and like with previous tools, the support for
broader awareness of the dataset structure is very limited.

Consequently, existing tools make it very difficult for non-technical users to
explore a dataset, realize what kind of resources there are, what properties they
have and how they are related.

2 Approach

Our starting point is the fundamental set of tasks for data analysis proposed
by Shneiderman [17]. Next, we present each task associated to the interaction
pattern chosen to satisfy it and Information Architecture [14] component selected
to implement the pattern:

1 Drupal 7, http://drupal.org/drupal-7.0
2 Pubby, http://www4.wiwiss.fu-berlin.de/pubby/
3 http://virtuoso.openlinksw.com

Facets and Pivoting for Flexible and Usable Linked Data Exploration 25

– Overview: get the full picture of the data set at hand. At this stage we
propose to apply the Global Navigation interaction pattern4. In Information
Architecture terms, it corresponds to the navigation bars users are used to
see at the top or on the right of web sites.

– Zoom & Filter: zoom in on items of interest and filter out uninteresting
items. Here the proposal is Faceted Navigation5. Once we have zoomed by
selecting the kind of things we are interested in from the navigation bar,
facets are the Information Architecture components that help users filter
out those that are not interesting.

– Details: after zooming and filtering the user arrives to the concrete resources
of interest. At this point, the user can get the details for those resources,
which in the case of Linked Data is to get the properties for the resources
plus those properties pointing to them. This is related to the Details on
Demand6 interaction pattern and can be implemented as a simple list of
properties and values of the resource of interest or as a specific visualisation
tailored to the kind of resource at hand, e.g. a map for geo-located resources.

Our proposal is to elaborate these interaction patterns in the context of Linked
Data. We have chosen them because they are simple and very common so users
are very confortable with them. They are currently part of the culture about
how information is structured in the Web so they have been deeply studied in
Information Architecture (IA) domain.

We are currently testing all these interaction patterns in a Linked Data pub-
lishing tool called Rhizomer7. It features navigation bars automatically gener-
ated and maintained starting from the underlying thesaurus and ontologies, and
how they are structured and instantiated. Navigation menus are described in
Section 2.1. A similar approach is followed for generating facets for each kind
of entity in the data set. Facets are described in Section 2.2. Fig. 1 is a screen
capture of Rhizomer showing at the top the navigation menu and on the left the
generated facets.

2.1 Navigation Menus

Navigation menus, in the case of websites, let users navigate through different
sections and pages of the site. They tend to be the only consistent navigation
element, being present on every page of the site.

Traditionally, user-centred design techniques like Card Sorting [18] are used
to develop the navigation menus of web sites. This technique requires a lot of
time and effort from developers and most of this effort is wasted as soon as the
structure of the menu is established and fixed in a menu that becomes something

4 http://www.welie.com/patterns/showPattern.php?patternID=main-navigation
5 http://www.welie.com/patterns/showPattern.php?patternID=faceted-

navigation
6 http://www.welie.com/patterns/showPattern.php?patternID=details-on-

demand
7 http://rhizomik.net/rhizomer/

26 J. M. Brunetti, R. Gil, R. Garćıa

Fig. 1. Screen capture of Rhizomer, at the top there is the navigation menu and on
the left the generated facets.

static. If new kinds of items are introduced or a part of the content becomes more
relevant, the Card Sorting should be repeated, at least in part.

The opportunity in the case of web sites build on top of semantic data is to
automate part of the process of generation and maintenance of the navigation
menus. This is possible because semantic data is structured by thesaurus and
ontologies, which hierarchically organise the kinds of things described in the
dataset. They specify all the classes or concept8 but also which subjects belong
to each class or are related to each concept.

Consequently, if there are few members of some kind, or there are not at
all, it should be less relevant in the menu bar. On the contrary, those that do
have a lot of members should be shown prominently in the menu bar. To do
this, we obtain the hierarchy of all kinds of entities and apply inference rules
to get their members. Then, the hierarchy is flattened to the amount of levels
required because this component can generate both global and local menus, i.e.
a menu for the whole dataset or for a subset of it. The site administrator can
also configure some parameters: the number of levels in the menu, the number of
items in each level, the order of items (alphabetical or by number of instances)
and a list of classes or concepts to omit.

According to these parameters, this component generates the menu applying
a recursive algorithm that mainly performs two operations: Split the concepts
or classes with a large amount of members in their narrower related concepts or
subclasses. Group those with few members into a broader concept or superclass.

This approach makes it possible to show the user the navigation bar that
best fits the data in the dataset at that particular moment. For instance, if the
dataset changes from containing mainly data about projects to mainly about

8 SKOS Simple Knowledge Organization System, http://www.w3.org/2004/02/skos/

Facets and Pivoting for Flexible and Usable Linked Data Exploration 27

publications, the menu would change accordingly to show more prominently
the part of the dataset structure about publications. More details about the
implementation of navigation menus are available from [7].

2.2 Facets

Users dont always know exactly what they are looking for and, sometimes, they
dont even know what its name is. Other times, they are unfamiliar with the
domain or they want to learn about a topic. This is particularly true when
facing Semantic Web datasets. In these cases, exploratory search is a strategy
that allows users to refine their search by successive iterations. An exploratory
interface such as faceted browsing allows users to find information without a
priori knowledge of its schema.

With navigation menus we can make the user aware of the hierarchical struc-
ture of a dataset but, once they choose the class of things they are interested in,
they face the barrier of not knowing how they are described. In other words, what
are the main properties that describe them, which ones are the more relevant
for that particular kind of things, the range of values they have in that partic-
ular case, etc. Faceted navigation is an exploratory technique for navigating a
collection of elements in multiple ways, rather than a single and pre-determined
order. Facet browser interfaces provide a user-friendly way to navigate through
a wide range of data collections.

Traditional facet browsers relied on manual identification of the facets and
on previous knowledge of the target domain. When dealing with semantic data,
it is possible to automate this process and a semantic faceted browser should be
able to handle any RDF dataset without any configuration. Since Linked Data
facilitates integrating data from different of sources, we cant assume a single
fixed schema for all data. Consequently, a Linked Data faceted browser should
be scalable and generic, not depending on a particular dataset structure.

In traditional Web, facet browsers are developed to navigate through homo-
geneous data and facets are fixed. This conflicts with Linked Data, where data
is too diverse to use a single set of facets: facets that make sense for one type of
entity could be inappropriate for other types. Moreover, when new data is added
the system should be able to add new facets at run time.

To build the facets, and to keep them updated, what Rhizomer does is to
perform queries for each class in the dataset ontologies that retrieve all the
properties their members have, the different values each property has and the
cardinality for each value, i.e. how many times that property for that class takes
that value.

Facets are calculated and stored in a data structure. They are then updated
whenever the dataset is edited through Rhizomer. They are also updated, but
just a local copy associated to a user session, when the user starts browsing and
selecting values for different facets. In this case, the set of instances used for
facets generation is constrained by the choices made so far and the facets are
recalculated for that constrained set of results obtained so far. Those facets that

28 J. M. Brunetti, R. Gil, R. Garćıa

are no longer relevant, i.e. no result uses them, are removed from the facets set.
More details about the implementation of facets are available from [7].

3 Pivoting

From the point of view of OLAP systems, pivoting or rotation is described as
an operation producing a change in the dimensional orientation of data. For in-
stance, if data is initially aggregated by Product, Location and Date, by pivoting,
the user can aggregate, for instance, by Location, Date and Product.

However, for richer data models pivot navigation is a way to restart a search
from the results of a first search [16]. Usually, the type of resources to be browsed
(e.g. book, car, paper...) remains fixed in a faceted browsing application. How-
ever, when pivoting is added to faceted navigation, it allows switching the type
of displayed entities based on relations to the current result set. For instance, a
user who is filtering films using film facets, e.g. director is Woody Allen, then
pivots on actors. As a result of this action, the user will see now all actors in the
result list, who are related to any film in the previous filtered list and continue
filtering but now using actor facets, e.g. country is Spain.

Here, it is possible to establish an interesting analogy between pivoting and
natural language. Indeed, the query above can be rephrased as Show actors
whose country is Spain, which have acted in films directed by Woody Allen. The
idea of pivot is reflected by the fact that the set of Spanish actors in the main
sentence also appears in the relative sentence as the relative pronoun which. The
relative pronoun point to the facet to browse for a pivot, in this case acted in.

Pivot steps can be repeated, e.g. pivot on countries from actors and filters
continent is Europe, after removing the previous country is Spain filter from
actors. Each pivot step corresponds to a nested relative sentences, such as Show
European countries, where an actor, which has acted in a Woody Allen film,
has been born. We have profited from this resemblance to natural language to
generate more usable breadcrumbs that help users contextualise their exploration
and know why they are getting the list of results that they are looking at as a
result of their filtering and pivoting steps so far.

Next subsection illustrates the importance of offering pivoting to users ex-
ploring Linked Data, as shown in a preliminary evaluation of Rhizomer with
end-users. The implementation details and the results of a new evaluation iter-
ation are then presented in the following subsections.

3.1 Motivation

Pivoting is not a common feature of existing Linked Data exploration tools. To
our knowledge, the only active tools capable of providing a faceted view and piv-
oting on semantic data are Parallax9 and Virtuoso Faceted Browser10. Parallax

9 http://www.freebase.com/labs/parallax/
10 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

VirtuosoFacetsWebService

Facets and Pivoting for Flexible and Usable Linked Data Exploration 29

is constrained to the Freebase dataset though there is an attempt to make it
capable to work on top of any SPARQL endpoint called SParallax11. However,
in both cases, they lack a mechanism to provide an overview of the dataset and
they have some performance issues, especially in the case of SParallax. Facets
and pivoting in Virtuoso Faceted Browser are not so evident and quite difficult
to use, though it also offers a breadcrumbs system based on the natural language
analogy.

However, during the last round of user testing it became quite evident that
a mechanism like pivoting was required. Evaluations are conduced at the Us-
abiliLAB12 and inspired by the Rapid Iterative Testing and Evaluation (RITE)
Method [13], testing with small groups as part of an iterative development pro-
cess. To register sessions we used Morae Recorder and Morae Observer to analyse
user test data. For the usability test metrics we chose effectiveness (percentage
of tasks completed, workload) and efficiency (time to complete a task).

For testing, we used a real dataset called the Linked Movie Data Base
(LinkedMDB)13. We chose this dataset because movies is a well know topic
for most people and quite appealing. LinkedMDB is generated from the Internet
Movie Database14 (IMDB).

Six participants were selected, with a unique profile characterized by good
knowledge of information technology, limited knowledge about Semantic Web
technologies and interest in movies. The reason we chose this profile is because
Rhizomer is intended for users interested in working with data, used to informa-
tion technologies but not necessarily aware of Semantic Web and Linked Data.

The test facilitator proposed users, among others, the following task: Find
three films where Woody Allen is director and actor at the same time. The full
findings derived from the test are available from [5], while the ones relevant to
motivating the inclusion of the pivot operation are summarised next:

– 100% of participants needed in at least one occasion the guidance of the
facilitator to successfully complete the task.

– 100% of the participants began the navigation from actors instead than from
movies (the directors where not so evident in the navigation bar because
there are not so many instances than for other classes and they appear as a
second level option in the menus).

When analysing the evaluation results, it became evident that the fact users
started from actors was the reason why they required assistance, they arrived
at a dead-end after filtering actors by name to just Woody Allen. There was no
way to switch to his set of films and then filter it using the director facet.

A short path to this problem might be to add for each resource, e.g. Woody
Allen (Actor), a link for each facet to the set of resources that can be reached
through it, e.g. a link to all the films where Woody Allen has acted. However,

11 http://sparallax.deri.ie
12 UsabiliLAB, http://griho.udl.cat/en/infraestructures/usabililab.html
13 LinkedMDB by O. Hassanzadeh and M. Consens, http://linkedmdb.org
14 IMDB database, http://www.imdb.com

30 J. M. Brunetti, R. Gil, R. Garćıa

this just works for particular instances and the objective is to make it also work
for sets of resources, e.g. all the films by a Spanish actor. This motivated the
development of a pivot operation that can be performed even before filtering has
reduced the set of explored resources to just one.

Moreover, another conclusion from the evaluation was that navigation should
be better contextualised. The interface should provide more mechanisms to in-
form the user where she/he is, where she/he can go and where she/he has been.
For that, the proposal is to integrate some kind of breadcrumbs that summarise
the navigation steps though navigation menus and facets.

The previous findings motivated a next round of work with Rhizomer. The
focus was now on incorporating the pivot action and also on improving contex-
tualisation by including breadcrumbs, as detailed in the next section.

3.2 Implementation

To build facets that support pivoting, we first distinguish three types of proper-
ties:

– Datatype properties: properties whose values are RDF literals or data
types from XML Schema. It is not possible to pivot on these properties but
recognising them allows displaying them with specialised facet types, e.g. a
histogram facet for numbers or a calendar one for dates. These specialised
facets are still work in progress.

– Object properties: properties whose values reference other resources. These
properties were treated, prior to the introduction of pivoting, as facets with
literal values, where the values were resources labels. It continues to be possi-
ble to filter a set of resources based on the labels of the referenced resources,
e.g. filter films through the actor facet based on the actors labels. However,
pivots makes also possible to switch to the set of actors and perform a more
detailed filtering based on actors facets.

– Inverse properties: in some cases, a dataset has a property between re-
source types modelled just in one way. For instance, each resource of type
Film has the property actor, but the resources of type Actor do not have the
inverse property to relate them with the films they have appeared in. When
inverse properties are not explicit in a dataset, they are detected and facets
are generated following the same approach than for explicit object proper-
ties. Consequently, it is possible to pivot through explicit object properties
and also through implicit inverse object properties. This increases the flexi-
bility of the exploration as more choices are available to the user dead-ends
are avoided, like exploring actors and not being able to pivot to films because
the property from actors to films is not explicitly stated in the dataset.

Each facet consists of a list of the five most used values and a text search
box, which suggests possible matches. There is also the possibility to see the
rest of values and choose from them. In the case of object properties and inverse
properties we provide the option to pivot to their related types, marked as an

Facets and Pivoting for Flexible and Usable Linked Data Exploration 31

arrow icon as shown in Fig. 2. Thus, users can construct complex queries that
include different types of resources.

We keep a list of the selected values for each facet and also information for
every pivoted step realized. This information is used to build the corresponding
SPARQL queries to get results. For example, the SPARQL query when browsing
films whose director is Woody Allen is:

SELECT DISTINCT ?r1 WHERE {
?r1 a <http://data.linkedmdb.org/resource/movie/film> .

?r1 <http://data.linkedmdb.org/resource/movie/director>

<http://data.linkedmdb.org/resource/director/8501> }

For those facets that allow pivoting to another type we save the following
information: the initial type, the property used to pivot and the target type. In
the previous example, when user pivots from Film to Actor:

– Initial type: http://data.linkedmdb.org/resource/movie/film
– Pivoting property: http://data.linkedmdb.org/resource/movie/actor
– Target type: http://data.linkedmdb.org/resource/movie/actor

When pivoting to another type, the restrictions applied to the first one are
propagated to the pivoted type through the property used for pivoting and linked
using variables, marked in bold in the following SPARQL example after pivoting
from films to actors:

SELECT DISTINCT ?r2 WHERE {
?r2 a <http://data.linkedmdb.org/resource/movie/actor>.

?r1 a <http://data.linkedmdb.org/resource/movie/film>.

?r1 <http://data.linkedmdb.org/resource/movie/director>

<http://data.linkedmdb.org/resource/director/8501>.

?r1 <http://data.linkedmdb.org/resource/movie/actor> ?r2.

?r1 a <http://data.linkedmdb.org/resource/movie/film> }

To generate breadcrumbs we use also the restrictions used to build queries.
Breadcrumbs show the path that the user has followed to arrive to that set of
results. Users can use them to remove filters and pivoted steps. We have used
natural language to generate them because we think this is the easiest way to
understand the filtering and pivoting steps, as already introduced in Section 3.
Fig. 2 shows, in the central part, the breadcrumbs generated for this example.

3.3 Evaluation

This section summarises the results of the first round of user testing after in-
tegrating the pivoting functionality into Rhizomer. The evaluation approach is
inspired by the Rapid Iterative Testing and Evaluation (RITE) Method [13],
testing with small groups as part of an iterative development process, but tests
are performed much more frequently.

32 J. M. Brunetti, R. Gil, R. Garćıa

Fig. 2. Capture showing the pivoting enhacements: breadcrumbs as natural language
in the middle, pivot-able facets with arrow icon and Navigate to box with pivoting
options

The aim of the test presented in this section was mainly to validate that
the introduction of pivoting solves the problems highlighted in the previous
evaluation, described in Section 3.1. Six users that where not involved in the
previous evaluation rounds were recruited and one of the tasks, Task 2, was
identical to one of the tasks used in previous rounds.

Table 1. Tasks posed to users during the pivoting testing round

Task 1 Find 5 films with ”Orlando Bloom” as actor.

Task 2 Find 5 films with ”Clint Eastwood” both as director and actor.

Task 3 Who has directed more films in countries located in ”Oceania”.

This is the task that is going to be used to test if pivoting has improved
efficiency and efficacy. The complete list of tasks is presented in Table 1 and the
efficiency results are shown in Table 2. More details about previous evaluations
are available from [8].

The first finding has been that the introduction of pivoting has corresponded
to a great increase of efficiency, with a 30% reduction in the mean time necessary
to complete Task 2. However, the most promising outcome is that the biggest
improvement has been in the reduction of the maximum time on tasks, 57%
improvement.

This is related with the fact that, thanks to pivoting, all users where able
to find their path to solve the task without requiring assistance. Contrary to
pre-pivoting tests, where most users got lost when trying to complete the tasks
starting from actor or director instead of from film, with pivoting all users were
able to complete the task independently of their starting point without assis-
tance. Consequently, the maximum time was reduced significantly.

Facets and Pivoting for Flexible and Usable Linked Data Exploration 33

Table 2. Efficiency for the tasks in Table 1 plus comparison with pre-pivoting results
for Task 2

Time on Task
(minutes)

Task 2
with

pivoting

Task 2
pre-

pivoting
Improvement

Task 1
with

pivoting

Task 3
with

pivoting
Minimum 0.89 1.05 15% 1.00 1.99

Maximum 2.23 5.23 57% 4.53 4.50

Mean 1.69 2.41 30% 1.61 3.43

Standard Dev. 0.57 1.49 62% 1.21 0.96

However, there is still a lot of room for improvement. The following issues
were detected and some proposals to solve them are presented in the conclusions
and future work section:

– It was users for users to identify the pivoting button associated to object
property of inverse property facets. Moreover, the box labelled Navigate to,
that also contained the list of facets that provided pivoting was far from
the facets, in the right side while facets are in the left side, and hard to
identify. Finally, some users thought that following one of this pivoting links
supposed starting from zero the exploration from the target class, loosing all
the restrictions done so far through facets.

– Users also experienced many contextualisation problems, not being clear for
them what were they seeing at the screen. The breadcrumbs helped solving
this once the users realised they were available but this took some time for
most of them.

4 Conclusions and Future Work

After some rounds of development and testing with end-users, Rhizomer is ca-
pable of publishing Linked Data while facilitating user awareness of what is in
the dataset. Awareness is accomplished by components borrowed from the In-
formation Architecture discipline and generated automatically from the dataset
structure and ontologies. They are navigation bars, which show the main kinds
of items in the dataset, and facets, which show the more significant properties
for different kinds of items and their values.

Our preliminary tests with users show that Rhizomer facilitates the explo-
ration of the published datasets, and they have also highlighted many issues.
The last functionality addition, motivated during a previous evaluation round,
is pivoting. The possibility of allow users move from faceted exploration of a
particular class of resource, e.g. Actors, to another class of related resources, e.g.
Film, while preserving the previous filters, provides a great level of flexibility to
the interaction and avoid dead-ends due to the way the data is structured.

Pivoting has allowed reducing the mean time to complete a particular task,
thus improving efficiency, by a 30%. Moreover, the maximum time has been
reduced by almost a 60% as a result of the fact that now, contrary to the test

34 J. M. Brunetti, R. Gil, R. Garćıa

prior to the introduction of pivoting, all users were able of completing the task
without assistance.

The remaining issues, spotted during the last evaluation, are mainly related
with the fact that the interface components providing pivoting are not so evident
for users. Moreover, they suppose a conceptual shift that should be mitigated.
For instance, some users saw pivoting as restarting exploration for a new class
of resources.

One possible way to overcome these limitations of pivoting is to try to inte-
grate it with facets, so users do not need to take their attention from facets, and
also to make it clearer that the filtering done so far is not going to be lost. One
way to do that, to be implemented and tested, is to present pivoting as a way
of doing advanced filtering on a facet.

This way, users can start doing classical filtering using the labels of the facet
values. For instance, filter the actors for a film using the actor facet and the
actor labels. However, if they get stuck because they need a more sophisticated
filter, make pivoting available as a way of attaining advanced filtering. This got
a promising way to go as a result of Task 3 used in the evaluation presented
in Section 3.3. Users looked for films from countries in Oceania but got stuck
because the country facet showed just country names. Some of them pointed out
that they needed to filter the countries by continent but did not see pivoting
as the solution to their problem. They idea is that we can link their need of
performing advanced filtering on properties of the entities associated to a facet
to pivoting.

Finally, another issue is related with contextualisation. Though natural language-
inspired breadcrumbs have been seen by users as very useful, they should get
more prominent in the user interface because it took too much time to users to
spot them. The idea in this case is to increase breadcrumbs size and use colours
that highlight the breadcrumbs and also the entities involved, i.e. the names of
the classes and facets involved.

