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Abstract. In this paper we present a generalization of the ASPIC ar-
gumentation system, where a rule can be associated with a probability.
This probability expresses uncertainty about whether or not the partic-
ular rule is active. We call this system p-ASPIC. The uncertainty about
rules carries over to uncertainty about whether or not a particular argu-
ment is active. We generalize the usual Dung-style abstract argumenta-
tion semantics, in order to deal with this uncertainty. Our work should
be understood as an initial step in the direction of probabilistic, instan-
tiated, Dung-style argumentation, and we discuss a number of directions
for future work.

1 Introduction

Dung’s famous ’95 paper [9] introduced a model of non-monotonic reasoning
that, given a non-monotonic formalism, is based on the three-step procedure of
(1) argumentation framework generation, (2) evaluation of arguments and (3)
extraction of conclusions. That is, from a knowledge base, an argumentation
framework is generated, consisting of arguments and attacks; this framework is
evaluated in order to determine which arguments are acceptable; and from a set
of acceptable arguments, we can extract conclusions that follow from the initial
knowledge base. The main reason of the model’s appeal is the fact that the com-
plicated task of determining which conclusions can be non-monotonically derived
from a knowledge base is reduced to the relatively simple task of selecting ar-
guments from a framework. That is, on the instantiated level, we specify how to
generate a framework, and on the abstract level, we deal only with the arguments
and attacks, without looking at the actual content of the arguments. This Dung-
style argumentation model has been used with a number of non-monotonic for-
malisms. One of the most general ones is the ASPIC argumentation system [15].

In this paper we look at a problem that has received little attention so far,
namely the problem of reasoning under uncertainty using the Dung-style argu-
mentation model. In some respect, non-monotonic reasoning is already reasoning
under uncertainty. That is, we want to derive conclusions under incomplete or
uncertain knowledge. This knowledge comes in the form of defeasible rules, which
we do not want to accept as strict rules, or in the form of assumptions, which
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we do not want to accept as facts. This defeasibility, sometimes made more ex-
pressive, as in the ASPIC system, by using of preferences over rules (see also [1,
13]) is a form of qualitative uncertainty. However, uncertainty is often expressed
quantitatively, using probability theory. It is not clear how to deal with this
kind of uncertainty, within the Dung-style argumentation model, and this is the
problem that we address in this paper.

On the abstract level, we extend the notion of a framework to that of a
probabilistic framework. This is an argumentation framework supplemented with
a probability distribution over sets of arguments. Furthermore, we generalize the
usual notion of an acceptance function, in order to evaluate the arguments of a
probabilistic framework, and we show how it can be used to determine, given a
probabilistic framework, the probability of skeptical and credulous acceptance
of an argument.

On the instantiated level, we take as a basis a simplified version of the ASPIC
argumentation system. This simplified version has also been considered in [6, 7],
and it consists of the fragment of ASPIC dealing only with strict rules, defeasible
rules, rebutting attack and undercutting attack. We call this system ASPIC-Lite.
The approach that we take is simple: we associate with each strict and defeasible
rule a probability. This probability is associated with the event that the rule is
active, and may be applied in an argument. We finally show how to generate a
probabilistic framework given a p-ASPIC theory.

The work presented in this paper should be understood as an initial step in
the direction of probabilistic, instantiated, Dung-style argumentation. There are
many open issues and possible directions for future work.

The outline of this paper is as follows. In section 2 we focus on the abstract
level, and present first the familiar concepts of Dung-style argumentation: ar-
gumentation frameworks, labelings and acceptance functions. Then we present
our probabilistic generalizations of these concepts, namely that of probabilistic
frameworks, along with a method of determining the probability that arguments
are skeptically or credulously accepted. In section 3 we turn to the instanti-
ated setting, and we present a generalization of the ASPIC-Lite argumentation
system, which we call p-ASPIC. This section defines how we can generate an in-
stance of a probabilistic framework. In section 4.1, we turn again to the abstract
level, where we demonstrate the evaluation of the arguments of a probabilistic
framework, generated from a p-ASPIC theory. Finally, before we present our
conclusions in section 7, we discuss in section 5 a number of open problems and
in section 6 we give an overview of related work.

2 Formal preliminaries

2.1 Dung-style abstract argumentation theory

Dung-style argumentation theory centers on the concept of an argumentation
framework (in short framework). A framework consists of a set of arguments
and a binary attack relation, representing conflicts among arguments.



