
Proceedings

Ulrich W. Eisenecker
Christian Bucholdt

(Eds.)

SLE 2012
Doctoral Symposium at the 5th International

Conference on Software Language Engineering

Dresden, Germany

25 September, 2012

CEUR Publishing Platform

Publishing Platform CEUR

http://ceur-ws.org/

CEUR Workshop Proceedings (CEUR-WS.org) is a publication service of Sun SITE Central Europe operated under the umbrella of RWTH
Aachen University with the support of Tilburg University. CEUR-WS.org is a recognized ISSN publication series, ISSN 1613-0073.

Copyright © 2012 for the individual papers by the papers' authors. Copying permitted for private and

academic purposes. This volume is published and copyrighted by its editors.

Foreword

This volume contains the proceedings of the Doctoral Symposium at the 5th International
Conference on Software Language Engineering, 25th of September 2012, hosted by the Fac-
ulty of Information Science of the Technical University of Dresden, Germany. Previous
editions were held in Braga, Portugal (2011), Eindhoven, Netherlands (2010), Colorado,
USA (2009) and Toulouse, France (2008). The International Conference on Software
Language Engineering (SLE) aims to bring together the different sub-communities of the
software-language-engineering community to foster cross-fertilisation and to strengthen
research overall. Within this context the Doctoral Symposium at SLE 2012 contributes
towards these goals by providing a forum for both early and late-stage PhD students to
present their research and get detailed feedback and advice from researchers both in and
out of their particular research area.

The Program Committee of the Doctoral Symposium at SLE 2012 received 10 submis-
sions. We would like to thank all authors for submitting their papers. Each paper was
reviewed by at least three reviewers. Based on the review reports and intensive discussions
conducted electronically, the Program Committee selected 8 regular papers.We would like
to thank the Program Committee members and all reviewers for their efforts in the selec-
tion process.

In addition to contributed papers, the conference program includes a keynote. We are
grateful to Dr. Steffen Greiffenberg, University of Cottbus, Germany, for accepting our
invitation to address the symposium.

We also would like to thank the members of the Steering Committee, the Organising
Committee as well as all the other people whose efforts contributed to make the sympo-
sium a success.

The support of our industrial sponsors is essential for SLE 2012. We cordially express
our gratitude to (in alphabetical order)

• ACM SIGPLAN

• ANECON GmbH

• DevBoost GmbH

• Elsevier B.V.

• ISX Software GmbH

• Springer LNCS

Furthermore, we thank our academic sponsors, European Association for Programming
Languages and Systems and Technical University of Dresden, Germany and the Software
Technology Group at the Technical University of Dresden, Germany.

Ulrich W. Eisenecker Christian Bucholdt
Co-Chair Co-Chair
University of Leipzig, Germany Plauen, Germany

i

Doctoral Symposium at SLE 2012 Organization

Program-Co-Chairs: Ulrich W. Eisenecker (University of Leipzig, Germany)
Christian Bucholdt (Plauen, Germany)

Local Organization: Birgith Demuth (Technical University of Dresden, Germany)
Sven Karol (Technical University of Dresden, Germany)

Program Committee: Steffen Becker (University of Paderborn, Germany)
David Benavides (University of Seville, France)
Mark van den Brand

(University of Technology Eindhoven, Netherlands)
Sebastian Günther (Vrije University Brussels, Belgium)
Michael Haupt (Oracle, Germany)
Arnaud Hubaux (PReCISE, University of Namur, Belgium)
Jaako Järvi (Texas A & M University, USA)
Christian Kästner (Philipps University Marburg, Germany)
Jörg Liebig (University of Passau, Germany)
Roberto Lopez Herrejon

(Johannes Kepler University of Linz, Austria)
Johannes Müller (University of Leipzig, Germanyl)
Oscar Nierstraszr (University of Bern, Switzerland)
Zoltan Porkolab (Eötvös Loránd University, Hungary)
Jaroslav Poruban (University of Kosice, Slovakia)
Rick Rabiser (Johannes Kepler University of Linz, Austria)
Gunther Saake (University of Magdeburg, Germany)
Michal Valentai

(University of Technology Prague, Czech Republic)
Valentino Vranic

(University of Technology Bratislava, Slovakia)
Heike Wehrheim (University of Paderborn, Germany)

iii

Table of Contents

Methodology as theories for business informatics. (Keynote Abstract) 1

Dr. Steffen Greiffenberg

Interoperability of Software Engineering Metamodels: Lessons Learned . . . 3

Muhammad Atif Qureshi

Aspect-Oriented Language Mechanisms for Component Binding 11

Kardelen Hatun, Christoph Bockisch and Mehmet Aksit

Supporting Visual Editors using Reference Attributed Grammars 15

Niklas Fors

Towards a Framework for the Integration of Modeling Languages 23

Svetlana Arifulina

Automatized Generating of GUIs for Domain-Specific Languages 27

Michaela Bač́ıková, Dominik Lakatoš and Milan Nosáľ

A Model-driven Approach for the Analysis of Multimedia Document 37

Joel Dos Santos, Christiano Braga and Débora C. Muchaluat Saade

SMADL: The Social Machines Architecture Description Language 45

Leandro Nascimento, Vinicius Garcia and Silvio Romero De Lemos Meira

Verifiable composition of language extensions . 53

Ted Kaminski

v

Methodology as Theories in Business Informatics

[Keynote Abstract]

Dr. Steffen Greiffenberg

semture GmbH
Dresden, Germany

steffen.greiffenberg@semture.de

Abstract

Since its existence business informatics endeavors to establish itself as a sci-
ence and to create unique characteristics towards pure computer science. In this
keynote theory requirements are outlined and proved as necessities for a science.
Furthermore, methods for the development of business information systems as
possibilities for theories in business informatics are proposed.
The explication of study designs within business informatics is currently hardly
practiced. Thereby, problems regarding objective, replicability and validity of
research findings may occur. Those can reflect in the following questions: What
is the purpose of this model? Why does the reference model looks just so? What
is the aspiration of this model and how can it be verified?
This keynote presumes that the reason for this insufficient explication is an inad-
equate assistance for the researchers task. Thus, the keynotes target is to draft
a method for a concept of study designs in conceptual modeling research. Com-
bined with this method is the hope that the researcher will be equipped with
the skills to facilitate the explication of a study design.