References

1. Araujo S., Schwabe D., Barbosa S.: Experimenting with Explorator: a Direct Ma-
nipulation Generic RDF Browser and Querying Tool. In: Proc. of VISSW 2009

2. Berners-Lee, T.: Linked Data. Design Issues (2009) http://www.w3.org/

DesignIssues/LinkedData.html

3. Berners-Lee, T. Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D. Tabulator: Exploring and Analyzing linked data on the
Semantic Web. In: Proc. of SWUI 06 at ISWC 2006

4. Bojars, U., Passant, A., Giasson, F., Breslin, J. G.: An Architecture to Discover
and Query Decentralized RDF Data. In: Proc. of SFSW 2007, CEUR Workshop
Proceedings 248 (2007)

5. Brunetti, J.M., Garćıa, R.: Information Architecture Automatization for the Se-
mantic Web. In: Proc. of the 13th IFIP TC 13 International Conference on Human-
Computer Interaction (2011) 410–413

Facets and Pivoting for Flexible and Usable Linked Data Exploration 35

6. Dadzie, A.-S., Rowe, M.: Approaches to Visualising Linked Data: A Survey. The
Semantic Web Journal – Special Call for Semantic Web surveys and applications
2(2) (2011) 89–124

7. Garćıa, R., Brunetti, J.M., López-Muzás, A., Gimeno, J.M., Gil, R.: Publishing
and interacting with linked data. In: Proc. of the International Conference on Web
Intelligence, Mining and Semantics (2011) 18:1–18:12

8. Garćıa, R., Gimeno, J.M., Perdrix, F., Gil, R., Oliva, M., López, J.M., Pascual, A.,
Send́ın, M.: Building a Usable and Accessible Semantic Web Interaction Platform.
In: Proc. of WWW 2010 143–167

9. Hahn, R., Bizer, B., Sahnwaldt, C., Herta, C., Robinson, S., Bürgle, M., Düwiger,
H., Scheel, U.: Faceted Wikipedia Search. In: Proc. of BIS10

10. Hildebrand, M., Ossenbruggen, J., and Hardman, L.: /facet: A Browser for Hetero-
geneous Semantic Web Repositories. In: Proc. of The Semantic Web at ISWC 2006,
272–285

11. Huynh, D. F., Karger, D. R.: Parallax and companion: Set-based browsing for the
data web. In: WProc. of WWW 2009

12. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: Proc. of
ISWC 2006, LNCS 4273 (2006) 935–942

13. Medlock, M.C., Wixon, D., Terrano, M., Romero, R.L., Fulton, B.: Using the
RITE method to improve products: A definition and a case study. In: Proc. of the
Usability Professionals Association (2002)

14. Morville, P., Rosenfeld, L: Information Architecture for the World Wide Web.
O’Reilly Media (2006)

15. Popov, I., schraefel, m., Hall, W., Shadbolt, N.: Connecting the Dots: A Multi-pivot
Approach to Data Exploration. In: Proc. of ISWC 2011, 23–27

16. Sacco, G.M., Tzitzikas, Y. (eds.): Dynamic taxonomies and faceted search: theory,
practice, and experience. Springer (2009)

17. Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Informa-
tion Visualizations. In: Proc. of the 1996 IEEE Symposium on Visual Languages
(VL’96) 336–343

18. Spencer, D.: Card Sorting. Rosenfeld Media (2009)

Interacting with Statistical Linked Data via
OLAP Operations

Benedikt Kämpgen1, Sean O’Riain2, and Andreas Harth1

1 Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
{benedikt.kaempgen,harth}@kit.edu

2 Digital Enterprise Research Institute, National University of Ireland, Galway
sean.oriain@deri.org

Abstract. Online Analytical Processing (OLAP) promises an interface
to analyse Linked Data containing statistics going beyond other interac-
tion paradigms such as follow-your-nose browsers, faceted-search inter-
faces and query builders. As a new way to interact with statistical Linked
Data we define comon OLAP operations on data cubes modelled in RDF
and show how a nested set of OLAP operations lead to an OLAP query.
Then, we show how to transform an OLAP query to a SPARQL query
which generates all required facts from the data cube. Both metadata
and OLAP queries are issued directly on a triple store; therefore, if the
RDF is modified or updated, changes are propagated directly to OLAP
clients.

Keywords: OLAP, query, operation, Linked Data, statistics, XBRL

1 Introduction

Linked Data provides easy access to large amounts of interesting statistics from
many organizations for information integration and decision support, including
financial information from institutions such as the UK government3 and the
U.S. Securities and Exchange Commission.4 However, interaction paradigms for
Linked Data such as follow-your-nose browsers, faceted-search interfaces, and
query builders [10,12] do not allow users to analyse large amounts of numerical
data in an exploratory fashion of “overview first, zoom and filter, then details-on-
demand” [24]. Online Analytical Processing (OLAP) operations on data cubes

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

3 http://data.gov.uk/resources/coins
4 http://edgarwrap.ontologycentral.com/

Interacting with Statistical Linked Data via OLAP Operations 37

for viewing statistics from different angles and granularities, filtering for spe-
cific features, and comparing aggregated measures fulfil this information seeking
mantra and provide interfaces for decision-support from statistics [2,4,25]. How-
ever OLAP on statistical Linked Data imposes two main challenges:

– OLAP requires a model of data cubes, dimensions, and measures. Automat-
ically creating such a multidimensional schema from generic Linked Data is
difficult, and only semi-automatic methods have proved applicable [16,18,21].
The RDF Data Cube vocabulary (QB)5 is a Linked Data vocabulary to
model statistics in RDF. Several publishers have already used the vocabu-
lary for statistical datasets.6

– OLAP queries are complex and require specialised data models, e.g., star
schemas in relational databases, to be executed efficiently [9]. The typical
architecture of an OLAP system consists of an ETL pipeline that extracts,
transforms and loads data from the data sources into a data warehouse,
e.g., a relational or multidimensional database. OLAP clients such as JPivot
allow users to built OLAP queries and display results in pivot tables. An
OLAP engine, e.g., Mondrian, transforms OLAP queries into queries to the
data warehouse, and deploys mechanisms for fast data cube computation and
selection, under the additional complexity that data in the data warehouse
may change dynamically [8, 14].

In this paper, we assume that statistical Linked Data has been modelled
using QB and focus on efficiently executing OLAP queries on statistical Linked
Data. In previous work [11] we have presented a proof-of-concept to interpret
Linked Data reusing QB as a multidimensional model and to automatically load
the data into a data warehouse used by common OLAP systems. The fact that
OLAP queries are executed not on the RDF directly but by a common OLAP
engine after automatically populating a data warehouse result in two drawbacks:
first, although the relational star schema we adopted is a quasi-standard logical
model for data warehouses, our approach requires a ROLAP engine to execute
OLAP queries; second, if statistical Linked Data is updated, e.g., if a single new
row is added, the entire ETL process has to be repeated, to have the changes
propagated. Figure 1 shows our new data flow of having an OLAP engine issuing
SPARQL queries directly to a triple store.

The current work presents a new way to interact with statistical Linked Data:

– We define comon OLAP operations on data cubes as Linked Data reusing
QB and show how a nested set of OLAP operations lead to an OLAP query.

– We show how to transform an OLAP query to a SPARQL query which
generates all required facts from the data cube.

In the remainder of the paper, we first present a motivational scenario from
the financial domain in Section 2. As a prerequisite for our contribution, in

5 http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/
6 http://wiki.planet-data.eu/web/Datasets

38 B. Kämpgen, S. O’Riain, A. Harth

Fig. 1. Data flow for OLAP queries on statistical Linked Data in a triple store

Section 3, we formally define a multidimensional model of data cubes based
on QB. Then, in Section 4, we introduce OLAP operations on data cubes and
present a direct mapping of OLAP to SPARQL queries. We apply this mapping
in a small experiment in Section 5 and discuss some lessons learned in Section 6.
In Section 7, we describe related work, after which, in Section 5, we conclude
and describe future research.

2 Scenario: Analysing Financial Linked Data

In this section we describe a scenario of analysing Linked Data containing finan-
cial information. The Edgar Linked Data Wrapper7 provides access to XBRL
filings8 as Linked Data reusing QB. Those filings disclose balance sheets of a
large number of US organizations, for instance that RAYONIER INC had a
sales revenue net of 377,515,000 USD from 2010-07-01 to 2010-09-30.9

Using LDSpider, we crawled Linked Data from the Edgar wrapper and stored
a data cube SecCubeGrossProfitMargin into an Open Virtuoso triple store. The
data cube contains single disclosures from financial companies such as RAY-
ONIER INC. Each disclosure either discloses cost of goods sold (CostOfGoodsSold)
or sales revenue net (Sales) as measures. The two measures have the unit USD
and an aggregation function that returns the number of disclosures, or - if only
one - the actual number. Any disclosure is fully dependent on the following di-
mensions: the disclosing company (Issuer), the date a disclosure started (Dtstart)
and ended (Dtend) to be valid, and additional segment information (Segment).

In our scenario, a business analyst wants to compare the number of disclo-
sures of cost of goods sold for two companies. He requests a pivot table with
issuers RAYONIER INC and WEYERHAEUSER CO on the columns, and the
possible periods for which disclosures are valid on the rows, and in the cells
showing the number of disclosed cost of goods sold, or - if only one - the actual
number. Figure 2 shows the needed pivot table.

7 http://edgarwrap.ontologycentral.com/
8 http://www.xbrl.org/Specification/XBRL-RECOMMENDATION-2003-12-

31+Corrected-Errata-2008-07-02.htm
9 http://edgarwrap.ontologycentral.com/archive/52827/0001193125-10-

238973#ds

Interacting with Statistical Linked Data via OLAP Operations 39

Fig. 2. Pivot table to be filled in our scenario

3 A Multidimensional Model Based on QB

In this section, as a precondition for OLAP queries on Linked Data, we formally
define the notion of data cubes in terms of QB. The definition is based on the
multidimensional models of Gómez et al. [7], Pedersen et al. [20] and the Open
Java API for OLAP10 as well as on the Linked Data vocabularies of QB, SKOS11

and skosclass.12

Definition 1 (Linked Data store with terms and triples). The set of RDF
terms in a triple store consists of the set of IRIs I, the set of blank nodes B and
the set of literals L. A triple (s, p, o) ∈ T = (I ∪ B) × I × (I ∪ B ∪ L) is called
an RDF triple, where s is the subject, p is the predicate and o is the object.

Given a triple store with statistical Linked Data, we use basic SPARQL triple
patterns on the store to help us defining sets of multidimensional elements. Given
a multidimensional element x iri(x) ∈ (I ∪ B) returns its IRI or blank node:

Member defines the set of members as Member = {?x ∈ (I∪B)|(?x a skos:Con-
cept)}. Let V = 2Member, V ∈ V, ROLLUPMEMBER ⊆ Member ×
Member, rollupmember(V) = {(v1, v2) ∈ V×V |(iri(v1) skos:broader iri(v2)∨
iri(v2) skos:narrower iri(v1))}

Level defines the set of levels as Level = {(?x, V, rolluplevel(V)) ∈ (I ∪ B) ×
V × ROLLUPLEV EL|(?x a skosclass:ClassificationLevel ∧∀v ∈ V (iri(v)
skos:member ?x)}. Let L = 2Level, L ∈ L, ROLLUPLEV EL ⊆ Level ×
Level, rolluplevel(L) = {(l1, l2) ∈ L×L|(iri(l1) skosclass:depth x)∧ (iri(l2)
skosclass:depth y) ∧ x ≤ y))}

Hierarchy defines the set of hierarchies as Hierarchy = {(?x, L, rolluplevel(L))
∈ (I∪B)×L×ROLLUPLEV EL|(?x a skos:ConceptScheme)∧∀l ∈ L(iri(l)
skos:inScheme ?x)}. Let H = 2Hierarchy.

10 http://www.olap4j.org/
11 http://www.w3.org/2004/02/skos/
12 http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

40 B. Kämpgen, S. O’Riain, A. Harth

Dimension defines the set of dimensions as Dimension = {(?x,H) ∈ (I ∪
B)×H|(?x a qb:DimensionProperty)∧ ∀h ∈ H(?x qb:codeList iri(h))}. Let
D = 2Dimension.

Measure defines the set of measures as Measure = {(?x, aggr) ∈ (I ∪ B) ×
{UDF}|(?x a qb:MeasureProperty)} with UDF a default aggregation func-
tion since QB so far does not provide a standard way to represent typical
aggregation functions such as SUM, AVG and COUNT: if only one value is
given, the value itself else the number of values is returned. Conceptually,
measures are treated as members of a dimension-hierarchy-level combination
labelled “Measures”. Let M = 2Measure.

DataCubeSchema defines the set of data cube schemas as {(?x,D,M) ∈ (I ∪
B)×D×M|(?x a qb:DataStructureDefinition ∧∀d ∈ D(?x qb:componentPro-
perty ?comp∧?comp qb:dimensionProperty iri(d))∧∀m ∈M(?x qb:component-
Property ?comp∧?comp qb:measureProperty iri(m)))}.

Fact defines the set of possible statistical facts as Fact = {(?x, ?c0, . . . , ?ci, ?e0,
. . . , ?ej) ∈ (I ∪ B) × (I ∪ B ∪ L) × . . . × (I ∪ B ∪ L) × L × . . . × L|(?x a
qb:Observation)∧(?x?d0c0∧?d0 a qb:DimensionProperty)∧. . .∧(?x?dici∧?di
a qb:DimensionProperty) ∧ (?x?m0e0∧?m0 a qb:MeasureProperty) ∧ . . . ∧
(?x?mjej∧?mj a qb:MeasureProperty)}. Let F = 2Fact.

DataCube defines the set of data cubes as DataCube = {(cs, F) ∈ DataCube-
Schema×F|cs = (?x,D,M)∧D = {D0, . . . , D|D|}∧M = {m0, . . . ,m|M |}∧
∀c ∈ F (c = (?obs, c0, . . . , c|D|, e0, . . . , e|M |) : (?obs qb:dataSet ?ds∧?ds qb:struc-
ture ?x) ∧ ∀Di ∈ D(?xiri(Di)ci ∧ iri(Di) qb:codeList ?h∧?l skos:inSchme
?h∧?v skos:member ?l ∧ (?v skos:notation ?ci∨?v skos:exactMatch ?ci)) ∧
∀mi ∈M(?xiri(mi)ei ∨ ei = null).

We distinguish metadata queries and OLAP queries on data cubes. Whereas
metadata queries return multidimensional objects such as the cube schema, the
dimensions, and the measures, OLAP queries return facts directly contained in
or derived from (e.g., by aggregation of several facts) the data cube.

Definition 1. According to Gray et al. [8] a materialised data cube (cs, F) with
cs = (x,D,M) contains a set of facts MF = (?x, ?c0, . . . , ?c|D|, ?e0, . . . , ?e|M |)
with ?ci ∈ Ci with Ci : 0 ≤ i ≤ |D| all possible members of a dimension Di ∈ D
or the special ALL value, and with ej ∈ T : 0 ≤ j ≤ |M | with T a numeric
domain including the special null value in cases of cube sparsity. A data cube
can be materialised by a union of 2|D| sub-queries, each grouping the result on the
members of a subset of dimensions, replacing the values of the other dimensions
by a special ALL value, and computing each measure value by the measure’s
aggregation function. The number of facts from a materialised data cube is given
by |MF | = (|C0|+ 1) · . . . · (|C|D||+ 1).

Subqueries and aggregation functions in SPARQL 1.1 make easily possible
the concept of Gray et al. [8] to fully materialise a data cube represented as
Linked Data reusing QB. However, due to its exponential size w.r.t. the number
of dimensions, such a SPARQL query is inefficient. OLAP queries may require
only a small subset of all possible facts of a data cube; therefore, in the next
section, we show how to evaluate OLAP queries using a single SPARQL query.

Interacting with Statistical Linked Data via OLAP Operations 41

4 Mapping OLAP Operations to SPARQL on QB

In this section we show how to issue OLAP queries on a multidimensional model.
We define common OLAP operations on single data cubes [19,20,22,23]. A nested
set of OLAP operations lead to an OLAP query. We describe how to evaluate
such an OLAP query using SPARQL on QB. Figure 3 illustrates the effect of
common OLAP operations, with inputs and outputs.

Fig. 3. Illustration of common OLAP operations with inputs and outputs (adapted
from [23])

Note, this paper focuses on direct querying of single data cubes, the integra-
tion of several data cubes through Drill-Across or set-oriented operations such
as union, intersection, difference is out-of-scope. Multiple datasets can already
be queried together if they are covered by one qb:DataStructureDefinition.

Each OLAP operation has as input and output a data cube. Therefore, oper-
ations can be nested. A nested set of OLAP operations lead to an OLAP query.
For interpreting a set of OLAP operations as an OLAP query and evaluate it
using a SPARQL query on QB, we adopt the notion of subcube queries [13].

Definition 2. We define an OLAP query as a subcube query [13] on a cer-
tain cube (cs, C) with cs = (?uri,D,M), represented as a tuple with as many
elements as dimensions and measures: (q0, ..., q|D|,m0, ...,m|M |) with dom(qi) =
{?, ALL, x} with ? for an inquired dimension, with ALL for an aggregated di-
mension, with x for one or more members to fix a dimension, and with mi a
measure to query for.

As examples, we describe three distinguishable subcube queries:

– A full-cube query returns exactly the tuples from a DataCubeInstance and
inquires all dimensions: (?, ?, ?, ...,m0, ...,m|M |).

42 B. Kämpgen, S. O’Riain, A. Harth

– A point query asks for a data cube comprising one specific instance tuple:
(a0, a1, ..., a|D|,m0, ...,m|M |) with ai a member of a dimension Di.

– A fully-aggregated query asks for the measures aggregated over all dimen-
sions: (ALL,ALL, . . . , ALL,m0, . . . ,m|M |).

In the following we describe how to evaluate each OLAP operation in terms
of this query model and how a nested set of OLAP operations results in one
specific OLAP subcube query. We assume that names and schemas of input
and output data cubes are implicitly given and we focus on the data cube facts
which will be queried for. An input data cube is represented as a full-cube query
(?, ?, ?, ...,m0, ...,m|M |).

Projection is defined as Projection : DataCube×Measure→ DataCube and
removes a measure from the input cube and allows to query only for specific
measures. We evaluate Projection by removing a measure from the subcube
query tuple.

Slice is defined as Slice : DataCube × Dimension → DataCube and removes
a dimension from the input cube and aggregates over the members of a
dimension. We evaluate Slice by setting the tuple element of that dimension
to ALL.

Dice is defined as Dice : DataCube×Dimension×V → DataCube and allows
to filter for and aggregate over certain dimension members. We evaluate Dice
by setting the tuple element of that dimension to this particular member or
set of members and aggregate over the set. Note, dice is not a selection
operation but a combined filter and slice operation.

Roll-Up is defined as Roll−Up : DataCube×Dimension×Level→ DataCube
and allows to create a cube that contains instance data on a higher aggrega-
tion level. We evaluate roll-up by replacing the inquired members of a dimen-
sion with members of a higher level. Note, we do not define Drill −Down,
since it can be seen as an inverse operation to Roll − Up.

As an example, consider an OLAP query on our SecCubeGrossProfitMargin
cube for the cost of goods sold (CostOfGoodsSold) for each issuer and each
date until when each disclosure is valid (dtend), filtering by disclosures from two
specific segments. A nested set of OLAP operations that queries the requested
facts can be composed as follows. In all our queries, we use prefixes to make
URIs more readable:

S l i c e (
Dice (

Pro j e c t i on (
edgar : SecCubeGrossProfitMargin ,
edgar : CostOfGoodsSold) ,

edgar : segment ,
{ edgar : segmentAHealthCareInsuranceCompany ,
edgar :

segmentAResidentialRealEstateDeveloperMember })
,

Interacting with Statistical Linked Data via OLAP Operations 43

edgar : d t s t a r t)

This query can then be represented as a subcube query with dimensions
Issuer, Dtstart, Dtend, Segment:

(? , ∗ , ? , { edgar : segmentAHealthCareInsuranceCompany ,
edgar : segmentAResidentialRealEstateDeveloperMember } ,

edgar : CostOfGoodsSold)

Next, we describe how to evaluate such an OLAP query using a SPARQL
query on QB. Since OLAP hierarchies add considerable complexity to QB and
since a Roll − Up has a similar effect to a Slice operation, in this paper, we
assume data cubes with only one hierarchy and level per dimension. A subcube
query Q = (q0, . . . , q|D|,m0, ...,m|M |) can be translated into a SPARQL query
using the following steps:

1. We initialise the SPARQL query using the URI of the data cube. We query
for all instance data from the data cube, i.e., observations linking to datasets
which link to the data structure definition.

2. For each selected measure, we incorporate it in the SPARQL query by select-
ing additional variables for each measure and by aggregating them using the
aggregation function of that measure, using OPTIONAL patterns in case we
query for several measures.

3. For each inquired dimension, we query for all the instances of skos:Concept
in a level of a hierarchy of the dimension and for the represented values used
(from members either linked via skos:notation or skos:exactMatch) in the
observations. We query for the observations showing property-value pairs
for each of these variables. To display inquired dimensions in the result and
correctly aggregating the measures, we group by each dimension variable.

4. For each fixed dimension, we filter for those observations that exhibit for
each dimension one of the listed members.

We transform our example from above to the following SPARQL query. Note,
“UDF” represents the standard aggregation function from our scenario:

select ?dimMem0 ?dimMem1 UDF(? measureValues0) where {
? obs qb : dataSet ? ds .
? ds qb : s t r u c t u r e edgar : SecCubeGrossProfitMargin .
? obs edgar : i s s u e r ? va lues0 .

?dimMem0 skos : member ? l e v e l 0 .
? l e v e l 0 skos : inScheme ? h i e ra rchy0 .
edgar : i s s u e r qb : codeL i s t ? h i e ra rchy0 .
?dimMem0 skos : exactMatch ? va lues0 .

? obs edgar : dtend ? va lues1 .
?dimMem1 skos : member ? l e v e l 1 .
? l e v e l 1 skos : inScheme ? h i e ra rchy1 .
edgar : dtend qb : codeL i s t ? h i e ra rchy1 .
?dimMem1 skos : notat ion ? va lues1 .

44 B. Kämpgen, S. O’Riain, A. Harth

? obs edgar : segment ? va lues2 .
? sl icerMem0 skos : member ? l e v e l 2 .
? l e v e l 2 skos : inScheme ? h i e ra rchy2 .
edgar : segment qb : codeL i s t ? h i e ra rchy2 .
? sl icerMem0 skos : exactMatch ? va lues2 . F i l t e r (?

sl icerMem0 = edgar :
segmentAHealthCareInsuranceCompany

OR ? sl icerMem0 = edgar :
segmentAResidentialRealEstateDeveloperMember)

? obs egar : CostOfGoodsSold ? measureValue0 .
} group by ?dimMem0 ?dimMem1

5 Experiment

In this section we demonstrate in a small experiment the applicability of our
OLAP-to-SPARQL mapping to our scenario from the financial domain. The
SecCubeGrossProfitMargin cube contains 17,448 disclosures that either disclose
cost of goods sold or sales revenue net. The values of the measures fully depend
on one of 625 different issuers, the date a disclosure started (27 members of
dimension Dtstart) and ended (20 members of Dtend) to be valid, and additional
information (21,227 members of Segment). The two measures have the unit USD
and an aggregation function that returns the number of disclosures, or - if only
one - the actual number. If fully materialised according to Definition 1, the cube
contains 626 · 28 · 21 · 21, 228 = 7, 813, 772, 064 facts. To compute all of its facts,
24 = 16 SPARQL subqueries would be needed.

OLAP interface allow users to interactively combine OLAP operations into an
expression of an OLAP query language. Results of the query shall be visualised
using a pivot table, a compact format to display multidimensional data [5]. As
far as we know, MDX is the most widely used OLAP query language, adopted
by OLAP engines such as Microsoft SQL Server, the Open Java API for OLAP,
XML for Analysis (XMLA), and Mondrian. Therefore, we show that an MDX
query can be transformed into an OLAP subcube query according to Definition 2
and evaluate the subcube query using a SPARQL query. The result is a subset of
all possible facts from a data cube. The pivot table determines what dimensions
to display on its columns and rows.

In order to answer the OLAP question of our scenario, we created the follow-
ing MDX query. Multidimensional elements are described there using URIs.13

For an introduction to MDX, see its website.14 A more detailed description of
how to transform an MDX query into an OLAP query due to space constraints
we leave for future work when we evaluate our OLAP-to-SPARQL mapping more
thoroughly.