Definition 1. An argumentation framework F is a pair (Args,Att), where
Args is a finite set of arguments, and where Att ⊆ Args × Args is called the
attack relation.

Given a framework, we are interested in which arguments we can simultane-
ously accept. The answer is given in the form of a labeling, that represents an
evaluation of the arguments of the framework.

Definition 2. Given a framework F = (Args,Att), a labeling is a function
L : Args → V , where V = {I, U,O}. We denote the set of all labelings of F

by Lall
F . If L is a labeling of F then L−1 : V → 2Args, where 2Args denotes the

power set of Args, is defined by L−1(v) = {a ∈ Args | L(a) = v}.

An argument labeled I, O or U (for in, out or undecided) is, respectively,
accepted, rejected or neither accepted nor rejected. A function that takes as input
a framework and returns a set of labelings, is called an acceptance function:

Definition 3. An acceptance function is a function A that returns, for any

framework F , a set A(F ) ⊆ Lall
F .

Different types of acceptance functions can be defined, each corresponding to
an argumentation semantics that embodies a particular set of rationality criteria.
The properties of conflict-freeness and admissibility are usually considered to be
the minimum requirements:

Definition 4. Given a framework F = (Args,Att), we say that a labeling L ∈
Lall
F is conflict-free1 iff: @(a, b) ∈ Att s.t. L(a) = L(b) = I; and admissible iff:
∀a ∈ Args, L(a) = I implies ∀(b, a) ∈ Att, L(b) = O and L(a) = O implies
∃(b, a) ∈ Att s.t. L(b) = I. We denote the set of conflict-free and admissible

labelings of F by Lcf
F and Aad

F , respectively.

Another property is completeness. It states that an argument is labeled I if
and only if all attackers are labeled O, and that an argument is labeled O if and
only if there is an attacker labeled I.

Definition 5. Given a framework F = (Args,Att), we say that a labeling L is
complete if and only if:

1. L(a) = I if and only if ∀(b, a) ∈ Att, L(b) = O.
2. L(a) = O if and only if ∃(b, a) ∈ Att, L(b) = I.

Note that complete labelings are also conflict free and admissible. Among
the complete labelings, we can select those that satisfy certain properties, such
as having a maximal set of arguments labeled I or U , or having no argument
labeled U . The main types of acceptance functions are now defined as follows:

1 Different definitions of conflict-free labelings exist. In [3], a conflict-free labeling
is defined by the condition that, ∀a ∈ Args, L(a) = I implies @(b, a) ∈ Att s.t.
L(b) = I, and L(a) = O implies ∃(b, a) ∈ Att s.t. L(a) = I. Our definition is the
same as in [8].



Definition 6. The complete acceptance function, denoted by Aco, is defined to
return all complete labelings of F . The preferred, grounded and stable acceptance
functions, denoted by Apr,Agr and Ast, respectively, are defined as follows.

– Apr(F ) = {L ∈ Aco
F | @K ∈ Aco(F ),K−1(I) ⊃ L−1(I)}

– Agr(F ) = {L ∈ Aco
F | @K ∈ Aco(F ),K−1(U) ⊃ L−1(U)}

– Ast(F ) = {L ∈ Aco
F | L−1(U) = ∅}

Given a framework (Args,Att), a set of arguments B ⊆ Args and a semantics
sem, two basic types of queries that can be answered are:

– Skeptical acceptance: Is, for all labelings returned by Asem(F ), at least one
argument a ∈ B labeled I?

– Credulous acceptance: Is, for at least one labeling returned by Asem(F ), at
least one argument a ∈ B labeled I?

Note that we consider acceptance of sets rather than single arguments be-
cause we may have that, in the instantiated setting presented in section 3, mul-
tiple arguments have the same conclusion. We are then interested in skeptical
and credulous acceptance of a conclusion, rather than an argument, and we need
to look at the set of all arguments with this conclusion.

2.2 Probabilistic Dung-style argumentation theory

In the previous section, we introduced the basic concepts of the theory of ab-
stract argumentation theory. We now consider a probabilistic generalization of
these concepts. Given a framework (Args,Att), there may be uncertainty about
whether or not an argument a ∈ Args is active. This uncertainty may arise, for
example, from:

– Uncertainty of evidence. Individual pieces of evidence, on which an ar-
gument is based, may be uncertain. This uncertainty carries over to the
argument. So the probability that the argument is active is the probability
that the evidence is true.

– Opponent modeling. If we use a framework to model the knowledge of
an opponent (e.g. in the setting of an argumentation game), we may be un-
certain about which arguments the opponent is aware of. So the probability
that the argument is active is the probability that the opponent is aware of
the argument.

