
Decentralized Semantic Coordination Through
Belief Propagation.?

George A. Vouros

Department of Digital Systems, University of Piraeus, Greece

Abstract. This paper proposes a decentralized method for communities
of agents to reach semantic agreements on subjective ontology elements’
correspondences / mappings, via belief propagation. Agents detect dis-
agreements on mapping decisions via feedback they receive from others,
and they revise their decisions on correspondences with respect to their
mapping preferences and the semantics of ontological specifications. We
address this problem as a distributed extension of the max-plus algo-
rithm via belief propagation. We show the potential of such an approach
in a number of networks with varying complexity and for different cases
of semantic disagreement between agents.

1 Introduction

Interacting entities (peers, software or human agents, things on the web, sen-
sors and actuators) aiming to effectively share and search for information in an
open and inherently distributed setting, need to agree on the meaning of the
terms they use for structuring information, annotating data and conceptualiz-
ing the world. In any open setting, these entities can not be assumed to share
the same ontology. However, each entity can only compute subjective correspon-
dences of own ontology elements to the ontology elements of its acquaintances.
Nevertheless, to propagate queries and enable effective sharing of information,
the entities in the network need to reach an agreement on a globally coherent
set of correspondences, wrt the semantics of specifications and their preferences
on correspondences. Let us for instance consider two peers with ids 1 and 2,
forming a cycle in a network. In this case, for each subjective equivalence cor-
respondence from 1 to 2 for a pair of ontology elements (E1

i , E
2
j), peer 2 must

agree that E2
j is equivalent to E1

i so that queries and results are propagated
among them effectively.

This paper proposes a generic decentralized method for peers in a data man-
agement system to reach semantic agreements regarding ontology elements’ sub-
jective correspondences, via belief propagation. By ”generic” we mean a method
that is independent of the specific mapping methods used by the peers, and also
applicable to any possible setting of information sharing entities. It must be
noticed that although the proposed approach can be applied to any setting of
interacting entities, for the clarity of the presentation we refer to peers in data
? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).

management systems and to interacting agents that implement decision-making
processes on behalf of these peers.

According to the proposed approach, each peer computes correspondences
of its ontology elements to the elements of acquaintances’ ontologies, using any
set of mapping methods. To preserve the coherency of local mappings with re-
spect to the semantics of specifications, peers build internal dependency graphs
whose nodes (agents) are inter-constrained. These agents are responsible to com-
pute specific mapping decisions on behalf of the peer: Each for a specific ontol-
ogy element. Having computed subjective correspondences, peers aim to reach
agreements to their mapping decisions: By exploiting the transitive closure of
mappings in existing cycles in their network, peers can detect disagreements and
revise their decisions.

The proposed method enables peers to revise their decisions with respect to
their preferences, the semantics of specifications and the feedback they receive
from others. The problem is addressed as a coordination problem where agents
target the establishment of agreements wrt to the semantics of specifications,
increasing the social welfare, i.e. the sum of the utilities of the individual agents.
Toward this target we use the max-plus [8] algorithm to generate near-to-optimal
solutions to reaching semantic agreements.

2 Problem Statement and Overall Approach

The problem of computing mappings (mapping relations or correspondences)
between ontologies can be stated as follows: Given two ontologies O1 = (S1, A1),
O2 = (S2, A2) (where Si denotes the signature and Ai the set of axioms that
specify the intended meaning of terms in Si) and an element (class or property)
E1

i in the signature S1 of O1, locate a corresponding element E2
j in S2, such that

a mapping relation (E1
i , E

2
j , r) holds between them. r can be any relation such

as the equivalence (≡) or the subsumption (v) relation. For any such correspon-
dence a mapping method may relate a value γ that represents the preference to
relating E1

i with E2
j via r, i.e. the confidence on this correspondence. In this case

the correspondence is denoted by (E1
i , E

2
j , r, γ). In this paper we deal only with

equivalences between classes, although other mapping relations whose transitive
closure can be exploited, can be considered as well. The set of mapping relations
produces the mapping function f : S1 → S2 that must preserve the semantics
of representation: i.e. all models of axioms A2 must be models of the translated
A1: i.e. A2 |= f(A1).