13 Note URIs need to be translated to an MDX-compliant format that does not use
reserved MDX-specific characters.

14 http://msdn.microsoft.com/en-us/library/aa216770%28v=sql.80%29.aspx

Interacting with Statistical Linked Data via OLAP Operations 45

SELECT
{ edgar : c ik1417907idConcept , edgar : c ik106535idConcept } ON

COLUMNS,
CrossJo in (edgar : dt s ta r tRootLeve l . Members , edgar :

dtendRootLevel . Members) ON ROWS
FROM [edgar : SecCubeGrossProfitMargin]
WHERE { edgar : CostOfGoodsSold}

A nested set of OLAP operations to compose our OLAP query is as follows:

S l i c e (Pro j e c t i on (
edgar : SecCubeGrossProfitMargin ,
edgar : CostOfGoodsSold) ,

edgar : segment)

This query can then be represented as a subcube query with dimensions
Issuer, Dtstart, Dtend, Segment: (?, ?, ?, ∗, CostOfGoodsSold). The resulting
SPARQL query is as follows:

select ?dimMem0 ?dimMem1 ?dimMem2 count (xsd : decimal (?
measureValue0)) sum(xsd : decimal (? measureValue0))

where {
? obs qb : dataSet ? ds .
? ds qb : s t r u c t u r e edgar : SecCubeGrossProfitMargin .
? obs edgar : i s s u e r ? va lues0 .

?dimMem0 skos : member ? l e v e l 0 .
? l e v e l 0 skos : inScheme ? h i e ra rchy0 .
edgar : i s s u e r qb : codeL i s t ? h i e ra rchy0 .
?dimMem0 skos : exactMatch ? va lues0 .

? obs edgar : d t s t a r t ? va lues1 .
?dimMem1 skos : member ? l e v e l 1 .
? l e v e l 1 skos : inScheme ? h i e ra rchy1 .
edgar : d t s t a r t qb : codeL i s t ? h i e ra rchy1 .
?dimMem1 skos : notat ion ? va lues1 .

? obs edgar : dtend ? va lues2 .
?dimMem2 skos : member ? l e v e l 2 .
? l e v e l 2 skos : inScheme ? h i e ra rchy2 .
edgar : dtend qb : codeL i s t ? h i e ra rchy2 .
?dimMem2 skos : notat ion ? va lues2 .

? obs edgar : CostOfGoodsSold ? measureValue0 .
} group by ?dimMem0 ?dimMem1 ?dimMem2

The aggregation function used is a non-standard one, therefore, we had to
compute the SUM and COUNT for the measure. We run the query after a reboot
of the triple store. The query took 18sec and returned 58 facts to be filled into
the requested pivot table. The number of 7, 813, 772, 064 potential facts in the
cube does not have a strong influence on the query since the cube is very sparse,
for instance, the triple store contains observations only for a fraction of segment
members.

46 B. Kämpgen, S. O’Riain, A. Harth

6 Discussion

Data from the data cube is queried on demand, and no materialization is done.
We correctly aggregate data on one specific granularity, defined by the men-
tioned inquired and fixed dimensions. Dimensions that are not mentioned will
be automatically handled as having an ALL value [8], representing all possible
values of the dimension. The aggregation results in correct calculations, since we
assume only one hierarchy-level per dimension in this work. Only if observations
would be defined on different granularities, e.g., gender male, female, and total,
aggregating over them would result in incorrect numbers.

Filling the pivot table with measure values from the SPARQL result requires
matching of the member values for each fact for the following reasons: first, if
the data cube is sparse, i.e., not for every possible combination of members a
value is given, then, for non-occurring combinations the SPARQL query does
not return a value; second, all member combinations of inquired dimensions are
calculated, even though only specific combinations might be selected, as in the
case of the two issuers in the OLAP query of our scenario. Indexing of either
the pivot table or the SPARQL result table may allow faster population of the
pivot table.

In summary, though our OLAP algebra to SPARQL mapping may not result
in the most efficient SPARQL query and require additional efforts for populating
the pivot table, it correctly computes all required facts from the data cube
without the need for explicitly introducing the non-relational ALL member or
using sub-queries [8].

7 Related Work

Kobilarov and Dickinson [12] have combined browsing, faceted-search, and query-
building capabilities for more powerful Linked Data exploration, similar to OLAP,
but not focusing on statistical data. Though years have passed since then, cur-
rent literature on Linked Data interaction paradigms does not seem to expand
on analysing large amounts of statistics.

OLAP query processing in general has long been a topic of research [27].
OLAP operations have been defined on a logical level [1, 20, 26] or on a concep-
tual level [3,22,25]. Execution of OLAP operations mainly is concerned with the
computation of the data cube and with storing parts of the results of that com-
putation to efficiently return the results, to require few disk or memory space,
and to remain easy to update if data sources change [14]. Approaches mainly
depend on the type of data structure on which to perform the computations
and in which to store the results. Data structures can roughly be grouped into
ROLAP, using relational tables and star or snowflake schemas, and MOLAP,
using multidimensional arrays for direct storing and querying of data cubes.

Specific approaches regarding OLAP on Linked Data seem to have concen-
trated so far on multidimensional modelling from ontologies [6, 15–17]. For in-
stance, Nebot et al. [16] recognise the potential of OLAP to analyse RDF data,

Interacting with Statistical Linked Data via OLAP Operations 47

but do not provide a dedicated query engine and require a multidimensional
database that needs to be updated if RDF data changes. Entity-centric object
databases [20] show some resemblance to OLAP querying, however, have so far
not been applied to Linked Data.

In this work we use the graph-based RDF data model for querying and storing
of multidimensional data reusing QB. Here, both schema information and actual
data is accessed using Linked Data principles and managed using an RDF store.
Our approach focuses on OLAP queries that can be composed by common OLAP
operations and can be represented as a subcube query. Our mapping allows
translating OLAP queries into one SPARQL query to be run on the RDF without
storage of intermediate results. In our small experiment the produced SPARQL
query showed sufficiently fast, but queries are expected to become insufficient for
larger datasets. Since no materialization is done, only few extra space is required
for a hashmap to fill the pivot table with the SPARQL result set, and updates
to the RDF are propagated directly to OLAP clients. Although there may be
more efficient querying approaches such as special indexing and caching, to the
best of our knowledge, this is the first work on computing and querying of data
cubes represented in RDF.

8 Conclusions and Future Work

We have presented an approach to interact with statistical Linked Data using
common Online Analytical Processing operations of “overview first, zoom and
filter, then details-on-demand”. For that, we define common OLAP operations
on single data cubes in RDF reusing the RDF Data Cube vocabulary, map nested
sets of OLAP operations to OLAP subcube queries, and evaluate those OLAP
queries using SPARQL. Both metadata and OLAP queries are issued directly
on a triple store; therefore, if the RDF is modified or updated, changes are
propagated directly to OLAP clients. Though, our OLAP-to-SPARQL mapping
may not result in the most efficient SPARQL query and require additional effort
in populating resulting pivot tables, we correctly calculate requested facts of a
data cube without the need for explicitly introducing the non-relational ALL
member or using subqueries.

Future work may be conducted in three areas: 1) extending our current ap-
proach with OLAP hierarchies and Drill-Across queries; 2) implementing an
OLAP engine to more thoroughly evaluate our current approach and to investi-
gate more efficient OLAP query execution plans; 3) investigating possible OLAP
clients that map OLAP operations to intuitive user interactions.

Acknowledgements

This work was supported by the German Ministry of Education and Research
(BMBF) within the SMART project (Ref. 02WM0800) and the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 (PlanetData, Grant
257641).

48 B. Kämpgen, S. O’Riain, A. Harth

References

1. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In:
Proc. of the Thirteenth International Conference on Data Engineering (1997)

2. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM SIGMOD Record 26 (1997) 65–74

3. Chen, L., Ramakrishnan, R., Barford, P., Chen, B., Yegneswaran, V.: Composite
Subset Measures. In: Proc. of the 32nd International Conference on Very Large
Databases (2006)

4. Codd, E. F., Codd, S. B., Salley, C. T.: Providing OLAP to User-Analysts: An IT
Mandate. (1993)

5. Cunningham, C., Galindo-Legaria, C. A., Graefe, G.: PIVOT and UNPIVOT: op-
timization and execution strategies in an RDBMS. In: Proc. of the Thirtieth In-
ternational Conference on Very Large Databases (2004)

6. Diamantini, C., Potena, D.: Semantic enrichment of strategic datacubes. In: Proc.
of the ACM 11th international workshop on Data warehousing and OLAP (2008)

7. Gómez, L. I., Gómez, S. A., Vaisman, A. A.: A Generic Data Model and Query
Language for Spatiotemporal OLAP Cube Analysis Categories and Subject De-
scriptors. In: Proc. of EDBT 2012

8. Gray, J., Bosworth, A., Lyaman, A., Pirahesh, H.: Data cube: a relational aggre-
gation operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS. In:
Proc. of the Twelfth International Conference on Data Engineering (1995) 152–159

9. Harinarayan, V., Rajaraman, A.: Implementing data cubes efficiently. ACM SIG-
MOD Record (1996)

10. Harth, A.: VisiNav: A system for visual search and navigation on web data. Journal
of Web Semantics 8(4) (2010) 348–354

11. Kämpgen, B., Harth, A.: Transforming Statistical Linked Data for Use in OLAP
Systems. In: Proc. of I-Semantics 2011

12. Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked Data. In: Proc. of Linked
Data on the Web Workshop (LDOW 2008) at WWW 2008

13. Li, X., Han, J., Gonzalez, H.: High-dimensional OLAP: a minimal cubing approach.
In: Proc. of the Thirtieth International Conference on Very Large Databases (2004)

14. Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N.: ROLAP implementations of
the data cube. ACM Computing Surveys 39 (2007) 12–es

15. Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Deci-
sion Support Systems 52 (2012) 853–868

16. Nebot, V., Berlanga, R., Pérez, J. M., Aramburu, M. J., Vej, S. L.: Multidimen-
sional Integrated Ontologies : A Framework for Designing Semantic Data Ware-
houses. Journal on Data Semantics (2009) 1–36

17. Niinimäki, M., Niemi, T.: An ETL Process for OLAP Using RDF/OWL Ontologies.
Journal on Data Semantics XIII 5530 (2009) 97–119

18. Pardillo, J., Mazón, J.-N.: Using Ontologies for the Design of Data Warehouses.
International Journal of Database Management Systems 3 (2011) 73–87

19. Pardillo, J., Mazón, J.-N., Trujillo, J.: Bridging the semantic gap in OLAP models:
platform-independent queries. In: Proc. of the ACM 11th international workshop
on Data warehousing and OLAP (2008)

20. Pedersen, T. B., Gu, J., Shoshani, A., Jensen, C. S.: Object-extended OLAP query-
ing. Data Knowl. Eng. 68 (2009) 453–480

21. Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In:
Proc. of the ACM tenth international workshop on Data warehousing and OLAP
(2007)

Interacting with Statistical Linked Data via OLAP Operations 49

22. Romero, O., Abelló, A.: On the Need of a Reference Algebra for OLAP. In: Proc.
of DaWaK 2007

23. Romero, O., Marcel, P., Abelló, A., Peralta, V., Bellatreche, L.: Describing analyt-
ical sessions using a multidimensional algebra. In: Proc. of the 13th international
conference on Data warehousing and knowledge discovery (2011)

24. Shneiderman, B.: The Eyes Have It : A Task by Data Type Taxonomy for Infor-
mation Visualizations. Information Visualization (1996) 336–343

25. Trujillo, J.: Bridging the Semantic Gap in OLAP Models : Platform-independent
Queries Categories and Subject Descriptors. Computing Systems (2008) 89–96

26. Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube Opera-
tions. In: Proc. of the 10th International Conference on Scientific and Statistical
Database Management (1998)

27. Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. ACM
Sigmod Record 28 (1999) 64–69

SPARTIQULATION:
Verbalizing SPARQL Queries

Basil Ell, Denny Vrandečić, and Elena Simperl

KIT, Karlsruhe, Germany
{basil.ell,denny.vrandecic,elena.simperl}@kit.edu

Abstract. Much research has been done to combine the fields of Data-
bases and Natural Language Processing. While many works focus on
the problem of deriving a structured query for a given natural language
question, the problem of query verbalization – translating a structured
query into natural language – is less explored. In this work we describe
our approach to verbalizing SPARQL queries in order to create natural
language expressions that are readable and understandable by the hu-
man day-to-day user. These expressions are helpful when having search
engines generate SPARQL queries for user-provided natural language
questions or keywords and enable the user to check whether the right
question has been understood. While our approach enables verbalization
of only a subset of SPARQL 1.1, this subset applies to 85% of the 209
queries in our training set. These observations are based on a corpus of
SPARQL queries consisting of datasets from the QALD-1 challenge and
the ILD2012 challenge.

Keywords: SPARQL, natural language generation, verbalization

1 Introduction

Much research has been done to combine the fields of Databases and Natural
Language Processing to provide natural language interfaces to database sys-
tems [22]. While many works focus on the problem of deriving a structured
query for a given natural language question or a set of keywords [10, 21, 27],
the problem of query verbalization – translating a structured query into natural
language – is less explored. In this work we describe our approach to verbalizing
SPARQL queries in order to create natural language expressions that are read-
able and understandable by the human day-to-day user. The verbalized form of
the generated query is helpful for users since it allows them to understand how

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

SPARTIQULATION: Verbalizing SPARQL Queries 51

the results have been retrieved and whether the right question has been asked
to the queried knowledge base.

In this paper we describe the current state of our SPARTIQULATION sys-
tem1 which allows verbalization of a subset of SPARQL 1.1 SELECT queries.

The remainder of this paper is structured as follows. Section 2 gives an
overview of our query verbalization approach in terms of our system’s archi-
tecture and the tasks that it performs. Section 3 relates it to existing work, and
in Section 4 conclusions are drawn and an outlook is provided.

2 Query Verbalization Approach

2.1 Introduction

Our approach is inspired by the pipeline architecture for natural language gen-
eration (NLG) systems and the set of seven tasks performed by such systems
as introduced by Reiter and Dale [19]. The input to such a system can be de-
scribed by a four-tuple (k, c, u, d) – where k is a knowledge source (not to be
confused with the knowledge base a query is queried against), c the communica-
tive goal, u the user model, and d the discourse history. Since we neither perform
user-specific verbalization nor do we perform the verbalization in a dialog-based
environment, we omit both the user model and the discourse history. The com-
municative goal is to communicate the meaning of a given SPARQL query q.
However, there are multiple options. Three basic types of linguistic expressions
can be used: i) statements that describe the search results where this descrip-
tion is based on the query only and not on the actual results returned by a
SPARQL endpoint (e.g. Bavarian entertainers and where they are born), ii) a
question can be formulated about the existence of knowledge of a specified or
unspecified agent (e.g. Which Bavarian entertainers are known and where are
they born?), and iii) a query can be formulated as a command (e.g. Show me
Bavarian entertainers and where they are born). In this work we decided to ex-
plore how to verbalize queries as statements. Therefore, the communicative goal
is to verbalize a query as a statement – more precisely in English.

2.2 Components and Tasks

In this section we present our approach along the seven tasks involved in NLG
according to Reiter and Dale [19]. This work is the first step towards the ver-
balization of SPARQL queries. So far we put a focus on document structuring,
but not on lexicalization, aggregation, referring expression generation, linguistic
realisation, and structure realisation.

The pipeline architecture is depicted in Figure 1. Within the Document Plan-
ner the content determination process creates messages and the document struc-
turing process combines them into a document plan (DP) which is the output
of this component and the input to the Microplanner component. Within the

1 The name is derived from joining SPARQL and articulation.

52 B. Ell, D. Vrandečić, E. Simperl

Document
Planner

Microplanner

Surface Realizer

Content determination
Document structuring

Lexicalization
Referring expression generation
Aggregation

Linguistic realization
Surface realization

SPARQL

Text

DP

TS

Fig. 1. Pipeline architecture of our NLG system

Microplanner the processes lexicalization, referring expression generation and
aggregation take place, which results in a text specification (TS) that is made
up of phrase specifications. The Surface Realizer then uses this text specification
to create the output text.

Content determination is the task to decide which information to commu-
nicate in the text. In the current implementation we decided not to leave this
decision to the system. What is communicated is the meaning of the input query
without communicating which vocabularies are used to express the query. There-
fore, in this task no action is performed.

Document structuring is the task to construct messages from the input query
and to decide for their order and structure. These messages are used for repre-
senting information in the domain, such as the class to which the selected entities
belong to or the number to which the result set is limited. We present the set
of message types after introducing the notion of the main entity and the graph
transformation. Our observations are based on a corpus of SPARQL queries con-
sisting of datasets from the QALD-1 challenge2 and the ILD2012 challenge.3 The
full dataset contains 2634 SPARQL SELECT queries and associated manually
created questions. In order to leave parts of this dataset for future evaluation we
only regarded 80% of each dataset as training data. Since in our approach we
cannot yet handle all features of the SPARQL 1.1 standard, we had to exclude
some queries. Within this training set of 209 queries we excluded the queries with
the features UNION (22), GROUPBY (7), and those where the triple patterns

2 http://www.sc.cit-ec.uni-bielefeld.de/qald-1
3 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
4 For nine questions no query is given since they are out of scope regarding the datasets

provided for the challenge. 28 queries are ASK queries.

SPARTIQULATION: Verbalizing SPARQL Queries 53

within the WHERE clause do not form a connected graph (3). This means that
this subset covers 85% of the queries within the training set.

We perform a transformation of the query graph, since it reduces the num-
ber of necessary message types which are shown in Table 1. Thus it simplifies
the verbalization. This transformation is based on the observation that in most
queries one variable can be identified that is rendered as the subject of a sen-
tence. For example when querying for mountains (bound to variable ?mountain)
and their elevations (bound to variable ?elevation), then ?mountain is verbal-
ized as the subject of the verbalization mountains and their elevations. We
refer to this variable as the main entity of a query. However, for some queries
no such element exists. Consider for example the query SELECT * WHERE { ?a

dbpedia:marriedTo ?b .}. Here a tuple is selected and in a possible verbal-
ization Tuples of married entities5 no single variable appears represented as a
subject. In order to identify the main entity we define Algorithm 1 that applies
the ordered list of rules shown in Figure 2. These rules propose the exclusion of
members from a candidate set. We derived them by looking at queries within
the training set having multiple candidates. The candidate set C is initialized
with variables that appear in the select clause and the algorithm eliminates can-
didates step by step. Q denotes the set of triples within the WHERE clause of
a query, Rt is the property rdf:type and Rl is a labeling property from the set
of 36 labeling properties identified by [6]. The application of an exclusion rule
Ri to a candidate set C, denoted by Ri(C), results in the removal of the set E
proposed by the reduction rule.

Rule 1 E := {x ∈ C | ”x appears in OPTIONAL only”}
Rule 2 E := {z ∈ C | ¬∃(z,Rt, u) ∈ Q}

if ∃c1 ∈ C : ¬∃(c1, Rt, x) ∈ Q ∧ ∃c2 ∈ C : ¬∃(c2, Rt, y) ∈ Q
Rule 3 E := {z ∈ C | ¬∃(z,Rl, u) ∈ Q}

if ∃c1 ∈ C : ¬∃(c1, Rl, x) ∈ Q ∧ ∃c2 ∈ C : ¬∃(c2, Rl, y) ∈ Q

Fig. 2. Exclusion rules

The rules can be described as follows where the numbers show how often
a rule was successful in reducing the candidate set for the 209 queries within
our training set. Rule 1 (85, 40.67%) proposes removing candidates that appear
within the WHERE clause only within OPTIONAL blocks. Rule 2 (12, 5.74%)
proposes removing candidates that represent subjects that are not constrained
via rdf:type in the case that there are candidates that are constrained via
rdf:type. Rule 3 (48, 22.97%) proposes removing candidates for which no label is
constrained or requested in the case that there are candidates for which this is
the case. In some cases (64, 30.62%) no rule was applied since the candidate set
contained only a single variable. For all queries given these rules the main entity
has been identified. While our actual list of exclusion rules contained more rules
these were never applied for the given training data and thus omitted here.

5 DBpedia provides no rdfs:domain and rdfs:range information, such as
foaf:Person for this property. Therefore here we give a generic verbalization to
demonstrate the problem.

54 B. Ell, D. Vrandečić, E. Simperl

Algorithm 1 Applying reduction rules to candidate set.

if |C| = 1 then
return C

while |C| > 1 do
for all Ri ∈ R do

if |Ri(C)| > 0 then
C ← Ri(C)
if |C| = 1 then

return C
return ∅

We transform, as shown in Algorithm 2, queries in a way that the query graph
is converted into a graph where the main entity is the root and all edges point
away from the root if the query does not come in that shape already. Therefore
the algorithm maintains three sets of edges: edges that are already processed
(P), edges that need to be followed (F), and edges that need to be transformed
(T) which means reversed. An edge is reversed by exchanging subject and object
and by marking the property (p) as being reversed (pr).

Algorithm 2 Graph transformation

P ← ∅, F ← {(s, p, o) ∈ Q|s = m}, T ← {(s, p, o) ∈ Q|o = m} (init)
while F 6= ∅ or T 6= ∅ do

for all (si, pi, oi) ∈ F do
for all (sj , pj , oj) ∈ Q \ (P ∪ F ∪ T) do

if oi = sj then
F ← F ∪ {(sj , pj , oj)}

else if oi = oj then
T ← T ∪ {(sj , pj , oj)}

Move (si, pi, oi) from F to P

for all (si, pi, oi) ∈ T do
for all (sj , pj , oj) ∈ Q \ (P ∪ F ∪ T) do

if si = sj then
F ← F ∪ {(sj , pj , oj)}

else if si = oj then
T ← T ∪ {(sj , pj , oj)}

T ← T \ {(si, pi, oi)}
P ← P ∪ {(oi, pri , si)}

return P

We identified the set of 14 message types (MT), shown in Table 1 that allow
us to represent the 209 queries from our training set. The first 9 MTs represent
directed paths in the query graph which means that for each directed path that
begins at the main entity, we represent this path with a message. Each path
starts at the main entity (M) and consists of none to many pairs ((RV)∗) of a

SPARTIQULATION: Verbalizing SPARQL Queries 55

resource (R) followed by a variable (V). Moreover, they may contain a labeling
property (Rl) or the rdf:type property (Rt). V AR represent all information
about a variable, such as its name, whether it is the main entity, whether it is
selected, distinct, optional, counted, or whether any filter is specified for this
variable. The MTs ORDERBY , LIMIT , OFFSET and HAV ING represent
the respective SPARQL features.