To represent this kind of uncertainty, we introduce the concept of a probabilistic
framework :

Definition 7. A probabilistic framework is a pair PF = (F, P ), where F =
(Args,Att) is a framework and P : 2Args → [0, 1] is a probability distribution
over sets of arguments, called framework states, such that

∑
C∈2Args P (C) = 1.



A framework state C corresponds to the event that all (and only) the ar-
guments in C are active. We do not know which framework state C ⊆ 2Args is
active; we only know its probability P (C). We say that an argument a is active
(resp. inactive) in C if a ∈ C (resp. a 6∈ C).

Example 1. Consider the probabilistic framework (F, P ) with F = (Args,Att),
where Args = {a, b}, R = {(a, b), (b, a)}. Thus, we have four framework states:
C1 = ∅, C2 = {a}, C3 = {b} and C4 = {a, b}. Suppose the probability that a is
active is 0.4 and that b is active is 0.5, and that these events are independent.
The probability distribution over framework states is then defined by P (C1) =
P (C3) = 0.3 and P (C2) = P (C4) = 0.2.

The way we evaluate the arguments of the framework F , given a state C, is
straightforward. We apply the criterium of completeness with the proviso that all
inactive arguments are labeled O. More precisely, given a state C, an argument
is labeled I if and only if it is active and all attackers are labeled O or is labeled
O if and only if it is inactive or there is an attacker labeled I. We thus end up
with a notion of completeness given a framework state C:

Definition 8. Given a framework (Args,Att) and a framework state C ⊆ Args,
we say that a labeling L ∈ Lall is complete given the framework state C iff:

1. L(a) = I if and only if a ∈ C and ∀(b, a) ∈ Att, L(b) = O.
2. L(a) = O if and only if either a 6∈ C or ∃(b, a) ∈ Att, L(b) = I.

We can now define the conditionally complete, preferred, grounded and stable
acceptance functions, that take as input a framework and a framework state:

Definition 9. Given a framework F , the conditionally complete, preferred, grounded

and stable acceptance functions2 CAco
F ,CApr

F ,CAgr
F and CAst

F are defined by:

– CAco(F,C) = {L ∈ Lall
F | L is complete given C}.

– CApr(F,C) = {L ∈ CAco
F (C) | @K ∈ CAco

F (C),K−1(I) ⊃ L−1(I)}
– CAgr(F,C) = {L ∈ CAco

F (C) | @K ∈ CAco
F (C),K−1(U) ⊃ L−1(U)}

– CAst(F,C) = {L ∈ CAco
F (C) | L−1(U) = ∅}

Now we generalize the two basic types of queries. Given a probabilistic frame-
work ((Args,Att), P ), a semantics sem and a set B ⊆ Args, we can ask:

– What is the probability that B is skeptically accepted?
– What is the probability that B is credulously accepted?

Loosely speaking, the probabilities of skeptical and credulous acceptance can
be understood as lower and upper bound probabilities, where the differences
between the two arise from conflicts among arguments. The probabilities are
calculated as follows.
2 The concept of a conditional acceptance function presented here is similar to the one

presented in [4], with some difference in notation. More precisely, our CAx(F,C) is
equivalent in [4] to CAx

F ([L]F ), where L1(I) = C and L1(O) = Args \ C.



Definition 10. Let PF = (F, P ) be a probabilistic framework, F = (Args,Att),
B ⊆ Args a set of arguments and sem a semantics. The probability of skeptical
acceptance, denoted P semskep(B), is defined by:

P semskep(B) =
∑

{C∈2Args|∀L∈CAsem(F,C),∃a∈B,L(a)=I}

P (C)

The probability of credulous acceptance, denoted P semcred(B), is defined by:

P semcred(B) =
∑

{C∈2Args|∃L∈CAsem(F,C),∃a∈B,L(a)=I}

P (C)

In words, the definitions above amount to: the probability of skeptical (resp.
credulous) acceptance of B is the sum probability of all framework states in
which B is skeptically (resp. credulously) accepted.

