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Abstract. We study the modal logic K4C
2 of common belief for normal agents.

We study Kripke completeness and show that the logic has tree model property.
As a main result we prove that K4C

2 is the modal logic of all TD-intersection
closed, bi-topological spaces with derived set interpretation of modalities. Based
on the splitting translation we discuss connections with S4C

2 , the logic of com-
mon knowledge.

1 Introduction

In logics for knowledge representation and reasoning, the study of epistemic and doxas-
tic properties of agents with certain, intuitively acceptable, restrictions on their knowl-
edge and belief is a well-developed area. Smullyan [10] discusses various types of
agents based on properties of belief. In his terminology, an agent whose belief satis-
fies the modal axiom (4) : 2p → 22p, translated as ‘If the agent believes p, then
he believes that he believes p’, is called a normal agent. K4 is the modal logic which
formalizes the belief behavior of normal agents. This generalizes the classical doxastic
system KD45 in the same way as S4 generalizes the epistemic logic S5, by dropping
some restrictions on the properties of an agent.

Agreement technologies is a newly emerging domain where iterative concepts of
belief and knowledge of agents are of special interest. To achieve successful commu-
nication and agreement it is important for agents to reason about themselves and what
others know or believe. Among the more interesting cases are the notions of common
knowledge and common belief. We denote the operators for common knowledge and
common belief by C

K
and C

B
respectively. We have: C

K
ϕ iff ϕ is common knowledge

in the group K and C
B
ϕ iff ϕ is a common belief in the group B.

Following the analysis of common knowledge as originally defined by Lewis [19],
this concept has been extensively studied from various perspectives in philosophy [20],
[15], game theory [2], artificial intelligence [4], modal logic [17], [18], [14] etc. The-
ories of common belief are less well-developed though some approaches can be found
in [3,4,27]. The present paper is devoted to a study of the common belief of normal
agents. Our aim is to extend two previous lines of work. Earlier, in [24,25,26] we have
examined several extensions of the modal logic wK4 that form interesting doxastic
logics different from KD45. Our main interests were related to the idea of minimal
belief, non-monotonic reasoning about beliefs, topological interpretations and in each
case the embedding relations between epistemic and doxastic logics, i.e. translations be-
tween knowledge and belief operators. In this previous work we considered only single
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agent systems. A second point of departure is provided by the work of van Benthem and
Sarenac [13], who showed how a topological semantics for logics of common knowl-
edge may be useful for modeling and distinguishing different concepts. A key idea here
is that the knowledge of different agents is represented by different topologies over a
set X . Various ways to merge that knowledge can be obtained via different modes of
combining logics and topological models. [13] considers for example the fusion logic
S4 ◦ S4 and product topologies that are complete for the common knowledge logic
S4C

2 of [16].
In light of [16,13] and our previous work several natural questions emerge that we

address here. In summary the main contributions of the paper are:

1. We define a logic K4C
2 of common belief for normal agents and prove its complete-

ness for a Kripke, relational semantics. We show it has the finite model property and
the tree model property.

2. We study the topological semantics for K4C
2 and show completeness for inter-

section topologies. Specifically we show that K4C
2 is the modal logic of all TD-

intersection closed, bi-topological spaces with a derived set interpretation of modal-
ities.

3. Belief under the topological interpretation of K4C
2 is understood via colimits and

common belief in terms of colimits in the intersection topology. From 2 we derive
a topological condition for common belief in terms of colimits that is very similar
to the corresponding condition that defines common knowledge in the modal µ-
calculus and is discussed at some length in [13].

4. We show how the common knowledge logic S4C
2 can be embedded in K4C

2 via the
splitting translation that maps C

K
p into p ∧ C

B
p.

1.1 Common belief and the topological interpretation

As stated, we focus on the common belief of normal agents, and for ease of exposition
we restrict ourselves to the two agent case. We thus consider two agents whose individ-
ual beliefs satisfy the axioms of K4. In other respects we adopt the main principles of
the logic of common knowledge, S4C

2 . This can be seen as a formalization of the idea
that common knowledge is equivalent to an infinite conjunction of iterated individual
knowledge: ϕ ∧ 21ϕ ∧ 22ϕ ∧ 2121ϕ ∧ 2122ϕ ∧ 2221ϕ ∧ 2222ϕ ∧ 212121ϕ ∧
212122ϕ... Later we shall see that a variation of this formula is ‘true’ for common
belief under the relational semantics. We shall also show that the topological semantics
for K4C

2 is compatible with the idea of common belief as a fixpoint equilibrium, a no-
tion used by Barwise [20] to describe common knowledge that can be captured by an
expression of the modal µ-calculus.

