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Preface 

Two major challenges to the use of digitally encoded biomedical data for improving 

health are its distributed nature and lack of harmonization [1]. Semantic technologies, 

including ontologies, terminologies, Uniform Resource Identifiers (URIs), and the 

Resource Description Framework (RDF), are key to addressing these challenges. By 

enabling the precise identification of entities and the computable encoding of formal 

class definitions, semantic technologies enable large-scale semantic normalization of 

distributed biomedical data sets.  

The Joint Workshop on Semantic Technologies Applied to Biomedical Informatics and 

Individualized Medicine, co-located with the 11th International Semantic Web 

Conference, brought together researchers, developers, and practitioners who are actively 

applying semantic technologies and biomedical data to improving health. Five peer-

reviewed papers describing original research in this area were presented at the 

workshop. 

 Corrigan, Soler, and Delaney present incremental progress of the "Translational 

Medicine and Patient Safety in Europe" project, funded by the EU FP7. The 

focus of the work is a proof of concept infrastructure to support the creation of 

actionable knowledge within the electronic health record for clinical decision 

support. The infrastructure is based on evidence from new research findings 

coupled with contemporary clinical knowledge and practice.  The focus of this 

work is the use of methods from ontology development and statistics to create a 

consistent model of the evidence-of-association between the clinical and 

diagnostics cues. 

 McCusker et al. present a novel and intriguing architecture called the “Global 

Health Explorer” for processing Twitter "tweets" to identify the occurrence of 

terms from biomedical ontologies for the purpose of visual analysis and data 

exploration. Novel features of the architecture include an approach the authors 

term “Ontology-as-API”, and the integration of a high dimensional data 

visualization tool called the Data Cube Explorer. This paper highlights how 

ontologies and terminologies perform a critical role in enabling biomedical 

Natural Language Processing (NLP) algorithms to richly annotate biomedical 

and entities and relationships. The approach may compliment other public health 

data sets such as World Health Organizations' Global Health Observatory 

(GHO) dataset and the ReDD-Observatory.  

 De Waard and Scheider propose the use of an ontology model called ORCA to 

enable better representation of biomedical argumentations. ORCA is a 

lightweight ontology to represent observational and interpretational assertions in 

scientific documents. The paper presents a brief description of the ontology, the 

motivation behind it, related work, and a few biomedical applications. This 

paper is highly relevant since the reliability and attribution of biomedical results, 

data, and information is a critical issue in research. Moreover, the research 



highlights an important use of ontologies to model scientific discourse and 

evidence with the vision of creating computable chains of claims and evidence 

that explicitly model the consensus, disagreement, and questions necessary for 

advancing science in a given field.  

 Baranya et al. present an approach for improving medical visualization of 

semantically annotated CT-Images. The approach combines multiple biomedical 

ontologies and image characteristics to define what is referred to as a Transfer 

Function (TF). Essentially a TF maps volumetric data into optional properties, 

and in general, is not easy to define. The proposed framework--ANISE--is a 

rule-based system that comprises multiple annotators and rules engine to for 

defining the TFs based on semantic annotations using ontologies such as FMA 

and RadLex.  

 Chniti et al. describe a novel framework for writing business rules using a 

structured language that should be usable by domain experts while ensuring that 

the rules involve entities from a formal ontology can be executed over an object-

oriented decisions support system. Rules authored in natural language are 

translated to IRL executable rules. From there, there are BOMs, XOMs, Java 

objects and WODMs. 

Many thanks to all our contributors and participants at SATBI+SWIM 2012 and also the 

Programme Committee whose feedback has resulted in a fruitful collection of papers, 

providing added value to current leading edge research. 

Also, a special gratitude to Dr. Joanne S. Luciano and Dr. Eric Neumann for accepting 

our invitation and participate as keynote speakers of SATBI+SWIM 2012. 
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Formalising Uncertainty: An Ontology of Reasoning,
Certainty and Attribution (ORCA)

Anita de Waard1 and Jodi Schneider2
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2 Digital Enterprise Research Institute, National University of Ireland

jodi.schneider@deri.org

Abstract. To enable better representations of biomedical argumentation over
collections of research papers, we propose a model and a lightweight ontology
to represent interpersonal, discourse-based, data-driven reasoning. This model is
applied to a collection of scientific documents, to show how it can be applied
in practice. We present three biomedical applications for this work, and suggest
connections with other, existing, ontologies and reasoning tools. Specifically, this
model offers a lightweight way to connect nanopublication-like formal represen-
tations to scientific papers written in natural language.

Keywords: scholarly communication, ontologies, nanopublications

1 Introduction

Biological understanding is created by scientists collaboratively working on under-
standing a (part of a) living system. To contribute knowledge to this collective under-
standing, biologists perform experiments and draw observational and interpretational
assertions about these models [19]. In the social and linguistic practice of scientific
publishing, the truth value (the confidence in the certainty of a statement), the knowl-
edge source (who stated it) and basis (what was the statement based on) of an assertions
are generally indicated through some linguistic expression of certainty or attribution, a
‘hedge’, of the type ‘These results suggest that [A causes B]’, or ‘Author X implied that
[A causes B]’, or, in case a proposition is presumed true, the unmodulated ‘[A causes
B]’. In this way, biological papers provide explicit truth evaluations of their own and
other authors’ propositions and these evaluations and attributions are a core component
of shared knowledge constructions.

The goal of the present work is to provide a lightweight, formal model of this knowl-
edge value and attribution, to assist current efforts that offer formal representations of
biological knowledge and tie them more directly to the natural language text of sci-
entific papers. Formal knowledge representations (and their corresponding ontologies)
generally consist of statements of the system ‘A causes B’, or ‘A is-a B’, that do not
leave room for doubt, dispute, and disagreement. But if we want to model the process
(as opposed to the final consensus of outcome) of science, we need to trace the her-
itage of claims. Very often, claims can be traced to interpretations of data – so to model
claim-evidence networks [6,15] we need to allow for links from claims to non-textual
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elements such as figures and provenance trails, to trace the attribution of claims to peo-
ple, organizations, and data processes [8].

Our model is based on an analysis of scientific argumentation from different fields:
linguistics, sentiment analysis and genre studies. We have developed a lightweight on-
tology, dubbed ‘ORCA’, the Ontology of Reasoning, Certainty and Attribution, for
making RDF representations of the certainty and source of claims. The goal of this
model is to assist and augment other efforts in bioinformatics, discourse representation
and computational linguistics with a lightweight way of representing truth value, basis
and source. In this paper, we present our model and show different scenarios for the
practical application of this work. We provide a brief overview of related projects, and
sketch our thoughts on possible alignments with complementary ongoing efforts.

Following this introduction, in Section 2 we discuss our proposal for representing
the strength and source. Then in Section 3 we discuss related work, followed by some
realistic application areas in Section 4. We conclude the paper with a discussion of next
steps in Section 5.

2 Our proposal

2.1 Model

In science, the strength and source of claims are important. Attribution is particularly
central in science, yet existing models of provenance do not capture some simple, key
distinctions: is the work cited or referred to done by the author or by another person? Is
that work backed by data or by inference? Further, the strength of claims is of particular
concern, especially during the reviewing process. It is common for authors to need to
add qualification to their words, in order to get through the publication process. Even
titles must appropriately indicate this in order to get a paper published. For instance, the
author proposing the title “miRNA-372 and miRNA-373 Are Implicated As Oncogenes
in Testicular Germ Cell Tumors” was instructed to softens the claim by saying that data
is the source, making the (un)certainty of this result clearer. To get the paper published,
it had to be retitled: “A Genetic Screen Implicates miRNA-372 and miRNA-373 As
Oncogenes in Testicular Germ Cell Tumors”.