Example 2. (Continued from 1) First, if we look at the framework F , we can
see that both {a} and {b} are credulously accepted but not skeptically accepted,
under the complete semantics. Let us now look at the probability of credulous
and skeptical acceptance under the complete semantics, given the probabilis-
tic framework (F, P ). We have that the set {a} is skeptically accepted only
given framework state C2 and the set {b} only given framework state C3. Hence
P co
skep({a}) = P (C2) = 0.2 and P co

skep({a}) = P (C3) = 0.3. The set {a} is credu-
lously accepted in the framework states C2 and C4 and {b} in C3 and C4. Hence
P co
cred({a}) = P (C2) + P (C4) = 0.4 and P co

cred({b}) = P (C3) + P (C4) = 0.5.

We are now equipped to deal with uncertainty of arguments on the abstract
level, using the concept of a probabilistic argumentation framework. In the fol-
lowing section, we present an instantiation that generates a probabilistic frame-
work, called p-ASPIC. That is, we define a logical language to specify a p-ASPIC
theory, which includes rules associated with probabilities, and we specify how we
can construct a probabilistic framework from such a theory. After that we return
to the issue of evaluating the arguments of a probabilistic framework, where we
apply the concepts introduced here, to a probabilistic framework generated by
the p-ASPIC system.

3 p-ASPIC: ASPIC with probabilities

We present here a generalization of the ASPIC-Lite system that supports rules
associated with a probability. We call it p-ASPIC. Let L be a logical language
which is closed under negation and let − : L → L be defined by −φ = ψ, if
φ = ¬ψ, and −φ = ¬φ, otherwise. In the ASPIC-Lite system, knowledge is
represented using two types of rules: strict rules, of which the conclusion always
holds, if the premises hold, and defeasible rules, of which the conclusion holds
defeasibly, if the premises hold. Here, we associate the rules with a probability,
and we call them p-rules.



Definition 11. A p-rule is a rule of the form Φ →x
p ψ, where Φ ⊆ L is the

antecedent and ψ the consequent, x ∈ {s, d} the type, and p ∈ (0, 1] is the
probability of the rule. Given a rule Φ →x

p ψ we say that it is a strict p-rule if
x = s and a defeasible p-rule if x = d.

Throughout this text, we either write Φ →x
p ψ, where x ranges over any of

the two types of rules, or Φ→s
p ψ and Φ→d

p ψ, to denote a strict and defeasible
p-rule in particular. Our notation is different from that in [6, 7], where strict rules
are written using→ and defeasible rules using⇒. We adopt the type parameter
for notational convenience.

The probability p, associated with a p-rule Φ →x
p ψ, is interpreted as the

probability that the rule is active. As we hinted at before, such probabilities
may arise from:

– Uncertainty of evidence. It may be uncertain whether or not a fact or
rule is a valid constituent of an argument. So the probability that a rule is
active is the probability that the rule is valid.

– Opponent modeling. If we use a framework to model the knowledge of
an opponent (e.g. in the setting of an argumentation game), we may be
uncertain about which rules the opponent is aware of. So the probability
that the argument is active is the probability that the opponent is aware of
the rule.

Note that we assume that there are no rules with zero probability. For a rule
that is certain, i.e. has a probability of 1, we omit the probability and simply
write Φ→x ψ. A p-theory is a set of p-rules:

Definition 12. A p-theory is a set R of p-rules. We denote by D(R) the set of
defeasible rules in R and by S(R) the set of strict rules in R.

In the ASPIC-Lite system, a theory is assumed to be closed under transpo-
sition of strict rules and to be consistent. These requirements are necessary to
enforce certain coherence requirements on the output of the ASPIC-Lite system
(we refer to [5] for details). We define these properties below. Again,we deviate
slightly from [6, 7]. We do not assume R to be closed under transposition of strict
rules, and R to be consistent. Rather, we require that the closure of R under
transposition of strict rules is consistent. Furthermore, we require another prop-
erty, not considered in the normal ASPIC-Lite system, namely non-redundancy
of strict rules. This means that R is minimal, in that R does not contain trans-
positions of other rules in R. Formally:

Definition 13. Let P ⊆ L and R a p-theory. The closure of P under the strict
rules in R, denoted ClR(P ), is the smallest set satisfying:

– P ⊆ ClR(P ),

– If {φ1, . . . , φn} →s
p ψ ∈ R and φ1, . . . , φn ∈ ClR(P ) then ψ ∈ ClR(P ).



Definition 14. A strict rule Φ′ →s
p ψ
′ is a transposition of a strict rule Φ→s

p ψ
if and only if ∃φ ∈ Φ s.t. Φ′ = (Φ \ {φ}) ∪ {−ψ} and ψ′ = −φ. Let R be a p-
theory. The closure of R under transposition of strict rules, denoted Tr(R), is
the smallest set satisfying:

– R ⊆ Tr(R)
– If Φ →s

p ψ ∈ Tr(R) and Φ′ →s
p ψ′ is a transposition of Φ →s

p ψ then
Φ′ →s

p ψ
′ ∈ Tr(R).

