
WOP 2012 
 

3rd Workshop on Ontology Patterns 
Co-located with ISWC2012 

Boston (MA), USA - November 12th 2012 
 
 
 
 
 
 
 
 
 
 
 

Proceedings 
 
 
 
 
 
 
 
 
 

Edited by: 
Eva Blomqvist, Human-Centered Systems, Linköping University (SE) 
Aldo Gangemi, Semantic Technologies Lab, ISTC-CNR (IT) 
Karl Hammar, Information Engineering, Jönköping University (SE) 
Mari Carmen Suárez-Figueroa, Ontology Engineering Group (OEG), 
    Universidad Politécnica de Madrid (UPM) (ES) 



Preface
- The 3rd Workshop on Ontology Patterns -

WOP 2012

During the past two years, the notion of Ontology Patterns has clearly be-
come more mainstream within the Semantic Web field. We have for instance
noted that in last years ISWC one full paper session, entitled Ontologies and
Patterns, was devoted almost entirely to patterns. This emerging role of pat-
terns is also evident from the number of paper submissions for this years edition
of WOP (see further below), which has broken all previous records.

Since the beginning of the Semantic Web initiative, ontologies have been re-
ferred to as the key tool for implementing the Semantic Web vision. However,
with the success of Linked Data as a highly data-focused movement, ontolo-
gies are now challenged to respond to new needs, such as handling big and noisy
data. Ontologies are also often built to reflect the reality in data, rather than the
other way around. Ontology Patterns, and their related technologies, hold the
potential for bridging the gap between linked data and ontologies, because they
are conceived with simplicity, scalability, and modularity, as well as contribu-
tions from, and usage by, the masses in mind, without giving up the inheritance
from Artificial Intelligence and philosophical ontologies. Hence, we envision On-
tology Patterns as a necessary facilitator in the upcoming breakthrough for the
Semantic Web on the larger social Web arena.

The aim of WOP is to give researchers and practitioners a forum for sharing
their latest findings and emerging issues, as well as building a common language
of Ontology Patterns. Furthermore, the WOP community is supported by the
ontologydesignpatterns.org initiative, and uses it as its main mean of communi-
cation, e.g. for pattern submission, reviewing and discussion outside the work-
shop schedule. This support gives the workshop a continuity and a platform for
discussion that few others have.

This years WOP instance is the third in the series. We received 14 full re-
search paper submissions and 5 additional pattern submissions. The members
of the Program Committee acknowledge the very high quality of many of these
submissions, as 10 of them were recommended for acceptance. As this year the
workshop was selected for only a half-day slot, the chairs then decided to also ac-
cept a number of papers for poster presentation. In total 6 papers were accepted
for oral presentation (a 43% acceptance rate), and 4 for poster presentation. In
the pattern track, 3 out of 5 submissions were accepted for presentation as pat-
tern posters. The pattern submissions consisted of both an extended abstract
and an actual pattern uploaded on the ontologydesignpatterns.org portal.

Further information about the Workshop on Ontology Patterns can be found
at: http://ontologydesignpatterns.org/wiki/WOP:2012.
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Specifying Ontology Design Patterns
with an Ontology Repository

Michael Grüninger and Megan Katsumi

Department of Mechanical and Industrial Engineering, University of Toronto
Toronto, Ontario, Canada M5S 3G8

gruninger@mie.utoronto.ca, katsumi@mie.utoronto.ca

Abstract. Within the Common Logic Ontology Repository (COLORE), the no-
tion of reducibility among ontologies has been used to characterize relationships
among ontologies. This paper uses techniques such as relative interpretation to
show how one set of ontologies within the repository can be reused to character-
ize the models of other ontologies that are used in a wide variety of domains. A
central theme of the paper is that ontology design patterns can be formalized as
core ontologies within the ontology repository.

1 Introduction

The COLORE (Common Logic Ontology Repository) project1 is building an open
repository of first-order ontologies that serve as a testbed for ontology evaluation and
integration techniques, and that can support the design, evaluation, and application of
ontologies in first-order logic. The logical relationships among the set of first-order on-
tologies in the repository can also be used as basis for the verification of an ontology
with respect to its intended models as well as decomposition of ontologies into modules.

We will show how COLORE follows the vision of ontology design patterns as pro-
posed in [6] and [5]. Different notions of ontology design patterns have been used,
ranging from syntactic criteria to structural properties of ontologies. As a result, sev-
eral methodological questions remain challenges – How can we evaluate ontology de-
sign patterns and their application? How are design patterns reused? Within COL-
ORE, design patterns are formalized as core ontologies within the repository. Patterns
are reused via the metatheoretic relationships of relative interpretation and definable
equivalence. In this sense, the ontology design patterns within COLORE are semantic
(model-theoretic) rather than syntactic. On the other hand, the approach described in
this paper can also be used to generate axioms for new ontologies, in which case we
can consider core ontologies to serve as syntactic templates for axioms.

After an informal discussion of ontology design patterns in the context of COLORE,
we give an overview of the relationships between ontologies within COLORE. The no-
tions of relative interpretation, definable equivalence, and reduction play a key role in
formalizing the reuse of ontologies. In particular, these notions give us techniques for
evaluating ontology design patterns and proving that a pattern is correctly and com-
pletely exemplified by a set of ontologies. We will illustrate this approach using sets of
ontologies within COLORE.

1 http://code.google.com/p/colore/source/browse/trunk/



2 COLORE and Ontology Design Patterns

In general, Ontology Design Patterns (OPs) are meant to serve as reusable solutions
for various aspects of ontology design [6], and the structure of the ontologies in COL-
ORE and the relationships defined between them can provide similar support. COLORE
provides a means of sharing content ontology design patterns (CPs) while providing so-
lutions that address specific instances of some of the modelling problems that other OPs
are designed to solve.

Of the six families of OPs recognized in [6], the Structural, Correspondence, and
Content families of OPs have strong parallels in COLORE:

Structural OPs include what are referred to as Logical and Architectural OPs. Archi-
tectural OPs represent possible structures for an ontology being designed. These
structures are meant to assist with design choices when computational complexity
is a concern, and also to serve as reference material to guide designers in creating
their own structures. In particular, external Architectural OPs provide patterns for
ontology modularization, (“meta-level constructs"). Examples of these external Ar-
chitectural OPs can be found in COLORE as each ontology is stored in modules[9]
that are connected to form the ontology using the imports relation.

Correspondence OPs include what are referred to as Reengineering and Mapping
OPs. Mapping OPs provide a means to describe the relationship(s) that exist be-
tween elements in different ontologies. Similarly, relationships are defined between
the terms used in different ontologies in COLORE. In this way the relationships
represent specific instances of Mapping OPs. Relationships between ontologies
themselves are also described so that users may compare their semantics; these
relationships are based on the notion of reducibility discussed in the following sec-
tion.

Content OPs (CPs) appear to be the most widely used family of OPs. They are typi-
cally domain oriented and provide axioms that are intended to be reused as “build-
ing blocks" in order to construct an ontology. CPs can also serve other functions
in ontology development such as evaluation. Although they are not necessarily
domain-oriented, we view the core theories of COLORE to be examples of use-
ful CPs, as all ontologies in COLORE are reducible to sets of these ontologies.
Using the notion of intended models, the core theories in COLORE can also be
used for ontology verification ([11],[8]).

3 Relationships between Ontologies in COLORE

The sets of ontologies within COLORE are organized based on the notion of the reduc-
tion of one ontology to a set of ontologies. In this section, we review the background
for understanding reduction and the role it plays in organizing ontologies within the
repository.



3.1 Relative Interpretation

The notion of interpretability between theories2 is widely used within mathematical
logic and applications of ontologies for semantic integration [14]. We will adopt the
definition of relative interpretation from [4], in which the mapping π is an interpretation
of a theory T1 with language. L1 into a theory T2 with language L2 iff it preserves the
theorems of T1.

Definition 1. An interpretation π of a theory T1 into a theory T2 is faithful iff

T1 6|= σ ⇒ T2 6|= π(σ)

for any sentence σ ∈ L(T1).

Thus, the mapping π is a faithful interpretation of T1 if it preserves satisfiability
with respect to T1. We will also refer to this by saying that T1 is faithfully interpretable
in T2.

Definable equivalence is a generalization of the notion of logical equivalence to
theories that do not have the same signature.

Definition 2. Two theories T1 and T2 are definably equivalent iff T1 is faithfully inter-
pretable in T2 and T2 is faithfully interpretable in T1.

For example, the theory of timepoints is definably equivalent to the theory of linear
orderings. On the other hand, although the theory of partial orderings is faithfully in-
terpretable in the theory of timepoints, these two theories are not definably equivalent,
since the theory of timepoints is not interpretable in the theory of partial orderings.

Definition 3. Let T0 be a theory with signature Σ(T0) and let T1 be a theory with
signature Σ(T1) such that Σ(T0) ∩Σ(T1) = ∅.
Translation definitions for T0 into T1 are sentences in Σ(T0) ∪Σ(T1) of the form

∀x pi(x) ≡ Φ(x)

where pi(x) is a relation symbol in Σ(T0) and Φ(x) is a formula in L(T1).

Translation definitions can be considered to be an axiomatization of the interpreta-
tion of T0 into T1. As noted in the previous section, the use of translation definitions
in COLORE is similar to Mapping OPs, insofar as they specify relationships between
terms used in different ontologies in order to compare their semantics.

2 In this paper, we consider an ontology to be a set of first-order sentences (axioms) that charac-
terize a first-order theory, which is the closure of the ontology’s axioms under logical entail-
ment.

The non-logical lexicon (signature) of a first-order theory T , denoted by λ(T ), is the set of
all constant symbols, function symbols, and relation symbols that are used in T .

The language of T , denoted by L(T ), is the set of all first-order formulas that only use the
non-logical symbols in the signature λ(T ).



3.2 Hierarchies

If an ontology is characterized by its set of ontological commitments, then such com-
mitments will be formalized by sets of axioms. Moreover, in order for the commitments
to be comparable, their axiomatizations need to be expressed in the same language. Us-
ing these intuitions, we can define an ordering over a set of theories:

Definition 4. A hierarchy H = 〈H, <〉 is a partially ordered, finite set of ontologies
H = T1, ..., Tn such that

1. L(Ti) = L(Tj), for all i, j;
2. T1 ≤ T2 iff

T1 |= σ ⇒ T2 |= σ

for any σ ∈ L(T1).
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Fig. 1. Ontologies in Hordering: the core hierarchy of orderings. Dashed lines denote nonconser-
vative extension. Theories in bold are ones which are used in this paper.

The theories within two hierarchies in COLORE are shown in Figures 1 and 2. The
Ordering Hierarchy3 contains ontologies that axiomatize different classes of orderings,
such as partial orderings, linear orderings, trees, and lattices.

The Mereology Hierarchy4 contains ontologies that axiomatize different intuitions
related to the concept of parthood (see [15] for a full discussion of these ontologies).

3 http://code.google.com/p/colore/source/browse/trunk/ontologies/core/ordering
4 http://code.google.com/p/colore/source/browse/trunk/ontologies/core/mereology
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Note that all extensions of ontologies in the same hierarchy are nonconservative. An
ontology T is a root ontology iff it is not the extension of any other ontology in the same
hierarchy. Within the Hordering Hierarchy, the root ontology is the axiomatization of
a transitive relation. Within the Hmereology Hierarchy, the root ontology is the axiom-
atization of a basic mereology (in which the parthood relation is transitive, reflexive,
and antisymmetric). This ontology is definably equivalent to the theory Tpartial_order
within the Hordering Hierarchy.

3.3 Reducibility

Definable equivalence is a relationship between two ontologies; we can generalize this
to a relationship among sets of ontologies. The basis for this approach is the model-
theoretic notion of reducibility introduced in [8].

Definition 5. A ontology T is reducible to a set of ontologies T1, ..., Tn iff

1. T faithfully interprets each Ti, and
2. T1 ∪ ... ∪ Tn faithfully interprets T .

We will also refer to the set of ontologies T1, ..., Tn in the definition as the reduction
of T in the repository.

It is easy to see that two definably equivalent ontologies are reducible to each other.
For example, within COLORE, the ontology Tmereology is reducible to the ontology
Tlinear_ordering and vice versa.



The following result from [9] characterizes the relationship between reducibility
and definable equivalence, and it will be used in this paper to prove results about re-
ducibility:

Theorem 1. Let T1, ..., Tn be a set of ontologies such that Σ(Ti) ∩Σ(Tj) = ∅ for all
1 ≤ i, j ≤ n, i 6= j.

A ontology T is reducible to T1, ..., Tn iff T is definably equivalent to
T1 ∪ ... ∪ Tn.

Section 4 will present the reductions of several different ontologies, and discuss
their relationship to design patterns.

3.4 Core and Complex Hierarchies

The notion of the reducibility of ontologies can be used to specify an ordering on the
set of hierarchies.

Definition 6. Let H1, ...,Hn be a finite set of hierarchies.
A repository R = 〈R,v〉 is a partially ordered set where

– R = {H1, ...,Hn};
– Hi v Hj iff each root ontology in Hj has a reduction that contains a ontology T

in Hi.

For example, we can show that Hordering v Hmereology , since the root ontology in
Hmereology is definably equivalent to the ontology Tpartial_ordering in Hordering. On
the other hand, Hmereology 6< Hordering, since the root ontology for Hordering (which
is Ttransitive) is not reducible to any ontology in Hmereology .

Since we are dealing with repositories that contain a finite set of hierarchies, we are
guaranteed that the partial ordering v has minimal elements.

Definition 7. A hierarchy C = 〈C,≤〉 is a core hierarchy iff it is a minimal hierarchy
in the repository R = 〈R,v〉.

An ontology T is a core ontology theory iff it is in a core hierarchy.
A complex hierarchy H = 〈H,≤〉 is a hierarchy which is not minimal in the reposi-

tory 〈R,v〉.
An ontology T is a complex ontology iff it is in a complex hierarchy.

Through the notion of reducibility, we can see that core ontologies play the role of
building blocks for all other ontologies within the repository. A complex ontology is
either constructed from a set of core ontologies or it is an ontology that imposes addi-
tional ontological commitments on a core ontology (e.g. the root theory of theory of the
Hmereology Hierarchy imposes additional ontological commitments that make the part-
hood relation reflexive and antisymmetric). If the repository contains multiple equiva-
lent core hierarchies, then the reduction will contain multiple definably equivalent core
ontologies, and hence there might exist multiple reductions that contain different sets
of core ontologies.

Within COLORE, the notion of a core ontology is therefore based on the logical no-
tion of reducibility, rather than on the distinction between generic vs domain ontologies,
as in [13].



4 Hierarchies as Design Patterns

Core ontologies within the repository can be definably equivalent to multiple ontologies
in other hierarchies. In this sense, they play the role of design patterns that are reused
to verify other ontologies; that is, they can be used to prove that the intended models of
an ontology are isomorphic to the models of the axiomatization of the ontology. In this
section, we consider in detail one set of core ontologies and show how its relationships
to a surprising variety of other ontologies from remarkably different domains.

4.1 Subposet Hierarchy

Each ontology in the Subposet Hierarchy5 is an extension of an ontology from the
Mereology Hierarchy and an ontology from the Ordering Hierarchy.

subposet

upper_set lower_set

filter ideal

subposet_root

upper_preservelower_preservelower_reverse upper_reverse

partial_orderingmereology

chain_antichain

Fig. 3. Ontologies in Hsubposet: the hierarchy of theories of relationships between partially or-
dered sets. Dashed lines denote nonconservative extension and solid lines denote conservative
extension. Ontologies in bold are ones which are used in this paper.

The ontologies shown in Figure 3 form the basis for the Hsubposet Hierarchy. The
root ontology Tsubposet_root is the union of Tm_mereology and Tpartial_ordering, and is a
conservative extension of each of these ontologies. Thus, each model of Tsubposet_root
(and hence each model of any ontology in the hierarchy) is the amalgamation of a
mereology substructure and a partial ordering substructure.

The ontologies shown in Figure 3 contain additional axioms that constrain how the
mereology is related to the partial ordering. In models of Tsubposet, the mereology is a

5 http://code.google.com/p/colore/source/browse/trunk/ontologies/core/subposet/



subordering of the partial ordering. Tideal strengthens this condition by requiring that
the mereology is a subordering of the partial ordering which forms an ideal. In models
of Tchain_antichain, elements that are ordered by the mereology are not comparable in
the partial ordering.

All ontologies within the Hsubposet Hierarchy combine one of the ontologies in
Figure 3 together with one of the ontologies in Figure 2 and one of the ontologies in
Figure 1. In the following sections, we will explore how different ontologies in the
Hsubposet Hierarchy serve as design patterns.

4.2 Multimereology Hierarchy

Motivated by biomedical ontologies such as GALEN and Foundational Model of Anatomy,
Bittner and Donnelly ([2],[3]) have investigated a class of ontologies that combine
different kinds of mereological relations. In particular, they axiomatized three rela-
tions for part, component, and containment in an ontology which they call Tfo_pcc.
The subtheory for the part_of relation has models which are isomorphic to a dense
mereology with the weak supplementation principle. Models of the subtheory for the
component_of relation are isomorphic to discrete mereologies which satisfy the weak
supplementation principle as well as what Bittner and Donnelly refer to as the no-
partial-overlap property – if x and y are distinct overlapping objects, then either x is a
part of y or y is a part of x. Finally, models of the subtheory for the contained_in rela-
tion are isomorphic to a discrete partial ordering. Models of Tfo_pcc are amalgamations
of the models of the three subtheories, and they are referred to as parthood-component-
containment structures. Within the COLORE repository, these theories appear in the
Hmultimereology Hierarchy.

The ontology for parthood-component-containment structures also contains three
axioms that specify how the substructures are combined. The component-of structure is
a subordering of the parthood structure, while the relationship between containment and
parthood satisfies the following two conditions – parts are contained in the container of
the whole and that if a part contains something then so does the whole.

Bittner and Donnelly give an informal description of the models of their ontology,
but do not provide a complete characterization of the models up to isomorphism. We
can, however, use theories within the Hsubposet Hierarchy to verify 6 that the models of
the ontologies are isomorphic to the intended models of Bittner and Donnelly.

Theorem 2. Tfo_pcc is definably equivalent to
(Ttree_mm_mereology ∪ Tdense_weak_separative ∪ Tsubposet)
∪(Tdense_mm_mereology ∪Tdiscrete_mereology ∪Tlower_preserve ∪Tupper_preserve).

In this sense, we can prove that an ontology design pattern is correctly exemplified
for given ontology O by proving that the core ontology is definably equivalent to O.

We can also use definable equivalence to extract multiple design patterns from the
same ontologies in those cases where an ontology can be decomposed into modules.

6 The proofs for all theorems can be found in
http://stl.mie.utoronto.ca/colore/subposet-theorems.pdf



Recognizing that Tfo_pcc is actually definably equivalent to two different ontologies
in the Hsubposet Hierarchy, we can specify two ontologies, Tppcmp and Tppcnt, which
form a modular decomposition of Tfo_pcc.

Theorem 3. Tppcmp is definably equivalent to the ontology
Ttree_mm_mereology ∪ Tdense_weak_separative ∪ Tsubposet

Theorem 4. Tppcnt is definably equivalent to
Tdense_weak_separative ∪ Tdiscrete_mereology ∪ Tlower_preserve ∪ Tupper_preserve

It is important to note that Tppcmp and Tppcnt are each definably equivalent to a
unique ontology within the Hsubposet Hierarchy. As stated in the previous section, each
ontology within the Hsubposet Hierarchy is a combination an ontology in the Hordering

Hierarchy, an ontology in Hmereology Hierarchy, and one of the “building block" on-
tologies in Figure 3 that specifies how the mereology and partial ordering are amalga-
mated.

4.3 Periods Hierarchy

The axioms in the ontologies of the Hperiods Hierarchy7 were first proposed by van
Benthem in [1]. The key ontology of this hierarchy, referred to as Tperiod, constitutes
the minimal set of conditions that must be met by any period structure and has two
relations (precedence and inclusion) and two conservative definitions (for the glb and
overlaps relations) as its signature. Transitivity and irreflexivity axioms for the prece-
dence relation make it a strict partial order, and transitivity, reflexivity, and antisymme-
try axioms for the inclusion relation make it a partial order; the axioms of monotonicity
enforce correct interplay between the precedence and inclusion relations. Van Benthem
further includes an axiom that guarantees the existence of greatest lower bounds be-
tween overlapping intervals.

Theorem 5. Tperiod is definably equivalent to the ontology
Tprod_mereology∪Tpartial_ordering∪(Tupper_preserve∪Tlower_reverse∪Tchain_antichain).

The relationships between the ontologies in this hierarchy were explored in [12].
In particular, additional theories within the Hsubposet Hierarchy were shown to be de-
finably equivalent to various extensions of Tperiod as axiomatized by van Benthem.
This illustrates how we can use design patterns to specify the axiomatization of new
ontologies in a hierarchy. Conversely, a subtheory of Tperiod was used to identify a
new ontology within the Hsubposet Hierarchy, thus illustrating how we can abstract new
design patterns from a set of existing ontologies.

7 http://code.google.com/p/colore/source/browse/trunk/ontologies/complex/periods



4.4 Subactivities in the PSL Ontology

The PSL Ontology uses the subactivity relation to capture the basic intuitions for the
composition of activities. This relation is a discrete partial ordering, in which primitive
activities are the minimal elements.

The core ontology8 Tsubactivity alone does not specify any relationship between
the occurrence of an activity and occurrences of its subactivities. For example, we can
compose paint and polish as subactivities of some other activity, say surfacing, and
we can compose make_body and make_frame into another activity, say fabricate.
However, this specification of subactivities alone does not allow us to say that surfacing
is a nondeterministic activity, or that fabricate is a deterministic activity.

The primary motivation driving the axiomatization of Tatomic is to capture intu-
itions about the occurrence of concurrent activities. Since concurrent activities may
have preconditions and effects that are not the conjunction of the preconditions and
effects of their activities, concurrency in models of Tatomic is represented by the occur-
rence of one concurrent activity rather than multiple concurrent occurrences.

Atomic activities are either primitive or concurrent (in which case they have proper
subactivities). The core ontology9 Tatomic introduces the function conc that maps any
two atomic activities to the activity that is their concurrent composition. Essentially,
what we call an atomic activity corresponds to some set of primitive activities – every
concurrent activity is equivalent to the composition of a set of primitive activities. Al-
though Tsubactivity can represent arbitrary composition of activities, the composition of
atomic activities is restricted to concurrency.

Theorem 6. The ontology Tsubactivity ∪ Tatomic_act is definably equivalent to the on-
tology

Tcem_mereology ∪ Tdiscrete_partial_ordering ∪ Tideal

By this Theorem, models of Tsubactivity ∪Tatomic_act are isomorphic to a structure
in which a mereological field (on the set of atomic activities) forms an ideal within a
discrete partial ordering (on the set of all activities).

4.5 Occurrence Trees in the PSL Ontology

Within the PSL Ontology, an occurrence tree10 is a partially ordered set of activity
occurrences, such that for a given set of activities, all discrete sequences of their oc-
currences are branches of the tree. An occurrence tree contains all occurrences of all
activities; it is not simply the set of occurrences of a particular (possibly complex) ac-
tivity. Because the tree is discrete, each activity occurrence in the tree has a unique
successor occurrence of each activity.

In addition, there are constraints on which activities can possibly occur in some
domain. Although occurrence trees characterize all sequences of activity occurrences,
not all of these sequences will intuitively be physically possible within the domain.

8 http://code.google.com/p/colore/source/browse/trunk/ontologies/complex/psl/subactivity
9 http://code.google.com/p/colore/source/browse/trunk/ontologies/complex/psl/atomic

10 http://code.google.com/p/colore/source/browse/trunk/ontologies/complex/psl/occtree



We will therefore want to consider the subtree of the occurrence tree that consists only
of possible sequences of activity occurrences; this subtree is referred to as the legal
occurrence tree.

Theorem 7. The ontology Tpslcore ∪ Tocctree is definably equivalent to the ontology
Ttree_mereology ∪ Ttree ∪ Tideal

By this Theorem, models of Tpslcore ∪ Tocctree are isomorphic to a structure in
which a tree mereology (on the set of legal activity occurrences) forms an ideal within a
tree ordering (on the set of all activity occurrences). It is interesting to notice that Tideal
is used both for this ontology as well as for Tsubactivity , demonstrating how one core
ontology can be reused as a pattern across very different generic ontologies.

5 Discussion Points

In the previous section we provided examples of the ways in which core ontologies
within COLORE can be utilised as CPs. We showed how a variety of real-world on-
tologies were comprised of core theories from the same hierarchy, and how even the
same core theories were reused in different ontologies. We also demonstrated how core
ontologies could be used to verify that an ontology contained the desired CPs (core
theories), and how new core ontologies (CPs) could be identified by abstracting from
ontologies in COLORE.

The ontologies in COLORE’s hierarchies (specifically the core theories) correspond
well to the definition of CPs provided by [6]: “CPs are small ontologies that mediate
between use cases (problem types) and design solutions. They are used as modelling
components: ideally, an ontology results from a composition of CPs, with appropri-
ate dependencies between them, plus the necessary design expansion based on specific
needs". Based on this definition, each ontology in COLORE could be considered to be
a CP as any of the modules could conceivably be reused to build other ontologies. How-
ever, in this paper we have focused on the core theories as they are most recognizable as
CPs - although they are not necessarily domain-oriented, they are definably equivalent
to theories that appear in multiple, different domains. They serve as syntactic templates
for axioms in a variety of domains, so in a sense they combine aspects of CPs with the
more domain-independent Logical OPs.

In this paper we have also explored the way in which the relationships defined in
COLORE may be considered OPs, as the assistance they provide for ontology devel-
opment is similar to the aid provided by OPs. Nevertheless, some of the features of
COLORE offer capabilities beyond what is currently offered by the OP community.
For example, because of the formalized nature of the relationships specified in COL-
ORE, automated reasoning can be implemented to verify the mappings between the
ontologies. In addition, the notion of reducibility can be implemented to identify useful
CPs from ontologies in COLORE – the more theories that are reducible to a particular
core theory, the more useful it is. Automated theorem provers may also be used to verify
that an ontology is in fact a core theory. Lastly, OPs were not intended to be restricted
to a particular representation language [6] and the use of first-order logic in COLORE
supports this ideal as patterns from a wide range of languages may be represented.



We should emphasize that we do not believe that COLORE can or should replace
traditional OPs. Although there are aspects of OPs for which COLORE offers similar
solutions, there are also OPs which are completely absent from the relationships in
COLORE. We believe that COLORE offers useful perspectives on OPs that may be
beneficial to the OP community. In the other direction, much attention has been paid to
promoting the use of OPs (CPs specifically); the results of this may be useful for the
future development of COLORE. In particular, we can learn from the use of generalized
use cases and competency questions to aid in users in the reuse of CPs [6, 5], as future
plans for COLORE include the incorporation of competency questions as requirements
[10] to identify suitable ontologies.
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Lessons Learnt from an Ontology Engineering Case
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Abstract. Ontology Design Patterns show promise in enabling simpler,
faster, more correct Ontology Engineering by laymen and experts alike.
Evaluation of such patterns has typically been performed in experiments
set up with artificial scenarios and measured by quantitative metrics
and surveys. This paper presents an observational case study of content
pattern usage in configuration of an event processing system. Results
indicate that while structural characteristics of patterns are of some im-
portance, greater emphasis needs to be put on pattern metadata and the
development of pattern catalogue features.
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1 Introduction

Ontology Design Patterns (ODPs) are intended to help guide domain experts in
ontology engineering work, by packaging reusable best practice into small blocks
of ontology functionality, either to be used as-is by practitioners, or to be used
as inspiration and guidance for own development. This idea has gained some
traction within the academic community, as evidenced by the WOP series of
workshops held at ISWC 2009, 2010, and now 2012. If such patterns are to be
accepted as useful artifacts also in practice, it is essential that they both model
concepts and phenomena that are relevant to practitioners, and that they do so
in a manner which makes them accessible and easy to use by said practitioners
in real-world use cases.

This paper presents an attempt to learn more about ODP in-use qualities,
how patterns are being used in a real case, and what users think about patterns,
pattern portals, and pattern usage. In order to help formalize the study of the
aforementioned issues, the following research questions have been selected for
study:

1. What ODP characteristics do participants find helpful or harmful in ODP
use?

2. How do users select and make use of ODPs?



3. What effects of ODP use on ontology engineering performance and resulting
ontologies can be observed?

Within the ODP research community there exist different perspectives on
what constitutes a pattern and how patterns should be categorized and sorted.
The author of this paper largely subscribes to the definitions and pattern tax-
onomies presented within the NeOn project, published via the ODP portal1. The
patterns mentioned and studied in this work are all examples of NeOn Content
ODPs, consisting of both a pattern documentation and a reusable OWL building
block.

The paper is structured as follows; Section 2 introduces some related work
on ODP evaluation and Event Processing, Section 3 presents the project in
which this case study took place, Section 4 describes the method employed, and
Section 5 presents the findings and some recommendations based on these.

2 Related Work

The project that frames this case study concerns the development of a system
for Semantic Complex Event Processing (SCEP) using ODPs as system config-
uration modules. The following sections present some background on CEP in
general and on existing pattern evaluation work.

2.1 Complex Event Processing

Complex Event Processing (CEP) is introduced by Luckham & Frasca in [12].
In their approach, patterns based on temporal or causal links between events
are defined and formalized into mapping rules. When executed over incoming
time-indexed data streams, patterns connect lower level basic events to form
higher level complex events. Luckham develops these ideas further in [11]. CEP
has since been established as a useful method in many domains, and CEP based
on sensor data feeds has been explored in many papers, using RFID sensors,
cameras, accelerometers, etc.

As indicated by Anicic et al. in [2], most CEP approaches however have some
drawbacks, particularly in terms of recognizing events using background knowl-
edge. Only those relations between events and entities which are made explicit in
the input data stream can be used for detection and correlation purposes. In or-
der to overcome these limitations Anicic et al. suggest Semantic Complex Event
Processeing (SCEP), in which background knowledge is encoded into knowledge
bases that are accessed by a rules engine to support CEP.

2.2 ODP Evaluation

The effects of object oriented pattern use in software engineering and the harmful
or beneficial properties of such patterns have been studied extensively, see for

1 http://ontologydesignpatterns.org



instance [1, 13, 15]. Evaluations of pattern use in conceptual modeling is less
common, but some examples of this type of research have been published, e.g.
[14]. When it comes to pattern use in ontology engineering, as the author has
previously found [8], the amount of work is also rather limited.

Possible benefits of ODP usage in ontology engineering have been shown by
Blomqvist et al. in [3] and [4], both of which tested ODP usage according to the
eXtreme Design method, by way of experimental setups with master and PhD
student groups, and quantitative and qualitative surveys. Their results indicate
that within this setting and for the modeled scenario, ODPs are perceived as
useful, and the use of them result in fewer instances of a set of common mod-
eling mistakes. However, they also report a perceived overhead associated with
using the XD methodology and tooling, and find no strong support for ODPs
improving the speed of ontology development. These experiments do not study
the characteristics of the individual patterns in use.

Iannone et al. in [10] propose a semantics for expressing and method for com-
puting the modularity (and consequently reusability characteristics) of ontology
patterns. The method is implemented in a plugin for Protégé 4. The patterns
under study are OPPL patterns and the algorithm presented is therefore incom-
patible with the view of ODPs as presented within the ODP community portal.
However, conceptually the calculation of local and non local effects of pattern
use seem to be relevant also for Content ODPs.

3 Case Characterization2

The project framing this case study is a small spinoff project from a larger
project on threat detection using sensor systems where the partner research in-
stitute (hereafter RI) is involved. The work at RI focuses on development of a
rule-based CEP subsystem intended to help isolate and correlate critical situa-
tions and threats based on incoming data. Within the spinoff project the aim is
to develop the same functionality using semantic technologies. The motivation
for this project is the increased flexibility of reasoning associated with using
description logic languages, and the perceived gain in ease of reconfigurability
associated with the use of ODPs. The following sections introduce the case par-
ticipants and the architecture of the SCEP system.

3.1 Participants

Three participants attended the modeling workshops, participants A, B, and
C. They are all male, and in the age bracket from 35 to 55 years. All three
are researchers (two PhDs, one MSc) in software engineering or conceptual and
data modeling within RI, and all three have some experience in such model-
ing. B and C have little or no prior knowledge of semantic web ontologies and

2 For reasons of integrity and confidentiality, the case description and published data
has been anonymized.



semantic technologies, whereas A has worked on these topics quite extensively,
among other things researching rule languages for reasoning over semantic web
ontologies. Their respective specialities are as follows:

– A has published on ontology matching, rule languages, model transforma-
tions, semantic technology use cases, etc.

– B has published on information logistics, mobile computing, context- and
task-aware computing, etc.

– C has published on component based software engineering, middlewares,
service orientation, system architectures, garbage collectors, etc.