Following concepts in linguistics and computational linguistics (for a full overview
of literature, see [7]) we identify a hedged or attributed clause as a Proposition P that
is modified by an evaluation E that identifies the truth value and attribution of P. Based
on work in linguistics, genre studies and computational linguistics, we identify a three-
part taxonomy of epistemic evaluation and knowledge attribution which covers the most
commonly occurring types of knowledge attribution and evaluation in scientific text, as
shown in the table. This taxonomy is summarized in Figure 1.

From our corpus study [7] it appeared that for all biological statements or ‘bio-
events’ [18] a certain value of E (V, B, S) can be found without much difficulty. Lin-
guistic markers for a lack of full certainty (i.e. where Value ¡ 3) include the use of
hedging adverbials and adjectives (‘possibly’, ‘potential’ etc), the use of modal auxil-
iary verbs (‘might’, ‘could’) and, most frequently, the use of reporting verbs (‘suggest’,
‘imply’, ‘hypothesize’, etc.). As is clear from the examples in Figure 1, the absence or
presence of a single linguistic marker identifies a value in each of the three dimensions:
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Concept Values Example

Value 0 - Lack of knowledge  The mechanism of action of this system is not known

1 – Hypothetical: low certainty  We can hypothesize that…
2 – Dubitative: higher likelihood but short
of complete certainty  These results suggest that… 

3 – Doxastic: complete certainty, reflecting
an accepted, known and/or proven fact.

REST-FS lacks the C-terminal repressor domain that
interacts with CoREST…

Basis R – Reasoning  Therefore, one can argue…

D – Data  These results suggest…

0 – Unidentified  Studies report that…

Source A - Author: Explicit mention of
author/speaker or current paper as source  Figure 2a shows that…

N - Named external source, either explicitly
or as a reference

…several reports have documented this expression [11-
16,42].

IA - Implicit attribution to the author  Electrophoretic mobility shift analysis revealed that…

NN – Nameless external source …no eosinophil-specific transcription factors have been
reported…

0 – No source of knowledge transcription factors are the final common pathway
driving differentiation

Fig. 1. Taxonomy

– ‘These results suggest’: Value = 2, Source = Author, Basis = Data;
– ‘REST-FS lacks the C-terminal repressor domain that interacts with CoREST’:

Recommended Value = 3, Source = Not specified; Basis = Not specified.

2.2 Ontology

We then model this in a lightweight ontology, ORCA – the Ontology of Reasoning,
Certainty and Attribution. From the taxonomy, we have three core aspects: the source
of knowledge, its basis, and its certainty. Our ontology should allow us to associate
values for each of these. Thus we model them as classes and add associated Object
Properties to add flexibility of expression. Controlled values for the taxonomy (e.g.
“Named External Source”) are represented as instances. Further, we induce an order
on the certainty values, using transitive properties, to make it evident that, e.g. “Hypo-
thetical Knowledge” is less certain than “Dubitative Knowledge”. We considered using
SKOS3 to induce this order; however, skos:broaderThan is not appropriate, and skos
Collections add an unwanted layer of complexity.

A clear application of this work is to support and help underpin the relations be-
tween formal knowledge representation such as nanopublications, and scientific text. A
recent paper in Nature Biogenetics argues that

Some argue that the rhetoric in articles is difficult to mine and to represent
in the machine-readable format. Agreed, but frankly, why should we try? All
nanopublications will be linked to their supporting article by its DOI. [17]

We think that adding a layer of epistemic validation with knowledge attribution en-
ables a ‘good enough’ representation of the first level of scientific argumentation: the

3 http://www.w3.org/TR/2009/REC-skos-reference-20090818/

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
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statement and citation of claims. “Frankly, we should try” to do this, since this creates a
superior representation of scientific argumentation, and as a bonus, allows us to connect
nanopublications at a much more fine-grained level that merely the DOI of the paper
that contains the statement. By adding a markup that contains the triple representation
of the bioevent, augmented by the ORCA values, an evaluated and traceable network of
knowledge can be created within and between documents, that can be represented and
reasoned with using the same tools and utlilising the RDF-based standards that are cur-
rently being developed for other semantic representation projects such as OpenBEL4,
OpenPhacts [25], Eagle-I5, and others.

As an example, in another paper on nanopublications, Clare et al (2011) [5] propose
that the route to a scientific nanopublication can be facilitated by enabling the anno-
tation of scientific notes or blogs at multiple levels of detail. Specifically, the authors
propose that an author annotates a statement such as ‘isoproterenol binds to the Alpha-2
adrenergic receptor’ with a triple, linking the concepts ‘isoproterenol’, ‘Alpha-2 adren-
ergic receptor’ and ‘binds’ to the CHeBI, UniProt and NCI ontologies, respectively.

Enriching this model, we propose to add an epistemic evaluation to a similar state-
ment: ‘These data demonstrated that [...] isoproterenol modulated the binding charac-
teristics of alpha 2-adrenergic receptors’, which we would represent as follows:

@prefix orca: <http://vocab.deri.ie/orca#> .

"isoproterenol modulates binding characteristics
alpha 2-adrenergic receptors"
orca:hasSource orca:AuthorExplicitly ;
orca:hasBasis orca:Data ;
orca:hasConfidenceLevel orca:DoxasticKnowledge .

This provides a formal representation of the scientifically relevant aspects–the source
of the statement, its basis, and its confidence level; or ORCA could be combined with
annotation ontologies. This opens up new possibilities, beyond existing work, as we
now discuss.

3 Related Work

There are a wealth of efforts in various fields that aim to represent the argumentation
of (biomedical) scientific text, which our work builds on and which we hope this lit-
tle ontology can support. We will only briefly mention efforts pertaining to scientific
discourse efforts and computational linguistics - for a more detailed overview, see [7]).

Semantic Scientific Discourse Regarding semantic scientific discourse work, seminal
efforts by the Knowledge Media Institute led by Buckingham Shum aimed to represent
scientific sense making and offered ScholOnto, a scientific argumentation ontology, see
e.g. [3,13]. In addition to SWAN, Clark et al. and the Annotation Ontology [4] which

4 http://www.openbel.org/
5 https://www.eagle-i.net/

http://www.openbel.org/
https://www.eagle-i.net/
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aims to capture networks of hypotheses and evidence; this work is currently being com-
bined with work on the Open Annotation framework and experiencing a lively series of
developments to enable the creation of a robustly scalable framework for supporting ar-
gumentation modeling on the semantic web. Other efforts include SALT [10,11,9], the
ABCDE format [1], and ontologies such as CiTO [21] are meant to create environments
for authoring and citing specific portions of papers (see also [6] for a summary of these
efforts). We believe our work can complement all of these efforts. ORCA can easily be
used, alone or in combination with annotation ontologies, in order to link evidence to
its source, basis, and confidence level.

Biomedical Informatics Several biomedical informatics systems categorize evidence;
for a review, see [2]. We see the modularity as a key advantage: while the Gene On-
tology6 indicates evidence codes for biological inference, these cannot be used without
importing the entire ontology. By contrast, domain ontologies could easily incorporate
a lightweight, modular RDF ontology such as ORCA. Compared to the Evidence Code
Ontology7, ORCA is more suitable for annotating discourse: for instance, it handles
citations to external sources and explicitly indicates confidence levels.