Bio

Dr. Steffen Greiffenberg is a visiting professor at the Technical University of
Cottbus and managing partner of the semture GmbH in Dresden. The semture
GmbH is building software modeling products.

1

2

Interoperability of Software Engineering
Metamodel: Lessons Learned

Muhammad Atif Qureshi

School of Software, Faculty of Engineering and IT, University of Technology, Sydney,
Australia

Abstract. Use of models and modelling languages in software engineer-
ing is very common nowadays. To formalize these modelling languages,
many metamodels have been proposed in the software engineering lit-
erature as well as by standard organizations. Interoperability of these
metamodels has emerged as a key concern for their practical usage. We
have developed a framework for facilitating metamodel interoperability
based on schema matching and ontology matching techniques. In this
paper we discuss not the techniques used but rather we focus on the
lessons we have learned by applying the framework on several pairs of
metamodels for finding similarities between them. We have highlighted
some areas where these techniques can be beneficial and also pointed out
some limitations of these techniques in this domain.

1 Problem Description and Motivation

Many metamodels have been proposed in different domains of software engineer-
ing such as process [1], product [2], metrics [3] and programming [4]. Most of
these metamodels have been developed independently of each other with shared
concepts being only accidental. These metamodels are evolving continuously and
many versions of these metamodels have been introduced over the years. This
evolution has extended not only the scope but their size [5] and complexity
as well. The need to formulate a way in which these metamodels can be used
in an interoperable fashion has emerged as a key issue in the practical usage
of these metamodels. There are several benefits of such interoperability includ-
ing: reduced joint complexity, ease of understanding and use for newcomers,
portability of models across modelling tools and better communication between
researchers [6]. This overall need is also emphasized by the software engineering
community [7] and further endorsed by the rise of industry interest as well as
various conferences and workshops on the topic [8]. To have interoperability be-
tween any pair of metamodels, similarities between the elements of metamodels
need to be identified. This is undertaken by a matching technique as yet lit-
tle utilized for metamodels although widely used in ontology engineering. Close
similarity between metamodels and ontologies [7],[9],[10] suggests that it should
be efficacious to adopt ontology matching techniques for facilitating meta-model
interoperability with a first step of linguistic matching. Indeed, ontologies are
also helpful in reducing semantic ambiguity [9], helping not only to improve the

3

semantics of a metamodel [10] but also providing a potential way in which these
meta-models can be bridged with each other to be interoperable. A framework
[11] for facilitating interoperability of metamodels has been developed based on
the ontology merging and schema matching techniques. The frame-work was ap-
plied to several pairs of metamodels including OSM [12], BPMN [13], SPEM
[1] and some multi agent systems (MAS) metamodels. In this paper we discuss
the lessons learned by applying the framework on these metamodels. We have
highlighted the areas of metamodel interoperability that can be assisted by using
these techniques as well as discussing some of their limitations. In Section 2 we
briefly present our framework for metamodel interoperability. Section 3 presents
the lessons learned during the application of this framework to several meta-
models, followed by a conclusion and summary of likely future work (Section
4).

2 Proposed Solution

Fig. 1. Metamodel Interoperability Framework [11]

The framework for metamodel interoperability is depicted in Fig. 1 as a
BPMN diagram. The framework has two major activities: Linguistic Analysis
and Ontological Analysis. These are further divided into subactivities, as rep-
resented in the digram. While trying to make metamodels interoperable using
this framework, we assume that there exists some commonality between a pair
of metamodels. It is necessary to identify the potential common concepts (con-
ceptual elements) that can be shared between two metamodels. The detailed
discussion on this framework is not our focus in this paper but can be found
in [11]. The overall similarity of any pair of elements is based on the three dif-
ferent types of similarities among them: syntactic, semantic and structural. In
applying the framework to a variety of metamodels, several thousand different

4

permutations were computed for the comparison of the metamodel elements. The
following sections elaborate our experience of using this framework and discuss
the lessons we have learned during the experiment.

3 Lessons Learned: Limitations and Opportunities

3.1 Syntactic Matching

Opportunities: Syntactic matching between a pair of metamodels is based on a
comparison between the names of the conceptual elements within those meta-
models. Different techniques in the literature are available that can be used
for such comparison. One such technique is known as string-edit distance of
simply edit distance (ED) [14], which counts the number of token insertions,
deletions and substitutions needed to transform one lexical string S1 to another
S2, viewing each string as a list of tokens. For example the value of ED for two
strings Brian and Brain is 2. Various other techniques for string comparison are
used in different domains e.g. N-gram, Morphological Analysis (Stemming), and
Stop-Word Elimination. ED can be used then to calculate the syntactic similar-
ity (SSM) between a pair of elements [15]. Lessons Learned: These techniques
can be useful in comparing the elements with-in the same domain e.g. domain
ontologies; where elements with the same name have (most of the times) the
same meaning. The problem with these techniques in the context of metamod-
els is that they are not effective when applied standalone. Our experience with
metamodel matching shows that considering only syntactic similarity measures,
isolated from their semantics, creates misunderstanding by expressing the same
meanings in different terms. For example confirmation and notification has ap-
proximately 60

3.2 Matching the Semantics

Metamodels are generally treated as a model of a modelling language [16],
[17],[18][19]. These modelling languages are designed (mostly) for specific do-
mains. Therefore, we believe that to compare the semantic similarity of meta-
model elements, it is important to consider both perspectives: linguistic and
ontological. The linguistic semantics involves checking the semantics of the meta-
model elements from that modelling languages perspective e.g. their properties
(attributes), types of attributes and to some extent their behaviour as well. On
the other hand, on-tological semantics means finding the elements that have the
same meaning but may have been presented with different names. Opportuni-
ties: Techniques for comparing class diagrams e.g. [20],[21] can be utilized to find
the similarities between metamodel elements, especially for the metamodels that
are represented using object-oriented classes (meta-classes) e.g. OMGs family of
meta-models. Different approaches in the area of computational linguistics and
natural language processing can be used to find ontological semantic similarity
e.g. finding the synonyms of a given conceptual element of one metamodel and