Definition 15. Let P ⊆ L. We say that P is consistent if and only if there is no
φ ∈ L such that φ,−φ ∈ P . Let R be a p-theory. We say that R is consistent if
and only if there is no consistent P ⊆ L and φ ∈ L such that φ,−φ ∈ ClTr(R)(P ).

Definition 16. Let R be a p-theory. A strict rule r ∈ S(R) is redundant in R
if and only if Tr(R) = Tr(R \ {r}). We say that R is non-redundant if and only
if ∀r ∈ S(R), r is not redundant.

Throughout this paper, we assume that R is consistent and non-redundant
and, furthermore, that there are no two rules Φ →x

p ψ,Φ →x
p′ ψ ∈ R such that

p 6= p, i.e. there are no two rules with equivalent antecedents/premises, but a
different p-value. In the rest of this paper, we use the following running example.

Example 3. Consider the p-theory R = {r1, . . . , r10} with:
r1 = ∅ →s aw r5 = {aw} →d aj r9 = {aj, bj, cj} →s ¬dj
r2 = ∅ →s

0.5 bw r6 = {bw} →d bj r10 = {cj, dj} →s ¬dr5e
r3 = ∅ →s

0.6 cw r7 = {cw} →d cj
r4 = ∅ →s

0.7 dw r8 = {dw} →d dj
The example can be interpreted as follows: Four friends, let us call them

Anne, Bob, Chris and David have expressed their desire to join you on a road
trip. The strict rules r1, . . . , r4 stand for ‘Anne wants to join’, . . ., ‘David wants
to join’. You are not certain whether Bob, Chris and David want to join. This
is expressed by the probabilities associated with r2, r3 and r4. The defeasible
rules r5, . . . , r8 express the principle that if your friends want want to join you
then, if possible, they can join you. However, your car seats at most three pas-
sengers, which is expressed by the rule r9. (Also consider the transpositions of
r9, e.g. {aj, bj, dj} →s ¬cj.) Furthermore, both Chris and David are in love with
Anne, which could lead to unpleasant situations in the cramped car. You decide,
therefore, that if Chris and David both join, then Anne cannot join, which is
expressed by r10. (Here, d. . .e stands for the objectification operator, which maps
defeasible rules to elements of the language. We need this to define undercut,
which we introduce below.)

An ASPIC-Lite theory can be used to instantiate a Dung-style argumentation
framework. This framework is then an abstract representation of the reasoning
problem posed by the theory. To do this, the ASPIC system specifies how ar-
guments are constructed and how the attack relation is defined. Moreover, the
probabilities associated with the rules of a p-theory, allow us to define a proba-
bility distribution over sets of arguments. We can thus specify how to instantiate



a probabilistic framework. Before turning to this aspect, we start out with ar-
guments and attacks. An argument is a chaining of rules, where the premises of
every rule follow from the conclusions of preceding rules. Apart from notation,
we define argument generation as usual in the ASPIC-Lite system:

Definition 17. An argument a is a pair (B,φ), where B is a set of p-rules
and φ ∈ L is the conclusion. The set of arguments generated by a p-theory R,
denoted ArgsR, is inductively defined as follows:

– If {φ1, . . . , φn} →x
p ψ ∈ Tr(R) and (Φ1, φ1), . . . , (Φn, φn) ∈ ArgsR then

(Φ1 ∪ . . . ∪ Φn ∪ {{φ1, . . . , φn} →x
p ψ}, ψ) ∈ ArgsR.

Given a set of arguments A, we denote by R(A) the set of rules appearing in
the arguments in A and by S(A) and D(A) the set of strict and defeasible rules,
respectively, appearing in A.

Notice that the base case of the inductive definition of ArgsR is the case
where a rule has an empty set of premises.