The document plan (DP), which is the output of the Document Planner and
input to the Microplanner, structures the content as follows: in the first part,
which can later be verbalized as one ore more sentences, the main entity and its
constraints are described, followed by a description of the requests (the variables
besides the main entity that appear in the select clause) and their constraints.
In a second part, if available and not already communicated in the first part, the
selection modifiers are verbalized. According to these 3 categories – abbreviated
with cons, req, and mod – we classify the MTs as follows. The MTs (1), (2), (4),
(6), (7), and (9) from Table 1 belong to the class cons, the MTs (3), (5), and
(8) belong to the class req. MTs (1), (2), (4), (6), (7) and (9) may also belong to
class req if they contain a variable besides the main entity that appears in the
select clause. MTs (10)− (14) belong to the class mod. While this set of message
types is sufficient for the given training set, which means that all queries can be
represented using these message types, we extended this list with 76 more types
in order to be prepared for queries such as SELECT ?s ?p ?o WHERE { ?s ?p

?o. } and SELECT ?p WHERE { ?s ?p ?o. } where instead of generating text,
canned text is used, such as All triples in the database and Properties used in
the database.

nr name nr name nr name

(1) M(RV)∗RR (2) M(RV)∗RL (3) M(RV)∗RV
(4) M(RV)∗RlR (5) M(RV)∗RlV (6) M(RV)∗RlL
(7) M(RV)∗RtR (8) M(RV)∗RtV (9) M(RV)∗RtL

(10) V AR (11) ORDERBY (12) LIMIT
(13) OFFSET (14) HAV ING

Table 1. Message types

As an example the SPARQL query in Listing 1 is represented using the 6
messages shown in Figure 3. Note that due to the graph transformation the
property onto:author is reversed which is denoted by rev: yes within the
data structure stored in the messages. This query can be verbalized as: Authors
of books with English name ”The Pillars of the Earth” and if available their
English names. Note that plural (authors, books and names instead of author,
book, and name) is used per default. The filter for English labels is stored within
the message representing the variable string.

6 Given that all three variables can either be selected or not selected and at least one
variable needs to be selected, this results in 7 combinations.

56 B. Ell, D. Vrandečić, E. Simperl

SELECT ?uri ?string WHERE {

?books rdf:type onto:Book .

?books onto:author ?uri .

?books rdfs:label "The Pillars of the Earth"@en .

OPTIONAL {

?uri rdfs:label ?string .

FILTER (lang(? string) = ’en’)

}

}

Listing 1. Who wrote the book The pillars of the Earth? – SPARQL query

type: M(RV)*RlL
RV: [
 1: [
 R: onto:author
 V: books
 rev: yes
]
]
label: [
 prop: rdfs:label
 value: “The Pillars of the Earth”
 lang: en
]

type: M(RV)*RlV
RV: []
label: [
 prop: rdfs:label
 var: string
]

type: VAR
name: string
opt: yes
select: yes
lang: en

type: VAR
name: uri
main: yes

type: VAR
name: books
select: no

type: M(RV)*RtR
RV: [
 1: [
 R: onto:author
 rev: yes
 V: books
]
]
class: onto:Book

Fig. 3. Messages for the SPARQL query in Listing 1.

Lexicalization is the task of deciding what specific words to use for expressing
the content. For each entity we dereference its URI and in case that RDF data
is returned, we check if an English label is provided using one of the 36 labeling
properties defined in [6]. Otherwise, we derive a label from the URI’s local name
using the patterns introduced by Hewlett et al. in [11].

Referring expression generation is the task of deciding how to refer to an
entity. Considering the example Entertainers born in Bavaria and where they
are born. Here, they is the expression that refers to the Bavarian entertainers.

Aggregation is the task to decide how to map structures created within the
document planner onto linguistic structures such as sentences and paragraphs.
For messages of type cons and req sentence parts are created that are joined
into a single sentence. Messages of type mod are verbalized in further sentences.
Aggregation is indispensable for concise verbalization. Since we split a query
graph into (overlapping) paths where each path is represented by a message,
aggregation would exploit these overlappings.

SPARTIQULATION: Verbalizing SPARQL Queries 57

Linguistic realization is the task of converting abstract representations of sen-
tences into real text. Text parts are generated for each of the message types (1)−
(9) from Table 1. For each such type a rule is invoked that produces a sentence
fragment, for example for the MT MRVRlL –which is an instance of the MT
M(RV)∗RlL – the rule article(lex(prop1)) + lex(prop1) + L produces for
two triples ?uri dbpedia:producer ?producer and ?producer rdfs:label

"Hal Roach" the text a producer Hal Roach. The function article choses
an appropriate article (a or an) depending on the lexicalization lex(prop1) of
the property. This fragment is added to the part of the verbalization where the
constraints for the main entity are described and may be joined by the word and

with other constraint fragments.

Structure realization is the task to add markup such as HTML code to
the generated text in order to be interpreted by the presentation system, such
as a web browser. While this could be helpful to enhance the readability of a
complex verbalization, which is the case in [2], we do not currently exploit this
opportunity.

3 Related Work

While to the best of our knowledge no work is published on the verbalization
of SPARQL queries, related work comes from three areas: verbalization of RDF
data [5, 16, 24, 25, 29], verbalization of OWL ontologies [1, 3, 4, 7–9, 11, 12, 14,
20, 23, 26, 28], and verbalization of SQL queries [13, 17, 18]. Although the first
two fields provide techniques that we can apply to improve the lexicalization
and aggregation tasks, such as the template-based approach presented in [5], the
document structuring task, on which we focus here, is rarely explored. Compared
to the SQL verbalization work by Minock [17, 18], where they focus on tuple
relational queries, our problem of verbalizing SPARQL queries is different in
the sense that we strive for having a generic approach that can be applied to
any datasource without being tied to any schema. Patterns need to be manually
created to cover all possible combinations for each relation in the schema whereas
in our work we defined a set of message types that are schema-agnostic. Koutrika
et al. [13] annotate query graphs with template labels and explore multiple graph
traversal strategies. Moreover, they identify a main entity (the query subject),
perform graph traversal starting from that entity, and distinguish between cons
(subject qualifications) and req (information).

4 Conclusions and Outlook

For the task of verbalizing SPARQL queries we focused on a subset of the
SPARQL 1.1 standard which covers 88% of the queries in a corpus of 209
SPARQL queries. Evaluation will have to show the representativeness of this

58 B. Ell, D. Vrandečić, E. Simperl

corpus compared to real-life queries and the qualities of the verbalizations gen-
erated using our SPARTIQULATION system. While in our architecture 6 tasks
are needed to generate verbalizations, our main focus has been the task of doc-
ument structuring which we described in this work. In order to realize the full
verbalization pipeline, 5 other tasks need to be explored in future work. Since the
current approach is mostly schema-agnostic – only terms from the RDFS vocab-
ulary are regarded during document structuring – we believe that this approach
is generic in terms of being applicable to queries for RDF datasources using any
vocabularies. However, in the future the tasks of lexicalization can be improved
by regarding schemas such as FOAF since persons are treated differently in ver-
balizations then non-persons, genders can be regarded etc. Having message types
designed for specific vocabularies allows to tailor the verbalization to a specific
use case and may lead to more concise verbalizations. In the current implemen-
tation message types are hard-coded thus limiting the flexibility of the approach.
Having the possibility to load a set of message types into the system would add
the possibility to integrate automatically learned or application-specific message
types.

Acknowledgements

The work presented in this paper is supported by the European Union’s 7th
Framework Programme (FP7/2007-2013) under Grant Agreement 257790.

References

1. Aguado, G., Bañón, A., Bateman, J. A., Bernardos, S., Fernández, M., Gómez-
Pérez, A., Nieto, E., Olalla, A., Plaza, R., Sánchez, A.: ONTOGENERATION:
Reusing domain and linguistic ontologies for Spanish text generation. In: Proc.
of the Workshop on Applications of Ontologies and Problem Solving Methods,
ECAI 1998

2. Bontcheva, K.: Generating tailored textual summaries from ontologies. In: Proc.
of ESWC 2005 531–545

3. Bontcheva, K., Wilks, Y.: Automatic Report Generation from Ontologies: the MI-
AKT approach. In: Proc. of NLDB 2004

4. Cregan, A., Schwitter, R., Meyer, T.: Sydney OWL Syntax - towards a Controlled
Natural Language Syntax for OWL 1.1. In: Proc. of OWLED 2007

5. Davis, B., Iqbal, A., Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Hand-
schuh, S.: RoundTrip Ontology Authoring. In: Proc. of The Semantic Web, ISWC
2008 50–65

6. Ell, B., Vrandečić, D., Simperl, E.: Labels in the Web of Data. In: Proc. of
ISWC 2011

7. Fliedl, G., Kop, C., Vöhringer, J.: Guideline based evaluation and verbalization of
OWL class and property labels. Data Knowl. Eng. 69(4) (2010) 331–342

8. Galanis, D., Androutsopoulos, I.: Generating multilingual descriptions from lin-
guistically annotated OWL ontologies: the NaturalOWL system. In: Proc. of the
Eleventh European Workshop on Natural Language Generation (2007) 143–146

SPARTIQULATION: Verbalizing SPARQL Queries 59

9. Gareva-Takasmanov, L., Sakellariou, I.: OWL for the Masses: From Struc-
tured OWL to Unstructured Technically-Neutral Natural Language. In: Proc. of
BCI 2009 260–265

10. Haase, P., Herzig, D., Musen, M., Tran, D. T.: Semantic Wiki Search. In: Proc. of
ESWC 2009 445–460

11. Hewlett, D., Kalyanpur, A., Kolovski, V., Halaschek-Wiener, C.: Effective NL Para-
phrasing of Ontologies on the Semantic Web. In: Proc. of the End User Semantic
Web Interaction Workshop at the 4th International Semantic Web Conference
(2005)

12. Kaljurand, K., Fuchs, N. E.: Verbalizing OWL in Attempto Controlled English. In:
Proc. of OLWED 2007

13. Koutrika, G., Simitsis, A., Ioannidis, Y. E.: Explaining Structured Queries in Nat-
ural Language. In: Proc. of ICDE’10 (2010)

14. Liang, S. F., Stevens, R., Rector, A.: OntoVerbal-M: a Multilingual Verbaliser for
SNOMED CT. In: Proc. of Multilingual Semantic Web (2011)

15. McKay, B. D.: Practical graph isomorphism. Congressus Numerantium 30 (1981)
45–87

16. Mellish, C., Sun, X.: The semantic web as a Linguistic resource: Opportunities for
natural language generation. Knowl.-Based Syst. 19(5) (2006) 298–303

17. Minock, M.: A Phrasal Approach to Natural Language Interfaces over Databases.
In: Proc. of NLDB 2005 333–336

18. Minock, M.: C-Phrase: A system for building robust natural language interfaces to
databases. Data Knowl. Eng. 69(3) (2010) 290–302

19. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

20. Schütte, N.: Generating natural language descriptions of ontology concepts. In:
Proc. of the 12th European Workshop on Natural Language Generation (2009)
106–109

21. Shekarpour, S., Auer, S., Ngonga Ngomo, A.-C., Gerber, D., Hellmann, S., Stadler,
C.: Keyword-driven SPARQL Query Generation Leveraging Background Knowl-
edge. In: Proc. of International Conference on Web Intelligence (2011)

22. Simitsis, A., Ioannidis, Y. E.: DBMSs Should Talk Back Too. In: Proc. of
CIDR 2009

23. Stevens, R., Malone, J., Williams, S., Power, R.: Automating class definitions from
OWL to English. In: Proc. of Bio-Ontologies 2010: Semantic Applications in Life
Sciences SIG at the 18th Annual International Conference on Intelligent Systems
for Molecular Biology (ISMB 2010)

24. Sun, X., Mellish, C.: Domain Independent Sentence Generation from RDF Repre-
sentations for the Semantic Web. In: Proc. of Combined Workshop on Language-
Enabled Educational Technology and Development and Evaluation of Robust Spo-
ken Dialogue Systems, ECAI 2006

25. Sun, X., Mellish, C.: An experiment on ”free generation” from single RDF triples.
In: Proc. of the Eleventh European Workshop on Natural Language Generation
(2007) 105–108

26. Third, A., Williams, S., Power, R.: OWL to English: a tool for generating organised
easily-navigated hypertexts from ontologies. In: Proc. of ISWC 2011

27. Tran, D. T., Wang, H., Haase, P.: Hermes: Data Web search on a pay-as-you-go
integration infrastructure. Journal of Web Semantics 7(3) (2009)

28. Wilcock, G.: Talking OWLs: Towards an Ontology Verbalizer. In: Proc. of Human
Language Technology for the Semantic Web and Web Services, ISWC 2003 109–112

60 B. Ell, D. Vrandečić, E. Simperl

29. Wilcock, G., Jokinen, K.: Generating Responses and Explanations from RDF/XML
and DAML+OIL. In: Proc. of IJCAI 2003

Improving Semantic Search Using
Query Log Analysis?

Khadija Elbedweihy, Stuart N. Wrigley, and Fabio Ciravegna

Department of Computer Science, University of Sheffield, UK
{k.elbedweihy, s.wrigley, f.ciravegna}@dcs.shef.ac.uk

Abstract. Despite the attention Semantic Search is continuously gain-
ing, several challenges affecting tool performance and user experience
remain unsolved. Among these are: matching user terms with the search-
space, adopting view-based interfaces in the Open Web as well as sup-
porting users while building their queries. This paper proposes an ap-
proach to move a step forward towards tackling these challenges by cre-
ating models of usage of Linked Data concepts and properties extracted
from semantic query logs as a source of collaborative knowledge. We
use two sets of query logs from the USEWOD workshops to create our
models and show the potential of using them in the mentioned areas.

Keywords: semantic search, query logs, linked data, usability

1 Introduction and Problem Statement

The proliferation of structured data on the web is driving innovation in both
‘conventional’ search (information retrieval – IR) as well as in semantic search.
For instance, the use of semantic markup (such as Microformats and RDFa)
within existing HTML/XHTML webpages has helped mainstream web search
engines such as Google and Bing to enhance their result pages by providing
additional and related information to that which would normally have formed
the query results.

In contrast to web search engines, Semantic Web search engines such as
Swoogle [10], Watson [8] and Sindice [29] index data on the Semantic Web and
act more as gateways to Semantic Web documents or data. The results of such
systems are intended for Semantic Web professionals rather than end-users. In a
more user-friendly approach, mashups like Sig.ma [28] and VisiNav [14] integrate
data from different sources to provide rich descriptions about the searched-for

? This work was partially supported by the European Union 7th FWP ICT based e-
Infrastructures Project SEALS (Semantic Evaluation at Large Scale, FP7-238975).
Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

62 K. Elbedweihy, S. Wrigley, F. Ciravegna

concepts. At the heart of these technologies is the use of Linked Data providing
the opportunity to exploit explicit and implicit knowledge.

Little work has been conducted on how to exploit Semantic Web search for
end-users with potentially complex information needs and thus complex queries.
One approach is to provide a natural language interface to such a search tool
which allows a user to express their query in a (near) natural manner. Tools
which have followed this approach include Querix [18], PowerAqua [19] and
Freya [9]. However, such approaches suffer from a significant problem: a high
degree of abstraction between the words which may be used by the user in for-
mulating their query and the underlying semantically-corresponding terms in
the ontology. Indeed, this problem is equally applicable to other approaches in-
cluding a conventional keyword-based approach. Formal evaluations of semantic
search technologies [17,30,32] have shown that it is very helpful (both in terms of
user experience but also for response precision and recall) for users – especially
who are unfamiliar with the underlying data – to explore the search space while
building their queries.

In an attempt to provide context within the underlying data, a number of
tools have adopted a visual approach to query construction (e.g., Semantic Crys-
tal [4], K-Search [5], Corese [7]). However, such approaches tend to be focussed
on relatively small data set sizes (especially when compared to the wider Linked
Data context). The outstanding challenge is to adapt this approach to Linked
Data in which there are multiple data sets, of widely varying size and spanning
many domains. Recently, initial work in this vein demonstrated a visual query
interface that helps users build a subgraph of interest from the underlying data
through exploration and navigation [6]. However, even this can result in unwieldy
lists of triples which are not conducive to a positive user experience.

The difficulties in Semantic Web search are not confined to abstraction, query
construction or data visualisation. An additional problem focuses on the results
of the query execution: what to return to the user and how to display it. We
have shown previously [32] that semantic search tools should go a step further
and augment the direct answer with associated information in order to provide
a ‘richer’ experience for the user. Additionally, returning information related to
entities and concepts found in a query might also be of interest to users [22,23].

In this paper we present a new approach which uses collaborative knowledge
to address these problems. In a similar way in which traditional search engine
logs record information about search histories including queries submitted by
the users and their subsequent interactions (see [2, 15,27,31] for early examples
of analyses on such logs), the logs from interactions with Semantic Web search
engines can be used to extract a rich picture of data use and user behaviour.

Whilst a number of studies have used log analysis to investigate the high level
use and characterisation of Linked Data [13,23], [24] was the first to study it’s use
through analysing semantic query logs issued to SPARQL endpoints including
DBpedia and SWDF. The analysis considered ‘low-level’ factors such as the
type of requesting agent (human or software) and the structure of the query.
Subsequent studies on the same query logs identified the most common query

Improving Semantic Search Using Query Log Analysis 63

types, SPARQL features and types of triple patterns [1]; proposed a method to
derive more useful labels for LD entities based on the variable names used in the
queries [12]; and showed how the analysis of semantic query logs can detect errors
and weaknesses in LD ontologies and in turn support their maintenance [20].

In our previous work [11], we introduced a new approach for analysing se-
mantic query logs and found that a small set of concepts and relations in a data
set often account for a large proportion of the queries and thus may be of more
interest to Linked Data users. In the current paper, we extend this approach
in order to demonstrate that careful log analysis can be viewed as a proxy for
information need and be used to enhance the search process at a number of
different stages from query construction, through search engine optimisation to
result presentation. To achieve this, we use three different models, each of which
captures information regarding different aspects of the patterns present in the
multi-user query logs. We will show how combinations of these three models
allow us to address the matching of user search terms to the underlying data
vocabulary; the creation of data subgraphs for visualising the the underlying
data and, finally, for enhancing the results returned to the user.

The remainder of the paper is structured as follows. Section 2 describes the
analysis performed on the semantic query logs and the three models used to
exploit this analysis. Subsequent sections show how these models can be used
to address the three problems described above. Section 3 demonstrates using
the models to improve the abstraction problem between user terms and the
underlying data vocabulary. Section 4 shows how the results can be augmented
in two different ways by exploiting the models. Section 5 illustrates how the
models can be used to assist in visualising large data sets for query formulation.
It should be emphasized that the details presented in Sections 3, 4 and 5 are
a proof of concept for the usage of the models presented in Section 2 (i.e. the
results shown come from a “pen and paper” exercise as opposed to having been
produced by an implementation of the approach). Finally Section 6 discusses
the strengths and weaknesses of the approach and Section 7 draws a number of
conclusions and describes directions for future work.

2 Semantic Query Logs Analysis

In previous work [11] we introduced a new approach for analysing and represent-
ing information need using semantic query logs. Information need was defined as
“the set of concepts and properties users refer to while using SPARQL queries”.
A SPARQL query can have one or more triple patterns, solution modifiers (such
as LIMIT), pattern matching constructs (such as OPTIONAL) and mechanisms
for restricting the solution space (such as FILTERs). A triple pattern consists
of three components: a subject, a predicate and an object with each component
being either bound (having a specific value) or unbound (as a variable).

Extending our previous analysis [11] we formulate the information inherent
in semantic query logs into three models which capture:

– the concepts used together in a query: the query-concepts model

64 K. Elbedweihy, S. Wrigley, F. Ciravegna

Table 1. Statistics summarising the query logs analysed.

USEWOD2012 USEWOD2011

Number of queries 8866028 4951803

Number of unique triple patterns 4095011 2641098

Number of unique bound triple patterns 3619216 2571662

– the predicates used with a concept: the concept-predicates model

– the concepts used as types of one Linked Data entity: the instance-types
model

We follow the same extraction steps but only extract triple patterns with bound
subjects or objects to identify concepts (type of the subject/object) and predi-
cates queried together which are used to build the proposed models.

2.1 Data Set

We use two sets of DBpedia query logs made available at the USEWOD1 work-
shops (see Table 1). After extracting bound triple patterns [11], we identify the
types associated with each distinct resource appearing as a subject or an object
in the query by querying the Linked Data endpoint.

2.2 Models

In order to describe the proposed models, we use the following example query
throughout the rest of this section:

SELECT DISTINCT ?genre, ?instrument WHERE
{ <http://dbpedia.org/resource/Ringo_Starr> ?rel <http://dbpedia.org/resource/The_Beatles>.

<http://dbpedia.org/resource/Ringo_Starr> dbpedia:genre ?genre.
<http://dbpedia.org/resource/Ringo_Starr> dbpedia:instrument ?instrument.

}

Query-Concepts Model This model captures the Linked Data concepts used
in a whole query. All bound triple patterns (bound subject or object) in a
single query are first identified and their types are retrieved from the Linked
Data endpoint. The frequency of co-occurrence of each concept pair is accu-
mulated. For the example query, the types retrieved for ‘Ringo Starr’ include
dbpedia:MusicalArtist and umbel:MusicalPerformer while the ‘The Beat-
les’ has among its types dbpedia:Band and schema:MusicGroup. The frequency
of co-occurrence of each concept in the first list with each concept in the second
list is therefore incremented (e.g. MusicalArtist and Band).

Concept-Predicates Model This model captures the Linked Data concepts
and predicates in a query. Again, bound triple patterns are identified; however,
only types of instances used as subjects are retrieved. The frequency of co-
occurrence of each of the types with the predicate used in the triple pattern
– if available – is accumulated. To illustrate, the second triple pattern in the
example query increments the co-occurrence of dbpedia:MusicalArtist with
dbpedia:genre and umbel:MusicalPerformer with dbpedia:genre.
1 http://data.semanticweb.org/usewod/2011(2012)/challenge.html

Improving Semantic Search Using Query Log Analysis 65

Instance-Types Model Ontologies consist of hierarchies of classes. In theory,
these classes are linked together through subsumption or equivalence relation-
ships. In practice, datasets in the Linked Data cloud are yet loosely coupled; lack-
ing the required links [16,26]. A Linked Data entity can have several concepts as
its types – from multiple datasets – which are not linked. The knowledge of one
type is hence not sufficient for complete reasoning on the data. The instance-types
model captures the concepts used as types for one instance. For the entity ‘Ringo
Starr’, the frequency of co-occurrence of its types dbpedia:MusicalArtist and
umbel:MusicalPerformer are accumulated in the model.

3 Matching User Terms to Linked Data Vocabularies

As explained above, non view-based semantic search approaches face the problem
of matching user terms found in a query to the vocabulary of the search-space.
[22] tried to tackle this problem on the traditional Web by mapping query terms
to relevant concepts in DBpedia. However, scalability can be an issue for both
since the matching process can be very expensive especially with the size of the
Linked Data cloud. Additionally, although DBpedia is known as a central hub
in the cloud, matching query terms to one specific dataset may lead to missing
information associated with other semantically-equivalent concepts in different
datasets due to the lack of links between them. This affects the ability to reason
on the data and return complete results [16,21,26].

Based on their analysis of query logs issued to DBpedia, [11] and [20] drew
two important conclusions. Firstly that a small number of classes appeared more
frequently in the queries than others (e.g. Film, Place, MusicalArtist, Drug) and,
secondly, that the dataset population is not an accurate indicator of the usage/in-
terest in a specific concepts; some concepts had large number of instances and
were only queried few times. Supported by the above observations, we believe
that creating a model of usage of concepts and relations from query logs has a
potential to improve the performance of a semantic search approach with respect
to the matching task.