5

looking for those synonyms in the second metamodel. Synonyms can be found
using any lexical data-base e.g. a dictionary. WordNet [21] is one lexical database
that can be used for finding synonyms and word senses. WordNet is a registered
trademark for Princeton University and contains more than 118,000 word forms
and 90,000 different word senses. Lessons Learned: We have observed that find-
ing ontological semantic similarity is very important as there are so many such
conceptual elements in metamodels presented with different names. For exam-
ple, Person in OSM [12] can be semantically matched with the Human Performer
in BPMN [13]; although both have low syntactic similarity. Beside synonyms,
hyponyms (sub-name, e.g. sugar-maple and maple), hypernyms (supername, e.g.
step and footstep) can also be used to find semantic relevant elements, but none
of these are considered so far in any technique. Similarly, meronyms (part-name,
e.g. ship and fleet) and holonyms (whole-name, e.g. face and eye) can also be
useful to find these similarities. Another problem is how to combine both linguis-
tic and ontological semantic similarity for a pair of conceptual elements. Which
one of them is more important and how much weight should be assigned to each
of them is still unaddressed.

3.3 Comparing the Structures

Besides their level of abstraction, a metamodel is treated as a (conceptual) model
of a language [22]. For a good similarity comparison between any pair of con-
ceptual models, not only their syntax and semantics but also their structure
should be compared. Opportunities: Different techniques have been proposed in
the literature for structural similarity of conceptual models. Some of these [22],
[14] compare the structure of business process models, whilst others [23],[24] are
for matching the structure of conceptual models based on graph theory. An al-
ternative to a graph matching technique is the schema matching techniques [24],
[25][26][27][28]. In this technique, the structural similarity of two conceptual ele-
ments C1 and C2 is calculated based on their structural neighbours - ancestors,
siblings, immediateChilds, and leafs. These partial similarities are then calcu-
lated by mean values of all the neighbouring concepts. Lessons Learned: The
techniques used to compare the structure of business process models (e.g. [22],
[14]) cannot be generalized for metamodels as business process models are be-
havioural models while metamodels represents the structural aspect. Converting
the conceptual models to graphs [23], [24] and then applying graph matching
algorithms to find the structural similarity between them is not a trivial task.
To apply such a graph matching technique, we have to be very careful in the con-
version of a class diagram into a graph. True replacement of relationships among
classes (e.g. association, generalization, aggregation, composition) into relation-
ships among nodes of a graph (e.g. directed/undirected, weighted/unweighted)
is not straightforward. Another barrier for the application of such techniques is
that most of the metamodels in the software engineering literature are specified
using diagrams, tables and textual explanation. Having a single class diagram
for such a huge metamodel is not easy. Techniques based on the planar graph

6

theory like [24] are also not feasible for meta-models because of the basic prin-
ciple of planar graphs (having no cross edges). Meta-models with a rich set of
constructs (classes) like UML can easily violate this rule as it is very difficult to
convert class diagrams of these metamodels to graphs without any cross edges.
The complexity of these graph matching techniques, as also mentioned by some
authors [14], is another barrier to their application in the domain of metamod-
els, hence making it difficult to apply in practice. Based on the experience of
applying these techniques to metamodels, we recommend that we dont need to
compare the leaves of any conceptual element in a meta-model. Comparing leaf
classes of a given class (conceptual element) only results in low similarity. Also,
we think that rather than comparing all the ancestors of a conceptual element,
it is better to compare only parent classes of that element.

3.4 Automation

Considering the size and complexity of metamodels [5], it is very convenient to
have tool support for matching the similarity of metamodels. Hence, our experi-
ence with the matching of metamodels shows that, beside partial tool support,
complete automated metamodel matching is not possible. Opportunities: Au-
tomation in syntactic matching of metamodels elements can be achieved by
implementing ED (Edit Distance) and SSM (Syntactic Similarity Measure) al-
gorithms using available online calculators for ED and APIs. The ontological
semantics of metamodel elements can be matched automatically using lexical
databases like WordNet, MS Office Thesaurus and other APIs available. Lessons
Learned: Complete automation for metamodel similarity matching, especially for
structural similarity, requires well formed formal definitions of metamodels that
can be used as an input for any automated tool. Unfortunately, besides XML def-
initions for some of the metamodels (OMG metamodels with XMI definitions),
metamodels lacks a formal specification and are mostly specified using a com-
bination of textual descriptions, tables and class diagrams. Another important
barrier in the complete automation is that coefficients in the equations we used
do not have any fixed values and have to have value assigned by the domain
expert at the time of the matching. Also, the ontological semantic similarity
analysis requires the experts intellectual input to decide whether two conceptual
elements are equal or not.

3.5 Refactoring

Lessons Learned: Most of the metamodels have two orthogonal forms of con-
ceptual elements: linguistic and ontological (as also highlighted by [17]). The
former represent the language definition while the latter describe what concepts
exist in a certain domain and what properties they have. These two types of
elements are mingled with each other in most of the metamodels and there is no
explicit boundary between them. An important consideration regarding meta-
model matching is to separate these two types of elements; we call it refactoring.

7

Metamodels need to be first refactored before matching can occur. This refac-
toring is required to remove the conceptual elements in metamodels that are not
related to the domain of interest. Rather, most of these elements are linguistic
and are present in order to maintain (glue) the structure of metamodels. For
example, Resource Parameter Binding and Parallel Gateway in BPMN [13] are
the concepts that are related to the language definition of BPMN and are not
worth matching with any other metamodel of the same domain since every meta-
model has its own language definitional elements. Rather, it is better to match
the conceptual elements that are related to the domain of interest e.g. matching
Activity in BPMN [13] with Activity in SPEM [1], which are more related to
the common domain of interest: Workflows and Processes.

