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Abstract. The Double-Game Prisoner’s Dilemma (DGPD) is a new game that
incorporates the standard Prisoner’s Dilemma (PD) with the Social Game. DGPD
provides a novel approach in modelling economic behaviours: in each round,
players not only need to choose to cooperate or defect, but also need to adjust their
weights for each basic game. As a result, traditional strategies for PD, e.g. Tit-
for-Tat, do not perform well in DGPD. In this paper, we propose a new strategy
for the DGPD game, based on a Reinforcement Learning (RL) algorithm, namely
SARSA(λ) with eligibility traces. This algorithm does not require a model of
the player’s environment and, therefore, is well suited for use in repeated games
against unknown opponents. We empirically analyse the effectiveness of the pro-
posed strategy. In addition, we discuss several key points in designing this strat-
egy, e.g. the values of parameters, and show how they affect the strategy’s per-
formance. Our RL-based strategy wins the Material Versus Social Payoff Tour-
nament (MVSPT) and significantly outperforms other strategies.

1 Introduction

Multi-Games (MGs), proposed by Edalat et al. [5], are a novel class of games used
to model economic behaviours in a global economy with different markets. Consider
N multi-national companies which can invest in M different countries with different
cost of investment, rates of profit, labour value, interest rates, etc. In order to maximize
profit, each company not only need to predict and adjust to the competitors’ strategy in
each country, but also need to decide in what ratio to divide its assets for investment in
each country. In MGs, each player can allocate its resources in varying proportions to
play in several different environments, each representing a basic game. Each player can
have different sets of strategies for the different basic games. The payoff of each player
in an MG is assumed to be the convex linear combination of payoffs obtained for the
basic games weighted by the allocated proportions to them.

The Double-Game Prisoner’s Dilemma (DGPD) is a 2-player MG consisting of two
basic games: the Prisoner’s Dilemma (PD) and the Social Game (SG). DGPD takes into
account both the material payoff and the social/moral payoff, which are represented by
the utilities of PD and the utilities of SG, respectively. The percentage of resources a
player puts on the SG is represented by the social coefficient. DGPD provides a more
comprehensive and precise model of human behaviours [5]. Details of DGPD are pre-
sented in Section 2.1.
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However, because of the the complex nature of this game, traditional successful
strategies for PD does not perform well in DGPD. For example, the traditional Tit-
for-Tat (cooperate on the first move and then reciprocate the opponent’s last action)
performs poorly in DGPD because it does not take resource allocation (i.e. social coef-
ficient adjusting) into account.

Reinforcement Learning (RL) is based on the idea that the tendency to produce an
action should be strengthened (reinforced) if it produces favourable results, and weak-
ened if it produces unfavourable results. SARSA(λ) [14] is a RL algorithm that does not
need a model of the environment and can be integrated with other techniques, e.g., eli-
gibility traces, reward shaping, etc., to improve its convergence speed [14]. Therefore,
it is well suited for use in repeated games against an unknown opponent.

In this paper, we propose a new RL-based strategy for the DGPD game. In particu-
lar, our strategy consists of two parts: social coefficient updating and decision-making.
In the first part, we update the social coefficient according to the payoff matrix of
DGPD and both agents’ action in the last round. Upon the updated social coefficient, the
decision-making part builds a Markov Decision Process (MDP) and uses RL to adjust
to the opponent’s behaviours. Our RL-based strategy shows outstanding performances
in the Material Versus Social Payoff Tournament (MVSPT)1, a tournament to evaluate
the effectiveness and robustness of each strategy in the DGPD scenario.

The remainder of this paper is organised as follows: Section 2 provides the back-
ground of the DGPD game and related theories, and introduces the structure of MVSPT.
Section 3 gives details of our strategy and discusses several key issues in designing it.
Section 4 compares the performance of our strategy with that of the other candidates in
the tournament. Section 5 describes related works, including other sophisticated strat-
egy for DGPD and other RL-based strategies for standard PD. At last, we conclude our
research in Section 6.

