
Lightweight Transformation of Tabular Open
Data to RDF

Miel Vander Sande, Laurens De Vocht, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle

Ghent University - IBBT
Department of Electronics and Information Systems - Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

firstname.lastname@ugent.be

Abstract. Currently, most Open Government Data portals mainly of-
fer data in tabular formats. These lack the benefits of Linked Data,
expressed in RDF graphs. In this paper, we propose a fast and sim-
ple semi-automatic tabular-to-RDF mapping approach. We introduce
an efficient transformation algorithm for finding optimal relations be-
tween columns based on ontology information. We deal with multilin-
gual diversity between data sets by combining translators and thesauri
to create context. Finally, we use efficient string and lexical matching
approaches in a learning loop to ensure high performance with good
precision.

1 Introduction

Every government in the world possesses a huge number of public data sets.
Today, the idea of Open Government Data is uprising, where data sets are
made freely available on the Web. This way, governments can boost their trans-
parency, create economic value and facilitate governmental participation.

Most portals (e.g., data.gov.be) mainly offer downloadable spreadsheets or
tabular records in an XML or CSV like format. Although these initiatives are
considered Open Data, they do not reach their full potential. The content in
many different sets overlaps, but there are no links identifying this. Also, the
data may be machine readable, but not machine understandable, which makes
data integration the responsibility of the developer. These obstructions can
be tackled with Linked Open Data, where data sources are reformulated in the
graph-structured RDF standard. However, current data sets are still structured
in classic hierarchical schema’s, while graph patterns introduce a whole new way
of organising data. Hierarchical patterns can easily be translated into a simple
graph, but this is not always the optimal choice. In this paper, we propose
lightweight automatic mapping approach for optimally restructuring tabular
data as RDF.

Proceedings of the I-SEMANTICS 2012 Posters & Demonstrations Track, pp. 38-42, 2012.
Copyright © 2012 for the individual papers by the papers' authors. Copying permitted only
for private and academic purposes. This volume is published and copyrighted by its editors.

38



2 Related Work

A popular solution is the RDF extension for Google Refine1. The transfor-
mation structure can be edited, links with other datasets can automatically
be resolved and the result is generated in RDF. Although the reconciliation
results are very good, the restructuring of the data is fully manual. It does
not use structural knowledge extracted from ontologies or other Linked Data
sources to automatically suggest an optimal graph. Only supported by search
in selected ontologies, the user needs to explicitly specify which Class or Prop-
erty map each field, requiring many manual operations. Also, Refine is a pure
offline application, decreasing accessibility and means to collaborative editing.

More related web-oriented approaches are database abstraction or extrac-
tion systems (e.g., D2RServer, Virtuoso, Triplify). However, these transforma-
tion methods are based on database schemas and manually defined mappings.
The former requires the data source to be a relational database, or at least
imported into one. The latter again requires full manual editing without auto-
mated assistance. Our approach is fully compliant with these systems, since it
can serialize its output as mapping rules. Finally, simple converters like Any23
do not consider any ontology information and create triples using column labels
defined in a CSV file. This results into RDF with little semantics.

The closest related work is done in the KARMA [1] framework. A CRF
(Conditional Random Fields) machine learning model is trained using following
process in an interactive loop. Each column in the dataset is assigned a semantic
type from a selected ontology. This assignment is based on user input and
formerly learned types. A graph is formed using these types and structural
information described in the ontology. Finally, a Steiner tree algorithm is used
to extract the right relations. Although this approach achieves very good results
in type assignment and tree selection, high precision is only achieved after a
considerable amount of manual input.

We propose a more lightweight iteration process that replaces the existing
CRF model with string, lexical, data type and context analysis. By using this
analysis, we can present a possible mapping before input by the user is re-
quired. Note that we accept low precision in the first iteration, to achieve high
precision, by fully exploiting user input, in later iterations. The CRF approach
is also very memory consuming and copies almost all the data. Our analysis
is based on far lighter analysis, resulting in higher performance. Also, stored
data are restricted to ontology concepts and data types, which is significantly
less. Finally, KARMA learns learns semantic types based on the data format,
which are only helpful for data sets in a similar domain. We cover a broader
domain of data sets, since we rely more on generic information stored in the
fields and ontology, refined by user input.

1 http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/

Lightweight Transformation of Tabular Open Data to RDF

39



3 Overall approach and basic assumptions

In Linked Data, ontologies define the way data should be structured. Therefore,
we will base this approach on the defined concepts and relations. Considering
Open Government Data, we make the following assumptions:

– Most data sources only provide column labels and data rows
– These sources cover a wide variety of domains, resulting in heterogeneous

data between sets
– Ontologies are available, are well described in OWL. The considered on-

tologies are average in size
– Ontologies are written in English, while data sets are multilingual
– Since this approach is used in an interactive loop with the user, low precision

is acceptable in the first iterations; only if it results into simpler and faster
mapping (considering public servant workload).