Example 4. (Continued from 3) The set of arguments generated by the p-theory
of example 3 is the set ArgsR = {a1, . . . , a13} with:

a1 = ({r1}, aw) a8 = ({r4, r8}, dj)
a2 = ({r2}, bw) a9 = ({r2, r3, r4, r6, r7, r8, r9},¬aj)
a3 = ({r3}, cw) a10 = ({r1, r3, r4, r5, r7, r8, r9},¬bj)
a4 = ({r4}, dw) a11 = ({r1, r2, r4, r5, r6, r8, r9},¬cj)
a5 = ({r1, r5}, aj) a12 = ({r1, r2, r3, r5, r6, r7, r9},¬dj)
a6 = ({r2, r6}, bj) a13 = ({r3, r7, r4, r8, r10},¬dr5e)
a7 = ({r3, r7}, cj)

Two kinds of attack are defined by the ASPIC-Lite system. The first is defined
by a conclusion of the attacking argument contradicting a defeasible conclusion of
the attacked argument. This is called rebut. For the second type, called undercut,
it is assumed, in the ASPIC-Lite system, that there is an objectification operator
d. . .e that maps defeasible rules to elements of L. Formally:

Definition 18. Given a p-theory R and the generated arguments ArgsR, we
say:

– An argument (B,φ) ∈ ArgsR rebuts (B′, φ′) ∈ ArgsR if and only if there is
a Φ→d

p ψ ∈ D(B′) and ψ = −φ.
– An argument (B,φ) ∈ ArgsR undercuts (B′, φ′) ∈ ArgsR if and only if there

is a Φ→d
p ψ ∈ D(B′) and φ = ¬dΦ→d

p ψe.

The attack relation AttR ⊆ ArgsR×ArgsR is defined by ((B,φ), (B′, φ′)) ∈ AttR
if and only if (B,φ) rebuts or undercuts (B′, φ′).

Example 5. (Continued from 4) Some attacks in our running example are: a9
rebuts a5, a10, a11 and a12; a13 undercuts a10, a11, a12 and a13; and both a11 and
a12 rebut a13.



Given a p-theory we can now generate a framework:

Definition 19. Given a p-theory R, the framework generated by R is the frame-
work FR = (ArgsR, AttR).

Example 6. (Continued from 4) Figure 1 shows the argumentation framework
(ArgsR, AttR) generated by the p-theory of our running example. The nodes
represent arguments in ArgsR and are labeled with the argument name and the
conclusion. The edges represent the attack relation AttR.

a5
aj

a6
bj

a7
cj

a8
dj

a9
¬aj

a10
¬bj

a11
¬cj

a12
¬dj

a13
¬[r5]

a1
aw

a3
cw

a4
dw

a2
bw

Fig. 1. The framework of our running ex-
ample.

S pS
S0 = Rcertain .06
S1 = Rcertain ∪ {r2} .14
S2 = Rcertain ∪ {r3} .09
S3 = Rcertain ∪ {r2, r3} .21
S4 = Rcertain ∪ {r4} .06
S5 = Rcertain ∪ {r2, r4} .14
S6 = Rcertain ∪ {r3, r4} .09
S7 = Rcertain ∪ {r2, r3, r4} .21

Table 1. Theory states in our
running example.

We have now described the process of the generation of a framework, given a
p-theory R, as in the ASPIC-Lite system. However, we have not done anything
with the probabilities associated with the rules. We turn to this in the following
section, where we describe the process of generating a probabilistic framework,
given a p-theory R.

4 Calculating probabilities of arguments

As we said, we interpret a p-rule Φ→x
p ψ as saying that the probability that the

rule Φ →x ψ is active, is p. That is, the rule is active and can be applied, with
a probability of p and it is inactive and cannot be applied, with a probability
of 1 − p. The uncertainty about the rules used in an argument carry over to
uncertainty about whether or not the argument is active. That is, the probability
that an argument (B,φ) is active, is the probability that all p-rules in B are
active. To model this, we define the notion of a theory state. A theory state is
corresponds to the event that a set of rules is active. If a theory state holds, then
all and only the rules in the theory state are active. Next, we define a probability
distribution over the set of theory states. We can, in principle, use any type of



distribution but, for simplicity, we assume here that the events of different p-
rules being active, are independent. Thus, the probability of the event that a
theory state is active, is easily calculated:

Definition 20. Let R be a p-theory. A theory state is a set S ⊆ R. If (Φ→ ψ) ∈
Tr(S), we say that (Φ → ψ) is active in S, otherwise inactive. The probability
of S, denoted pS, is defined by

pS =
∏

(Φ→x
pψ)∈S

p
∏

(Φ→x
pψ)∈R\S

(1− p)

Note that, from the way the probability of a theory state is calculated, it is
easy to see that the sum probability of all theory states is 1. Also note that a
strict rule Φ →s ψ is active in S if and only if all transpositions of Φ →s ψ are
active in S. Apart from transposition, we may consider in definitions 16 and 20
closure under additional properties. For example, we may require that rules are
closed under transitivity so that, in a state, two rules {a} →s b, {b} →s c are
active if and only if {a} →s c is active. However, for the current purpose, we
consider only transposition.

