
Security agility solution independent of the
underlaying protocol architecture?

Valter Vasić and Miljenko Mikuc

University of Zagreb, Faculty of Electrical Engineering and Computing,
Unska 3, 10000 Zagreb, Croatia

{valter.vasic, miljenko.mikuc}@fer.hr

Abstract. Cryptographic protocols are constantly exposed to new at-
tack methods. When some cryptographic protocol gets exposed there
is a need to replace it. This is hard because most cryptographic pro-
tocols are hard coded in applications. Applications should implement a
way of negotiating cryptographic protocols used. In that way old and
vulnerable protocols could be easily replaced with new ones. The agile
cryptographic negotiation protocol (ACNP) proposed in this paper repre-
sents a layer-agnostic, robust solution that can be deployed for providing
cryptographic agility and greatly improve security. It provides minimal
communication overhead and represents a universal and secure solution
independent of the communication layer and application that uses it.

1 Introduction

Cryptographic protocols represent the main tools to achieve a secure environ-
ment in network communications. Symmetric cryptography is used to ensure se-
crecy, asymmetric cryptography provides for signing and authentication whereas
hash algorithms ensure data integrity. A combination of all these types of algo-
rithms is needed for securing network communication. Digital signatures and
HMACs (Hash Message Authentication Code) are examples of these combina-
tions. Digital signatures are a combination of hash functions and public key
cryptography. HMACs represent a tool for providing integrity, where the mes-
sage is concatenated with a common secret, and then hashed. HMACs exploit
the possibility of two nodes to generate a common secret to protect future com-
munication, such as Diffie-Hellman.[1]

A wide range of cryptographic protocols is available for each cryptographic
method. Newer and better algorithms are introduced constantly. At the same
time new and more efficient attacks against the existing algorithms are found
and thus become less secure. This problem can be solved by using cryptographic
protocol agility which would enable the introduction of newer protocols without
changing specifications and implementations of communication protocols.

As cryptographic protocols become less and less secure during time so do the
protocols that use them. A fair number of protocols (SEND [2], GSM, CDMA)

? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).



use only one hard coded version of cryptographic protocols that has been spec-
ified when the protocol was designed. This could automatically make the pro-
tocol vulnerable when the used version of the cryptographic protocol has an
efficient attack against it. Similar problems are happening to the GSM protocol
because the cipher, A5, has successful attacks against it. The static cryptographic
protocol definition problem is already recognized and solved in specific proto-
cols like the SSL(Secure Sockets Layer)/TLS(Transport Layer Security)[3][4],
SSH(Secure Shell)[5] protocol and IPsec protocol [6]. However these protocols
can assure security just for a specific application (SSH for a remote shell and
data transfer) or on a specific layer (SSL/TLS only works on the application
layer while IPsec works only on the IP layer).

One of the possible pitfalls of SSL/TLS and IPsec is the aim to provide a
whole security solution and implement both the negotiation algorithm and the
needed cryptographic algorithms. This greatly complicates the whole implemen-
tation and possible deployment.

This paper recommends a new negotiation protocol that enables the possi-
bility to negotiate cryptographic protocols instead of deciding upon and using
only one version of the needed cryptographic protocols. This would enable the
usage of cryptographic protocols just from the aspect of what they provide.
Lets assume that a designer wants to assure integrity for the messages that are
transferred through the network. For assuring integrity a cryptographic hash
algorithm should be used. The negotiation protocol would negotiate the pre-
ferred version of the needed protocol and forward the agreed protocol to the
application. The negotiation would be integrated in the application and would
greatly simplify and secure the protocol that is being designed as it prevents the
usage of an outdated protocol. It creates an abstract layer for the programmer
who could use cryptographic protocols as a tool without thinking of the specific
implementations and versions.

2 Background

Signature algorithm agility is introduced in [7]. [8] argues the benefits of hash
agility in the SEND protocol, a security extension for the ND protocol in IPv6.
It proposes a negotiation approach which could be used for determining which
hash algorithms should be used for securing communication using the SEND
protocol. An interesting notion is also the usage of predefined suites which could
simplify negotiation and achieve a complete set of cryptographic protocols with
less communication overhead.

The SSH specification [9] introduces a way to negotiate algorithms for which
we can assume that works well because it is thoroughly tested. A list of acceptable
algorithms is exchanged in order of preference. The chosen algorithm must be
the first algorithm on the client’s list that is also on the server’s list. If there is
no such algorithm, both sides must disconnect.