Our approach to providing a topological semantics follows the work of Esakia [22].
Notice that under the topological interpretation of 2 as a knowledge operator, eg.
in [13], 2ϕ refers to the topological interior of the points assigned to ϕ. In the case
of a doxastic logic like K4 the topological interpretation is different. It is perhaps sim-
pler to state it for the 3 operator. Following McKinsey and Tarski [12], the idea is to
treat 3ϕ as the derivative of the set ϕ in the topological space. Esakia showed that under
this interpretation wK4 is the modal logic of all topological spaces. K4 is an extension



of wK4 and is characterized in this semantics by the class of all TD-spaces [21]. By
combining the ideas and results from [13] and [22], we obtain a derived set semantics
for the logic of common belief based on bi-topological spaces, where the modality for
common belief operates on the intersection of the two topologies. As a main result, we
can prove that K4C

2 is sound and complete with respect to the special subclass of all
bi-topological TD-spaces.

2 Logic of Common Belief

We turn to the syntax and Kripke semantics of the logic K4C
2 . The interpretation of

common belief operator C
B

on bi-relational Kripke frames is similar to the interpreta-
tion of the common knowledge operator C

K
, and is based on the notion of transitive

closure of a relation. In this section we show that the logic K4C
2 is sound and complete

with respect to the class of all bi-relational transitive Kripke structures. The proof is a
slight modification of the completeness proof for the logic S4C

2 given in [16] therefore
we only sketch the essential parts where the difference shows up. Additionally we show
that every non-theorem of K4C

2 can be falsified on an infinite, irreflexive, bi-transitive
tree.

2.1 Iterative common belief

There are different notions of common belief [20]. Let us mention common belief as
an infinite conjunction of nested beliefs and common belief as an equilibrium. Under
the former idea, a proposition p is a common belief of two agents if: agent-1 believes
that p and agent-2 two believes that p and agent-1 believes that agent-2 believes that p
and agent-2 believes that agent-1 believes that p etc., where all possible finite mixtures
occur. If we formalize this idea in a modal language with belief operators 21 and 22

for each agent respectively, then we arrive at the following concept of a common belief
operator Cω

B
.

C0
B
p = 21p ∧22p;

Cn+1
B

p = 21C
n
B
p ∧22C

n
B
p;

Cω
B
p =

∧
n∈ω C

n
B
p.

Cω
B

exactly formalizes the intuition behind the former idea of common belief. However,
since Cω

B
is an infinite intersection, it cannot be expressed as an ordinary formula of

modal logic and hence studied in the usual approaches to standard modal logic. Never-
theless it turns out that we can capture the infinitary behavior of Cω

B
in a finitary sense.

This idea is made more precise via the modal logic K4C
2 .

2.2 Syntax

Throughout we work in the modal language LC with an infinite set Prop of proposi-
tional letters and symbols ∧,¬,21,22, CB . The set of formulas Form is constructed
in a standard way: Prop ⊆ Form. If α, β ∈ Form then ¬α, α∧β,21α,22α,CBα ∈



Form. We will use standard abbreviations for disjunction and implication, α ∨ β ≡
¬(¬α ∧ ¬β) and α→ β ≡ ¬α ∨ β.
• The axioms of the logic K4C

2 are all classical tautologies, each box satisfies all
K4 axioms, ie. we have: (K) 2i(p → q) → (2ip → 2iq), (4) 2ip → 2i2ip, for
each i ∈ {1, 2} and in addition we have the equilibrium axiom for the common belief
operator:

(equi) : C
B
p↔ 21p ∧22p ∧21CBp ∧22CBp.

• The rules of inference are: Modus-Ponens, Substitution, Necessitation for 21 and
22 and the induction rule for the common belief operator:

(ind) :
` ϕ→ 21(ϕ ∧ ψ) ∧22(ϕ ∧ ψ)

` ϕ→ C
B
ψ

where ϕ and ψ are arbitrary formulas of the language.

2.3 Kripke Semantics

The Kripke semantics for the modal logic K4C
2 is provided by transitive, bi-relational

Kripke frames. The triple (W,R1, R2), withW an arbitrary set andRi ⊆W×W where
i ∈ {1, 2}, is a bi-transitive Kripke frame if both R1 and R2 are transitive relations.
A quadruple (W,R1, R2, V ) is a bi-transitive Kripke model if (W,R1, R2) is a bi-
transitive Kripke frame and V : Prop → P (W ) is a valuation function. Observe that
we only have two relations, which give a semantics for 21 and 22. To interpret the
common belief operator, C

B
, we construct a new relation, which is a transitive closure

of the union of R1 and R2.