Example 7. (Continued from 6) There are three uncertain rules in the p-theory
of our running example, namely r2, r3 and r4. Let Rcertain = R \ {r2, r3, r4}.
Every theory state not containing all rules in Rcertain receives zero probability.
Table 1 lists the states that receive non-zero probability:

Given the probability distribution over theory states, the probability of a frame-
work state (see definition 7) is defined by the sum probability of all theory states
that give rise to the framework state.

Definition 21. Let R be a p-theory and (ArgsR, AttR) the framework generated
by R. We say that a theory state S gives rise to a framework state C ⊆ 2Args

if and only if C = G(S). The probability distribution over framework states
generated by R, denoted PR, is defined by:

PR(C) =
∑

{S∈2R|C=G(S)}

pS

Proposition 1. Given a p-theory R and the framework (ArgsR, AttR) gener-
ated by R, the sum probability of all framework states C ⊆ ArgsR is 1, i.e.∑
C⊆ArgsR

PR(C) = 1.

Note that, while the events of different p-rules being active are be indepen-
dent, the events of different arguments being active, are in general not indepen-
dent. This is not surprising, because the same p-rule may be used in several
arguments.

Furthermore, some framework states may receive zero probability. This hap-
pens when no theory state gives rise to the particular framework state. These
framework states are exactly those that are not well-formed, in the sense that
they are not closed under argument construction:



Definition 22. We say that a set of arguments C is closed under argument
construction if and only if C = AR(C)

Proposition 2. Let R be a p-theory, (ArgsR, AttR) the framework generated by
R and C ⊆ ArgsR. If PR(C) > 0 then C is closed under argument construction.

Note that the right-to-left direction of proposition 2 fails to hold only because
of rules r ∈ R with probability 1. Then there may be a framework state C
that is closed under argument construction but receives zero probability because
r 6∈ R(C).

Example 8. Consider a p-theory R = {∅ →s
0.5 a, a →s

0.5 b}. Two arguments
that are generated by this theory are: a1 = ({∅ →s

0.5 a}, a) and a2 = ({∅ →s
0.5

a, a→s
0.5 b}, b). We have that the framework states {a1} and {a1, a2} are closed

under argument construction, but {a2} is not. There are four theory states:
S1 = ∅, S2 = {r1}, s3 = {r2} and S4 = {r1, r2}. S1 gives rise to the framework
state ∅, S2 to {a1}, S3 to ∅ and S4 to {a1, a2}. No theory state gives rise to {a2}.
Hence it receives zero probability.

We can now generate a probabilistic framework:

Definition 23. Given a p-theory R, the probabilistic framework generated by
R is the probabilistic framework PFR = (FR, PR).

Example 9. (Continued from 7) Given the p-theory of our running example,
the probabilistic framework is (FR, PR), where FR is the framework shown in
example 6 and where PR is displayed in table 2. (The column C shows the
framework states that receive non-zero probability, the column PR(C) shows
the corresponding probabilities and in every row, a checkmark means that the
argument is active in the corresponding framework state.)

C PR(C) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

C1 = G(S1) .06 X X
C2 = G(S2) .14 X X X X
C3 = G(S3) .09 X X X X
C4 = G(S4) .21 X X X X X X X
C5 = G(S5) .06 X X X X
C6 = G(S6) .15 X X X X X X X
C7 = G(S7) .09 X X X X X X X X
C8 = G(S8) .21 X X X X X X X X X X X X X
Table 2. The framework states in our running example.



4.1 Evaluating arguments of a p-ASPIC framework

In the previous sections we demonstrated how, given a p-theory, we can gener-
ate a probabilistic framework. In this section we conclude our running example
and show the result of calculating the probability of skeptical and credulous
acceptance of a conclusion from our p-theory.