Computational Linguistics Within computational linguistics a number of efforts have
focused on detecting the key components and salient knowledge claims in scientific
papers, starting with the seminal work of Teufel [22] who developed a system for de-
scribing and set of tools to find ‘argumentative zones’ in scientific papers. Separate
efforts to identify epistemically modulated claims and bioevents started with the work
of Light et al [14] among (many) others (e.g. [16,23,24]; for a more complete literature
overview, see [7]).

4 Possible applications

Improving the evidence behind drug product labels Drug product labels represent drug-
drug interactions to help practitioners appropriately prescribe and avoid adverse drug
events [2]. Representing the currently known information from the literature is impor-
tant, yet the certainty of this knowledge varies considerably. Thus, drug-drug interac-
tions are another important use case for ORCA. Information that two drugs interact
should be qualified by an indication of what data backs this finding. The level of cer-
tainty is indicated in the literature, and representing this would allow different actions
to be taken as appropriate. For frail patients, even suspected, unverified drug-drug inter-
actions, could be avoided, as ongoing research confirms the circumstances and certainty
of this information. Experimental treatments might accept suspected bad interactions,
up to some higher level of certainty.

Data 2 Semantics Use Case As another potential use case, the Data2Semantics project8

aims to build a semantic infrastructure to connect (and in future, semi-automatically de-
tect and reconstruct) chains linking clinical recommendations to clinical summaries to

6 http://www.geneontology.org/
7 http://www.evidenceontology.org/
8 http://www.data2semantics.org/

http://www.geneontology.org/
http://www.evidenceontology.org/
http://www.data2semantics.org/
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the underlying evidence. Still missing from the lightweight ontology being explored by
this project is a formalization of the strength and attribution of these clinical recom-
mendations offering another possible use of ORCA. Specifically, we imagine adding
an ‘ORCA-layer’ (either during authoring, or post hoc), to the recommendations pro-
vided in clinical trials, so that these can be assessed and directly cited from clinical
guidelines. One can then imagine a semantic representation of the clinical finding itself
(augmented with an ORCA-structured clause) that can be automatically mined to pre-
populate a proposed set of guideline recommendations, that merely need to be checked
off my an editor, and can be constantly updated.

Enriching semantic search As a further application of our work is to enrich seman-
tic search platforms: systems that allow search and retrieval subject-object-relationship
triples. For instance, MedIE9 is a triple-based search platform that can be used to find
biomedical correlation sentences. But this search does not distinguish between fact and
perhaps-fact – nor between novel information and well-known information. We can
imagine a number of questions a user might want to answer:

– Give me all completely verified facts about X
– Tell me who found out what about X
– Show me what X is based on?
– Show me all claims which an author says are true, based on their own data. (Such

data-based claim knowledge updates have Value = 2 or 3, Basis = Author, and
Source = Data; they can be found with using state-of-the-art semantic parsing [20].)

By representing information with ORCA, semantic search engines such as MedIE
could provide a better answer to these questions.

5 Next steps for using ORCA

We envision a mixed-initiative approach for applying ORCA to scientific papers. A
text mining system (such as mentioned above) would present an author with a tentative
list of ORCA-enhanced claims, i.e. a list of the bioevents or key claims in a paper
along with a suggested ORCA assignment of the ‘veracity value’ for each claim. The
author (or editor or curator) would then validate both the claim and its ‘veracity value’,
resulting in a set of claims enhanced with ORCA ‘veracity values’. Through concept
networks such as those proposed in nanopublications or systems such as BEL10 articles
can then be connected by and enriched with these knowledge networks.

Thus, we believe that future collaborations between efforts in semantic web tech-
nologies, bioinformatics and computational linguistics can help develop a future where
authors can interact with systems that acknowledge and identify their core claims. Sim-
ilar mixed-initiative systems have already been used to automatically highlight phrases
that could be semantically annotated [12]. In particular, we have taken some prelimi-
nary steps to identify ‘Claimed Knowledge Updates’ - a special case of a bioevent that
is claimed by the author and based on data - using state-of-the-art semantic parsing [20].

9 http://www.nactem.ac.uk/medie/
10 http://openbel.org

http://www.nactem.ac.uk/medie/
http://openbel.org
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One potential roadblock to such a system is that, at least at first, the system output
will need to be corrected, which means another step in submission and editing for this
already beleaguered author. Another serious issue is that the current system of provid-
ing slightly vague, hedged claims serves a social purpose: authors prefer to think that
they have made many improvements on the state of the art, and as long as they hedge
their statements appropriately, reviewers will let them get away with it. If authors have
to make the validity/strength of the claim explicit at the authoring stage, this might
introduce a precision in applying truth value that makes all parties uncomfortable. In
fact, many reviews mainly concern the degree or strength of the claims made, with the
addition of hedging being a frequent demand.

Yet, given the fact that scientific knowledge continues to grow at a dizzying pace,
it seems inevitable that sooner or later we will need to represent more exact represen-
tations of that knowledge across collections of papers. Widespread use of systems for
marking the value, basis, and source of the hedge will help to represent the richness of
this knowledge. And there is no particular reason why this model would be limited to
the life sciences. As a succinct, simple, and interoperable ontology in that can be used
in combination with any RDF-based system, we hope that ORCA can contribute a small
building block to what will prove, undoubtedly, to be a collective effort.
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20. Á. Sándor and A. de Waard. Identifying claimed knowledge updates in biomedical research
articles. In Proc. of the Workshop on Detecting Structure in Scholarly Discourse, pages
10–17, 2012. Association for Computational Linguistics.

21. D. Shotton. CiTO, the citation typing ontology. Journal of Biomedical Semantics, 1(Suppl
1):S6, 2010.

22. S. Teufel. Argumentative Zoning: Information Extraction from Scientific Articles. Ph.D.,
University of Edinburgh, Edinburgh, Scotland.

23. P. Thompson, G. Venturi, J. McNaught, S. Montemagni, and S. Ananiadou. Categorising
modality in biomedical texts. In Proc. of the LREC 2008 Workshop on Building and Evalu-
ating Resources for Biomedical Text Mining, pages 27–34, 2008.
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Abstract. The development of decision support tools that assist clinicians 
effectively practice evidence-based-medicine in primary care is dependent 
on the development of formal models of clinical knowledge. These formal 
models are a pre-requisite for bridging the knowledge gap that exists 
between generation of research knowledge and its application in clinical 
practice. The TRANSFoRm project has developed formal ontological 
models to represent diagnostic clinical knowledege providing a basis for 
future development of diagnostic decision support tools. The conceptual 
validity of the developed models has been tested through representation of 
diagnostic clinical evidence obtained from literature sources and 
International Classification of Primary Care Second Edition (ICPC2) coded 
clinical evidence captured as part of  the Transition project. The models 
provide a basis for future development of decision support tools as part of 
the on-going TRANSFoRm project. These tools can assist clinicians to 
formulate and quantify potential diagnoses based on diagnostic cues 
extracted from patient electronic health records. 