3.2 System Architecture

The core of the system is a live observation knowledge base, defined accord-
ing to an ontology schema. The ontology consists of both general features that
are always relevant in the context of such a system (vocabularies of time, ge-
ographical locations and distances, sensor metadata, etc), and of features that
are scenario and deployment specific. The latter features are imported from a
set of four configuration knowledge bases, that together define system knowledge
fusion behavior. These knowledge bases define, respectively: scenario configura-
tion (i.e. background/context knowledge), situation correlation behavior, obser-
vation/entity fusion behavior, and critical situation detection behavior. Their
contents are constructed by importing and adapting content ontology design
patterns from a pattern repository.
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Fig. 1. Semantic Knowledge Fusion system architecture.

Data input from the deployed sensor subsystems is mapped to the general
ontology vocabulary by sensor interpretation modules and stored as observa-
tion graphs in the knowledge base. A description logic reasoner is executed on
the knowledge base and inferences about these observations are made. Then a
rule engine is executed on top of the inferred knowledge, allowing greater ex-
pressivity in reasoning than that provided by description logic only (with the



rules employed being embedded within the utilized CODPs by way of annota-
tion properties). If any observations are inferred to be instances of the critical
situations defined within the critical situation configuration knowledge base, an
alert is raised for a human operator to investigate the situation. For an overview
of the system architecture, see Figure 1, and for a more in-depth description of
the system see [9].

4 Method

Observation and data gathering was performed at a two-day modeling workshop
at RI. The purpose of this workshop was to present the developments on the
proposed system architecture and a prototype of the software to the participants,
and to encourage them to develop configurations for it, thereby validating the
applicability of the approach to their deployment scenarios.

Two scenario descriptions developed within the project were used to describe
system deployment contexts3. The participants then attempted to model some
typical relevant critical situations associated with each of these scenarios. Two
examples of such critical situations are listed below:

– A gang is four or more people who have been seen together via at least three
cameras over at least fifteen minutes and who are all wearing the same color
clothing. A critical situation occurs when a gang of five or more football fans
are loud and have within the last hour been spotted by a camera at a bar.

– Two vehicles are the same if they have the same license plate number or have
the same brand, model and color and are observed by two cameras located
at the same physical place within five seconds. A vehicle is behaving oddly
if observed driving less than 15 km/h in three different cameras.

To their aid, the participants had a set of twenty ontology design patterns,
of which fourteen were selected from the ODP community portal, and six were
selected from other research projects. They were not provided with any training
in pattern use, and were not recommended any particular development method,
on the basis that providing such recommendations or training would restrict the
participants’ behavior and interaction with the patterns and the possibility of
learning from their work.

During the modeling sessions data was gathered by way of audio and video
recordings of the work in progress, photographs taken of ontology prototypes
on the whiteboard, and notes taken on perceived key actions, behaviors, and
trends taken independently by two researchers, the author and a senior professor
with extensive experience of this research method. At the end of the second
workshop day a semistructured group interview was held where the participants
were queried about a number of different aspects of their experience and opinions
on ODP use. Additionally, issues and statements of particular interest observed
during the workshop were revisited and discussed, and conflicting interpretations
resolved.
3 Downloadable from http://purl.karlhammar.com/data/wop2012/



4.1 Data Analysis

Upon completing the workshop, the recorded material was transcribed into text.
The vast majority of the material was immediately understandable. In the cases
where ambiguities required interpretation, markers were put down. Those sec-
tions were revisited at the end of transcription, when a greater experience of the
participants’ voices was established, and in the majority of cases then resolved.
The few uncertainties that remained were clearly marked out in the transcribed
text, and subsequently ignored in later analysis steps.

Table 1. Codes used in data analysis.

Code Label Code Label

1 ODP structure 3 ODP catalogue and selection
1.1 ODP size 4 ODP effects
1.2 ODP imports 4.1 Efficiency
1.3 ODP complexity 4.2 Usefulness

2 OE method observations 5 Pattern insufficient
2.1 ODP method observations 6 ODP usage prerequisites

2.1.1 ODPs-as-guidance 7 DL/semantics limitations
2.1.2 ODPs-as-error-control 8 Top-down/bottom-up choices
2.1.3 ODP-attributable errors 9 Existing implicit ontology effects
2.1.4 ODPs-as-ground ontologies 10 Method/metamodel adequacy

2.2 Modeling errors

The text material (notes and transcripts) was then analyzed according to
established transcript analysis methods [5, 7]. All the texts were read through
and fragments coded by theme. The texts were read twice, once to establish
coding categories in the material (see Table 1), and once to apply codes to the
text corpus. The fragments were grouped by code, and the collected material
pertaining to each code studied to see what conclusions could be drawn regarding
participant experiences, opinions and behavior.

4.2 On Validity and Generalizability

Many methods of increasing validity and reliability in case studies and theories
based on them have been proposed [6, 16]. A common approach in such methods
is to limit the potential bias in data collection, coding, and analysis, by involving
multiple researchers, to verify each other’s analyses and data. Another recom-
mendation is to involve case participants and to let them verify the perceived
veracity of data and analyses. Yet another common approach is to triangulate
results by using multiple data collection methods. In this study, two researchers
were involved in data collection and note-taking. Multiple data collection meth-
ods were employed (audiovisual recordings of modeling sessions, researcher notes,
interview transcripts). Preliminary analyses were verified against case partici-



pant opinion by way of a group interview. Due to resource limitations, coding
and analysis was performed by only one person.

A downside to case studies is that the generalizability of results is limited.
In fact, case study results not supported by similar results from other cases or
by well-established theory cannot be said to be scientifically generalizable at
all. That is not to say that these types of results are useless – on the contrary,
if the characteristics of a studied case are similar to those of a new project in
development, recommendations can often be reused from such results. However,
there can be no guarantees of applicability made, no warranty of a causal link
between specified behavior and some expected outcome, granted by the qualita-
tive researcher. The author adheres to this perspective and makes no guarantees
of replicability of the results, but is convinced that the ODP community will
anyway benefit from the knowledge gained in this study.

5 Findings and Recommendations

The following sections describe the data gathered, and present some observations
and analyses pertaining to the research questions garnered from said data. Some
of the analyses are accompanied by brief recommendations for ODP researchers,
based on what has been observed in this case.

5.1 Data

The resulting dataset comprises some 21600 words, or approximately 85 pages
of text. Of these, 16 pages are researcher notes, and 69 pages are audio or video
transcriptions. The participants were initially skeptical about being recorded on
film, and their behavior changed noticeably when cameras were present, becom-
ing quite a lot more formal and tense. In order to promote a good natural work-
ing environment for observations, the researchers chose to turn off the recording
equipment initially, turning it back on only when the participants had gotten
warmed up to the task and seemed less concerned about this. Due to the trian-
gulation in analysis, this is believed to have little effect on the reliability of the
results however.

Additionally, six whiteboard illustrations were photographed. There were 187
applications of codes to fragments, with the distribution of fragments over codes
shown in Table 2.

5.2 Important ODP Features

During the modeling and subsequent interviews, the issues of ODP size and
ODP import count were brought up.

The participants initially expressed divergent opinions regarding effect of
OWL import statements in ODPs. Participant A considered imports quite help-
ful in that the reconciliation of imported base- or lower-level concepts with one’s
own model provided a good opportunity for validating the soundness of one’s



Table 2. Distribution of fragments to codes.

Code label Fragments Code label Fragments

ODP structure 1 ODP catalogue and selection 28
ODP size 3 ODP effects 3
ODP imports 10 Efficiency 11
ODP complexity 1 Usefulness 13
OE method observations 8 Pattern insufficient 12
ODP method observations 19 ODP usage prerequisites 11
ODPs-as-guidance 21 DL/semantics limitations 8
ODPs-as-error-control 7 Top-down/bottom-up choices 7
ODP-attributable errors 8 Existing implicit ontology effects 1
ODPs-as-ground ontologies 8 Method/metamodel adequacy 6
Modeling errors 1

own design. He also emphasized the advantage of getting a foundational logic
“for free” that one would not otherwise have had time to develop. Participant
C expressed an understanding of the tension between reuse and applicability
presented by the import feature and large import closures, comparing it to dis-
cussions in the OOP design pattern community in the nineties. Participant B
criticized the use of imports on the grounds that the expansion of ODP size
that such imports imply negatively affects ODP usability, and on the grounds
that the base concepts included by imported patterns may be incompatible with
one’s own world view, being written for some other purpose:

”I really have to know what is there and what does it mean. And maybe
it’s written with some other focus, some other direction, some other goal.
And I don’t believe in this general modeling of the universe that fits all
purposes.” – Participant B

Participant B also indicated that he would use the idea of a pattern as pre-
sented in a pattern catalogue and reimplement it, rather than reuse an existing
OWL building block, if that block contained too many imports or dependencies.
After some discussions Participant A agreed to the soundness of such a method
in the case of a large import closure not directly relevant to the problem at
hand. Both participants A and B proposed that a better solution would be to
add support for partial imports to tools and standards.

In terms of the size of patterns, the participants emphasized during the in-
terview session the importance of patterns being small enough to be easily un-
derstood in a minute or two of study. They considered an appropriate size to
be three-four classes and the object- and datatype properties associated with
them. They drew parallels to OO design patterns which are frequently of ap-
proximately this size. This expressed preference is consistent with the patterns
they selected during modeling, all of which contained three or fewer classes.



Recommendations Avoid using imports in patterns unless the imported con-
cepts or properties are necessary for pattern functionality. Support the devel-
opment of partial import functionality in standards and tools. When possible,
develop smaller rather than larger patterns.

5.3 Pattern Selection

It was observed by both researchers present that the single most important vari-
able in ODP selection from the pattern catalogue was pattern naming. If a name
“rang a bell” the participants proceeded with studying the pattern specifics to
see whether the pattern was suitable in their case. This observation is supported
by participant feedback at the interview session. The participants also suggested
that description texts and competency questions (formalizations of design re-
quirements as questions that the ODP is able to answer) were important selec-
tion criteria that should be emphasized in an ODP catalogue. Additionally, they
considered the possible negative consequences of applying a certain pattern to a
problem to be of particular importance in selecting and applying patterns.

On the subject of pattern catalogues, the participants indicated that they
considered the two catalogues to which they had been exposed (the ODP com-
munity portal and the one developed for these sessions) to be unordered and
unintuitive, holding patterns of varying completeness, abstraction level and do-
main, all mixed in one long list. The participants suggested that they would
find it easier to navigate a catalogue that was structured according to topic,
architecture tier, abstraction level, or some other hierarchy:

”You also know the old classification of upper ontologies, domain ontolo-
gies, and task ontologies. You know this old picture. This, at least this
structure should be present.” – Participant A

Further participant suggestions for improvements to ODP catalogue usabil-
ity included the addition of graphical illustration of pattern dependencies, and
providing a semantic search engine across ODPs held in the catalogue. The for-
mer suggestion was inspired by an illustration from the Core J2EE Patterns
web page4 that the participants found helpful in deciphering pattern intent, and
which Participant C in particular argued would be helpful in understanding the
structure of a set of ODP patterns. The latter suggestion was that a search engine
be added allowing users to search through concepts and properties present in
ODPs in the catalogue, ideally including NLP techniques to match for synonyms
and related terms.

Recommendations Ensure that pattern catalogues include complete and con-
sistent pattern metadata, paying particular attention to pattern names, descrip-
tions, competency questions, and negative effects. Ensure that pattern catalogues
are structured according to a useful task- or abstraction-oriented hierarchy. Clar-
ify interdependencies between patterns in pattern catalogues. Develop pattern
catalogue search engines.

4 http://java.sun.com/blueprints/corej2eepatterns/Patterns/



5.4 ODP Usage Method

The participants initially developed their designs on a whiteboard rather than
on their computers. They used the patterns as guidance in development, rather
than as concrete building blocks to be applied directly. When questioned on why
this method of working was preferred, they stated that it was more flexible and
required less commitment to a design in progress than immediately formalizing
to OWL code. The participants would build a prototype solution to a whole
problem in one go, rather than tackle one part of the problem at a time. This
method is contrary to eXtreme Design, which emphasizes modular development
and unit testing. However, the individual critical situations being modeled were
rather small and self-contained, and it is uncertain whether this way of working
would scale to larger and more complex problem spaces.

The guidance that the participants got out of the patterns appears to be of
two types. To begin with, to the extent that patterns provided reasonable solu-
tions to difficult to model problems, the pattern solutions were used as archetypes
for own solutions on the whiteboard. This was the most common usage of pat-
terns observed. In the second case, patterns were used to verify the correctness
of modeling, by ensuring that the developed solution was consistent with the
patterns selected:

Participant B: ”Is a vehicle an agent?”
Participant A: ”Let’s check the pattern!”

The latter usage was observed both on the whiteboard and later on when
attempting to formalize results into OWL files on a computer. In usage, the
selected patterns were seen as optimal solutions to problems, and no reflections
on the suitability of the patterns in question were observed. On the contrary, in
some situations the participants attempted to realign their solutions to available
design patterns even when this needlessly significantly increased the complexity
of their solution. One example of this is the observed use of the AgentRole pattern
in categorizing different types of staff, which in the scope of the problem could
just as easily have been done via subsumption.

During modeling there were occasions when the work process slowed down,
and the participants got caught up in discussions on how to define some very fun-
damental concepts such as situation, time, event, etc. When questioned, partic-
ipants expressed a strong preference for such foundational concepts being avail-
able as patterns. While a few such foundational patterns have been extracted
from DOLCE and made available in the community portal, their documentation
is at the time of writing limited.

Recommendations Keep in mind the effects on pattern documentation re-
quirements that arise when patterns are used as guides to development, rather
than simply as building blocks. Ensure that common usage mistakes for individ-
ual patterns are clearly documented.



5.5 Effects of ODP Usage

Across the two days of working, a noticeable improvement in modeling speed
among the participants could be observed. Tasks that in the morning took an
hour to complete were in the afternoon performed in fifteen-twenty minutes.
While this learning effect cannot be solely attributed to pattern use, the partic-
ipants indicated that a certain efficiency gain is certainly due to them:

”I think it was helpful, it makes it clearer and furthers reuse, saving
time.” – Participant A

This efficiency gain was most pronounced when the participants reused pat-
terns which they had already tried once or twice on other problems. The partic-
ipants also indicated that in order to get the most out of the design patterns, a
practitioner needs to have developed some degree of familiarity with them:

”For me it’s a new type of modeling [...] but it’s understandable, and
I can imagine if you know patterns, you are quite faster at inventing
everything.” – Participant C

As has been mentioned in Section 5.4, the effects of ODP use on the process
and resulting ontologies were not all beneficial. In some cases, over-dependence
on patterns complicated the resulting ontologies needlessly, and misunderstand-
ing of pattern documentation led to generally strange results. An example of
the latter is the modeling of the characteristic ”loudness”, where the resulting
model had time being loudness-indexed rather than the other way around. On
the whole however these problems were minor compared to the observed and
perceived benefits of ODP usage in guiding modeling.

6 Conclusions and Future Work

The users studied preferred small patterns over large ones, for reasons of un-
derstandability. They appreciated the foundational knowledge gained by large
import closures, but found the consequent increase in pattern size troublesome,
and would prefer partial import functionality if such were to be developed. Sug-
gestions for pattern catalogue improvements include improving catalogue struc-
ture and search functionality, and increasing pattern documentation coverage.
In order to decrease incorrect pattern usage, it is recommended that common
pattern usage mistakes be documented. Finally, patterns were perceived as use-
ful by the participants and the use of them was observed to increase the speed
with which tasks were solved.

The author will in upcoming work attempt similar analyses in other cases, to
study whether the results presented herein are found to apply to other projects in
other domains also. Further, the author suggests that the ODP research commu-
nity take under serious consideration the results presented herein that pertain to
improvements of pattern catalogue structure, and would be happy to contribute
to such work in the future.
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Abstract. In recent years there has been a large amount of research into
capturing, publishing and analysing Ontology Design Patterns (ODPs).
However, there has not been any analysis into the typical language ex-
pressivity required to represent ODPs and how these requirements sit
with lightweight fragments of the widely used ontology language OWL.
In this paper we therefore present a survey on the language expressivity
required to express the ODPs contained in the two main ODP catalogs:
ODP.org and ODPS.sf.net. We surveyed a total of 104 machine process-
able ODPs and found that the OWL representations of these patterns
typically require highly expressive fragments of the OWL language such
as ALCHIN , SHOIN , SHOIQ and SROIQ. We observed that most
ODPs required the use of inverse properties, cardinality restrictions and
universal restrictions, and that 10 patterns require OWL 2 constructs
such as property chains, disjoint properties and qualified cardinality re-
strictions that are not available in OWL 1. Moreover, we found that most
of the ODPs cannot be incorporated into ontologies that are constrained
to fit into one of the OWL 2 profiles. Specifically, only 12 out of the 104
ODPs surveyed can be represented in OWL2EL, 13 in OWL2RL and 23 in
OWL2QL. Despite this, we conjecture that it may be possible to rewrite
and weaken some of them so that modellers using lightweight fragments
of OWL can incorporate ODPs into their ontologies.

1 Introduction

Ontology Design Patterns (ODPs) are modelling solutions that solve recurrent
ontology design problems [4]. Much of the work on ODPs has been inspired by the
well known work on software design patterns from the mid nineties [3]; Gamma
et al. presented and categorised small object-oriented models which are intended
to be general solutions to specific but common problems in software design. The
main benefit behind the use of software design patterns is that they decrease the
incidence of poor modelling choices that could cause problems at a later date.
Additionally, code that is based on software design patterns is more readable,
more maintainable, and more reusable than code which is not. In many ways
these are the exact reasons that motivate the use of design patterns as applied



to ontologies and in recent years there has been a thrust of research aiming at
inventing and promoting the use of ODPs in ontology engineering.

Two prominent sources of ODPs are the ontologydesignpatterns.org cat-
alog (ODP.org), and the odps.sourceforge.net catalog on the SourceForge.net
website (ODPS.sf.net). The first is a centralised repository, initiated by Gangemi
et al., which takes submissions from researchers and practitioners that work in
a variety of research areas and application domains. At the time of writing, this
repository contains over 150 submissions binned into different categories. The
second is based on the experience of Egaña et al. at the University of Manch-
ester in representing biomedical knowledge. They propose 17 ODPs designed
to tackle modelling problems and ontology language limitations. Both of these
catalogs are specific to the Web Ontology Language OWL [10]. That is, ODPs
are presented and described in terms of fragments of OWL ontologies.

The focus on OWL, as opposed to a “generic” (logic) based ontology lan-
guage, is unsurprising. OWL is one of the most widely used ontology languages,
it has excellent tool support in terms of editors and reasoners, and it is a World
Wide Web Consortium (W3C) recommendation. The latest version of OWL is
OWL 2, which became a W3C recommendation in October 2009 and is based
on Description Logics. This logical underpinning provides a precise semantics
and makes it possible to specify various reasoning tasks such as consistency
checking, satisfiability testing and general entailment checking. Off the shelf au-
tomated reasoners such as ELK, FaCT++, HermiT, Pellet and Racer can be
used to perform these key reasoning tasks and ontology development environ-
ments such as Protégé and the NeOn Toolkit provide hooks for integrating third
party reasoners. Since OWL 2 is a highly expressive language key reasoning
tasks like consistency checking have an extremely high worst case complexity:
2NExpTime-Complete [8], i.e., intractable. This, coupled with the fact that im-
plementing a highly optimised and scalable reasoner for the full language is a
non-trivial task, and the fact that several well known biomedical ontologies, such
as SNOMED [13], fit within smaller tractable fragments of the language, led to
the development of the three so-called “profiles”: OWL2EL, OWL2RL and OWL2-
QL [9]. Each profile was carefully designed with practical use cases in mind, but
a key aspect of each one is that it restricts what can be modelled so as to limit
expressivity and make it possible, and easy, to implement efficient and scalable
reasoners.

When it comes to applying ODPs to a domain or application ontology, and in
particular an ontology which is specifically designed to fit into one of the OWL 2
profiles, it is not clear whether it is possible to incorporate any of the cataloged
ODPs without compromising language expressivity constraints. This is a real
concern, particularly for biomedical ontologies. For example, the large and well
known medical ontology SNOMED is constrained to fit within the lightweight
OWL2EL profile [12]. Many of the ontologies in the NCBO BioPortal reposi-
tory [2] fall into the OWL2EL profile [6], and a sizeable number of them fall into
the OWL2RL profile. Whether these ontologies were deliberately constrained to
these profiles or not, it seems plausible that application of ODPs to these ontolo-



gies could easily take them outside of these profiles, thus losing the possibility
of efficient, scalable reasoning. Ultimately, little is known about the language
expressivity required to represent cataloged ODPs and how many ODPs can be
represented or used within one of the OWL 2 profiles. The aim of this paper
is therefore to present a survey and discussion of ODP language expressivity
requirements.

2 Preliminaries

OWL 2 An OWL 2 ontology is a set of axioms (statements) which state some-
thing about the domain of interest. For example, a subclass axiom states that
one class is a subclass of another class (e.g. Car is a subclass of Vehicle); an in-
verse properties axiom states that one property is the inverse of another property
(e.g. hasPart is the inverse of isPartOf); and a disjoint classes axiom states that
one class is disjoint with another class (e.g. Plant is disjoint with Animal). The
OWL 2 language is underpinned by a highly expressive Description Logic called
SROIQ [7]. This gives statements made in OWL a precisely defined mean-
ing and, for a given ontology, makes it possible to use automated reasoning to
compute whether or not a statement follows from the ontology. Statements that
follow from an ontology are known as entailments. The process of reasoning used
to determine whether or not an entailment follows from an ontology is known
as entailment checking. Generally speaking, expressivity comes at a price—as
expressivity increases so does the complexity (difficulty) of various reasoning
problems such as entailment checking.

Description Logics As mentioned, OWL is underpinned by a Description Logic
called SROIQ. Generally speaking, Description Logics (DLs) are decidable frag-
ments of First Order Logic. There are many different DLs, with each one being
defined by the class, property and axiom constructors that it admits. One of the
simplest DLs is known as AL (Attributive Language). This DL supports concept
intersection (owl:intersectionOf), universal quantification (owl:allValuesFrom),
limited existential quantification (owl:someValuesFrom with a filler restricted to
owl:Thing) and atomic negation (owl:complementOf to named classes). More ex-
pressive DLs can be obtained from AL by adding further constructors. Each
constructor is given a specific letter which is used to derive a name for any par-
ticular DL. For example, adding full negation C to AL produces the DL ALC.
Adding property hierarchy H (rdfs:subPropertyOf) to ALC produces ALCH.
Adding nominals O (owl:oneOf), inverse properties I (owl:inverseOf) and num-
ber restrictions N (owl:minCardinality, owl:maxCardinality or owl:cardinality)
toALCH producesALCHOIN . Finally adding transitive properties (owl:Trans-
itiveProperty) to ALCHOIN produces SHOIN , as the combination of ALC
with transitive properties is abbreviated to S. SHOIN is the DL that under-
pins OWL 1. OWL 2 extends the expressivity of OWL 1 with qualified cardi-
nality Q to give SHOIQ, and complex chains (owl:propertyChainAxiom), reflex-
ive (owl:ReflexiveProperty), irreflexive (owl:IrreflexiveProperty), and disjoint



properties (owl:disjointWith) R to give SROIQ. Distinct from the AL based
family of DLs are EL based DLs. Rather than being based on universal quantifi-
cation (owl:allValuesFrom), the EL family is based on existential quantification
(owl:someValuesFrom), and universal quantification is prohibited. An important
EL based DL is EL++ [1]. This is the DL which underpins OWL2EL and for
which entailment checking can be efficiently performed in polynomial time w.r.t.
the size of the input ontology.

OWL 2 Profiles As mentioned in the introduction, OWL 2 contains three
profiles:

– OWL2EL—Based on the lightweight EL++ DL. OWL2EL is designed for rep-
resenting large and moderately complex ontologies. In particular, it was de-
signed with biomedical ontologies in mind.

– OWL2RL —This profile was designed to allow reasoning to be efficiently
implemented with traditional rule engine based technologies.

– OWL2QL —Based on the lightweight DL-Lite family of DLs. This profile was
designed for applications that combine a simple ontology with large amounts
of instance data (possibly stored in a database).

Each profile limits the class, property and axiom constructors that it admits
in order to achieve desirable properties in terms of reasoning. Of particular
interest to this work is the OWL2EL profile, which is designed for represent-
ing large BioMedical ontologies. This profile prohibits the use of universal re-
strictions (∀, owl:allValuesFrom), cardinality restrictions (owl:minCardinality,
owl:maxCardinality, owl:cardinality), functional (owl:FunctionalProperty), in-
verse functional properties (owl:InverseFunctionalProperty), inverse properties
(owl:inverseOf), disjunction (t, owl:unionOf), arbitrary negation (¬, owl:comp-
lementOf), enumerations involving more that one individual (owl:oneOf), and
disjoint, irreflexive and asymmetric properties. A full specification of each pro-
file is beyond the scope of this paper—the interested reader is referred to the
OWL 2 Profiles specification document [9].

Ontology Design Pattern Documents As mentioned in Section 1, the two
main repositories of ODPs are the ODP.org repository and the ODPS.sf.net cata-
log. Each repository describes ODPs in a fairly standard way, i.e., the name of
the pattern, the problem the pattern is supposed to solve, limitations etc. Most
of the patterns in each repository also contain a small ontology document that
represents the pattern: a “pattern ontology”. This pattern ontology document
either (1) provides a domain specific example of the pattern, or (2) represents
a small ontology that can be reused in the domain ontology. In the first case,
the idea is that the pattern ontology document is copied into the domain ontol-
ogy document with the appropriate translation of vocabulary from the example
domain to the real domain. In the second case, the pattern ontology document
is directly reused, by import, without modification. Patterns that fall into the
second category are known as Content Design Patterns [11].



3 Materials and Method

Pattern Selection The ODPs that we considered for this study are the ones
which contain a pattern ontology document as part of their pattern definition.
That is, ODPs which are described with a parsable OWL ontology. Being able
to parse a pattern (or an exemplar of a pattern) from an ontology document
provides a clean way to automatically and unambiguously analyse the pattern,
determine the expressivity of the language that is required to represent that
pattern, and determine if this language falls into one of the three OWL 2 pro-
files. In the case of the ODP.org catalog, there are 91 proposed content ontology
design patterns3 that are represented as ontology documents. In the case of
the ODPS.sf.net catalog4 all 17 cataloged patterns are described with exemplar
ontology documents.

Pattern Retrieval We accessed both catalogs on the 8th of August 2012. A
total of 91 content patterns were listed in the ODP.org catalog. However, the on-
tology documents for the patterns PharmaInnova and BiologicalEntities
could not be downloaded due to HTTP 404 (File Not Found) errors. Thus, we
obtained a total of 89 pattern ontology documents from the ODP.org catalog. In
the ODPS.sf.net catalog we retrieved all 17 pattern ontology documents. Out of
these, we discarded the Normalisation and UpperLevelOntology pattern
documents: these patterns do not require a fixed or minimum level of expres-
sivity for instantiating them—the Normalisation pattern depends upon the
class definitions that are appropriate to the domain being modelled, while the
UpperLevelOntology pattern depends on the particular upper level ontol-
ogy in question. This provided us with a total of 15 ontology pattern documents
from the ODPS.sf.net catalog, and therefore a grand total of 104 pattern ontology
documents for processing.

Pattern Processing and Analysis Each ontology document was parsed with
the OWL API [5] (Version 3.3) in order to check that it was well formed. Next the
OWL API Metrics and Profiles APIs were used to first compute the expressivity
required to represent the pattern and then to check to see whether the pattern
falls into OWL2DL and the three OWL profiles: OWL2EL, OWL2RL and OWL2-
QL. The results are summarised in the two tables in Section 4 below.

4 Results

Results are summarised in Table 1 and Table 2. The columns display the name
of the pattern, the expressivity required to represent the pattern, whether the
pattern fits into OWL2DL (DL), OWL2EL (EL), OWL2RL (RL) or OWL2QL (QL),
whether the pattern contains universal restrictions (∀), or disjunctions (t),
and whether or not OWL 2 constructs are required to represent the pattern
3 http://ontologydesignpatterns.org/wiki/Category:ProposedContentOP
4 http://odps.sourceforge.net/



(Req.OWL2). Patterns that fulfil these latter seven properties are denoted with
tick (4) in the appropriate cell, otherwise the cell is left empty. Usage of uni-
versal restrictions (∀) and disjunction (t) has been singled out for presentation
because these two constructors would otherwise be “lumped in” with the base
language AL. In addition to this, their use is prohibited in two out of the three
OWL 2 profiles, namely OWL2EL and OWL2QL.

Table 1: Expressivity required for the ODPs from the ODP.org catalog.

Id Name Expressivity DL EL RL QL ∀ t Req.OWL2

1 EthnicGroup EL++ 4 4 4

2 RTMSMapping EL++ 4 4 4

3 SpeciesConservation EL++ 4 4 4

4 Airline EL++ 4 4 4 4

5 ConceptGroup EL++ 4 4 4 4

6 ConceptTerms EL++ 4 4 4 4

7 Metonymy EL++ 4 4 4 4

8 SpeciesNames EL++ 4 4 4 4

9 GoTop EL++ 4 4 4
10 Invoice ALF(D) 4 4
11 Classification ALI 4 4
12 Collection ALI 4 4
13 CollectionEntity ALI 4 4
14 Constituency ALI 4 4
15 ActingFor ALI 4 4 4
16 PartOf ALI+ 4
17 Place ALI+ 4
18 Set ALI(D) 4 4
19 Region ALI(D) 4 4
20 Parameter ALI(D) 4 4 4
21 SpeciesEat ALEI 4 4
22 AOS ALUHIF + (D) 4 4
23 HasPest ALUHIF + (D) 4 4
24 TimeInterval ALHN (D) 4 4
25 ObjectRole ALHI 4 4
26 Componency ALHI+ 4 4
27 Sequence ALHI+ 4
28 IntensionExtension ALIN 4 4
29 Situation ALIN 4
30 TimeIndexedSituation ALHIN (D) 4
31 LiteralReification ALHIN + (D) 4 4
32 CommunicationEvent ALEHOIN (D) 4 4
33 TypesOfEntities ALC 4 4
34 AquaticResources ALCI 4 4
35 Participation ALCI 4 4
36 SpeciesHabitat ALCI 4 4
37 InformationRealization ALCI 4 4
38 GearVessel ALCI 4 4 4
39 RoleTask ALCI 4 4 4
40 TaskRole ALCI 4 4 4
41 AgentRole ALCHI 4 4
42 GearSpecies ALCHI 4 4
43 GearWaterArea ALCHI 4 4
44 Communities ALCHI 4 4
45 VesselSpecies ALCHI 4 4
46 VesselWaterArea ALCHI 4 4
47 Move ALCHI 4 4 4
48 CoParticipation ALCIN 4
49 CountingAs ALCIN 4
50 Price ALCIN (D) 4
51 SpeciesBathymetry ALCIN (D) 4
52 Criterion ALCHIN 4
53 CriterionSetter ALCHIN 4



Table 1: Expressivity required for the ODPs from the ODP.org catalog.

Id Name Expressivity DL EL RL QL ∀ t Req.OWL2

54 Description ALCHIN 4
55 DescriptionAndSituation ALCHIN 4
56 ParticipationRole ALCHIN 4
57 Persons ALCHIN 4 4
58 SpeciesConditions ALCHIN 4
59 TaskExecution ALCHIN 4 4
60 Bag ALCHIN (D) 4
61 BasicPlanExecution ALCHIN (D) 4 4
62 ClimaticZone ALCHIN (D) 4
63 NaryParticipation ALCHIN (D) 4
64 Observation ALCHIN (D) 4
65 ResourceAbundanceObs ALCHIN (D) 4
66 ResourceExploitationObs ALCHIN (D) 4
67 Tagging ALCHIN (D) 4 4
68 TimeIndexedClassification ALCHIN (D) 4
69 TimeIndexedParticipation ALCHIN (D) 4
70 TimeIndexedPersonRole ALCHIN (D) 4
71 VerticalDistribution ALCHIN (D) 4
72 LinneanTaxonomy SHI 4 4 4
73 SimpleOrAggregated SHI 4 4
74 ControlFlow SHIN 4 4
75 InformationObjects SHIN 4 4 4
76 SimpleTopic SHIN 4 4
77 Topic SHIN 4 4
78 Action SHIN (D) 4 4
79 BasicPlan SHIN (D) 4 4
80 List SHIN (D) 4
81 PlanConditions SHIN (D) 4 4
82 TimeIndexedPartOf SHIN (D) 4
83 PeriodicInterval SHOIN (D) 4
84 CatchRecord SHIQ(D) 4 4 4 4
85 Transition SHIQ(D) 4 4 4
86 AquaticResourceObs SHOIQ(D) 4 4 4 4
87 Roles SRIN 4 4
88 SocialReality SRIN 4 4
89 Reaction SRIQ 4 4

ODP.org results summary Out of the 89 content ODPs 9 fit into the lightweight
EL++ DL and therefore the OWL2EL profile. 13 fit into OWL2RL profile, and 22
into OWL2QL. One pattern, Reaction, violates the OWL2DL global restrictions
which forces any ontology that includes this pattern out of OWL2DL. This par-
ticular pattern contains some disjoint properties axioms which specify that some
properties which happen to be Non-Simple are disjoint with each other5. In terms
of other prominent constructs, 77 patterns require inverse properties (I), 45 pat-
terns require cardinality restrictions of some form—either plain (N ) or qualified
(Q) min, max, or exact cardinality restrictions, 3 patterns require the implicit
use of cardinality restrictions through the use of functional properties (F), and
27 patterns use universal restrictions (∀). Six patterns require OWL 2 constructs,
that are not present in OWL 1, for their representation. Specifically, the Re-
action pattern uses disjoint properties axioms and complex property chains,
Roles uses complex property chains and anonymous inverse properties, and

5 Non-Simple properties may not be used in certain positions in certain axioms, for
example as operands in a DisjointProperties axiom. Roughly speaking, a property
is Non-Simple if it is implied by a property chain (or transitive property).