3.6 Ontology Oriented Metamodels

Lessons Learned: Our experience of matching metamodels showed that there
is a high heterogenity between the ontological elements of metamodels. How-
ever, it has been observed that a major reason for that heterogeneity is the
lack of a common ontology or taxonomy. Much better results in interoperability
of metamodels can be achieved if metamodels share some common ontology or
taxonomy of the domain of interest; as also highlighted by [8]. The use of a
common ontology for designing/redesigning metamodels can result in better in-
teroperability. For example, the use of the UFO (Unified Foundation Ontology)
to redesign UML [29]. Metamodels based on a common ontology will reduce
the differences of similarity matchings, especially in syntactic and ontological
semantics matching.

4 Conclusion

In this paper we have discussed some of the limitations and opportunities in
the field of metamodel interoperability. These recommendations are based on
the application of a framework that we have developed and applied on several
metamodels to find their similarities. We have come to conclude that, for better
similarity findings, not only the syntax but also the semantics and structure
of metamodel elements should be matched. Metamodels needs to be refactored
to separate out the ontological elements before matching for more pragmatic
results. To avoid the problems of syntactic and semantic ambiguities between
the elements, we recommend that metamodels should be based (or at least uti-
lize) upon some common domain ontology. Also we have shown that complete
automation of matching metamodel elements is not possible and does require
substantial human intervention.

References

1. OMG: Software and systems process engineering meta-model specification (2008)
2. OMG: Unified modeling language (2009)

8

3. OMG: Architecture-driven modernization (adm): Software metrics meta-model
(smm) (2009)

4. Azaiez, S., Huget, M.P., Oquendo, F.: An approach for multi-agent metamodelling.
Multiagent and Grid Systems 2(4) (2006) 435–454

5. Henderson-Sellers, B., Qureshi, M.A., Gonzalez-Perez, C.: Towards an interop-
erable metamodel suite: Size assessment as one input. International Journal of
Software and Informatics 6 (2)(2) (2012)

6. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J.,
Pavon, J., Gonzalez-Perez, C.: Faml: A generic metamodel for mas development.
IEEE Trans. Softw. Eng. 35(6) (2009) 841–863

7. Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering.
Software and Systems 84(2) (2011) in press

8. Bézivin, J., Soley, R.M., Vallecillo, A.: Proceedings of the first international work-
shop on model-driven interoperability (2010)

9. Tran, Q.N.N., Low, G.: Mobmas: A methodology for ontology-based multi-agent
systems development. Inf. Software Technol 50(7-8) (2008) 697–722

10. Devedzić, V.: Understanding ontological engineering. Communications of the ACM
45(4) (2002) 136–144

11. Qureshi, M.A.: Interoperability of software engineering metamodels (2012)

12. OMG: Organization structure metamodel (osm) 3rd initial submission (2009)

13. OMG: Business process model and notation (bpmn) ftf beta 1 for version 2.0
(2009)

14. Dumas, M., Garca-Banuelos, L., Dijkman, R.: Similarity search of business process
models. IEEE Data Eng. Bull 32(3) (2009) 23–28

15. Maedche, S.: Comparing ontologies - similarity measures and a comparison study.
Technical report, Institute AIFB, University of Karlsruhe, Internal Report (2001)

16. Henderson-Sellers, B., Gonzalez-Perez, C.: An investigation of the validity of strict
metamodelling in software engineering. submitted to IEEE Trans. Software Eng.
(2011)

17. Atkinson, C., Kuhne, t.: Model-driven development: A metamodeling foundation.
IEEE Software 20(5) (2003) 36–41

18. Gašević, D., Kaviani, N., Hatala, M. In: On Metamodeling in Megamodels. Volume
4735/2007. Speinger (2007) 91–105

19. Kuhne, T.: Matters of metamodelling. Software and System Modeling 5(4) (2006)
395–401

20. Girschick, M.: Difference detection and visualization in uml class diagrams. tech-
nical report. Technical report (2006)

21. Miller, G.A.: Wordnet: A lexical database for english. Communications of the
ACM 38(11) (1995) 39–41

22. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models (2007) 1274465 71-80.

23. Voigt, K., Heinze, T.: Metamodel matching based on planar graph edit distance
(2010) 1875866 245-259.

24. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching (2002 2002)

25. Bernstein, P.A.: Applying model management to classical meta data problems
(2003)

26. Chukmol, U., Rifaieh, R., Benharkat, N.A.: Exsmal: Edi/xml semi-automatic
schema matching algorithm (2005)

9

27. Filipe, J., Cordeiro, J., Sousa, J., Lopes, D., Claro, D.B., Abdelouahab, Z. In:
A Step Forward in Semi-automatic Metamodel Matching: Algorithms and Tool.
Volume 24 of Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg (2009) 137–148

28. Lopes, D., Hammoudi, S., de Souza, J., Bontempo, A.: Metamodel matching:
Experiments and comparison (Oct. 2006 2006)

29. Guizzardi, G., Wagner, G. In: Using the Unified Foundational Ontology (UFO) as
a Foundation for General Conceptual Modeling Languages. Springer-Verlag (2010)

10

Aspect-Oriented Language Mechanisms for
Component Binding

Kardelen Hatun, Christoph Bockisch, and Mehmet Akşit

TRESE, University of Twente
7500AE Enschede
The Netherlands

http://www.utwente.nl/ewi/trese/
{hatunk,c.m.bockisch,aksit}@ewi.utwente.nl

Abstract. Domain Specific Languages (DSLs) are programming lan-
guages customized for a problem/solution domain, which allow develop-
ment of software modules in high-level specifications. Code generation is
a common practice for making DSL programs executable: A DSL specifi-
cation is transformed to a functionally equivalent GPL (general-purpose
programing language) representation. Integrating the module generated
from a DSL specification to a base system poses a challenge, especially
in a case where the DSL and the base system are developed indepen-
dently. In this paper we describe the problem of integrating domain-
specific modules to a system non-intrusively and promote loose coupling
between these to allow software evolution. We present our on-going work
on aspect-oriented language mechanisms for defining object selectors and
object adapters as a solution to this problem.