2 Background

We first introduce MG and DGPD, a 2-player MG consisting of two basic games: the
PD and the SG. Then we give some fundamentals of the concept of Nash Equilibrium.
After that, RL will be briefly described and a specific RL algorithm: SARSA(λ) with
eligibility traces, will be presented in detail. Finally, we introduce the rules and restric-
tions of MVSPT.

2.1 Multi-Games and Double-Game Prisoner’s Dilemma

Formally, Multi-Games (MGs) are defined as follows [5]: consider M finite N -player
games Gi(1 ≤ i ≤ M) with the strategy set Sij and the payoff matrix πij for player
j(1 ≤ j ≤ N) in the game Gj . Assume each player j has a set of M weights ηij
with

∑M
j=1 ηij = 1. The N -player MG G with basic games Gi is defined as the finite

1 Part of the documents and source code of MVSPT can be downloaded at https://
github.com/theoboyd/mvspt



strategy game with players j(1 ≤ j ≤ N) each having strategy set
∏

1≤i≤M Sij and
payoff

πj(
∏

1≤i≤M

sij) =
∑

1≤i≤M

ηijπij(sij)

for strategy profile sij ∈ Sij and possibly incomplete information (types) ηij for 1 ≤
i ≤ M . We say a MG is uniform if for each player j, the set Sij is independent of the
game Gi, i.e., we can write Sij = Sj , and sij = si′j for 1 ≤ i ≤ i′ ≤M .

The Double-Game Prisoner’s Dilemma (DGPD) is a uniform 2-player MG consist-
ing of two basic games: PD and SG. PD is an abstraction of social situations where
each agent is faced with two alternative actions: cooperating, i.e., doing the socially
responsible thing, and defecting, i.e., acting according to self-interest regardless of how
harmful this might be to the other player. PD is considered as a standard method for
modelling social dilemmas, and has also been used to model conditional altruistic co-
operation, which has been tested by real monetary payoffs [8]. The payoff matrix of
PD is shown in Table 1. The payoff values in the PD should satisfy the following two
inequalities:

T > R > P > S (1)

R > (T + S)/2 (2)

Inequality 1 specifies the order of the payoffs and defines the dilemma, since the best a
player can do is to get T (temptation to defect), followed byR (reward for cooperation),
P (punishment for mutual defection) and S (sucker’s payoff). On the other hand, In-
equality 2 ensures that in the repeated game, the players cannot get out of the dilemma
by taking turns in exploiting each other.

Player 2 Cooperate Player 2 Defect
Player 1 Cooperate (R, R) (S, T )
Player 1 Defect (T , S) (P , P )

Table 1. Payoff matrix of PD

However, when faced with the choice of cooperate or defect, human beings not only
consider their material score, but also the social and moral payoffs. According to some
research [17, 18], human social evolution has a moral direction which has extended
our moral campus in the course of thousands of years of increasing communication
and complexity in human social organisation. The same applies to economic decisions
made by corporations or governments [5], in which actions taken can have significant
social and environmental implications, which are not incorporated in the material gains
they produce. A more adequate model of human behaviour, therefore, should take into
account these aspects of social evolution as well. As a result, SG has been proposed
and integrated into PD [4]. SG encourages cooperation and discourages defection, as



cooperating is usually considered to be the ethical and moral choice to make when
interacting with others in social dilemmas. The payoff matrix of SG is shown in Table 2.

Player 2 Cooperate Player 2 Defect
Player 1 Cooperate (M1, M2) (M1, M ′

2)
Player 1 Defect (M ′

1, M2) (M ′
1, M ′

2)
Table 2. Payoff matrix of SG

The payoff of DGPD for each player are then the weighted sum of the payoffs of
PD and SG, represented by MaterialScore and SocialScore respectively, using the
player’s social coefficient, which reflects how much they cares about the morality of
their actions. The payoff matrix of DGPD is presented in Table 3, where η and γ (with
0 ≤ η, γ ≤ 1) are social coefficients of Player 1 and Player 2, respectively.