Keywords: Ontology, Semantic Web, Evidence-Based-Medicine, Electronic 
Health Record, Decision Support 

1 Introduction 

The application of systematic and rigorous approaches to diagnosis through access to 

the latest available clinical research has long been advocated as one way of contrib-

uting to improving patient safety in family practice. The term ‘evidence based medi-

cine’ has been widely associated with such approaches [1]. The effective practice of 

evidence based medicine implies the existence and use of an up-to-date repository of 

clinical knowledge. This can be used for interpretation of the diagnostic cues associ-

ated with a presenting patient (whether or not this evidence be in electronic format or 

written) [2]. The challenges in keeping a repository of diagnostic information up to 
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date are similar to the problems of keeping evidence of the effectiveness of treatments 

up to date. This manifests itself in a delay between the generation of new clinical 

knowledge from research activities and the timely dissemination of this knowledge 

into actual clinical practice [3]. Translational medicine advocates the quicker dissem-

ination of research knowledge to clinical practice. It studies the pathways and mecha-

nisms that may optimally provide for the translation of research knowledge into ac-

tionable knowledge in clinical practice [4]. One core area highlighted in the study of 

translational medicine and evidence based medicine has been the need for the devel-

opment of more formal shared models and coding of clinical data [5]. This can enable 

quicker dissemination of actionable knowledge via electronic medical record systems. 

This paper describes how the TRANSFoRm project (‘Translational Medicine and 

Patient Safety in Europe’) is working to develop such formal models provided 

through a dynamically updateable ontology of coded clinical evidence that will sup-

port deployment as part of a broader translational medicine platform.  

2 The TRANSFoRm Project 

The TRANSFoRm project is a five year EU FP7 funded project involving the cooper-

ation of over 20 academic and industry based European research partners. The aim of 

TRANSFoRm is to develop and evaluate an electronic infrastructure for the ‘learning 

healthcare system’ to support both research (epidemiology and clinical trials) and 

knowledge translation via primary care electronic health record systems [6]. This 

involves the development of shared models and service infrastructure which allow for 

the efficient conduct of research. This is coupled with the delivery of decision support 

tools based on clinical evidence generated from the same electronic sources of prima-

ry care data.  

2.1 Knowledge Representation in TRANSFoRm 

A core element of TRANSFoRm is the development of shared models that allow for 

representation and exchange of the three distinct types of knowledge: research 

knowledge, routine healthcare knowledge and actionable knowledge. This relation-

ship is shown in figure 1. 

 

Fig. 1. – Conceptual relationship of Clinical Knowledge types in TRANSFoRm  
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From a decision support perspective the development of a model of actionable clinical 

knowledge is the core requirement. Actionable knowledge is knowledge that has been 

distilled from either research knowledge (generated from the conduct of controlled 

trials and epidemiological studies) and/or from routinely collected healthcare data. It 

is collected as part of consultations with patients and captured in electronic sources of 

patient data (such as electronic health records).  This requires the application of data-

mining and statistical analysis techniques to aggregated sources of electronic patient 

data to detect trends or patterns in the underlying data that may be used to infer diag-

nostic association rules. These are then used to construct computable clinical guide-

lines that can be deployed using decision support tools as part of clinical consultations 

with patients.  

2.2 The Transition Project 

The Transition project has demonstrated the feasibility of generating computable 

actionable knowledge from electronic sources of primary care patient data [7]. A 

more detailed description of work and methodology used as part of the Transition 

project has been described elsewhere [8].  

 

The Transition project has utilized the International Classification of Primary Care, 

second edition (ICPC2) as a clinical classification to provide for the capture of patient 

data during consultations in family practice in four different countries [9]. The capture 

of the unambiguous clinical meaning of patient data as recorded in the electronic 

health record has been recognized as a requirement in the development of formal 

models of clinical knowledge [10]. A key conclusion of the Transition project was 

that not only was it feasible to generate actionable knowledge from coded sources of 

primary care patient data, but that the associations and calculated quantifications of 

primary care diagnostic cues to diagnostic outcomes were consistent across independ-

ent geographic regions. 

 

The Transition project has captured patient data from four countries and quantified 

the association of ICPC2 coded diagnostic cues to specific diagnostic outcomes. This 

is presented as calculated likelihood ratios and confidence intervals within the context 

of a presenting patient reported reason for encounter and geographic region. An ex-

ample subset of analysis of the association of the symptom ‘cough’ with ICPC2 coded 

outcomes in the context of the presenting reason for encounter ‘cough’ for patient 

data collected in the Netherlands is shown in figure 2. The strength of the association 

is categorized as ‘weak’, ‘strong’ or ‘not significant’ based on the relative value of the 

likelihood ratio and the width of the associated confidence interval (the methodology 

and associated calculations are fully described by the Transition Project [8]). 
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3.1 Ontology Construction Methodology 

Many formal methods have been proposed for the design, implementation and valida-

tion of ontologies [15-16].  The clinical evidence ontology will be used by a diagnos-

tic decision support application allowing diagnostic workup of potential differential 

diagnoses to consider based on a presenting patient reason for encounter. A functional 

approach and definition of a decision support functional specification has driven on-

tology construction. The expression of functional requirements in the form of infor-

mal ontology ‘competency questions’ was selected as a suitable methodology. This 

allows formulation of competency questions and their expression using ontology que-

ry languages such as SPARQL for testing and validation of defined clinical scenarios. 

3.2 Identification of Core Ontological Concepts 

A review of the Transition project data identified core ontological concepts that need 

to be represented in the model. A subset of these showing Transition project defini-

tions for the most important ones and associated examples is shown in table 1. 

Table 1. Identified Core Ontological Concepts 

General Concept 

Name 

Description and Transition 

Data Example 

Reason for  

Encounter 

 

An agreed statement of the reason(s) why a person enters the 

health care system, representing the demand for care by that 

person. The reason for encounter should be recognized by 

the patient as an acceptable description of the demand for 

care. E.g. Cough (as a reason for encounter) 

 

Diagnosis 

 

Formal statement of the providers understanding of the pa-

tient’s health problem, representing the establishment of an 

episode of care. It may be a symptom diagnosis or a disease 

diagnosis. E.g. Chronic Bronchitis 

 

Diagnostic Cue 

 

The symptoms, complaints, objective signs, and/or test re-

sults essential for labeling a health problem with a specific 

diagnosis. E.g. Cough (as a symptom) 

 

Quantification 

 

A quantifiable measure of the association of a diagnostic cue 

to the presence or absence of a particular diagnosis. E.g. A 

calculated likelihood ratio value (positive or negative) and 

associated confidence intervals 

 

Evidence Population 

 

A concept capturing the demographic or population charac-

teristics from which a particular quantification was obtained. 

E.g. Sex, age, ethnicity or  country 
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3.3 Construction, Population and Hosting Model of Evidence 

An ontology of clinical evidence has been constructed for TRANSFoRm using Proté-

gé version 4.1 based on Web Ontology Language (OWL) and Resource Description 

Framework Schema (RDFS) ontology languages [17-18]. In order to support future 

development of the decision support tool and to allow for dynamic population of on-

tology data from analysis done on electronic sources of patient data, the ontology has 

been deployed to and hosted using the Sesame platform [19]. This provides an open 

source triple-store backend that has compared favorably in performance tests with 

other available solutions [20]. It also provides a platform for development and testing 

of ontology queries using Simple Protocol and RDF Query Language (SPARQL) 

queries to test the conceptual completeness of the ontology design and the accuracy of 

generated results. The Transition analysis data for the symptom ‘cough’ was then 

manually populated into the ontology. 

3.4 Testing and Validating the Model of Evidence 

Informal competency questions were translated to formal SPARQL queries to test that 

all required clinical questions could be expressed using the ontology ensuring concep-

tual completeness. All generated outputs to those queries were checked for consisten-

cy with respect to the original Transition data that was modeled. A sample clinical 

competency question is: identify the diagnoses for which the symptom X is a strong 

predictor in the population Y?  The formal equivalent query constructed to test for the 

symptom instance ‘cough’ in the context of the population instance ‘Netherlands’ and 

the associated test result is shown in table 2.  