Initial stages followed by the proposed approach for processing the query in-
volves standard NL parsing steps such as tokenization, stemming and lemmatiza-
tion, and producing a parse tree. Entity extraction and classification is achieved
by AlchemyAPI2 and the NERD ontology3 is used to map AlchemyAPI classes
to the DBpedia classes found in the usage models. Rather than having to query
all the underlying data, the models attempt to provide a small abstraction of
that data which can act as a source of collaborative knowledge [25] capturing
the most frequently queried Linked Data concepts and predicates. This could be
used to provide matches and, in turn, answers for many commonly issued queries
on Linked Data. Since the query terms associated with the entity can be either
properties of that entity or concepts in a relation with it, both query-concepts
and concept-predicates model are then queried for matches.

2 http://www.alchemyapi.com
3 http://nerd.eurecom.fr/ontology/

66 K. Elbedweihy, S. Wrigley, F. Ciravegna

3.1 Illustrative Examples

In the rest of this section, we will use a set of examples and show the results
returned by a selection of state-of-the-art systems in order to demonstrate the
issues and limitations discussed above. The selected systems are of interest in
the SW community, spanning different categories: SW gateways, QA systems
and mashups. The examples are carefully selected so that they are not targeting
a specific category, and will allow us to illustrate how the proposed models can
be used in the matching task.

Example 1: What is the population of New York? The query can be
given as a NL question to QA systems or as keywords – also entity query – to
other systems; population of New York.

Sindice : The top 5 results returned by Sindice are as follows:

1. Armonk, New York : http://www.mpii.de/yago/resource/Armonk,_New_York
2. About: New York City : http://dbpedia.org/page/New_York_City
3. New York State Senate : http://dbpedia.org/resource/New_York_State_Senate
4. Nova Iorque, New York : http://linkeddata.uriburner.com/.../resource/New_York_City
5. Indian-American Population : http://www.scribd/.../New-York-Citys-IndianAmerican-Population

The second item in the results is showing the DBpedia page for New York city
which contains the answer to the query. However, although being at the top of
the list, 60% of the results are only syntactically related to the query (as opposed
to semantically related); i.e., containing the terms ‘New York’, ‘population’ or
both. This is due to using syntax-driven techniques in the matching task which
in turn affects the precision of the results and the user experience.

PowerAqua : PowerAqua returns the following answer to the query:

Richard Lewontin : < PopulationGeneticists , birthPlace, New_York >

Although PowerAqua could provide correct answers for other queries, this one
shows the effects of the matching problem on the tool’s performance. Attempting
to find mappings for the query terms in the whole dataset – DBpedia in this case
– resulted in 17 different ones for ‘population’ and three for ‘New York’. They
included non-semantically equivalent ones like yago:RussianPopulationGroups
and res:General Population, which – although they could be excluded before
returning the final answer to the user – affected the tool’s performance causing
it to require approximately 13 seconds to return the found triples.

FalconS : The top 5 results returned by the object retrieval search option
provided by FalconS are as follows:

1. New York City : http://dbpedia.org/resource/New_York_City
2. York : http://dbpedia.org/resource/York
3. New York State Assembly: http://dbpedia.org/resource/New_York_State_Assembly
4. York County : http://www.rdfabout.com/rdf/usgov/geo/us/pa/counties/york_county
5. New York State : http://www.rdfabout.com/rdf/usgov/geo/us/ny

Although it returns the resource ‘New York City’ in the first rank, the other
results retrieved are again only syntactically related to the query terms.

Improving Semantic Search Using Query Log Analysis 67

Our Approach : For this example, ‘New York’ is extracted and classified as
alchemyapi:City which is then mapped to dbpedia:City. While no matches
were found for ‘population’ associated with the concept dbpedia:City in the
query-concepts model, the concept-predicates model returned several matches
including populationTotal and dbprop:populationDensityKm. Since the user
query did not provide a specific intent for ’population’, all the mappings are
considered and the answers from equivalent ones (dbprop:populationTotal
and populationTotal) are merged.

To illustrate the use of the query-concepts model, consider the query ‘Which
islands belong to Portugal’. With syntactical matching, both ‘island’ and ‘Portu-
gal’ could be matched with several instances, predicates or concepts (e.g., island
and res:Administrative divisions of Portugal). However, our approach at-
tempts to find mappings only associated with the concept dbpedia:Country –
classified type for Portugal – in the concept-predicates and the query-concepts
models resulting in dbpedia:Island as the only match returned. The search is
therefore done for a relation linking these two concepts. Querying the DBpedia
endpoint, these concepts are found to be linked with the property dbpedia:country

and a list of islands is returned, including dbpedia-res:Porto Santo Island

and dbpedia-res:Santa Maria Island among others.

Example 2: Give me all the soccer clubs in Spain This query is from
QALD workshop open challenge4 where both Freya and PowerAqua – the par-
ticipating tools – did not manage to return back all the results. We’ll be using
this example to explain the use of the instance-types model. We only compare
it to PowerAqua since a demo for Freya is not available.

PowerAqua : PowerAqua matches Spain with six resources including dbpedia-

res:Spain which is the main resource describing the country in the dataset. This
however leads to missing results when the answer is given as cities or other places
in Spain rather than the country itself. For instance, one such example of a miss-
ing result is res:CD Pozo Estrecho which is located in res:Cartagena, Spain,
a resource associated with several types including dbpedia:Place, gml: Feature5

and schema:Place. Tools following this approach thus favor precision over recall.

Tools favouring Recall : The other alternative that can be taken by tools in
favour of recall over performance (time and scalability) is not to limit the results
to a specific type. For the example query, this approach would search for soccer
clubs that have a relation with any resource with a label containing the term
‘Spain’ (usually rdfs:label is used as a human identifier for the resource). The
problem with this approach is that it affects the ability of a tool to scale over
large datasets and to return answers for queries in real time [9, 19].

Our Approach : The two approaches explained above can be seen as the two
ends of a ‘precision and performance’ versus ‘recall’ spectrum. Our approach at-
tempts to balance the three. The same steps explained in Example 1 are followed

4 http://www.sc.cit-ec.uni-bielefeld.de/qald-1
5 gml: Feature refers to http://www.opengis.net/gml/ Feature

68 K. Elbedweihy, S. Wrigley, F. Ciravegna

resulting in extracting ‘Spain’ as an entity, classified as a Country and mapped
to dbpedia:Country. The concepts associated with this class in the instance-
types model are then extracted. An attempt to find mappings for the noun
phrase ‘soccer club’ in the query-concepts and concept-predicates models results
in dbpedia:SoccerClub as a match. Next, the approach tries to find instances
of dbpedia:SoccerClub having a relation with instances of any of the following
concepts (retrieved from the instance-types model for dbpedia:Country):

dbpedia:Country,dbpedia:Place,dbpedia:PopulatedPlace,schema:Place,schema:Country,
gml/_Feature,umbel:Country,umbel:PopulatedPlace

This query returns results including ones which would not be retrieved (e.g.
res:CD Pozo Estrecho) if a specific type was specified (e.g., Country). On the
other hand, it does not harm the performance since it limits the search space
to a set of concepts rather than the whole dataset. One can argue that such
information can be extracted for instances from the domain and range of cer-
tain properties. However, this not only requires knowledge of the exact prop-
erties that would return the results – in this example one of the properties is
dbprop:ground – but also, as observed by [9], DBpedia properties included in
http://dbpedia.org/property/ do not provide domain and range classes.

4 Results Selection

In an attempt to improve the user experience, Google, Yahoo! and Bing use struc-
tured data embedded in web pages to enhance their search results (for example,
by providing supplementary information relevant to the query)6. Although Se-
mantic Web search engines and question answering systems index much more
structured data, a similar functionality (results enhancement) is not yet pro-
vided to their users. FalconS returns extra information together with each entity
found as an answer to a query. It returns predicates associated with the entity
in the underlying data (e.g. type, label, etc.); [32] showed that augmenting the
answer with such extra information provides a richer user experience. This is,
however, different from Linked Data mashups (e.g. Sig.ma) and browsers (e.g.
Tabulator [3]) which attempt to create rich comprehensive views of entities and
allow interactive exploration and navigation of Linked Data respectively. Fur-
thermore, [23] and [22] suggested that returning information related to entities
found in a query would be of interest to the user.

4.1 Illustrative Examples

In the rest of this section, we illustrate how the proposed models can be used
to return more information with the results. We distinguish between providing
more information about each result item and more information that is related
to the query keywords including concepts and entities.
6 For example, Google Rich Snippets: http://googlewebmastercentral.blogspot.
com/2009/05/introducing-rich-snippets.html

Improving Semantic Search Using Query Log Analysis 69

Return additional result-related information To our knowledge, only Visi-
Nav and FalconS return extra information about each entity in the result list.
For the query given in 3.1 and for the entity ‘New York City’, FalconS lists the
following 10 properties with their values:

populationAsOf,dbprop:populationTotal,populationTotal,PopulatedPlace:populationTotal,
populationDensity,PopulatedPlace:populationDensity,dbprop:populationDensitySqMi,
dbprop:populationBlank,dbprop:populationMetro,PopulatedPlace:populationUrban’

However, the strength of the proposed idea lies in utilising query logs as a
source of collaborative knowledge able to capture perceptions of Linked Data
entities and properties and use it to select which information to show the user
rather than depending on a manually (or, indeed, randomly) predefined set.
Additionally, [22, 23] observed that a class of entities is usually queried with
similar relations and concepts.

In order to return more information about each result item, the type of
instance returned is first identified then the most frequently queried predicates
associated with it are extracted from the query-predicates model. The top ranked
ones are shown to the user, limited by the space available without cluttering the
view and affecting the user experience. The user is given the ability to add
more results which would retrieve the next set in the ranked list of predicates.
Examples of concepts with their associated predicates list are given below:7

MusicalArtist-> rdfs:label,rdf:type,thumbnail,.....,genre,associatedBand,occupation,instrument,
birthDate,birthPlace,hometown,prop:yearsActive,foaf:surname,prop:associatedActs, ...
Film-> rdfs:label,rdf:type,foaf:page,.....,prop:starring,prop:director,prop:name,releaseDate,
prop:gross,prop:budget,writer,producer,runtime,prop:language,prop:cinematography, ...
Country-> rdfs:label,rdf:type,thumbnail,...,capital,foaf:name,anthem,language,leaderName,
currency,largestCity,prop:areaKm,motto,..,geo:long,geo:lat,leaderTitle,prop:governmentType, ...

Return additional query-related information Returning related informa-
tion with the results of a query is an attempt to place the queried entities and
concepts within context in the surrounding data which indeed assist users in
discovering more information and useful findings that otherwise would not be
noticed. Following our approach, the query concepts (include concepts and types
of entities used in the query) are first identified. The most frequently occurring
concepts used with them are extracted from the query-concepts model. Again,
only a limited set (the actual size of which is determined on an application re-
quirements basis) from the top ranked ones is returned. A set of examples are
listed below with their co-occurring concepts.

MusicalArtist-> Film,Work,Band,Album,.....,schema:Movie,MusicalWork,Place,Actor,Athlete,
TelevisionShow,WrittenWork,Model,City,GridironFootballPlayer,Writer,schema:Event, ...
City-> Book,Town,WorldHeritageSite,.....,Person,foaf:Person,Country,Organisation,SportsTeam,
SoccerClub,Scientist,Artist,MusicGroup,Film,RadioStation,University,River,Hospital,Park, ...
Company->RecordLabel,foaf:Person,Work,......,LawFirm,Place,Software,schema:Place,Website,
Broadcaster,TelevisionStation,University,Country,GovernmentAgency,Magazine,Convention, ...

7 prop is used as a prefix for http://dbpedia.org/property/ while the default prefix
() is for http://dbpedia.org/ontology/

70 K. Elbedweihy, S. Wrigley, F. Ciravegna

Fig. 1. Results returned by our approach for Egypt. Related concepts are on the right
side and predicates on the left. For each side, elements are ranked with the top-most
being most common and reducing in frequency in the direction of the arrows.

5 Data Visualisation

Query logs have been used in IR to provide query recommendations and suggest
similar queries to users [2, 33]. [23] analyzed a set of Yahoo! query logs to learn
prefixes and postfixes that can be suggested for a specific type of entities. Simi-
larly, Google and Bing return related searches for a query. These approaches are
however limited to suggesting parts or complete queries provided by other users
in a related context rather than guiding users in formulating their queries.

On the Semantic Web, supporting query formulation is provided by view-
based/visual-query interfaces (e.g., [4,6]) which allow users to explore the under-
lying data. This can be very helpful for users, especially those unfamiliar with
the search domain. A problem facing these tools is the technical limitations such
as the number of items that can be included in a graph without cluttering the
view and affecting user experience. This increases in heterogenous spaces like
the open web since it is a challenge to decide what should be shown to users.

In an attempt to tackle this challenge and to identify a specific area of inter-
est, Smeagol [6] introduces a “specific-to-general” interface where it starts from
an entity or a term entered by the user and builds a related subgraph extracted
from the underlying data. After the user disambiguates the query term from a
list of candidates, the tool returns a list of triples containing that term for the
user to select from and add to his specific subgraph of data. In a dataset such
as DBpedia – currently used by the tool’s demo –, this list will often contain
thousands of triples for the user to examine in order to select the required ones.

Our proposed approach uses the concepts-predicate and query-concepts mod-
els to move a step forward towards a more specific subgraph that allows users to
explore the data around the entities they start with. It exploits the collaborative
knowledge collected from different users and applications to derive the selection
of concepts and predicates added to the subgraph of interest.

Using Egypt as a starting entity, Fig. 1 shows a set of concepts and predicates
associated with this entity’s type in the models. Selecting a related concept
retrieves a similar subgraph for the new one and shows the predicates connecting
the two concepts.

Improving Semantic Search Using Query Log Analysis 71

Table 2. PowerAqua matches for the given queries. The second column gives the
number of matches found in the dataset and the third one shows triples generated from
the matches to return the answers. Timings in the fourth column are approximate.

Query # # Found Matches Relevant Facts Time (sec)

1 official language: 7
philippines: 4

Language, officialLanguage, Philippines
?, prop:officialLanguages, Philippines

2̃8

2 official websites: 6
Charmed: 4, actors: 5
television show: 3
websites: 5

Award, geminiAward, Actor
Award, laurenceOlivierAward, Actor
Charmed, IS A, TelevisionShow
Actor, starring, Charmed

2̃2

3 1950: 11
organisations: 7
founded: 9

Organisation, title, 1950’s
Organisation, foundation, 1950’s
Organisation, established, 1950’s
Organisation, founded, 1950’s ...
Organisation, artist, Project 1950
Organisation, recordLabel, Project 1950

2̃9

6 Discussion

The previous sections illustrate how our models could be adopted in the two main
issues discussed: matching user terms to Linked Data vocabulary and returning
more information with the results. In this section, we use the following queries
to facilitate the discussion of the main strengths and weaknesses of the proposed
approach. The queries are from the ‘Interacting with Linked Data’ workshop8.

1. What are the official languages of the philippines?
2. Give me the official websites of actors of the television show Charmed.
3. Which organisations were founded in 1950?

In order to show the effect of the matching problem on the tool performance,
the mappings for the given queries and the time required – as given by Power-
Aqua – to find them are given in Table 2.

Query# 2 makes use of the instance-types model since the match prop:website

is found among the predicates queried with Person rather than with Actor. Ad-
ditionally, Query# 3 shows that the proposed approach is not limited to queries
containing entities. In this as well as similar queries, the query-concepts and the
concept-predicates models are used to find matches for the query terms (e.g.
organisations). The matches are then ranked according to their syntactical sim-
ilarity (exact or partial match) as well as the frequency of usage in the models,
resulting in selecting the concept dbpedia:Organisation for this query.

As shown in Section 4.1, both query-concepts and concept-predicates models
can contain semantically-equivalent concepts and predicates associated with one
concept, from one or more datasets. Although they are used in the matching pro-
cess in order not to miss candidate results (e.g., prop:founded, foundingDate

in Query# 3), showing several concepts or properties to the user which have
the same meaning but different names affects the readability of the results and
the user experience. Therefore, the approach should include a schema-matching
step before returning information to the user. This is not yet achieved by our
approach; it is a challenging task and is part of our future work.

8 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php

72 K. Elbedweihy, S. Wrigley, F. Ciravegna

Table 3. Matches found by the proposed approach for the given queries. The second
column shows the query entities and their types. The third one shows the matches
found while the last 2 columns show the extra information extracted from the models

Query# Entity:Type Found Matches More Info. Related Info.
1 philippines

Country
schema:Language,
Language,
language, prop:language
prop:officialLanguages,
officialLanguage,
prop:languages

capital, anthem,
language,
leaderName,
currency,
largestCity,
areaKm, motto

Person,Scientist,
University,City,
Company, Book
MusicalArtist,
Event,
MusicalGroup

2 Charmed:
Television-
Show

Actor,
prop:website

occupation, genre,
birthPlace, birthDate,
surName,
hasPhotoCollection,
nationality, gender

Film, Album,
Organisation,
MusicalArtist,
SportsTeam,
Broadcaster

3 N/A Organisation,
OrganisationMember
Non ProfitOrganisation,
GeopoliticalOrganisation
prop:founded,
foundationPlace,
prop:foundation,
foundingDate

industry, city,
country, website,
divisions, subsid,
president,
established,
staff, yearsActive,
owner, founded
foundationPlace

Company,Band
Broadcaster,
RadioStation,
University,
School,
SoccerClub,
MilitaryUnit,
Airline

In order to reduce inconsistencies due to noise found in the query logs (in-
compatible concepts and predicates), the Linked Data endpoint is queried to
check the validity of using a specific predicate with a given concept or the ex-
istence of a relation between two concepts before adding them to the models.
However, there is no similar way to prevent errors in the instance-types model
since they are caused by inconsistencies found in the dataset. For instance, the
concept Person was found together with the concept Country as types for one
Linked Data resource and thus was associated with it in the model. Fortunately,
they have a very low frequency of co-occurrence and thus can be easily identi-
fied and removed. Another issue to consider is the existence of a few popular
generic predicates (e.g. label) frequently occurring with most of the concepts
and thus ranked at the top of the their associated predicates list. The ones we ob-
served include rdfs:label, rdf:type, thumbnail, foaf:page, rdfs:comment,
foaf:depiction, abstract and foaf-homepage. Although in deciding which
predicates to show the user for a specific concept while building a query (Fig. 1),
we chose to exclude these generic predicates similar to a stop list in IR, we be-
lieve this choice needs to be evaluated through a usability study which could
reveal a different view.

7 Conclusions and Future Work
This paper has proposed an approach to support Semantic Search tools in chal-
lenges facing them such as matching user terms with Linked Data vocabulary,
returning related information with the results and supporting users while build-
ing their queries. Following wisdom of the crowds and exploiting collaborative
knowledge found in semantic query logs, the approach attempts to create mod-
els of usage of Linked Data concepts and properties. As a proof of concept, we
analyzed around 13.5 million DBpedia queries. However, the proposed approach
is independent from a specific dataset. Our preliminary results have shown the

Improving Semantic Search Using Query Log Analysis 73

potential of adopting the proposed models in an improved semantic search ap-
proach. We plan to further evaluate the approach with respect to its perfor-
mance in matching user terms to Linked Data concepts as well as the quality
and relevancy of the returned results as perceived by real users. We think it can
additionally be used to create a new vocabulary relying on information needs
of Linked Data users and applications and hence customised to best fit their
queries. Although the current approach is promising, part of our future work is
to investigate the potential benefits available of combining our current models
with ones created from traditional query logs as opposed to semantic ones.

References

1. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An Empirical
Study of Real-World SPARQL Queries. In: Proc. of USEWOD 2011

2. Baeza-Yates, R., Hurtado, C., Mendoza, M. In: Query Recommendation Using
Query Logs in Search Engines. LNCS 3268 (2004) 588–596

3. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the
semantic web. In: Proc. of SWUI 2006

4. Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying Ontologies: A
Controlled English Interface for End-users. In: Proc. of ISWC 2005

5. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid
Search: Effectively Combining Keywords and Ontology-based Searches. In: Proc.
of ESWC 2008

6. Clemmer, A., Davies, S.: Smeagol: A specific-to-general semantic web query inter-
face paradigm for novices. In: Proc. of DEXA 2011. LNCS 6860, Springer (2011)
288–302

7. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F.: Searching the semantic
web: Approximate query processing based on ontologies. IEEE Intelligent Systems
21(1) (2006) 20–27

8. D’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.:
Characterizing Knowledge on the Semantic Web with Watson. In: EON (2007)
1–10

9. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural Language Interface to
Ontologies: combining syntactic analysis and ontology-based lookup through the
user interaction. In: Proc. of ESWC 2010

10. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V.C., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web.
In: Proc. of CIKM 2004, ACM Press (2004)

11. Elbedweihy, K., Mazumdar, S., Cano, A.E., Wrigley, S.N., Ciravegna, F.: Iden-
tifying Information Needs by Modelling Collective Query Patterns. In: Proc. of
COLD 2011

12. Ell, B., Vrandečić, D., Simperl, E.: Deriving human-readable labels from SPARQL
queries. In: Proc. of I-Semantics 2011

13. Halpin, H.: A Query-Driven Characterization of Linked Data. In: Proc. of
LDOW 2009

14. Harth, A.: VisiNav: A system for visual search and navigation on web data. J.
Web Sem. 8(4) (2010) 348–354

74 K. Elbedweihy, S. Wrigley, F. Ciravegna

15. Hölscher, C., Strube, G.: Web Search Behavior of Internet Experts and Newbies.
Computer Networks 33(1-6) (2000) 337–346

16. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for
linked open data. In: Proc. of ISWC 2010

17. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Proc. of ISWC/ASWC 2007

18. Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: A Natural Language Interface
to Query Ontologies Based on Clarification Dialogs. In: Proc. of ISWC 2006

19. Lopez, V., Motta, E., Uren, V.: PowerAqua: Fishing the Semantic Web. In: The
Semantic Web: Research and Applications, Springer (2006) 393–410

20. Luczak-Rösch, M., Bischoff, M.: Statistical Analysis of Web of Data Usage In:
Proc. of ISWC 2011

21. Mascardi, V., Locoro, A., Rosso, P.: Automatic ontology matching via upper
ontologies: A systematic evaluation. IEEE Trans. on Knowl. and Data Eng. 22
(2010) 609–623

22. Meij, E., Bron, M., Hollink, L., Huurnink, B., de Rijke, M.: Mapping queries to the
Linking Open Data cloud: A case study using DBpedia. Web Semantics: Science,
Services and Agents on the World Wide Web 9(4) (2011) 418 – 433

23. Meij, E., Mika, P., Zaragoza, H.: Investigating the Demand Side of Semantic Search
through Query Log Analysis. In: Proc. of SemSearch 2009

24. Möller, K., Hausenblas, M., Cyganiak, R., Grimnes, G.A.: Learning from Linked
Open Data Usage: Patterns and Metrics. In: Proc. of WebSci 2010

25. Murray, G.C., Teevan, J.: Query log analysis: social and technological challenges.
SIGIR Forum 41 (2007) 112–120

26. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of
linked data. In: Proc. of ISWC 2010

27. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large
web search engine query log. SIGIR Forum 33(1) (1999) 6–12

28. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker,
S.: Sig.ma: live views on the web of data. In: Proc. of WWW 2010

29. Tummarello, G., Oren, E., Delbru, R.: Sindice.com: Weaving the Open Linked
Data. In: Proc. of ISWC/ASWC 2007

30. Uren, V., Lei, Y., Lopez, V., Liu, H., Motta, E., Giordanino, M.: The usability of
semantic search tools: a review. The Knowledge Engineering Review 22(4) (2007)
361–377

31. Wen, J.R., Nie, J.Y., Zhang, H.J.: Clustering user queries of a search engine. In:
Proc. of WWW 2001, New York, NY, USA, ACM Press (2001) 162–168

32. Wrigley, S., Elbedweihy, K., Reinhard, D., Bernstein, A., Ciravegna, F.: Evaluating
semantic search tools using the SEALS platform. In: Proc. of IWEST 2010

33. Zäıane, O.R., Strilets, A.: Finding Similar Queries to Satisfy Searches Based on
Query Traces. In: Proc. of OOIS 2002

Linguistic Modeling of Linked Open Data for
Question Answering

Matthias Wendt, Martin Gerlach, and Holger Düwiger

Neofonie GmbH, Robert-Koch-Platz 4, 10115 Berlin, Germany
{wendt,gerlach,duewiger}@neofonie.de,

WWW home page: http://www.neofonie.de/Forschung

Abstract. With the evolution of linked open data sources, question
answering regains importance as a way to make data accessible and ex-
plorable to the public. The triple structure of RDF-data at the same
time seems to predetermine question answering for being devised in its
native subject-verb-object form. The devices of natural language, how-
ever, often exceed this triple-centered model. But RDF does not preclude
this point of view. Rather, it depends on the modeling. As part of a gov-
ernment funded research project named Alexandria, we implemented an
approach to question answering that enables the user to ask questions in
ways that may involve more than binary relations.