Player 2 Cooperate Player 2 Defect
Player 1 Cooperate (1− η)R+ ηM1, (1− γ)R+ γM2 (1− η)R+ ηM1, (1− γ)T + γM ′

2

Player 1 Defect (1− η)T + ηM ′
1, (1− γ)S + γM2 (1− η)P + ηM ′

1, (1− γ)P + γM ′
2

Table 3. Payoff matrix of DGPD

With respect to the payoff values, the following formulae hold:

T > R > M1 =M2 > P > S (3)

M1 =M2 > (R+ P )/2 (4)

M ′1 =M ′2 = S (5)

Inequality 3 ensures that the social payoffs, namely M1 and M2, are neither over-
evaluated (T > R > M1 = M2), nor under-evaluated (M1 = M2 > P > S), so
as to maintain the dilemma and encourage social behaviours at the same time. Inequal-
ity 4 has the similar function as Inequality 2. Equality 5 indicates that M ′1 and M ′2
should be equal to S, in order to discourage defection with a high social coefficient,
which would be self-contradictory, and to punish defection, since M ′1 and M ′2 are the
payoff value for defection in the SG, which, by its definition, should not give high value
to defection.

2.2 Nash Equilibrium

The notion of Nash Equilibrium (NE) is a solution concept of a game involving two
or more players, in which each player is assumed to know the equilibrium strategies of



the other player, and neither player has any incentive to change only its own strategy
unilaterally. In particular, John Nash has proved that every game in which every player
has a finite set of possible strategies has a Nash equilibrium in mixed strategies [11].

With respect to the PD game, the only NE accounts to both players defecting: since
T > R > P > S (see Section 2.1 ), according to the payoff matrix (see Table 1), each
player can unilaterally improve their situation by defecting regardless of the other’s
decision. However, it is obvious that the score of both player cooperating is higher than
that of both player defecting. So the NE solution is not necessarily the optimal solution.

2.3 Reinforcement Learning and SARSA(λ)

Among many mathematical models of RL, MDP is the most widely used one and has
several variants [14]. An MDP is a tuple (S,A, T,R), where S is the state space, A is
the action space, T (s, a, s′) = Pr(s′|s, a) is the probability of moving from state s to
state s′ by executing action a, and R(s, a, s′) gives the immediate reward r received
when action a is taken in state s, moving to state s′.

However, in most real environments, the transition probabilities and reward func-
tions, namely the model of the environment, are not known. In these cases, on-policy
learning algorithms are used, which apply temporal-difference updates to propagate in-
formation about values of states, V (s), or state-action pairs, Q(s, a). These updates
are based on the difference of the two temporally different estimates of a particular
state or state-action value. The SARSA(λ) [14] algorithm is such an on-policy learn-
ing algorithm. In addition, we integrate SARSA(λ) algorithm with replacing eligibility
traces, which keep a temporary record of the occurrence of each event, to improve the
convergence speed of the algorithm [14]. The details of this algorithm is presented in
Algorithm 1. In the algorithm, α is a learning rate parameter and γ is a discount fac-

Algorithm 1 Learning algorithm: SARSA(λ) with replacing eligibility traces (adapted
from [14])
1 Initialise Q(s, a) arbitrarily for all states s and actions a
2 Repeat (for each episode):
3 Initialise e(s, a) = 0 for all s and a
4 Initialise current state st
5 Choose action at from st using the policy derived from Q
6 Repeat until st is the terminal state:
7 Execute action at, observe reward rt and new state st+1

8 Choose at+1 from st+1 using the policy derived from Q
9 δ ← rt + γQ(st+1, at+1)−Q(st, at)
10 e(st, at)← 1
11 For all s, a:
12 Q(s, a)← Q(s, a) + αδe(s, a)
13 e(s, a)← γλe(s, a)
14 st ← st+1; at ← at+1

tor governing the weight placed on the future. The value e represents eligibility traces,



which stores the credit that previous action choices should receive for current rewards,
while λ governs how much credit is delivered back to them. The action selection rule
used in line 5 and line 8 is ε-greedy: the action with highest Q(s, a) value will be se-
lected for a proportion 1 − ε of the trials; for the other ε proportion, actions will be
selected randomly.