Definition 1. The transitive closureR+ of a relationR is defined as the least transitive
relation containing the relation R.

Two points x and y are related by the transitive closure of the relation if there exists a
finite path 〈x1, .., xn〉 starting at x and ending at y.

Definition 2. For a given bi-relational Kripke modelM = (W,R1, R2, V ) the satis-
faction of a formula at a point w ∈W is defined inductively as follows:
w 
 p iff w ∈ V (p),
w 
 α ∧ β iff w 
 α and w 
 β,
w 
 ¬α iff w 1 α,
w 
 2iϕ iff (∀v)(wRiv ⇒ v 
 ϕ),
w 
 C

B
ϕ iff (∀v)(w(R1 ∪R2)

+v ⇒ v 
 ϕ).

A formula α is valid in a modelM, in symbolsM 
 α, if for every point w ∈ W we
have w 
 α. α is valid in a bi-relational frame F = (W,R1, R2), in symbols F 
 α,
iff α is valid in every modelM = (F , V ) based on the frame. α is valid in a class of
bi-relational frames K if for every frame F ∈ K we have F 
 α.

Proposition 1. (Completeness) Modal logic K4C
2 is sound and complete with respect

to the class of all finite, bi-transitive Kripke frames.



Proof. (Sketch) The proof follows the pattern of [16] for the logic S4C
2 . The only dif-

ference appears when defining the canonical relation which may not be just transitive
if defined in the same way as in [16]. Therefore following [5] we define the relations
R1 and R2 on W in the following way: For every maximal consistent sets of formulas
Γ, Γ ′ ∈W we define ΓRxΓ ′ iff (∀α)(2xα ∈ Γ ⇒ Γ ′ ` α∧2xα), where x ∈ {1, 2}.

According to proposition 1 every non-theorem of K4C
2 is falsified on a finite, bi-

transitive frame. The following theorem shows that every non-theorem of K4C
2 can be

falsified on a frame (W t, Rt1, R
t
2, V

t), where for each k ∈ {1, 2} the pair (W t, Rtk) is
a transitive tree.

Definition 3. A frame (W,R) is called a tree if:
1) it is rooted, ie. there is a unique point (the root) r ∈W such that for every v ∈W it
holds that v 6= r ⇒ rR+v,
2) every element distinct from r has a unique immediate predecessor; that is, for every
v 6= r there is a unique v′ such that v′Rv and for every v′′ we have that v′′Rv ⇒ v′′Rv′,
3) R is acyclic; that is, for every v ∈W it is not the case that vR+v.

If in addition R is transitive, ie. R = R+, then (W,R) is called a transitive tree.

Theorem 1. The modal logic K4C
2 has tree model property.

Proof. (Sketch) We start with a bi-relational countermodel M = (W,R1, R2, V ) for
the formula ϕ. The proof follows a standard unravelling technique [1]. As a result we
get a modelMt = (W t, Rt1, R

t
2, V

t), where (W t, Rtk) is a tree for each k ∈ {1, 2} and
the valuation V t is defined by reflecting the valuation V of the original countermodel
M. Additionally Mt 1 ϕ as far as M is a bounded morphic image of Mt and the
bounded morphism extends between models Mt = (W t, Rt1, R

t
2, (R

t
1 ∪ Rt2)+, V t)

andM = (W,R1, R2, (R1 ∪R2)
+, V ).

Note 1. Observe that the relation (Rt1 ∪Rt2)+ does not contain cycles and in particular
it is irreflexive.

The mains reason for introducing K4C
2 was to mimic the infinitary operator Cω

B
by

finitary C
B

. Though we cannot claim that on a logical level C
B

and Cω
B

are equivalent,
we can establish a semantical equivalence, in particular on Kripke structures.

Theorem 2. For any transitive bi-relational Kripke modelM = (W,R1, R2, V ) and
point w:M, w 
 C

B
ϕ iffM, w 
 Cω

B
.

Proof. The proof follows easily from Definitions 1 and 2.

2.4 Common belief as equilibrium

We mentioned that common belief can also be understood as an equilibrium concept1.
On Kripke structures the equilibrium conception coincides with common belief by infi-
nite iteration, while in general the equilibrium conception has a much closer connection

1 For the remainder of this section and later on for Theorem 9 we assume some familiarity with
the modal µ-calculus. Lack of space hinders a fuller treatment, however for more details on
the modal µ-calculus we refer to [1][part 3, chapter 4]; see also the discussion in [13].



to the logic K4C
2 . It can be formalized in the modal µ-calculus in the following way:

Cνϕ = ν.p(21ϕ ∧22ϕ ∧21p ∧22p).