Introduction

In recent years, the Semantic Web has evolved from a mere idea into a growing environ-
ment of Linked Open Data (LOD)1 sources and applications. This is due in particular
to two current trends: The first is automatic data harvesting from unstructured or
semi-structured knowledge that is freely available on the internet, most notably the
DBpedia project [1]. The second notable trend is the evolution of linked data sources
with possibilities of collaborative editing such as Freebase2. The growth of LOD gives
rise to a growing demand for means of semantic data exploration. Question Answer-
ing (QA), being the natural device of querying things and aqcuiring knowledge, is a
straightforward way for end users to access semantic data.

RDF3 and other languages for triple-centered models, which are often used to
model and describe linked data, seem to predetermine a specific way of thinking - and
of asking questions. Many RDF sources offer information in the form “X birth-place

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

1 See http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData
2 http://www.freebase.com/
3 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

76 M. Wendt, M. Gerlach, H. Düwiger

Y” and “X birth-date Z”, etc. Of course, in natural language, we are used to formulate
complexer queries. It is natural to make statements like “X was born in Y on Z”. While
this does not matter as long as singular events like birth or death are involved, things
become more complicated as soon as events are involved that can occur more than
once. For example, the question “Who was married to Angelina Jolie in 2006?” can
only be answered if the temporal (and potentially limited) nature of a relation like
marriage is taken into account.

In this paper we present the QA-driven ontology design behind Alexandria4, a plat-
form for exploring data of public interest comprising a system for answering questions
in German. The domain consists of persons, organizations, locations as well as works
such as books, music albums, films and paintings. Moreover, the Alexandria ontology
is designed for holding information on events relating the various resources, including
temporal information and relations involving more than two participants – so called N-
ary Relations. Also, we describe the mapping algorithm used in our question answering
system and how it benefits from the ontology design.

The ontology is built from and continuously being updated with data primarily
from Freebase, and few parts from DBpedia, news feeds, and user generated content.

Related Work

Open domain question answering is of current research interest. There are several
approaches to the subject based on linguistic analysis of natural language questions for
generating queries against linked data.

FREyA [5] and PowerAqua [9,10] are both question answering systems that are to
a certain degree independent of the underlying ontology schema. Both systems work on
existing Linked Open Data as is and can be configured to use multiple ontologies. They
rely on rather shallow approaches to query mapping, in favor of portability and schema-
independence. However, this also limits them to the data structures and languages used
by the schemas (e.g., DBpedia does not support N-ary relations).

There are also systems based on deeper, compositional mapping approaches. For
example, ORAKEL [3,4] translates syntax tree constructed by lexicalized tree adjoining
grammars (LTAGs) to a representation in first order logic which can be converted to
F-Logic [8] or SPARQL5 queries, depending on the target knowledge base. ORAKEL
also principally supports N-ary relations. Though the system is in principle very similar
to the one presented in this paper, it is not proven to scale up to a large data set.

In contrast to other projects that use Linked Open Data for question answering,
our approach is an attempt to combine the advantages of availability of huge LOD
sources and of tailoring the T-Box to the use case of QA. While the latter facilitates
the fully automated mapping of natural language questions to SPARQL queries, we
trade off the possibility to use existing labels for T-Box entities, which, combined with
existing lexical resources such as WordNet6, GermaNet7, etc., boost lexical coverage.

Another difference to the above-mentioned projects is that the focus of Alexandria
is on answering questions in German, not English.

4 http://alexandria.neofonie.de/
5 http://www.w3.org/TR/rdf-sparql-query/
6 http://wordnet.princeton.edu/
7 http://www.sfs.uni-tuebingen.de/lsd/

Linguistic Modeling of Linked Open Data for Question Answering 77

Design of the Alexandria Ontology

The design of the Alexandria Ontology was basically driven by practical demands of
the application as well as linguistic considerations. According to [7], our approach can
be seen as a unification of the “Type 4” and the “Type 3” approaches to ontology
creation. The knowledge base has to meet the following requirements:

Linguistic Suitability The data model needs to be suitable for natural language
question answering, i.e. mapping natural language parse tree structures onto our
data must be possible.

LOD Compatibility Compatibility with existing LOD sources like Freebase and DB-
Pedia needs to be maintained in order to facilitate mass data import for practical
use.

Scalability Large amounts of data need to be stored, maintained and updated while
keeping the time for answering a question at minimum.

One of the major aspects relating to linguistic suitability in the Alexandria use case
is that its target domain goes beyond what we refer to in the following as attributive
data, i.e. data about things that are commonly known as named entities like persons,
organizations, places, etc. In addition, the domain was designed to contain what we
call eventive data, i.e. (historic) events and relations to participants within them.

As mentioned above, there are certain relations, such as birth, where this distinction
is not important, because n-ary relations consisting of unique binary parts (like place
and date of birth) can be covered by joining on a participant (the person) as proposed
in [4]. The distinction between eventive and attributive data becomes important when
relations are involved, which (may) occur repetitively and/or include a time span.
Questions like “Who was married to Angelina Jolie in 2001?” and “Which subject
did Angela Merkel major in at the German Academy of Sciences?” can no longer be
generally answered by joining binary facts.

It is possible to model such eventive n-ary facts as proposed in Pattern 1, use case
3 of the W3C Working Group Note on N-ary Relations on the Semantic Web8. This
approach is also close to the semantic model advocated in Neo-Davidsonian theories
[12], where participants in an event are connected to the event using roles.

As for the aspect of LOD compatibility, it is our aim to access existing large-
scale sources to populate our knowledge base. DBpedia was the first LOD source to
retrieve and constantly update its data repository by crawling Wikipedia9. Apart from
its possibilities for end-users to add and update information, the majority of data
contained in Freebase is obtained from Wikipedia as well. Therefore, using one (or
both) of these sources is an obvious starting point for harvesting information on a
broad range of popular entities, as it is required by Alexandria.

However, though DBpedia contains much valuable attributive data for entities of
our interest, it does not offer eventive information as stated above. Also, DBpedia’s
T-Box does not provide a model for adding such n-ary facts, either.

As opposed to DBpedia, which relies on the RDF standard, Freebase implements
a proprietary format. Whereas in RDF, all information is abstractly represented by
triples, Freebase abstractly represents information as links between topics. The Free-
base data model incorporates n-ary relations by means of Compound Value Types10,

8 http://www.w3.org/TR/swbp-n-aryRelations/
9 http://www.wikipedia.org/

10 http://wiki.freebase.com/wiki/Compound_Value_Type

78 M. Wendt, M. Gerlach, H. Düwiger

also called “Mediators”. A mediator links multiple topics and literals to express a single
fact.

So Freebase’s data model suits our requirements, but we need to use RDF to be
able to use Virtuoso Open Source Edition11 which has proven to scale well for both
loading and querying the amounts of data we expected.

Using the Freebase query API to pull a set of topics and links, an RDF based
knowledge base can be built according to the Neo-Davidsonian model. The API also
supports querying link updates for continously updating the knowledge base.

There are straightforward mappings of Freebase topic and mediator types onto
OWL12 classes, and of Freebase link types onto OWL properties. For example, a mar-
riage relation is imported from Freebase as follows:

nary:m_02t82g4 rdf:type dom:Marriage ;

dom:spouse res:Angelina_Jolie ;

dom:spouse res:Brad_Pitt ;

alx:hasStart "2005"^^xsd:gYear .

The subject URI is generated from the Freebase mediator ID. The resource URIs are
generated from Freebase topic names with some extra processing and stored perma-
nently for each Freebase topic ID.

We differentiate the following three layers of our ontology (which correspond to
three namespace prefixes alx:, dom:, and res: that appear in the examples):

The Upper Model (alx:) contains the abstract linguistic classes needed for a language-
, domain- and task-independent organization of knowledge. The Alexandria upper
model is inspired by [6].

The Domain Model (dom:) contains the concrete classes and properties for enti-
ties, events and relations of the modeled domain (e.g., Marriage, Study) as sub-
classes of the upper model classes and properties. Needed to make the domain-
specific distinctions which are necessary for the task of question answering.

The A-Box (res:) consists of all “resources”, i.e. entity, event and relation instances,
known to Alexandria.

The examples of Angela Merkel’s education and Angelina Jolie’s and Brad Pitt’s
marriage, which we used above, would be represented as shown in Table 1.

Syntactically, we model our domain concepts as OWL subclasses of one or more
upper model concepts and our domain properties as OWL subproperties of one or
more upper model properties, where the latter correspond to the Neo-Davidsonian
roles mentioned earlier. We can then obtain hints to the upper model concepts and
roles of interest by mapping question verbs onto domain concepts and then try to
match the roles defined for the upper model classes to the respective given parts of the
question.

Putting the Model in Action: Question Answering

As mentioned above, one of the major design goals of our ontology schema was to
stay reasonably close to the phenomena and structure of natural language. Achieving

11 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
12 Web Ontology Language, builds on RDF, see

http://www.w3.org/TR/owl2-overview/

Linguistic Modeling of Linked Open Data for Question Answering 79

Upper model
concept

Domain
concept

U.m. role
props.

Domain
props.

Participant

agentive process study agent student Angela Merkel
effective process study affected subject Quantum Chemistry
locative relation study location institution German Academy of

Sciences
located student Angela Merkel

attributive rel. marriage* carrier spouse Brad Pitt
attribute spouse Angelina Jolie

temporal concept marriage start wedding
date

2005

∗ In this example, marriage is modeled as a symmetric relation, expressing a spouse as
attribute of the other spouse, i.e. carrier and attribute may be swapped.

Table 1. Upper and domain model

this would facilitate the mapping of a natural language question to a SPARQL graph
pattern that conveys the information need expressed in the question. The basic idea of
the translation algorithm is to understand the problem of mapping of natural language
to SPARQL as a graph mapping problem.

From a linguistic viewpoint, the syntactic structure of a sentence may be repre-
sented in the form of a dependency tree, as obtained by the application of a dependency
parser. A dependency graph is formalized like this:

Given a set L of dependency labels, a dependency graph for the sentence x =
w1 . . . wn is a directed graph D = (VD, ED) with:

1. VD is a set of vertices {w0, w1, . . . , wn} and

2. ED ⊆ VD × L× VD a set of labeled edges

The vertices are composed of the tokens in the sentence plus an artificial root node
w0. A well-formed dependency graph is a tree rooted at w0.

Likewise, the structure of a SPARQL Select query basically consists of a graph
pattern (in the Where clause) and a projection. Given a set of variable names NV (?x,
?y . . .), the set of concept names NC , a set of role names NP , a set of resource names
NR and a set of literals NL defined by the ontology, we define a SPARQL Select Graph
G = (VG, EG, PG) as:

1. VG ⊆ NV ∪NR ∪NC ∪NL

2. EG ⊆ NV ∪NR ×NP × VG

3. the projection PG ⊆ NV

Formally, we define the translation as a mapping f(D) of a dependency graph D
to a SPARQL Select Graph G.

Linguistic Processing

The dependency graph is the result of the application of a linguistic analysis to the
input sentence. An example of a resulting dependency structure may be found on the

80 M. Wendt, M. Gerlach, H. Düwiger

left in Figure 1. The analysis consists in tokenization, POS-tagging13 and dependency
parsing. Dependency parsing is conducted using the MaltParser [11], which was trained
on the German Tiger corpus14 [2]. The corpus has been slightly adapted by adding a
small sub-corpus of German questions and a minor change to the set of role labels used.

To normalize surface form variation and identify morphosyntactic features, lemma-
tization and morphological analysis is applied to each of the tokens. This is roughly
illustrated by the lemmata in square brackets at the verbal nodes (e.g. “verheiratet”
has the lemma “verheiraten”).

Compositional Semantics

Fig. 1. Dependency parse of the sentence “Mit wem ist Angelina Jolie seit 2005 ver-
heiratet?” and examples of the lexicalization (1) for a subset of its nodes, and the
application of the actions BIND (2) and MERGE (3).

The mapping of the dependency graph to the SPARQL query is largely done in
two steps: lexicalization and composition. By lexicalization we refer to the process of
mapping tokens (lemmata) or multi-word units to corresponding ontological units.

We refer to the identification of resources (identified by resource URIs) of the A-Box
as lexical named entity identification. For this, we make use of the title (the name of an
entity) and the alternative names (consisting of synonyms and different surface forms)
that are imported from Freebase into a Lucene15 index containing the resource URI in
Alexandria (e.g. res:Angelina Jolie), and the OWL classes it belongs to. While the
user enters a question, matching entities are looked up in the index based on whole
words already entered and a disambiguation choice is continuously updated. The user
can select from the found entities at any time, whereupon the respective part of the
question is updated.

The second noteworthy component in lexical named entity identification is the
identification of dates (and time). For these, we have adapted the open source date
parser provided by the Yago project16 to German.

13 For German tokenization and POS-Tagging we use OpenNLP with some pre-trained
models. (http://incubator.apache.org/opennlp/)

14 http://www.ims.uni-stuttgart.de/projekte/TIGER/
15 http://lucene.apache.org/
16 http://www.mpi-inf.mpg.de/yago-naga/javatools/

Linguistic Modeling of Linked Open Data for Question Answering 81

All other linguistic tokens or configurations (linguistic units) corresponding to T-
Box concepts are mapped using hand-crafted lexica.

The complete set of mappings for the question shown in Fig. 1 is shown in Table 2.

T-Box Class T-Box Role A-Box URI Literal T-Box Class
Custom Lexica Lucene Date, Literal Parser Custom Lexica
“wer” “mit” “Angelina Jolie” “2005” “verheiraten” “sein”
dom:Person alx:hasAttribute res:Angelina Jolie "2005"^^xsd:date dom:Marriage owl:Thing

Table 2. Types of Lexical Mappings

Our syntax-semantics mapping is largely done by the composition of the lexical
semantic entries attached to each dependency node. This lexicalized approach devises
the notion of a semantic description. A semantic description represents the semantic
contribution of a dependency node or (partial) dependency tree and encodes obligatory
semantic complements (slots). During the composition, the slots are being filled by
semantic descriptions (properties) until the semantic description is satisfied.

By virtue of the lexical mapping each linguistic unit is mapped to a set of semantic
descriptions, also called readings.

Given a set of variable names NV , the set of concept names NC , a set of role names
NP , a set of resource names NR and a set of literals NL defined by the ontology, a
semantic description S of an ontological entity n ∈ NV ∪ NL ∪ NR is defined as a
five-tuple S = (n, c, Sl, Pr, F l) with:

1. c ∈ NC the concept URI of the semantic description
2. Sl = [r1, r2, . . . , rn] a ordered set of slots (ri ∈ NP)
3. Pr = {(p1, S1), . . . (pm, Sm)} with Sj a semantic description and pm ∈ NP

4. Fl ⊆ {proj, asc, desc} a set of flags (with proj indicating that n to be part of the
projection of the output graph

For convenience, we define the following access functions for the semantic descrip-
tions S = (n, c, Sl, Pr, F l):

1. node(S) = n⇔ S = (n, c, Sl, Pr, F l)
2. pred(S) = {p|(p, o) ∈ Pr} ⇔ S = (n, c, Sl, Pr, F l)

A semantic description S = (n, c, Sl, Pr, F l) is well-formed if the set of bound
properties and the slots are disjoint pred(S) ∩ Sl = ∅ and all bound properties are
uniquely bound ∀(p, o) ∈ Pr → ¬∃(p, o1) ∈ Pr ∧ o 6= o1.

By definition, there is a strong correlation between a semantic description and
a SPARQL Select query. A SPARQL Select query can recursively be built from a
semantic description S = (n, c, Sl, Pr, F l) and an initially empty input graph G0 =
(VG0 = ∅, EG0 = ∅, PG0 = ∅):

toSPARQL(S,G0): Gm

G0 = (V0 ∪ {n}, E0, P0) : the output SPARQL graph pattern
E0 = Es ∪ {(n, a, c)}
P0 ← P ∪ {n} ⇔ proj ∈ Fl otherwise Po = P

foreach (pi, oi) in (p1, o1), . . . , (pm, om) = Pr
begin

82 M. Wendt, M. Gerlach, H. Düwiger

Ei ← Ei−1 ∪ (n, p, node(o))
Gi ← toSPARQL(oi, Gi−1)

end
return Gm

To give an example in an informal notation, the linguistic units of the sentence
“Mit wem ist Angelina Jolie seit 2005 verheiratet?” are displayed in Table 3. The first
row shows the linguistic unit, the ontological unit described corresponds to the variable
or resource URI in the second row. The prefix ?! in a variable designation (e.g. ?!x)
is equivalent to the flag proj, denoting that the variable will be part of the projection,
i.e. proj ∈ Proj. Note that the verbal nodes “verheiratet” and “sein” are each mapped
to a (distinct) variable ?e, which corresponds to the Neo-Davidsonian event variable e.

Slots and bound properties are displayed in the third column. The slots are des-
ignated with the argument being just a ?, whereas a variable is denoted by the pre-
fix ‘?’ and a lower case letter (e.g. ?v). In the example above the semantic descrip-
tions for “verheiratet” and “mit” contain the slots alx:hasCarrier (verb only) and
alx:hasAttribute.

“Angelina Jolie” res:Angelina Jolie a dom:Person

“seit 2005” ?e a alx:TemporalRelation ;

alx:hasStart 2005 .

“mit” ?e a alx:AttributiveRelation ;

alx:hasAttribute ?

“wem” ?!x a dom:Person

“sein” ?e a alx:AttributiveRelation

“verheiratet” ?e a dom:Marriage ;

alx:hasCarrier ? ;

alx:hasAttribute ?

Table 3. Semantic descriptions of lexical units.

Putting it all Together

The composition algorithm devises a fixed set of two-place composition operators,
called actions. An action defines the mapping of two semantic descriptions related to
an edge in the dependency graph to a composed semantic description, corresponding
to the semantics of the subgraph of the dependency tree.

The two most important actions are BIND and MERGE. These two basic opera-
tions on the semantic descriptions involved in the composition intuitively correspond to
(1) the mapping of the syntactic roles to semantic roles (otherwise called semantic role
labeling) and (2) the aggregation of two nodes to one in the output graph pattern. Given
two semantic descriptions S1 = (n1, c1, Sl1, P r1, F l1) and S2 = (n2, c2, Sl2, P r2, F l2),
the semantic operators are defined like this:

Linguistic Modeling of Linked Open Data for Question Answering 83

BIND(S1, S2) =

S(v, c1, Sl1 − {max(Sl1)}, P r1 ∪ {(max(Sl1), S2)})

if range(max(Sl1)) u c2 6= ⊥
NULL otherwise

MERGE(S1, S2) =

S(v, lcs(c1, c2), Sl1 ∪ Sl2, P r1 ∪ Pr2)

if c1 u c2 6= ⊥
∧pred(S1) ∩ pred(S2) = ∅

NULL otherwise

The function lcs(c1, c2) gives the least common subsumer of two concepts, i.e. a
concept c such that c1 v c and c2 v c and for all e such that c1 v e and c2 v e then
c v e. The semantic role labeling implemented by BIND depends on a total order of
semantic roles, which has to be configured in the system, e.g.:

alx:hasAgent > alx:hasAffected > alx:hasRange

This order determines the ordering of the slots Sl in a semantic description. It
stipulates a hierarchy over the semantic roles of an n-ary node in the SPARQL graph
pattern. It is reflected by an ordering over the syntactic role labels which is roughly
equivalent to the linguistic notion of an obliqueness hierarchy [13], for example:

SB > OC > OC2

Formally, the obliqueness hierarchy defines a total order >L over the set of depen-
dency labels L.

For the composition, each of the labels in the label alphabet is assigned one of the
semantic operators. The algorithm chooses the operator that is defined to build the
composition. The following table shows an excerpt of this mapping:

SB OC PNK MO PD PUNC

BIND BIND BIND MERGE MERGE IGNORE

The action IGNORE simply skips the interpretation of the subtree. The composi-
tion algorithm iterates over the nodes in the dependency graph in a top-down manner,
for each edge applying the action defined for the edge label pairwise to each reading of
the source and target node.

The algorithm works in a directed manner by sorting the outgoing edges of each
node in the dependency graph according to a partial order ≥D.

(v1, l1, w1) ≥D (v2, l2, w2)⇔ l1 > l2

This ordering stipulates a hierarchy over the syntactic arguments in the dependency
graph that is reflected by a total ordering on the role labels of the SPARQL pattern
graph W : >W . The correspondance between these orders controls the order in which
the graph is traversed and therefore, in particular, the correlation of syntactic and
semantic roles (semantic role labeling).

The mapping is implemented by the transformation algorithm sketched below. It
takes as input a dependency graph D(VD, ED) with the root node w0 as the initial node
c in the graph traversation. The nodes are traversed in the order of the hierarchy to
assure the correct binding. Note that the transformation may have multiple semantic
descriptions as its output. An output semantic description S = (n, c, Sl, Pr, F l) is only
accepted, if all of its slots Sl have been filled. We then apply the toSPARQL operation
to arrive at the final SPARQL query.