2.4 Material Versus Social Payoff Tournament

MVSPT is based on the DGPD game. The structure of the tournament is round-robin,
i.e., all the strategies compete in the iterated double game against all the other strate-
gies and themselves once. Each game between any two strategies consists of a variable
number of rounds. The number of rounds will in the range of 100 to 200, but the exact
number will not be given to each strategy to prevent the degenerate case of total mutual
defection2. The winner of the tournament is the strategy which has the highest total
score:

((1− β)×MaterialScore) + (β × SocialScore)

where β is the global social coefficient that represents the social inclination, and hence
weighting and importance of the social score to society as a whole. In order to encourage
both material and prosocial play, in MVSPT β will be fixed to 0.5.

However, instead of just showing the total score, the social and material scores will
be kept separate. As strategies play further rounds, their material and social scores are
tallied separately and recorded as two running totals that, along with η, completely
represent the current state of the player. We believe this is a better way of formulating
the dual game as it does not lose the meaning of the two scores by themselves and allows
us (and strategies) to measure social contribution separately and with equal importance
to material contribution.

The numerical values of the payoffs used in this tournament are:

T = 5, R = 3,M1 =M2 = 2.5, P = 1,M ′1 =M ′2 = S = 0

As described in Section 2.1, these values are chosen precisely to create an environment
where a real dilemma is present. There are some other restrictions for this tournament:

– In order to simplify the system, each agent’s private social coefficient (η) is a dis-
crete value. It is fixed to one of these six values: {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

– To model human dynamics in social behaviour more accurately, certain restrictions
are imposed on how much a player can increase or decrease the social coefficient
in a single round. In particular, an agent can only increase or decrease their social
coefficient by 0.2 in each round, since, in general, humans do not change their
moral values radically in a short amount of time [5].

2 If the total number of rounds, n, was known, a strategy would plan to defect at round n as
there is no repercussion for doing so and they can guarantee the maximum payoff. Similarly,
they can also defect in round n− 1 because they and their opponent will have (theoretically at
least) defected in round n. This continues backwards until defection is planned in all rounds.



– In each round (except the first round), a player is able to read his own as well as the
opponent’s action in the last round. However, each agent’s social coefficient (η) is
always private to itself3.

– It is not permitted to attempt to cooperate just after having defected and reduced
one’s social coefficient. Similarly, it is not permitted to attempt to defect just after
having cooperated and raised one’s social coefficient. Both of these measures are
in place to prevent undermining the concept of the game and if a strategy attempts
to perform one of these combinations, it is invalid.

3 Our Approach

The major difference between DGPD and standard PD is that in DGPD, agents not only
need to choose to defect or cooperate in each round — as they do in the standard PD
— but also need to update their weights on each game, namely the social coefficient
values. In accordance with this characteristic, our RL-based strategy consists of two
components: social coefficient (η) updating and decision-making. The RL process is
only involved in the decision-making part. In Section 3.1, the η-updating rules will be
presented and discussed, and in Section 3.2, the details of the RL algorithm will be
given.

3.1 Social Coefficient (η) Updating

We design our η-updating strategy as a fixed-history strategy, namely η will be updated
based on both players’ actions in the last k rounds, where k is the length of the history.
Same with the setting of the η-updating rules in [5], we set k as 1 here. According to the
payoff matrix of DGPD (see Table 3), we analyse the updating rules in each situation
as follows (each situation is represented by (M,O), where M is my last action and
O is the opponent’s last action; with respect to actions, C represents cooperate and D
represents defect):

– (C,C): Assume that both sides still mutually cooperate in the next round. Then by
decreasing η, a higher payoff can be gained. Similarly, if it is (D,C) or (D,D)
in the next round, decreasing η is still the better choice. Note that η represents the
weights given to the SG. Hence, to varying degrees, it reflects the agent’s will-
ingness to cooperate. As a result, by decreasing η, our strategy is very unlikely to
cooperate in the next round. So even though by decreasing η the payoff of (C,D)
will drop, we still believe that decreasing η is the best choice in (C,C).