Let us consider a network of peers represented by a directed graph G =
(V,E). Each node in V is a peer Pnode equipped with a specific ontology Onode.
Each directed edge (Pnode, Pneigh) in E specifies the fact that Pnode has a specific
view of Pneigh’s ontology (which can be either a complete, partial, vague or an
abstract view, at the conceptual or at the assertional level, depending on peers’
actual relation). Pnode can propagate queries/ answers to Pneigh by computing
correspondences between the elements of Onode and Oneigh. Generally, these are
correspondences from the subjective point of view of Pnode. In case there is also

an edge (Pneigh,Pnode), then the subjective correspondences from Pneigh to Onode

might not be symmetric to those computed by Pnode. This may happen even in
the special case that these peers use the same mapping method (because the
information that this method exploits may differ in each direction).

In such a setting, the problem of computing a coherent set of correspondences
between peers in G is rather complicated if we consider that each peer is con-
nected to numerous other peers with distinct ontologies and mapping methods,
with the latter being arbitrarily connected with others and/or among themselves.
This problem includes: (a) The computation of locally coherent correspondences
to the ontologies of neighbor peers, and (b) the exploitation of the transitive clo-
sure of correspondences between ontologies to reach agreements between (even
distant) peers 1. To describe our approach we distinguish between these, actually
highly intertwined, computation phases.

Concerning the computation of locally coherent subjective correspondences
of each peer Pnode, given Onode (the ontology of Pnode) we address the com-
putation of correspondences from Onode to any ontology Oneigh of a neighbor
peer Pneigh, as a coordination problem between self-interested agents. Each such
tuple (Onode,Oneigh) is considered as a specific, distinct mapping case for Pnode.
Considering that Pnode has at its disposal a mapping method Anode, for each
mapping case there is a distinct set of agents, each of which corresponds to the
mapping method and an ontology element in Onode, as it is also done in [19]:
Each agent is responsible to decide on the mapping of that specific ontology
element. We call these agents Pnode − internal (or simply internal) agents to
emphasize their role to compute correspondences on behalf of Pnode. Actually,
they may be distant and are organized in a certain way. Section 5.1 describes
how the internal agents are related in dependency graphs (one distinct graph per
mapping case) via validity constraints that must be satisfied so as the calculated
mappings to conform to the semantics of ontological specifications.

Therefore, viewing the computation of ontology correspondences from Onode

to Oneigh as a coordination problem between M 2 Pnode-internal agents that are
related via validity constraints, we aim to find the joined state of agents (i.e.
the overall set of correspondences), X∗, such that the social welfare of the whole
system (i.e. the sum of the individual agents’ utilities Um) is maximized:

X∗ = argmax
X

∑
m

Um(xm) (1)

Given the subjective local decisions concerning correspondences, each of
the peers propagate local mappings to the rest of the peers in the network
in an iterative and cooperative manner, aiming to detect cycles of correspon-
dences and get feedback on its decisions. Therefore, computed correspondences
1 Notice that, even if correspondences are subjective, peers consider the correspon-
dences computed by the others in conjunction to own correspondences, i order to
exploit their transitive closure, trying to identify disagreements, get feedback and
reach consensus.

2 M in the general case depends on the number of elements in Onode and the number
of alignment methods used by Pnode.

(Enode
i ,Eneigh

j , r,m) for a mapping case (Onode,Oneigh) are sent to any of the
immediate neighbors Pneigh that use Oneigh. In this case the parameter m does
not denote the preference γ computed by the mapping method, but is an approx-
imation of the payoff contribution related to that correspondence: This will be
thoroughly explained in Section 5.2. Pneigh in its own turn dispatches received
correspondences to the appropriate Pneigh-internal agents (i.e. to the agents that
are responsible for computing a correspondence for Eneigh

j
3). Computed cor-

respondences for Pneigh (Eneigh
j ,Exyz

k ,r,m) are appended to (Enode
i ,Eneigh

j ,r,m)
and are forwarded to Pneigh neighbors, and so on and so forth. The ordered list of
correspondences forwarded to a peer shows the correspondences computed along
a path and constitutes a mapping history. Although there are several strategies
for propagating correspondences, in this work we assume that mapping histories
are propagated in an unrestricted way, aiming to detect any cycle of correspon-
dences in the network. Although we may further "tune" the efficiency of the
propagation method, it must be pointed out that even with this naive propaga-
tion approach, the communication cost is not very high per ontology element,
given that each peer propagates each message only to neighbor peers that cor-
respond to a specific mapping case. As already said, each peer dispatches these
messages to its internal agents. Having said that, we have to point out that
the size of messages grow linearly with the length of the paths traversed in the
network of peers.