SocialReality uses complex property chains. Four patterns (CatchRecord,
Transition, Reaction and AquaticResourceObs) require the use of qual-
ified cardinality restrictions (Q), which are only available in OWL 2.

Table 2: Expressivity required for the ODPs from the ODPS.sf.net catalog.

Id Name Expressivity DL EL RL QL ∀ t Req.OWL2

1 NaryRelationship EL++ 4 4 4

2 CompositePropertyChain EL++ 4 4 4

3 DefinedClassDescription EL++ 4 4
4 NaryDataTypeRelationship ALEF(D) 4
5 Closure ALC 4 4
6 EntityPropertyQuality ALCF 4 4
7 ValuePartition ALCF 4
8 Selector ALCHF 4 4
9 Exception ALCN 4 4

10 EntityFeatureValue ALCQ 4 4 4
11 InteractorRoleInteraction ALCQ 4 4 4 4
12 EntityQuality ALCIQ 4 4 4 4
13 AdaptedSEP S 4 4
14 Sequence SHF 4
15 List SHN 4 4

ODPS.sf.net results summary Out of the 15 pattern ontology documents, 3
fall into the OWL2EL profile, 0 fall into the OWL2RL profile, and 1 falls into
the OWL2QL profile. One of these OWL2EL ontologies requires property chains,
which are an OWL 2 construct. One of the patterns, EntityQuality, uses in-
verse properties (I), 4 patterns use some form of explicit plain (N ) or qualified
(Q) cardinality restriction, while 5 ontologies require implicit cardinality restric-
tions due to the use of functional properties (F). Only 3 patterns use universal
restrictions (∀), while 8 patterns use disjunction (t).

5 Analysis

Pattern Expressivity Requirements As can be seen from Tables 1 and 2,
patterns from both the ODP.org and the ODPS.sf.net catalogs require a range of
language expressivity, from the lightweight EL++ to the highly expressive lan-
guages ALCHIN , SHIN , SHOIQ, and SROIQ. Both catalogs lean towards
requiring more expressive fragments of OWL, with many patterns that use con-
structs which bump up the expressivity from the base languages of EL++ or AL.
For example, in the ODP.org catalog it is typically the case that patterns require
the use of inverse properties (77 out of 89 patterns) and cardinality restrictions
(45 out of 89 patterns). It is also evident that both universal restrictions (∀) and
disjunctions (t) are sprinkled throughout the patterns in both patterns catalogs,
with notable use universal restrictions in the ODP.org catalog, and disjunction
within the ODPS.sf.net catalog. Universal restrictions are typically used to “close
off” possibilities or model the local range of a property, whereas disjunctions are
used to model “choices” or options for a property, so at first glance it makes
sense that they appear in many patterns.



Pattern Expressivity and the OWL 2 Profiles While both pattern catalogs
contain some patterns that can be represented within one or more of the OWL
2 profiles, it is clear that most of the patterns (59 out of 89 patterns from
the ODP.org catalog and 12 out of 15 patterns from ODPS.sf.net catalog) cannot
be represented in any languages corresponding to the profiles. This means that
large swaths of patterns from both catalogs are “off limits” for ontology engineers
targeting a specific profile.

Only 9 out of 89 and 3 out of 15 patterns from the ODP.org and ODPS.sf.net

catalogs respectivelly can be represented in the OWL2EL profile language. One
of the startlingly obvious reasons for this is that OWL2EL prohibits the use
of inverse properties (I), the use of cardinality restrictions (N , Q or F) and
the use of universal restrictions (∀). Interestingly, as far as the ODP.org catalog
is concerned, more patterns fall into the OWL2RL and OWL2QL profiles than
the OWL2EL profile. Unlike the OWL2EL profile, both of these profiles admit
the use of inverse property axioms. Despite this OWL2QL is not strictly more
expressive than OWL2EL, in fact it is a lightweight language profile that arguably
puts more constraints on modellers than OWL2EL. This would seem to indicate
inverse properties do play a major role in patterns violating the OWL2EL profile.

Pattern Expressivity and BioMedical Ontology Expressivity As men-
tioned previously, the OWL2EL profile is a pertinent profile for modelling and
reasoning with biomedical ontologies. In fact, because of the prominence and
importance biomedical ontologies OWL2EL was designed with these kinds of on-
tologies in mind. The language that underpins OWL2EL is expressive enough
that it can be used to model typical biomedical ontologies, but its expressivity
is limited to guarantee efficient reasoning. Indeed, OWL2EL reasoners such as
ELK are able to classify large ontologies like SNOMED in a few seconds. To put
things into perspective, more than half of the BioMedical ontologies contained
in the NCBO BioPortal repository are OWL2EL ontologies [6], and the large
medical ontology SNOMED expressly targets a fragment of this language in or-
der to guarantee efficient reasoning [12]. It is therefore somewhat unfortunate
that only a handful of ODPs can be expressed in OWL2EL. In essence, there is
currently a tension between staying within a profile that offers fast and efficient
reasoning and using ODPs. An interesting aspect of this tension is that patterns
in the ODPS.sf.net catalog were specifically designed with biomedical ontology
engineering in mind6.

6 Towards Profile Friendly Patterns

Given the tension between typical biomedical ontology expressivity and the ex-
pressivity required to represent ODPs, an argument can be made in favour of
producing versions of patterns that require limited expressivity. This argument
also holds for other domains and the other profiles OWL2RL and OWL2QL. One
6 It should be noted that the ODPS.sf.net catalog was compiled before OWL2EL was

designed and published.



way of going about this would be to take existing patterns and rewrite or weaken
them to conform to the required expressivity. In what follows we provide some
examples of the ways in which the current ODP definitions could be modified to
make them more usable with profile constrained ontologies.

Rewrite Cardinality Restrictions There is an abundance of patterns that
required cardinality restrictions (45 out of 89 ontologies in the ODP.org catalog
and 5 out of 15 in the ODPS.sf.net catalog). With both catalogs, it is plausible that
cardinality restrictions were introduced into patterns either due to side-effects of
particular tools, or due to modeller taste. This is a reasonable conclusion to arrive
at because there are a high number of patterns which use min-one cardinality
restrictions that could be directly replaced with existential restrictions without
any loss of information7—in the case of the ODP.org catalog 24 patterns could
be rewritten and in the case of ODPS.sf.net all 5 patterns which use cardinality
restrictions could be rewritten.

Replace Universal Restrictions with Range Axioms Another construct
that is prevalent throughout the patterns in ODP.org catalog but is not permitted
in either OWL2EL or OWL2QL is the universal restriction (∀). Upon casting an
eye over patterns that use universal restrictions, it appears that many of them
use these kinds of restrictions as simple local range constraints. For example,
SubClassOf(A ObjectAllValuesFrom(hasPart B)) imposes a local range of B on the
property hasPart for the class A. In patterns where the properties in these uni-
versal restrictions have limited usage (i.e. only one such universal restriction per
property) it may be possible to replace the universal restriction with a global
property range axiom (i.e.ObjectPropertyRange(hasPart B))8—these kinds of ax-
ioms are permitted in both OWL2EL and OWL2QL. Out of the 27 patterns from
the ODP.org catalog that use universal restrictions, 23 patterns use them to im-
pose one local range constraint on one property for one class. For these patterns
it would be possible to write these local range constraints as global OWL range
axioms without affecting the consistency and intended semantics of the pattern
ontology.

Make Inverse Properties Optional The inverse properties axiom (I) is
prevalent throughout the ODP.org catalog and increases pattern expressivity lead-
ing to OWL2EL profile violation. From a philosophical point of view it is hard to
say whether or not inverse properties are intrinsic to the ODPs in this catalog.
However, an analysis of inverse property usage suggests that in some cases such
usage could be due to the routine modelling practice of always declaring an in-

7 The restriction ObjectMinCardinality(1 hasPart A) is semantically equivalent to the
existential restriction ObjectSomeValuesFrom(hasPart A).

8 Obviously, some care must be taken to ensure that multiple local ranges for a given
class and property (possibly asserted in different patterns or in a domain ontology) do
not produce an unsatisfiable range when converted to a global range and intersected
with each other.



verse for a property9—irrespective of whether the inverse is used in a meaningful
manner elsewhere in the ontology. As an illustration, consider that the axioms
below appear in some pattern.

ObjectProperty(hasPart)

ObjectPropertyDomain(hasPart, A)

ObjectPropertyRange(hasPart, B)

. . .

ObjectInverseOf(hasPart, isPartOf)

ObjectPropertyDomain(isPartOf, B)

ObjectPropertyRange(isPartOf, A)

The property hasPart will be declared and used throughout the pattern, but 3
additional axioms will be also added: the inverse of hasPart (isPartOf) and the
domain and range for this inverse as the “reverse” of the domain and range
for hasPart (the primary property). In these cases, inverses could be made into
an optional part of the design pattern that could be “bolted on” for domain or
application ontologies that specifically require them, but left out for (biomedical)
ontology engineers who want to remain with a profile such as OWL2EL. This
optionality could be realised by offering different versions of the ODP or by
splitting the ODP into separate ontologies which can be selected and imported by
modellers only as required. Out of the 71 ontologies that contain inverse property
axioms, 13 ontologies contain inverse usage as described above. A further 22
ontologies contain this “good practice” use of inverses plus asserting a property
hierarchy for the inverses so that the inverse property hierarchy mirrors the
primary property hierarchy. This hierarchy based kind of inverse usage could
also be made optional.

7 Conclusions

In this paper we presented a study of the language expressivity required for us-
ing OWL ODPs. ODPs from the two main catalogs, ODP.org and ODPS.sf.net,
were studied. Although there are a handful of patterns that can be represented
using lightweight fragments of OWL most patterns require more heavyweight
fragments containing inverse properties, cardinality restrictions, universal re-
strictions and disjunction. A small number of patterns require constructs that
are only available in OWL 2, including property chains, disjoint properties and
qualified cardinality restrictions. What is evident is that very few patterns can
be represented in fragments of the language that are contained within one or
more of the OWL 2 profiles. In particular, very few patterns, including ones
specifically targeted at biomedical ontology construction, conform to the OWL2-
EL profile. This means that there is a tension between using a language that was
designed with biomedical ontologies in mind and using design patterns that were

9 Often perceived as a good practice.



designed for biomedical ontologies. More generally, since all three OWL profiles
were designed with the goal of supporting fast and efficient reasoning, modellers
must currently make a choice between taking advantage of ODPs or taking ad-
vantage of high performance tools. An initial analysis of the constructs which
lead to the high expressivity requirements of patterns suggest that some of these
issues could be dealt with by rewriting patterns to use different constructs and
making parts of patterns, especially those that use inverse properties, optional.
As future work, it would be interesting to assess the impact of such changes on
ontology engineering.
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Abstract. Ontology Design Patterns (ODPs) provide a means to capture best
practice, to prevent modeling errors, and to encode formally common modeling
situations for use during ontology development. Despite the popularity of ODPs
and supposed positive effects from their use, there is scant empirical evidence
of their level of adoption in real world ontologies or on their effectiveness.
Knowing the goals of ODPs, they may assist in the development of large-scale
biomedical ontologies. Before studying ODP effectiveness and applicability, we
ask the following questions to understand better the landscape of ODP use: Are
ODPs used in biomedical ontologies? Which patterns do the ontology developers
use? In which ontologies? How frequently are patterns used? To answer these
questions, we determined the adoption of ODPs from two popular ODP libraries
among the ontologies in BioPortal, a large ontology repository that contains over
300 biomedical ontologies. We encoded 68 ODPs from two online libraries in the
Ontology Pre-Processor Language, and, using these encodings, determined ODP
prevalence in BioPortal ontologies. We found modest use of ODPs, with 33%
of the ontologies containing at least one pattern. Upper Level Ontology,
Closure, and Value Partition were the three most commonly used
patterns, occurring in 20%, 9%, and 6% of the BioPortal ontologies, respectively.
The low prevalence of ODPs may be due to lack of proper tooling, lack of
user knowledge of and education about them, the age of the ontologies in the
repository, or the specificity of some ODPs. We noted that there is a tension
between the high expressivity of many ODPs and the goal of maintaining low
expressivity of some biomedical ontologies. Additional tooling is necessary to
make ODPs more accessible to domain experts. Furthermore, we suggest that
ODPs may be developed in a bottom-up fashion, much like software-design
patterns. 1

Keywords: OWL, biomedical ontologies, BioPortal, Ontology Design Pattern,
Ontology Pre-Processor Language

1 Ontology Design Patterns
There is a large body of research establishing and creating Ontology Design Patterns
(ODPs) [11, 5]. Yet, there is little work to determine their use or effectiveness.
In biomedicine, the development and use of ontologies are growing rapidly. This

1 Accompanying online resources at http://www.stanford.edu/people/mortensen/odp
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development process can be difficult and/or error prone. As such, ODPs would likely
assist with this development process. In this study, as initial work in evaluating the
effectiveness and applicability of ODPs in biomedical ontologies, we examine the
prevalence of ODPs in a large corpus of ontologies related to biomedicine.

1.1 ODPs and ODP libraries

Software Design Patterns emerged in the 1990s, capturing recurring software design
techniques seen in software [10]. Following a similar motivation, the Semantic Web
community developed ODPs to alleviate some of the complexities in developing
ontologies. ODPs, defined as “a modeling solution to solve a recurrent ontology design
problems” [11], capture best practice and common modeling situations. The developers
of ODPs suggest that by using the patterns, one can more easily avoid modeling errors,
improve ontology quality, maintainability, and reuse [3].

ODPs have become quite popular recently, with multiple workshops held at ISWC,
including one during ISWC 2012. There are two online catalogs of ODPs, the
Manchester ODPs Public Catalog for bio-ontologies (MBOP) and OntologyDesignPat-
terns.org (ODP-Wiki) [9, 1]. These catalogs describe each pattern by the problem that it
solves, the proposed solution, and the formal representation by which to instantiate the
pattern. MBOP contains 17 patterns derived from its authors’ experience in modeling
ontologies in the biomedical domain and working with OWL-based ontologies in
general. ODP-Wiki is a crowd-sourced effort to create an ODP library. The website
owners ask for pattern submissions and then a committee reviews these submissions for
approval. The approved patterns are then noted as such online. As of this writing, the
committee has not approved any patterns but there are over 150 submissions.

Most of the submissions on ODP-Wiki are “content” ODPs. However, the site cate-
gorizes many other different types of ODPs. ODP-Wiki includes “structural” (methods
to workaround for language expressivity limitations or define ontology shape/structure),
“content” (modeling solutions for a specific domain), “correspondence” (methods to re-
engineer an ontology to a different form or map an ontology to another), “reasoning”
(patterns that enable one to obtain desired reasoning results),“presentation” (good prac-
tices for readability and usability), and “lexico-syntactic” (mapping linguistic structures
to ontology entities) patterns—a categorization based on descriptions by Gamgemi and
colleagues [11]. MBOP categorizes patterns as “extension” (workarounds for language
expressivity limitations), “good practice” (good modeling practice) and “domain
modeling” (solutions specific to certain domains). The “structural” classification
encompasses the majority of the MBOP patterns. In this work, the structural and
content ODPs are most relevant. Structural patterns are either logical, adding logical
expressions not contained directly in the ontology language, or architectural, defining
the structure/hierarchy of the ontology itself. Content ODPs model a specific domain
situation, and are directly re-usable (i.e., they should be directly imported into an ontol-
ogy and used). We omit lexico-syntactic, presentation, reasoning, and correspondence
patterns from this work, as we cannot test for them using our framework.

Accompanying the MBOP, the Manchester group also developed the Ontology Pre-
Processing Language (OPPL), both a language based on the Manchester syntax for
OWL, and a software library, which leverages the OWL-API [14]. OPPL provides a
way to manipulate ontologies, query for ODPs and instantiate them [16, 15, 2].
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1.2 Biomedical Ontologies

In biomedicine, ontology use is rapidly increasing [7, 21]. For example, the National
Center for Biomedical Ontology’s BioPortal,2 a repository of biomedical ontologies,
contains over 300 ontologies and controlled terminologies as of this writing [18].
Biologists use biomedical ontologies to manage the large amount of data. Hospitals and
related entities use them in the process of recording information about clinical encoun-
ters, during clinical decision support, billing, and so on. Because biomedical ontologies
are often large and complex, developing them and ensuring that they conform to best
practices poses a formidable challenge. Even the widely used ontologies frequently
contain modeling errors. For instance, Rector and colleagues discovered modeling
issues in SNOMED CT, one of the most widely used biomedical ontologies [19].
Researchers have found modeling errors in the National Cancer Institute thesaurus [8].
ODPs may be especially important in assisting with the challenge of modeling the large
and complex biomedical domains while preventing errors. Before assessing the effect of
using ODPs on the biomedical ontology modeling process, we first find the prevalence
of ODPs in a large biomedical ontology corpus.

2 Methods
We quantified the use of ODPs from both MBOP and ODP-Wiki in BioPortal using
OPPL and the OWL API. We first encoded ODPs in OPPL and validated their
correctness (1) by using an expert opinion and (2) by comparing them to the examples
in the library that served as a gold standard. We then obtained the ontologies from
BioPortal, removing cases by use of predefined filtering criteria (See section 2.2). We
normalized the ontologies to remove any differences in how they were specified, and
then checked both the normalized and the original version for each encoded pattern,
first filtering out patterns that cannot be represented in the ontology because it lacks the
proper relations.

2.1 Pattern Selection

We used the following criteria to select the set of patterns for this study: The pattern
must be (1) detectable, (2) non-trivial (that is, not just a template), (3) positively
reviewed (if a review is available), and (4) available in a public catalog (in our case,
either MBOP or ODP-Wiki). We use these criteria for the following reasons:

1. Using only detectable patterns may seem obvious; however, there are many patterns
such as n-ary relations, or re-engineering patterns that cannot be detected
without more information than just the ontology.

2. A template style pattern may not require the presence of any particular elements.
Thus, it would be trivially present even if the ontology contained no elements of
the pattern.

3. When available, we considered review information on ODP-Wiki. Poorly reviewed
patterns may not yet be refined, making them difficult to encode, especially if they
have a logical error.

4. We chose only publicly available patterns, as it is a necessary condition for both
reproducibility of this study and the expectation of pattern re-use.

2 http://bioportal.bioontology.org
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Applying the criteria above to MBOP and ODP-Wiki, produced the following results:

– From the 17 patterns in MBOP, we used 15. The remaining 2 were undetectable
– From the 150 patterns in ODP-Wiki, we used 53. The remaining patterns were

either optional or not positively reviewed.

Thus, we selected 68 patterns of 167.

2.2 Ontology Selection

From the available ontologies in BioPortal, we selected those ontologies that were
publicly available, parseable, locatable (a file was easily obtainable), non-retired,
available as a single file, and available as either OWL or OBO format. Applying these
criteria to the 312 ontologies that were available in BioPortal as of January 2012,
resulted in a set of 256 ontologies.

2.3 Pattern Encoding

OPPL and the OWL API are open-source standard libraries available to work with
ontology design patterns and ontologies. We encoded the MBOP and ODP-Wiki
patterns with OPPL. Some patterns could not be encoded in OPPL. Those patterns
we encoded directly in Java using the OWL API. An example OPPL encoding of the
Value Partition pattern (a way to specify a set of disjoint qualities the describe a
concept) follows:

?v1:CLASS, ?v2:CLASS, ?param:CLASS
SELECT
ASSERTED ?param EquivalentTo ?v1 or ?v2,
ASSERTED ?v1 DisjointWith ?v2
BEGIN
ADD ?v1 subClassOf Thing
END;

In order to reduce computational complexity, we pruned pattern–ontology pairs by
first checking whether the ontology contains the specific relationships between concepts
that a given ODP requires. An ontology without those relationships cannot have the
pattern as the catalog specifies it. Furthermore, for those patterns that could not occur
in any ontology from our selection, based on the required relationships, we did not
encode the pattern. In particular, many content patterns refer to specific relationships in
the ontology. For example, according to ODP-Wiki, the pattern Part Of requires the
relationship “isPartOf”. Thus, if an ontology does not have this relationship “isPartOf”,
we know that it will not have the pattern. When searching, we disregard the namespace
of any given pattern, in case the pattern simply uses a different namespace (i.e., we
only match on the URI fragment, not including the namespace). One might consider
searching with possible lexical variants of this relationship term to ensure one finds
occurrences which capture the intension of the specified relationship. However, the
point at which a given string no longer matches the initial string is not well defined.
Furthermore, content ODPs directly import a small module, thus the relation should not
vary across ontologies.
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Table 1. Transforms applied exhaustively to an ontology to normalize it.

Axiom Transformation

prop min 1 C prop some C
prop exactly n C prop min n C, prop max n C
prop value i prop some i
Property in Anonymous Class Simplify Property (Removing inverses) and re-

insert
C1 and (C2 and C3) C1 and C2 and C3
C1 or (C2 or C3) C1 or C2 or C3
C1 EquivalentTo C2 C1 SubClassOf C2, C2 SubClassOf C1
C1 DisjointUnionOf C2 ... Cn DisjointClasses: C2 ... Cn, C1 EquivalentTo (C2

... Cn)
C1 or ... or Cn SubClassOf D1 and ... and Dn C1 SubClassOf D1 ... Cn SubClassOf D1 ... C1

SubClassOf Dn ... Cn SubClassOf Dn
DisjointClasses: C1 ... Cn Ci DisjointWith Cj for 1 <= i <j <=n

Finally, during encoding, to gather additional information about a pattern, we noted
the OWL 2 description logic constructs each utilizes. We note these because certain
constructs have higher expressivity requirements. Higher expressivity comes at a higher
computational cost. This fact may provide insight as to why biomedical ontologies
instantiate only certain patterns.

2.4 Normalization

When specifying an ontology, one can represent the same conceptualization using
different language constructs. This phenomenon is particularly common in OWL. To
prevent missing a pattern that may be specified in a slightly different language than
that found in an ontology, we applied pattern detection to a normalized version of each
ontology as well. Table 1 lists the normalizations that we performed. These transfor-
mations follow from the OWL 2 specification and convert ‘syntactic sugar’ conventions
provided by the language to a standard form. For example, applying the transformations
to Dog EquivalentTo Canine results in Dog SubClassOf Canine and
Canine SubClassOf Dog. While one could use a reasoner to infer equality of
certain constructs, this was not computationally feasible in this study.

2.5 Computation

After creating a list of encoded patterns, and of original and normalized versions of
all ontologies in the study, we searched for each pattern in the ontologies using the
encodings and the software libraries. Checking for 68 patterns in nearly 300 ontologies,
some of which have tens of thousands of classes, is a computationally intensive
task. A brute-force approach to this task was unreasonable, as a single run through
all possible ontology–pattern pairs would have taken over a week. We performed
a few optimizations to speed up the runtime of the experiment. First, as described
before in section 2.3, we pruned the patterns first by searching whether or not the
ontology contains the necessary relations. Next, we created a specialized cache to
store computationally intensive search operations that are shared across multiple pattern
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queries per ontology. Finally, we distributed the pattern search process to a large cluster
of 20 nodes, each with 24 cores and 96GB of RAM. We do not attempt to count
the number of times a pattern occurs in a given ontology, as doing so also increases
complexity. We limit the running time of any ontology–pattern pair to one week. During
our analysis, approximately 150 pairs did not complete. These were complex patterns
and complex ontologies (e.g., FMA and Normalization).

2.6 Validation

A pattern that is encoded (incorrectly) in a way that is too general could lead to a false
positive, matching any ontology. For example, encoding Value Partition without
the EquivalentClass component would match any ontology that has disjoint classes,
which is not a true instantiation of Value Partition. An incorrectly specified
pattern would lead to a false negative, not matching any ontology even though the
pattern is present. We therefore verified that the patterns were correctly encoded both by
involving an expert and by comparing them against a reference standard. The pattern
encodings were manually inspected by an author of this paper (MH). Second, where
possible, we tested the patterns and software against reference examples provided by
the catalogs. We expected to find each encoded pattern in its reference example. MBOP
provided example OWL ontology implementations of every pattern. Because ODP-
Wiki required the import of a specific ontology, the verification was trivial.

3 Results

Of the 68 patterns in the study, we encoded 8 patterns in OPPL, 5 with the OWL API,
manually verified 7, and pruned 47 content ODPs that contained relationships that
were not present in any of the ontologies in the study. These relationships included,
for example, “isRegionFor”, “hasRTMSCode”, “participatingInEvent”. One of the
patterns MBOP specifies is the Upper Level Ontology pattern. MBOP describes
the pattern as good practice that allows one to integrate different ontologies in a
grounded framework. To find the Upper Level Ontology pattern, we checked
whether each ontology imported a unique upper-level concept from either of the
following upper ontologies: DOLCE [12], BFO [13] or SUMO [17]. We manually
verified the remaining 7 patterns that matched the necessary relations for a pattern.
These patterns need not necessarily import the pattern, but only capture its intension
(e.g., GALEN). For brevity, Table 2 presents only a list of the positive patterns
and what ontologies instantiated them. We found that 14 patterns were present in
at least one ontology. 33% of the OWL and OBO format ontologies in BioPortal
contain a pattern, with Upper Level Ontology (20%), Closure (9%), and
Value Partition (6%) most common. Other commonly used patterns include
Normalization and Composite Property Chaining. Thirty ontologies in-
cluded more than one pattern. The Ontology of Biomedical Investigations included the
most patterns: DefinedClassDescription, Closure, Value Partition,
Sequence and Upper Level Ontology.
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Table 2: Patterns and the ontologies that instantiate them.

Composite Property Chaining (7 Ontologies)
Model a double chain of properties, i.e. two chains that link four individuals.

Brucellosis Ontology SemanticScience Integrated Ontology
Infectious Disease Ontology Skin Physiology Ontology
Influenza Ontology SNOMED CT
RNA ontology

Adapted SEP (1)
Properly propagate partomony

BioTop

Closure (23)
Simulate the Closed World Assumption in a concrete class

Amino Acid Kinetic Simulation Algorithm Ontology
BioAssay Ontology Lipid Ontology
BioTop NanoParticle Ontology
Bleeding History Phenotype Neomark Oral Cancer-Centred Ontology
Bone Dysplasia Ontology Ontology for Biomedical Investigations
Breast Cancer Grading Ontology Ontology for disease genetic investigation
Cancer Research and Management ACGT
Master Ontology

Ontology for Genetic Interval

Cognitive Atlas Skin Physiology Ontology
DIKB-Evidence-Ontology Subcellular Anatomy Ontology (SAO)
Gene Regulation Ontology Suggested Ontology for Pharmacogenomics
IMGT-ONTOLOGY Vaccine Ontology
Infectious Disease Ontology

Defined Class Description (6)
Create If-Then structures in OWL DL

Adverse Event Reporting ontology Ontology for Biomedical Investigations
Cancer Research and Management ACGT
Master Ontology

Ontology for Drug Discovery Investigations

NanoParticle Ontology SysMO-JERM

Value Partition (16)
Model values of non-overlapping attributes exhaustively

Adverse Event Reporting ontology Influenza Ontology
Basic Formal Ontology OBOE
Basic Vertebrate Anatomy Ontology for Biomedical Investigations
BioTop Ontology for disease genetic investigation
CAO Ontology for Genetic Interval
Computer-based Patient Record Ontology RNA ontology
General Formal Ontology Situation-Based Access Control
Infectious Disease Ontology Vaccine Ontology

Normalization (14)
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Ensure maintainability and explicit semantics by allowing polyhierarchy only through inference

Basic Formal Ontology PMA 2010
Human developmental anatomy, abstract ver-
sion

Proteomics Pipeline Infrastructure for CPTAC

IMGT-ONTOLOGY SemanticScience Integrated Ontology
Mouse gross anatomy and development Traditional Medicine Constitution Value Set
NIFSTD Traditional Medicine Meridian Value Sets
OBO relationship types Traditional Medicine Other Factors Value Set
Pilot Ontology Traditional Medicine Signs and Symptoms

Value Set

Upper Level Ontology (53)
Create ontologies with a consistent, philosophically grounded upper ontology

Adverse Event Reporting ontology Mental Functioning Ontology
Basic Formal Ontology Mosquito insecticide resistance
Basic Vertebrate Anatomy NanoParticle Ontology
BioModels Ontology Neomark Oral Cancer Ontology
BIRNLex Neural ElectroMagnetic Ontologies
Bone Dysplasia Ontology NIF Cell
Brucellosis Ontology NIF Dysfunction
Cancer Chemoprevention Ontology NIFSTD
Cancer Research and Management ACGT
Master Ontology

NMR-instrument specific component of
metabolomics investigations

CAO Ontology for Biomedical Investigations
Cardiac Electrophysiology Ontology Ontology for disease genetic investigation
Chemical Information Ontology Ontology for Drug Discovery Investigations
Cognitive Paradigm Ontology Ontology for General Medical Science
Computer-based Patient Record Ontology Ontology for Genetic Interval
Drosophila development Ontology for Parasite LifeCycle
eagle-i research resource ontology Ontology of Data Mining
Electrocardiography Ontology Ontology of Glucose Metabolism Disorder
FGED View Ontology of Medically Related Social Entities
Gene Regulation Ontology Phenotypic quality
General Formal Ontology RadLex
General Formal Ontology: Biology RNA ontology
Host Pathogen Interactions Ontology Skin Physiology Ontology
IEDB View Sleep Domain Ontology
Infectious Disease Ontology Subcellular Anatomy Ontology (SAO)
Influenza Ontology Translational Medicine Ontology
Information Artifact Ontology Vaccine Ontology
Interaction Network Ontology

Agent Role (1)
Represent agents and the roles they play

ICPS Network

Classification (1)
Represent the relations between concepts and entities to which concepts can be assigned
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ICPS Network

Componency (1)
Represent (non-transitively) that objects either are proper parts of other objects, or have proper
parts

Computational Neuroscience Ontology

Object Role (2)
Represents objects and the roles they play

ICPS Network International Classification for Nursing Practice

Part Of (2)
Represent entities and their parts.

Ontology for Genetic Interval SysMO-JERM

Place (2)
Talk about places of things

Galen International Classification for Nursing Practice

Sequence (4)
Model a sequence of events occuring one after another

FGED View Ontology for Biomedical Investigations
IEDB View Vaccine Ontology

We also recorded the more complex logical constructs of the patterns in MBOP
(Table 3). A pattern that utilizes one of these constructs cannot belong to the OWL 2
EL Profile, a less expressive, more computationally efficient fragment of OWL 2.

4 Discussion
Our results show a very modest use of patterns in biomedical ontologies in BioPortal.
Of the 68 patterns that we studied (which we filtered from the initial list of 167), only 14
appeared among the almost 300 ontologies. Ontology developers may utilize patterns
because of documentation, popularity, and support in development tools. For example,
all ontologies using Upper Level Ontology, the most common pattern, instanti-
ated the BFO, likely due to the OBO Foundry’s popularity in the biomedical community
and its emphasis on using an upper level ontology. The Protégé ontology development
environment provides a quick method to instantiate Closure, Value Partition
(DisjointUnionOf), and Composite Property Chaining. We believe that the
easy accessibility of these patterns from this tool accounts for their use. While
Composite Property Chaining is not explicit in Protégé, after creating prop-
erty chains, composing them is trivial. Normalization is both a simple idea to
follow (perhaps difficult in practice), and well explained by Rector et al. [20]. Finally,
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Table 3. OWL 2 logical constructs in MBOP patterns.

All
Values
From

Functional
Property

Cardinality Re-
striction

Disjunction
(Union)

Entity Feature Value 4 4 4

Selector 4

Normalization
Upper Level Ontology
Closure 4

Entity Quality 4 4 4

Value Partition 4

Entity Property Quality 4 4

Defined Class Description
Interaction Role Interaction 4 4 4

Sequence 4

Composite Property Chaining
List 4

Adapted Structure, Entity, Part 4

Nary Datatype
Exception 4 4

Nary Relationship

with only a few additions to the Relations Ontology (RO), an ontology that can be used
along with BFO, the Sequence pattern from MBOP can be used.