1 Introduction

Complex systems are created by assembling software components of various types
and functions. Reuse is essential and components created for a system are re-
quired to continue working after the system has evolved. Some components may
be domain-specific, meaning their structure and functionality can be defined
using the fundamental concepts of the relevant domains. A domain-specific lan-
guage (DSL) provides expressive power over a particular domain. It allows soft-
ware development with high-level specifications; if general-purpose programming
languages are used, development may take a considerable programming effort.

The specifications written in a DSL can be processed in various ways. These
are comprehensively described in [4] and [3]. Generative programming [2] is one
of the processing options and has become highly popular with the emergence
of user-friendly language workbenches. Most language workbenches provide a
means to develop a compiler for the DSL, facilitating code generation in general-
purpose languages. (A comparison matrix for language workbenches can be found
in [1].)

In this paper we focus on the integration of components into target systems.
“Component” is a very general concept and it can be realized in different forms,

11

2

depending on the system. We particularly focus on a subset of components,
domain-specific components, which are instances of domain-specific meta-models.
The component structure is described with a DSL and the semantics are em-
bedded into code generation templates, which are used to generate a component
that is tailored towards a base system’s requirements.

Integrating a generated component into a system poses three main challenges.
(1) When adding unforeseen functionality to a system, no explicit hooks exist for
attaching the generated component. In this case it may be necessary to modify
the generated code, the system code or both to make the connection, which
will expose the system developer to the implementation details of the generated
code. (2) The interfaces of the generated component and the target system should
be compatible to work together, which is generally not the case. Then one of
the interfaces should be adapted, possibly by modifying the system’s or the
component’s implementation or their type-system. (3) When the component or
the target system evolves, the links between them must be re-established.

Current aspect-oriented languages offer mechanisms to modularly implement
solutions for the first challenge. It can be solved by defining pointcuts that are
used as hooks to a system. The second challenge is our main focus. Existing
AO-languages offer limited mechanisms for implementing adapters between in-
terfaces. AspectJ inter-type declarations can be used to make system classes to
implement appropriate interfaces, however this approach is type-invasive. Cae-
sarJ offers a more declarative approach with wrappers, but their instantiation
requires pointcut declarations or they should be explicitly instantiated in the
base system. The links mentioned in the third challenge are the adapter imple-
mentations mentioned in the second challenge and they represent the binding
between two components. However current AO languages do not offer a declar-
ative way for describing such a binding; an imperative programming language
will lead to less readable and less maintainable implementation, which is fragile
against software evolution.

2 Approach

In order to overcome the shortcomings of the existing approaches we intend to
design a declarative way of implementing object adapters which is used together
with a specialized pointcut for selecting objects. The object adapter pattern is
common practice for binding two components that have incompatible interfaces.
Our approach is aspect-oriented and it will provide the means to non-intrusively
define and instantiate object adapters, inside aspects. These adapters represent
links between the component and the system; their declarative design requires
a declarative way of selecting the adaptee objects.

In order to select objects to be adapted, we have designed a new pointcut
mechanism called instance pointcut which selects sets of objects based on the
execution history. An instance pointcut definition consists of three parts: an
identifier, a type which is the upper bound for all objects in the selected set, and a
specification of relevant objects. The specification utilizes pointcut expressions to

12

3

select events that define the begin and end of life-cycle phases and to expose the
object. At these events, an object is added or removed from the set representing
the instance pointcut. It is possible to access all objects currently selected by an
instance pointcut and to be notified, when an object is added or removed. New
instance pointcuts can be derived from existing ones in several ways. Firstly, a
new instance pointcut can be derived from another one by restricting the type
of selected objects. Secondly, a subset or a super-set of an existing instance
pointcut can be declared whereby the specification of the life-cycle phase is
either narrowed down or broadened. Finally, instance pointcut declarations can
be composed arbitrarily by means of boolean operators.

Adapter declarations refer to the sets selected by instance pointcuts, and au-
tomatically instantiate adapters for each object in the referred set. Unlike inter-
type declarations, adapter declarations are not type invasive; they are compiled
to the object adapter pattern and they do not change the type hierarchy of the
contained object. They also do not require explicit instantiations.

(a) The shapes hierarchy (b) ShapeInfo class that requires two unsup-
ported interfaces

Fig. 1: Incompatible interfaces: Shape and ShapeInfo

The header of an adapter declaration consists of an identifier, the list of inter-
faces the adapter implements and an instance pointcut reference which contains
the adaptee objects. In the body of an adapter declaration implementation of the
interface methods is provided. In Figure 1a a Shape hierarchy and the interfaces
offered by the classes in this hierarchy is shown. The ShapeInfo class uses Sha-
peArea and ShapeCircumference interfaces to query existing Shapes (Figure 1b).
However none of the classes in the shapes hierarchy implements these interfaces,
hence they should be adapted. Assume that there is a class called CircleCreator
which has two methods: createLargeCircle and createSmallCircle. We can define
an instance pointcut called largeCircles which selects the set of Circle objects
that are created by the createLargeCircle method. Here instance pointcuts give
us expressive power over selecting specific objects as adaptees. Listing 1 shows
an example of an adapter declaration. The name of the adapter is CircleAdapter
and it implements the interfaces defined in the square brackets; CircleAdapter
adapts the objects selected by the circles instance pointcut. In the body of the
adapter the implementations of the two declared interfaces are provided. The
adaptee keyword refers to an object in the circles set.

13

4

1 dec l a re adapter : C i r c l eAd ap t e r [ShapeArea , ⤦
ShapeC i r cumfe rence] adapts l a r g e C i r c l e s

2 {
3 pub l i c double getArea ()
4 {
5 re tu rn Math . pow(adaptee . g e tRad iu s () , 2) *Math . PI ;
6 }
7 pub l i c double ge tC i r c um f e r en c e ()
8 {
9 re tu rn 2* adaptee . g e tRad iu s () *Math . PI ;

10 }
11 }

Listing 1: The adapter declaration for Circle objects

3 Compilation and Run-time Support

In our prototype implementation instance pointcuts are compiled to AspectJ
and Java code. Roughly, an instance pointcut is transformed to several AspectJ
pointcuts, advice declarations, a set structure and methods for altering this
set. Adapter declarations will also be compiled to AspectJ. According to our
initial analysis an adapter declaration will map to a Java class for the adapter
and advice bodies for initializing adapters. These advice bodies will reference
the pointcuts generated from the instance pointcut which is referenced by the
adapter declaration.