– (C,D) and (D,D): In these situations, instead of attempting to alter the opponent’s
behaviour by retaliating to its defections, we realise that it is better to increase the
η value to get the social reward from cooperation and avoid the disastrous cycles of
mutual defection, which would be caused by a low η value.

3 Because the social coefficient of the opponent, namely γ, is unknown to us, we ignore the
effect of γ when we discuss the social coefficient updating rules in Section 3.1



– (D,C): In this situation, we will decrease the η value, as we see that the opponent
does not retaliate to our defection. In a sense we exploit the opponent in this partic-
ular case, however, it is the opponent who allows that behaviour by not retaliating.
In such cases, some strategies allow themselves to be taken advantage of, because
if they have a high η value, they can get higher payoff from cooperation and not
concern themselves about their opponent’s actions.

3.2 RL-Based Decision-Making

As described in Section 3.1, the η values are updated according to both sides’ actions in
the last round, so it is reasonable to believe that the updated η value is able to compactly
summarise past sensations and roughly represent the history. In other words, η satisfies
the Markov Property and, as a result, an MDP can be built upon η. To be specific, the
state set S (see Section 2.3) can be set to {Vη}, where Vη is the value of η. As described
in Section 2.4, there are only six values available for η, so there are six elements in S.
Action set A = {C,D}, where C and D represents cooperate and defect respectively.
Since the opponent’s action will affect the next state (η value), the transition probability
T (s, a, s′) is unknown. Immediate reward R(s, a, s′) are defined as the payoff of doing
action a in state s and moving to s′. Because we are using SARSA, the model of the
environment is not needed [14]. As a result, if the opponent’s strategy is fixed, namely
the transition probability of each tuple (s, a, s′) (i.e. T (s, a, s′)) is fixed, our SARSA
learning algorithm is able to find the optimal action in each state if each state-action
pair (s, a) can be visited for infinite times [14].

However, as described in Section 2.4, each game consists of only 100 to 200 rounds.
So each state-action pair can be visited for 200 times at most, which is far fewer than
the theoretical requirement of converge (i.e. infinite times). In other words, in order to
ensure that RL can find the optimal action in each state (η value), some prior knowledge
about the environment is essential, so as the speed up the convergence process. As a
result, the initial Q(s, a) values, for all state s and action a, need to reflect some prior
knowledge about the opponent.

Babes et al. [2] has suggested that by assigning Q(s, a) to be the maximum total
expected total discounted reward from state-action pair (s, a) can make learning optimal
behaviour nearly immediate. To simplify this initialization process, we assume that the
expected total discounted reward equals the immediate reward of executing action a in
situation s. Therefore, each Q(s, a) can be initialized as follows:

Q(Vη, C) = Poc × Payoff(Vη, (C,C)) + (1− Poc)× Payoff(Vη, (C,D)) (6)
Q(Vη, D) = Poc × Payoff(Vη, (D,C)) + (1− Poc)× Payoff(Vη, (D,D)) (7)

where Payoff(Vη, (M,O)) is the payoff when η = Vη and my last action and the
opponent’s last action are M and O, respectively. Poc is the probability of the opponent
to cooperate. Payoff(Vη, (M,O)) can be calculated by using the payoff matrix shown
in Table 3 (for player 1). In addition, according to a principle in designing PD strategies:
be nice (see [1]), we always choose to cooperate in the first round of each game. The
complete RL-based strategy is shown in Algorithm 2.



Algorithm 2 RL-based strategy for DGPD
Initialisation:

initialise η and Poc
for all state s and action a:

initialise Q(s, a) according to formula 6 and 7
Response:

if first round:
do not change η
st = Vη; at = C
return at

otherwise:
read the opponent’s last action Ao
η-updating:

if (at, Ao) = (C,C): decrease η
else if (at, Ao) = (C,D): increase η
else if (at, Ao) = (D,C): decrease η
else if (at, Ao) = (D,D): increase η
else: do not change η

decision-making:
reward = Payoff(st, at, Ao)
st+1 = Vη
choose action at+1 from st+1 using the policy derived from Q (ε− greedy)
δ ← reward+ γQ(st+1, at+1)−Q(st, at)
e(st, at)← 1
for all state s and action a:

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γ e(s, a)

st ← st+1; at ← at+1

return at



In Algorithm 2, the Initialisation part is executed at the beginning of each game.
When a game begins (our strategy begins to play with the opponent), our strategy will
behave according to the Response part. To be specific, we first read the opponent’s last
action Ao from the tournament simulation platform (see Section 2.4). In the η-updating
part, by saying increase or decrease η, the value of η will be increased or decreased by
0.2 respectively (see Section 2.4). Then the updated η value as well asAo will be served
as input of the decision-making part. This part is basically same with the repeating part
of the SARSA(λ) algorithm (see Algorithm 1 between Line 7 and Line 14). The strategy
will terminate when a game is finished.

4 Implementation and Empirical Results

In this section, we will discuss the values of the parameters in our strategy in Sec-
tion 4.1, and show the performance of our strategy in the tournament (Section 4.2).

4.1 Parameter Values

The values of each parameter shown in this paper are proposed on the basis of obser-
vation, the principles for designing PD (see [1]) and earlier results. We implement five
strategies4 in our experiments: RL-based strategy, Tit-for-Tat, AlwaysRandom, AE-GS
and AE-GSS. Tit-for-Tat initialises η randomly and keeps its value constant during the
whole process of each game. The AlwaysRandom strategy randomly initialises η at the
beginning of each game and randomly updates its value in each round of a game. Based
on the updated η value, AlwaysRandom chooses to cooperate if η ≥ 0.5; otherwise, it
chooses to defect. AE-GS/AE-GSS are presented in detail in Section 5. However, we
cannot ensure that these strategies we implement in our experiments are exactly the
same as the strategies used in the real tournament, even though they may fall under
the same name. In our experiments, each game consists of 200 rounds of play, but the
agents are not able to access to the exact number of rounds for the reason described
in Section 2.4. It is worth to notice that as all the parameter values discussed in this
section are the results of a limited number of experiments, we make no claims that they
are optimal, and very likely there is considerable room for improvement.

All the parameters involved in this strategy fall into two categories: the parameters
in standard RL, including α, γ, λ and ε; and the parameters specific to this strategy: η
and Poc. In terms of the parameters in standard RL, since the effect of each of them
is clear (see Section 2.3) and a lot of research has been done to discuss how to choose
their values (e.g., [9, 14]), we give some conventional and classical values to them:
α = 0.125, γ = 1.0, λ = 0.8 and ε = 1. Furthermore, we make ε linearly decrease
from 1 to 0 during the first 100 rounds in each game. By doing this, each state-action
pairs can have more opportunities to be visited in the early stage, so as to get more

4 Because we cannot access all the submitted strategies of MVSPT, we only implement five se-
lected strategies. However, even though our strategy collection is smaller than that of MVSPT,
according to the final performance (see Section 4.2 and Table 4), the top three strategies, i.e.,
RL-based, AE-GS and AE-GSS, are all included in our experiments. Therefore, the results
derived from our experiments are still valuable.



accurate Q(s, a) values for each state-action pair; moreover, since the exploration rate
decreases to 0 in the 100 rounds of each game, in the remaining rounds there will be no
explorations and, as a result, the performance can be stable and nearly optimal.

Given the settings above, we then analyse the impact of η and Poc on the strategy’s
performance. We increase the value of η and Poc from 0 to 1 in the steps of 0.2 and 0.1,
respectively. The effect of η and Poc on the strategy’s performance is shown in Figure 1.
The strategy’s performance reaches its peak when η = 0.6 and Poc = 0.5. When the
value of η is fixed, the performance does not change significantly with the change of
Poc; however, when we set Poc as constant and decrease the value of η from 1 to 0, the
performance keeps stable when η > 0.2, but drops dramatically when η ≤ 0.2. Recall
that η represents the agent’s weight put on social score (see Section 2.1) and Poc repre-
sents the probability of the opponent to choose to cooperate (see Section 3.2). Thus, this
result indicates that we should be neither overoptimistic (very high η and Poc value) nor
overpessimistic (very low η and Poc value). In addition, since the performance is better
when both η and Poc are relatively large (larger than 0.5), this result also corresponds
with an important principle of designing PD strategy: be nice (see [1]). To summarise,
in order to ensure that the strategy performs nearly optimally and stably when compet-
ing with a large collection of strategies in MVSPT, in our version the parameters are set
as: α = 0.125, γ = 1, λ = 0.8, η = 0.6, Poc = 0.5 and ε = 1 in the beginning of each
game and linearly decreases to 0 in the first 100 rounds.

