
Extracting Relevant Subgraphs from Graph

Navigation

Valeria Fionda1, Claudio Gutierrez2, Giuseppe Pirró1

1 KRDB, Free University of Bozen-Bolzano, Bolzano, Italy
2 DCC, Universidad de Chile, Santiago, Chile

Abstract. The main goal of current Web navigation languages is to retrieve
set of nodes reachable from a given node. No information is provided about the
fragments of the Web navigated to reach these nodes. In other words, informa-
tion about their connections is lost. This paper presents an efficient algorithm
to extract relevant parts of these Web fragments and shows the importance of
producing subgraphs besides of sets of nodes. We discuss examples with real
data using an implementation of the algorithm in the EXpRESs tool.

Key words: Navigation, Subgraph extraction, Linked Open Data

1 Introduction

Daisy is a researcher interested in a new topic. She is aware of a relevant paper and to
find other relevant papers she starts looking at the bibliographic references within. Af-
ter manually browsing for a while this graph of citations, for instance by using Google
Scholar, and reaching a relevant paper she wonders: how this particular paper has been
reached? How it is connected with the original paper? How two other relevant papers
encountered during the navigation are linked in this citation graph? The problem be-
comes more challenging with automatic navigation where Daisy, by using one of the
existing navigation languages (e.g., NautiLOD [3]), can write a complex expression
involving the traversal of several data sources. For instance, she wants to collect in
the FOAF graph people she knows directly or indirectly that are interested in her new
topic. While current graph navigation languages enable to retrieve this set of people,
they do not provide information about the structure of the fragment of the FOAF
graph where Daisy is linked with these people.

These examples underline the need to augment current navigation languages with
capabilities to extract fragments (i.e., subgraphs) of the graphs being navigated besides
of sets of nodes. Solving this problem is not trivial: there can be an exponential number
of paths connecting a seed node with each node reachable according to a navigation
expression. Besides, only relevant paths should be kept in the fragment. In a Web
setting, which is the focus of this paper, the problem becomes even more challenging
since the graph structure is discovered during the navigation.

We present an efficient algorithm to extract Web fragments, describe its pseudo-code
and report on its complexity. We present some real world examples to motivate the need
of having fragments besides of sets of nodes. Although we focus on the Web, our results
are valid for any other graph navigation language. The algorithm has been implemented
in the EXpRESs tool available online at http://swget.wordpress.com/express.

2 Real World Examples

We present some examples with real data to underline the importance of extracting
graph fragments besides of sets of nodes. In Section 3 we describe an efficient algorithm
to achieve this goal. The algorithm has been implemented in the EXpRESs tool, which
also enables to visualize Web fragments. To illustrate the examples, we use the following
subset of the NautiLOD language [3] through which it is possible to specify navigation
expressions with semantic control over the data sources visited.

path ::= pred | path[test] | (path)? | (path)⇤ | (path|path) | path/path
pred ::= an RDF predicate
test ::= an ASK-SPARQL query

Example 1 (Co-author subgraph). Daisy wants to extract the co-author subgraph of
Alberto Mendelzon (AM) up to depth 2 only with publications between 1980 and 1990.
The following NautiLOD expression enables to retrieve the set of AM’s co-authors.

dblp:Alberto_O._Mendelzon -p (<foaf:maker>/Q/<foaf:maker>)<2-2>

where Q=[ASK {?p<dc:issued> ?y.FILTER(?y>1980. ?y<1990).}] serves to keep only
papers, reached by expanding the predicate <foaf:maker>, published in the interval
considered. The notation <2-2> means that the expression within parentheses is re-
peated two times. From papers reached after evaluating Q it is possible to get their
authors, which are direct or indirect co-authors of AM. This expression enables to
collect the set of co-authors. However, information about their connections is lost. For
instance, while R. Fagin and J. Ullman appear in the results, it is not possible to know
whether they are direct or indirect co-authors of AM or through which sequence of
papers they are connected. On the other hand, EXpRESs enables to extract the Web
fragment shown in Fig. 1 where it can be observed that AM, R. Fagin and J. Ullman
are direct co-authors in 1982 of a paper appeared in the TODS journal.

Alberto
Mendelzon

Jeffrey D.
Ullman

Ronald
Fagin TODS1982

A Simplified Universal
Relation Assumption and

its Properties

Fig. 1. An excerpt of the co-author subgraph from Alberto Mendelzon.

Example 2 (Related work subgraph). Daisy is interested in query and navigation
languages for the Web. She is aware of the paper Querying the World Wide Web pub-
lished in 1998 and writes a navigation expression to find papers up to 2 cite-link away.
She decides that only papers having some keywords in the title have to be considered.
As citation data are not completely available as linked data, HTML data and links can
be exploited. By using Google Scholar identifiers for papers, the following NautiLOD
expression cast in the standard Web enables to find papers that respect the criteria.

scholar:scholar?cluster=12837463148248684776 -p(<citedBy>/Q)<2-2>

where Q=[title.contains(“Quer*,Web”)] exploits the function title.contains to
check if the title of a paper contains specific words. The first part of the expression is
the URL associated to the paper Querying the world Wide Web while <citedBy> is the
label associated to HTML href links pointing to papers citing a given paper. Even in
this example, while the paper Formal Models of Web Queries is in the result set, Daisy
cannot see its connections. EXpRESs enables to extract and visualize the fragment
including citation paths that lead from the initial paper to this paper. This fragment
provides Daisy with an overview on the topic. For sake of space we do not report the
results, which are online available at http://swget.wordpress.com/express.