We intend to provide run-time support for retrieving adapter instances.
Adapters are automatically initialized when an adaptee object satisfying the
referenced instance pointcut’s conditions become available. These adapter in-
stances can be indexed and accessed through a run-time library. To do this, we
have the requirement that the results of a retrieval will always be non-ambiguous
e.g. if a query to retrieve a single adapter instance, matches two adapters, then
there should be appropriate resolution mechanisms or user feedback to overcome
the issue.

References

1. Language workbench competition comparison matrix (2011), www.
languageworkbenches.net

2. Czarnecki, K.: Overview of generative software development. In: Unconventional
Programming Paradigms, Lecture Notes in Computer Science, vol. 3566, pp. 97–97.
Springer Berlin , Heidelberg (2005)

3. Fowler, M., Parsons, R.: Domain-specific languages. Addison-Wesley (2010)
4. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Comput. Surv. 37, 316–344 (December 2005)

14

Supporting Visual Editors using
Reference Attributed Grammars

Niklas Fors

Department of Computer Science, Lund University, Lund, Sweden
niklas.fors@cs.lth.se

Abstract. Reference attributed grammars (RAGs) extend Knuth’s at-
tribute grammars with references. These references can be used to extend
the abstract syntax tree to a graph. We investigate how RAGs can be
used for implementing tools for visual languages. Programs in those lan-
guages can often be expressed as graphs.

1 Introduction

For certain applications domain-specific languages (DSLs) play an important
role, since they can make it easier to solve problems in the domain in a more
concise way than a general purpose language (GPL) [1]. DSLs are especially ad-
vantageous when the language user is a domain expert and not a programmer.
Other advantages of DSLs over GPLs are easier domain analysis and optimiza-
tions [2]. However, there are several difficulties with DSLs as well. Developing
DSLs often require compiler implementation knowledge, which is not necessary
when creating a library. It is also desirable that the domain is well-understood,
where abstractions are more likely to remain stable. Limited resources for creat-
ing and maintaining a DSL can be a problem, especially for small communities.

A DSL user may want different tools, such as a batch compiler and an in-
tegrated development environment (IDE). Such tools often share analysis, and
reusing specification between them can reduce the implementation effort and
help to keep the tools consistent with each other. One tool aiming for reuse of
language and compiler specification is JastAdd [3], which we use in our research.

Often, new insights and knowledge about a particular domain arise over time,
leading to new abstractions in the DSL. In such cases, the language developer
typically wishes to extend the existing DSL in a backward compatible way. Jas-
tAdd has proven to be useful for extending languages; compilers for complex
languages like Java and Modelica have successfully been implemented and ex-
tended with new language constructs [4,5].

In several domains, a visual notation is preferable to a textual notation, which
can increase the accessibility for non-programmers. Such languages are called
domain-specific visual languages (DSVLs). Some languages, such as Modelica [6],
support both a textual and a visual syntax. This allows the software engineer
and the domain expert to use the most convenient notation.

15

We want to investigate how the metacompilation system JastAdd, and its
formalism reference attributed grammars [7], can be used for implementing tools
for visual languages in general, and DSVLs in particular.

2 Background

There are several ways for defining the semantics, that is the meaning, of a pro-
gramming language. Examples include denotational semantics [8,9], operational
semantics [10,11] and attribute grammars [12].

In this work, we will use reference attributed grammars (RAGs), which is
an extension to Knuth’s attribute grammars [12]. RAGs allow the value of an
attribute to be a reference to a node in the abstract syntax tree. For example,
an identifier usage may have a reference attribute that refers to its declaration.
The usage node can use this reference attribute to access attributes from the
declaration node, for example, to obtain the type of the declaration. Using ref-
erence attributes, a graph can be superimposed on the AST, which can be used
to model graph-based languages. Since graphs can be cyclic, the support of cir-
cular reference attributes [13] in JastAdd can be helpful, which solve circular
attribute definitions using fixed-point iteration. Earlier work has shown that cir-
cular reference attributes are practical and provide a concise definition for the
implementation of control-flow and data-flow for Java programs [14]. Other at-
tribute grammar system supporting reference attributes include Silver [15] and
Kiama [16].

For visual languages, there are several ways to define the syntax of a language.
There is, however, no consensus on what formalism to use, in contrast to textual
languages, where Chomsky’s context-free grammars are widely used. Examples of
formalisms are graph grammars [17,18,19], metamodeling [20,21] and constraint
multiset grammars [22].

Erwig [23] proposed a separation of the concrete and abstract syntax for a
visual language, and defined the semantics on the latter. The abstract syntax was
modeled as a directed labeled multi-graph (there can be several edges between
two nodes). Our approach differs from Erwig in that the base structure is the
AST compared to a graph, and instead we use reference attributes to extend
the AST to a graph. We also use RAGs to define the semantics. We think that
a tree is practical when a textual syntax is desired, since it is straightforward
to serialize and easy to create new concrete syntaxes. Rekers et al. [19] also
suggest a separation between the concrete syntax and abstract syntax for visual
languages.

Another related work is reusable visual patterns by Schmidt et al. [24], im-
plemented with attribute grammars, but without use of RAGs. These patterns
are predefined, and examples are lists, tables, sets, lines etc. The language de-
veloper can choose among the patterns and use the ones that matches the visual
language, and can customize visual properties for the patterns. If a pattern is
missing, a new can be added by defining attribute equations.

16

3 Research Proposal

We want to investigate how well suited RAGs are for defining the semantics
for a visual language, and how to use RAGs for semantics-dependent editor
interaction. In particular, we have the following research goals:

– Declarative semantic specification.
– Reuse of semantic specifiation.
– Semantic support in visual editor, for example, showing computed properties.
– Support languages with both a textual and visual syntax.
– Automatic incremental evaluation, using work by Söderberg et al. [25].
– Integration with other editor frameworks, such as JastGen [26].

3.1 Challenges

We have identified the following research challenges, based on experience from
the preliminary work described below.