Some correspondences might map an element from one ontology to a se-
mantically irrelevant element in another ontology. Our goal is not to provide
probabilistic guarantees on the correctness of a mapping operation as it is done
in [5]: We aim towards driving peers to re-consider their local mappings with
respect to their preferences, the semantics of specifications, also in accordance to
the feedback they receive from other peers via cycles of mappings, so as to reach
agreements. Towards this goal, also in accordance to [5], we take advantage of
the cycles existing in the graph of peers. Given a cycle (Pnode → Pneigh → · · · →
P ′neigh → Pnode) we consider that for each correspondence (Enode

i ,Eneigh
j , ≡,m)

forwarded from Pnode to Pneigh (together with the mapping history) the origina-
tor Pnode must get a correspondence (Eneigh

k ’,Enode
i , ≡,m’) from the last peer in

the cycle, Pneigh’. In other words, when Pnode computes a local correspondence
of Enode

i to Eneigh
j , then Pneigh, via the path from Pneigh to Pnode must propa-

gate a correspondence to the element Enode
i , rather than to any other element of

Onode. In such a case, for each such correspondence, Pnode counts a positive feed-
back. In case this does not happen, then there are one or more mappings through
this path that according to the subjective view of Pnode result to a disagreement.
Then, Pnode counts a negative feedback. It must be noticed that disagreements
may still exist when Pnode gets the expected correspondence but several corre-
spondences along the path compensate their errors: These are detected by the
corresponding peers as the mapping history propagates in the network.

3 There is one such agent in each dependency graph corresponding to a mapping case.

Summing up the above, each peer (a) gets a list of correspondences prop-
agated to it (the mapping history), and (b) inspects the mapping history to
detect a cycle. This is done by detecting in the mapping history the most recent
correspondence originated from it. Such a correspondence concerns one of its
own ontology classes and a specific mapping case. In case there is a cycle, the
peer propagates the history to the internal agents that (i) correspond to that
mapping case and, (ii) are responsible to compute correspondences for that class.
These agents incorporate the feedbacks in their decision-making. In case there
is not any cycle, histories are propagated to all internal agents corresponding to
that mapping case. (c) After internal agents’ computations, the peer propagates
mapping decisions (together with the mapping histories) to neighbor peers corre-
sponding to the mapping case. The propagation of beliefs in internal graphs and
between peers, together with the incorporation of feedback to the algorithm are
presented in detail in Section 5. It must be pointed out that belief propagation
between peers happens seamlessly to the local computations of correspondences
by internal agents. So, we may consider that a large, distributed graph compris-
ing the internal agents of peers, spans the whole network of peers.

3 Related work

There are several works aiming to preserve the consistency of mapping deci-
sions by locating (minimal) subsets of mappings that introduce inconsistencies
[13],[14],[15],[17]. However, we consider distributed methods for the computation
of agreed correspondences between ontologies of peers in a network.

Argumentation methods support the creation and exchange of arguments,
followed by reasoning on their acceptability. There are numerous approaches
that explore the application of argumentation methods for reaching semantic
agreements between agents (e.g. [20],[21],[12]). Arguments are being used as po-
sitions for or against correspondences. These methods are proposed mostly for
cases where peers need to produce mappings between their shared ontology and
the ontology of a third party: I.e. to a rather restricted set of settings. Alterna-
tively to arguments, we propose agents to exploit estimations of correspondences’
payoffs, which are propagated to other agents and peers.

Probabilistic message passing techniques proposed in [5] aim to detect er-
roneous mappings between peers in a peer-to-peer data management system.
This method targets cases where peers connected in a network have different
ontologies and produce mappings to each other. The proposed method takes ad-
vantage of the transitive closure of mapping operations in a cycle of peers, to
compare a query q to the returned q′ via that cycle. To a certain extent than that
work, we aim to compute correspondences that maximize the social welfare of
the overall system (leading agents to agreement), with respect to the semantics
of specifications and to the preferences of agents.

For the establishment or development of a common vocabulary among en-
tities, researchers have proposed cognitive models [16], bilateral communication
protocols and strategies [7][18] for agents, also studying the properties of shared

vocabularies [6], or the dynamics of their establishment [1]. In this paper we
start from the point where peers have own ontologies (assumed to be devel-
oped/learned independently from the ontologies of others). We do not deal with
how ontologies have been learned, or how effective mappings have been estab-
lished between pairs of peers: This may be achieved either using an instance
based method [7][22], a method for "tuning" the descriptions of concepts [22],
or other ontology mapping methods. The proposed method aims at reconciling
differences between computed correspondences, based on the notion of feedback,
whose effect has also been studied in [16],[21],[5].