The greatest fixpoint ν is defined as the fixpoint of a descending approximation se-
quence defined over the ordinals. Denote by |ϕ| the truth set of ϕ in the appropriate
modelM where evaluation occurs:

|C0
νϕ| = |21ϕ ∧22ϕ|;
|Ck+1
ν ϕ| = |21ϕ ∧22ϕ ∧21C

k
νϕ ∧22C

k
νϕ|;

|Cλνϕ| = |
⋂
k<λ C

k
νϕ|, for λ a limit ordinal.

We obtain |Cνϕ| = |Cγνϕ|, where γ is a least ordinal for which the approximation
procedure halts: ie. |Cγνϕ| = |Cγ+1

ν ϕ|. Halting is guaranteed because the occurrence of
the propositional variable p in operator F (p), where F (p) = 21ϕ∧22ϕ∧21p∧22p, is
positive. Hence by the Knaster-Tarski theorem the sequence will always reach a greatest
fixpoint. Then the semantics of the operator Cν is defined in the following way:

M, w 
 Cνϕ iff w ∈ |Cγνϕ|

In general this procedure may take more than ω steps, but in case of Kripke structures
the situation is simpler. The following property relates the different operators on Kripke
models.

Theorem 3. For every bi-relational Kripke model M = (W,R1, R2, V ) and a point
w ∈W the following condition holds:M, w 
 Cω

B
ϕ iffM, w 
 Cνϕ.

Proof. Observe that we can rewrite Cω
B
ϕ = 21ϕ∧22ϕ∧2121ϕ∧2122ϕ∧2221ϕ∧

2222ϕ∧212121ϕ∧212122ϕ... in the following way: 21ϕ∧22ϕ∧21(21ϕ∧22ϕ)∧
22(21ϕ ∧ 22ϕ) ∧ ... Hence |Cω

B
ϕ| = |Cων ϕ|. It is known that on Kripke structures

stabilization process does not need more than ω steps [13] i.e. |Cνϕ| = |Cων ϕ|. Hence
w 
 Cνϕ iff w 
 Cω

B
ϕ

It follows that on transitive bi-relational Kripke structures the three operatorsC
B
, Cω

B

and Cν coincide.

3 Topological Semantics

The idea of a derived set topological semantics originates with the McKinsey-Tarski
paper [12]. This idea was taken further in [22]. The following works contain some im-
portant results in this direction: [21], [8], [6], [7]. The derived set topological semantics
for K4C

2 is provided by the class of all bi-topological spaces. In the same way, as it is
done in [13] for the common knowledge operator, we interpret the common belief op-
erator on the intersection topology. On the other hand, different from C

K
, for which the

semantics is given using interior of the intersection of the two topologies, we provide
the semantics of C

B
ϕ as a set of all colimits of |ϕ| in the intersection topology. As a

main result we prove the soundness and completeness of the logic K4C
2 with respect

to the class of all TD-intersection closed, bi-topological spaces where each topology
satisfies the TD separation axiom. We start with the basic definitions.



Definition 4. A pair (X,Ω) is called a topological space if X is a set and Ω is a
collection of subsets of X with the following properties:
1) X,∅ ∈ Ω,
2) A,B ∈ Ω implies A ∩B ∈ Ω,
3) Ai ∈ Ω implies

⋃
Ai ∈ Ω.

Elements of Ω are called opens or open sets of the topological space.

Definition 5. A topological space (X,Ω) is called an Alexandroff space if an arbitrary
intersection of opens is open, that is Ai ∈ Ω implies

⋂
Ai ∈ Ω. (X,Ω) is called a

TD-space if every point x ∈ X can be represented as an intersection of some open set
A and some closed set B.

We now define the colimit operator (or the set of all colimit points [11]) of a set
in a topological space. This is needed to give the semantics of modal formulas in an
arbitrary topological space.

Definition 6. Given a topological space (X,Ω) and a set A ⊆ X we will say that
x ∈ X is a colimit point of A if there exists an open neighborhood Ux of x such that
Ux − {x} ⊆ A. The set of all colimit points of A will be denoted by τ(A) and will be
called the colimit set of A.

The colimit set provides a semantics for the box modality, consequently the semantics
for diamond is provided by the dual of the colimit set, which is called the derived set.
The derived set of A is denoted by der(A). So we have τ(A) = X − der(X − A).
Below we list some properties of the colimit operator.

Fact 4 [11,23] For a given topological space (X,Ω) the following properties hold:
1) Int(A) = τ(A) ∩A ⊆ ττ(A), where Int denotes the interior operator,
2) τ(X) = X and τ(A ∩B) = τ(A) ∩ τ(B),
3) If Ω is a Td-space then τ(A) ⊆ ττ(A),
4) If Ω1 ⊆ Ω2 then τ1(A) ⊆ τ2(A) where τi, i ∈ {1, 2} is a colimit operator of the
corresponding topology Ωi.