Defining visual syntax. When defining a visual language, there should be a
way to define its syntax and the visual representation, that is, properties such
as shape and color. One way is to have a DSL supporting that and which
includes concepts such as nodes, connections and containment. To specify
how nodes can connect, constraints can be used. Attributes are one way to
specify such constraints. Another way is to use OCL as Bottoni et al. [20]
have done or create a predicate language as Esser et al. [27]. It should also
be possible to show attribute values. This can be used to show computed
properties such as cycles in graphs, inferred types, etc.
Another approach for defining the syntax is by graph grammars [19], such as

hypergraphs [17], where the visual representation is transformed to a graph,
which is then parsed. One benefit of graph grammars is that they allow both
free-hand and syntax-directed editing. However, earlier work [28] indicates
that metamodeling using GMF [21] is easier to use but less expressive than
hypergraphs, which is something we have experienced as well. We think it is
desirable that the specification format is easy to use, so it is appealing for a
software engineer.

We want to find and choose one approach and connect it to RAGs.
Model consistency. In the visual editor, we have both the view and the AST

model, and a challenge is to keep these models consistent with each other.
One way is to let the visual editor update the AST, which then informs the
view about the change and is updated accordingly. If the editor supports
both textual and visual editing, is this technique feasible? Another way is to
support bidirectional transformations [29].

Automatic layout. We want to find out how to handle layout that can be
sensitive to semantics. A language from ABB has this property, as described
below. For these languages, automatic layout must take this semantics into
consideration, in order to not inadvertently change the meaning of a diagram.

17

Erroneous diagrams. It can be helpful for the language user if it is possible
to temporarily have diagrams that contain errors. For example, when two
edges are being switched and it is forbidden to have more than one edge
to a node, then it may be useful to temporarily have one edge pointing to
nothing.

Undo / redo functionality. To increase the usability of editors for visual lan-
guages, functionality like undo and redo is often desirable. We would like to
generate edit operations for the AST that automatically provide support for
undo and redo functionality.

Refactoring. Another challenge is to support refactoring in visual languages
with RAGs. Is it possible to extend the work done by Schäfer et al. [30]?

3.2 Methodology

The research methodology we use is similar to design science research in informa-
tion systems. Instead of trying to understand the reality, as natural science does,
design science tries to create new innovative artifacts that have utility [31]. We
develop prototypes that are based on practical applications, as the preliminary
work with ABB demonstrates. The research contribution is the technical artifact
itself and the development of the foundations of RAGs. Design science consists
of two activities, build and evaluate, and is an iterative process; the artifact is
continuously evaluated to provide feedback to the building activity [32]. The
evaluation will include performance measurements, for example, the response
time for standard editing operations, as well as evaluation of specification size
and modularity. We develop a prototype visual language together with ABB
using RAGs, and it would be interesting to see if the engineers at ABB suc-
cessfully can experiment with new language constructs for this language in a
modular way.

3.3 Preliminary Work

We have started a collaboration with ABB, and designed a control language
based on a industrial language from ABB [33]. This language has both a textual
and a visual syntax. A diagram in the language contains blocks that are executed
periodically and connections between them that specify the data flow. One inter-
esting aspect of the language is that the semantics are influenced by the visual
placements of the blocks. The execution order of the blocks is primarily defined
by the data flow, and secondary by visual placements. To define the semantics
without visual coordinates, the visual placements are reflected in the declaration
order of the blocks in the textual syntax. We have implemented a visual editor
for this language using RAGs and the Graphical Editing Framework (GEF), an
Eclipse-based framework. A screenshot of the editor can be seen in Fig. 1, with
the corresponding textual syntax.

18

(a) Visual syntax

diagramtype tank-regulator(
Int refLevel, Int tolerance

=> StatusData status) {
StatusMonitor level;

Sub Sub_1;

...

connect(refLevel, Sub_1.in1);
...

}
(b) Textual syntax

Fig. 1: A model for regulating the liquid volume in a tank, using two valves, vIn
and vOut.

4 Conclusions

We have in this paper described the opportunity to use RAGs for implementing
tools for visual languages. Attribute gammars is a proven and convenient formal-
ism to specify the semantics of a language. RAGs extends AGs with references,
and makes it possibly to superimpose graphs on an AST, which can be used
to represent programs of visual languages. Expected benefits of using RAGs in-
clude reuse of compiler specification between different tools and the possibility
to experiment with new language constructs in a modular way. The expected
contributions are the prototype system and development of the foundations of
RAGs to support visual languages. Research goals have been described and re-
search challenges identified. Finally, we mention design science research as our
research methodology and describe the preliminary work with ABB that serves
as a case study.

Acknowledgements

We thank the anonymous reviewers for interesting and useful comments on a
earlier draft of this paper.

References

1. Deursen, A., Klint, P.: Little languages: Little maintenance? Journal of Software
Maintenance: Research and Practice 10(2) (1998) 75–92

2. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (2005) 316–344

3. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Science of Computer Programming 69(1-3) (2007) 14–26

4. Ekman, T., Hedin, G.: The Jastadd Extensible Java Compiler. In: OOPSLA 2007,
ACM (2007) 1–18

5. Hedin, G., Åkesson, J., Ekman, T.: Extending languages by leveraging compilers:
from Modelica to Optimica. IEEE Software 28(3) (March 2010) 68–74

19

6. Modelica Association: Modelica - A Unified Object-Oriented Language for Systems
Modeling - Language Specification Version 3.3. (2012) Available from: http://www.
modelica.org.

7. Hedin, G.: Reference Attributed Grammars. In: Informatica (Slovenia). 24(3)
(2000) 301–317

8. Scott, D.: Outline of a mathematical theory of computation. Oxford University
Computing Laboratory, Programming Research Group (1970)

9. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages.
Oxford University Computing Laboratory, Programming Research Group (1971)

10. Kahn, G.: Natural semantics. In: 4th Annual Symposium on Theoretical Aspects
of Computer Sciences on STACS 87. Volume 247 of LNCS., Passau, Germany,
Springer (1987) 22–39

11. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical report,
Department of Computer Science, University of Aarhus (1981)

12. Knuth, D.E.: Semantics of Context-free Languages. Math. Sys. Theory 2(2) (1968)
127–145 Correction: Math. Sys. Theory 5(1):95–96, 1971.