We found only a subset of patterns in a subset of the BioPortal ontologies. Despite
the suggested positive effects of ODPs, the relatively modest use of ODPs in BioPortal
may be due to ontology age, domain specificity, minimal tooling support, lack of pattern
portability and generality, and a tension between the high logical expressivity of certain
patterns and a concurrent desire for minimally expressive biomedical ontologies to
enable computationally tractable reasoning (because of their large size). With regard
to ontology age, it is clear that older ontologies that began development before the
introduction of ODPs may not have them, as restructuring an ontology to incorporate
an ODP during maintenance may be impractical. Also, one might suggest that many
patterns are not found simply because they are not related to the biomedical domain.

Of more relevance is the apparent lack of end-user tooling for instantiating ODPs.
The XD Tools provide with such functionality as a plugin [6]. OPPL is also available as
a Protégé plugin. However, a domain expert may not be familiar with ODPs, may not
necessarily know how to use ODPs or OPPL, and may not even seek out the plugins.
Concurrently, Protégé and other widely used ontology development tools do not have
a general method to instantiate ODPs. However, for those patterns that are already
available in a development environment (Closure, Value Partition), we do see
their occurrence. In this study, we cannot easily link pattern usage and any particular
ontology development environment. However, most biomedical ontology developers do
use Protégé. Thus, we suggest that for ODP use to increase, end-user oriented ontology
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development environments must include a way to instantiate various patterns, including
those available in the ODP public libraries. Furthermore, such tools could note the use
of patterns in the source file of the ontology.

We have noted the opposing tension in the expressivity in the patterns and
biomedical ontologies. The OWL 2 EL profile in many ways was designed with large
scale ontologies in mind. SNOMED CT [22, 4] served as its driving example. Table 3,
which lists the constructs that each pattern uses, shows that only 25% of the MBOP
patterns follow the OWL 2 EL profile. There is a dilemma: Patterns are designed to
assist in reducing errors in large ontologies, but by using them, reasoning (and finding
errors) becomes computationally intractable. This dilemma may explain the lack of
ODP use by some ontologies, as they maintain something similar to EL expressivity.

Additionally, we found that BioPortal ontologies used more patterns from MBOP
than from ODP-Wiki. MBOP has patterns oriented toward biomedical applications,
explaining a portion of this bias. However, we found very few patterns from ODP-
Wiki. Many patterns in ODP-Wiki either were domain specific, or, by definition, their
instantiation required inclusion of a small ontology unit. While many ontologies might
follow the intension of the content ODPs on ODP-Wiki, they did not import the
required ontology to truly instantiate the pattern. Thus, more generalizable patterns,
and a method to capture the intension of a content ODP might also increase ODP use.

4.1 Future Work

We consider the formalization of software-design patterns in a bottom–up fashion.
Gamma and colleagues extracted recurring patterns from existing software, suggesting
these patterns constituted best practice in solving various software development
problems [10]. Contrary to this method, the development of ODPs in the Semantic Web
community appears to be top–down, especially in the case of content ODPs. Instead,
we propose to find ODPs in a bottom-up fashion, as with software design patterns, by
finding recurring patterns in large corpora of ontologies, such as BioPortal.

5 Conclusions
Ontology Design Patterns provide a means to enhance ontology development by cap-
turing best practice and reducing errors. As such, ODPs may be especially applicable
to large-scale biomedical ontology development. As a starting point for a larger project,
we first find the prevalence of ODPs in biomedical ontologies. To do so, using the
available software for manipulating ODPs, we surveyed their use in BioPortal,a large
repository of biomedical ontologies. We found only a small subset of patterns in use
in a portion of the corpus, with Upper Level Ontology being the most common
pattern. To increase future ODP use in biomedical ontologies, we highlight a need for
end-user ontology development tools that include a way to instantiate ODPs and a need
for consideration of the logical expressiveness of ODPs . Finally, we suggest a bottom-
up approach to develop generalized ODPs for re-use.
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Abstract. “A childs year of birth is always greater than the year of
birth of its parents.” – it is not easily possible to code this simple know-
ledge into a pure OWL ontology, i.e. without using any additional rule
languages. Therefore it is not easy in OWL to detect semantic violations
in this kind of statements. The two challenges are putting two orders
(“greater” and “parent”) into relation and representing integers as indi-
viduals allowing a reasoner to infer knowledge about the “greater” rela-
tion. In the first part of this contribution we show a pattern for putting
two transitive and asymmetric orders into a relation, such that conflict-
ing information results in an inconsistent ontology. In the second part we
present a pattern for expressing integers using their binary code. Due to
the special construction a reasoner can infer knowledge about the rela-
tion between all integers in the ontology. By combining the two patterns
we are able to represent the initial statement in an ontology.

1 Introduction

The Web Ontology Language (OWL) makes a deliberate distinction between
object properties of objects and data properties of objects. Data properties are
designed to take a certain value from a range that is defined by the associ-
ated data type. However, the OWL specification does not go beyond sheer value
assignment—no other operations are foreseen for the values of data properties.
During the design phase of OWL 2, a number of authors therefore brought for-
ward “wish lists” for different kind of operations on the values of data properties:

– Pan and Horrocks [1] propose the idea to enable calculations with data prop-
erty values.

– In Use Case #10 of the W3C Working Draft [2] the value—not just the
presence—of a data property is intended to be used for classification of in-
dividuals into classes.

– Grau et al.[3] list four kinds of operations to be provided for data property
values. Among these is the requirement that it should be possible to express
relations between values of data properties on different objects.

Although OWL’s current version OWL 2 brought a number of enhancements
to data type handling, the situation basically remained the same: the cited W3C
Working Draft states that none of these wishes has been accepted for OWL 2.



Instead—in order to separate logical reasoning and handling of data values—
the decision was taken to concentrate all data value handling inside the Semantic
Web Rule Language (SWRL)1 and its “built-ins”. Integrated processing of OWL
ontologies and SWRL rule sets accordingly requires software systems that com-
prise both a reasoner and an oracle for these built-ins. However, it obviously
depends on the oracle’s implementation how SWRL rules are evaluated (open
vs. closed-world processing, data types). Furthermore the semantics of SWRL
built-ins is outside the OWL ontology semantics.

In this paper, we present Logical Ontology Design Patterns (ODP) [4] for
evaluating certain relations between values on different objects and for repre-
senting values from the range of integers as individuals in the ontology. Using
these patterns semantic violations in data sets can be detected during consis-
tency checks.

This paper is organized as follows: In section 2 we describe the class of prob-
lems we want to address and discuss other approaches to the problem. For clarity
we split our solution into three separate parts: Section 3 presents an ODP for
putting two orders into a relation. Section 4 presents our ODP for representing
integers. In section 5 we introduce a third ODP that combines both previous
ODP and prove the correctness of our approach. Section 6 concludes and points
out open questions. We give examples written in OWL 2 functional-style syntax
[5] where appropriate.

2 Problem Description & Approach

Fig. 1. Example of the problem we address.

As an example for the kind of problems we want to address let us take a look
at this situation: A person P1 has an isChildOf relation to another person P2.
Each of the persons has a relation isBornIn to its year of birth. This information
is coded in an OWL 2 ontology. The ontology shall only be consistent if the year
of birth of P1 is greater than the year of birth of P2: “A child’s year of birth
is always greater than the year of birth of its parents.” Figure 1 illustrates this
example.

There are several ways known to model the above mentioned situation and
to express the relation of birth years of parents and their children. One could

1 http://www.w3.org/Submission/SWRL/



use rule languages like SWRL to express this knowledge. But there are only a
few reasoners that (fully) support rules at all and many different rule languages
are used. Furthermore, as mentioned in the introduction, at least parts of the
semantics of the rule languages is outside of the semantics of OWL. Therefore
the evaluation of these parts is rather asking an oracle (i.e. using the specific
implementation) than OWL reasoning. For example, the specification of data
types in SWRL allows for different implementations in terms of precision of
decimals.2 Hence two different reasoners, both supporting the same parts of
OWL and being compliant to the SWRL specification could evaluate the same
ontology differently.

For this reason we focus on approaches that only use pure OWL evaluation.
There are two main approaches to express relations between natural numbers (in
the following “integers” w.r.t. common data type definitions) as in our example:
representing integers as literals and representing integers as individuals.

Representing integers as literals The common way to model the above
scenario with integers represented as literals is to use data properties for the
year of birth and a combination of restrictions on object and data types to
detect semantic violations. Listing 1 shows a restriction for the individual named
“GeorgeV” requiring his father’s birth year to be before 1865.

1 Declaration ( NamedIndividual ( : EdwardVII ) )
2 Declaration ( NamedIndividual ( : GeorgeV ) )
3 ClassAssertion (
4 ObjectAllValuesFrom ( : i sCh i ldOf
5 DataAllValuesFrom ( : i sBornIn
6 DatatypeRestriction ( xsd : i n t e g e r xsd : maxExclusive
7 ”1865”ˆˆ xsd : i n t e g e r )
8 )
9 )

10 : GeorgeV
11 )
12

13 DataPropertyAssertion ( : i sBornIn : GeorgeV ”1865”ˆˆ xsd : i n t e g e r )
14 DataPropertyAssertion ( : i sBornIn : EdwardVII ”1841”ˆˆ xsd : i n t e g e r )
15 ObjectPropertyAssertion ( : i sCh i ldOf : GeorgeV : EdwardVII )

Listing 1. Using data properties and data type restrictions

However, although this approach seems more or less obvious it suffers from
two major disadvantages:

1. No general statements about birth years of parents and children are made,
but for each child the maximum birth year of its parents has to be speci-
fied. That requires additional axioms for each individual that belongs to the
ordered set.

2. Now there is a restriction on the parent’s birth year but there is no formal
correspondence between this restriction (line 7) and George’s birth (line 13).
That means, the ontology could also be consistent if one restricts the parent’s

2 “All minimally conforming processors must support decimal numbers with a mini-
mum of 18 decimal digits” from http://www.w3.org/TR/xmlschema-2/ section 3.2.3



birth year to a maximum value of 1865 (line 7) while (in line 13) George’s
birth year is (e.g. by mistake) set to 1800, which is obviously not intended.

In summary, with this approach we are not able to express a general state-
ment about the relation of the years of birth of parents and their children but
have to express that knowledge for each of the parent-child relations explicitly
(1). Furthermore, this approach still allows for semantic violations (2).

Representing numbers as individuals Other authors propose the use of
resources (i.e. OWL individuals) rather than literals for the representation of
numbers. [6] shows several advantages of this approach. Most interesting for
our problem is the possibility to reason about relations between these number
individuals and other individuals of the ontology. However, in this approach
the name (IRI) of an individual is used to encode some knowledge about the
resource. Since names of individuals are meaningless character sequences in terms
of formal reasoning, it is a priori not possible to use the knowledge encoded in
the individual’s names during the reasoning process.

Another approach for representing an integer n is to specify the predecessor
(and/or successor) of n. Using this approach implies, that if a particular integer
n is needed in the ontology all n− 1 predecessors must be part of the ontology,
too. Thus the representation of an integer depends on other individuals that
are (or aren’t) contained in the ontology. This obviously implies that adding an
integer representing individual is a non-trivial task and requires full knowledge
of the ontology.

It might also be possible to represent an integer n by using an individual
having n properties and adding appropiate cardinality constraining axioms. In
both approaches, using predecessors as well as n properties, the number of axioms
needed to represent a single integer scales linearly with the value of the integer.

Thus these approaches require large maintenance effort (adding statements
about numbers not actually used, changing the definition of previously defined
numbers, etc.) and knowledge about already existing integers in the ontology.
Furthermore the linear dependency between the value of an integer and the
number of axioms needed in the ontology makes these approaches impractical
for many scenarios.

Our approach In our approach we want to use individuals to represent integers.
Our goal is to find a pattern where

1. the number of axioms needed for representing a single integer depends only
logarithmically on the value of that integer (like the usual binary or decimal
representation),

2. the representation of an integer is independent of whether or not other inte-
gers already exist in the ontology, and

3. it is possible to reason about integers based on their representation.



Once we found that pattern we’ll be able to detect “direct” semantic violation
of the order of integers, e.g. having two integers 3 and 4 and an the explicit
statement like “3 is greater than 4”.

However, that is not enough for our initial problem, i.e. detecting semantic
violations on birth years of parents and their children. In this problem we want
to detect “indirect” semantic violations, e.g. person P1 is the child of person P2,
but P2 is born before P1. In other words, we have to detect semantic violations
between two orders (the order given by birth years isGreater and the order
given by the child relation isChildOf ) that are connected by another property
(isBornIn).

In the next section we show a pattern putting two orders into relation. Section
4 describes our pattern for integer representation.

3 Comparing Two Orders

The first part of our solution is a pattern for putting two arbitrary orders into
relation. To outline that this pattern is not restricted to numerical values we
use another example here. In Fig. 2 the individuals depicted with black-filled
circles represent (in this case non-numeric) time data. The isYoungerThan object
property establishes an order on these individuals. Analogously the individuals
depicted with white-filled circles (in Fig. 2: tools) were put into an order using the
isSuccessorOf property. The isToolOfThe object property connects individuals
of the one with individuals of the other order, i.e. tools with ages.

Fig. 2. Comparing two ordered sets of individuals.

The ontology should be inconsistent if two individuals in one order are con-
nected to two individuals with inverse order. The trick is to use one of the
order-building properties to infer knowledge about the other one. This can be
achieved by using a chain of object properties:

isToolOfThe− ◦ isSuccessorOf ◦ isToolOfThe→ isY oungerThan

To compare not only neighboring individuals in each order it is necessary to
declare transitivity for (at least) one of the relations. In our example this would



be:

isY oungerThan(x, y) ∧ isY oungerThan(y, z)→ isY oungerThan(x, z)

3.1 Asymmetry

Furthermore, if contradicting information should result in inconsistency it is
necessary that the following holds:

∀x, y : isY oungerThan(x, y) =⇒ ¬isY oungerThan(y, x)

This could be achieved by marking the isY oungerThan object property asym-
metric. Unfortunately this is not possible in OWL 2, because to guarantee de-
cidability[5, sec. 11.2] an object property must not be transitive and asymmetric
at the same time.

Fig. 3. (Negative) Object Property Assertions.

However, for the known individuals in the ontology it is possible to assure
asymmetry by inserting negative object property assertions. To ensure that
¬p(Ia, Ib) holds for arbitrary b > a, surprisingly only n − 1 negative object
property assertions are necessary for n ordered individuals: The upper half of
Fig. 3 shows the situation where object properties (depicted by solid arrows)
are used to represent an order on individuals I1 . . . In. To ensure asymmetry on
I1 . . . In it is sufficient to only insert negative object property assertions between
neighboring individuals (depicted by dashed arrows in the lower half of Fig. 3):

Assume the assertion p(I1, In) is part of the ontology sketched above (Fig. 3).
Then the following inferences can be made:

p(I1, In)
p(In,In−1)−−−−−−−→ p(I1, In−1)

p(In−1,In−2)−−−−−−−−→ . . .
p(I3,I2)−−−−−→ p(I1, I2)

This is a contradiction to ¬p(I1, I2). �
Thus for every x, y with isY oungerThan(x, y) holds ¬isY oungerThan(y, x),

stated either explicitly or implicitly.

3.2 Summary I

We have now defined a pattern that enables us to put two orders defined on two
sets of individuals—not necessarily integers—into relation. If one of the orders



contains individuals representing integers and the relation is a natural ordering
on integers this technique solves part of our initial problem. It is just necessary
to list the needed integers in the ontology instead of all integers in between. If n
integers are used, 2(n− 1) object properties are required to model the order in
the ontology. A semantic violation in the specified ordering makes the ontology
inconsistent.

The main disadvantage of this pattern is the fact that an individual has
no formal relation to the value it is intended to represent (except for the label
which is not part of the knowledge included in reasoning process). If one needs
to insert an individual representing a specific value (lets say the “copper age”
in Fig. 2) this is not possible without additional knowledge about the already
existing individuals (e.g. the individual labeled “bronze age” is younger than
“copper age”). Without additional knowledge it is only possible to insert an
individual that is known to represent a new minimal or maximal value.

4 Integer Representation

In the second part of our solution we use a pattern that constructs classes con-
taining information about the relation of integers in the ontology. We represent
an integer in the binary numeral system with a predefined bit-length. Figure 4
shows every four-digit integer as a leaf of a binary tree (the gray shaded areas
can be ignored for now). The binary representation of an integer is given by the
path from the root to the leaf. The natural “greater than” order is given by the
order the leaves appear in a depth-first tree traversal.

Fig. 4. Binary tree.

Let In denote an individual that represents the integer n in the ontology.3

Let Ci.0 denote the class of integers with the ith bit being zero. Let Ci.1 denote
the class of integers with the ith bit being one. (The least significant bit is bit
zero.)

3 We expect that there could be more than one individual in the ontology representing
a given integer.



We put each required integer into its respective classes, e.g. for the individual
“two”.

I2 ∈ C3.0, I2 ∈ C2.0, I2 ∈ C1.1, and I2 ∈ C0.0.

ClassAssertion ( : 3 . 0 :Two)
ClassAssertion ( : 2 . 0 :Two)
ClassAssertion ( : 1 . 1 :Two)
ClassAssertion ( : 0 . 0 :Two)

Listing 2. Representing the 4-bit integer 2

Note that “two” is just an arbitrary label for an individual representing
integer 2. It would not make any difference to label the individual e.g. “MyPer-
sonalTwo”.

Now we can define a class that contains all individuals that represent the
same integer by an intersection of the classes of the binary digits, e.g. for the
integer 2:

Cequal.2 = C3.0 ∩ C2.0 ∩ C1.1 ∩ C0.0

SubClassOf (
ObjectIntersectionOf ( : 3 . 0 : 2 . 0 : 1 . 1 : 0 . 0 )
: Equal2 )

Listing 3. Class containing all individuals representing integer 2

It is easy to see that two individuals representing the same integer n in the
ontology belong to the same class Cequal.n. We note this observation as

Lemma 1 Let Ia be an individual in the ontology representing the integer a and
Ib be an individual representing the integer b. Let a = b. Let the ontology contain
axioms following the construction rules mentioned above. Then Cequal.a(Ib) is
also entailed by the ontology.

The class Cgreater.n (which contains all integers greater than n) are unions
of sub-trees of our binary tree (see Fig. 4): According to the construction rules
of the tree it holds for every sub-tree that all leafs that are descendants of the
right child node (“1”) are greater than every leaf that is a descendant of the left
child node (“0”).

Thus whenever the path representing an integer n follows a 0-edge all leafs
that can be reached via the corresponding 1-edge must be included into Cgreater.n.
The set of leafs that can be reached via the 1-edge can be easily written as an
intersection of binary classes.

As an example consider the construction of Cgreater.2. The elements of the
union can clearly be seen in Fig 4.

Cgreater.2 ⊆ C3.1 ∪ (C3.0 ∩ C2.1) ∪ (C3.0 ∩ C2.0 ∩ C1.1 ∩ C0.1)

SubClassOf (
ObjectIntersectionOf ( : 3 . 1 )
: GreaterThan2 )

SubClassOf (
ObjectIntersectionOf ( : 3 . 0 : 2 . 1 )



: GreaterThan2 )
SubClassOf (

ObjectIntersectionOf ( : 3 . 0 : 2 . 0 : 1 . 1 : 0 . 1 )
: GreaterThan2 )

Listing 4. Class containing all individuals representing integers greater than 2

For every integer n used in our ontology we have to declare that any integer
that is equal n must not be greater than n:

Cequal.n ∩ Cgreater.n = ∅

DisjointClasses ( : GreaterThan3 : Equal3 )

Listing 5. Definition of strictly greater

Following these construction rules knowledge about the relation of integer
representing individuals can be inferred: An individual representing an integer
greater than n belongs to the class Cgreater.n. We note this observation as

Lemma 2 Let Ia and Ib be two individuals in the ontology representing integers
a and b (with b > a). Let the ontology contain axioms following the construction
rules mentioned above. Then Cgreater.a(Ib) is also entailed by the ontology.

Summary II

In contrast to the restriction of the first pattern of our solution the second pattern
does not require any knowledge about the existing integers in the ontology when
adding an individual representing an integer. It is only necessary to follow the
named construction rules. Individuals representing integers are automatically
put into relation with each other. There is only a linear relation in the number
of assertions needed to represent an integer and the number of bits used for the
binary representation. The setting of a bit length specifies a maximal number.
However, using a defined bit length is very common for computer systems.

The pattern introduced above establishes only relations between individuals
and classes not between individuals and object properties which are needed for
our initial problem. We address this “gluing problem” in the next section.

5 Putting It Together

Now we can use the information from the classes as constructed in section 4
to establish an order on the integer individuals. The main problem is to create
a link between the greater object property and classes. Our solution has been
inspired by [7]. Formally written we need:

Cgreater.n = {x|∃y : greater(x, y) ∧ Cequal.n(y)}
∪{x|∃y : greater(x, y) ∧ Cgreater.n(y)}



It is not possible to state this linking of object properties and classes directly
in OWL 2. However, by carefully using the EquivalentClasses class axiom and
the class expressions ObjectUnionOf and ObjectSomeValuesFrom it is possible
to make an equivalent statement. In OWL 2 functional syntax this axiom has to
be added:

EquivalentClasses (
: GreaterThanY
ObjectUnionOf (

ObjectSomeValuesFrom( : g r e a t e r : EqualY )
ObjectSomeValuesFrom( : g r e a t e r : GreaterThanY ) ) )

Listing 6. Connection between the greater object property and classes

If this axiom and the class definitions shown above are included in the know-
ledge base, the existence of a greater property between two individuals classifies
the individuals into the according “GreaterThan” classes. This knowledge about
the greater relation can be used in combination with the first part of our ap-
proach. For the generic example sketched in Fig. 5 the following axioms would
be part of the corresponding ontology:

Declaration ( Class ( : Number ) )
Declaration ( ObjectProperty ( : s ) )

Declaration ( ObjectProperty ( : r ) )
ObjectPropertyRange ( : r : Number )

SubObjectPropertyOf ( ObjectPropertyChain ( ObjectInverseOf ( : r ) : s : r )
: g r e a t e r )

Listing 7. Infer greater property

All integer individuals which are connected by the above mentioned property
chain are put into a greater relation. Based on this relation the integer individuals
are classified into the “GreaterThan” classes. Thereby individuals and object
properties are “glued”.

As shown in section 4 the integer individuals are already classified into
“GreaterThan” classes based on their construction. Thus a semantic violation
regarding the order of individuals or the connection to the individuals repre-
senting integers leads to contradicting classifications. In combination with the
disjoint classes axioms this leads to an inconsistency in the ontology. In the next
section we show this formally.

5.1 Proof

Fig. 5. Sketch of the ontology used in the proof. The “order” is given by object property
s, the individuals are X and Y and the integers are Ia and Ib. X and Y are connected
to the integers via property r.



To show the correctness of our approach we consider an ontology constructed
following the rules above and sketched in Fig 5. It consists of two individuals X
and Y that are connected via an object property s(X,Y ). The two individuals
Ia and Ib represent two integers a and b. X and Y are connected with these
integers representing individuals via an object property r.
DisjointClasses ( : GreaterThanA : EqualA )
EquivalentClasses (

: GreaterThanA
ObjectUnionOf (

ObjectSomeValuesFrom( : g r e a t e r : EqualA ) )
ObjectSomeValuesFrom( : g r e a t e r : GreaterThanA ) ) )

DisjointClasses ( : GreaterThanB : EqualB )
EquivalentClasses (

: GreaterThanB
ObjectUnionOf (

ObjectSomeValuesFrom( : g r e a t e r : EqualB ) )
ObjectSomeValuesFrom( : g r e a t e r : GreaterThanB ) ) )

Listing 8. Application of listings 5 and 7 for the example of Fig. 5.

Listing 8 can be written formally as:

Cgreater.a ∩ Cequal.a = ∅ (1)

Cgreater.a = {x|∃y : greater(x, y) ∧ Cequal.a(y)} (2)

∪{x|∃y : greater(x, y) ∧ Cgreater.a(y)} (3)

Cgreater.b ∩ Cequal.b = ∅ (4)

Cgreater.b = {x|∃y : greater(x, y) ∧ Cequal.b(y)} (5)

∪{x|∃y : greater(x, y) ∧ Cgreater.b(y)} (6)

Using the property chain (described in section 3) axiom (cf. listing 7) we can
infer:

r(X, Ia)− ∧ s(X,Y ) ∧ r(Y, Ib)⇒ greater(Ia, Ib) (7)

By construction Cequal.a(Ia) and Cequal.b(Ib) always hold. According to the on-
tology depicted in Fig. 5 in every case greater(Ia, Ib) is inferred (formula 7). We
have to distinguish three cases:

1. a > b: Cgreater.b(Ia) (lemma 1)

greater(Ia, Ib) ∧ Cequal.b(Ib)
(5)

=⇒ Cgreater.b(Ia)

2. a = b: Cequal.a(Ib) (lemma 1)

greater(Ia, Ib) ∧ Cequal.a(Ib)
(2)

=⇒ Cgreater.a(Ia)

This is a contradiction to (1) with Cequal.a(Ia).
3. a < b: Cgreater.a(Ib) (lemma 2)

greater(Ia, Ib) ∧ Cgreater.a(Ib)
(3)

=⇒ Cgreater.a(Ia)

This is a contradiction to (1) with Cequal.a(Ia).

Thus, the semantic violations in cases (2) and (3) result in an inconsistent on-
tology.



6 Conclusion

In this contribution we present a pattern for putting two orders into relation and
a second pattern for representing integers as individuals of an ontology. Follow-
ing the simple construction rules allows for inference of relations between these
individuals. The combination of both patterns can be used to detect contradict-
ing information regarding the two orders. If the ontology contains contradicting
information the ontology will become inconsistent. The correctness of our com-
bined pattern is shown in section 5.1.

Our patterns might be beneficial for verification purposes. When testing the
performance of the consistency check using test ontologies it turns out that
our pattern is not adequate for representing huge amounts of different integers.
However, on the one hand in many use cases the time complexity is not worse
than a solution that uses only data properties and on the other hand many
use-cases do not require many different integers, like the one sketched in Fig. 2.

The authors are aware of the fact that it is possible—if you do not follow the
construction rules for integer individuals and relations between them—to create
an ontology that is consistent although the represented information contains a
semantic violation—for example if statements in listing 2 do not match state-
ments in listings 3 and 4. A solution would be to infer the relations between
integer-representing individuals directly from the representation of these inte-
gers, but there are some indications that this is not possible. However, it is an
open problem to prove this.

Another interesting question would be to investigate if it is possible to model
the relation between more than two integers using OWL 2. That could be used
to express and check relations that include arithmetic operations. If it should be
possible, variants of the initial statement could also be expressed: “A child’s year
of birth is always at least 10 years greater than the year of birth of its parents.”
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Abstract.  Linguistic patterns have proven their importance for the knowledge 
engineering field especially with the ever-increasing amount of available data. 
This is especially true for the Semantic Web, which relies on a formalization of 
knowledge into triples and linked data. This paper presents a number of syntac-
tic patterns, based on dependency grammars, which output triples useful for the 
ontology learning task.  Our experimental results show that these patterns are a 
good starting base for text mining initiatives in general and ontology learning in 
particular.  

Keywords: Linguistic patterns, dependency grammars, triples, knowledge ex-
traction, ontology learning. 

1 Introduction 

With the development of Semantic Web technologies and the increased number of 
initiatives relative to the Web of data, there is a need to create reusable and high 
quality ontologies. For this purpose, ontology design patterns (ODP) have been mod-
eled and span various aspects of ontological design such as architectural ODPs, Con-
tent ODPs and Reengineering ODPs [1]. These patterns enable the definition of for-
mal methodologies for ontology creation and maintenance. Of particular interest to 
the knowledge engineering community are Lexico-Syntactic Patterns. In fact, with the 
availability of large unstructured knowledge resources such as Wikipedia, it becomes 
crucial to be able to extract ontological content using scalable (semi)automatic 
knowledge extraction techniques. In this work, we consider that lexico-syntactic pat-
terns are syntactic structures that trigger the extraction of chunks of information. Ob-
viously, these patterns cannot be used in isolation and they necessitate various filter-
ing mechanisms [6] to identify ontological knowledge from this extracted textual 
information. However, by constituting Lexico-syntactic ODP catalogs, it is likely that 
these ODPs will be used and reused as the first building block of ontology learning 
initiatives. So far, there are some ODPs repositories [2] but their number remains 
modest. 



 Trying to address this issue from a knowledge extraction perspective, this paper 
introduces the main patterns that are used by OntoCmaps, an ontology learning tool 
[6]. OntoCmaps exploits a pattern knowledge base that is domain independent. On-
toCmaps lexico-syntactic ODPs are based on a dependency grammar formalism [5] 
that is well-suited for knowledge extraction.  This paper describes the various ODPs 
that are used to extract multi-word expressions, hierarchical relationships and concep-
tual relationships that can be later promoted as domain knowledge and converted in 
OWL1 format. The paper details each class of patterns, and presents the accuracy of 
each pattern prior to any filtering. Our results show that filtering techniques should be 
used in a separate sieve on top of the ODPs to improve the accuracy of the extraction. 

2 Related Work 
ODP are quite recent design patterns whose objective is to create modeling solutions 
to well-identified problems in ontology engineering and thus promote good design. In 
this paper, we are mostly interested in one subclass of ODPs: Lexico-syntactic pat-
terns (LSPs).  In particular LSPs are meant to identify which patterns in texts corre-
spond to logical constructs of the OWL language. This type of patterns is essential 
from a semi-automatic ontology engineering point of view. In fact, as soon as the 
domain becomes a real-world problem, it starts to be difficult and very expensive to 
manually design an ontology.  

In general LSPs are a widely used method in text mining and can be traced back to 
the work of [4] for hyponymy extraction. There have been several attempts to use 
LSPs for ontology learning [2, 3, 6, 7], relation extraction [7] or for axiom extraction 
[3]. Among the most similar works to ours are SPRAT [7] and [2] which propose 
various patterns for ontology learning and population. One of the peculiarities of our 
approach is that we designed purely syntactic patterns that examine a bigger number 
of linguistic constructs (e.g. relative clause modifiers, adjectival complements, copu-
la, etc.) than what is available in the state of the art to extract information from text. 
Moreover, our patterns are based solely on a dependency grammar combined with 
parts-of-speech tagging. We used a similar approach in a previous work [8] on seman-
tic analysis but the aim was not the extraction of triples for ontology learning and the 
patterns themselves were not structured and conceived in the same way. Finally, there 
are also various LSPs identified on the ODP portal2 but to the best of our knowledge, 
the majority of the patterns in this paper are new with respect to the listed LSPs. 
Overall, 29 over the 31 patterns presented in this paper are not listed on the ODP por-
tal.  There is one common pattern for object property extraction (nsubj-dobj) which is 
already widely used in the information extraction field and one common pattern for 
hierarchical relations extraction (nsubj-cop). Finally, in one case, there is a similarity 
between one LSP used to extract sub-classes/super-classes relationships and one of 
our patterns for hierarchical relationship extraction (with the use of the expression 
including instead of include). In any case, one major difference is the use of depend-
ency relations in OntoCmaps. 
                                                             
1 http://www.w3.org/TR/owl-features/ 
2 http://ontologydesignpatterns.org/wiki/Category:ProposedLexicoSyntacticOP 



3  Lexico-Syntactic Patterns in OntoCmaps 
3.1 OntoCmaps 

OntoCmaps is an ontology learning tool that takes unstructured texts about a domain 
of interest as input [6]. OntoCmaps is essentially based on two main stages: a 
knowledge extraction step which relies on syntactic patterns to extract candidate tri-
ples from texts, and a knowledge filtering step which acts as a sieve to identify rele-
vant triples among these candidates. Since this paper focuses on the knowledge ex-
traction part, this section presents the formalisms and tools used during the extraction 
stage. 

As aforementioned, OntoCmaps patterns are mainly syntactic patterns which use a 
dependency grammar formalism and part-of-speech tagging [9]. The dependency 
analysis is obtained through the Stanford Parser [5] which defines a grammatical rela-
tions hierarchy and outputs dependencies (we use the collapsed dependencies). A 
dependency parse represents a set of grammatical relations (from this hierarchy) that 
link each pair of related words in a sentence. Several examples of dependency parses 
are provided in the following sections.  

3.2 Syntactic Patterns 

Patterns define specific syntactic configurations that link variables, constrained by 
given parts-of-speech, using grammatical dependencies. Parts of speech constraints 
allow filling in the variables with the right types of grammatical categories and there-
fore are essential for the accuracy of the extraction [8]. Parts of speech are defined in 
the Penn Treebank II3. 

Some patterns might overlap and are organized into a pattern hierarchy to trigger 
the more detailed patterns first. When a parent pattern is instantiated, all its children 
are disqualified for the current sentence, to avoid the extraction of meaningless frag-
ments. Patterns are interpreted (using Java methods) to extract triples that can repre-
sent candidate domain ontological relationships. Triples also let OntoCmaps identify 
potentially relevant domain terms (i.e. content words).  

