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ABSTRACT

This paper describes the TUM approaches for violent scenes
detection in movies, submitted for the MediaEval 2012 Af-
fect Challenge. Score fusion is used to fuse Support-Vector
Machine (SVM) confidence scores assigned to short fixed
length windows within each movie shot. SVM predictors for
acoustic and visual channels are trained. For the acoustic
channel, a large set of acoustic features based on the set
from the INTERSPEECH 2012 Speaker Trait Challenge is
employed. A comprehensive set of common video low-level
descriptors such as optical flow, gradients, and hue and sat-
uration histograms is used for the visual channel.

1. INTRODUCTION

The objective of the violent scenes detection task is to detect
violence in movies on a shot level using multi-modal features. For
details on the task, we refer to the paper describing the affect task
[1]. In the following we describe our approach.

2. METHOD

Our method for detection of violent scenes uses Support Vector
Machine (SVM) classifiers which are trained on features extracted
from the development data. Independent classifiers are trained on
acoustic and visual features. To obtain a single decision and confi-
dence score for each shot in the test data, the predictions made by
the acoustic and visual SVMs are fused by simple score averaging.

Our feature extraction method follows our standard static brute-
force approach from the domain of affect recognition and paralin-
guistic audio analysis. Thereby low-level descriptors (LLDs) are
summarised over segments of variable or fixed length by apply-
ing statistical functionals, such as mean, standard deviation, quar-
tiles, regression coefficients, etc to the LLDs. This way, LLD se-
ries of variable length can be mapped onto a single feature vector.
However, the feature vectors are affected by variations in segment
length. Longer segments will contain more information, possibly
violence mixed with non-violence or simply different violent or
non-violent content. As the shots provided for the affect task vary
considerably in length, we decided to use fixed length sub-segments
of the shots. In pre-evaluation runs, we found that 2 seconds long

*This author is further affiliated with Technische Universitét
Miinchen, Germany

Copyright is held by the author/owner(s). MediaEval 2012 Workshop, Oc-
tober 4-5, 2012, Pisa, Italy.

Bjorn Schuller

k
JOANNEUM RESEARCH
DIGITAL - Institute for Information and
Communication Technologies
. Graz, Austria
bjoern.schuller@joanneum.at

Table 1: Acoustic and visual low-level descriptors.

4 acoustic energy LLDs

Sum of auditory spectrum (loudness)
Sum of RASTA-style filtered auditory spectrum
Logarithmic energy, and zero-crossing rate

33 acoustic spectral LLDs

MFCC 1-16
Spectral energy 40-150, 250-650 Hz, 1 k-4 kHz, 5k-15kHz
Spectral roll-off point 0.25, 0.50, 0.75, 0.90
Spectral flux, entropy, variance, skewness, kurtosis,
slope, psychoacoustic sharpness, harmonicity, centroid

95 visual LLDs

Normalised HSV histograms (20, 20, 10 bins)
Normalised dense Optical Flow histograms (20 bins)
Normalised Laplacian edge histograms (20 bins)
Mean Optical Flow

Optical Flow standard deviation

Strongest edge in lower 98 % of Laplacian edges

sub-segments gave good results. We investigated both, overlapping
sub-segments sampled at a rate of .5 seconds, and non-overlapping
sub-segments. The label for each of the sub-segments is inferred
from the violent segment ground truth annotation as follows: If a
shot sub-segment overlaps with a violent segment in some way, the
shot sub-segment is labelled as violent; it is labelled as non-violent
otherwise. We would like to note here that a single shot can con-
tain violent and non-violent sub-segments because the boundaries
of the violent segments are not aligned to the shot boundaries.
Extraction of acoustic features is done with our open-source fea-
ture extraction toolkit openSMILE [2]. The 37 acoustic LLDs,
given in Table 1 are extracted from overlapping frames with a length
of 25ms at a rate of 10 ms. For F{ based features (fundamental
frequency, probability of voicing, jitter/shimmer) the frame size is
60 ms. The frame sampling rate of 10 ms is unchanged. 51 func-
tionals (cf. Table 2) are applied to the acoustic LLDs and their first
order delta coefficients over windows with a 2 second maximum
length. A total of 37 - 2 - 51 = 3 774 acoustic features is obtained.
The low level video features are computed for each frame and
consist of Hue-Saturation-Value (HSV) histograms, an optical flow
analysis and a Laplacian edge detection. Three, dimensionally in-
dependent, normalised HSV histograms (20, 20 and 10 bins) are
computed. A dense Farneback optical flow analysis compares con-
secutive frames for pixel-wise displacements. The magnitudes of
the resulting 2D displacement vectors are computed, thresholded to
a maximum displacement of 15 % of the normalised frame size and



Table 3: Results on test set, mean average precision (MAP) at top 100 and Acoustic Event Detection (AED)
MediaEval (cf. [1]) cost. Results on development set with 3-fold cross validation (CV), MAP at top 100 and
top 20, and unweighted /weighted average recall (UAR/WAR).