The following links TD-spaces and irreflexive transitive relational structures. This re-
sult is a special case of a more general correspondence between weakly-transitive and
irreflexive relational structures and all Alexandroff spaces [22].

Fact 5 ([23]) There is a one-to-one correspondence between Alexandroff, TD-spaces
and transitive, irreflexive relational structures.

Let us briefly describe the correspondence. We first introduce the downset operator.
Let (X,R) be a Kripke frame. The downset operator R−1 is defined in the following
way: for any A ⊆ X we set R−1(A) := {x|(∃y)(y ∈ A ∧ xRy)}. Now if we are
given an irreflexive, transitive order (X,R) it is possible to prove that the downset
operator R−1 satisfies all the properties of the topological derivative operator for TD-
spaces. Hence we get a TD-space (X,ΩR), where ΩR is the topology obtained from
the derivative operator R−1. Conversely with every Alexandroff TD-space (X,Ω), one
can associate an irreflexive and transitive relational structure (X,RΩ), where xRΩy
iff x ∈ der({y}). Moreover we have that (X,ΩRΩ ) is homeomorphic to (X,Ω) and
(X,RΩR) is order isomorphic to (X,R).



Fact 6 [23] The set A is open in (X,ΩR) iff x ∈ A implies that the implication
(xRy ⇒ y ∈ A) holds for every y ∈ X .

This correspondence can be directly generalized to Kripke frames with more than one
transitive and irreflexive relation. Of course then we will have one Alexandroff TD-
space for each irreflexive and transitive order. Below we prove the proposition which
builds a bridge between Kripke and topological semantics for K4C

2 .

Proposition 2. If R1 and R2 are two irreflexive and transitive orders on X and (R1 ∪
R2)

+ is also irreflexive and transitive, then Ω(R1∪R2)+
∼= ΩR1

∩ΩR2
.

Before starting the proof, observe that (R1 ∪ R2)
+ may not be irreflexive even if both

R1 and R2 are. For example: Let X = {x, y} and R1 = {(x, y)} and R2 = {(y, x)}
then (R1∪R2)

+ = {(x, y), (y, x), (x, x), (y, y)}. On the topological side this example
shows that TD-spaces do not form a lattice. That is why in Proposition 2 we require
(R1 ∪R2)

+ to be a irreflexive and transitive.

Proof. Assume that A ∈ Ω(R1∪R2)+ . By Fact 6 this means that if x ∈ A then for every
y such that x(R1 ∪ R2)

+y it holds that y ∈ A. Since Ri ⊆ (R1 ∪ R2)
+ for each

i ∈ {1, 2}, it holds that xR1y ⇒ y ∈ A and xR2y ⇒ y ∈ A for every y ∈ X . Hence
A ∈ Ω1 ∩Ω2 according to Fact 6.

Conversely assume A ∈ Ω1 ∩ Ω2. This means that x ∈ A ⇒ (x(R1 ∪ R2)y ⇒
y ∈ A). Now take arbitrary y such that x(R1 ∪ R2)

+y. By definition this means that
there is a (R1∪R2)-path 〈x1, x2, ..xn〉 starting at x going to y. But this means that each
member of this path is in A because A is open in the intersection of the two topologies.
Hence y ∈ A and hence A ∈ Ω(R1∪R2)+

Next we give a definition of the satisfaction relation of modal formulas in the de-
rived set topological semantics. Observe that this definition is given in a standard modal
language ie., without the common belief operator. Recall that a topological model is a
tupleM = (W,Ω, V ) where V : Prop→ P (W ) is a valuation function.

Definition 7. The satisfaction of a modal formula in a topological modelM = (W,Ω, V )
at a point w ∈W is defined in the following way:

– M, w 
 p iff w ∈ V (p),
– Boolean cases are standard,
– M, w 
 2ϕ iff w ∈ τ(V (ϕ)), where τ is a colimit operator of Ω.

Fact 7 [23] The correspondence mentioned in the Fact 5 preserves the truth of modal
formulas, ie. (W,R, V ), x 
 α iff (W,ΩR, V ), x 
 α.

Note that in Fact 7, the symbol 
 on the left hand side denotes the satisfaction
relation on Kripke models, while on the right hand side it denotes the satisfaction rela-
tion on topological frames in the derived set semantics. Now we extend the satisfaction
relation to the language with the common belief operator.