4 The max-plus algorithm

Before proceeding to the details of the computations, this section briefly explains
how belief propagation happens via the max-plus algorithm.

One can deal with a complicated problem by viewing it as a factorization of
several local functions, each depending on a subset of the variables that appear
in the global problem. In particular, aiming to optimize over a function that is
decomposed in local terms, we may compute the maximum a posteriori config-
uration in a graphical model using the max-product algorithm [11]. In our case,
we aim at selecting the appropriate correspondences among ontology elements so
as to maximize the social welfare of a set of agents. Message passing algorithms,
and particularly the max-plus algorithm [8,10] are directly applicable to such a
problem. In the most general case, considering a graph of interacting agents (a
dependency graph - aka coordination graph [9]- specifying how the decisions of
one agent affect the decisions of others), in order to compute the optimal joint
state X∗ according to equation (1), each agent (node in the graph) sends a mes-
sage µij to each of its neighbors Aj in N(Ai). This message can be regarded as
a local payoff function [10] of agent Aj and it is defined as

µij(xj) = maxxi
{Uij(xi, xj) +

∑
Ak∈N(Ai)−{Aj}

µki(xi)}+ cij (2)

where cij is a normalization factor. This message is computed by maximizing
over the preferences of Ai, the sum of the utility Uij and all incoming messages
to Ai except from Aj . Messages are exchanged until they converge to a fixed
point 4, or until an external signal is received (this is the case in this paper: The
algorithm iterates I times). Since payoff functions are defined over at most two
agents the utility Uij can be of the form

Uij(xi, xj) = fi(xi) + f ji (xi, xj) (3)

where fi specifies the payoff contribution of agent Ai, and f
j
i the payoff contri-

bution of the pair of neighbor agents Ai and Aj . These functions are specified
in Section 5.1.
4 Unfortunately, there are no guarantees that the max-plus converges to optimal so-
lutions in graphs with cycles and no assurances can be given concerning the quality
of the joint state X∗.

The agent Ai may at any time step compute

gi(xi) = fi(xi) +
∑

Ak∈N(Ai)

µki(xi) (4)

which equals the contribution to the global payoff function achieved via Ai’s
neighborhood. Thus, each agent can form a decision by approximating its optimal
choice by computing

x∗i = argmax
xi

gi(xi) (5)

Messages may be updated either asynchronously or synchronously. Any node
in the graph may initially sent an identity (i.e. µij(xj) = 1). When a node
receives messages from its neighbors it computes outgoing messages.

5 Decentralized Coordination Through Belief
Propagation

5.1 Internal Dependency Graphs

Considering one of the mapping cases of Pnode, from Onode to Oneigh, Pnode

constructs a dependency graph for this mapping case on-the-fly: The nodes of this
graph are Pnode-internal agents. As already said, each agent Anode

i corresponds
to an ontology class Enode

i of Onode, given a specific mapping method A of Pnode.
The state of an internal agentAnode

i is represented by a tuple (xnodei ,γ(xnodei)).
The range of xnodei is the set of classes in Oneigh that the method A assesses to
be related to Enode

i via a relation r (in this paper equivalence only). Let that
set be Dnode

i . A value selection for xnodei (i.e. a class in Dnode
i) is denoted by

value(xnodei). The ordering imposed toDnode
i by γ represents the preference of the

agent to each possible value of xnodei . In case elements inDnode
i are not associated

with confidence values, then the agent considers all possible values of xnodei to be
equally preferred. Such an agent Anode

i is depicted in Figure 1(a). Therefore, the
internal dependency graph corresponding to the mapping case (Onode, Oneigh)
with a single mapping method, comprises at mostMnode = |Snode| agents (Snode

is the signature of Onode).
Each agent Anode

i interacts with a limited number of other agents: In the
most general case, given a specific mapping case, the Pnode-internal neighbors
of Anode

i are those agents that correspond to ontology classes that are direct
subsumees of Enode

i in Onode. Formally, the set of Pnode-internal neighbors of an
agent Anode

i is denoted by N(Anode
i) and it is defined to be the set

N(Anode
i) = {Anode

n |(n 6= i) and (Enode
i v Enode

n in a direct way) }

Agents in Pnode-internal graphs are interrelated with constraints that affect
their states (i.e. mapping decisions). Let us first show this with an example (the
corresponding dependency graph is shown in Figure 1): Given a mapping case

with two ontologies Onode and Oneigh and a mapping method A, the dependency
graph comprises agents (some of them are depicted in Figure 1 in round-corner
rectangular), related with the mapping method, a specific class from Onode, and
a state variable x). The method A computes for each class Enode

i the set Dnode
i

Fig. 1. Ontologies (Mapping Case) and Dependency Graph (part)

of candidate corresponding classes from the ontology Oneigh. Each of the classes
in this set is assessed to be related to Enode

i via the equivalence relation, with a
specific degree of confidence. Given two classes from Onode, s.t. Enode