The transformation rules (which can be considered as Transformation ODPs) focus 
on triples to enable mappings with the OWL-DL language.  OWL DL is much more 
limited than natural language. Consequently, various syntactic configurations do not 
have any equivalent in OWL-DL. For example, verbs tense cannot be represented. 
There are general conventions that are followed in OntoCmaps for generating possible 
mappings: 1) Nouns and combinations of nouns, adjectives and adverbial modifiers 
are converted into potential candidate classes; 2) Proper nouns are converted into 
named entities (potential instances); 3) Comparative adjectives potentially map to an 
OWL Object Property when domain and range are classes; 4) Transitive verbs map to 
potential OWL Object Properties when domain and range are classes. They can also 
map to data types properties if the range is not considered as a class; 5) Negation on a 

                                                             
3  http://www.cis.upenn.edu/~treebank/ 
 



verb between two identified classes maps to the OWL complement construct; 7) Verb 
tenses, modals and particles are all aggregated in the label of a potential OWL object 
property (verb); 8) The noun following a possessive pronoun is translated into and 
OWL Object Property or a data type property; 9) Determiners, quantifiers, compara-
tive and superlative adverbs are ignored in OntoCmaps at this point. 
There is no predefined meaning assigned to any of the extracted terms and relation-
ships. Terms and relationships labels might have various morphological forms but are 
all related to their root lemma. Therefore, various morphological structures with the 
same root all relate to the same relation or term. Semantics is left underspecified or 
more specifically specified by the domain context, since OntoCmaps takes a domain 
corpus as input. If there are triples related to the term “bank”, then whether it is the 
financial institution or the side of a river will be determined by the input corpus and 
by the other extracted relationships. The following sections details the patterns used 
by OntoCmaps. A pattern is represented using the following convention: 

Grammatical relation (Head-Index / POS, Dependent-Index/POS) à Transformation 

─ Grammatical relation represents a dependency relation; 
─ Head and Dependent are variable names; 
─ POS represents a part-of-speech. Note that we use the generic part-of-speech NN 

for all the noun parts-of-speech (NN, NNS) and the generic part-of-speech VB for 
all the verbal parts-of-speech (VB, VBD, VBG, VBN, VBP and VBZ); 

─ Index represents the position of the word in the sentence; 
─ Transformation describes the resulting expression when this pattern is instantiated. 

3.3 Expression Extraction 

Simple and multi-word expressions (MWE) are considered candidate domain terms if 
they occur in lexico-syntactic ODPs for hierarchical and conceptual relationship ex-
traction.  The first step in OntoCmaps consists of aggregating MWE to generate a new 
dependency graph composed of MWE linked by grammatical relations (Table 1). The 
most common MWE are obtained through the patterns (1), (2) and (3). 

Table 1. Multi-word expressions patterns 

Pattern Example 

nn(X/NN, Y/NN) à 
Y_X (1) 

nn(Systems-3/NN, Computer-1/NN), nn(Systems-3/NN, 
Operating-2//NN) àComputer operating systems 

amod(X/NN, 
Y/JJ)àY_Z (2) 

amod(intelligence-2/NN, Artificial-1/JJ) à Artificial 
Intelligence 

nn(X,Y), amod(X,Z) 
à Z_Y_X (3) 

amod(systems-3/NN, Intelligent-1/JJ), nn(systems-
3/NN, computing-2/NN)àIntelligent computing sys-
tems 
Note that Pattern (3) is a combination of (1) and (2). 



advmod(X/VBN, 
Y/RB), dobj(X/VBN, 
Z/NN) à Y_X_Z (4) 

advmod(modified-2/VB, Experimentally-1/RB), 
dobj(modified-2/VB, cell-3/NN)à Experimentally 
modified cell 

prep_of/IN (X/NNP, 
Y/NNP)à X_of_Y (5) 

prep_of/IN (University-2//NNP, Toronto-4/ NNP)à 
University of Toronto 

prep_of /IN(X/NN, 
Y/NN)à X_of_Y (6) 

prep_of/IN(page-2/NN, book-5/NN)à Page of book 
Note that another possible transformation could be Y X 
(e.g. book page). 

We also designed two patterns for multi-word expressions containing the preposition 
of (5) (6). Pattern (5) extracts a named entity and is useful for ontology population 
(rather than learning). The type of multi-word expressions in (6) can be tricky, as the 
Y part can represent the domain concept and the X part might be only an attribute 
(e.g. the color of the car) or a part (the wheel of the car). However, if this MWE is not 
important for the domain, it is likely that it will be sieved during the filtering stage. 

 
3.4 Relationship Extraction 

Relationship extraction in OntoCmaps refers to hierarchical relationships extrac-
tion (aka taxonomy or hyponymy) and conceptual relationships extraction (OWL 
Object Properties). Relationship extraction is run after few other operations, mainly 
the aggregation of multi-words expressions, the distributive interpretation of conjunc-
tions and the removal of function words such as determiners and quantifiers.  These 
prior operations produce a modified dependency graph used as input for relationships 
extraction.  

Hierarchical Relationship Extraction.  
There have been many works [2, 4, 10] in hierarchical relationships extraction us-

ing patterns. In OntoCmaps, hierarchical relationships are mapped to subclasses in 
OWL-DL.  
OntoCmaps reuses some of Hearst’s patterns (patterns (7) (8) in Table 2) using the 
dependency grammar formalism, parts-of speech, and transformation rules. We also 
create a hierarchical relationship from the multi-word expression pattern (3) (in Table 
1) which involves a noun compound modifier and an adjectival modifier (pattern 9, 
Table 2) and from the multi-word expression pattern 4 (Table 1) thus obtaining pat-
tern (10) (Table 2). Finally, we designed one pattern based on the copula (Pattern 
(11), Table 2).  

Table 2. Hierarchical Relations Patterns 

Pattern Example 

prep_such_as/IN(X/NNS, 
Animals such as monkeys and apes 
prep_such_as/IN(animals-1/NNS, monkeys-



Y/NNS)àis-a(Y, X) (7)	  	  	   4/NNS), prep_such_as/IN(animals-1/NNS, apes-
6/NNS) à is_a (monkeys, animals); is-a(apes, 
animals) 

prep_including/IN(X/NNS, 
Y/NNS)àis-a(Y, X) (8)             

All buildings, including houses and castles… 
prep_including/IN(buildings-2/NNS, houses-
5/NNS)à is-a(houses, buildings); is-a(castles, 
buildings) 

nn(X,Y), amod(Y,Z)à is-a 
(Y, X) (9) 

Intelligent computing systems… 
amod(systems-3, Intelligent-1), nn(systems-3, 
computing-2)à is-a (Intelligent computing sys-
tems, computing systems)à is-a(Computing 
systems, systems) 

advmod(X/VBN, Y/RB), 
dobj(X/VBN, Z/NN) à is-
a(Y_X_Z, Z)(10) 

Genetically modified food 
advmod(modified-2, Genetically-1), 
dobj(modified-2, food-3)à is-a(Genetically 
modified food, food) 

nsubj(X/NNS, Y/NNS), 
cop(X/NNS, Z/VBP)à is-
a(Y,X) (11) 

Pinguins are birds 
nsubj(birds-3/NNS, Pinguins-1/NNS), cop(birds-
3/NNS, are-2/VBP)à is-a(Pinguins, Birds) 

Conceptual Relationships Extraction.  
Conceptual relationships refer to OWL Object Properties with a domain and range. 

These relationships are among the most difficult to extract. We propose dependency-
based patterns that are divided into four main categories: main clauses (containing a 
nominal subject nsubj), passive clauses (containing a passive nominal subject), rela-
tive clauses (containing a relative clause modifier) and finally other clauses which 
group certain constructs not belonging to the other categories. 

Main clauses. 
Main clauses are organized around the main verb of the sentence.  Pattern (12) has 

been already referenced in the ODP portal. Pattern (13) enriches Pattern (12) with a 
preposition attached to the main verb and allows the creation of two triples. Patterns 
(16-18) use the xcomp relationship (which indicates a clausal complement with an 
external subject) to create a relationship between the main subject of the sentence 
(nsubj) and its direct object (Pattern (16) and (18)) or its related agent (Pattern (17)). 
Finally, Pattern (14) and (15) create a relationship between the nominal subject and 
the object of the preposition. 

Table 3. Main clause patterns for conceptual relationship extraction 

Pattern Example 

nsubj(X/VB, Y/NN), 
Content packaging can define content organiza-
tions. 



dobj(X/VB, Z/NN)àX(Y,Z)
 (12) 

à can define( content packaging, content or-
ganizations)  

nsubj(X/VB, Y/NN), 
dobj(X/VB, Z/NN), 
prep_K(X/VB, A/NN)à 
X_Z_K(Y, A), X(Y,Z)(13) 

AICC has submitted CMI001 to the IEEE. 
à has submitted(aicc , cmi001)  
 has submitted cmi001 to (aicc ,ieee) 

nsubj(X/JJ, Y/NN), 
prep_K(X/JJ, A/NN)à 
X_K(Y,A) (14) 

The RTE describes the LMS requirements for 
managing the runtime environment such as 
standardized data model elements used for 
passing information relevant to the learner's 
experience with the content). 
à relevant_to(information, experience) 

Nsubj(X/JJ, Y/NN), 
cop(X/JJ, V/VB) 
prep_P(X/JJ, 
Z/NN)àX_P(Y,Z) (15) 

These branches are visible to the LMS.  
à visible to( branch, lms) 

nsubj(X/JJ, Y/NN), 
cop(X/JJ, C/VB), 
xcomp(X/JJ, V/VB), 
dobj(V/VB, Z/NN),  
à X_V(Y, Z) (16) 

The Sequencing Control Choice element indi-
cates that the learner is free to choose any ac-
tivity in a cluster in any order without re-
striction. 
à free to choose (learner, activity) 

nsubj(X/JJ, Y/NN) 
xcomp(X/JJ, V/VB) 
agent(V/VB, Z/NN)à 
X_V(Y,Z) (17) 

The difficulty lies in the fact that the set of all 
possible behaviors given all possible inputs is 
too large to be covered by the set of observed 
examples. 
à too large to be covered by (set of possible 
behavior, set of observed examples) 

Nsubj(X/VB, Y/NN), 
dobj(X/VB, V/NN) 
xcomp(X/VB, Z/VB), 
dobj(Z/VB, N/NN)à 
 X_V_Z(Y, N)(18) 

 
SCORM recognizes that some training re-
sources may contain internal logic to accom-
plish a particular  learning task à may contain 
internal logic to accomplish (training resource, 
learning task) 

Passive clauses.  
Passive clauses allow the extraction of conceptual relationships (Table 4) and 

sometimes their inverse property. For instance, pattern (19) (Table 4) can be used to 
define such an inverse property for the relation defined set of information - can be 
tracked by - lms environment by creating an OWL inverseOf relation: lms environ-
ment - can track - defined set of information. 



Table 4. Passive clauses patterns for conceptual relationship extraction 

Pattern Example 
Nsubjpass(V/VB, Y/N), 
Agent(V/VB, Z/N)à 
V(Y,Z) (19) 

The purpose of establishing a common data model is 
to ensure that a set of information can be tracked by 
different LMS environments. 
à can be tracked by (defined set of information, lms 
environment) 

Nsubjpass(V/JJ, 
X/NN), cop(V/JJ, 
V/VB), prep_P(V/JJ, 
Y/NN)à V_P(X,Y)(20) 

Sequencing information is defined on the Activities 
and is external to the training resources associated 
with those Activities. 
à external to (sequencing information, training re-
source) 

Nsubjpass(V/VB, 
X/NN), prep_P(V/VB, 
Y/NN)à V_P(X,Y) (21) 

Metadata can be applied to Assets.   
à can be applied to (metadata, assets) 

Nsubjpass(V/VB,X/NN),
dobj(V/VB,Y/NN)à 
V(X,Y)(22) 

The data model element names shall be considered 
reserved tokens. 
à shall be considered(data model element names, 
reserved tokens) 

Relative Clauses. 

Relative clauses (see Table 5) are generally neglected by similar pattern-based ap-
proaches, as they are often distant from their main subject. The relationships created 
by our patterns in this category have generally lengthy labels, but they allow us to 
find links between two candidate concepts that might be otherwise neglected.  

Table 5. Relative clauses patterns for conceptual relationship extraction 

Pattern Example 

rcmod(X/NN, Y/VB), dobj(Y/VB, 
Z/NN), prep_P(Y/VB, Q/NN) à 
Y_Z_P(X, Q), Y(X, Z) (23) 

Learning Management System is a soft-
ware that automates event administration 
through a set of services.à auto-
mates_event_administration_through 
(Software,   set_of_services) 

Nsubj(X/NN, Y/NN), rcmod(X/NN, 
V/VB), dobj(V/VB, 
Z/NN)àV(Z,Y)(24) 

 
à automates(learning management sys-
tem, event administration) 

Nsubj(X/NN, Y/NN), rcmod(X/NN, 
V/VB), dobj(V/VB, Z/NN), 
Prep_P(V/VB, Q/NN)àV_Z_P(Y, 
Q)(25) 

à automates event administration 
through (Learning management system, 
set of services) 



Rcmod(X/NN, V/VB), 
xcomp(V1/VB,V2/VB), 
dobj(V2/VB, Y/NN), 
prep_P(V2/VB, Z/NN)à 
V1_V2_Y_P (X, Z)  (26) 

"1484.11.1" is a standard that defines a set 
of data model elements that can be used to 
communicate information from a content 
object to an LMS. à can be used to 
communicate information from (set of 
data model element, content object) 

rcmod(X/NN, V/VB), dobj(V/VB, 
Z/NN)à V(X,Z) (27) 

This keyword data model element can 
only be applied to a data model element 
that has children. 
à has (data model element, children) 

Relative clauses patterns are focused around the dependency relationship rcmod 
and enable making links between a main subject and the rcmod direct object (Pattern 
24) or a preposition (Pattern (23) and (25)) in the relative clause.  Pattern (26) makes 
a link between the noun in a relative clause modifier with the clausal complement 
xcomp, and finally Pattern (27) links the noun of the relative clause modifier to its 
direct object. 

Other clauses. 
Finally, there are some clauses around infinitival modifiers (infmod) and participial 

modifiers (partmod) that modify their noun phrase and that allow us to create concep-
tual relationships (Table 6) when they have a direct object or a preposition. Note 
again that pattern 31 (Table 6), which has an agent dependency, can lead to an OWL 
inverse property similar to the one explained in the passive clauses. 

Table 6. Other clauses patterns for conceptual relationship extraction 

Infmod(X/NN,Y/VB), 
Dobj(Y/VB,Z/NN)àY(X,Z) (28) 

This value can be requested by the SCO 
to determine the next index position.à 
determine (sco, next index position) 

Partmod(X/NN,V/VB),dobj(V/VB, 
Y/NN)à V(X,Y)   (29) 

A SCO can communicate with an LMS 
using the SCORM RTE  
à using( lms, scorm rte) 

Partmod(X/NN, V/VB), 
prep_P(V/VB, Y/NN) à V_P(X,Y) 
(30) 

...to describe the components used in a 
learning experience.  
à used in (components, learning experi-
ence) 

Partmod(X/NN, V/VB), 
agent(V/VB, Y/NN)àV(X,Y) (31) 

All data model elements described by 
SCORM are …. 
described by (data model elements, 
scorm) 



4 Evaluation 
In order to evaluate our patterns, we essentially relied on two corpora used in previous 
experiments [6]: the SCORM corpus, which is a set of manuals on the SCORM 
eLearning standard and the AI corpus, which is a set of Wikipedia pages about artifi-
cial intelligence.  We previously generated and validated two OWL ontologies from 
these corpora and we consider them as our gold standards (GSs). Details about these 
GSs can be found in [6]4. We then calculated the precision of the various patterns 
based on these GSs. 
Precision= number of generated relationships or concepts per pattern (A) / number of 
relationships or concepts in (A) that exist in the GS  

Tables 7-11 report the various results of each pattern category5. Each table pre-
sents, for each pattern in the category, the precision of the extracted relationships and 
concepts in both corpora.  One must note that some of the relationships extracted by 
patterns were perfectly valid (from a lexical point of view) but were not found in the 
GS, thus reducing the reported precision. Another point is that concepts are simple or 
multi-words expressions that occur in a relationship. Therefore, we were able to cal-
culate concept precision as well by identifying how many concepts involved in the 
extracted relationships were in the GSs. 

Table 7. Precision of Hierarchical Relationships Patterns. 

 
We can notice that the precision of hierarchical relationships and their corresponding 
concepts is quite high (Table 7).  

Table 8. Precision of Conceptual Relationships Patterns (Main Clauses)  

                                                             
4 Available at http://azouaq.athabascau.ca/goldstandards.htm 
5 Extraction examples for each pattern can be found at 

http://azouaq.athabascau.ca/experiments/wop2012/SCORMPatterns_WOP2012.xls and AI-
Patterns_WOP2012.xls 

Pattern 
Relations 
SCORM 

Relations 
AI 

Concepts 
SCORM 

Concepts 
AI 

Pattern (7) 47.46 93.75 79.45 84.37 
Pattern (11) 74.63 56.76 91.29 72.79 
Pattern (8) 100.00 76.92 100.00 80.77 

Average 74.03 75.81 90.25 79.31 

Pattern 
Relations 
SCORM 

Relations 
AI 

Concepts 
SCORM 

Concepts 
AI 

Pattern (12) 52.16 24.10 81.75 57.45 
Pattern (16) 75.00 0 100.00 33.33 
Pattern (15) 50.75 35.29 79.58 61.67 
Pattern (13) 50.00 26.25 78.24 49.51 
Pattern (14) 36.31 28.33 79.49 62.62 



Interestingly, passive clauses (Table 9) and other clauses (Table 11) achieve a bet-
ter performance for relationships precision than main clauses (Table 8) which get 
approximately the same results as relative clauses (Table 10). 

Table 9. Precision of Conceptual Relationships Patterns (Passive Clauses).  

Table 10. Precision of Conceptual Relationships Patterns (Relative Clauses). 

Table 11. Precision of Conceptual Relationships Patterns (Other Clauses).  

These results give a general idea on the Precision of the lexico-syntactic patterns. 
As we have previously mentioned, and as the results confirm it, there is a need to 
filter the various extractions using statistical and/or graph-based metrics [6].  The 
most frequent patterns were nsubj-dobj, nsubjpas-prep, nsubj-dobj-prep, nsubj-prep 
and partmod-prep. The most precise (but scarcer) patterns, without any filtering, were 
hierarchical patterns. One important observation is the quite high precision of con-
cepts even without filtering. Regarding relationships, it is possible to imagine that if 
concepts of interest are known upfront, then these patterns will be very useful for 
discovering relationships between these predefined concepts. This will be tackled in 

Pattern (17) 0 0 0 0 
Pattern (18) 0 0 80.43 90 

Average 37.74 16.28 71.35 50.65 

Pattern 
Relations 
SCORM 

Relations 
AI 

Concepts 
SCORM 

Concepts 
AI 

Pattern (19) 69.56 25.00 74.00 56.25 
Pattern (22) 60.00 66.67 88.00 100.00 
Pattern (21) 58.45 44.78 84.16 66.67 
Pattern (20) 75.00 na 95.00 Na 

Average 65.75 45.48 85.29 74.31 

Pattern 
Relations 
SCORM 

Relations 
AI 

Concepts 
SCORM 

Concepts 
AI 

Pattern (23) 41.18 56.25 62.07 66.67 
Pattern (25) 0 0 90.48 60.00 
Pattern (24) 73.33 50.00 93.90 76.47 
Pattern (26) 0 0 85.71 0 
Pattern (27) 50.62 21.62 86.39 56.52 

Average 33.02 25.57 83.71 51.93 

Pattern 
Relations 
SCORM 

Relations 
AI 

Concepts 
SCORM 

Concepts 
AI 

Pattern (29) 43.18 25.00 80.58 70.00 
Pattern (30) 60.58 54.54 86.04 73.58 
Pattern (28) 38.77 37.50 82.10 80.77 

Average 47.51 26.85 82.91 74.78 



future work. We also created few patterns for attributes extraction involving posses-
sives or nominal subject and copula with adjectives. However, the way to translate 
these attribute relationships into OWL-DL was not straightforward.  

5 Conclusion 
This paper presented a list of the main patterns used in OntoCmaps, our ontology 
learning tool. These patterns target specific syntactic structures in a dependency rep-
resentation and are useful for the extraction of multi-word expressions and triples that 
can be later translated into OWL classes and properties. There were some simplifying 
assumptions made in OntoCmaps, mainly the removal of determiners and the lack of 
co-reference resolution that should be included in future work. In this current state, 
our patterns represent a good starting base that any researcher in text mining might 
use and especially the ontology learning community which lacks clear and reusable 
design patterns. Overall, future efforts will tackle how and if a more fine-grained 
semantic analysis would be beneficial to the ontology learning task. Another future 
task will be to extend the coverage of our patterns by extracting frequently occurring 
syntactic structures using machine learning methods. Finally, one of the lessons 
learned in this paper is that such pattern-based extraction should necessarily be cou-
pled with a filtering mechanism to increase the precision of the extractions. 
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Abstract. The development of ontologies from scratch is a very inefficient ap-
proach. Hence, ontology development is increasingly being conducted by reusing
existing ontological and non-ontological resources as it lowers the time and cost
of developing new ontologies, avoids duplicating efforts and ensures interoper-
ability. Similarly, the emergence of ontology design patterns has facilitated the
reuse of best practices in ontology engineering, improving the quality of the de-
veloped ontology. In this paper we show how different ontology design patterns
along with state-of-the-art ontology engineering methodologies help during the
construction of ontologies, by describing the development process of the Digital
Multimedia Repositories Ontology (DMRO). We show the applicability of the de-
veloped ontology by using it as the basis for the transformation of Videolectures
multimedia repository to RDF data.

1 Introduction

The widespread use of ontologies in different applications and domains in the last years
has led to an increasing interest of researchers and practitioners in the development of
ontologies. To speed up the development process, existing resources in the form of on-
tologies and other non-ontological forms, such as thesauri, lexica and DBs, as well as
best practices encoded in the form of ontology design patterns (ODPs) are increasingly
being used. Reusing existing resources is an important aspect that is progressively bet-
ter supported by the growing availability of ontology design patterns and ontologies for
different domains, the availability of well established upper-level ontologies, and better
support for transformation of non-ontological resources to ontological format. Besides
speeding up the development process, reusing existing resources has many benefits,
including lower development costs, interoperability with other ontologies and better
quality of the developed ontology. Even more, we argue that in addition to the avail-
ability of such resources, ontology engineers can benefit from the availability of good
use cases showing how to apply all of these resources in practical applications.

For example, one of the pilot applications of e-LICO project1 aimed at describ-
ing multimedia artifacts in digital multimedia repositories, in terms of their usage, re-
views and content type, as well as their relation with related events and agents, that
would serve as background knowledge to be used in semantic data mining tasks. Al-
though there are different ontologies available for describing multimedia artifacts (e.g.,

1 http://www.e-lico.eu/

http://www.e-lico.eu/


COMM, M3O), they focus mainly on a description of the artifacts characteristics with a
detail that falls outside the application requirements, instead of focussing on the usage
information of these resources which is key for data mining in multimedia repositories.
Additionally, we can find ontologies and vocabularies describing parts of the required
knowledge, such as agents or events (e.g., FOAF, SWRC), but they are generic or con-
ceived for other applications, and are not related to multimedia resources. Consequently
we developed the Digital Multimedia Repositories Ontology (DMRO), but reusing as
much as possible knowledge from these and other ontologies and vocabularies.

Therefore, the goal of this paper is twofold: (i) to present the Digital Multimedia
Repositories Ontology and show how it has been used in practice and (ii) to provide an
example of the ontology development process where existing resources and ODPs were
widely re-used. We show the applicability of the ontology by using it as the basis for
the transformation of a multimedia repository coming from VideoLectures.Net portal to
RDF data. VideoLectures.Net2 is one of the largest scientific and educational video Web
sites, mostly hosting lectures given by scholars and scientists at conferences, summer
schools, and other events. The dataset used in our application of DMRO was prepared
for the e-LICO data mining challenge [11] on recommender systems for the lectures.

The rest of this paper is structured as follows: Section 2 discusses the development
of DMRO, Section 3 describes the modules of DMRO, Section 4 describes the appli-
cation of DMRO in transformation of Videolectures.net data, Section 5 discusses the
related work, Section 6 contains lessons learnt, and Section 7 concludes the paper.

2 Development of DMRO

After an analysis of existing ontology engineering methodologies (see [8,2] for a de-
tailed comparison), we decided to follow the NeON Methodology for Building Ontol-
ogy Networks ([7,2]) during the development of DMRO for several reasons: (i) its flexi-
bility and adaptability to different development scenarios, specially those with focus on
reusing (and reengineering) existing knowledge resources as well as best practices in
ontology engineering ; (ii) the clear guidelines provided for every task with concise in-
formation cards, templates, heuristics and examples; (iii) and the technological support
available for it through the NeOn Toolkit3.

2.1 Requirements

In line with this methodology, we started the development of DMRO by collecting and
analyzing an initial set of requirements using a structured document, called the Ontol-
ogy Requirements Specification Document (ORSD)4. The ORSD document covers the
following topics concerning the ontology: purpose, scope, implementation language,
intended end-users, intended use cases, reusing ontology statements.

In particular, the goal of the engineering of DMRO is to use it for the tasks of: a) de-
sign of recommendation and personalization solutions for digital multimedia reposito-
ries; b) meta-learning/meta-mining on data mining experiments repositories; c) testing

2 http://videolectures.net/
3 http://neon-toolkit.org/
4 Available at http://129.194.69.119/public/dmro/DMRO ORSD.pdf

http://videolectures.net/
http://neon-toolkit.org/
http://129.194.69.119/public/dmro/DMRO_ORSD.pdf


semantic data mining [9] algorithms. The scope of the ontology is on the applications
in recommender systems, personalization, and adaptive faceted browsers of digital re-
sources, and therefore the ontology being built is an application domain ontology.

DMRO should be as compatible as possible with established ontologies and vo-
cabularies that cover relevant aspects in the domain of DMRO, such as Dublin Core5,
FOAF6, RDF Review7, OBO Relation Ontology8, and OAI-ORE9. Consequently, it
should reuse terms from these resources whenever is possible.

Additionally, in order to encourage the re-use of DMRO and facilitate its special-
ization for particular applications, it should follow a modularized approach, thus it is
expected to build a set of small modules for representing DMRO concepts, such as:
multimedia resources, users, events, reviews, Web Usage Mining related concepts, and
the domain topics (in our case VideoLectures.Net topic category). Similarly, in order to
ensure compatibility with existing tools and vocabularies, the current standard OWL 2
should be used as the implementation language.

The development was scheduled in two cycles/iterations within the lifetime of the e-
LICO project. Each of these cycles was scheduled using the Gontt tool10, which enables
the graphical representation of an ontology project schedule in the form of a Gantt chart.
Figure 1 illustrates the schedule for the first cycle.

The next section describes the resources re-used during the ontology construction.

2.2 Reusing Existing Resources

From the analysis of ontologies relevant for our domain and application, we couldn’t
find one single ontology covering all aspects of DMRO, but we found several ontologies
modeling parts that could be reused. Hence, we decided to reuse individual statements
instead of a whole ontology. Moreover, we decided to use an upper ontology that will
model generic concepts that can be specialized for DMRO. The advantage of using
an upper ontology will reflect in better interoperability and foster the reusability of
DMRO. We also re-used and applied different ontology design patterns relevant for
DMRO, which allowed us to follow the best practices in ontology engineering when
modeling DMRO. Finally, we re-used a non-ontological resource: a dataset based on
the data from Videolectures.net portal.

Upper Ontology
We used DOLCE Ultralite (DUL)11 as an upper ontology. DUL is a very light ver-

sion of DOLCE and DnS, which provides a simplification and an improvement of some
parts of DOLCE Lite-Plus library12, and Descriptions and Situations ontology 13. DUL
provides a set of upper level concepts that can be the basis for easier interoperability

5 http://dublincore.org/documents/dcmi-terms/
6 http://xmlns.com/foaf/spec/
7 http://vocab.org/review/terms.html
8 http://obofoundry.org/ro/
9 http://www.openarchives.org/ore/

10 http://neon-toolkit.org/wiki/Gontt
11 http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS Ultralite
12 http://dolce.semanticweb.org
13 http://www.ontologydesignpatterns.org/wiki/Ontology:DnS

http://dublincore.org/documents/dcmi-terms/
http://xmlns.com/foaf/spec/
http://vocab.org/review/terms.html
http://obofoundry.org/ro/
http://www.openarchives.org/ore/
http://neon-toolkit.org/wiki/Gontt
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
http://dolce.semanticweb.org
http://www.ontologydesignpatterns.org/wiki/Ontology:DnS


Fig. 1. First cycle of the development process of DMRO

among many middle and lower level ontologies. DOLCE-Ultralite falls within OWL-
DL language, but it only uses OWL-Lite and disjointness constraints.

Ontology Statements
We identified relevant statements to be re-used from the following ontologies and

vocabularies: (i) Dublin Core for modeling general metadata properties of resources;
(ii) FOAF - for modeling the users, authors, participants, their personal data, and social
aspects; (iii) SWRC ontology - for events; (iv) OBO Relation Ontology - for standard
relations; (v) DCTYPE - for modeling collections; (vi) ORE - for modeling aggrega-
tions of resources; and (vii) RDF Review Vocabulary - for the reviews, comments and
feedback. Additionally, we identified the following modules from the myExperiment
Ontology: (viii) Viewings & Downloads - for modeling the usage of resources; (ix)
Annotations - for modeling tags.

Finally, we have used IOLite extension of DUL14 and CSnCs ontology15, as an
inspiration for modeling DigitalResources. IOLite is an ontology of information ob-
jects and realizations, plugin to DOLCE-Ultralite. CSnCS (Computer Science for Non-
Computer Scientists) is a knowledge hierarchical repository of concepts in the domain
of Information Technology for End Users, which also uses DUL as an upper ontology.

In order to select the statements to be reused we conducted a research to iden-
tify candidate ontologies, partially with the help of Watson plugin for NeOn Toolkit16

(Figure 2 shows statements from CSnCS regarding DigitalResources), and followed a

14 http://www.loa-cnr.it/ontologies/IOLite.owl
15 http://www.let.uu.nl/lt4el/content/files/CSnCSv0.01Lex.zip
16 http://neon-toolkit.org/wiki/Watson for Knowledge Reuse

http://www.loa-cnr.it/ontologies/IOLite.owl
http://www.let.uu.nl/lt4el/content/files/CSnCSv0.01Lex.zip
http://neon-toolkit.org/wiki/Watson_for_Knowledge_Reuse


Fig. 2. Ontology statements search result in NeOn Toolkit

selection criteria consisting on the simplicity, coverage and popularity of the candidate
ontologies, building from the dimensions proposed by the NeOn methodology for se-
lecting ontological resources (i.e., understandability, integration effort and reliability).

Ontology Design Patterns
We re-used the following ontology design patterns from http://

ontologydesignpatterns.org:

– Agent role17 to represent agents and the roles they play. It was used with the fol-
lowing competency questions:
• which agent does play this role?
• what is the role that played by that agent?

– Participant role18 to represent participants in events holding specific roles in that
particular event. It was used with the following competency questions:
• What is the role of this object in this event?
• What is the object holding this role in this event?
• In what event did this object hold this role?

– Tagging19 to represent a tagging situation, in which someone uses a term, from a
list of a folksonomy, to tag something (or the content of something). It was used
with the following competency questions:
• Who is tagging (the content of) what?
• By using what term from what folksonomy?

17 http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
18 http://ontologydesignpatterns.org/wiki/Submissions:ParticipantRole
19 http://ontologydesignpatterns.org/wiki/Submissions:Tagging

http://ontologydesignpatterns.org
http://ontologydesignpatterns.org
http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
http://ontologydesignpatterns.org/wiki/Submissions:ParticipantRole
http://ontologydesignpatterns.org/wiki/Submissions:Tagging


• Which polarity has the tagging?
– Place20 to talk about places of things. It was used with the following competency

questions:
• Where is a certain thing located?
• What is located at this place?

– Topic21 to represent topics and their relations. It was used with the following com-
petency questions:
• What is the topic of something?
• What topics are included in this one?
• What are the topics near to that one?

Non-ontological resources
We re-used a dataset based on the data snapshot from VideoLectures.net taken

in August 2010, which consisted of a database dump into several CSV files, which
contained data from 7 different tables (authors, categories, events, lectures train, lec-
tures test, authors lectures and categories lectures). The snapshot contained 8,105
video lectures, where 5,286 lectures were manually categorized into a taxonomy of
around 350 scientific topics. This dataset was used as background knowledge during
the specification phase of DMRO development. In particular, the competency questions
and the pre-glossary of terms in the ORSD document were prepared largely on the basis
of the dataset as an inspiration.

3 Overview of DMRO

DMRO consists of a set of 6 interrelated modules, which are imported from the main on-
tology file available at http://129.194.69.119/public/dmro/DMRO.owl. Next, we shortly
describe each of the modules.