Example 10. If we take the complete semantics, then the different labelings cor-
respond to different ways in which the constraints, expressed by the rules of
our theory, can be satisfied. Focusing on just Anne, we can answer the follow-
ing questions: What is the lower bound probability that Anne joins? and What
is the upper bound probability that Anne joins?. These questions correspond,
respectively, to the probabilities of skeptical and credulous acceptance. Regard-
ing skeptical acceptance, we have that a5 is labeled I in all complete labelings,
given all framework states except the framework states C7 and C8. Therefore,
this probability is the sum probability of the states C1, . . . , C6, which is 0.7.
(Indeed, Anne does not necessarily join because whenever both Chris and David
want to join (p = 0.3), it is not sure that Anne will join.) Regarding credulous
acceptance, we have that a5 is labeled I in at least one complete labeling, given
all possible framework states. Therefore, this probability is 1. (Indeed Anne can
always possibly join; even if Bob, Chris and David want to join, it is possible to
refuse either Chris or David, so that Anne can join.)

5 Discussion and future work

In this paper we presented an initial attempt at combining probability with
instantiated and abstract argumentation. Many issues are still open and are left
for future work. Here we give an overview.

One limitation of our formalization is that we apply probabilities on a meta-
level rather than the object-level. That is, we associate probabilities with rules
and not with elements of L. We cannot, for example, express in our formalism
that the conclusion of a rule holds with some probability, given that the premises
hold. We can say that our formalism is strictly about reasoning under uncer-
tainty, rather than reasoning about uncertainty. Furthermore, it is not very clear,
from a conceptual point of view, what it means to associate a probability with
a rule. However, as our example shows, it is quite natural to associate probabil-
ities with facts (i.e. strict rules with empty sets of premises). This suggests two
directions for future work: one the one hand, we can investigate argumentation
about uncertainty and on the other hand, we can focus on the ‘uncertainty about
facts’ part, and from there, add expressivity.

It is worth mentioning one important issue, when modeling argumentation
about uncertainty. Namely, how do we interpret rules? An obvious candidate
for such an interpretation is conditional probability, but then we lose context
independence, transitivity (i.e. chaining) and transposition.

Furthermore, we have assumed in this paper that the events of individual
rules being active are probabilistically independent. While this assumption re-



duces the complexity, it leads to serious inaccuracy when modeling many real-
world problems. In many domains, one has to deal with phenomena such as
common causes and effects, where different events are not probabilistically inde-
pendent. We have already mentioned that, in principle, we can work with arbi-
trary probability distributions over theory states. An obvious choice to represent
such a distribution is by using Bayesian belief networks. Since both Bayesian be-
lief networks and abstract argumentation frameworks are intuitive and easy to
understand graphical representations of knowledge, an interesting question is
whether the two can be fused in a meaningful way.

6 Related work

Our concept of a probabilistic framework is similar to that of a probabilis-
tic framework, as introduced in [14], where arguments and attacks are asso-
ciated with probabilities, assuming independence of the events of individual ar-
guments/attacks being active. They do not consider rule-based instantiation of
arguments. They apply their formalism to the problem of coalition forming and
present an efficient evaluation algorithm, based on Monte Carlo simulation. Our
work shows that, in the instantiated setting, it is in general not possible to
assume independence between different arguments.

Other related work includes [11], which presents an ‘equational approach’ to
argumentation semantics, where arguments get numerical values [0, 1], satisfying
certain equations, such that the labelings of the framework are the solutions to
the equations. A similar, but probabilistically oriented approach, is presented
in [16], where acceptability of arguments is expressed by probabilities instead
of labels. Both approaches subsume the complete semantics (interpreting I and
O as a probability or numerical value of 1 and 0, respectively). These two ap-
proaches do not focus on uncertainty of the arguments themselves. Rather, they
generalize the traditional ‘discrete’ evaluation of I/U/O labelings.

An interesting approach to probabilistic argumentation, which is not related
to Dung-style argumentation theory, is presented in [2]. It models judgment of
a hypothesis based on from arguments against the hypothesis, each having a
likelihood or reliability based on probabilities.

Also mentioned should be work that approaches the problem from another
side, namely by associating numerical weights [10] or fuzzy values [12] with
attacks.

7 Conclusion

In this paper we extended the model of Dung-style argumentation with uncer-
tainty, both on the abstract level and the instantiated level. On the instantiated
level, we presented an extension of the ASPIC argumentation system, which
we call p-ASPIC. This system extends ASPIC in a simple manner, by allowing
probabilities associated with rules. This probability is interpreted as being as-
sociated with the event that the rule is active. To capture this uncertainty on



the abstract level, we extended the notion of an argumentation framework to
a probabilistic framework. We have showed how to instantiate a probabilistic
framework using the p-ASPIC system, and we demonstrated the system with a
number of examples. This work should be understood as an initial step in the
direction of probabilistic, instantiated, Dung-style argumentation, and we have
discussed a number of directions for future work.
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