84 M. Wendt, M. Gerlach, H. Düwiger

transform(D,c) : S
c← w0 : the current node
S ← ∅ : the set of output readings

foreach (c, l, v) in sort(outgoing(c), ≥D)
begin

Rc ← readings(c)
Rv ← transform(v, D)
foreach (rc, rv) in Rc ×Rv

begin
s← apply(operator(l), rc, rv)
if(s 6= NULL)

S ← S ∪ {s}
end

end

Results

The N-ary modeling requires more triples for simple (binary) facts than using RDF/
OWL properties like DBpedia, because there is always an instance of a relation concept
comprising rdf:type and participant role triples.

At the time of writing, the Alexandria ontology contained approx. 160 million
triples representing more than 7 million entities and more than 13 million relations
between them (including literal value facts like amounts, dates, dimensions, etc.). We
imported the triples into Virtuoso Open Source Edition, which scales as well as expected
with respect to our goals.

80% of all query types understood by the algorithm (i.e. mappable onto valid
SPARQL queries) take less than 20ms in average for single threaded linguistic pro-
cessing on a 64 bit Linux system running on IntelR© XeonR© E5420 cores at 2.5GHz,
and pure in-memory SPARQL processing by Virtuoso Open Source Edition on a 64
bit Linux system running on eight IntelR© XeonR© L5520 cores at 2.3GHz and 32GB of
RAM.

The question answering system works fast enough to be used in a multi-user Web
frontend like http://alexandria.neofonie.de.

The performance of the algorithm is in part due to the high performance of malt
parser with a liblinear model, which runs in less than 5ms per question. By using a
liblinear model, however, we trade off parsing accuracy against performance in terms
of processing time per question. This sometimes becomes noticeable in cases where
subject-object order variation in German leads to an erroneous parse.

The performance of the question answering system has been measured using the
training set of the QALD-2 challenge17. As the question answering in Alexandria cur-
rently covers only German, all 100 questions were translated to German first. The
results are shown in Table 4. For 49 of the questions no query could be generated. The
second row shows the results for the questions for which a SPARQL query could be
generated.

It has to be noted that the results provided in the gold standard rely on the DBpe-
dia SPARQL endpoint. As Alexandria is built upon its own schema and the imported

17 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/

index.php?x=challenge&q=2

Linguistic Modeling of Linked Open Data for Question Answering 85

Answer set avg. precision avg. recall avg. f-measure

All answers 0.25 0.27 0.25

Generated answers 0.49 0.52 0.48

Answers without data mismatch 0.59 0.57 0.57

Generated answers without data mismatch 0.92 0.89 0.89

Table 4. Quality of results of the Alexandria question answering on the QALD-2
training set translated to German.

data comes from Freebase instead of DBpedia, the comparability of the results is lim-
ited. The comparison of both datasets results in various mismatches. For example,
the comparison of questions having a set of resources as answer type, is done via the
indirection of using the labels. This is possible just because the labels are extracted
from Wikipedia by both Freebase and DBpedia. However, some of the labels have been
changed during the mapping.

Overall, we have identified the following error types:

1. different labels for the same entities

2. different number of results for aggregate questions

3. query correct but different results

4. training data specifies “out of scope” where we can provide results

5. question out of scope for Alexandria

Type 1 applies particularly often to the labels of movies, most of which are of
the form “Minority Report (film)” in DBpedia, and “Minority Report” in Alexandria.
Another source for errors (2) results when aggregate questions (involving a count)
retrieve a different number of resources. The question “How many films did Hal Roach
produce?” for example yields 509 results in DBpedia and 503 results in Alexandria.
The third type corresponds to a difference in the data set itself, that is when different
information is stored. For example, in Alexandria the highest mountain is the “Mount
Everest” whereas in DBpedia it is the “Dotsero”.

The last two error types involve questions that are out of scope (4 and 5). The
data model used in Alexandria differs from the model in DBpedia as a result to the
considerations explained above. On the other hand, Alexandria lacks information since
we concentrate on a mapped subset of Freebase. According to the evaluation, the answer
“out of scope” is correct if the question cannot be answered using DBpedia.

Out of the 82 questions containing (any) erroneous results 63 belong to one of the
error classes mentioned above. The last two rows of Table 4 show the results for all
questions that do not belong to any of these error classes.

Acknowledgements

Research partially funded by the German Federal Ministry for Economics and Tech-
nology as part of the THESEUS research program18.

18 http://theseus-programm.de/en/about.php

86 M. Wendt, M. Gerlach, H. Düwiger

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia : a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(3) (2009)

2. Brants, S., Dipper, S., Hansen, S., Lezius, W., Smith, G.: The TIGER Treebank
In: Proc. of the Workshop on Treebanks and Linguistic Theories (2002)

3. Cimiano, P.: ORAKEL: A Natural Language Interface to an F-Logic Knowledge
Base. In: Proc. of the 9th International Conference on Applications of Natural
Language to Information Systems (NLDB) (2004) 401–406

4. Cimiano, P., Haase, P., Heizmann, J., Mantel, M.: Orakel: A portable natural
language interface to knowledge bases. Technical Report, University of Karlsruhe
(2007)

5. Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: an Interactive Way
of Querying Linked Data using Natural Language. In: Proc. of QALD-1 at
ESWC 2011

6. Elhadad, M., Robin, J.: SURGE: a Comprehensive Plug-in Syntactic Realization
Component for Text Generation. Technical Report (1998)

7. Hovy, E.: Methodologies for the Reliable Construction of Ontological Knowledge.
In: Proc. of ICCS 2005 91–106

8. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42 (1995) 741–843

9. Lopez, V., Motta, E., Uren, V.: PowerAqua: Fishing the Semantic Web. In: Proc.
of ESWC 2006 393–410

10. Lopez, V., Nikolov, A., Sabou, M., Uren, V., Motta, E., DAquin, M.: Scaling Up
Question-Answering to Linked Data. In: Cimiano, P., Pinto, H. (eds.): Knowledge
Engineering and Management by the Masses. LNCS 6317 (2010) 193–210

11. Nivre, J., Hall, J.: Maltparser: A language-independent system for data-driven
dependency parsing. In: Proc. of the 4th Workshop on Treebanks and Linguistic
Theories (2005) 13–95

12. Parsons, T.: Events in the Semantics of English: A study in subatomic semantics.
MIT Press (1990)

13. Pollard, C., Sag, I.: Information-based Syntax and Semantics, Vol. 1. CSLI Lecture
Notes 13 (1987)

QAKiS @ QALD-2

Elena Cabrio1, Alessio Palmero Aprosio2,3, Julien Cojan1,
Bernardo Magnini2, Fabien Gandon1, and Alberto Lavelli2

1 INRIA, 2004 Route des Lucioles BP93, 06902 Sophia Antipolis cedex, France.
{elena.cabrio, julien.cojan, fabien.gandon}@inria.fr

2 FBK, Via Sommarive 18, 38100 Povo-Trento, Italy.
{lavelli, magnini}@fbk.eu

3 Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, Italy.
alessio.palmero@unimi.it

Abstract. We present QAKiS, a system for Question Answering over
linked data (in particular, DBpedia). The problem of question interpreta-
tion is addressed as the automatic identification of the set of relevant re-
lations between entities in the natural language input question, matched
against a repository of automatically collected relational patterns (i.e.
the WikiFramework repository). Such patterns represent possible lexical-
izations of ontological relations, and are associated to a SPARQL query
derived from the linked data relational patterns. Wikipedia is used as the
source of free text for the automatic extraction of the relational patterns,
and DBpedia as the linked data resource to provide relational patterns
and to be queried using a natural language interface.

Keywords: Question Answering, Linked Data, relation extraction

1 Introduction

As the social web is spreading among people and the web of data continues to grow
(e.g. Linked Data initiatives), there is an increasing need to allow easy interactions
between non-expert users and data available on the Web. In this perspective we ad-
dress the development of methods for a flexible mapping between natural language
expressions, and concepts and relations in structured knowledge bases. Specifically,
we present QAKiS, the Question Answering system that we have submitted at the
QALD-2 evaluation exercise.

QAKiS, Question Answering wiKiframework-based System, allows end users to
submit a query to an RDF triple store in English and get results in the same language,
masking the complexity of SPARQL queries and RDFS/OWL inferences involved in

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

88 E. Cabrio, A. Palmero Aprosio, J. Cojan, B. Magnini, F. Gandon, A. Lavelli

the resolution, while profiting from the expressive power of these standards. In the
actual implementation, QAKiS addresses the task of QA over structured knowledge
bases (e.g. DBpedia), extracted from corpora in natural language. QAKiS builds on
top of previous experiences on QA over structured data in closed domains, particularly
the QALL-ME system [3], aiming at enhancing the scalability of the approach and its
portability across domains. A crucial issue in Question Answering over linked data,
and a major focus of the QAKiS system, is the interpretation of the question in order
to convert it into a corresponding query in a formal language (e.g. SPARQL). Most of
current approaches (e.g. PowerAqua [4]) base this conversion on some form of flexible
matching between words of the question and names of concepts and relations of a
triple store. However, a word-based match may fail to detect the relevant context
around a word, without which the match might be wrong. In our first participation at
QALD-2 we try to exploit a relation-based match, where fragments of the question are
matched to relational textual patterns automatically collected from Wikipedia (i.e. the
WikiFramework repository). The underlying intuition is that a relation-based matching
would provide more precision w.r.t. matching on single tokens, as done by current QA
systems on linked data.

2 WikiFramework patterns

Our QA approach makes use of relational patterns automatically extracted from Wiki-
pedia and collected in the WikiFramework repository [5]. Relational patterns capture
different ways to express a certain relation in a given language. For instance, the rela-
tion birthDate(Person, Date) can be expressed in English by the following relational
patterns: [Person was born in Date], [Person, (Date)], [Person, whose date of birth is
Date].

Goal of the WikiFramework is to establish a robust methodology to collect re-
lational patterns in several languages, for the relations defined in DBpedia ontology
(similarly to [2,6]). Therefore, following the semantic web RDF model, each relation is
represented by a set of triples 〈S, P,O〉 where S is the subject (domain) of the relation,
O is the object (range), and P (predicate or property) is the name of the relation. For
example, an instance of the crosses relation is:

<http://dbpedia.org/resource/Golden_Gate_Bridge>

<http://dbpedia.org/ontology/crosses>

<http://dbpedia.org/resource/Golden_Gate>

or using namespaces and prefixes:

dbr:Golden_Gate_Bridge dbo:crosses dbr:Golden_Gate

We assume that there is a high probability that the structured information
present in the Infobox (i.e. a table put in the right-hand corner of most of
Wikipedia articles providing a structured summary of information mentioned
in the text) is also expressed using natural language sentences in the same
Wikipedia page. Therefore as a first step, we collect all the triples for the 1296
DBpedia ontology relations: for each of them we extract the subject (e.g. Golden
Gate Bridge), and we automatically match each DBpedia relation with the

QAKiS @ QALD-2 89

Wikipedia pages whose topic is the same as the subject, and in which such rela-
tion is reported in the Infobox. For instance, given the relation crosses reported
above, the Wikipedia page about the Golden Gate Bridge is selected (Figure 1).

As a second step, we collect all the sentences in the selected Wikipedia pages
where both the strings of subject and object of the relation match. For instance,
in the page about the Golden Gate Bridge (Figure 1), the sentence “The Golden
Gate Bridge is a suspension bridge spanning the Golden Gate” is detected, since
both entities match (i.e. domain: Golden Gate Bridge, range: Golden Gate).
Such sentence is extracted and the subject and object are substituted with the
corresponding DBpedia ontology classes (i.e. for the relation crosses, Bridge
is the domain and River is the range). The pattern [The Bridge is a suspension
bridge spanning the River] is obtained and stored in a pattern repository.

Fig. 1. An example of Wikipedia page with infobox.

To increase the recall of the pattern extraction algorithm outlined above, we
apply different matching strategies. The first one involves the exact match of the
entire string (the subject), as provided by Wikipedia. If the algorithm does not
find such string, we clean it deleting the expressions between brackets, used to
disambiguate pages with the same title, as in “Carrie (novel)” and “Carrie (1976
film)”. In the final step, the original string is tokenized and lemmatized using
Stanford CoreNLP4 and, given the set of obtained tokens, a new string is built by
combining them (preserving the original word order). For instance, starting from
“John Fitzgerald Kennedy”, we obtain the new strings “John Fitzgerald”, “John
Kennedy”, “Fitzgerald Kennedy”, “John”, “Fitzgerald” and “Kennedy”. In case
of numeric or time ranges, we apply the entity extractor of Stanford CoreNLP,
and match the value in the extracted string with the given normalized value.

4 http://nlp.stanford.edu/software/corenlp.shtml

90 E. Cabrio, A. Palmero Aprosio, J. Cojan, B. Magnini, F. Gandon, A. Lavelli

Once the patterns for all relations are collected, we cluster them according to
the lemmas that are present between the domain and the range. Then, we sort
such patterns according to the frequency they appeared in Wikipedia pages, and
we wipe out: i) the ones whose frequency is less than 2, and ii) the ones that
contain only non discriminative words (e.g. punctuation marks, prepositions,
articles, etc. as in the pattern [Person (Date)]). Table 1 reports an extract of
the set of patterns collected for the relations spouse and crosses.

Table 1. Examples of patterns.

Relation Patterns

spouse Person wife Person

Person married Person

Person husband Person

crosses Bridge spanning River

Bridge bridge River

Bridge crossing River

As the last step, three sets of keywords for each relation are created, respec-
tively for most frequent tokens, lemmas and stems. Each set contains 20 words,
sorted by the frequency of presence in the collected patterns. To further improve
recall, we finally append to the sets of keywords the tokens, lemmas and stems
extracted from the CamelCase name of the relation (e.g. the tokens “birth” and
“date” are added to the keywords of the relation birthDate).

3 QAKiS system description

This section presents the architecture of QAKiS, and a step by step description
of the system work-flow.

3.1 System architecture

QAKiS is composed of two main components (as shown in Figure 2):

– the query generator is the entry point to the system: it reads the questions
from the input file, generates the typed questions to be matched with the
patterns (as explained in Section 3.2), and then generates the SPARQL
queries from the retrieved patterns (Section 3.3). If several SPARQL queries
are generated, the query with the highest matching score is selected among
those that have at least one result;

– the pattern matcher takes as input a typed question, and retrieves the pat-
terns (among those stored in the pattern repository) that match such ques-
tion with the highest similarity (Section 3.2).

QAKiS @ QALD-2 91

DBpedia

SPARQL

endpoint

EAT identifier

NE indentifier

Typed Question

generator

Property identifier

Query generator

Question file

parser

matcher

Pattern

Query selector

Pattern

Base

Pattern Matching

Query Generator

QA system

Fig. 2. QAKiS architecture.

3.2 Typed questions generation and pattern matching

The first version of QAKiS (with which we participated in the QALD-2 chal-
lenge) targets questions containing a Named Entity (NE) that is related to the
answer through one property of the ontology, as Which river does the Brooklyn
Bridge cross? (id=4, training set). According to our WikiFramework-based ap-
proach, such questions match a single pattern (i.e. one relation). Before running
the pattern matcher component, we replace i) the NE present in the question by
its types, and ii) the question keywords by the Expected Answer Type (EAT),
obtaining what we call a typed question (e.g. [River] does the [Bridge] cross?).
The answer can then be retrieved with a SPARQL query over a single triple. In
the following, each step of the system work-flow is explained in details.

EAT identification To implement a generic method for QA, we do not take
advantage of the attribute answertype provided by the QALD-2 organizers for
each question, to detect the EAT. Instead we implemented simple heuristics to
infer it from the question keyword, i.e. if the question starts with:

– “When”, the EAT is [Date] or [Time];
– “Who”, the EAT is [Person] or [Organisation];
– “Where”, the EAT is [Place];
– “How many”, the EAT is [nonNegativeNumber];
– either “Which”, “Give me all”, “List all”, we expect the EAT to be the terms

following the question keyword (we consider the longest term matching a
class label in the DBpedia ontology).

92 E. Cabrio, A. Palmero Aprosio, J. Cojan, B. Magnini, F. Gandon, A. Lavelli

NE identification Three strategies are followed, applied in a cascade order
(i.e. if a strategy fails, we try the next one):

1. we run the Named Entity Recognizer in Stanford Core NLP to identify the
NEs. If the question contains the label of an instance from the DBpedia
ontology, and this label contains one of the NEs identified by Stanford, then
we keep the longest expression containing it. This is usually the best option,
however we noticed that for many expressions containing “of” (e.g. mayor
of Berlin), it was better to keep only what comes after “of” (i.e. Berlin),
otherwise the page “Mayor of Berlin” (present in Wikipedia) is selected. In
such cases, we extract both NEs;

2. if Stanford does not recognize any NE, we look if it recognizes at least one
proper noun (whose Part of Speech is NNP). If this is the case, we take the
longest label in the DBpedia ontology containing it;

3. if the two first strategies fail, we just look for the longest DBpedia instance
label found in the question.

Typed questions generation Once the set of EATs and NEs are identified for
a question, the typed questions are generated by replacing the question keywords
by the supertypes of the EAT, and the NE by its types. For instance, for the
question “Who is the husband of Amanda Palmer?” (id=42, test set), as EAT
both [Person] or [Organisation] (both of them subclasses of [owl:Thing])
are considered. Moreover, the NE Amanda Palmer has type [MusicalArtist],
[Artist] and [owl:Thing]. All 9 typed questions are generated.

WikiFramework pattern matching Before pattern matching, stopwords in
the typed questions are deleted, and stems, lemmas and tokens are extracted.
A Word Overlap algorithm is then applied to compare the stems, lemmas, and
tokens of questions with the patterns and keywords for each relation. A similarity
score is provided for each match: the highest represents the most likely relation.

3.3 Generation of SPARQL queries

A set of patterns is retrieved by the pattern matcher component for each typed
question (we restrict the number of patterns retrieved to 5 per typed ques-
tion). The patterns retrieved for all the typed questions are sorted by decreasing
matching score. For each of them, one or two SPARQL queries are generated,
either i) select ?s where{?s <property> <NE>}, ii) select ?s where{<NE>
<property> ?s} or iii) both, according to the compatibility between their types
and the property domain and range. Such queries are then sent to the SPARQL
endpoint. As soon as a query gets results, we return it; otherwise we try with
the next pattern, until a satisfactory query is found or no more patterns are
retrieved.

QAKiS @ QALD-2 93

4 Results on QALD-2 data

In this section we present and discuss QAKiS’ performances on extracting correct
answers for natural language questions (provided by the QALD-2 challenge) from
DBpedia. Given a certain question, QAKiS carries out a fully automatic process
(Section 3), and as output specifies both a SPARQL query and the answers, as
obtained querying the SPARQL endpoint provided by the challenge organizers.5

Table 2 reports on the evaluation both on QALD-2 training and test set, with
respect to precision, recall and f-measure. Furthermore, statistics are provided
with respect to the number of questions for which QAKiS found an answer, and
among them, the number of correct and partially correct answers.

Table 2. QAKiS performances on DBpedia data sets

DBpedia

Training set Test set

Precision 0.476 0.39

Recall 0.479 0.37

F-measure 0.477 0.38

answered questions 40/100 35/100

right answers 17/40 11/35

partially right answers 4/40 4/35

4.1 Error analysis and discussion

As introduced before, the current version of QAKiS addresses questions express-
ing only one relation between the subject (the entity in the question) and the
object of the relation (the Expected Answer Type). More precisely, for now the
subject must be a NE (that QAKiS recognizes as described in Section 3.2). Even
if the strategies we defined for NER seem to correctly recognize most of the NEs
present in the questions, a module for coreference resolution should be added to
capture e.g. the DBpedia entry Juliana of the Netherlands from the question:
In which city was the former Dutch queen Juliana buried? (id=89, test set).
Moreover, the strategy we added to deal with cases such as the mayor of Berlin,
i.e. consider as NE both the one recognized by Stanford NER and the longest
instance of the DBpedia ontology containing it, fails to correctly capture the
book title in Who wrote the book The pillars of the Earth?, since patterns that
match with a higher score are found for Earth (the NE recognized by Stanford).

Most of QAKiS’ mistakes concern wrong pattern matching, i.e. the highest
similarity between a typed question (generated as described in Section 3.2) and
patterns in the pattern repository, is provided for patterns expressing the wrong

5 http://greententacle.techfak.uni-bielefeld.de:5171/sparql

94 E. Cabrio, A. Palmero Aprosio, J. Cojan, B. Magnini, F. Gandon, A. Lavelli

relation. As described in Section 3, such similarity is calculated using a Word
Overlap algorithm. We plan to substitute such algorithm with more sophisticated
approaches, to consider also the syntactic structure of the question.

Another problem we faced concerns the fact that patterns (and questions)
can be ambiguous, i.e. two questions using the same surface forms can in fact
refer to different relations in the DBpedia ontology (e.g. Who is the owner of
Universal Studios? relies on the relation owner for answer retrieval, while in
Who owns Aldi? the correct answer is the subject of the relation keyPerson). A
possible solution could be clustering similar relations (with several patterns in
common), so that the system tries to find an answer for all the relations in the
cluster, and selects the relation providing a non null answer.

Considering the ontology we rely on for relation extraction and answer re-
trieval, QAKiS addresses only the questions tagged by QALD-2 organizers as
onlydbo:true (i.e. where the query relies solely on concepts from the DBpedia
ontology). Surprisingly, in a few cases we were also able to provide correct an-
swers for questions tagged onlydbo:false, e.g. in What is the time zone of Salt
Lake City? (id=58 test set), matching the relation timeZone, or in Give me all
video games published by Mean Hamster Software (id=71, training set), match-
ing the relation publisher (since such company develops only video games).

Most of the partially correct answers we provide concern questions consid-
ering more than one relation, but for which QAKiS detects only one of them
(due to the actual version of the algorithm). For instance, for Give me all people
that were born in Vienna and died in Berlin. (id=19, test set), we retrieve and
list all the people that died in Berlin. We plan to target such kind of questions
in a short time, since the two relations are easily separable. On the contrary,
more complex strategies should be thought to deal with questions with a more
complex syntactical structure, as Who is the daughter of Bill Clinton married
to? (id=3, training set), for which at the moment we answer with the name of
Bill Clinton’s wife (we match only the relation spouse).

We plan short term solutions for boolean questions as Is the wife of president
Obama called Michelle? (id=7, training set): we correctly match the relation
spouse but we provide as answer Michelle Obama, instead of the boolean true.

5 Conclusions

This paper describes our first participation to the QALD-2 open challenge us-
ing the QAKiS system, a QA system over linked data (in particular, DBpedia)
based on the WikiFramework approach. In general, the results we obtained using
the proposed approach are in line with other systems’ results, fostering future
research in this direction. Due to the high variability and complexity of the
task, much work is still to be done, and improvements should be planned on
different fronts: i) extending the WikiFramework pattern extraction algorithm
following [6], ii) improving the NE detection strategy, and addressing also ques-
tions whose subject is a class and not a specific NE (e.g. What is the longest
river? (id=15, test set); iii) investigating the applicability of the Textual En-

QAKiS @ QALD-2 95

tailment approach (a framework for applied semantics, where linguistic objects
are mapped by means of semantic inferences at a textual level [1]) to improve
the question-pattern matching algorithm; iv) addressing boolean and questions
requiring more than one relation, to increase the system coverage. Finally, future
work will also address the issue of natural language answer generation.