Resource. This module describes multimedia resources (see Fig. 3). Despite using
DOLCE-Ultralite (DUL) as upper ontology, we have also used ’IOLite’, extension of
DUL, as an inspiration for modeling the concept DigitalResources. We also considered
other ontologies such as COMM or M3O for modeling multimedia resources; however
their focus on a detailed description of these resources falls outside the scope of our
ontology as the ORSD shows. We have re-used ’Topic’ ontology design pattern for
modeling the topics, and statements from DCTYPE, ORE and RO. We have also used
ontology CSnCs ’Computer Science for non-Computer Scientists from Project LT4eL
(http://www.lt4el.eu/)’ as inspiration.

Event. This module describes events, and was created using DUL as upper ontol-
ogy, and by re-using statements from SWRC and DC (see Fig. 4). Additionally, we have
specialized the SWRC:Lecture class with various types of lectures identified during the
specification phase.

Agent-Participant-Role. The module describes agents and their roles as partic-
ipants in events, based on the ParticipantRole ontology design pattern (see Fig. 5).
Besides using DUL as upper ontology, we have re-used statements from FOAF and

20 http://ontologydesignpatterns.org/wiki/Submissions:Place
21 http://ontologydesignpatterns.org/wiki/Submissions:Topic
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Fig. 3. An illustration of the part of DMRO’s Resource module.

Fig. 4. An illustration of the part of DMRO’s Event module.

RO. For example, instead of using the class DUL:Agent (which is a subclass of
DUL:Object), we reused the more popular FOAF:Agent class and its subclasses.
Referring to the suggestions of N.F. Noy and D.L. McGuinness on ”an instance or a
class” discussion22 we decided to model agent roles, such as author and participant
(e.g. dmro-apr:Presenter, dmro-apr:Author) as instances and not classes in the ontology
as these are the most specific elements that are going to be represented in the knowledge
base, i.e., they constitute the most specific elements in the answer to the competency
22 http://protege.stanford.edu/publications/ontology development/

ontology101-noy-mcguinness.html

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html


Fig. 5. An illustration of the part of DMRO’s Agent-Participant-Role module.

Fig. 6. An illustration of the part of DMRO’s Place module.

questions related to agents roles (e.g., what is the role that played by that agent?). Before
being taken, this design decision was discussed with the help of Cicero, an argumenta-
tion tool that is part of the e-LICO collaborative ontology development platform.

Place. This ontology module represents generic locations and was created based on
the Place ontology design pattern, which is already implemented in DUL (see Fig. 6).
So, we reused the relevant DUL statements and also some statements from RO (e.g.,
located in property)

Review. This module was created by re-using the RDF Review Vocabulary and
using DUL as upper ontology (see Fig. 7). We have also re-used statements from FOAF,
DC and myExperiment Ontology. Mainly, the classes Comment, Feedback and Review
from the RDF Review Vocabulary have been modeled as types of annotations (as in
myExperiment Ontology).

Annotation. This ontology module was created by reusing statements from the
Viewings & Downloads and Annotations modules of the myExperiment Ontology to
model different resource annotations, including usage information and tagging, and us-



Fig. 7. An illustration of the part of DMRO’s Review module.

Fig. 8. An illustration of the part of DMRO’s Annotation module.

ing DUL as an upper ontology (see Fig. 8). We also reused statements from the RO
ontology, and some concepts from the Tagging ontology design pattern.



Table 1. Mapping for author table of Videolectures.net

Column Ontology Element Element Type OWL Axiom Type
id foaf:Person Individual Declare & ClassAsser-

tion
name foaf:name DataProperty DataPropertyAssertion
email DMRO-

AgentParticipantRole:email
DataProperty DataPropertyAssertion

organization foaf:Organization Individual & ObjectProp-
erty & DataProperty

ClassAssertion & Ob-
jectPropertyAssertion &
DataPropertyAssertion

4 Application of DMRO

DMRO has been used as the basis for (i) representing Videolectures.net topic hier-
archy and (ii) transforming Videolectures.net dataset into RDF. The former was a
simple test during which we generated instances of the concept Topic and re-used
properties from SKOS vocabulary for the representation of hierarchical links (i.e.,
skos:broader and skos:narrower). The resulting knowledge base is available at http:
//129.194.69.119/public/dmro/DMRO-VLNetCat.owl.

For the transformation of Videolectures.net dataset into RDF we generated manu-
ally mappings between the terms from DMRO and terms from the dataset (e.g., columns
in tables). The mappings range from simple alignments between a table column and a
dataProperty in the ontology, to more complex alignments that created several ontology
axioms for a value in a table column. Table 1 contains sample mapping that was created
for the authors table23:

During preparation of the mapping, we have introduced several changes into DMRO
(some of them are discussed in the Cicero argumentation tool within e-LICO collabora-
tive ontology development platform) which allowed us to represent more accurately
Videolectures.net data, and more generally digital multimedia repositories. The ac-
tual transformation was performed programmatically based on the conceptual mapping
specified. The resulting knowledge base is available at http://129.194.69.119/public/
dmro/DMROKB.owl and has already been used to test semantic data mining methods.

5 Related Work

Previous efforts in the multimedia domain, have led to the development of different on-
tologies, although most of them have been mainly focused on the detailed description
of multimedia artifacts and only in few cases ontology design patterns were reused dur-
ing the development process. For instance, COMM ontology [1], which is composed
of multimedia patterns covering different media types (e.g., visual, audio or text), is
based on DOLCE foundational ontology and the MPEG-724 standard. COMM reused
two main design patterns: Descriptions & Situations (D&S) [5] and Ontology of Infor-
mation Objects (OIO) [4], which were specialized to create multimedia design patterns

23 The complete set of mappings is available at http://129.194.69.119/public/dmro/mapping.xls
24 http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm
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for decomposition of multimedia content into segments, the annotation of these seg-
ments, as well as basic patterns to formalize the notion of digital data and algorithm.
M3O [3] aimed for rich presentations in the web (SMIL, SVG, Flash), covers multime-
dia, audio/music, image, video, and re-uses DUL. M3O also followed a pattern-based
approach to ontology design, and used six patterns: Decomposition, Annotation, Infor-
mation Realization, Data Value for representing complex values, Collection, and Prove-
nance. Although these ontologies were useful examples in the domain, they were found
too detailed and focused in describing multimedia resources, which was not the goal of
DMRO as discussed in the introduction.

Other relevant ontologies include the Media Resource Ontology [12], a W3C initia-
tive aimed at integrating data resources related to media on the Web that covers mul-
timedia, audio/music, video, and provides mappings to various multimedia metadata
formats (e.g., MPEG-7). Similarly, we can find also various initiatives that focus on the
transformation of MPEG-7 standard to ontological format, such as [10] and [6].

6 Discussion

The NeON methodology was very useful in identifying relevant existing resources. The
competency questions facilitated identification of relevant ODPs as well as ontologies to
re-use. In the latter case, we found that pre-glossary of terms (a part of an ORSD docu-
ment) is especially useful for this task. The terms extracted from competency questions
(and answers to them) allowed us to efficiently search for ontologies.

The major lesson learnt and an idea for improvements concerns further re-using of
identified ODPs and ontologies and deals with availability of guidelines on a vocab-
ulary that could be used to instantiate or specialize chosen ODPs. Since ODP entities
in principle constitute templates, they need to be further refactored while being incor-
porated to a developed ontology. This needs modeling decisions concerning the choice
of a vocabulary and namespaces. We would find it very useful if such guidelines ex-
isted, for instance, pointing to most popular terms that are used by ontology engineers
to instantiate a given ODP, possibly indicating also the domain of the ontology where
they were used. The information on the domain is important due to differences in term
popularity across different domains w.r.t. the same pattern. This would allow not only
to re-use an ODP, but also to: i) refactor it such that most widespread vocabulary is used
or/and ii) proper vocabulary for given domain is used. Similarly, we think that re-using
ODPs would be greatly facilitated if example ontologies re-using a given ODP where
listed, most preferably together with the information on a domain.

Currently, http://ontologydesignpatterns.org has placeholders for ’Known uses’ of
an ODP and for ’Examples (OWL files)’, but they are often empty. Besides of that,
we would like to stress the aspect of popularity of ”known uses” and ”examples” in
the context of a given domain to make it easier for an ontology engineer to choose
proper vocabulary. For instance, we chose to use myExperiment for representing tag-
ging since we found the annotations ontology of myExperiment covering many con-
cepts we wanted to model in the Annotation module, including tags. However, as
one of the reviewers suggested, we could have rather used the Tag ontology (http:
//www.holygoat.co.uk/owl/redwood/0.1/tags/) which is already widespread in Linked

http://ontologydesignpatterns.org
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/


Data on multimedia such as in DBTune datasets, if we were aware of its popularity.
Listing it as an example accompanying the ODP would help in making this choice.

7 Conclusions

This paper presented the Digital Multimedia Repositories Ontology and its applica-
tion in the transformation of the data from Videolectures.net into a knowledge base
represented in RDF. Importantly, by discussing the ontology development process and
its application, it also provided a use case of re-using existing ontological and non-
ontological resources and ODPs for ontology construction.

The DMRO-based RDF version of the Videolectures.net dataset provides proof-of-
concept of the coverage of the DMRO terms, and their suitability to represent required
knowledge on the Videolectures.net use case. It may be used to test semantic data min-
ing approaches, some of them already developed within e-LICO, as well as in the ex-
periments in the digital multimedia repositories.
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Abstract. Ontology antipatterns are structures that reflect ontology
modelling problems, they lead to inconsistencies, bad reasoning perfor-
mance or bad formalisation of domain knowledge. Antipatterns normally
appear in ontologies developed by those who are not experts in ontol-
ogy engineering. Based on our experience in ontology design, we have
created a catalogue of such antipatterns in the past, and in this paper
we describe how we can use SPARQL-DL to detect them. We conduct
some experiments to detect them in a large OWL ontology corpus ob-
tained from the Watson ontology search portal. Our results show that
each antipattern needs a specialised detection method.

Keywords: OWL, ontology, antipattern, SPARQL, SPARQL-DL

1 Introduction

In knowledge engineering, the concept of knowledge modelling pattern or on-
tology design pattern is used to refer to modelling solutions that allow solving
recurrent knowledge modelling or ontology design problems, as defined in [14].
Antipatterns are defined as patterns that appear obvious but are ineffective or
far from optimal in practice, representing worst practices about how to struc-
ture and design an ontology. However, in contrast to ontology design patterns,
which are rooted deeply in the most recent ontology engineering methodologies,
the work on antipatterns is less detailed. Antipatterns may have several appli-
cations: Antipatterns can be used to train and guide new ontology developers.
Ontology editors can incorporate antipattern detection tool in order to detect
potential errors during ontology development. Most of ontology systems that
deal with a large set of ontologies, like ontology retrieval systems, need ontol-
ogy quality measures. The quality of ontology can be evaluated by computing
the number of antipattern occurrences. As far as we know antipattern studies
are mainly applied to ontology debugging tasks. One of the earliest works in



this direction was set by the OntoClean method [10], which defined a set of
meta-properties applied to classes and a set of procedures to check and correct
the subsumption relations between classes. Other sources for antipatterns are:
[19], which proposes four terminological patterns applied on class names to de-
tect possible errors in subsumption relations between classes. The Laboratory of
Applied Ontology has identified four logical antipatterns called MixedDomains,
all of them focused on property domains and ranges. And [15] describes com-
mon difficulties for newcomers to Description Logics (DL) in understanding the
logical meaning of expressions.

Several tools can be used for antipattern detection, most of which are avail-
able inside ontology editors and require the use of a reasoner to provide their
justifications. Pellint[8] focuses on the detection and repair of antipatterns to
improve ontology reasoning performance. The Protégé Explanation Workbench
[11] and SWOOP [13] provide justifications of inconsistencies in ontologies based
on the outputs of DL reasoners. However, using a reasoner for this purpose is
not always possible, since in some complex ontologies, where the number of er-
rors is too high, reasoners fail to provide any results. Besides, the catalogue of
antipatterns or errors that they can detect is fixed.

Our antipattern detection methods follow a more general approach. They
can work with an extensible set of antipatterns and some of them can be applied
without the use of a reasoner. In general, our approach is based on the use
of a set of SPARQL-DL queries for each antipattern to be detected. Then, each
SPARQL-DL query is translated into SPARQL one. In our process, we can decide
whether inferences are enabled or not before running any SPARQL queries, and
we also offer the possibility of transforming the original ontologies into a form
where SPARQL queries should retrieve more results.

We first tested our methods on the detection of one complex antipattern
using only a set of SPARQL queries [16]. This first experiment was applied
on 5 ontologies. This paper presents a larger experiments using a more generic
approach: More antipatterns are detected on a larger set of ontologies. We also
try to simplify the creation of queries using SPARQL-DL language. One of our
final goal is to understand how often antipatterns appear in existing publicly
available ontologies.

This paper is structured as follows. Section 2 briefly describes the antipat-
terns that will be used to run our experiments. Section 3 will describe the meth-
ods we have followed in order to run the experiments. Section 4 describes the
experiment setup and the results of the experimentation. Finally, Section 5 pro-
vides some conclusions to the work done, based on the experiment results, and
outlines the next steps to be done in our work.

2 A catalogue of antipatterns

A set of patterns commonly used by domain experts in their implementation
of OWL ontologies are identified in [9]. These patterns resulted in unsatisfiable
classes or modelling errors, due to misuse or misunderstanding of DL expressions.



In this section we will describe 4 antipatterns which are the ones that, as our
experience has shown, are easier to understand and debug by domain experts.
These patterns are categorized into two groups by [9]:

– Detectable Logical AntiPatterns (DLAP): this type of patterns generates un-
satisfiable classes that are normally identified by existing ontology debugging
tools, although the information provided back to the user is not described
according to such a pattern. This makes it sometimes difficult for ontology
developers to find a good solution [11], [13].

– Cognitive Logical AntiPatterns (CLAP): they represent possible modelling
errors that may be due to a misunderstanding of the logical consequences
of the used expression. This type of patterns is not detected by debugging
tools, although in some cases their combination may lead into unsatisfiable
classes that are detected.

Now we briefly5 describe them from the simplest to the most complicated
one. Each description contains:

– name, acronym and category that they belong to (i.e. DLAP or CLAP),
– several formal descriptions using the german syntax of DL 6,
– brief explanation of why this antipattern can appear.

SynonymOrEquivalence (SOE) antipattern – CLAP category

C1 ≡ C2; (1)

The ontology developer wants to express that two classes C1 and C2 are
identical, something which is not particulary useful especially if the ontology
does not import others. Indeed, what the ontology developer generally wants to
represent is a terminological synonymy relation, i.e. a class has two labels: the
labels associated (or used as) the name of the classes C1 and C2. Usually one of
these classes is not used anywhere else in the axioms defined in the ontology.

EquivalenceIsDifference (EID) antipattern – DLAP category

C1 ≡ C2; Disj(C1, C2); (2)

C1 v C2; Disj(C1, C2); (3)

where the notation Disj(C1, C2) is as a shorthand for C1 u C2 v ⊥.
From our experience in ontology debugging, we notice that this antipattern

comes from a misunderstanding of the subClassOf relation. When the ontology
developer has explicitly expressed that C1 and C2 are equivalent and disjoint,
(s)he wants to say that C1 and C2 share some common properties and C1 has
more properties than C2 (or vice versa). After a short training session the de-
veloper would discover that (s)he really wants to express that C1 is a subclass
of C2 ( C1 v C2 ). Another possibility is that the ontology developer explicitly
expressed that C2 is a parent class of C1. But, these two classes are determined
as disjoint from each other by a reasoner.

5 Additional information, such as examples and SPARQL queries, are available at [7].
6 antipatterns are abstract structures that can have several DL forms.



AndIsOr (AIO) antipattern – DLAP category

C3 v C1 u C2; Disj(C1, C2); (4)

C3 ≡ C1 u C2; Disj(C1, C2); (5)

C3 v ∃R.(C1 u C2); Disj(C1, C2); (6)

C3 ≡ ∃R.(C1 u C2); Disj(C1, C2); (7)

This antipattern appears due to the fact that in common linguistic usage,
”and” and ”or” do not correspond consistently to logical conjunction and dis-
junction respectively [15]. An example is presented in [7].

OnlynessIsLoneliness (OIL) antipattern – DLAP category

C3 v ∀R.C1;C3 v ∀R.C2; Disj(C1, C2); (8)

C3 ≡ ∀R.C1;C3 v ∀R.C2; Disj(C1, C2); (9)

C3 ≡ ∀R.C1;C3 ≡ ∀R.C2; Disj(C1, C2); (10)

C1 and C2 are defined as disjoint. The ontology developer created an universal
restriction to say that instances of C3 can only be linked with property R7 to
instances of C1. Next, a new universal restriction is added saying that instances
of C3 can only be linked with R to instances of C2. During a long development
process, the ontology developer forgot the previous axiom that can be inherited
from any of the parent classes.

3 SPARQL-based Detection of Ontology Antipatterns

In this section we describe the different methods that we have elaborated in order
to detect antipatterns in OWL ontologies by means of SPARQL and SPARQL-
DL queries, based on the usage of the PatOMat ontology pattern detection tool
[3]. This tools is part of the PatOMat suite of tools, which is focused on the
detection of patterns in ontologies and their transformation. This detection tool
is based on Jena 2.6.2[1] and Pellet 2.0.1[5], and enables the processing of a
set of SPARQL queries over a set of ontologies, producing a report in terms of
numbers of patterns detected and details for each ontology. It processes either
only asserted axioms or both inferred and asserted axioms of given ontology.

Using this tool we are querying an OWL ontology by means of a query
language (SPARQL) that is agnostic about the underlying knowledge represen-
tation model of OWL, i.e. we are actually querying the RDF serialization of
an OWL ontology. There are also other available options in the current state
of the art for OWL ontology pattern detection and transformation. First, there
is OPPL language and its associated tools described by [12]. This language
enables axiom-based manipulation with an OWL ontology. Second, there is a

7 To be detectable, property R must have at least a value, normally specified as a
(minimum) cardinality restriction for that class, or with existential restrictions.



language alternative for an OWL ontology querying Terp [4] which is based on
the OWL Manchester syntax. While SPARQL is the language dedicated to query
RDF triples, OPPL and Terp are dedicated to query the RDF serialization of
OWL expressions because they contain OWL constructs like subClassOf, Com-
plementOf, DisjointWith. Nevertheless, in order to make queries easier (using
some shortcuts for DL expressions in RDF syntax, e.g. omitting RDF collection
vocabulary) we used SPARQL-DL abstract syntax defined in [17]. This enables
us to express queries in more compact way. To plug in such queries into our
approach we developed a query translator that transforms an input query in
SPARQL-DL abstract syntax into a SPARQL query. SPARQL-DL queries and
SPARQL queries are available on our antipattern web-page [7].

Transforming antipatterns into SPARQL-DL queries is not a trivial task. For
each antipattern, several SPARQL-DL queries are needed to detect antipattern
occurrences in OWL class definition. The difficulties come from several points:

– An antipattern can be associated to several logical formulae in DL syntax.
For example, we presented 3 formulae for OIL antipatterns.

– Some logical formulae are composed of several atomic axioms. We defined
an atomic axiom as a condition (necessary v or sufficient ≡) associated
to a named class C using at most one constructor (∀, ∃, ¬ or u) and its
associated operands: one class and one property for ∀, ∃ and two classes for
u . All these classes should be named classes. An example of atomic axiom
can be C v ∃R.X. For example, the 3 formulae of the OIL antipattern
contain 3 atomic axioms.

– Ontology developers can have very different implementation styles when de-
signing an OWL ontology. For example, some developers prefer to write long
class definitions. In that case, a class is defined by a conjunction of un-
amed classes: C v (∃R.X) u (∀R.Y ) u . . . . Others can prefer to write short
definitions. A class is defined by a set of atomic axioms: C v ∃R.X;C v
∀R.Y ;C v . . . . Thus, in the case of an antipattern formula, an atomic axiom
can be located at different places in the class definition.

– An atomic axiom can belong to the class definition or can be inherited from
a parent class definition.

– An atomic axiom can be stated by the ontology developer or inferred by a
reasoner.

To build our queries, we first imagine different versions of each antipattern
formulae using the SPARQL-DL abstract syntax. We try to imagine where an
atomic axiom can be stated by the ontology developer in a class definition. We
limit our imagination to class definitions that have at most four conjunctions.
We also try to imagine the different manner to express a disjoint axiom. We take
in account the fact that:

– disjoint axioms are symetric Disj(C1, C2) � Disj(C2, C1),
– disjoint axiom can be inferred from a logical negation C1 v ¬C2 � Disj(C1, C2).

Then we automatically translate each SPARQL-DL queries into SPARQL
ones. Notice that a SPARQL-DL query is just a simplification of a SPARQL



query, which represent an exact translation of the previous one. We also auto-
matically generate SPARQL queries which merges all the different versions.

Now we will describe four methods that we have followed in order to detect
antipatterns in the ontology corpus. Overall workflow of our approach is depicted
in Figure 1.

Fig. 1. The antipattern detection methods

Method 1: Use of SPARQL Queries over Asserted OWL Ontology Axioms In
this approach, we take into account that SPARQL query engines per se do not
consider inferences that can be done with OWL ontologies. However, our as-
sumption is that there will be cases where ontologies cannot be processed by a
reasoner or the reasoner results cannot be obtained in a reasonable time. This
normally happens with large ontologies or with ontologies with a large number
of errors. For example when several transitive properties are used in numerous
class definitions, the reasoner reaches an out of memory alarm.

Method 2: Use of SPARQL Queries over Inferred and Asserted Ontology Axioms
If it is possible to use a reasoner, we materialise all the inferences that can be
done by an OWL reasoner on the ontologies and then run SPARQL queries over
the resulting ontologies, called materialised ontologies.

Method 3 and 4: Use of SPARQL Queries over Transformed OWL Ontologies
Due to the complexity of creating a large number of SPARQL-DL queries for an
antipattern and to the fact that different ontology developers may have different



implementation styles, we propose to follow a two steps process where we apply
transformations before executing the queries. Transformations have two goals:
to harmonise the implementation style of the ontology and to simulate some of
the axioms inferred by a reasoner. This last goal is useful only for ontologies that
can not be processed by a reasoner.

The current transformations that we apply are:

– If the ontology contains C1 ≡ C2 where C1 and C2 are named classes, we
add two new axioms C1 v C2 and C2 v C1.

– If a named class is defined by conjunction of named or unnamed classes,
we split it into several simpler axioms. E.g., considering the following class
definition: C v X u Y , in that case we add two axioms C v X and C v Y .

– If a parent class contains an axiom, we add it also in its direct child class.
E.g., considering the following definition of the class: C1 v ∃R.X. If C1.1 is
a direct child of C1, C1.1 v C1, we add the axiom C1.1 v ∃R.X. In this case,
the transformation is not repeated over the class hierarchy.

In this paper, we have explored the behaviour of the SPARQL query de-
tection method both after transformation on the asserted ontology and on the
materialised ontology.

4 Experimentation: Finding Antipatterns in Real-world
Ontologies

In this section, we describe the results of our experiments with a corpus of
ontologies downloaded directly from the Web and by the Watson semantic search
engine. We will first describe how we have built the ontology corpus, and then
we present the results of applying the different methods from Section 3 over this
ontology corpus.

4.1 Building a Corpus of (Debuggable) OWL Ontologies

We have used the Watson API [6] to retrieve publicly available ontologies and
we have always accessed these ontologies using the Watson cache, since there
are sometimes mismatches between the stored URIs of those ontologies and the
actual files that can be obtained. We searched ontologies satisfying the following
two constraints: they should be represented in OWL and they should have at
least five classes. We collected 2927 unique ontologies. Next, we checked the
consistency of all these ontologies using the Pellet reasoner, and 71 of them were
classified as inconsistent.8 From inconsistent ontologies, we removed the whole
ABox so that it is possible to use a reasoner as proposed in our second method
(none of our antipatterns considers the ABox, and hence the removal of the ABox

8 We use the definition of inconsistency proposed by [18]. An ontology is inconsistent,
if there is no interpretation that is a model for it. An ontology is incoherent if it
contains at least one unsatisfiable class.



does not have any impact on the results obtained). This was done by OWL-API
[2], which resulted in five less ontologies, since they were not parsable by this
API. Consequently, the corpus is composed of 66 incoherent ontologies, that is,
66 ontologies that contain at least one unsatisfiable class.

From these ontologies we built three sets of ontologies 9:

1. Antipattern ontologies: 5 ontologies in this set have already been used for the
creation and update of the antipattern catalogue presented in [9]. It contains
the HydrOntology (which has 159 classes whose 114 are unsatisfiables), the
Forestal Ontology (which has 93 classes whose 62 are unsatisfiable), the
Tambis ontology (which has 395 classes whose 112 are unsatisfiable), the
Sweet Numeric ontology (which has 2364 classes whose 2 are unsatisfiable)
and the University ontology of the MIND Lab (which has 29 classes whose
7 are unsatisfiable). Notice that in our experiment Hydrontology and the
Tambis ontologies cannot be processed by Pellet in a reasonable time.

2. W3C/DL ontologies: we noticed that 31 ontologies were build by DL ex-
perts in order to test reasoner performance and results. These ontologies are
characterized by having less than 18 classes (whose at most 4 classes are
unsatisfiables ones). The axioms contained are very complex: inverse prop-
erties, functional properties, lots of conjunctions or disjunctions etc. But all
these ontologies can be processed by Pellet.

3. Web ontologies: this set contains heterogeneous ontologies from various do-
mains. There are huge ontologies which contain more than 1000 classes and
Pellet cannot process them in a reasonable time, e.g. an old version of the
Open CyC ontology, the Computer Science for Non-Computer Scientists on-
tology. There are also medium size ontologies where the number of classes is
up to 100 which Pellet can process, e.g. Ontubi (an Ontology for Ubiquitous
Computing) or the wine ontology.

4.2 Experiments

We made the following experiments over the 3 sets of ontologies, using the an-
tipattern detection methods described in Section 3:

1. SP : a detection in the original ontologies using SPARQL10 queries and no
inference (only with asserted axioms).

2. SP+R: a detection in the materialised ontologies (asserted and inferred ax-
ioms) using SPARQL queries after applying a reasoner (Pellet).

3. SP Trans: a transformation of the original ontologies and detection using
SPARQL queries and no inference (only with asserted axioms).

4. SP Trans+R: a transformation of the original ontologies and detection in
the materialisation of these harmonised ontologies after applying a reasoner.

9 All of these ontologies are available from [7].
10 Let us note that all SPARQL queries in our experiments were automatically con-

verted from original SPARQL-DL queries.



In some of these experiments we also use the keyword MANUAL to refer
to the manual detection process using the basic debugging tools provided by
ontology editors. The manual detection method is applicable only on the an-
tipattern and the W3C/DL ontologies sets. This detection method is a baseline
with respect to what can be detected using current state of the art debugging
tools.

Evaluation of Antipattern Detection Precision We have evaluated the precision
of the antipattern detection process. We have analysed manually each of the
ontologies in our three sets and have assigned to each set one of the following
three values:

– TI (True Inconsistency): the antipattern occurrence participates in the un-
satisfiability of classes or the modelling error.

– UI (Unknown Inconsistency): the antipattern occurrence may be linked to
the unsatisfiability of classes or modelling error, but the evaluator is not sure
about it. Notice that the evaluator may find difficult to make a choice when
the debuggable version of the considered ontology is not available.

– FI (False Inconsistency): the antipattern occurrence does not participate in
the unsatisfiability of classes or modelling error.

4.3 Results

SOE detection In this case we look for a single atomic axiom written by the
ontology developer. Thus only one SPARQL query is necessary to retrieve SOE
occurrences and only the SP experiment was made over all 3 sets of ontologies.

set number (nr.) of results nr. of TI nr. of UI nr. of FI nr. of onto

antipattern 16 15 0 1 2

W3C/DL 1 0 1 0 1

web 12 10 2 0 2
Table 1. SOE antipattern detection.

Due to the simplicity of the SOE antipattern, the most suitable detection
method is the first method. Neither reasoner nor transformation process is
needed for the detection of the SOE antipattern. The SPARQL query associ-
ated to the SOE antipattern reached 86% of precision: 25 occurrences over 29
are classified as true inconsistencies.

EID detection The EID antipattern is composed of two atomic axioms, and
two formulae are possible. We defined 8 SPARQL queries associated to this
antipattern. We also use 4 detection methods. Our results are limited to the fact
that some ontologies cannot be processed by a reasoner in a reasonable time.



set method nr. of results nr. of TI nr. of UI nr. of FI nr. of onto

antipattern manual 14 - - - 4

antipattern SP 7 7 0 0 2

antipattern SP+R 5885 14 5871 0 2

antipattern SP Trans 7 7 0 0 2

antipattern SP Trans+R 5885 14 5871 0 2

W3C/DL manual 8 - - - 4

W3C/DL SP 4 4 0 0 4

W3C/DL SP+R 48 7 41 0 4

W3C/DL SP Trans 5 5 0 0 4

W3C/DL SP Trans+R 48 7 41 0 4

web SP 9 9 0 0 1

web SP+R 126 0 126 0 1

web SP Trans 9 9 0 0 1

web SP Trans+R 132 0 132 0 1
Table 2. EID antipattern detection.

Table 2 shows the results of our detection methods. We notice that using
a reasoner creates some unexpected occurrences of EID antipattern. Reasoner
infers that an unsatisfiable class is an equivalent to another unsatisfiable class
and they are also disjoint from each others. Thus using a reasoner is not a good
solution for a detection of this antipattern. The transformation improves a little
bit the detection of this antipattern. It seems to be a promising direction of future
work that we should improve the transformation procedure to detect more EID
occurrences.

AIO detection The AIO pattern is composed of 2 atomic axioms. In Section 2
we have presented 4 formulae but in theory more formulae are possible. We
imagine that a class definition can be composed of maximum 4 conjunctions:
C3 v Cw u Cx u Cy u Cz. We defined 24 SPARQL queries corresponding to the
C1 and C2 classes at different location of formulae. The transformation process
modified the AIO pattern. Thus we added new SPARQL queries associated to
the new pattern: C3 v C1 u C2 � C3 v C1;C3 v C2.

Table 3 shows the results of our detection methods for the AIO antipattern.
In this case our results are far from optimal. None of our detection method can
detect the AIO occurrences in the antipattern set. This is due to the incapacity of
our method to detect the atomic axiom Disj(C1, C2) without a reasoner. Notice
that the second detection method detects all the occurrences of the AIO pattern
on the W3C/DL set. Thus it means that this antipattern needs a reasoner to be
accurately detected.

OIL detection The OIL pattern is composed of 3 atomic axioms. We have pre-
sented 3 formulae but more formulae are possible depending on the implemen-
tation style of an ontology developer [7]. For these formulae, we imagine that a
class definition can be composed of two conjunctions parts. In all, we defined 84
SPARQL queries.



set method nr. of results nr. of TI nr. of UI nr. of FI nr. of onto

antipattern manual 6 - - - 3

antipattern SP 1 1 0 0 1

antipattern SP+R 3 2 1 0 2

antipattern SP Trans 1 1 0 0 1

antipattern SP Trans+R 53761 0 53761 0 2

W3C/DL manual 9 - - - 8

W3C/DL SP 2 2 0 0 2

W3C/DL SP+R 9 9 0 0 8

W3C/DL SP Trans 4 2 2 0 3

W3C/DL SP Trans+R 236 37 199 0 8

web SP 0 0 0 0 0

web SP Trans 67 0 67 0 1
Table 3. AIO antipattern detection.

set method nr. of results nr. of TI nr. of UI nr. of FI nr. of onto

antipattern manual 8 - - - 3

antipattern SP 2 2 0 0 2

antipattern SP+R 2 2 1 0 2

antipattern SP Trans 2 2 0 0 2

antipattern SP Trans+R 72 6 66 0 2

web and W3C/DL 0 0 0 0 0
Table 4. OIL antipattern detection.

Results from Table 4 are surprising. In the case of the antipattern ontolo-
gies set we notice that the disjoint atomic axiom was not detected because it
is not stated by the ontology developer. Furthermore using a reasoner produces
unexpected antipattern occurrences. Thus any of our detection methods is good
enough to detect OIL antipattern. Maybe for this specific pattern it is not nec-
essary to detect exactly all the atomic axioms of the pattern. We should limit
our detection method to the beginning of the OIL pattern without the disjoint
axiom.

5 Conclusion and Future Work

In this paper we have shown how antipatterns can be detected using different
methods that are based on the use of SPARQL queries, OWL reasoners and
transformation tools. First, we have presented several antipatterns. Second, we
have proposed different detection methods. Then, we applied them on a set of
publicly available inconsistent ontologies. Finally, we have tried to figure out
what are the best detection methods to be used for each antipattern. In many
cases these antipattern detection methods are very sensitive to the implemen-



tation style of the ontology developer. Thus we recommand to avoid long class
definition and to limit the use of unamed classes. Our future work will focus on
the refinement of the methods that we have proposed in this paper. We will also
try to design new antipatterns and detect them appropriately.