Table 2. Sample SPARQL Formal Query and Results 

Formal SPARQL Query Result (Concept Instances) 

SELECT ?anyDiagnosis  

WHERE {Cough hasQuantification 

?anyQuantification. 

?anyQuantification 

hasPosLREvidenceStrength "Strong 

predictor"^^xsd:string. 

?anyQuantification 

hasEvidenceCountry Netherlands. 

?anyQuantification 

hasQuantificationDiagnosis 

?anyDiagnosis.} 

Cough 

AcuteBronchitis 

URTIHeadCold 

AcuteLaryngitis 

Pneumonia 

WhoopingCough 

ChronicBronchitis 
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The query result is correct with respect to the original Transition project data shown 

previously in figure 2. The characteristics associated with these results could be inves-

tigated further using additional SPARQL queries based on the ontology concepts and 

relationships. The complete list of clinical competency questions developed was suc-

cessfully translated into equivalent formal SPARQL queries and tested against the 

host platform to ensure conceptual validity and accuracy of results against the original 

Transition project data. 

4 Future Work 

The work done to date has focused on development of a back-end model of evidence 

and a hosting platform. Initial work is now starting on building a web based clinical 

evidence service application around this. The web service will support two major 

interfaces: a query interface for asking diagnostic clinical questions to the web ser-

vice, and an update interface to allow for regular update of the ontology evidence as 

generated from data mining and analysis modules applied to aggregated sources of 

primary care data such as the Transition project. The final stage of work will involve 

the development of the actual decision support tool. This tool will be integrated with a 

primary care EHR system to be triggered based on the reason for encounter to collect 

ontologically controlled diagnostic cues. 

5 Conclusions 

The ontology models of general evidence developed as part of TRANSFoRm were 

conceptually descriptive enough to model the ICPC2 based data analysis of the diag-

nostic associations with the symptom ‘cough’ in the context of four separate popula-

tion regions. By carrying out additional data mining and analysis on more diagnostic 

cues it is feasible to develop a full picture of ICPC2 coded diagnostic cues and their 

associations that have been also been quantified using likelihood ratios based on the 

underlying patient data that is population specific. The Sesame platform provides a 

suitable ontology hosting mechanism that TRANSFoRm will utilize to develop a back 

end web based evidence service to provide decision support. This will be based on 

evidence generated from electronic sources of primary care data that will be populat-

ed or changed dynamically as that underlying patient data grows or changes. This is 

consistent with the goal of implementing translational and evidence based decision 

support based on the electronic health record. 
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Abstract. RadLex and Foundational Model of Anatomy (FMA)
ontologies represent anatomic and image characteristics, and they are
commonly used to annotate and describe contents of medical images
independently of the image acquisition method (e.g., CT, MR, or US).
We present ANISE, a framework that implements workflows to combine
these ontologies and image characteristics into Transfer Functions (TFs)
that map volume density values into optical properties. Semantics
encoded in the image annotations is exploited by reasoning processes
to improve accuracy of TFs and the quality of the resulting image.

1 Introduction

In the Life and Health Sciences domains large ontologies have been defined, e.g.,
SNOMED3, MesH4, RadLex5, and Foundational Model of Anatomy (FMA) [9].
These ontologies are commonly applied to encode scientific knowledge through
annotations of concepts, e.g., MeSH terms have been used by curators to
annotate and describe PubMed6 publications and clinical trials published at
the Clinical Trials website7. Knowledge encoded in these annotations as well as
the properties derived from reasoning tasks are used to recovery or discovery
properties of the annotated concepts. In this paper we propose a workflow to
annotate medical images with terms from RadLex and FMA, and illustrate the
benefits of exploiting these annotations during image visualization. We aim at
enriching transfer functions (TFs) with semantics encoded in these annotations
and provide more precise renderings of the volumetric data of a medical image.

A transfer function (TF) maps density values of volumetric data or voxel
into optical properties (e.g., opacity and color) used by rendering algorithms to
produce a final image. TFs allow to pre-classify different tissues in an image, and

3 http://www.nlm.nih.gov/research/umls/Snomed/snomed mail.html
4 http://www.nlm.nih.gov/mesh
5 http://www.rsna.org/radlex/
6 http://www.ncbi.nlm.nih.gov/pubmed
7 http://clinicaltrials.gov/
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II

they are based on existing characterizations of the organs that relate a medical
image acquisition modality, a tissue, and a density range [7]. Nevertheless,
some tissues belonging to different organs may have overlapped densities, and
specifying a TF will normally require a robust segmentation technique and
specialized segmentation processes to produce a precise tissue classification able
to distinguish tissues with overlapped densities. Recently, the problem of tissue
classification by semantically annotating volumetric data has gained attention in
the literature [2, 3, 5, 8]. Rautek et al. [8] present a fuzzy rule-based system that
maps volumetric attributes to visual styles; rules are defined by users without
representing special knowledge about the rendering technique. Gerl et al. [5]
overcomes this limitation and propose a rule-based system for semantic shader
augmentation; this system automatically adds rule-based rendering functionality
to static visualization mappings in a shader program. Although both systems
rely on rule-based systems to characterize TFs, they do not exploit knowledge
encoded in ontologies to improve the quality of the visualization process. Möller
et al. [6] present a technique for annotating and searching medical images using
ontological semantic concepts for retrieving images from a Picture Archiving
and Communication System (PACS); ontologies as FMA and RadLex are
used to retrieve data, however, they are not exploited during visualization or
tissue classification from the image data. Although applications of semantic
annotations have been illustrated, nothing is said about the benefits of using
these annotations and the encoded semantics during the definition of TFs.

We present ANISE (an ANatomIc SEmantic annotator), a framework for
specifying TFs based on semantic annotations. TFs are based on pre-elaborated
semantic annotations of volumetric data which are validated against existing
medical ontologies. ANISE relies on a customized reasoner to infer the bounding
boxes which contain organs or tissues of a given sub-volume area, as well
as its main properties, e.g., density and opacity. Knowledge encoded in the
ontologies contribute to characterize and locating tissues by applying specific
organ selection algorithms; thus, voxels that are not part of the organ of interest
are not considered during the classification process.

This paper contains four additional sections. Section 2 describes ANISE
and Section 3 illustrates the ANISE workflow. Section 4 discusses the observed
results, and we conclude in Section 5 with an outlook to future work.

2 Architecture

Achieving high quality image rendering requires interpreting each intensity
value according to a given tissue. In consequence, a correct representation
of information through semantic annotations should ensure: i) minimal error
tissue classification due to reasoning and inference, and ii) an accurate visual
representation. Figure 1 shows the main components of ANISE: an annotator,
a rule-based system, and a visualization module. The Annotator extends
an image original annotations with terms that encode the properties of the
classified tissues. The rule-based system relies on inference tasks to process
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Ontology e.g.,
RadLex, FMA

Volumetric data
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r1(c1,01), ¬r2(c1,02)->p3(c1,03)

RULES

VISUALIZATION

TF Volume Rendering

ANISE

Fig. 1. The ANISE architecture.

original annotations and derive facts that will be used to annotate an image.
Annotations regarding to visualization methods and anatomic parts are inferred
using Ontology relations (e.g., Subclass) for specific classes (e.g., the Anatomical
Set). Finally, the Visualization module executes visualization algorithms on the
annotated volumetric data.