Fig. 1. The effects of η and Poc on the performance of RL-based strategy. The vertical axis rep-
resents the total score the strategy gets. All the scores are averaged over 1000 independent trails.



4.2 Empirical Results

The result of MVSPT can be checked online: http://www.doc.ic.ac.uk/˜tb208/
mvspt-results.php5. Because we cannot access all of the top 10 strategies, we are
not able to present and analyse their technical details in this paper. For more informa-
tion of these strategies, the official website of MVSPT (http://www.doc.ic.ac.
uk/˜tb208/mvspt-main.php) may be referred to. The performance of the top 10
strategies have been listed in Table 4.

Strategy name Win percentage Average η Material Score Social Score
RL-based 79.91% 0.409 0.923 0.417

AE-GS-S 8.92% 0.791 0.392 0.771

Rafal Strategy 4.78% 0.773 0.438 0.754

AE-GS 3.97% 0.818 0.401 0.795

Double Increment 2.41% 0.836 0.340 0.839

A Bit Random 0.01% 0.700 0.541 0.533

Always Cooperate 0.00% 1.000 0.000 1.000

Always Defect 0.00% 0.000 1.000 0.000

Nash Defect 0.00% 0.000 1.000 0.000

Tit-for-Tat 0.00% 0.000 0.948 0.000
Table 4. The performance of top 10 strategies averaged over 10000 round-robin simulations.

In Table 4, the second column (win percentage) shows how much percentage a strat-
egy’s total score (see Section 2.4) is higher than that of Tit-for-Tat. The third column
shows the average social coefficient value of each strategy. The higher this value is, the
the strategy is more likely to cooperate. Column 4 and Column 5 present the scaled
material score and social score (see 2.1), respectively. The results indicate that our
RL-based strategy significantly outperforms Tit-for-Tat as well as other sophisticated
strategies, e.g., AE-GS-S and AE-GS (for more details about these two strategies, see
Section 5). An interesting phenomenon is that among all the top 7 strategies, the average
social coefficient value and the social score of the RL-based strategy is the lowest. This
result implies that under the current setting of MVSPT, a successful strategy should be
more material rather than be socially beneficial. However, the principle being nice has
also been shown as important in choosing the value of parameters (see Section 4.1).
Therefore, how to keep the balance between being social and being material is the key
point in designing a successful strategy for this tournament.

5 Since this website is currently on a student’s domain of Imperial College London, due to the
college’s policy, it may be removed or moved to other places. If the website is unavailable,
please contact the author of this paper



5 Related Work

Because of the novelty of DGPD, there are few published sophisticated strategies for
this game. The only exception, to the best of our knowledge, is the AE-GS-S and AE-
GS strategy proposed by Edalat et al. [5]. Their strategies also consists of two parts:
η-updating and decision-making. With respect to the η-updating rules, the only differ-
ence between their strategy and our strategy locates at the situation when both player
cooperate in the last round, namely (C,C): in our strategy, we choose to decrease η
(see Section 3.1), whereas they choose to increase η (AE-GS strategy) or do not change
its value (AE-GS-S strategy). The decision-making part of AE-GS and AE-GS-S strat-
egy are same: first they analyse the NE under different social coefficient values (both
self coefficient η as well as the opponent’s coefficient γ) and find the best action(s) in
each situation. When compete with other strategies, they give a fixed model to predict
the opponent’s behaviour and social coefficient (γ). Based on its own social coefficient
(η) and the prediction of γ, AE-GS/AE-GS-S find the best action in this situation. So a
main difference between AE-GS/AE-GS-S and our RL-based strategy is that their strat-
egy predict the opponent’s behaviour rigidly, whereas our strategy learns the opponent’s
behaviour dynamically. The AE-GS/AE-GS-S strategy is presented in Algorithm 3.