Ondřej Šváb-Zamazal has been partially supported by CSF grant no. P202/10/1825.
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Abstract. In order to integrate relational databases into Semantic Web
applications, relational databases need to be mapped to RDF. The W3C
RDB2RDF Working Group is in the process of ratifying two standards to
map relational databases to RDF: Direct Mapping and R2RML mapping
language. Through our experience as implementors of two RDB2RDF
systems: Ultrawrap and Morph, and as authors of R2RML mappings, we
have observed mappings that are reusable in order to solve a commonly
occurring problem. In this paper, we have compiled these mappings and
present a non-exhaustive list of RDB2RDF Mapping Patterns. We aspire
that the mapping patterns in this paper are considered as a starting point
for new mapping patterns.

Key words: RDB2RDF, Mapping Patterns, Mapping Language, R2RML,
Relational Databases, SPARQL, SQL

1 Introduction

In order to integrate relational databases into Semantic Web applications, re-
lational databases need to be mapped to RDF. The W3C RDB2RDF Working
Group is in the process of ratifying two standards to map relational databases
to RDF: Direct Mapping[1] and R2RML (Relational Database to RDF Mapping
Language)[2]. Direct Mapping is the default way of representing a relational
database as RDF based on the structure of the database schema. R2RML is a
language for expressing customized mappings from relational databases to RDF.

As implementors of Ultrawrap1[8] and Morph2, two RDB2RDF systems, that
support the Direct Mapping and R2RML standards; and as authors of several
R2RML mappings that have been the basis of several projects including the
W3C RDB2RDF Test Cases[9], we have observed mappings that are reusable in
order to solve a commonly occurring problem. In this paper, we present a series
of reusable mappings, which we define as RDB2RDF Mapping Patterns. The
mappings are represented in R2RML.

We would like to point out that this is not an exhaustive list of mapping
patterns. The mappings patterns that we present are based on our experience.

1http://www.capsenta.com/
2https://github.com/jpcik/morph/



Assuming the RDB2RDF standards are widely adopted, we expect the mapping
patterns to increase. We aspire that the mapping patterns in this paper are
considered as a starting point for new mapping patterns.

2 A Motivating Example

We present an example that motivates the need of RDB2RDF mapping patterns.
Due to lack of space, we do not present an overview of R2RML. We refer the
reader to the R2RML spec [2]. Assume you have a table Student with attributes
id, name, and homephone. An application would like to map the table person
to foaf:Person, create URIs based on the attribute id, map the attribute name
to foaf:name and homephone to foaf:phone. The following R2RML mapping will
produce the desired output:
<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;

r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ id }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : name ;

r r : objectMap [ r r : column ”name ” ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [ r r : column ”homephone ” ] ; ] .

We observe a One to One mapping between tables and ontology classes and
a One to One mapping between attributes and ontology properties.

Now assume that the table Student has a new attribute, mobilephone, which
we would also like to map to foaf:phone. This means that we would need to
have a Many to One mapping between attributes and an ontology property. The
previous mapping could be augmented by adding rr:objectMap [rr:column ”mo-
bilephone”]; to the existing rr:predicateObjectMap that has foaf:phone as a pred-
icate. Another solution would be to repeat the entire rr:predicateObjectMap, but
with a rr:column of mobilephone. This type of pattern impacts query perfor-
mance. The following SPARQL query: SELECT ?s ?o WHERE {?s foaf:phone

?o} would get translated to the following SQL query: SELECT id, homephone

FROM Student UNION SELECT id, mobilephone FROM Student. If we were to
increase the amount of attributes mapped to the same ontology property, the
size of the SQL query would increase. This example suggests that there is a
tradeoff between mapping patterns and query performance. In order to further
study tradeoffs and design decisions of RDB2RDF mappings, it is important
to understand the different types of mapping patterns. In the next section, we
present fourteen mapping patterns which we have observed as implementors of
RDB2RDF systems and authors of R2RML mappings.

3 R2RML Mapping Patterns

A RDB2RDF mapping pattern is a reusable mapping that solves a commonly oc-
curring problem. We present four type of mapping patterns: Attribute Mapping
Patterns, Table Mapping Patterns, Join Mapping Patterns and Value Trans-
lation Patterns. Each pattern consists of a name, a question that defines the
problem that is being addressed, description of the context, description of the
solution in R2RML, an example R2RML mapping, a discussion and related pat-
terns. Some mapping patterns may consist of different R2RML solutions.



3.1 Table Mapping Patterns

Tables in a relational database are (usually) mapped to ontology classes3. Each
record of the table is mapped to an instance of the ontology class. In R2RML,
every TripleMap must have exactly one rr:logicalTable and one rr:subjectMap.
The rr:logicalTable defines the table (or SQL query) that is being mapped. The
rr:subjectMap defines how to generate the subjects for the RDF triples. The fol-
lowing patterns define different ways that a table can be mapped to an ontology
class. Patterns to generate the URIs for the subjects are out of the scope of this
work. We refer the reader to [3].

Pattern 1: One to One Table Mapping

How to map a table to an ontology class?
Context: An application would like to map a tables to an ontology class. More-
over, every record of the tables is mapped to an instance of the corresponding
ontology classes. For example, the table student is mapped to foaf:Person.
Solution: Create a TriplesMap for the table and specify the rr:logicalTable
whose value corresponds to the table name. In the TriplesMap, create a rr:subjectMap
with a rr:template to define the URI template for each row. Finally, the rr:subjectMap
will have a rr:class corresponding to the ontology class for that table.
Example R2RML Mapping
<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;

r r : subjectMap [ r r : c l a s s f o a f : Person ;
r r : template ”http :// example . com/ re source /Student /{ s i d }” ] .

Discussion: This is the simplest pattern for table mapping. This is the case of
the Direct Mapping, which automatically generates a unique ontology class for
each table. However, a user has the option to specify a particular ontology class.
Related Patterns: N/A

Pattern 2: One to Many Table Mapping

How to map a table to several ontology classes?
Context: An application would like to map a table to many ontology classes.
Moreover, every record of the table is mapped to an instance of the corresponding
ontology classes. For example, the table student is mapped to foaf:Person and
ex:Student.
Solution: Create a TriplesMap for the table and specify the rr:logicalTable
whose value corresponds to the table name. In the TriplesMap, create a rr:subjectMap
with a rr:template to define the URI template for each row. Finally, the rr:subjectMap
will have multiple rr:class that correspond to the ontology classes for that table.
Example R2RML Mapping
<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;

r r : subjectMap [ r r : template
”http :// example . com/ re source /Student /{ s i d }”;
r r : c l a s s f o a f : Person ; r r : c l a s s ex : Student ] .

Discussion: This pattern extends Pattern 1 by adding multiple rr:class.
Related Patterns: Pattern 1

3Except for the case when the table represents a many-to-many relationship



Pattern 3: Many to One Table Mapping

How to map several tables to an ontology class?

Context: An application would like to map many tables to an ontology class.
Moreover, every record of these table are mapped to an instance of the corre-
sponding ontology class. For example, the tables student and professor are both
mapped to foaf:Person.

Solution: Repeat the solution in pattern 1 for each table to be mapped.

Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : c l a s s f o a f : Person ;

r r : template ”http :// example . com/ re source /Student /{ s i d }” ] .

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” p r o f e s s o r ” ] ;
r r : subjectMap [ r r : c l a s s f o a f : Person ;

r r : template ”http :// example . com/ re source / Pro f e s s o r /{ s i d }” ] .

Discussion: This pattern extends Pattern 1 and it is used when instances of an
ontology class may be distributed over several tables.

Related Patterns: Pattern 1

Pattern 4: Many to Many Table Mapping

How to map several tables to several ontology classes?

Context: An application would like to map a table to several ontology classes.
Additionally, the application would like to map an ontology class to several
tables.

Solution: Repeat solution of pattern 2 for each table to be mapped.

Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”;

r r : c l a s s f o a f : Person ; r r : c l a s s ex : Academic ] .

<TriplesMapProf> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” p r o f e s s o r ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source / Pro f e s s o r /{ s i d }”;

r r : c l a s s f o a f : Person ; r r : c l a s s ex : Academic ] .

Discussion: This pattern extends Pattern 3. In addition to instances of an
ontology classes are distributed over several database tables, each row of the
database table produces multiple ontology instances.

Related Patterns: Pattern 2, Pattern 3

3.2 Attribute Mapping Patterns

Attributes of tables are mapped to ontology properties. In R2RML, a TripleMap
can have zero or more rr:predicteObjectMap, which in turn specifies a predicate-
object pair. The following patterns define different ways that an attribute can
be mapped to an ontology property.



Pattern 5: One to One Attribute Mapping

How to map an attribute to an ontology property?
Context: An application would like to map an attribute to an ontology property.
For example, the attribute firstname is mapped to foaf:givenName.
Solution: Given a TripleMap, create a rr:predicateObjectMap for the attribute,
which has only one rr:predicate for the ontology property and a rr:objectMap
for the attribute.
Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [

r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : givenName ;

r r : objectMap [ r r : column ” f i r s tname ” ] ; ] .

Discussion: This is the simplest pattern for attribute mapping. This is the
case of the Direct Mapping, which automatically generates a unique ontology
property for each attribute.
Related Patterns: N/A

Pattern 6: One to Many Attribute Mapping

How to map an attribute to several ontology properties?
Context: An application would like to map an attribute to several ontology
properties. For example, the attribute lastname is mapped to foaf:familyName
and ex:apellido.
Solution 1: Given a TripleMap, create a rr:predicateObjectMap for the at-
tribute, which has a rr:predicate for each ontology property and a rr:objectMap
for the attribute.
Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : familyName ; r r : p r ed i ca t e ex : a p e l l i d o ;

r r : objectMap [ r r : column ” lastname ” ] ; ]

Solution 2: Repeat the solution for Pattern 5 for the attribute to be mapped
but having the rr:predicate specific to each ontology property
Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [

r r : p r ed i ca t e f o a f : familyName ; r r : objectMap [ r r : column ” lastname ” ] ; ] ;
r r : predicateObjectMap [

r r : p r ed i ca t e ex : a p e l l i d o ; r r : objectMap [ r r : column ” lastname ” ] ; ] .

Discussion: Solution 1 is a short cut for Solution 2.
Related Patterns: Pattern 5

Pattern 7: Many to One Attribute Mapping

How to map several attributes to an ontology property?
Context: An application would like to map several attributes to an ontology
property. For example, the attribute homephone and mobilephone is mapped to
foaf:phone.



Solution 1: Given a TripleMap, create a rr:predicateObjectMap, which has only
a rr:predicate for the ontological property and a rr:objectMap for each attribute.
Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [ r r : column ”homephone ” ] ; r r : objectMap [ r r : column ”mobilephone ” ] ; ] .

Solution 2: Repeat the solution for Pattern 5 for each attribute to be mapped
Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [ r r : column ”homephone ” ] ; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [ r r : column ”mobilephone ” ] ; ] .

Discussion: Solution 1 is a short cut for Solution 2. As described in the moti-
vating example of Section 2, this pattern impacts performance on queries that
select on the ontology property.
Related Patterns: Pattern 5

Pattern 8: Many to Many Attribute Mapping

How to map several attributes to several ontology properties?
Context: An application would like to map an attribute to several ontology
predicates. Additionally, the application would like to map an ontology predicate
to several attributes.
Solution 1: Combine Solution 1 of Pattern 6 with Solution 1 of Pattern 7.
Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ; r r : p r ed i ca t e ex : t e l e f o no ;

r r : objectMap [ r r : column ”homephone ” ] ; r r : objectMap [ r r : column ”mobilephone ” ] ; ] .

Solution 2: Combine Solution 2 of Pattern 6 with Solution 2 of Pattern 7.
Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }” ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [ r r : column ”homephone ” ] ; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : t e l e f o no ;

r r : objectMap [ r r : column ”homephone ” ] ; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : phone ;

r r : objectMap [ r r : column ”mobilephone ” ] ; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e f o a f : t e l e f o no ;

r r : objectMap [ r r : column ”mobilephone ” ] ; ] .

Discussion: Solution 1 is a shortcut for Solution 2.
Related Patterns: Pattern 6 and Pattern 7.

Pattern 9: Concatenate Attributes

How to concatenate attributes and map it to an ontology property?
Context: An application would like to concatenate several attributes and map
the result to an ontology property. For example, concatenate the attributes first-
name and lastname and map it to foaf:name.



Solution 1: Given a TripleMap, create a rr:predicateObjectMap which has a
rr:predicate for the ontology property and the rr:objectMap as a rr:template.
The concatenation is represented as a template.
Example R2RML Mapping for Solution 1

<TriplesMapStudent1> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }” ] ;
r r : predicateObjectMap [

r r : p r ed i ca t e f o a f : name ; r r : objectMap [ r r : template ”{ f i r s tname} { lastname}” ] ; ] .

Solution 2: Create a new TripleMap with an R2RML view which consists of
a rr:logicalTable that has a rr:sqlQuery which includes the concatenation. Ad-
ditionally, create a rr:predicateObjectMap which has a rr:predicate for the on-
tology property and the rr:objectMap for the attribute which represents the
concatenation in the SQL query.
Example R2RML Mapping for Solution 2

<TriplesMapStudent1> a r r : TriplesMap ; r r : l o g i c a lTab l e [
r r : sqlQuery ”SELECT sid , f i r s tname | | ’ ’ | | lastname AS ful lname FROM student ” ] ;

r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }” ] ;
r r : predicateObjectMap [

r r : p r ed i ca t e f o a f : name ; r r : objectMap [ r r : column ” ful lname ” ] ; ] .

Discussion: Consider the SPARQL query SELECT ?s ?fullname WHERE {?s
foaf:name ?fullname }. Solution 1 would produce a SQL query and concat
the name in the SELECT clause. Solution 2 does the concatenation operation as
a SQL query as specified in rr:sqlQuery and then use this query as a subquery.

So lut ion 1 SQL : SELECT sid , f i r s tname | | ’ ’ | | lastname as ful lname FROM student
So lut ion 2 SQL : SELECT sid , fu l lname

FROM (SELECT sid , f i r s tname | | ’ ’ | | lastname AS ful lname
FROM student )

Note that these queries are semantically equivalent. From a query performance
perspective, they should be equal unless the RDBMS does not have optimizations
for subqueries.
Related Patterns: Pattern 5

3.3 Join Mapping Patterns

Foreign Key relationships among tables can be mapped to ontology properties.
The following patterns define different ways that foreign key relationships can
be mapped to an ontology property.

Pattern 10: Foreign Key between Two Tables

How to represent the relationship between two tables?
Context: An application would like to map a table to an ontology class. How-
ever, some of the property values are stored in another table. Therefore, it is
necessary to perform a join to get those values.
Solution: Given two tables, one table will be considered the child and the other
the parent. Create a TripleMap for each table. Given the child TripleMap, cre-
ate a rr:predicateObjectMap which will have, in addition to the rr:predicate,
a rr:objectMap which has a rr:parentTripleMap and a rr:joinCondition. The
rr:parentTripleMap will point to the parent TripleMap and the rr:joinCondition



will have a rr:child and rr:parent which represent the join attributes in the child
and parent table respectively.
Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . org / r e source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ex : countryOfBirth ;

r r : objectMap [ r r : parentTriplesMap <TriplesMapCountry >;
r r : j o inCond i t ion [ r r : c h i l d ” c oun t r y o f b i r t h ” ; r r : parent ” c id ” ; ] ; ] ; ] .

<TriplesMapCountry> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” country ” ] ;
r r : subjectMap [ r r : template ”http :// example . org / r e source /Country/{ c id }”; ] .

Discussion: This pattern describes an R2RML mapping that joins two tables.
This mapping can also be represented using Pattern 11. However, if a join in-
volves more than two tables, then Pattern 11 must be used. The addition of
another property that involves a join in Pattern 10 means that the user has
to specify a new parent TriplesMap and then refer this parent TriplesMap in a
rr:objectMap for the new property. On the other hand, the rr:logicalTable value
stays the same and no changes needed.
Related Patterns: Pattern 11

Pattern 11: Foreign Keys between Two or more Tables

How to represent the relationship between two or more tables?
Context: An application would like to map a table to an ontology class. How-
ever, some of the property values are stored in other tables. Therefore, it is
necessary to perform a joins to get those values.
Solution: Create a TripleMap with an R2RML view which consists of a rr:logicalTable
that has a rr:sqlQuery which includes a SQL query that represent explictly the
join(s).
Example R2RML Mapping

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : sqlQuery ”””
SELECT s . s i d AS sid , c . country code AS country code FROM student s , country c
WHERE s . c oun t r y o f b i r t h = c . count ry id ” ” ” ] ;

r r : subjectMap [ r r : template ”http :// example . org / r e source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ex : countryOfBirth ;

r r : objectMap [ r r : template ”http :// example . org / r e source /Country/{ c id }”; ] ; ] .

Discussion: If the join is between two tables, then Pattern 10 can be used.
However, if the join is between more than two tables, then Pattern 10 can not
be used and the SQL query must be made explicit. Unlike Pattern 10, Pattern
11 does not require to have additional TriplesMap needed in order to map the
property that needs a join. An addition of a new property that involves a join
does not require to create additional TriplesMap instance, but the user has to
modify the SQL query.
Related Patterns: Pattern 10

Pattern 12: Many to Many Table

How to map a table that represents a many-to-many relationship between two
other tables to an ontology property?
Context: A many-to-many table represents a relationship between two entities.
For example, the table StudentSport records the relationship of which Students



play a specific Sport. Several students can play a sport and several sports can be
played by a student. An application would like to map the many-to-many table
to an ontology property.
Solution: Create a TriplesMap for the many-to-many table. Specify the rr:logicalTable
whose value corresponds to the table name of the many-to many table. In the
TriplesMap, create a rr:subjectMap with a rr:template to define the URI tem-
plate for one of the tables of the many-to-many relationship. Create an instance
of rr:predicateObjectMap which has a rr:predicate for the ontology property.
Finally, create a rr:objectMap with a rr:template to define the URI template for
the other table of the many-to-many relationship.
Example R2RML Mapping

<TriplesMapStudentSport> a r r : TriplesMap ;
r r : l o g i c a lTab l e [ r r : tableName ”StudentSport ” ] ;
r r : subjectMap [ r r : template ”http :// example . org / r e source /Student /{ s tudent id }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ex : p lays ;
r r : objectMap [ r r : template ”http :// example . org / r e source /Sport /{ spo r t i d }” ] ; ] .

Discussion: This mapping can also be represented through Pattern 11 given
that it consists of a join between three tables (Student, StudentSport and Sport).
Related Patterns: Pattern 11

3.4 Value Translation Patterns

It is common that specific values in the database are code values which need to be
translated to URIs. R2RML relies on SQL’s CASE statement for the translation.
The following patterns define different ways that values can be translated.

Pattern 13: Translate Values

How to map values in a table to URIs?
Context: An application would like to map values in the data to IRIs. For
example, if the value in a job attribute is engineer, then a special IRI needs to
be generated. A translation using rr:template is not possible because templates
can only use the same values from the database.
Solution: Create a new TripleMap with an R2RML view which consists of a
rr:logicalTable that has a rr:sqlQuery. Represents the translation in the SQL
query by using SQL CASE statement.
Example R2RML Mapping

<#TriplesMap1> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : sqlQuery ”””
SELECT EMP.∗ , (CASE JOB

WHEN ’CLERK’ THEN ’ genera l−o f f i c e ’ WHEN ’NIGHTGUARD’ THEN ’ secur i ty ’
WHEN ’ENGINEER’ THEN ’ eng ineer ing ’ END) ROLE FROM EMP ””” ] ;

r r : subjectMap [ r r : template ”http :// data . example . com/employee/{EMPNO}”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ex : r o l e ;

r r : objectMap [ r r : template ”http :// data . example . com/ r o l e s /{ROLE}”;
r r : termType r r : IRI ; ] ; ] .

Discussion: The R2RML language does not have the expressivity to represent
such value translation. Therefore, translating values has been pushed into SQL
using the CASE statement. Query performance depends on the optimizations
that a RDBMS has for the CASE statement.
Related Patterns: N/A



Pattern 14: Translate Values between Tables

How to map values in a referenced table

Context: An application would like to map a table to an ontology class. The ta-
ble has a foreign key that references another table. The referenced table contains
columns whose values need to be translated into URIs.

Solution 1: Combine Pattern 11 and Pattern 13.

Example R2RML Mapping for Solution 1

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : sqlQuery ”””
SELECT s . s i d AS sid , a . a id AS aid , (CASE a . a r t i c l e t y p e

WHEN ’ ppr ’ THEN ’Paper ’ WHEN ’ ths ’ THEN ’ Thesis ’ ) AS Art ic leType
FROM student s , a r t i c l e a WHERE s . s i d=a . author ””” ] ;

r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ex : isAuthorOf ;

r r : objectMap [ r r : template ”http :// example . com/ re source /{Artic leType }/{ aid } ” ; ] ; ] .

Solution 2: Use Pattern 10

Example R2RML Mapping for Solution 2

<TriplesMapStudent> a r r : TriplesMap ; r r : l o g i c a lTab l e [ r r : tableName ” student ” ] ;
r r : subjectMap [ r r : template ”http :// example . com/ re source /Student /{ s i d }”; ] ;
r r : predicateObjectMap [ r r : p r ed i ca t e ex : isAuthorOf ; r r : objectMap [

r r : parentTriplesMap <TriplesMapPaper >;
r r : j o inCond i t ion [ r r : c h i l d ” s id ” ; r r : parent ” author ” ; ] ; ] ; ] ;

r r : predicateObjectMap [ r r : p r ed i ca t e ex : isAuthorOf ; r r : objectMap [
r r : parentTriplesMap <TriplesMapThesis >;
r r : j o inCond i t ion [ r r : c h i l d ” s id ” ; r r : parent ” author ” ; ] ; ] ; ] .

<TriplesMapPaper> a r r : TriplesMap ; r r : l o g i c a lTab l e [
r r : sqlQuery ”””SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ppr ’””” ] ;

r r : subjectMap [ r r : template ”http :// example . com/ re source /Paper/{ aid }”; ] .

<TriplesMapThesis> a r r : TriplesMap ; r r : l o g i c a lTab l e [
r r : sqlQuery ”””SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ths ’””” ] ;

r r : subjectMap [ r r : template ”http :// example . com/ re source /Thes is /{ aid }”; ] .

Discussion: The selection of the possible solutions affect the way a user add a
new article type, and also the SQL needed to execute the mappings.

In solution 1, to add a new article type, a user just need to modify the SQL
query, appending the corresponding WHEN THEN pair statement. In solution
2, a new (parent) TriplesMap instance is needed for each article type. Then, in
the child TriplesMap, every article type needs a predicateObjectMap property.

Now consider the following SPARQL query:
SELECT ?s ?o WHERE { ?s ex:isAuthorOf ?o }. The resulting SQL query for
Solution 1 is the following:

SELECT sid , ArticleType , a id FROM (
SELECT s . s i d AS sid , a . a id AS aid , (CASE a . a r t i c l e t y p e

WHEN ’ ppr ’ THEN ’Paper ’ WHEN ’ ths ’ THEN ’ Thesis ’ ) AS Art ic leType
FROM student s , a r t i c l e a WHERE s . s i d=a . author )

The resulting SQL query for Solution 2 is the following:

SELECT sid , a id
FROM student S , (SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ppr ’ ) P
WHERE S . s i d = P. author UNION
SELECT sid , a id
FROM student S , (SELECT author , a id FROM a r t i c l e WHERE a r t i c l e t y p e =’ths ’ ) T
WHERE S . s i d = T. author

Note that the generated SQL queries are very different and may have an
impact on query performance depending on the RDBMS.

Related Patterns: Pattern 10, Pattern 11, Pattern 13



4 Related Work

In the (Object-Oriented) software community, patterns are used to describe soft-
ware design structures that can be used over and over again in different systems.
They provide a general solution that has to be applied in a particular context,
in which the design considerations serve to decide whether the pattern is use-
ful and how it could be implemented best [4]. A kind of software patterns are
the re-engineering software patterns [6]. These patterns describe how to change
a legacy system into a new, refactored system that fits current conditions and
requirements. Their main goal is to offer a solution for re-engineering prob-
lems. They are also on a specific level of abstraction, that describes a process of
re-engineering without proposing a complete methodology, and sometimes can
suggest which type of tool to use. Therefore RDB2RDF mappings can be seen
as re-engineering patterns because they map a legacy system (RDBMS) into a
new system (RDF).

In the Semantic Web community, the Ontology Design Pattern portal4 has
been created in order to help in the design and quality of ontologies. Additionally,
Dodds and Davis presents a pattern catalogue for modeling, publishing and con-
suming Linked Data [3]. These Linked Data patterns do not include RDB2RDF
mapping patterns. Therefore our work is complemented by the Linked Data pat-
terns of Dodds and Davis. Furthermore, Hert et al. presents a comparison of the
expressivity of RDB2RDF mapping languages [5]. A framework for comparison
is introduced, which consists of a set of fifteen features such as support for dif-
ferent types of mappings, datatypes, named graphs, blank nodes etc. R2RML
supports all but one feature (write access) . Moreover, Rivero et al. presents
fifteen RDF to RDF mapping patterns [7]. Some of these patterns are specific
to RDF to RDF mappings such as Remove Language Tag while others are not
applicable to RDB2RDF mappings such as Rename Class or Rename Property.

5 Conclusions and Future Work

In this paper, we have introduced fourteen RDB2RDF mapping patterns5, which
we have observed as reusable mapping throughout our experience as RDB2RDF
system developers and R2RML mapping authors. As previously mentioned, this
is a non-exhaustive list of mapping patterns and we aspire that the mapping
patterns presented in this paper serve as a starting point. We foresee new map-
ping patterns in areas such as Named Graphs, Blank Nodes for anonymous or
sensitive data, Metadata, Languages, Datatypes. We hope that this work encour-
ages the Semantic Web community to further extend the RDB2RDF mapping
patterns.

In certain patterns, we have identified two R2RML mapping solutions. These
solutions may or may not have performance issues. As future work, we will

4http://ontologydesignpatterns.org/
5The mappings are stored at http://mappingpedia.linkeddata.es/pattern/

DataPatterns/



thoroughly study the tradeoff between mapping patterns and query performance.
Additionally, we will investigate the overlap between ontology design patterns,
linked data patterns, the feature set of Hert et al. and the RDF to RDF mapping
patterns of Rivero et al. with RDB2RDF mappings in general.

Finally, we have to see how to align the proposed RDB2RDF mapping pat-
terns with Re-engineering Patterns category in the ODP Portal.
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Abstract. The ontologization of non-ontological resources has led to
the design of several specific methods, techniques and tools. Among those
techniques, we have the Re-engineering Patterns. More specifically, we
have the Patterns for re-engineering NORs (PR-NOR) that define a pro-
cedure that transforms the NOR terms into ontology representational
primitives. Currently, the W3C RDB2RDF Working Group is at the fi-
nal stage of formalizing R2RML, a language for describing mappings
among RDB elements and RDF. In this paper we claim that it is possi-
ble to combine PR-NORs with R2RML mappings for building ontologies
from relational database content, i.e., transforming the database content
into an ontology schema by using Re-engineering Patterns and R2RML
mappings.

Key words: Re-engineering patterns, RDB2RDF, R2RML, Ontologies

1 Introduction

During the last decade, specific methods, techniques and tools were proposed
for building ontologies from existing knowledge resources. When we are trans-
forming non-ontological resources (NORs) [4] into ontologies, the transformation
process may follow one of the following approaches: (1) ABox transformation
[4], which transforms the resource schema into an ontology schema, and the re-
source content, into ontology instances; (2) TBox transformation [4], which
transforms the resource content into an ontology schema; or (3) Population ,
which transforms the resource content into instances of an available ontology.
The ABox transformation leaves the informal semantics of the transformed re-
sources mostly untouched, whereas, the TBox transformation tries to enforce a
formal semantics into them. Figure. 1 depicts the three types of transformation.

According to the survey described in [9], most of the available methods and
tools deal with ABox transformation and Population. However there are some
cases when it is useful to follow the TBox transformation [4], for example when
we have a taxonomy stored in a particular NOR. The ontologization of non-
ontological resources has led to the design of several specific methods, techniques
and tools [4]. Among those techniques, we have the Re-engineering Patterns,



Fig. 1. NOR Transformation into ontologies

within the context of the ODP1. More specifically, we have the Patterns for re-
engineering NORs (PR-NOR) that define a procedure that transforms the NOR
terms into ontology representational primitives. Nevertheless, PR-NORs do not
consider the implementation of the NOR, they just provide a general algorithm
for the transformation.

The majority of non-ontological resources underpinning the Web are imple-
menting in Relational Databases (RDB) [6]. RDB systems host a vast amount of
structured data in relational tables augmented with integrity constraints [5].
When we are transforming RDB content into ontologies, we can follow two
approaches (1) procedural/imperative approach, or (2) declarative approach,
by defining mappings between RDB and ontology elements. There are several
RDB2RDF mapping languages for describing transformation among RDB ele-
ments and ontologies [9, 7]. The RDB2RDF working group2 is at the final stage
of formalizing R2RML3, a standard language for expressing mappings from re-
lational databases to RDF datasets.

As we mentioned above, we provided a general algorithm to do the transfor-
mation for each of PR-NORs. However, in order to actually do the transforma-
tion, a user has to implement this algorithm in his choice of programming lan-
guage (Java, Scala, etc). On the other hand, we observed that although R2RML
mappings are normally used to generate ontology instances from database con-
tent (Population transformation), we figured out that when the database content
follows specific patterns such as PR-NORs, then R2RML mappings can be useful
in this situation. In this paper we propose to combine PR-NORs with R2RML
mappings for building ontologies from relational database content, i.e., trans-
forming the database content into an ontology schema by using Re-engineering
Patterns and R2RML mappings.

The rest of the paper is organized as follows. Section 2 provides the back-
ground knowledge, by describing PR-NORs and R2RML. Then, Section 3 presents
how we combine the PR-NORs with R2RML mappings for building the ontolo-

1http://ontologydesignpatterns.org
2http://www.w3.org/2001/sw/rdb2rdf/
3http://www.w3.org/TR/r2rml/



gies from relational database content, and includes two examples. Finally, Section
4 presents the conclusions and future work.

2 Background Knowledge

In this section we provide a brief description of the PR-NORs and R2RML.

2.1 Patterns for Re-engineering Non-Ontological Resources

The Patterns for Re-engineering Non-Ontological Resources (PR-NOR) [12] de-
fine a procedure that transforms the NOR terms into ontology elements. The
patterns describe the transformation of classification schemes, thesauri, and lex-
icons into ontologies. The patterns rely on the data model4 of the NORs. The
patterns define, for every data model of the NORs, a process (expressed as an al-
gorithm) with a well-defined sequence of activities in order to extract the NORs
terms, and then to map these terms to a conceptual model of an ontology. Nev-
ertheless, the patterns do not consider the implementation of the NOR, they just
provide a general procedure for the transformation. It is worth noting that these
patterns are included in the ODP Portal5. Table 1 lists the set of PR-NORs that
perform the TBox transformation approach.

Table 1. Set of patterns for re-engineering NORs that perform the TBox transforma-
tion approach.

NIdentifier Type of NOR NOR Data
Model

Target

1 PR-NOR-CLTX-01 Classification
Scheme

Path Enumera-
tion

Ontology Schema (TBox)

2 PR-NOR-CLTX-02 Classification
Scheme

Adjacency List Ontology Schema (TBox)

3 PR-NOR-CLTX-03 Classification
Scheme

Snowflake Ontology Schema (TBox)

4 PR-NOR-CLTX-04 Classification
Scheme

Flattened Ontology Schema (TBox)

5 PR-NOR-TSTX-01 Thesaurus Record-based Ontology Schema (TBox)

6 PR-NOR-TSTX-02 Thesaurus Relation-based Ontology Schema (TBox)

7 PR-NOR-LXTX-01 Lexicon Record-based Ontology Schema (TBox)

8 PR-NOR-LXTX-02 Lexicon Relation-based Ontology Schema (TBox)

In a nutshell, the main fields of a PR-NOR are:

4The data model[12] is the abstract model that describes how data is represented
and accessed. The data model can be different even for the same type of non-ontological
resource.

5http://ontologydesignpatterns.org/wiki/Submissions:ReengineeringODPs



– Name of the pattern
– Identifier of the pattern
– Use case, description in natural language of the re-engineering problem ad-

dressed by the pattern
– Input, description in natural language of the NOR, and its graphical repre-

sentation
– Output, description in natural language of the ontology created after apply-

ing the pattern, and its graphical representation
– Process, algorithm for the re-engineering process

2.2 R2RML

R2RML6 is a language for expressing mappings from relational databases to
RDF datasets. These mappings provide the ability to view existing relational
data in the RDF data model, expressed in a target ontology. The input to an
R2RML mapping is a relational database. The output is an RDF dataset that
uses predicates and types from the target ontology. It is worth mentioning that
R2RML mappings are themselves expressed as RDF graphs and written down
in Turtle syntax [2]. Figure 2 shows the elements of R2RML language

Fig. 2. An overview of R2RML

In a nutshell, an R2RML mapping points to logical tables to get data from
the database. A logical table can be (1) a database table, (2) a view, or (3) a
valid SQL query. Each logical table is mapped to RDF using a triples map. A

6http://www.w3.org/TR/r2rml/



triples map defines rules that map each row in the logical table to a set of RDF
triples. Those rules have two main parts (1) a subject map, which generates the
subject of all RDF triples that will be created from a logical table row; and (2)
multiple predicate-object maps that consist of predicate maps and object maps
(or referencing object maps). Triples are produced by combining the subject map
with a predicate map and object map, and applying these three to each logical
table row. It is possible that a triples map can contain graph maps that place
some or all of the triples into named graphs, but by default, all RDF triples are
in the default graph of the output dataset.