Annotator: annotates an image with information about: i) resource authoring,
type and identification; ii) acquisition modality; iii) acquisition characteristics
like patient orientation in the image; iv) structural and anatomic elements
presented and identified in the image; v) regions and points of particular interest;
and vi) rendering information. ANISE relies on the following ontologies to extend
original image annotations:

– Foundational Model of Anatomy : FMA allows to describe membership
and spatial relationships among voxels in the volume to infer new facts.
Furthermore, there are terms in this ontology that can be used for annotating
non-anatomical elements, e.g., bounding boxes around particular anatomical
organs or some particular points of interest.

– RadLex : RadLex is an ontology defined for radiologist; it is composed
of terms required to annotate medical images. ANISE relies on RadLex
terms to describe characteristic from the image itself such as modality, and
other acquisition related characteristics that may alter the interpretation
and visualization of an image, e.g., orientation.

Rule-Based System: annotations are used during the inference process to
derive new annotations. First, it analyses the image acquisition characteristics
and correlates body structures of particular interest in order to normalize
information for further processing. A bounding box method is used to model
anatomic information [3]. Then, combining this information with tissue pre-
classification, the inference process is expressed in Probabilistic Soft Logic
(PSL) [1]; this process determines the likelihood for a given tissue to be included
in a particular region. Closely located tissues with similar intensity values are
usually treated as the same values; thus, spatial and anatomic information
is used to discriminate by annotating specific points; segmentation based on
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voxels neighborhood represent these tissues considering the associated semantic
annotations. Ontology classification reasoning tasks are performed with Jena8.
Visualization Module: derived annotations are used by rendering algorithms
to visualize the classified tissues. Partial piece-wise transfer functions are used to
select appropriate color and opacity values and rendering them. Default transfer
functions are only applied on non-annotated voxels and regions.

3 Applying an ANISE Workflow- A Use Case

We illustrate the ANISE workflow in three different datasets (Table 1), to
visualize the FMA term dentition from a CT-Head volume data.

Volume Data Dimensions (voxels) Voxel size (mm) File size (MB)

skewed head.dat 184x256x170 1x1x1 16.0
visible head.dat 512x512x245 1x1x1 128.0
ct head.dat 256x256x113 1x1x2 14.8

Table 1. Datasets used for illustrating the utility of using semantic annotations on
Medical Images. These datasets are available in [10], [11] and [4] respectively.

Figure 2(a),(d),(g) illustrate the rendering of the images applying a simple
TF that maps density values to visualize the tissues that have the same density
that dentition; these tissues are colored in green. Although data were properly
pre-classified, it is not possible to discriminate only dentition by just considering
the corresponding densities, i.e., some other tissue were painted, and it was
not possible further tuning the TF. In this case the density value range for
identifying the dentition overlaps with density value range of other tissues like
bone for example. Nevertheless, if semantic annotations are used in conjunction
with knowledge encoded in the FMA and RadLex ontologies, ANISE can
determine that only the teeth should be colored different than the rest (green
in our example); this is done by selecting appropriate set of points, applying
Normalization rules, and considering the Image Modality taxonomy. Thus,
a better classification for different tissues can be done in an automatic way.

– Image Modality: supports a generic tissue classification process which is
independent on the image modality. The RadLex term used for Tomography
is RID288409 and the term RID10311 (imaging modality) can be reached
by using the SubClass relationship. Further, whenever the image is an MRI
the term RID10312 from the same taxonomy is used to annotate the image,
i.e., terms RID28840 and RID10312 share an ancestor RID10311. Tissues’
density ranges are represented as facts and used during the inference process
in conjunction with these annotations to pre-classify the image voxels.

– Volume format: ANISE current version receives images in raw format,
i.e., data correspond to a sequence of intensity values. This information is
recovered from the attribute format from DCMI10 metadata.

8 http://jena.apache.org/
9 http://purl.bioontology.org/ontology/RID/RID28840

10 http://dublincore.org/documents/dcmi-terms/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Results of running the proposed approach with three different datasets: (a)
skewed head.dat, (d) visible head.dat and (g) ct head.dat. Images (b), (e), (h) results
from rendering without annotation and using a simple TF. Images (c), (f), (i) results
from rendering with the application of rule (1) and a semantically enhanced TF.

– Normalization rules: are used to transform volumes into a uniform scale
considering orientation, voxel size, and modality. Default values are assumed
if they are not given. In our use case, we used the term voxel geometry
RID2903 from RadLex and its ancestors in the subClass branch, i.e., non-
isotropic voxels, near-isotropic voxels, isotropic voxels.

– Dimension: we used the term location (RID39038) from RadLex to represent
header size, and dimensions in x, y and z of the volume.

– Tissue: dentition from FMA is the most relevant term in our use case.

We chose dentition because it is characterized as the tissue with the higher
density value, and the challenge consists on separating the dentition tissue from
tissues around it. PSL rules are used to compute the degrees of membership of a
voxel to the tissue of interest (dentition); it is mainly based on the density value
range. The rules that comprise the rule-based system are as follows; they specify
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TFs that better visualize the tissue of interest:

tissue(X,Y, Z, I)∧ inside(X,Y, Z,R)∧ inOrgan(X,Y, Z, I) → opacity(X,Y, Z).
(1)

where, truth values of opacity(X,Y, Z) are determined by the sum of truth values
of the following predicates:

– tissue(X,Y, Z, I) describes truth values of the voxel X,Y, Z with intensity
I that belong to the objective tissue. This value is defined by:

baseV oxel(X,Y, Z, I) ∧ tissueMap(D, I) → tissue(X,Y, Z, I). (2)

where, baseVoxel(X,Y,Z,I) is a fact; tissueMap(D,I) is a PSL predicate that
assigns to an objective tissue D (e.g., dentition) the probability of the voxel
X,Y,Z belongs to the density value range. Initially a density value range is
specified, and as far as the inference over the annotations are generated, a
new density value range is produced and then, a more precise TF is defined.

– inside(X,Y,Z,R) describes truth values of the voxel X,Y, Z belonging to a
region R. Applying the inference process, a bounding box that best fits the
area of the tissue of interest is derived from an initial location.

– inOrgan(X,Y,Z,I) describes truth values of the voxel X,Y, Z belonging to
the same organ with intensity I. This value is defined by the rule:

baseV oxel(X,Y, Z, I) ∧ seed(X,Y, Z) → inOrgan(X,Y, Z, I). (3)

Given a seed point (seed(X,Y,Z)), known to be part of the tissue of
interest and analyzing its neighborhood, the area around this seed point
is augmented. A point will be part of the tissue if its density value is inside
the density value range of the tissue, and close to the tissue area.

Finally, some facts that need to be defined for each dataset are the following:

– Density value range: a density value range can be specified initially;
however, it can be adapted according to results inferred from the rules.

– Seed point: this is a fix value, received from the user describing a voxel
known to be part of the tissue of interest.

– Bounding box: the rule-based system identifies from an input bounding
box, one that better fits the tissue of interest.