Test data Development data (3-fold CV)
Configuration | MAP100 AED MediaEvalCost MAP100 MAP20 UAR WAR
TUM-1 0.484 7.83 0.397 0.525 0.584 0.848
TUM-2 0.376 6.85 0.445 0.515 0.648 0.830
TUM-3 0.360 6.83 0.428 0.518 0.648 0.826
TUM-4 0.392 7.27 0.442 0.503 0.634 0.829
TUM-5 0.320 6.67 0.224 0.213 0.537 0.832

Table 2: 51 functionals applied to acoustic and visual
low-level descriptors and delta coefficients.

quartiles 1-3 and 3 inter-quartile ranges

1% percentile (=~ min), 99 % percentile (=~ max)
percentile range 1 %-99 %

position of min / max, range: max-min

arithmetic mean, root quadratic mean

contour centroid, flatness

standard deviation, skewness, kurtosis

rel. duration LLD is above 90 % / below 25 % of range
rel. duration LLD is rising / falling

gain of linear prediction (LP) and LP Coefficients 1-5
range of peaks (absolute and rel. to arith. mean)
mean value of peaks (absolute and rel. to arith. mean)
mean value of peaks — arithmetic mean

mean value of minima rel. to arith. mean

max, min, mean, std. dev. of rising / falling slopes
mean / std.dev. of inter maxima distances

linear regression slope, offset, and quadratic error
quadratic regression coefficient 1, and quadratic error

sorted into 20 bins. The resulting histogram is then normalised.
Next, the mean optical flow and its standard deviation are deter-
mined. These frame-to-frame motions are expected to yield infor-
mation concerning the overall pacing of the current scene. Further-
more, high standard deviations on optical flow would signify non-
uniform scene flow while high mean flows could indicate a fast-
paced scene. Finally, Laplacian edge detection is used for a simple
detection of motion blur. An edge image is computed per frame,
the 2 % strongest edges are discarded as noise and the remaining
strongest edge is used as a feature. Additionally, a normalised mag-
nitude histogram of the edge image is calculated, ignoring values
close to zero (histogram range: 16-255, 8-bit edge image). All 95
visual descriptors are given in table 1. 51 functionals (cf. Table 2)
are applied to the frame-wise visual LLDs and their first order delta
coefficients with openSMILE in order to summarise the low-level
descriptor features over windows with a 2 second maximum length.
In this way a total of 95-2-51 = 9690 video features are obtained.
All SVMs in our experiments use a linear kernel function and a
complexity C' = 0.01. Training has been done with the WEKA [3]
implementation of the Sequential Minimal Optimisation Algorithm
(SMO). In order to obtain a shot-level result, we linearly fuse the
SVM scores of all sub-segments within a shot. In the following the
configurations for the 5 run submissions are summarised:

e TUM-1: audio+video, train (audio): overlapping sub-segments
(rate: .5 seconds); train (video) and test (both): non-overlapping
sub-segments.

e TUM-2: audio, train: overlapping sub-segments (rate: .5
seconds); test: non-overlapping sub-segments.

e TUM-3: audio, train+test: overlapping sub-segments (rate:
.5 seconds).

e TUM-4: audio, train+test: non-overlapping sub-segments.
e TUM-5: video, train+test: non-overlapping sub-segments.

The differences are mainly in the rate at which the 2 second sub-
segments of the shots are sampled from the training and testing
data. Run TUM-1 is the only run where acoustic and visual features
are fused, and TUM-5 is a run with the visual features alone.

3. RESULTS

Table 3 shows the results of our 5 approaches on the MediaEval
affect test set and the development set. We use 3-fold cross val-
idation on the development set. The fold division by movie title
is available upon request. We report the official challenge metric
mean average precision (MAP) for the top 100 scored shots. The
best performing configuration on the test data set is TUM-1. It
is also the best on the development data, concerning MAP at 20.
However, MAP at 100 is worse than the other audio only configu-
rations.

4. CONCLUSION

The obtained results demonstrate the feasibility of our approach.
Audiovisual fusion gives the best results on the test set. Yet overall,
we found the results, esp. MAP, to be quite sensitive to variations in
the way the data are segmented and the labels are assigned (i. e., if
the labels are assigned per segment or per shot, and if the segments
are aligned to the shot boundaries, or to the ground truth of the
violent segments). In future work the issue of proper segmentation
and a deeper analysis of the discriminative power of single features
should be carried out, to improve the precision of the systems.
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