On the other hand [5] addresses the need for every SSH server host to have
it’s own key so that each server can be unambiguously identified. The client must



have a priori knowledge of the servers key. Two different trust models can be
used:

– The client has a local database that associates each host name with the cor-
responding public host key. This method requires no centrally administered
infrastructure, and no third-party coordination. The downside is that the
database of name-to-key associations may become burdensome to maintain.

– The hosts name-to-key association is certified by a trusted certification au-
thority (CA). The client only knows the CA root key, and can verify the
validity of all host keys certified by accepted CAs.

The usage of public key for host communication enables a secure environment
for communicating and negotiating cryptographic protocols.

Cryptographic and security agility solutions have been provided for managing
security protocols in a private (corporate) network. [10][11] The main obstacles
of deploying such solution in a distributed manner is the centralized architecture
that depends on a single system that distributes and manages security prefer-
ences throughout the network. A similar system that attempts to distribute
symmetric cryptographic keys in an Active Directory managed network is also
dependent on the domain controllers. [12]

3 Cryptographic agility

The notion of cryptographic agility enables the improvement and adaptation of
new cryptographic algorithms opposed to the currently specified fixed selection
of cryptographic algorithms. Cryptographic agility would mitigate the problems
of transitioning to a newer version of a cryptographic protocol which is thor-
oughly analyzed in [13]. Agility coupled with a well tested negotiation protocol
enables data protection through cryptographic protocols by mitigating the in-
teroperability issues between communicating network nodes. The importance of
agility has been acknowledged even in older protocols such as ATM [14]. Cryp-
tographic agility has also been proposed to be implemented on boards based on
FPGAs [15].

3.1 Negotiation principles

Negotiation methods are the same as in the SSH protocol. The SSH protocol
has a server side and a client side. In this protocol the client is the side that
initiates the negotiation, whereas the server is the other host. The basic idea
of the negotiation protocol can be found in [16]. An example will be shown to
illustrate the behavior.

Before the algorithm lists can be exchanged the hosts need to pass through
the initial leap of faith [17] and accept their respective public keys. When the
keys are acquired they can digitally sign the messages that are needed in the
negotiation process. This is done only once for a specific host or until its IP



address or public key change. The same procedure is needed in the SSH protocol
when the hosts communicate for the first time.

The initiating host (client) supports the following hash algorithms and prefers
to use them in the following order:

1. SHA-256
2. SHA-512
3. SHA-1
4. MD5

The other host (SSH server) supports hash algorithms in this order:

1. SHA-1
2. SHA-256
3. MD5

Although it’s unconventional to place the less secure SHA-1 protocol before the
SHA-256 protocol such ordering may be enforced by a security policy that is
commonly present in an enterprise environment.

An illustration of the message exchange is shown in figure 1.

Fig. 1. Negotiation message exchange



After the ordered list of protocols is exchanged between the hosts the decision
is made as follows. The first item that is on the clients list and is also present
on the server list is the SHA-1 protocol, which will be chosen for usage in the
application that initiated the negotiation. Since negotiation in the SSH protocol
is just the beginning part there is no need for additional confirmation. In the
negotiation protocol it is necessary to send a confirmation message to confirm
the decision or an abort message if the nodes couldn’t agree on an algorithm.

The list could be further enhanced by introducing weight values to the algo-
rithms in the algorithm list. This can increase granularity and facilitate creating
custom lists that abide by a specific security policy.

4 Negotiation protocol

The placement of the Agile cryptographic negotiation protocol (ACNP) in the
TCP/IP stack could be anywhere in the IP protocol stack. It can be deployed
directly above the data link layer, above the IP layer, and above the transport
layer (TCP, UDP, SCTP, ...). UDP is a good choice since it removes the hand-
shake overhead caused by TCP and simplifies message delimiting. Lower layers
are similar to UDP but remove the additional header data (UDP, IP header) On
the other hand TCP provides a guaranteed delivery of messages. The choice of
the layer is left to the programmer integrating the Agile Cryptographic Negoti-
ation Protocol (ACNP) in an another protocol. The ACNP implementation will
provide the possibility to use IP and Ethernet layers and the most widely used
transport protocols (TCP, UDP, SCTP). An illustration of the protocol stack
can be seen in figure 2.

Fig. 2. Agile cryptographic negotiation protocol stack

The first message that is sent from the initiating host contains the following
components:

– Random Sequence Number (RSN) - Random value computed by the client
before sending the initial message. This number will be a primitive session



identifier. It will be present only in the first message, but it will be hashed
for the digital signature in the other messages following the initial message.