References

1. Dagan, I., Dolan, B., Magnini, B., Roth, D. (2009), Recognizing textual entailment:
Rational, evaluation and approaches, in JNLE vol. 15 (4), pp. i-xvii.

2. Gerber, D., Ngonga Ngomo, A.C. (2011), Bootstrapping the Linked Data Web, in
1st Workshop on Web Scale Knowledge Extraction ISWC 2011, Bonn, Germany.

3. Ferrandez, O., Spurk, C., Kouylekov, M., Dornescu, I., Ferrandez, S., Negri, M.,
Izquierdo, R., Tomas, D., Orasan, C., Neumann, G., Magnini, B., Vicedo, J.L.
(2011), The QALL-ME Framework: A specifiable-domain multilingual Question An-
swering architecture, in Web Semantics: Science, Services and Agents on the World
Wide Web journal, vol. 9 (2), pp. 137-145.

4. Lopez V., Uren V., Sabou, M., Motta, E. (2011), Is Question Answering fit for the
Semantic Web?: a Survey, in Semantic Web - Interoperability, Usability, Applica-
bility journal, vol. 2(2), pp. 125-155.

5. Mahendra, R., Wanzare, L., Bernardi, R., Lavelli, A., Magnini, B. (2011), Acquir-
ing Relational Patterns from Wikipedia: A Case Study, in Proceedings of the 5th
Language and Technology Conference, Poznan, Poland.

6. Wu F., Weld, D.S. (2010), Open information extraction using Wikipedia, in Pro-
ceedings of ACL, Uppsala, Sweden.

A System Description of Natural Language
Query over DBpedia?

Nitish Aggarwal and Paul Buitelaar

Unit for Natural Language Processing, Digital Enterprise Research Institute,
National University of Ireland, Galway

{nitish.aggarwal,paul.buitelaar}@deri.org

Abstract. This paper describes our system, which is developed as a first
step towards implementing a methodology for natural language query-
ing over semantic structured information (semantic web). This work fo-
cuses on interpretation of natural language queries (NL-Query) to fa-
cilitate querying over Linked Data. This interpretation includes query
annotation with Linked Data concepts (classes and instances), a deep
linguistic analysis and semantic similarity/relatedness to generate poten-
tial SPARQL queries for a given NL-Query. We evaluate our approach on
QALD-2 test dataset and achieve a F1 score of 0.46, an average precision
of 0.44 and an average recall of 0.48.

Introduction

The rapid growth of Linked Data offers a wealth of semantic data for facilitating
a interactive way to access the Web. However, Linked Data also brings several
challenges in providing a flexible access over the Web for all users. Structured
query languages like SPARQL provide the capability of accessing these this data,
but these languages are restricted to the vocabulary defining the data. This data
should be easily searchable and consumable for casual users to query in their na-
tive language, similar as with traditional web of documents through web search
engines for document search.

In order to facilitate NL-queries over Linked Data, we implemented a basic
pipeline that includes entity annotation, a deep linguistic analysis and semantic
similarity/relatedness. This pipeline is very similar to the system implemented

? This work is supported in part by the European Union under Grant No. 248458
for the Monnet project and by the Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2).
Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

A System Description of Natural Language Query over DBpedia 97

by Freitas A. et.al. [1], which is based on the a combination of entity search, a
Wikipedia-based semantic relatedness (using Explicit Semantic Analysis) mea-
sure and spreading activation. However, our work focuses additionally on a deep
linguistic analysis and categorization of a NL-Query. For example, a given NL-
Query, such as ”who designed the Brooklyn Bridge”, is first categorized as a
person- type query and, then the verb ”designed” is modified to ”designer”. We
also further investigate the approaches used for computing semantic similarity
and relatedness.

Query Interpretation Approach

In our system, the interpretation of NL-Query is driven by semantic match-
ing between Linked Data vocabulary and terms appearing in the NL-Query, to
construct a SPARQL query. A well- interpreted SPARQL query from a given
NL-Query can overcome the semantic gap between user- described queries and
Linked Data vocabularies.

This includes three components:, namely query annotation, a deep linguis-
tic analysis and semantic similarity/relatedness as shown in Fig.1. We describe
below these components by taking an example NL-Query over the DBbpedia
dataset.

Fig. 1. Query interpretation pipeline for an example NL-Query ”Who is the daughter
of Bill Clinton married to?”.

Query Annotation The interpretation process starts by identifying the po-
tential entities, i.e. DBpedia instances and classes present in the NL-Query. For
identifying these entities, we created two separate lucene indices, one for la-
bels & URIs of all DBpedia instances and other one for all DBpedia classes.
Annotating a NL-Query includes the extraction of keywords by removing stop
words and identification of possible DBpedia classes followed by identification
of DBpedia resources by performing keyword search over both lucene indices.
After identifying potential resource labels, we perform disambiguation to recog-
nize the most appropriate DBpedia resource URI, as there are multiple URIs
for the same DBpedia resource label. The disambiguation is performed by re-
trieving wikiPageRedirects URIs, if the recognized URI redirects to any other

98 N. Aggarwal, P. Buitelaar

DBpedia resource URI, e.g. in our system ”Bill Clinton” is identified as URI
”http://dbpedia.org/resource/BillClinton” which redirects to the right URI of
label ”Bill Clinton” i.e. ”http://dbpedia.org/resource/Bill Clinton”.

Linguistic Analysis A deep linguistic analysis is performed by generating a
parse tree and typed dependencies by using the Stanford parser. Generated parse
trees provides a phrase extraction for identifying them as potential DBpedia re-
sources or DBpedia classes. For instance, in our example query, the phrase ”Bill
Clinton” is identified as a noun phrase. It suggests us to perform a lucene search
over the whole phrase ”Bill Clinton” rather than separate searches for ”Bill” and
”Clinton”.

We convert the given NL-Query into an ordered list of potential terms by
using typed dependencies generated by the Stanford parser. For creating this
ordered list, first we select a central term among all the identified terms, where
the central term is the most plausible term to start matching of a given NL-Query
to the vocabulary appeared in the DBpedia graph. This selection is performed
by prioritizing the DBpedia resources over DBpedia classes. Then, we retrieve
the direct dependent terms of this central term following the generated typed
dependencies and add them into the ordered list. Similarly, we perform the same
for all the other terms in the list. For instance, in our example NL-Query, firstly,
the system identifies ”Bill Clinton” as a central term and then ”daughter” as
direct dependent of ”Bill Clinton” followed by ”married” as direct dependent of
”daughter” shown in Fig.1.

Semantic Similarity and Relatedness A semantic similarity can be defined
on the basis of taxonomic (is-a) relations of two concepts, while relatedness covers
a broad range of relations, e.g. meronym and antonym. In our problem space, we
want to get the best semantic match of terms appearing in the NL-Query to the
vocabulary of the DBpedia dataset. We can not however rely solely on semantic
similarity measures (as in our example NL-Query), as we can see relatedness can
better map the term ”married” on and the retrieved property ”spouse” as they
are semantically related terms but not semantically similar.

To find the best semantic match we are investigating two approaches for
semantic relatedness, i.e. Wikipedia based Explicit Semantic Analysis (ESA) [2]
and a semantic relatedness measure based on WordNet structure [3]. Due to
the computational cost involved in getting the relatedness measure using ESA,
currently we are experimenting with measures based on WordNet only.

Evaluation

To evaluate over approach, we calculate average precision, average recall and F1
score of the results obtained by our approach on QALD-2 test dataset, which
includes 100 NL-Queries over DBpedia. The results are shown in Table 1.

A System Description of Natural Language Query over DBpedia 99

Total Answered Right Partially right Avg. Precision Avg. Recall F1

100 80 32 7 0.44 0.48 0.46

Table 1. Evaluation on QALD-2 test dataset of 100 NL-Queries over DBpedia

Conclusion and Future Work

This paper presented a system for natural language querying over Linked Data,
which includes query annotation, a deep linguistic analysis and semantic simi-
larity/relatedness. Currently, our approach does not fully explore all the types of
queries appeared in dataset as it consists more challenging complex NL-Queries
such as SPARQL aggregation and ask type queries. Future work will concentrate
on improving the annotation step with better handling linguistic variations and
a sophisticated semantic similarity/relatedness measures by that taking contex-
tual information into account.

References

1. Freitas, A., Oliveira, J. G., O’Riain, S., Curry, E., Da Silva, J. C. P.: Querying linked
data using semantic relatedness: a vocabulary independent approach. In: Proc. of
NLDB’11 (2011)

2. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-
based Explicit Semantic Analysis. In: Proc. of IJCAI 2007

3. Pirró, G.: A semantic similarity metric combining features and intrinsic information
content. Data Knowl. Eng. 68(11) (2009) 1289–1308

TypeCraft:
Collaborative Databasing and Resource Sharing

for Linguists

Dorothee Beermann1 and Pavel Mihaylov2

1 Norwegian University of Science and Technology, Trondheim, Norway
dorothee.beermann@hf.ntnu.no

2 Ontotext, Sofia, Bulgaria
pavel@ontotext.com

Abstract. We present a linguistic application that uses web technolo-
gies to promote the reuse of research data in the form of Interlinear
Glossed Text (IGT), which is a well-established data format within philol-
ogy and the structural and generative fields of linguistics. Here we present
the modules and procedures of the online database TypeCraft.3 IGT is a
sought after commodity in NLP and an integral part of scholarly linguis-
tic work. It not rarely represents the only structured data available for
less-resourced or endangered languages. While archiving of structured
data from endangered languages is already well on its way [2], the free
creation and exchange of linguistic data in the form of linked IGTs still
needs to gain in popularity.

1 Introduction

With more linguists interested in the description of endangered and less-described
languages, we see a rising interest in the electronic creation and management of
linguistic data. Distinct from computational approaches to language annotation,
where tagging of language data serves to facilitate automatic processing, anno-
tation by linguists is meant for human consumption. TypeCraft (TC), the tool
we are going to present here, is specialised on the creation, management and
exchange of Interlinear Glossed Text (IGT), exemplified by an example from
Runyankore Rukiga (ISO 639-3,nyn), a Lacustrine language of the Great Lakes
area in Uganda:

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
In: C. Unger, P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, R. Cyganiak (eds.): Pro-
ceedings of Interacting with Linked Data (ILD 2012), Workshop co-located with the
9th Extended Semantic Web Conference, Heraklion, Greece, 28-05-2012, published
at http://ceur-ws.org

3 www.typecraft.org

TypeCraft: Collaborative Databasing and Resource Sharing for Linguists 101

Omu nju hakataahamu abagyenyi
òmù njù hàkàtààhàmù àbàgyéngỳı
Omu
in

n ju
CL9 house

ha ka taah a mu
CL16 PST enter IND LOC

a ba gyenyi
IV CL2 visitor

PREP N V N
‘In the house entered visitors’

At present the main hindrance for IGTs to be a prime linguistic resource is
the still prevalent lack of glossing standards. In-depth manual linguistic annota-
tion is time consuming and often cyclic since it is an integral part of a scientific
discovery process. A tool facilitating this process needs to allow for partial an-
notation It further needs to take into consideration that linguistic annotation
is often distributive work done in close collaboration between native speakers
and linguists, so that a tool that can be used independently by all partners has
to cater to the needs of users with different levels of linguistic expertise and
computer literary.

The discussion is organised as follows: In Section 2, we present the TypeCraft
system from a user perspective. We discuss the creation and management of
IGT and outline how collaborative online databasing can contribute to making
linguistic data re-usable and mobile. In Section 3, we give a system description
and in Section 4, we will summarise, and outline future work.

2 TypeCraft

TypeCraft (TC) [1] consists of a relational database combined with a tabular
text editor for the computer-aided manual annotation of text. The tool’s outer
wrapper is a customised mediawiki which serves as a general entrance port and
collaboration tool. The list below gives an overview over TC’s main functionali-
ties:

Annotation
Manual import of continuous text or sentence collections
Tabular interface for word level glossing with automatic sentence break-up and direct access to

pre-defined gloss-sets
Easy access to gloss definitions and linking to an online ontology of grammatical concepts
Data management
Wiki facilitated management of primary data and metadata
Easy navigation between primary and annotated data
Easy linking of data to the TC-wiki for an integrated multi-media representation of data
Collaboration
Graded access and individual work spaces: the user decides which data is shared, TC texts and

phrases have their own URL and thus can be acquired and exchanged freely online
User groups can share data
Co-editing of TC-wiki pages for early dissemination
Data export
Export of annotated sentences (individuals or sets) to Microsoft Word, Open Office and LaTEX

for paper publications. Print-friendly versions of the TypeCraft web pages including exported
database material

Export of XML for automatic data processing

2.1 General Information

While other manual annotation tools designed for normal linguists are desktop
systems,4 TC is a multi-user online system. Users administer their own data in

4 The other tools are Toolbox and FLEx, both developed by SIL.

102 D. Beermann, P. Mihaylov

their private space at TC, but they can also make use of other users’ shared data.
TC is loaded by directing a browser5 to www.typecraft.org. We use standard wiki
functionality to direct the user to the database via New text, My texts, and Text-
or Phrase search. My texts displays the user’s repository of annotated material,
called ’Texts’. My texts, the user’s private space, is divided into two sections: Own
texts and Shared texts. This reflects the graded access design of TC. Texts can
be shared between groups. Data-sets can be easily exchanged between users and
co-edited in user-groups. Interlinear Glosses can be loaded to the TC-wiki where
they are displayed as part of a TC-wiki page. Under the printing of wiki pages
TC data export automatically. One additional feature is that wiki-import from
the TC database gets automatically updated when the database changes. As a
collaborative tool, TC tries to utilise the effect of collaboration for the further
standardisation of linguistic glosses. Glossing rules are conventional standards
and one way to spread them is to make them easily accessible at the point where
they are actively used. TC insists that annotators use a pre-defined set of glosses
which are rooted in the Leipzig Glossing Rules [5], but have been extended to
meet the needs of annotation in a more multi-lingual setting. We have grouped
all glosses into annotation classes and mapped them to the GOLD (General
Ontology for Linguistic Description) via URI-pointers. GOLD has been created
as a tool to facilitate a more standardised use of basic grammatical features [3].
Through the linking to GOLD, TC users can relate annotations to grammatical
concepts and to find relevant bibliographic resources as they annotate.

At present TC has 300 users, and the number is growing at a steady pace.
We started 2012 with 13 000 annotated phrases from 97 mostly African lan-
guages. Since 2005 the TypeCraft system is under constant development and
the planning of new development is based on the feed-back from system users
and interested colleagues. Most of the active TypeCraft users are junior linguists
and graduate students, mostly working on a less-resourced languages. TypeCraft
is user driven. At present 54.2% of the data in the TC database remains private
due to pending publication. However, also part of that data is partially repre-
sented on TC-wiki pages most of which were created by users of the system.
A feature liked by many users is the possibility to join an annotation group.
Through workshops and regular classes in linguistic text annotation new user
groups can discover the tool. In addition, TypeCraft has proven to be a use-
ful tool for e-learning for linguists. The TC wiki Classroom namespace contains
several examples of classroom collaborations involving TC.

2.2 The TypeCraft Editor

After having imported a text into the TC Editor, which is easily accessed from
the TC sites navigation bar (New text), the text is run through a simple, but
efficient sentence splitter. The user can then select via mouse click one of the
phrases to enter into the annotation mode. The system distinguishes between
translational, functional and part-of-speech glosses. Properties can be assigned

5 TC runs in Firefox, Chrome, Safari and Opera.

TypeCraft: Collaborative Databasing and Resource Sharing for Linguists 103

to linguistic phrases as well as to words or morphemes. Under Construction de-
scription the user can add notes and write down open questions which are stored
together with the rest of the annotations in the XML-schema. The possibility to
report and retrieve notes is an important feature of an annotation tool which is
in particular needed at the beginning of an analysis, for collaborative annotation
and when new layers of annotation are added to previous annotations.

The annotation interface is a table. Information is ordered horizontally (the
phrase and the free translation) and vertically, so that words and morphs are
aligned with their baseform and their part of speech, as well as their gloss. TC
assumes that free class morphemes are annotated for meaning while closed class
items receive a gloss. Phrases in TypeCraft are Url encoded data and thus can
be exchanged with other web applications. For further processing TC data can
be exported as XML.

The system prompts the user for the Lazy Annotation Mode.6 Manual anno-
tation is further added by making TC-tags accessible from the TCwiki navigation
bar as well as by drop-down menu under annotation. Other important resources,
such as Ethnologue [4] can be directly reached from the TC Editor.

Since TypeCraft uses Unicode, every script that the user can produce on
the PC can be entered into the browser. As of recent, TypeCraft offers the
transliteration of Mandarin Chinese and Telugu, a Dravidian language of India,
to make data that has been entered into the database using the original script
more widely accessible. The export of data to the main text editors is one of
the services that TC offers. TC tokens can be exported to Microsoft Word,
OpenOffice.org Writer and LaTeX, which allows easy integration of databased
material into the user’s favourite text editing software. Although annotating in
TypeCraft is still time consuming it is the re-usability of data that pays off.
Export can be selected from the text editing window or from the SEARCH
interface.

2.3 TypeCraft Search

A TypeCraft search operates on phrases, which means that the result of a query is
a phrase level representation. Each line (or block) of the search result represents a
linguistic phrase. In our experience, search results consisting of lists of sentences
can be evaluated more easily by humans than lines of concordances. Search
results come in two flavours, either as lines of sentences which allow a first
quick scan of the data, or as blocks of IGTs which give the linguist access to
the sentence internal annotations. Using general browser functionality, search
results can be easily scanned. TypeCraft allows for complex searches on several
tiers from the search interface where words or morphemes queries can relatively
freely be combined with a search for specific glosses or combinations of glosses
co-occurring either in a phrase, or on a word or a morpheme. Visitors of TC can
at present search freely in the 45% of the private data on TypeCraft that has
been made available for general search.

6 Lazy Annotation Mode (LAM) is a function that automatically enriches annotation
tables with word related information already known to the database.

104 D. Beermann, P. Mihaylov

3 System Description

TypeCraft is a based on a remote server and a web-based client running locally in
the user’s browser. The various components of the system and their interactions
are shown in Figure 1.

Fig. 1. TypeCraft architecture

3.1 Server

The TC server consists of a Java server application running in Tomcat, Me-
diaWiki running in Apache, and a PostgreSQL database. The Apache server
acts as a single entry point for both MediaWiki and the TC server applica-
tion. MediaWiki has been extended with various extensions to enable specific
TC functionality, such as My texts, Phrase search and TC search. The login is
handled by MediaWiki but once authorised it will be shared with the TC server

TypeCraft: Collaborative Databasing and Resource Sharing for Linguists 105

application. This guarantees TC will only divulge data for which the logged in
user has permission.

Storage and data model TC uses PostgreSQL for data storage. The data
mapping between Java objects and database tables is managed by Hibernate so
the system is not bound to any specific SQL database. TC data can be divided
into two specific groups:

– Common data: pos tags, gloss tags, global tags, ISO 639-3 languages. This
is data shared between all annotated tokens and users.

– Individual data: texts, phrases, words and morphemes, together with their
annotation. This is data specific to each user.

Individual data items reference common data items. E.g. everyone who uses the
pos tag n will share the reference to a single common tag n.

3.2 Client

The user interacts with TC through a web-based interface. The interface consists
of the customised MediaWiki content and a text-and-phrase editor (TC editor).
The MediaWiki content provides wiki pages, wiki search, as well as the TC-
specific functions mentioned previously. The editor is used to edit texts and
phrases and assign annotation to phrases. It is written entirely in JavaScript
and builds a GUI using HTML elements. The editor opens in separate browser
window and is not directly connected to the MediaWiki content. The present
GUI uses the YUI library and a large amount of TC-specific code. An important
point is that for the end-user, TC is a single web application integrating the wiki
and the editor.

4 Summary and Outlook

Setting it apart from the other main linguistic tools in its category, TC focuses
on collaboration and the exchange of annotated linguistic data in the form of
IGT. TC is low-tech on the outside. Non-computer-oriented linguists, language
specialists and language communities can start using it almost instantly. While
other linguistic software makes use of forums, blogs and other social software
to service their user communities, TypeCraft IS social software. It is a powerful
tool, however its real potential resides in its user community. Active users pro-
mote the creation and exchange of IGT, they link their data and contribute in
this way to the availability, connectedness and quality of linguistic data.

One of the difficulties we faced over time was how to extend the data model
when there are new requirements, or when a specific group needs a slightly
different annotation model. Another issue is how to integrate TC annotations
with third-party annotations on another level of the same data, e.g. audio and

106 D. Beermann, P. Mihaylov

video. We believe the right way to solve these issues is to switch to an RDF-
based data model that will allow us to be flexible and also allow us to benefit
from existing Linked Open Data (e.g. reference annotated tokens to WordNet).
This will also open possibilities to create open RDF-based standards for linking
heterogeneous annotations.

References

1. Beermann, D., Mihaylov, P.: e-Research for Linguists. In: Proc. of the 5th ACL-
HLT Workshop on Language Technology for Cultural Heritage, Social Sciences,
and Humanities (2011) 24–32

2. Broeder, D., Sloetjes, H., Trilsbeek, P., Van Uytvanck, D., Windhouwer, M., Wit-
tenburg, P.: Evolving challenges in archiving and data infrastructures. In: Nau,
H. N., Schnell, S., Wegener, C. (eds.): Documenting endangered languages: Achieve-
ments and perspectives (2011) 33–54

3. Farrar, S., Langendoen, T.: A linguistic ontology for the Semantic Web. GLOT
International 7(3) (2003) 97–100

4. Ethnologue: Languages of the World. http://www.ethnologue.com/web.asp
5. Leipzig Glossing Rules. Max Planck Gesellschaft (2010)

http://www.eva.mpg.de/lingua/resources/glossing-rules.php

Author Index

Aggarwal, Nitish, 96
Aprosio, Alessio Palmero, 87

Beerman, Dorothee, 100
Brunetti, Josep Maria, 22
Buitelaar, Paul, 96

Cabrio, Elena, 87
Ciravegna, Fabio, 61
Cojan, Julien, 87

d’Aquin, Mathieu, 9
Düwiger, Holger, 75

Elbedweihy, Khadija, 61
Ell, Basil, 50

Gandon, Fabien, 87
Gerlach, Martin, 75
Gil, Rosa, 22

Graćıa, Roberto, 22

Harth, Andreas, 36

Kämpgen, Benedikt, 36

Lavelli, Alberto, 87

Magnini, Bernardo, 87
Mihaylov, Pavel, 100

O’Riain, Sean, 36

Simperl, Elena, 50

Vrandečić, Denny, 50

Wendt, Matthias, 75
Wrigley, Stuart N., 61