Next, we present a basic example in order to illustrate how to specify R2RML
mappings7. Let us consider the database depicted in Figure 3. This database
contains a table, one primary key, two columns, and one row.

Fig. 3. Example database

For the that database we have the following R2RML mapping

@pref ix r r : <http ://www.w3 . org /ns/ r2rml#> .
@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix ex : <http :// example . com/> .
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@base <http :// example . com/base/> .

<TriplesMap1> a r r : TriplesMap ;
r r : l o g i c a lTab l e [ r r : tableName ”Student ” ] ;
r r : subjectMap [ r r : c l a s s f o a f : Person ;

r r : template ”http :// example . com/Student /{ID}/{Name}” ; ] ;
r r : predicateObjectMap [ r r : p r ed i c a t e ex : id ;

r r : objectMap [ r r : column ”ID ” ; ] ] ;
r r : predicateObjectMap [ r r : p r ed i c a t e f o a f : name ;

r r : objectMap [ r r : column ”Name” ] ] .

Finally, it is worth mentioning that neither the RDB2RDF Use Cases and
Requirements 8 nor the R2RML mappings in the R2RML Test Cases document9

provide or say anything about generating ontologies from database content.

7Please refer to the R2RML specification and its testcases to check a detailed list
of R2RML mapping examples.

8http://www.w3.org/TR/rdb2rdf-ucr/
9http://www.w3.org/2001/sw/rdb2rdf/test-cases/



3 Combining PR-NORs and R2RML mappings

In this section we present how to generate ontologies from database content
by using PR-NORs and R2RML mappings. Our combination of PR-NORs and
R2MRL mappings is two-fold, first (1) we want to specialize the PR-NORs that
perform a TBox transformation by specifying Relational databases as NOR, (2)
we want to show that it is possible to generate ontology schema triples using
R2RML mappings.

Using R2RML mappings for transforming PR-NOR patterns brings two ben-
efits. The first benefit is since R2RML mappings are expressed in RDF, we can
store and reuse them. The second is, there are already several R2RML engines10,
therefore, it will be possible to execute the mappings and generate the ontologies
in a short time.

Using our approach, each PR-NOR has the corresponding R2RML mapping.
The mappings will be executed by an R2RML engine and the result of that
execution will generate an ontology represented as an RDF document.

All the patterns, mappings, and some other files (sql dump, result in graphical
representation etc) are available here at:

– Pattern Description : mappingpedia:pattern/SchemaPatterns/{PatternID}
– Mapping Algorithm : mappingpedia:pattern/SchemaPatterns/{PatternID}/algorithm.txt
– Mapping Example : mappingpedia:pattern/SchemaPatterns/{PatternID}/mapping-

example.ttl
– SQL General : mappingpedia:pattern/SchemaPatterns/{PatternID}/sql-general.sql
– SQL Example : mappingpedia:pattern/SchemaPatterns/{PatternID}/sql-example.sql
– RDF Result Example : mappingpedia:pattern/SchemaPatterns/{PatternID}/result-

example.nt

Where mappingpedia represents http://mappingpedia.linkeddata.es/

Next, we show examples of how to build R2RML mappings that correspond
to the PN-NORs patterns. We use snowflake model as the representation of clas-
sification schema pattern and term-based relational model as the representation
of thesaurus pattern.

PR-NOR-CLTX-03 : Pattern for re-engineering a classification scheme
following the snowflake data model into an ontology schema A classi-
fication scheme is a rooted tree of terms, in which each term groups entities by
some particular degree of similarity. The semantics of the hierarchical relation
between parent and children terms may vary depending on the context. The
snowflake data model [8] is a normalized structure for hierarchy representations.
In this case, the classification scheme items are grouped by levels or entities.
There are as many groups as levels the classification scheme has. Snowflake mod-
els are widely used on data warehouses to build hierarchical classifications on
structures known as dimensions. Some examples of dimension are Time, Product
Category, Geography, Occupations, etc. An example of snowflake data model can
be seen in Figure. 4. In this pattern the example is an occupation hierarchical

10http://www.w3.org/2001/sw/rdb2rdf/implementation-report/



Fig. 4. An example of Snowflake Data Model

classification hold on three different tables, one for each level (PROFESSIONI 0,
PROFESSIONI 1, PROFESSIONI 2).

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [11]. Each term in the classification scheme is mapped to a class,
and the semantics of the relationship between children and parent terms are
made explicit by using an external resource. Figure. 5 illustrates the generated
ontology from the example. Note that although the transformation copies the

Fig. 5. Generated ontology from the example of Snowflake Data Model

the hierarchy expressed by the database content, the resulting ontologies consists
only the schema (collection of classes and their labels) without their individuals.
Hence, this is a T-Box transformation as we discussed in Section. 1.



Next we present the procedure that generates R2RML mapping correspond-
ing to the pattern. First, create an rr:TriplesMap instance for every table with
the table name as its rr:logicalTable value. Then create an rr:SubjectMap in-
stance for the TriplesMap with rdfs:Class as its rr:class and concatenation of
namespace base and primary key of the table as its rr:template value. Addi-
tionaly, the user may provide an rr:PredicateObjectMap instance that specifies
the name of the class. If the table doesn’t have a foreign key, it means that
the table is mapped into the root class of the ontology. Otherwise, create an
rr:PredicateObjectMap instance with rr:objectMap that joins the foreign key
with the referenced primary key.

Input: The tables of database tables, the URI of the target class classURI
Output: R2RML Mapping Document MD
1: MD ← createMappingDocument()
2: for t ∈ tables do
3: TM ← createTriplesMap()
4: TM.logicalTable.tableName ← t.tableName
5: TM.subjectMap.class ← rdfs:Class
6: TM.subjectMap.template ← CONCAT(classURI, table.PKColumn)
7: TM.predicateObjectMap[0].predicate ← rdfs:label
8: TM.predicateObjectMap[0].objectMap.column ← t.LabelColumn
9: if t.PK = {} then

10: TM.predicateObjectMap[1].predicate ← rdfs:subClassOf
11: TM.predicateObjectMap[1].objectMap.constant ← classURI
12: else
13: TM.predicateObjectMap[1].predicate ← rdfs:subClassOf
14: TM.predicateObjectMap[1].objectMap.constant ← classURI
15: end if
16: PUT(MD, TM)
17: end for
18: return MD

Listing 1.1. R2RML mappings corresponding to the example of Snowflake Data
Model
<TriplesMapProfess ione0> a r r : TriplesMap ;

r r : l o g i c a lTab l e [ r r : tableName ” Pro f e s s i one0 ” ] ;
r r : subjectMap [ r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;

r r : template
”http :// example . org / r e sou r c e / Pro f e s s i on e { id0 }” ; ] ;

r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : l a b e l ;
r r : objectMap [ r r : column ”desc0 ” ] ; ] ;

r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : subClassOf ;
r r : objectMap [ r r : constant

”http :// example . org / r e sou r c e / Pro f e s s i on e ” ] ; ] ; .

<TriplesMapProfess ione1> a r r : TriplesMap ;
r r : l o g i c a lTab l e [ r r : tableName ” Pro f e s s i one1 ” ] ;
r r : subjectMap [ r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;

r r : template
”http :// example . org / r e sou r c e / Pro f e s s i on e { id1 }” ; ] ;

r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : l a b e l ;
r r : objectMap [ r r : column ”desc1 ” ] ; ] ;

r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : subClassOf ;
r r : objectMap [ r r : termType r r : IRI ;

r r : parentTriplesMap <TriplesMapProfess ione0 >;
r r : j o inCond i t i on [

r r : c h i l d ” id0 ” ; r r : parent ” id0 ” ; ] ; ] ; ] ; .

<TriplesMapProfess ione2> a r r : TriplesMap ;
r r : l o g i c a lTab l e [ r r : tableName ” Pro f e s s i one2 ” ] ;
r r : subjectMap [ r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;

r r : template



”http :// example . org / r e sou r c e / Pro f e s s i on e { id2 }” ; ] ;
r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : l a b e l ;

r r : objectMap [ r r : column ”desc2 ” ] ; ] ;
r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : subClassOf ;

r r : objectMap [ r r : termType r r : IRI ;
r r : parentTriplesMap <TriplesMapProfess ione1 >;

r r : j o inCond i t i on [
r r : c h i l d ” id1 ” ; r r : parent ” id1 ” ; ] ; ] ; ] ; .

PR-NOR-TSTX-02 : Pattern for re-engineering a thesaurus following
the relation-based data model into an ontology schema A thesaurus
represents the knowledge of a domain with a collection of terms and a limited
set of relations between them. The relation-based data model [10] is a normalized
structure, in which relationship types are not defined as fields in a record, but
they are simply data values in a relationship record, thus new relationship types
can be introduced with ease.

As an example, the AGROVOC Thesaurus is an structured and controlled
vocabulary designed to cover the terminology of all subject fields in agriculture,
forestry, fisheries, food and related domains. This thesaurus is available at http://

www.fao.org/agrovoc/. See Figure. 6 for the graphical representation of the thesaurus.

Fig. 6. An example of Thesaurus Relational-based Data Model

The ontology generated will be based on the lightweight ontology architec-
tural pattern (AP-LW-01)[11]. Each thesaurus term is mapped to a class. For
the disambiguation of the semantics of the BT, NT, RT and UF relations among
thesaurus terms the pattern relies on an external resource. In our case, the se-
mantics of the BT, NT, RT and UF relations are encoded in rr:sqlQuery of the
R2RML mappings. Figure. 7 illustrates the generated ontology from the exam-
ple.

Next, we present the procedure to generate R2RML mappings corresponding
to this pattern. First, create an rr:TriplesMap instance whose rr:logicalTable is
a view of join result of Terminology table, Terms Relationship table, and Rela-
tionship Type table. We let the user decide whether the join type is INNER or
LEFT OUTER. In the view, specify also the translation from Relationship Type
table values into skos properties using SQL CASE. Then, create an instance of



Fig. 7. The generated ontology from the example of Thesaurus Relational-based Data
Model

rr:SubjectMap with rdfs:Class as its rr:class. The URI values is specified through
rr:template as the concatenation of Term class namespace with the value of the
table’s primary key. Additionaly, an rr:PredicateObjectMap instance can be pro-
vided to specify the class name. Then, create another rr:PredicateObjectMap
instance that maps a property to the the relationship between one term with
another specified in the SQL CASE value provided in the view.

Input: Table Term TblTerm, Table Relationship TblRel, Table Relationship
type TblRelType, Term Class URI classURI

Output: R2RML Mapping Document MD
1: MD ← createMappingDocument()
2: TM ← createTriplesMap()
3: V = TblTerm ./ TblRel ./ TblRelType
4: TM.logicalTable.sqlQuery ← V
5: TM.subjectMap.class← rdfs : Class
6: TM.subjectMap.template ← CONCAT(classURI, TblRel.TermCode1)
7: TM.predicateObjectMap[0].predicate← rdfs : label
8: TM.predicateObjectMap[0].objectMap.column← TblTerm.Term
9: TM.predicateObjectMap[1].predicateMap.column← linkURIObject

10: TM.predicateObjectMap[1].objectMap.template ←
CONCAT (classURI, TblRel.TermCode2)

11: TM.predicateObjectMap[2].predicateMap.column← linkURIData
12: TM.predicateObjectMap[2].objectMap.template ←

CONCAT (classURI, TblRel.Term)
13: PUT(MD, TM)
14: return MD

Listing 1.2. R2RML mappings corresponding to the example of Thesaurus
Relation-based Data Model
<TriplesMapTerm> a r r : TriplesMap ;

r r : l o g i c a lTab l e [ r r : sqlQuery ”””
SELECT t . TermCode , t . Term , t l . TermCode2

, l t . LinkDesc , l t . LinkTypeID
, CASE l t . LinkAbr

WHEN ’BT’ THEN ’ skos : broader ’
WHEN ’NT’ THEN ’ skos : narrower ’
WHEN ’RT’ THEN ’ skos : r e l a t ed ’

END AS linkURIObject
, CASE l t . LinkAbr

WHEN ’UF’ THEN ’ skos : a l tLabe l ’
END AS linkURIData

FROM agrovocterm t
LEFT OUTER JOIN terml ink t l



ON t . TermCode = t l . TermCode1
LEFT OUTER JOIN l ink type l t

ON t l . LinkTypeID = l t . LinkTypeID
”” ” ] ;

r r : subjectMap [ r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;
r r : template

”http :// example . org / r e sou r c e /Term{TermCode } ” ; ] ;

r r : predicateObjectMap [ r r : p r ed i c a t e r d f s : l a b e l ;
r r : objectMap [ r r : column ”Term ” ] ; ] ;

r r : predicateObjectMap [ r r : predicateMap [
r r : column ” linkURIObject ” ; r r : termType r r : IRI ] ;

r r : objectMap [ r r : template
”http :// example . org / r e sou r c e /Term{TermCode2 } ” ] ; ] ;

r r : predicateObjectMap [ r r : predicateMap [
r r : column ” linkURIData ” ; r r : termType r r : L i t e r a l ] ;

r r : objectMap [ r r : template
”http :// example . org / r e sou r c e /Term{Term } ” ] ; ] ;

.

We have seen two examples of using R2RML mappings in order to generate
ontologies from PR-NORs. There are other approaches for this goal, although
our approach is better for several reasons. For example, using other RDB2RDF
languages instead of R2RML, such as R2O [1] or D2RQ [3] can be employed.
Unlike R2RML, both R2O and D2RQ do not permit the use of arbitrary SQL
queries as the logical table, which can be useful for joining multiple tables which
some complex conditions. Using a standard mapping language also bring bene-
fits on the practical side, as multiple implementations are available. Even D2R
system, which initially implemented as D2RQ engine, will also give support to
R2RML. Other possible approach is not to use R2RML or any RDB2RDF map-
ping languages, but using ad-hoc approach like creating a custom program for
each of the pattern. However, this approach can be considered inferior as the the
reusability aspect is lower than reusing mappings, not to mention the time has
to be invested to create the custom program instead of just choosing one of the
available R2RML implementations, such as Morph11.

4 Conclusions and Future Work

In this paper we have presented an approach that combines PR-NORs with
R2RML mappings for building ontologies from relational database content, i.e.,
transforming the database content into an ontology schema by using Re-engineering
Patterns and R2RML mappings. Furthermore, we have seen that besides for
generating data-triples (triples that describes instances of an ontology), R2RML
mappings are useful also to generate schema-triples (triples that describe the
schema of an ontology).

In the future, we will continue identifying other Re-engineering patterns that
may take benefit from R2RML mappings. We will explore the possibility to
combine R2RML mappings with other data-source type, such as XML, CSV or

11https://github.com/jpcik/morph



spreadsheets. Because R2RML mappings are RDF documents, it is possible to
store those mappings in a triple store. Once those mappings have been stored in
the triple store and annotated with meta-data properties, users can pose query
the triple store in order to get all mappings correspond to a specific pattern. For
example, user can pose a SPARQL query SELECT * FROM {?m a mapping. m

hasPattern ?p. FILTER REGEX(?p, "Snowflake")}, and the answers will be
all mappings corresponding to the snowflake data model pattern. The system is
currently under development and being populated with mappings and patterns
and we plan to report this system as future work.
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257641), BabelData (TIN2010-17550), and myBigData (TIN2010-17060) projects.
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Abstract. We present the Template Instance Pattern, a content design pattern
that marks an instance, which is used as a value for a property, to be a “template”.
A template instance is intended to be immutable (none of its properties can be
changed). If the content (i.e., any of the property values) of the template instance
needs to be changed, a template flag will indicate to an ontology editor that it
should create a clone of the template instance, and replace the value of the prop-
erty with the desired value in the newly created clone. This pattern is especially
useful for cases in which an ontology makes abundant use of reified relations
(represented as instances), which are repetitive and that increase significantly the
size of an ontology. We created this pattern as a result of building a large real
world medical ontology that makes excessive use of reification.

1 Background
Ontologies make use of reified relations to model n-ary relations or describe additional
properties of a relation (e.g., confidence level, provenance, and so on). For example,
biomedical ontologies often need to qualify facts about the domain with scientific ev-
idence: a definition of a disease would need to include links to scientific papers that
sourced or endorsed that definition, or relationships between different entities need to
carry a probability. Some ontologies, such as the ICD-11 [2, 1] make extensive use of
reified relations. Practically, all relations in the ICD-11 ontology are reified. One issue
with reification is that it creates the intermediate reified instances that do not contribute
any real content, but they rather provide a structure that groups together all properties of
a reified relation. An ontology that makes abundant use of reified relationships is likely
to be very large in size due to the “clutter” introduced by the reified instances. A larger
ontology may be harder to maintain, and may create challenges for ontology editors
or reasoners. The template instance pattern proposes a way of reducing the number of
reified instances and the related property assertion axioms in an ontology, especially for
the cases in which the reified relations are identical for multiple entities.

2 Solution Description
The pattern proposes to use the same “template” instance as the value of a reified prop-
erty for multiple subjects (rather than having multiple copies of the same reified in-
stance). We give an example in Figure 1 to make it easier to understand. The individu-
als x1, x2 and x3 have a reified property p that has as values the reified individuals,
y1, y2 and y3, respectively. In OWL, we would have the following object property
assertions:



Fig. 1. An abstract example of reified modeling without (left side) and with (right side) the Tem-
plate Instance Pattern.

(x1 p y1)
(x2 p y2)
(x3 p y3)

The properties for the reified individuals, y1, y2 and y3 are all identical (the un-
derscore represents the index for y: 1, 2, or 3):

(y_ p1 foo)
(y_ p2 1.0)
(y_ p3 z)

The pattern proposes to create a template instance, y tmpl that has the common
property values (right hand side of Figure 1):

(y_tmpl p1 foo)
(y_tmpl p2 1.0)
(y_tmpl p3 z)

The template instance would be used as the value for the reified property for x1, x2
and x3:

(x1 p y_tmpl)
(x2 p y_tmpl)
(x3 p y_tmpl)

In addition, we will also add one annotation property, isTemplate:true, on
y tmpl to mark that it as a template instance. The intention is that the template instance
is immutable, i.e., the property values of the template instance cannot be changed.

In the case that a user would like to change a property value of the reified instance,
a clone of the template instance would be created and the change would occur on the
clone. An ontology editor would use the isTemplate annotation property to check
that a certain instance cannot be modified, and it should rather create a clone.

Figure 1 gives an example of this situation. Say that at a given time t0, there was an
additional x4 individual that had the template instance as the value for p. At t0:



Fig. 2. Proposed usage of the Template Instance Pattern for representing views in the ICD-11
ontology. Each row in the table represents a reified instance (which represents a view), and each
column represents a property value of the reified instance. Each class in the ontology can be part
of one or several views.

(x4 p y_tmpl)
(y_tmpl p1 foo)
(y_tmpl p2 1.0)
(y_tmpl p3 z)

Later, at time t1, the user decides to change the value p1 from foo to bar. The
ontology editor (or the user, if there is no support in the tool), will see the isTemplate
annotation property on y tmpl as set on true, and it will create a clone of it, y tmpl modif,
by cloning also all the object and data property axioms. Then, it will change the value
of p1 on y tmpl modif. At t1:

(x4 p y_tmpl_modif)
(y_tmpl_modif p1 bar)
(y_tmpl_modif p2 1.0)
(y_tmpl_modif p3 z)

As a result of using the pattern, we can reduce the number of data and object prop-
erty axioms in the ontology. This “deflation” of the ontology is especially significant, if
there are many repetitive values in the ontology, with few changes, and if the number
of properties of the reified instance is large.

3 Example of Usage
As we have mentioned before, the ICD-11 ontology that describes diseases and their
properties makes extensive use of reification. A class in the ICD-11 ontology represents
a disease, which has several properties (e.g., title, definition, synonyms, signs and symp-
toms, etiology, manifestation, etc.) that are encoded as property axioms. Each disease
class can participate in one or several “views” that will be extracted from the ICD-11



ontology. A view (in ICD language called “linearization”) is a portion of the ontology
that is relevant for a particular sub-domain or use case (e.g. Morbidity, Mortality, Pri-
mary Care, Dermatology, etc.). Figure 2 shows an example of these views. For each
disease class, the specifications of the views it participates in, are represented as reified
instances (the table rows in Figure 2). Each of the view specification instances contains
five additional properties (partially shown as columns in the table). Each disease class
has to specify their inclusion in ten different views. Each view is represented as a reified
instance. The ontology currently contains over 40.000 disease classes, each having 10
view specifications, and each of the view specifications containing additional 5 prop-
erties. Currently, we have over 400.000 reified view specifications, and over 2 million
property assertion describing them. Many of these reified view specification instances
are identical. We plan to use the Template Instance Pattern to reduce significantly the
number of the reified instances in the ontology. For example, for the initial modeling
(that contains no user modifications), we would have only 10 reified view specifica-
tion instances (reduced from 400.000) and 400.000 property assertions (reduced from
2 million). This “deflation” of the ontology size is significant, would allow us to more
easily maintain the view specifications, and would have a beneficial impact on the per-
formance of the ontology tools used for editing ICD-11.

4 Conclusion
We presented the template instance pattern that was created from the need to address
scalability and maintainability issues in the development of the ICD-11 ontology. The
pattern proposes the use of template instances as values for reified properties, and their
flagging using an annotation property that can be used to provide support for this pattern
in ontology tools. We also described an example of the pattern and its operationalization
in a generic ontology tool.
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Abstract. In this paper we present the Standards Enforcer Pattern
(SEP). The remit of SEP is to enable the ontological modelling of pro-
cesses, activities, operations and services that enforce guideline(s) rec-
ommended by a specific standard and need to explicitly indicate their
conformance to it. The pattern allows the inclusion of minimalistic in-
formation regarding the conformance, while retaining the flexibility to
extend the ontological primitives as required. As an exemplifier for the
pattern, we present a use case from the algal biomass domain. We model
the process of algal biomass production that enforces the Minimum De-
scriptive Language (MDL) standard for algal operations.

1 Introduction

Activities, operations, processes and services in most domains of interest are
governed by standards. The objective of a standard is to ensure consistency
in implementations and uniformity in quality by ensuring the repeated and
continuous use of prescribed rules and guidelines. The ISO/IEC Guide 2:1996
1, definition 3.2 defines a standard as a set of specification that is “established
by consensus and approved by a recognized body that provides for common and
repeated use, rules, guidelines or characteristics for activities or their results,
aimed at the achievement of the optimum degree of order in a given context”.

In order to provide a generic mechanism for the inclusion of ontological mod-
elling primitives of conformance to standards, independent of the domain of ap-
plication and the context of processes, we propose the content ontology design
pattern Standards Enforcer Pattern (SEP).

2 Standards Enforcer Pattern (SEP)

2.1 Intent

The remit of the SEP content pattern is to represent the relation between stan-
dards and the processes, operations, activities and services that enforce them,

∗ Principal and corresponding author
1 http://www.etsi.org/WebSite/Standards/WhatIsAStandard.aspx



the domains they cater to and the scope of that specific process, operation,
activity, service within the context of the domain.

2.2 Competency Questions:

– Which are the standards enforced by this process?
– Which processes enforce these standards ?
– What is/are the domain level scope(s) of the standard?
– Within the context of the domain what is the scope of the process, activity,

operation and service to which the standard is applicable?
– What are the prescribed guidelines for a standard?
– Which prescribed guideline(s) of a standard does a specific process conform

to?

2.3 Some Conceptual Elements

– Standard: A specification established through domain expert consensus that
prescribes a set of rules and guidelines for a given contextual activity within a
domain. The standard must be described informally or formally in a written
document.

– Guideline: An entity defining a guideline included in a standard. Guidelines
are usually prescribed as clauses in the written document for the standard.

– StandardEnforcingProcess/Operation/Activity: The domain specific en-
tity which enforces one or more guidelines from one or more standard.

– DomainScope: The domain/industry/paradigm for which the standard has
been designed.

– ProcessScope: The activity within a specific domain/industry/paradigm
which is governed by the process, e.g., algae harvesting activity which is part
of the biomass production process in the domain of biofuels, shielded metal
arc welding used in the production of tools in the manufacturing domain.

– enforcesStandard: The relationship between the enforcing process and the
standard.

– enforcedBy: The relationship between the standard and the enforcing pro-
cess. This is an inverse relationship to enforcesStandard.

– hasDomainScope: The relationship linking the standard with the domain to
which it is applicable. A standard can cover multiple domains.

– hasProcessScope: The relationship linking the standard enforcing process
with the scope of the process. A standard enforcing process can include
multiple process scopes.

– hasDescriptionDocument: The relationship linking the standard to the real
world document that informally/formally describes it. The object value for
this property is a pointer (URI) to the document resource representing the
standard.

– hasDescriptionClause: The relationship linking a guideline to the prescrib-
ing clause in the real world document for the standard. The object value for
this property is a pointer (URI) to the clause in the document resource
representing the standard.



2.4 Pattern Representation

The Manchester syntax rendering for the concept Standard are illustrated below:

Class: Standard

EquivalentTo:

(hasDomainScope some DomainScope)

and (prescribesGuideline some Guideline)

and (hasDescriptionDocument min 1 owl:Thing)

SubClassOf:

isEnforcedBy min 0 ProcessEnforcingStandar

Note that in the definition of a standard, we require that it includes the scope
of the domain, guidelines and the description document that informally defines
the standard.

Figure 1 illustrates the graphical representation of SEP 2 3.

Fig. 1. Graphical Representation of Standards Enforcer Pattern (SEP)

2.5 Consequences

The pattern can be applied to use cases in all those domains where a standard
is enforced to regulate processes. The main advantage of this pattern is that it
provides the capability to link processes, operations, activities and services to

2 The OWL ontology for the pattern is available at http://purl.org/biomass/SEP
3 Graphical representations of the pattern in this paper have been produced using a

trial version of the Maestro edition of TopBraid Composer.



their governing standards in a generic and “compositional” manner. In some sce-
narios it is possible that a process or an operation does not enforce all prescribed
guidelines but enforces atleast some. The pattern accounts for that through the
definition of the process enforcing the standard.

2.6 Example usage: Algal Biomass Domain

As an exemplifier for SEP, we present a use case from the domain of algal biomass
production. Figure 2 depicts the application of SEP to an ontology that models
algal biomass production. The “Minimum Descriptive Language”(MDL) stan-
dard4 proposed by the Algal Biomass Association is enforced by the production
operation. MDL recommends a set of descriptive metrics to uniformly charac-
terise the analysis of large scale algal operations. In this use case, the ontology
defines the concepts and relationships for the operation and incorporates SEP
by enforcing a guideline for measuring Carbon input to the operation.

Fig. 2. Graphical Representation of SEP as applied to the domain of algal
biomass production

3 Summary

SEP provides a mechanism to ontologically declare the conformance of a process
with one or more standards. The pattern is flexible and compositional. It can be
exploited to include few or more guidelines from multiple standards and can be
easily combined with other patterns.

4 http://www.algalbiomass.org/

http://www.algalbiomass.org/
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Abstract. In this paper we present the Reactor Pattern to enable the
modelling of processes that consume inputs and produce outputs un-
der specific environmental conditions and on being triggered by certain
events. Reactor pattern is a content ontology design pattern and is espe-
cially targeted towards modelling reactive processes with a “black box”
view of the process.

1 Introduction

Many scenarios in the engineering, manufacturing and biotechnologies sectors
employ “reactive” processes, usually carried out in a closed system, e.g., a biore-
actor in which a chemical process is carried out, which involves organisms or
biochemically active substances derived from such organisms. Such processes
consume inputs and produce outputs in a controlled environment and on being
triggered by certain events. The purpose of the reactor pattern is to enable the
ontological modelling of such reactive processes in a generic way across multiple
domains. The reactor pattern is a content design pattern and provides ontologi-
cal placeholders for input and output parameters, environmental conditions and
events. The pattern exploits other CPs for the definition of certain entities.

2 Reactor Pattern

2.1 Intent

The remit of the reactor pattern is to enable the modelling of processes that
are reactive, consume inputs and produce outputs under specific environmental
conditions a.k.a. constraints and on being triggered by certain events. Reactive
processes are parametric where the governing parameters are process inputs and
outputs. The pattern can be instantiated to provide a knowledge level solution
to the problem of capturing parametric process related information in a domain
independent way.

∗ Principal and corresponding author



2.2 Competency Questions:

– What are the “types” of inputs consumed by a certain process?
– What are the “types” of outputs produced by a certain process?
– What are the values of parameters for a certain process?
– What is the measurement criteria for a specific parameter?
– What environmental conditions need to hold for the process to get activated?
– Which event triggers a specific process?

2.3 Some Conceptual Elements

– Process: placeholder for a process. The concept covers the definition of a
generic process.

– ParametricProcess: placeholder for a process governed by parameters.
– ReactiveProcess: a process specialising from ParametricProcess. Note

that in our abstraction, a reactive process needs to explicitly define at least
one input and output.

– ProcessParameter: an overarching entity representing parameters consumed
and produced by the process. The concept extends from Parameter defined
in the Parameter1 CP.

– InputParameter: a specialisation of the ProcessParameter representing the
input parameter. A process can consume several inputs.

– OutputParameter: a specialisation of the ProcessParameter representing
the output parameter. A process can produce several outputs.

– EmvironmentalCondition: an entity representing environmental conditions
governing the activation of the process. The condition may be specified as a
SWRL rule2. There can be several environmental conditions for a process.

– Event: an event that triggers the process.
– hasEnvironmentalCondition: a relation between the environmental condi-

tion and the process.
– triggeredBy: a relation between the process and the environment.
– definesCondition: a relation between, EnvironmentalCondition and one

or more conditions it enforces.

It is worth noting that we explicitly abstract from providing further details on
how the environmental conditions are represented or how the parameter mea-
surements are defined. These are not part of the pattern definition. Well defined
existing vocabularies such as the LODE ontology3 for modelling events and the
QUDT vocabulary4 for measurement units should be exploited to provide defi-
nitions for these concepts.

1 http://www.ontologydesignpatterns.org/cp/owl/parameter.owl
2 http://www.w3.org/Submission/SWRL/
3 http://linkedevents.org/ontology/
4 http://qudt.org/1.1/vocab/dimensionalunit

http://www.ontologydesignpatterns.org/cp/owl/parameter.owl


2.4 Pattern Representation

The core concept in the pattern is a reactive process, parameterised with inputs
and outputs. A Manchester syntax rendering of the concept is illustrated below.

Class: ReactiveProcess

EquivalentTo:

ParametericProcess

and (hasInputParameter some InputParameter)

and (hasOutputParameter some OutputParameter)

and (triggeredBy some Event)

SubClassOf:

hasEnvironemntalCondition min 0 EnvironmentalCondition,

ParametericProcess

Figure 1 depicts the graphical representation of the reactor pattern 5 6.

Fig. 1. Graphical Representation of Reactor Pattern

2.5 Consequences

The main advantage of this pattern is that its provides ontological modelling
capabilities for the inputs, outputs and environmental conditions that govern
reactive processes across several domains, independent of modelling details of
the actual reactor involved. This effectively caters for exposing a black box view
of the process, which is very desirable when querying the model for consumption
and production logistics of the process.

5 The OWL ontology for the pattern is available at
http://purl.org/biomass/ReactorPattern

6 Graphical representations of the pattern in this paper have been produced using a
trial version of the Maestro edition of TopBraid Composer.



2.6 Example usage: Algal Biomass Domain

As an exemplifier for the reactor pattern, we present a use case from the domain
of algal biomass. The set of inputs to the process of algal biomass cultivation are
carbon, water, total infrastructure area, total energy, nutrients, consumables and
labour. Possible outputs from the process are algal constituent products, indirect
algal products, uncaptured gas emission, liquid waste output, solid waste output.
Some environmental conditions that must hold for the algae to be harvested are,

– The water must be in a temperature range that will support the specific
algal species being grown.

– The pH range for most cultured algal species should be between 7 and 9,
with the optimum range being 8.2-8.7.

The event that triggers of the algae cultivation is the addition of the source
culture to the growing containers or reactors. Figure 2 depicts the application
of the reactor pattern.

Fig. 2. Graphical Representation of reactor pattern for modelling the algal cul-
tivation process

3 Summary

The reactor pattern provides a building block for the ontological modelling of
reactive processes. The pattern can be used across domains in scenarios where a
reactor is used to run processes that consume inputs to produce outputs under
controlled environmental conditions and when triggered by certain events. As
an example, the pattern has been applied to the algal biomass domain to model
the reactive process of algae cultivation.
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