3 Extracting Relevant Subgraphs

As discussed before, there is the need to enhance current graph navigation languages
with capabilities to deal with Web fragments. We discuss the case of the NautiLOD
language even if the same reasoning applies to any other graph query language. The
semantics of NautiLOD [3] has been modified for outputting subgraphs instead of set
of URIs. Each NautiLOD expression e has associated a Non Deterministic Finite state
Automaton (NFA) A, whose size is linear in the size of the expression |A| = O(|e|). The
NFA A is used to recognize the strings (i.e., concatenations of RDF predicates that lead
to a result) that belong to the language defined by e. The evaluation of an expression
is done in two steps. The first step corresponds to the building of a Web fragment
G containing all the triples encountered during the navigation (Algorithm 1). Nau-
tiLOD expressions are memoryless, which means that at each step of their evaluation
information about previous “states” is not carried on. Thus, G contains several useless
paths, that is, paths for which no final states of the automaton have been reached.
Cleaning G in order to maintain only meaningful paths is the aim of the second step
performed by the extraction algorithm (Algorithm 2). The desideratum is a subgraph
G⇤ induced only by the set of paths matching e. To achieve this goal two data structures
are needed: i) a hash-table-like structure S where the key is a uri u 2 G and the value
is a set of automaton states at which u has been reached; ii) a data structure F , the
same as S, where only final states are added. To access the set of states for a uri u we
use the notation S(u) (resp., F (u)). S and F are populated in the evaluate algorithm
(Algorithm 1, lines 4-6), and are exploited by the extract algorithm (Algorithm 2) that
keeps only relevant parts of G, thus obtaining G⇤.

The space complexity of both S and F is O(|V | · |e|), where V is the number of
URIs in G. The overall space complexity is O(|V | · |e| + |E| + |Ea|)) where E is the
number of edges in G and |Ea| is the number of edges in the NFA A. The overall time
complexity is O(|V | · |e|2).

Algorithm 1: evaluate(NautiLOD expression e)
Input: NautiLOD expression e, seed URI seed
Build: G= RDF graph including all the triples retrieved, Automaton A, Data Structures S and F

1 A= build the NFA from e;
2 add the pair < seed, A.initial > to the set of pairs to be looked-up;

3 while there is a pair < u, qk > to be looked up s.t. < u, qk > has not been yet looked up do
4 add qk to S(u);
5 if qk is final then
6 add qk to F (u);
7 descr = dereference(u)
8 for each transition <qk, p, qj> in the NFA A do
9 if the triple (u, p, u0) or (u0, p, u) 2 descr then

10 add the triple (u, p, u0) or (u0, p, u) to G;

11 add the pair < u0, qj > to the set of pairs to be looked up;

12 for each transition <qk, ✏, qj> in the NFA A do
13 add the pair < u, qj > to the set of pairs to be looked up;

14 for each transition <qk, test, qj> in the NFA A do
15 if test evaluates true over descr then
16 add the pair < u, qj > to the set of pairs to be looked up;

Algorithm 2: extract(Graph G, Set S, Set F, Automaton A)
Input : RDF graph G; Sets of states and final states S,F ; NFA A associated to an expression

Output: G⇤
= RDF subgraph of G containing only paths from the seed to URIs in the results

1 for each pair (u, qk) s.t. qk belongs to F (u) and (u, qk) has not been already processed do
2 for each transition <qj , p, qk> in the NFA A do
3 if the triple (u0, p, u) or (u, p, u0) 2 G and the state qj 2 S(u0) then
4 add qj to the set of final states F (u0);
5 add the triple (u0, p, u) or (u, p, u0) to G⇤

;

6 for each transition <qj , ✏, qk> in the NFA A do
7 add qj to the set of final states F (u);
8 for each transition <qj , test, qk> in the NFA A do
9 if qj 2 S(u) then

10 add qj to the set of final states F (u);
return G⇤

;

4 Related Work

The main goal of current Web navigation languages is to retrieve set of nodes. Infor-
mation about the structure of subgraphs spanned by these nodes is lost. Note that
SPARQL CONSTRUCT builds graphs from collections of nodes that do not reflect the
structure of the navigation. Extracting this subgraph structure is challenging: a naive
approach remembering all the paths is not feasible since they can be exponential in
number. In a Web context this is even more challenging since the structure of the graph
being navigated is not known a priori. We presented an efficient subgraph extraction
algorithm for NautiLOD that can be extended to any other graph query language. It
has been inspired by Earley’s parser for Context-free Grammars [2]. It is also related
to some work in XPath (e.g., XPlainer [1]). The main difference is that our approach
deals with (a priori unknown) graphs instead of (known) trees.

References

1. Consens M. P., Liu J. W. S., Rizzolo F.: XPlainer: Visual Explanations of XPath Queries.
In Proc. of ICDE, pp. 636-645, (2007).

2. Earley, J.: An Efficient Context-Free Parsing Algorithm. CACM, 13(2), pp. 94-102, (1970).
3. Fionda V., Gutierrez C., Pirró G.: Semantic Navigation on the Web of Data: Specification

of Routes, Web Fragments and Actions. In Proc. of WWW, pp. 281-290, (2012).