2 v Enode
1 ,

The agent for the class Enode
1 considers correspondences to classes of Oneigh such

that value(x1) ≡ Enode
1 . Similarly, the agent for the class Enode

2 considers values
- i.e. classes of Oneigh - for the variable x2 such that value(x2) ≡ Enode

2 . Clearly,
since Enode

2 v Enode
1 , to maintain consistency between the mappings computed

by these agents it must hold that value(x2) v value(x1). This is a validity
constraint (shown with a bold line between agents) that must be preserved by
the agents Anode

1 and Anode
2 and it is specified by the constraintconstr(x2, x1,v).

Generally, the constraints between two agents Anode
i , Anode

u , are as follows
(given that the mapping methods considered compute equivalences, only):

If ((Enode
j r Enode

w) and (value(xw) ≡ Enode
w and value(xj) ≡ Enode

j),
then constr(xj , xw, r), where r ∈ {≡,v}

Validity constraints specify how the utility of each agent is affected by its
own state and the state of its neighbors. Recalling that the utility has the generic
form specified in (3), payoff functions fi and f

j
i are as follows:

fi(xi) =γ(xi) (6)

fk−li (xi, xk−l) =

(
1 if constr(xi, xk−l, r) satisfied

0 in any other case

)
(7)

where γ(xi) is the confidence by which the mapping method maps the class
Enode

i to the class value(xi) of the other ontology. N(Ai) is the set of Ai neigh-
bors, and constr(xi, xk, r) denotes the constraint that value(xi) must be related
to value(xk) via r.

5.2 Belief Propagation Among Peers

Each edge (Pnode,Pneigh) in the network of peers, corresponds to a distinct map-
ping case (Onode,Oneigh) for Pnode. Each Pnode -internal agent Anode

i for this
mapping case ("responsible" to compute correspondences for the class Enode

i to
Oneigh), computes the messages to its neighbor agents according to the formula
(2). Doing so, the agent Anode

i communicates its payoff function to the agents
with whom it shares a constraint. Nevertheless, to reach agreements, the state of
each Pnode-internal agent Anode

i must affect also the computations of (distant)
peers in cycles with Pnode, and visa-versa. Therefore, the states of Pnode-internal
agents must be propagated to neighbor peers. It must be pointed out that no
peer knows any part of the internal graph or any of its neighbor peers. There-
fore messages are propagated among peers, rather than among internal agents
of different peers.

As already said, messages concerning correspondences for a mapping case
are propagated to all neighbor peers corresponding to that mapping case. Doing
so, peers may detect cycles, take the full advantage of the transitive nature of
cyclic mappings, and detect all positive/negative feedbacks provided by agents.
Specifically, given the edge (Pnode,Pneigh), Pnode collects the states of each Pnode-
internal agent corresponding to the mapping case from Pnode to Pneigh in a syn-
chronous way (i.e. after I iterations of the max-plus algorithm) and propagates
these decisions to Pneigh, and to all other peers corresponding to that mapping
case. Actually, Pnode propagates messages, each including a mapping history and
a new correspondence of the form (Enode

i ,Eneigh
j ,≡,m). Eneigh

j is computed ac-
cording to equation (5). The actual form of m is mneigh

node (Eneigh
j) and it is equal

to gi(E
neigh
j), given by formula (8) below, which refines the formula (4). The

computations are performed by the internal agents of Pnode that are responsible
to compute correspondences for any element Enode

i .
Pneigh, by inspecting any mapping history that has been propagated to it,

can detect the existence of a cycle, and can spot one of its internal agents that
is interested to the propagated mappings: As already said, this is done by de-
tecting in the history the most recent correspondence originated from it. This

correspondence (it is exists) concerns one of Oneigh classes. The agent to which
the feedback and mapping history is propagated is the one that decides on cor-
respondences for that class and for that mapping case. In case there is not a
cycle, the messages are propagated to all internal agents corresponding to that
mapping case.