Definition 8. The satisfaction of a modal formula on a bi-topological model M =
(W,Ω1, Ω2, V ) at a point w ∈W is defined in the following way:
M, w 
 p iff w ∈ V (p),
M, w 
 α ∧ β iffM, w 
 α andM, w 
 β,
M, w 
 ¬α iffM, w 1 α,
M, w 
 2iϕ iff w ∈ τi(V (ϕ)), where τi is a colimit operator of Ωi, i ∈ {1, 2},
M, w 
 C

B
ϕ iff w ∈ τ1∧2(V (ϕ)), where τ1∧2 is a colimit operator in Ω1 ∩Ω2.

As an immediate corollary of the proposition 2 and a many-modal version of the
Fact 7, we get the following proposition.

Proposition 3. If R1 and R2 are two irreflexive and transitive orders and (R1 ∪R2)
+

is also topological then for every formula α in K4C
2 the following holds:

(W,R1, R2, V ), x 
 α iff (W,ΩR1
, ΩR2

, V ), x 
 α.

Now it is clear that we can reduce the topological completeness problem to Kripke
completeness if for every non-theorem K4C

2 6` ϕwe can find a bi-relational topological
counter-model (W,R1, R2, V ) with (R1 ∪R2)

+ being also a topological relation.

Definition 9. The triple (X,Ω1, Ω2) is a TD-intersection closed bi-topological space
if each of the topologies Ω1, Ω2 and Ω1 ∩Ω2, satisfies the TD-separation axiom.

Theorem 8. K4C
2 is sound and complete with respect to the class of all TD-intersection

closed, bi-topological, Alexandroff spaces.

Proof. (Soundness) Take an arbitrary TD-intersection closed, bi-topological modelM =
(X,Ω1, Ω2, V ). From 2) and 3) of Fact 4 it follows that K4-axioms are valid for each
box. Let us show that at each point x ∈ X , the equilibrium axiom is satisfied. As-
sume thatM, x 
 C

B
p. Hence by Definition 8 we have x ∈ τ1∧2|p|. By 4) of Fact 4

we get x ∈ τ1|p| and x ∈ τ2|p|. By 3) we have τ1∧2|p| ⊆ τ1∧2τ1∧2|p| ⊆ τ1τ1∧2|p|.
Analogously τ1∧2|p| ⊆ τ2τ1∧2|p|. Hence we have x 
 21p∧22p∧21CBp∧22CBp.

For the other direction assume that x ∈ τ1τ1∧2|p| ∩ τ1|p| ∩ τ2τ1∧2|p| ∩ τ2|p|. By
2) of Fact 4 we get x ∈ τ1(τ1∧2|p| ∩ |p|) ∩ τ2(τ1∧2|p| ∩ |p|). By 1) of Fact 4 we
conclude x ∈ τ1(Int1∧2|p|)∩τ2(Int1∧2|p|), where Int1∧2 denotes the interior operator
in the intersection topology. By definition of colimit there exists U1

x ∈ Ω1 such that
x ∈ U1

x and U1
x − {x} ⊆ Int1∧2|p| and there exists U2

x ∈ Ω2 such that x ∈ U2
x

and U2
x − {x} ⊆ Int1∧2|p|. Hence (U1

x ∪ U2
x) − {x} ⊆ Int1∧2|p|. Let us show that

Int1∧2|p| ∪ {x} is open in Ω1 ∩ Ω2. Since U1
x ∈ Ω1 and Int1∧2|p| ∈ Ω1 we have

U1
x ∪Int1∧2|p| = Int1∧2|p|∪{x} ∈ Ω1. Analogously we show that Int1∧2|p|∪{x} ∈

Ω2. Hence x ∈ τ1∧2|p|.
Let us show that the induction rule is valid in the class of all TD-intersection

closed bi-topological spaces. The proof goes by contraposition. Assume not ` p →
C
B
q. This means that for some TD-intersection closed, bi-topological model M =

(X,Ω1, Ω2, V ) and a point x ∈ X it holds that: x 
 p while x 1 C
B
q. We want

to show that not ` p → 21(p ∧ q) ∧ 22(p ∧ q). It suffices to find a TD-intersection
closed bi-topological model which falsifies the formula. For such a model one could
take M′ = (X,Ω1 ∩ Ω2, Ω1 ∩ Ω2, V ). Indeed as (X,Ω1, Ω2, V ) is TD-intersection



closed, the topology Ω1 ∩ Ω2 satisfies the TD-separation axiom. Besides since inM′
both topologies are the same, their intersection is also Ω1 ∩ Ω2 and hence again is a
TD-space. Now it is immediate thatM′, x 1 p → 21(p ∧ q) ∧ 22(p ∧ q). This is be-
cause by construction ofM′ we haveM′, x 1 2iq iffM, x 1 C

B
q for every x ∈ X

and i ∈ {1, 2}.
(Completeness) Assume K4C

2 6` ϕ. According to Theorem 1 there exist a tree
modelM t = (W t, Rt1, R

t
2, V ) which falsifies ϕ. We know that (R1∪R2)

+ is irreflexive
and transitive order (see Note 1). By applying Proposition 3 we get that the formula ϕ is
falsified in the corresponding bi-topological model (W t, ΩRt1 , ΩRt2 , V ), which is TD-
intersection closed because of Fact 5, Proposition 2 and Note 1.