Algorithm 3 AEGS/AEGSS algorithm
Initialise:
η = 0.0

Response:
if first round:

do not change η; return C
otherwise:

read the opponent’s last action Ao
η-updating:

if (at, Ao) = (C,C): increase η (AE-GS) or do not change η (AE-GS-S)
else if (at, Ao) = (C,D): increase η
else if (at, Ao) = (D,C): decrease η
else if (at, Ao) = (D,D): increase η
else: do not change η

decision-making:
if η ≤ 0.2: return D
else if η ≤ 0.4:

for 30% proportion: return D
for 70% proportion: return C

else: return C

There is some research on RL-based strategy in the Iterated PD (IPD) game. Sand-
holm et al. [13] studied the RL-based strategies in IPD along three dimensions: the
length of history the agents received as context, the type of memory the agents em-
ployed and the exploration schedule the agents followed. They concluded that although
all the learners faced difficulties when playing against other learners, agents with longer
history windows, longer lookup table memories, and longer exploration schedules fared



best in the IPD games. Furthermore, Babes et al. [2] proposed social reward shaping to
improve the learning performance in multi-agent learning scenarios. In particular, they
showed that learning agents with social reward shaping are able to both lead — en-
courage adaptive opponents to stably cooperate — and follow — adopt a best-response
strategy when paired with a fixed opponent — where other existing approaches achieve
only one of these objectives. Although these research are based on IPD, they still give
us some insights into how to design RL-based strategies in DGPD.

6 Conclusion

In this paper, we propose a RL-based strategy for the novel Double-Game Prisoner’s
Dilemma (DGPD) game. In this game, each player not only needs to choose to cooper-
ate or defect in each game round, but also needs to give different weights to two basic
games: the Prisoner’s Dilemma (PD) game and the Social Game (SG). In accordance
with the unique structure of DGPD, our strategy consists of two parts: social coefficient
(η) updating and decision-making. The η values are updated based on the payoff matrix
of DGPD as well as both players’ actions in the last round. Based on the updated η
values, the decision-making part uses SARSA(λ) algorithm to adjust to the opponent’s
behaviours in order to get higher payoff.

We present our strategy, discuss the parameter values and analyse their effects on the
learning results. The performance of our strategy in the Material Versus Social Payoff
Tournament (MVSPT) indicates that our strategy is able to learn and adjust to other
strategies’ behaviours quickly and accurately and, as a result, earns much higher payoff.

There are several issues worth researching in the future. First, because our η-updating
strategy is a fixed-history strategy (see Section 3.1), it can be modelled as an MDP [2].
Therefore, a RL algorithm can be built upon this η-updating process (Section 2.3). We
can extend our current single-stage RL-based strategy (where only decision-making
part involves RL) to a double-stage RL strategy (where both parts use RL). In addition,
since it has been empirically shown in [13] that in the IPD games, by extending the
length of the available history in fixed history strategies, the learning performance can
be significantly improved. Therefore, we can extend the history length in the η-updating
part and check whether the same result applies to DGPD as well.

The second issue is how to initialise Q-values so as to model the environment (the
opponent) more accurately. Since Q-value initialisation is equivalent with potential-
based reward shaping [15], the existing techniques for reward shaping (e.g., [12, 16])
apply to the Q-value initialisation as well. In addition, the techniques that improve the
performance of RL by using reward shaping, e.g. Argumentation-Based RL (see [6, 7]),
may also apply to this strategy.

The last issue is multi-agent learning in DGPD. Currently we assume that all the
other agents have fixed strategies (see Section 3.2), and this is indeed the case in
MVSPT. We plan to design more RL-based strategies and observe their performances
in the tournament. This will not only improve the multi-agent learning research, but
also stimulate research in game theory, economy [10], social psychology [3], etc., since
in real economic scenarios, people are always learning from the environment and other
people and, as a result, changing their behaviours [5].
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