Pneigh-internal agents exploit incoming messages to detect any feedback and
incorporate these into their decision. Specifically, after I iterations of the max-
plus algorithm, Pneigh-internal agents compute own decisions by refining the
computation of payoffs specified by formula (4), considering also feedback mes-
sages, as follows:

gi(xi) = fi(xi) + (α×
∑

Ak∈N(Ai)

µki(xi)) + (β×
∑
node

Fnode(xi)) (8)

where node denotes any Pnode that has propagated correspondences to Pneigh.
In case there is a closing cycle with a negative feedback, or in case there is
not a closing cycle, Fnode(xi) is 0, else Fnode(xi) is m

neigh
node (xi). In other words,

correspondences are decided by taking into account any feedback received from
neighbor peers by exploiting mapping histories corresponding to the mapping
case considered. Also, α and β are parameters (real numbers ranging in [0,1])
that have been used to experiment with the effect and necessity of feedback and
constraints on agents’ decision making.

6 Experimental Evaluation

We have contacted experiments with different networks, and with different peers’
abilities to compute correspondences.

For each experimental setting (presented below) we measure (a) the recall
R and the precision P of the correspondences computed by each peer for each
mapping case (with respect to the reference mappings), (b) the number of posi-
tive and negative feedbacks F+ and F− received by each peer, (c) the number of
messages PM received by each peer in each run, and (d) the number of messages
AM exchanged between the internal agents of each peer per run.

To measure the degree / level of agreement achieved between peers and the
effectiveness of computations we measure the f−score (specified by f−score =
2 ∗ (P ∗R)/(P +R)) for each mapping case, the level of agreement achieved for
each peer, (specified by Level = (F+ − F−)/PM), the agreement accuracy for
pairs of peers, (specified by Accuracy = Level ∗ f − score), and the Message
Gain for achieving this accuracy (and level) given the number of inter-agent
messages, specified by Gain = (Accuracy ∗sf)/AM , where sf is a scaling factor
set equal to 1000. The motivation for these proposed scores is as follows: While
f-score shows in a combined way the precision/recall of the correspondences
computed per mapping case, the level of agreement shows (independently of the
precision/recall achieved) the agreement achieved between peers as a function of
positive and negative feedbacks after a specific number of inter-peer messages:

Peers may agree to false positive correspondences, as well. To provide a measure
of these correspondences, the agreement accuracy measure combines the level
of accuracy and the accuracy of computed mappings. Finally, aiming to show
the efficiency of the method, we provide the gain as a function of the accuracy
achieved and the number of inter-agent messages.

Given that the complexity of the method increases as the length and number
of cycles in the network of peers increase (rather than with the number of peers),
and in order to study the various patterns of method’s behavior, we demonstrate
the performance of the method with networks of N=6 peers, each with an in-
creasing complexity. Specifically, experiments concern four types of networks in
which peers’ average degree is 2,3,4 or 5. Each type of network comprises at
most 10 different networks. For each type of network we run experiments with
various values of α and β, distinguishing the following cases:

– (C1) α ∈ (0, 1] and β ∈ (0, 1]: In these cases we need agents’ decision to be
affected by both, the feedback received, and by the inter-agents constraints,
in a balanced way. In this case we expect agents to achieve high f-scores and
high levels of agreements. Since it is not clear which case is a "balanced"
case, we have run several experiments with α and β ranging from 0.1 to 0.9.
Below we present experiments from the following combinations of α and β:
• (case1) (α = 0.1, β = 0.9),
• (case2) (α = 0.3, β = 0.7),
• (case3) (α = 0.5, β = 0.5),
• (case4) (α = 0.7, β = 0.3),
• (case5) (α = 0.9, β = 0.1).

– (C2) α = 1 and β = 0: In this case agents’ decision is affected by the
inter-constraints, rather than by the feedback received. In this case we may
expect agents to achieve high f-scores but low levels of agreement. However,
experiments show that actually, constraints play a crucial role in achieving
high levels of agreements.

– (C3) α = 0 and β = 1: In this case agents’ decisions are affected mostly by
the feedback received, rather than by the inter-agents constraints. In this
case we may expect high levels of agreement but low f-scores. Nevertheless,
given that agents’ decisions are not inter-constrained, feedback alone does
not drive agents to reach high levels of agreement.