We can now show how the semantical definition of common beliefC
B
ϕ as a colimit

of the intersection topology meshes with the general equilibrium concept: on topologi-
cal models the two operators C

B
and Cν coincide.

Theorem 9. For every bi-topological model M = (X,Ω1, Ω2, V ) and an arbitrary
formula ϕ the following equality holds: ν.p(τ1(|ϕ|) ∩ τ2(|ϕ|) ∩ τ1(p) ∩ τ2(p)) =
τ1∧2(|ϕ|).

Proof. That τ1∧2(|ϕ|) is a fixpoint of the operator F (p) = τ1(|ϕ|) ∩ τ2(|ϕ|) ∩ τ1(p) ∩
τ2(p) follows from the soundness proof of the equilibrium axiom, see Theorem 8. Now
let us show that τ1∧2(|ϕ|) is the greatest fixpoint of F (p). Take an arbitrary fixpoint
B of the operator F (p). That B is a fixpoint immediately implies that B ⊆ τ1(|ϕ|) ∩
τ2(|ϕ|) ∩ τ1(B) ∩ τ2(B). By 1) of Fact 4 we have B ⊆ Inti(B) = τi(B) ∩ B for
each i ∈ {1, 2}. Hence B = Int1∧2(B) where Int1∧2 is the interior operator in the
intersection topology of the two topologies. Now let us show that for every x ∈ B the
set {x} ∪ (B ∩ |ϕ|) is open in the intersection of the two topologies. Take an arbitrary
point y ∈ {x} ∪ (B ∩ |ϕ|). Since y ∈ B ⊆ τ1(|ϕ|) we know that there exists an open
neighborhood U1

y ∈ Ω1 of y such that U1
y − {y} ⊆ |ϕ|. This means that B ∩ U1

y ∈ Ω1

andB∩U1
y ⊆ {x}∪(B∩|ϕ|). This means that for every point y ∈ {x}∪(B∩|ϕ|) there

is an open neighborhood B ∩U1
y ∈ Ω1 of y such that B ∩U1

y ⊆ {x}∪ (B ∩ |ϕ|) hence
{x} ∪ (B ∩ |ϕ|) ∈ Ω1. In exactly the same way we show that {x} ∪ (B ∩ |ϕ|) ∈ Ω2.
Hence {x}∪ (B ∩ |ϕ|) ∈ Ω1 ∩Ω2. This means that x ∈ τ1∧2(|ϕ|) since there exists an
open neighborhood U1∧2 = {x} ∪ (B ∩ |ϕ|) ∈ Ω1 ∩Ω2 with U1∧2 − {x} ∈ |ϕ|.

4 From Belief to Knowledge

In this section we discuss the connection between the logics of common knowledge
S4C

2 and common belief K4C
2 . This connection generalizes the existing splitting trans-

lation between S4-logics and K4-logics. As a result we obtain a validity preserving
translation from S4C

2 formulas to K4C
2 formulas in which common knowledge is ex-

pressed in terms of common belief.

Definition 10. The normal modal logic S4C
2 is defined in a modal language with infi-

nite set of propositional letters p, q, r.. and connectives ∨,∧,¬,21,22, CK , where the
formulas are constructed in a standard way.



• The axioms are all classical tautologies, each box satisfies all S4 axioms and in
addition we have equilibrium axiom for common knowledge operator:

(equi) : C
K
p↔ p ∧21CKp ∧22CKp

• The rules of inference are: Modus-ponens, Substitution, Necessitation for 21 and
22 and the induction rule:

(ind) :
` ϕ→ 21(ϕ ∧ ψ) ∧22(ϕ ∧ ψ)

` ϕ→ C
K
ψ

for an arbitrary formulas ϕ and ψ of the language.

The Kripke semantics for the modal logic S4C
2 is provided by the reflexive and

transitive, bi-relational Kripke frames. For interpreting the common knowledge opera-
tor C

K
, the reflexive, transitive closure of a union relation is used.