– Host Identifier (HID) - A simple ID used for host identification. It is gen-
erated as a hash from the host public key and the application specific host
discriminator. In the future the HID could be generated from more data to
give a higher level of security.

– Algorithm List (AL) - List of algorithms in the preferred order as a delimited
string. The algorithm list is divided by algorithm types.

– Digital Signature (DS) - message hash encrypted with the senders private
key so that the message could be authenticated on the receiving side and
could not be changed without detection.

The other host then replies with its own algorithm list, host identifier and digital
signature. After this step both sides know which protocol they will use. To
confirm this the initiating host sends an OK message to end the negotiation.

4.1 Data structures

Each ACNP side must have a data structure to hold the list of public keys of
other communicating hosts. The structure would be similar to the known hosts

file used in the SSH protocols for storing hosts with whom the client previously
communicated. The structure is filled on the first communication with a host.
Two additional messages are exchanged as a part of the first negotiation. This
two messages contain the initiating host public key and the other host pub-
lic key respectively. After this initial exchange the hosts can safely negotiate
cryptographic protocols.

Host_ID1:Pub_key1: Alg_type1:Alg_choice1:Timeout

Alg_type2:Alg_choice2:Timeout

.

.

.

Host_ID2:Pub_key2: Alg_type3:Alg_choice3:Timeout

Alg_type2:Alg_choice4:Timeout

.

.

.

Fig. 3. Agile Cryptographic Negotiation Protocol hosts data structure

This structure could also have the previously negotiated preferred protocols
to minimize the need to renegotiate protocols through time. The previously ne-
gotiated algorithms could also be stored by the application using ACNP. An
example of the ACNP hosts data structure, with the record of previously nego-
tiated protocols, is shown in figure 3. The structure also has a Timeout value



which can be configured in the implementation. The aim of the timeout value is
to enable renegotiation after a certain amount of time to enhance security and
change to a new cryptographic algorithm.

4.2 Hash and public key algorithms used to secure negotiation

To secure the negotiation the messages need to be secured by using at least two
algorithms:

– A hash algorithm to ensure integrity and generate host IDs
– A public key algorithm that will be used for message signing

For hashing messages the Secure Hash Algorithm that has a fixed output of
256 bits is used (SHA-256). Host IDs will also be generated using the SHA-256
algorithm.

For digital signatures the RSA algorithm is used and a minimal 2048 bit key
length must be used. Also the public host keys that are exchanged need to be
at least 2048 bit long. Host private and public key must be generated before
the first negotiation. It is important to safely store the host private key to avoid
security breaches within the ACNP.

In the future implementations the proposed hash and public key protocols
will be changed to more secure and up to date versions of the same protocols,
i.e. SHA3-256 for generating hashes and ECDSA-256 for public key encryption.

Although the algorithms need to be changed in the future the negotiation
mechanism exchanges only three messages. This significantly prolongs packet
collection for a potential brute force attack against the cryptographic algorithms
used for negotiation.

4.3 Message formats

Figure 1 shows the three messages used for negotiation. This messages have the
following formats:

– Acronym explanations

• RSN - Random sequence number
• HID - Host identifier
• AL - Algorithm list
• EpubC - Public key encryption with public key from C (client)
• EpubS - Public key encryption with public key from S (server)

– Message 1 :

RSN,HIDC , ALC , EpubS(Hash(RSN,HIDC , ALC))

– Message 2 :

HIDS , ALS , EpubC(Hash(RSN + 1, HIDS , ALS))



– Message 3 :

HIDC , OK,EpubS(Hash(RSN + 2, HIDC , OK))

If the communicating sides can’t agree on a cryptographic protocol two abort
messages are provided to replace the second and third message respectively:

– Abort 1 :

HIDS , ABORT,EpubC(Hash(RSN + 1, HIDS , ABORT ))

– Abort 2 :

HIDC , ABORT,EpubS(Hash(RSN + 2, HIDC , ABORT ))

Figure 4 shows the message exchange with the abort messages.

Fig. 4. Negotiation message exchange with abort messages

5 Protocol and security considerations

For the protocol to function properly the code regarding cryptographic func-
tions must be agile. Agile code only defines a required cryptographic function
like hash, symmetric encryption or asymmetric encryption and enables dynamic
specification of algorithms that are to be used. This is the main prerequisite for
the ACNP to be efficient and deployable.