– (C4) α = 0 and β = 0: In this case agents compute their decisions in a purely
random way. Neither inter-agents’ constraints nor feedback messages affect
their decision. This is a baseline case where f-core and agreement measures
are expected to be very low.

For each of the above cases we ran 10 independent experiments for each type
of network (thus, 50 experiments for each case and sub-case, i.e. 400 experiments
in total). Below we present aggregated results: The average of the scores achieved
per case, and the average performance of one peer (over the different networks
considered) in two cases.

In each of these cases each peer is been randomly assigned with a specific
distinct ontology with 13 classes.

As far as the ability of peers to compute correspondences is concerned, in
order to have a control on the experimental settings, each peer is set to compute
mapping relations with a constant precision in {1,0.9,0.8,0.7,0.6,0.5}, in any of
the networks considered. The precision specifies the proportion of the decided
correspondences that are correct (true positives). False positive correspondences
map a class to a randomly chosen class with high preference, while the correct
correspondence for that class is assigned a random, low preference. As the dif-
ference between the mapping ability of neighbor peers grows, as the problem
for reconciling different views and thus, computing agreements, is expected to
become harder: As the average degree of peers increases, each peer has neighbors
with quite different mapping abilities.

The max-plus running in each of the internal agent graphs iterates for a fixed
number of iterations (I) per round. After experimentation I has been set to 5.

First, we have run experiments to determine what constitutes a "good" bal-
ance between constraints and feedback (i.e. to determine a good option for α
and β for the case C1). Then, given the best option, we compared this case with
the rest of the cases C2, C3, C4, where α and β range in {0,1}, excluding the
case where α and β are both equal to 1.

Average results from the 5 sub-cases of case C1 are shown in Figure ??(a).
As Figure 2(a) shows, the performance scores, and especially the f-score and

the level of agreement achieved in all cases, are nearly the same: In all cases
agents compute their decisions wrt their constraints with other internal agents
and to the feedback received from other peers. However, case 2 (α = 0.3, β = 0.7)
achieves a slightly higher f-score (0.86) and level of agreement (0.10) than the
other cases. Therefore, we consider this to be the "balanced" case. Subsequently,
when we refer to C1 we refer to this particular case. Having said this, we must
point out that the method is robust to the choice of the external parameters α,
β, although a "good" choice can make a slight difference to the results. Figure
2(b) shows the performance measures for a specific (representative) peer for the
C1 for each of the rounds of the overall method (measurements are the averages
for 10 independent experiments). As we may notice, the proposed method (in all
the cases and for each of the peers) manages to gradually increase the f-score and
the number of positive feedback received, thus the level of agreement between
peers. Also, the method manages to reach a plateau after round 5.

Having determined the "balanced" C1 case, we can compare the results
achieved in that case, with the average f-score, agreement levels, accuracy and
message gain achieved in all cases where α and β range in {0,1}. Figure 2(c)
shows the results for all the cases (C1 to C4). As expected, the best case is C1
(i.e. the balanced case), followed by C2 with f-score 0.85 and level of agreement
0.09. It may be a surprise that C2 achieves a high level of agreement, but this is
due to the fact that all peers have the same ontology. In this case, peers’ internal
agents form mapping decisions that respect the semantic constraints, which are
shared by all groups of internal agents in each peer. This results to a high level
of agreement even if feedback is not considered by the agents. Although this
is the case for structurally similar ontologies, future work aims to investigate

(a)

(b)

(c)

(d)

Fig. 2. Experimental Results

this case more intensively, considering ontologies that can be aligned but that
are structurally dissimilar. For the rest of the cases, i.e. C3 and C4, both the

f-score and the level of agreement achieved are very low. However, in C3 the
level of agreement is slightly higher than C4. In both of these cases, the fact
that constraints are not being considered, causes the unconstrained fluctuation
of agents’ decisions among all possible correspondences, thus affecting the level
of agreement achieved. Figure 2(d) shows the (representative) performance of a
specific peer in case C3. Again, the reported measurements are the averages for
10 independent experiments.

Concluding the above, experimental results show that semantic coordination
must consider both, the constraints and the feedback received, although semantic
constraints play a vital role in the process.