This approach takes two inputs: a tabular data set and an ontology which
we want to match. Serialised mapping rules are constructed in three steps:
concept matching, context construction and tree extraction.

3.1 Concept matching

For each column header, we will extract matching concepts from the ontol-
ogy using header and data type information, as shown in figure 1. During this
process, we keep a candidate list containing each retrieved concept with a con-
fidence score between 0 and 1.

Fig. 1. Example of context extraction for a column ’naam’(dutch)

We start by translating our field label to English using the Microsoft Trans-
lator API and MyMemory2. The results are combined to form a unique result
set. Each entry in this set will be the input of a thesaurus service, giving us a
unique set of synonyms. Next, each translation or synonym is matched to the
names of all classes and properties using the string and linguistic methods de-
scribed in [2]. The former calculates the Jaro-Winkler distance with threshold

2 http://www.microsofttranslator.com/dev/ http://mymemory.translated.net/

Lightweight Transformation of Tabular Open Data to RDF

40



0.81 and the Smith-Waterman distance with threshold 10. The latter performs
the Jiang-Conrath measure with threshold 1.0, which uses WordNet Synsets
to score semantic relations between two nouns. The retrieved concept is then
added to the candidate list, together with a normalised combination of these
results as score. Then, we measure the compatibility of the column’s data with
the data types in the XMLSchema3 name space. We sort them in order of com-
patibility and then look for the best match. The indices of this match and its
preceding items indicate the compatibility score of each type.

3.2 Context graph construction

Based on the retrieved concepts, we construct a directed weighted labelled
context graph in a three step process, as shown in figure 2. Firstly, we add
the field label as a node and add all compatible (compatibility score greater
than 0) data type properties as edges with their domain as source. The weight is
calculated from their range’s compatibility score and, if present in the candidate
list, their similarity score. High compatibility and/or similarity result in a low
edge weight. Secondly, we add all the classes from the candidate list. Since
super classes might have a fitting relation to the field node, we copy each edge
with a superclass as source, to the current class with a slightly higher weight
(unless the current class is a candidate. E.g., ex:PersonName in figure 2). For
completeness, we add a subClassOf relation between the super classes. Thirdly,
we add object properties to connect the current nodes in the graph, based on
their domain and range. When an object property is in the candidate list, we
use its confidence score to determine the edge weight. If not, the edge gets a
default weight.

Fig. 2. Example of graph construction for a column ’name’

3 http://www.w3.org/2001/XMLSchema

Lightweight Transformation of Tabular Open Data to RDF

41



3.3 Tree extraction

Finally, we look for optimal paths between the different fields. First, we merge
all the different context graphs into one and keeping the lowest edge weights.
Second, we use a tree algorithm for finding paths in the graph. For extracting
a tree, we use the Steiner Tree algorithm as described by Craig A. Knoblock et
al. This algorithm finds the minimum-weight spanning tree in a graph between
a subset of nodes, called Steiner Nodes. It extends the minimal spanning tree
algorithm to dynamically add nodes if they provide a shorter path. The result,
as shown in figure 3, determines our final mapping.

Fig. 3. Extracted steiner tree from merged graph

4 Discussion

We introduced a fast automatic mapping approach for transforming plain tabu-
lar data optimally into RDF. It uses a combined method of translation services
and thesauri to deal with multilingual data sets. Furthermore, string, lexical
and data type analyses is used to match ontology concepts to the different
columns. For each column, a context graph is constructed based on the re-
trieved concepts. Finally, a possible mapping is selected by merging all context
graphs and finding a tree connecting all columns.

In future work, an evaluation can be performed by comparing the result
again manually defined mappings. This can be done in two ways: the different
amount of manual operations and the precision/recall difference between the
two. Furthermore, using this approach in a semi-automated loop, could dramat-
ically increase the precision. Corrections by the user can be used to improve
the tree selection process, or introduce machine learning for better concept
matching.

References

1. Craig A. Knoblock, Pedro Szekely, Jos Luis Ambite, Shubham Gupta, Aman Goel,
Maria Muslea, Kristina Lerman, and Parag Mallick. Interactively mapping data
sources into the semantic web. In Proceedings of the 1st Int. Workshop on Linked
Science 2011 in Conjunction with the 10th Int. Semantic Web Conference, 2011.

2. Feiyu Lin and Andrew Krizhanovsky. Multilingual ontology matching based on
wiktionary data accessible via sparql endpoint. CoRR, abs/1109.0732, 2011.

Lightweight Transformation of Tabular Open Data to RDF

42