An efficient way for fetching supported algorithms list is needed. The sup-
ported algorithms list may depend on the operating system, programming lan-
guage and their currently used versions. Fetching mechanisms will differ based
on the OS and programming language. It is essential to create a fetching pro-
cedure that enables the usage of new and enhanced versions of protocols after
system updates that affect a systems ability to use security algorithms. ACNP
is by design independent of the operating system on which it is used.

Depending on the transport protocol that is used the specific implementa-
tions need different approaches. A TCP session failure is easy to detect, whereas
an UDP communication needs to have timeouts to detect communication prob-
lems. An UDP packet is easier to spoof than a message in a TCP session.

Timeouts and connection limits should also be present to mitigate resource
attacks as system resources are needed to keep track of current negotiations.
Lower layer mechanisms could be used to prevent attack but that depends only
on the deployment environment. Replay attacks should be mitigated by treating
the random sequence number as a nonce field and drop all packets that have
the same RSN field as messages before. For that purpose all initial RSN values
should be stored.

While the negotiation process is protected the initial public key exchange
still remains vulnerable to denial of service attacks. The attacker could change
the key along the way since the key exchange isn’t protected.

6 Conclusion

While creating an application a designer must take into account the security risks
of exposing data that is exchanged through the network. To mitigate these risks
cryptographic algorithms can be used. Most applications end up having fixed
cryptographic algorithms or a badly implemented negotiation protocol. This
problem is solved by introducing the Agile cryptographic negotiation protocol
(ACNP) which enables the negotiation and introduction of new and updated
versions of cryptographic protocols. The ACNP uses the principles from the
SSH protocol which is widely deployed and tested. It translates those principles
into a peer to peer environment so that it can be used between any two nodes
for negotiating and introducing newly supported cryptographic algorithms.

References

1. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C. 2nd edn. John Wiley & Sons, Inc., New York, NY, USA (1995)

2. Arkko, J., Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery (SEND).
RFC 3971, Internet Engineering Task Force (March 2005)

3. A. Freier, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Version 3.0.
RFC 6101 (Proposed Standard) (August 2011)

4. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol version 1.2.
RFC 5246 (Proposed Standard) (August 2008)



5. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251
(Proposed Standard) (January 2006)

6. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301,
Internet Engineering Task Force (December 2005)

7. Cheneau, T., Laurent, M., Shen, S., Vanderveen, M.: Signature Algorithm Agility
in the Secure Neighbor Discovery (SEND) Protocol. draft-cheneau-csi-send-sig-
agility-02 (June 2010)

8. Vasic, V., Kukec, A., Mikuc, M.: Deploying new hash algorithms in secure neighbor
discovery. In: Software, Telecommunications and Computer Networks (SoftCOM),
2011 19th International Conference on. (September 2011)

9. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. RFC
4253 (Proposed Standard) (January 2006)

10. Petkac, M., Badger, L., Morrison, W.: Security agility for dynamic execution
environments. DARPA Information Survivability Conference and Exposition, 1
(2000) 0377

11. Petkac, M., Badger, L.: Security agility in response to intrusion detection. In: Pro-
ceedings of the 16th Annual Computer Security Applications Conference. ACSAC
’00, Washington, DC, USA, IEEE Computer Society (2000) 11–

12. T. Acar, M. Belenkiy, L. Nguyen, and C. Ellison: Key Management In Distributed
Systems (2010)

13. Bellovin, S.M., Rescorla, E.K.: Deploying a new hash algorithm. (2005)
14. Tarman, T., Hutchinson, R., Pierson, L., Sholander, P., Wirzke, E.: Algorithm-

agile encryption in atm networks. Computer 31(9) (sep 1998) 57 –64
15. Paar, C., Chetwynd, B., Connor, T., Deng, S.Y., Marchant, S.: An algorithm-

agile cryptographic co-processor board on fpgas. PROCEEDINGS- SPIE THE
INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING (1999)

16. Mikuc, M., Vasić, V., Brčina, S., Kovačević, L., Marić, M., Marini, T., Pokornić,
V., Vežnaver, R.: NgP agreement protocol (croatian). (May 2012)

17. Arkko, J., Nikander, P.: Weak authentication: How to authenticate unknown prin-
cipals without trusted parties. In Christianson, B., Crispo, B., Malcolm, J., Roe,
M., eds.: Security Protocols. Volume 2845 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2004) 57–66


	Security agility solution independent of the underlaying protocol architecture