7 Concluding Remarks and Future Work

We address the semantic coordination problem in an agent-based data manage-
ment system through payoff propagation, by a distributed extension of the max-
plus algorithm. The method is shown to be effective enough, making the best of
the mappings produced by peers, helping peers increase their levels of agreement
and the agreement accuracy. Future work concerns including other mapping re-
lations whose transitive closure can be exploited by peers (e.g. subsumption and
disjointness) in cycles. Also, we aim to address subtle issues concerning commu-
nication; although - via experiments performed- various heuristics for reducing
the communication messages result to sacrificing considerably methods’ effec-
tiveness. Finally, the study of sub-optimality, as well as the integration of the
proposed method to a peer-to-peer setting seamlessly to other distributed pro-
cesses (e.g. information retrieval) are important issues.

References

1. Baronchelli A., Felici M., Caglioti E., Loreto V., L.Steels 2006 Sharp Transition
towards Shared Vocabularies in Multi-Agent Systems. J. Stat. Mech. P06014, 2006.

2. Beun R-J, van Eijk M. R., H. Prust, 2004 Ontological Feedback in Multi-Agent
Systems. In Proc. of AAMAS 2004.

3. Cudre-Mauroux P., et al. 2006 Viewpoints on emergent semantics. S. Spaccapietra
et al. (Eds.): J. on Data Semantics VI, LNCS 4090, pp. 1-27, 2006.

4. Cudre-Mauroux P., et al. 2009 idMesh: Graph-Based Disambiguation of Linked
Data. In Proc of WWW 2009.

5. Cudre-Mauroux P., Aberer K., and A. Feher 2006 Probabilistic Message Passing in
Peer Data Management Systems, In Proc. of ICDE 2006.

6. Diggelen J., et al., 2005 Optimal Communication Vocabularies and Heterogeneous
Ontologies. Agent Communication (Rogier M. van Eijk et al eds.), LNCS 3396, 2005.

7. Diggelen J., et al. 2006 ANEMONE: An effective minimal ontology negotiation
environment, In Proc. of AAMAS 2006.

8. Farinelli, A., Rogers A., Petcu A. and N.R. Jennings 2008 Decentralised coordination
of low-power embedded devices using the max-plus algorithm. In Proc. of AAMAS
2008.

9. Guestrin, C., Koller D., Parr R. 2002 Multiagent planning with factored MDPs.
NIPS 14, MIT Press 2002.

10. Kok J.R. and N.Vlassis 2006 Collaborative Reinforcement Learning by Payoff Prop-
agation, JMLR, 7:1789-1828, 2006.

11. Kschischang, F.R., Frey B.J., Loeliger H-A., 2001 Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, Vol 47, Issue 2, 2001.

12. Laera L., et al. 2007. Argumentation over ontology correspondences in mas. In
Proc. of AAMAS 2007.

13. Meilicke C. and H. Stuckenschmidt 2009 An efficient method for computing align-
ment diagnoses. In Proc. of RR 2009.

14. Meilicke C., Stuckenschmidt H. and A. Tamilin 2009 Reasoning support for map-
ping revision. Journal of logic and Computation, 19(5):807-829, 2009.

15. Qi G., Q. Ji, and P. Haase 2009 A conflict-based operator for mapping revision, in
Proc. of ISWC 2009.

16. Reitter D. and C.Lebiere, 2011 How groups develop a specialized domain vocabu-
lary: A cognitive multi-agent model. Cognitive Sys. Res. 12, , pp 175-185, 2011.

17. Ruiz E.J., Grau B.C., Horrocks I. and R.Berlanga 2009 Ontology integration using
mappings: Towards getting the right logical consequences. In Proc. of ESWC 2009.

18. Sensoy M., P. Yolum, 2009. Evolving service semantics cooperatively: a consumer-
driven approach. J. of Aut. Agents and Multi-Agent Sys, 18, 2009.

19. Spiliopoulos, V, Vouros G. In Press. Synthesizing Ontology Alignment Methods
Using the Max-Sum Algorithm. IEEE TKDE, Vol 24, Issue 5, pp 940-951, 2012.

20. Trojahn C., Euzenat J. 2010 Consistency-driven Argumentation for Alignment
Agreement. Proc. of OM, 2010.

21. Trojahn C., Moraes M., Quaresma P., and R. Vieir 2008 A Cooperative Approach
for Composite Ontology Mapping, J. on Data Semantics X, LNCS 4900, pp. 237-263,
2008.

22. Williams B. A. 2004 Learning to Share Meaning in a Multi-Agent Systems. J. of
Aut. Agents and Multi-Agent Sys, 8, 2004.

23. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed
constraint satisfaction problems. In Proceedings of the 2nd Int’l Conf. on Multiagent
Systems, pages 401-408, 1996.