4 Discussion

ANISE just considers the most likely localization of a given tissue. First, an
initial and basic TF is defined for a normalized model. Then, this model is used
for further inferences. Thus, rules are applied independently to the acquisition
method by selecting when a density value for a given point in the space falls
inside an appropriate interval. As previously stated, simple density classification
is not enough to properly determinate matching between voxels of a same
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VII

tissue or anatomical organ. Additional inference processes need to be conducted;
they depend on the annotations. In this example, the region of interest that
describes the tissue to be analyzed is presented. A first approach consists of
selecting the most likely location of a region of interest, i.e., a bounding box
covering the organ of interest. Also, PSL predicates are considered as a possible
better approximation of this region with non-zero probability. This is done by
considering the neighborhood around the region of interest and knowing that
dentition, for example, should not be located around eyes or upper areas of
the head; voxels belonging to dentition should be closer around an area, and
distance between dentition voxels should not be longer than certain threshold.

anatomical entity

i inmaterial anatomical entity

i inguinal canal

i material anatomical entity

i anatomical structure

i dentition

i material anatomical entity

i mouth !oor

i tooth apex

Fig. 3. Scheme from FMA ontology,
identifying the Class and SubClass for
dentition.

Another inference process to adjust the
probability for points is performed by
considering knowledge derived
from ontology relationships, i.e., the
classification of the term dentition in the
Anatomical Set branch. Considering the
subClass transitive property (see Figure
3), a seed point is annotated to identify a
set element. Then, the voxel neighborhood
detection algorithm is performed using
PSL predicates. Finally combining all
inferred facts and probabilities for given
points, likelihood of points that represent
a particular tissue are estimated; Figure
4 illustrates the whole process. Further,
appropriate TFs for each region are defined and performed. This is done just
using the same TF (Fig. 2(b),(e),(h)) but performing a reasoning task that allows
to detect the voxels that semantically do not correspond to the tooth tissue and
that should not be included in the final volume rendering (see Fig. 2(c),(f),(i)).

Fig. 4. The ANISE Workflow
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VIII

5 Conclusions and Future Work

We present ANISE, a framework that exploits knowledge encoded by annotations
of 3D medical images, and enhances the rendering process of the images.
Quality of ANISE renderings have been studied in different images, and we have
observed that they can accurately locate tissues that comprised a medical image.
Annotations allow identifying or validating patterns on images, accurate image
retrieval, and applying the visualization process on regions of interest. Methods
to filter relevant information have been developed at high abstraction level,
allowing extension of the inference process to perform particular algorithms, i.e.,
voxel neighborhood predicates could be improved to allow different methods. In
the future, we plan to enhance the rule-based system to normalize a wider range
of conditions, and include different image modalities (e.g., MR, and PET) as well
as tissues (e.g., blood vessels). Furthermore, we will extend tissue identification
algorithms and rules to: i) detect and annotate anomalies, and ii) identify special
conditions on tissues inside the region of interest. Development of visualization
algorithms to consider not only TF definitions but also different interpretations
of semantic annotations of particular tissues of interest and its corresponding
representation on rendered image is also part of our future work.
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Abstract. Ontologies are description of domains encoded in a formal
language while Business Rules are description of business policies en-
coded in a natural controlled language. In this paper we present an ap-
plication of pharmaceutical validation of medication order based on an
OWL ontology and business rules or more specifically clinical decision
rules. This application has been developed based on a prototype that en-
ables business users to author, in a controlled natural language, execute
and manage their Business Rules over OWL Ontologies.
Keywords: OWL Ontology, Business Rule, Clinical Decision Rule, Phar-
maceutical Validation.

1 Introduction

Ontologies are more and more used to model the business knowledge which is due
to their power of expressiveness and to their flexibility. On the other hand, many
business applications are nowadays built based on Business Rules especially after
the emergence of the BRMS (Business Rules Management System). Business
Rules are a description of a business policy, encoded in a natural controlled
language. They define or specify constraints of some aspect of the business7 and
enable automating business decisions. An example of a business rule is given in
the following :

IF the presentation name of the drug is ”GLUCOPHAGE 850MG TAB”
and the dosage unit of the dosage regimen phase is ”TABLET”
THEN the prescripion is not valid;

In this paper, we present an application of pharmaceutical validation that
enable to automate the decision of validation of medication orders. It is based on

7 http://www.businessrulesgroup.org
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an OWL ontology and business rules, or more specifically clinical decision rules.
The OWL 8 (Web Ontology Language) ontology models the most pertinent
entities (concepts and properties) of pharmaceutical validation activity used in
the Hôpital Européen Georges-Pompidou (HEGP) (Georges Pompidou European
Hospital) 9. The rules, test on the values given to the entities described in the
ontology and assert if a medication order is valid or not [2].

The fact of using business rules enables the business user (i.e.pharmacist,
physician) to be involved in the implementation of the application as he/she can
author the rules in a natural controlled language.

Business rules and ontology have already been combined to support clinical
decision [6] [7]. However, end user involvement in the design and the implementa-
tion of the application is a neglected aspect. In this study we propose to involve
the end user (pharmacists, physicians, nurses) in the implementation of the ap-
plication and to experiment the business rules designed as a clinical decision
rules.

To develop this application, we first implement a prototype 10, OWL plug-in
for WODM, that enable authoring and executing business rules over OWL on-
tologies [3]. For this, we based on the infrastructure offered by the Business Rule
Management System (BRMS) WebSphere Operational Decision Management
(WODM) 11 and added as input OWL ontologies.

This paper is organized as follows; Section 2 present the OWL plug-in for
WODM. Then Section 3 describes the application of pharmaceutical validation
of medication order. Finally Section 4 concludes and presents our perspectives.

2 Proposed Approach

WODM offers an infrastructure that enables business users to author, - in a con-
trolled natural language -, execute and manage business rules in a collaborative
way. As the majority of BRMS, it uses an object oriented models to formalize the
domain knowledge. In WODM, this object oriented model is called BOM (Busi-
ness Object Model). The BOM represents the entities of a given business (i.e.
patient, age). It is generated over the XOM (eXecutable Object Model) then ver-
balized. The XOM is the model enabling the execution of rules. It references the
application objects and data, and is the base implementation of the BOM. The
XOM can be built from compiled Java classes (Java execution object model) or
XML Schema (dynamic execution object model). The verbalization of the BOM
consists of generating a controlled natural language vocabulary (VOC) which
enables authoring the business rules (i.e. the patient, the age of the patient).

8 http://www.w3.org/2004/OWL/
9 http://www.aphp.fr

10 This work is partially founded by the European Commission under the project ON-
TORULE (IST-2009-231875).

11 http://www-01.ibm.com/software/decision-management/operational-decision-
management/websphere-operational-decision-management/
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2.1 Authoring Business Rules over OWL Ontologies

To enable business users to author business rules, in a natural controlled lan-
guage, we developed the WODM OWL plug-in. This plug-in exploits infrastruc-
ture offered by WODM to import OWL ontologies within it. The main com-
ponent for authoring rules in WODM is the BOM. For this, we performed a
mapping of OWL concepts (TBox) into the BOM. Thus, when we import an
OWL ontology within WODM, the BOM is automatically generated and the
functionalities offered by the BRMS can be used. The general idea of the map-
ping is: ontology concepts are mapped into BOM classes and the properties are
mapped into attributes of the classes. Nevertheless, due to the difference of the
power of expressiveness between OWL ontology and the BOM, there are some
OWL construct that could not map into the BOM [3].

2.2 Executing Business Rules over OWL ontologies

The process of executing business rules in WODM consists of several steps.
Business rules, authored in a controlled natural language are translated into ex-
ecutable rules, which are written in a formal technical rule language IRL (ILOG
Rule Language). During this translation, the references to the BOM’s classes and
properties are translated to references into the XOM. When the input provided
to WODM is a Java object model, the XOM is built from this model. But in our
case, the input provided to WODM is an OWL model.