Definition 11. The reflexive, transitive closureR? of a relationR ⊆W ×W is defined
in the following way: R? = R+ ∪ {(w,w)|w ∈W}.

The satisfaction of formulas is definition in the following way.

Definition 12. For a given bi-relational Kripke modelM = (W,R1, R2, V ) the satis-
faction of a formula at a point w ∈W is defined inductively as follows:
w 
 p iff w ∈ V (p),
w 
 α ∧ β iff w 
 α and w 
 β,
w 
 ¬α iff w 1 α,
w 
 2iϕ iff (∀v)(wRiv ⇒ v 
 ϕ),
w 
 C

K
ϕ iff (∀v)(w(R1 ∪R2)

?v ⇒ v 
 ϕ).

Fact 10 [16] The modal logic S4C
2 is sound and complete with respect to the class of

all finite, reflexive, bi-transitive Kripke frames.

Definition 13. Consider the following function from the set of formulas in S4C
2 to the

set of formulas in K4C
2 .

Sp(p) = p for every propositional letter p,
Sp(¬α ∨ β) = ¬Sp(α) ∨ Sp(β),
Sp(2iα) = 2iSp(α) ∧ Sp(α),
Sp(C

K
α) = C

B
Sp(α) ∧ Sp(α).

Theorem 11. `S4C
2
ϕ iff `K4C

2
Sp(ϕ).

Proof. We prove the theorem by a semantical argument using the Kripke completeness
results, see Proposition 1 and Fact 10. Let us first show by induction on the length
of formula that for every bi-relational Kripke modelM = (W,R1, R2, V ) and every
w ∈W the following holds:

(a) M? = (W,R?1, R
?
2, V ), w 
 ϕ iffM+ = (W,R+

1 , R
+
2 , V ), w 
 Sp(ϕ).



The only nonstandard case is when ϕ = C
K
ψ. Assume M?, w 
 C

K
ψ. By the

definition of (R1 ∪ R2)
? this means that M?, w 
 ψ and for every w′ such that

w(R1 ∪ R2)
?w′, we have M?, w′ 
 ψ. Now by the induction hypotheses we have

thatM+, w 
 ψ andM+, w′ 
 ψ. Since w′ was arbitrary (R1 ∪R2)
? successor of w

we haveM+, w 
 C
B
ψ. This is because (R1 ∪ R2)

? ⊇ (R1 ∪ R2)
+. Hence we get

M+, w 
 C
B
ψ ∧ ψ. The converse direction follows by the same argument.

Now assume `S4C
2
ϕ. By fact 10 this means that ϕ is valid in every reflexive and

transitive, bi-relational model. Take arbitrary transitive, bi-relational model M. Then
by assumption we haveM? 
 ϕ. Hence by (a) we have thatM 
 Sp(ϕ). AsM was
arbitrary transitive, bi-relational model from Proposition 1 we get that `K4C

2
Sp(ϕ).

Conversely assume `K4C
2
Sp(ϕ). Then by Proposition 1, Sp(ϕ) is valid in the class of

all transitive, bi-relational models. Take arbitrary reflexive and transitive, bi-relational
model N . Then N 
 Sp(ϕ) because N = N+. So by (a) we have that N ? 
 ϕ.
Now asN was reflexive and transitive,N ? = N , henceN 
 ϕ. SinseN was arbitrary
reflexive and transitive, bi-relational model, by Fact 10 we have `S4C

2
ϕ.

5 Conclusions

Our main aim in this paper has been to extend the work of [13] on topological semantics
for common knowledge by interpreting a common belief operator on the intersection of
two topologies in a bi-topological model. In particular we considered a logic K4C

2 of
common belief for normal agents, first under a Kripke, relational semantics, showing it
to have the finite model property and the tree model property. We then showed that K4C

2

is the modal logic of all TD-intersection closed, bi-topological spaces with a derived set
interpretation of modalities and we saw how the common knowledge logic S4C

2 can be
embedded in K4C

2 via the splitting translation that maps C
K
p into p ∧ C

B
p.

While preparing the final draft of this work, we came across the article [27] by Lis-
mont and Mongin. This paper treats several logics of common belief including one that
is equivalent to K4C

2 . Besides a relational semantics, the authors also consider a more
general neighborhood semantics and discuss the equilibrium conception of common
belief in this setting. While the semantics and methods of [27] are formally different to
ours, there are obvious similarities. Though it is beyond the scope of this paper, a de-
tailed comparison of our topological approach with the neighborhood systems of [27]
would be a worthwhile exercise for the future. Another direction for future work is to
look for concrete topological structures which would fully capture the behavior of the
logic K4C

2 or some of it’s extensions.
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