To execute business rules authored over ontologies, we perform a second map-
ping of OWL/BOM entities to a XOM using Jena. Jena is a Java framework,
including an ontology API for handling OWL ontologies, which allows gener-
ating Java objects from the entities of the ontology. These Java objects then
constitute the XOM. The use of Jena provides an execution layer for the OWL
ontologies. This execution layer provides inference mechanisms on this model
and the mapping of OWL concepts, properties, and individuals to a Java object
model.

3 Experimentation

The method described above enables to author and execute business rules over
OWL ontology. This method can be used in different business domain. In our
case, to experiment our work, we used a pharmaceutical validation use case to
implement clinical decision rules for pharmaceutical validation of medication
orders.

To illustrate our work, we present a business scenario that stages three per-
sonas representing business users involved in the design and the implementation
of a set of clinical decision rules for pharmaceutical validation of medication
orders (see Figure 1).

Marc is the business analyst. His mission is to formalize the business knowl-
edge and to make sure that the business model (i.e. ontology) is correct, complete
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Fig. 1. Business scenario.

and valid. Alice is the domain expert. In this business scenario two domain ex-
perts interact which are a pharmacist and a physician. They understand the
formalization of the rules and uses business rules tools. They are in charge of
editing the clinical decision rules in the business application. Joana is the oper-
ational user who is the pharmacist. She uses the application to verify if a given
prescription is valid or not.

The ontology used to build this business application and the authored busi-
ness rules that we will show in the following have been built based on the work
presented in [2]. This work has been made in collaboration with pharmacists
and physicians from the Georges Pompidou University Hospital [4]. The ontol-
ogy is composed of 17 concepts and 25 properties. We will focus on 5 concepts
and their properties used to author the rules we present in this paper. The on-
tology contains a concept Patient which has LabResult and is concerned by
a Prescription that has a DosageRegimenPhase. The rules authored over
this ontology test on the presentation name of a Drug, the dosage unit and
the dosage of the DosageRegimenPhase of a Prescription and on the GFR
(Glomerular Filtration Rate) of the LabResult of a Patient. Depending on the
values given to these properties, they assign if a Prescription is valid or not.

When Marc finish the edition of the ontology using an ontology editor (i.e.
Protégé), he imports it into WODM which automatically generate the BOM.
Once the BOM is generated, the domain experts (pharmacists and physicians)
author the clinical decision rules in natural controlled language. Two examples
of authored rules are presented in the following (see Figure 2 & 3).

The rule in Figure 2 tests if :
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– the presentation name of a drug is “GLUCOPHAGE 1000MG TAB” or
“GLUCOPHAGE 1000MG CPR COATED”

– the dosage unit of the dosage regimen phase is “TABLET”
– the dosage of the dosage regimen phase is more than 1
– the GFR of the lab result of a patient is more than 50

Then it sets that the prescription is not valid.

Fig. 2. GLUCOPHAGE (Metformin)-1000.

The rule in Figure 3 tests if:

– the presentation name of a drug is “GLUCOPHAGE 850MG TAB” or “GLU-
COPHAGE 850MG CPR COATED”

– the dosage unit of the dosage regimen phase is “TABLET”
– the dosage of the dosage regimen phase is more than 3
– the GFR of the lab result of a patient is more than 80

Then it sets that the prescription is valid.
The pharmacist enters the data concerning a prescription and launches the

execution of the rules which will determine if the prescription is valid or not. For
example, Joana enters data concerning two prescriptions given to two different
patients (see Table 1).

Prescription 1 for patient 1 who has the GFR of his lab result equals to 90.
The dosage unit of the dosage regimen phase of the prescription is TABLET and
its dosage is 2. The prescription contains a drug called GLUCOPHAGE 1000MG
TAB. In this case the rule called GLUCOPHAGE - 1000 TABLET Rule (see
Figure 2) will be launched and set the validation of the prescription to false.
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Fig. 3. GLUCOPHAGE (Metformin)- 850.

Prescription 2 for patient 2 who has the GFR of his lab result equals to 95.
The dosage unit of the dosage regimen phase of this prescription is TABLET
and its dosage is 4. The prescription contains a drug called GLUCOPHAGE 850
MG TAB. In this case the rule called GLUCOPHAGE (Metformin) 850 (see
Figure 3) will be launched and the validation of the prescription will be set to
true.

Table 1. Prescriptions of the pharmacist

Presentation name Dosage unit Dosage GFR

P1 GLUCOPHAGE 1000MG TAB TABLET 2 90

P2 GLUCOPHAGE 850 MG TAB TABLET 4 95

4 Conclusion

In this paper, we present an application of pharmaceutical validation of medi-
cation orders that implement clinical decision rules, in a natural controlled lan-
guage, over an OWL ontology. In order to develop this application we use the
prototype described in Section 2 that enables authoring and executing business
rules. The clinical decision rules designed in this study will be integrated with
the HEGP clinical information system as an alert system for more assessment.
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In perspective, we propose to improve the rule presented in this work in
order to have recommendations that enable to revise the invalid prescription.
Such recommendations, considered as alerts, inform the pharmacist about the
cause of the invalidity of a prescription.

One particularity of ontologies is that they evolve over time. Ontology evo-
lutions consist of changes that could impact an ontology. The business rules
depend on the entities of the ontology and its evolution may have an impact
on them and causes inconsistencies. This is an issue on which we focus and for
which we developed the MDR approach (Model-Detect-Repair) [5]. This ap-
proach enables to tracks ontology changes, detects the rule inconsistencies that
could be caused by a change and then proposes solution, called repair, to repair
the inconsistencies.
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Keynote 

 

How clinical and genomic data integration can support 

pharmacogenomics efforts related to personalized medicine 

 

Eric Neumann, Clinical Semantics Group 

 

Abstract: Pharmacogenomics is a key factor that will drive the 

personalized medicine vision. It will help create new combinations of 

clinical and genomic information necessary for making clinical decision in 

personalized medicine. Much can be done using available public data 

sources, yet they lack essential facts that can be only obtained from deep 

focused curation. A clear distinction will be made between Data vs 

Actionable Knowledge, whereby semantically linked data specifically can 

be leveraged to support decision making for personalized medicine. 

LAC64
Typewritten Text
39



 

Keynote 

 

Understanding Recovery as a Mechanism for Individualized Treatment 

Selection in Major Depressive Disorder: A case study 

 

Joanne S. Luciano, Tetherless World Constellation @ Rensselaer 

Polytechnic Institute 

 

Abstract: Depression is a mental disorder, characterized by symptoms of 

sadness, loss of interest or pleasure, feelings of guilt or low self-worth, 

disturbed sleep or appetite, feelings of tiredness, and poor concentration. 

The World Health Organization (WHO) reports "Depression affects more 

than 350 million people of all ages, in all communities, and is a significant 

contributor to the global burden of disease." The US government reports 

that Major Depressive Disorder (MDD) is the leading cause of disability in 

the U.S. for ages 15-44. This talk will present a model of depression 

recovery used to characterize individual patient response to treatment. 

The model provides an explanation that on the surface seems like a 

paradox, namely, how an antidepressant treatment could result in suicide. 

The talk will be placed in the context of the past twenty years and 

highlight key events that are leading to radically different world of medical 

practice. I'll briefly mention some current controversies in the treatment 

of Depression and introduce the emerging field of Health Web Science. 
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