13. Magnusson, E., Hedin, G.: Circular Reference Attributed Grammars - Their Eval-
uation and Applications. Science of Computer Programming 68(1) (2007) 21–37

14. Söderberg, E., Ekman, T., Hedin, G., Magnusson, E.: Extensible intraprocedural
flow analysis at the abstract syntax tree level. Science of Computer Programming
(2012)

15. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute gram-
mar system. Science of Computer Programming 75(1-2) (2010) 39–54

16. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. Electr. Notes Theor. Comput. Sci. 253(7) (2010) 205–219

17. Minas, M., Viehstaedt, G.: DiaGen: A generator for diagram editors providing
direct manipulation and execution of diagrams. In: Proceedings of the IEEE In-
ternational Symposium on Visual Languages, IEEE (1995) 203–210

18. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
Eclipse plug-ins. In: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. ASE ’05, ACM (2005) 134–143

19. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing 8(1) (1997) 27–55

20. Bottoni, P., Costagliola, G.: On the definition of visual languages and their editors.
Diagrammatic Representation and Inference (2002) 337–396

21. GMF: The Eclipse Graphical Modeling Framework
http://www.eclipse.org/modeling/gmp/

22. Marriott, K.: Constraint multiset grammars. In: Visual Languages, 1994. Proceed-
ings., IEEE Symposium on, IEEE (1994) 118–125

23. Erwig, M.: Abstract syntax and semantics of visual languages. J. Vis. Lang.
Comput. 9(5) (1998) 461–483

24. Schmidt, C., Kastens, U.: Implementation of visual languages using pattern-based
specifications. Software: Practice and Experience 33(15) (2003) 1471–1505

25. Söderberg, E., Hedin, G.: Incremental evaluation of reference attribute grammars
using dynamic dependency tracking. Technical Report 98, Lund University (April
2012) LU-CS-TR:2012-249, ISSN 1404-1200.

26. Söderberg, E., Hedin, G.: Building semantic editors using jastadd. In: Proceedings
of the of the 11th Workshop on Language Descriptions, Tools and Applications,
LDTA 2011, ACM (2011)

20

27. Esser, R., Janneck, J.: A framework for defining domain-specific visual languages.
Workshop on Domain Specific Visual Languages, ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA-2001)
(2001)

28. Tveit, M.: Specification of graphical representations-using hypergraphs or meta-
models? Norsk informatikkonferanse NIK (2008) 39–50

29. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
Generative and Transformational Techniques in Software Engineering II. LNCS,
Springer (2008) 3–46

30. Schäfer, M., Ekman, T., de Moor, O.: Sound and Extensible Renaming for Java.
In Kiczales, G., ed.: 23rd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2008), ACM Press
(2008)

31. March, S.T., Smith, G.F.: Design and natural science research on information
technology. Decis. Support Syst. 15(4) (December 1995) 251–266

32. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1) (March 2004) 75–105

33. Fors, N., Hedin, G.: Handling of layout-sensitive semantics in a visual control
language. In: Proceedings of the 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing, IEEE (2012) poster paper to appear.

21

Towards a Framework for the Integration of
Modeling Languages

Svetlana Arifulina

Department of Computer Science, University of Paderborn, Germany??

svetlana.arifulina@uni-paderborn.de

http://is.uni-paderborn.de

Abstract. In software markets of the future, customer-specific software
will be developed on demand from distributed software and hardware ser-
vices available on world-wide markets. Having a request, services have
to be automatically discovered and composed. For that purpose, ser-
vices have to be matched based on their specifications. For the accurate
matching, services have to be described comprehensively that requires
the integration of different domain-specific languages (DSLs) used for
functional, non-functional, and infrastructural properties. Since different
service providers use plenty of language dialects to model the same ser-
vice property, their integration is needed for the matching. In this paper,
we propose a framework for integration of DSLs. It is based on a param-
eterized abstract core language that integrates key concepts needed to
describe a service. Parts of the core language can be substituted with
concrete DSLs. Thus, the framework serves as a basis for the compre-
hensive specification and automatic matching of services.

Keywords: Integration of DSLs, Metamodeling, Service Specifications

1 On-The-Fly Computing

In the Collaborative Research Centre 901 “On-The-Fly Computing” (OTF Com-
puting), we develop techniques to automatically configure IT services distributed
on world-wide markets in an ad hoc manner to fulfill customer-specific requests1.
On receiving a request, suitable software and hardware services have to be au-
tomatically discovered and composed. For that purpose, services descriptions
have to be compared with search requests (matching), in order to determine
whether they fit. After a service composition has been created, its quality has
to be analyzed, in order to determine the most suitable solution to the request.

In the remainder of this paper, research questions in OTF Computing are
presented in Section 2. Then, preliminary results on the framework and its con-
tributions are described in Section 3. Finally, Section 4 summarizes the proposed
method and contains further steps.

?? This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901)

1 For more information refer to http://sfb901.uni-paderborn.de

23

2 Research Challenges and Issues

One of the research challenges of OTF Computing is the automatic configura-
tion of services. It is based on an appropriate matching mechanism and a quality
analysis of composed solutions. The appropriate matching mechanism is based
on service specifications that, on the one hand, contain all service properties
necessary for their accurate comparison and, on the other hand, not too compli-
cated so that they would hamper the efficiency of this comparison. The quality
analysis requires service specifications that can be used to derive properties of a
composed service, in order to check whether it functions properly. So, a research
issue is a service description that enables the automatic and efficient configura-
tion and quality analysis.

One broadly used language to describe web services is Web Service Descrip-
tion Language (WSDL) [CCMW01]. WSDL allows the description of the service
in the form of its operation signatures, but does not provide any expressive
means to describe the behavior of the service. Another challenge is that in ad-
dition to structure and behavior, non-functional properties and infrastructure
information have to be specified as well, in order to enable an accurate matching
of service level agreements and execution environments. Approaches like WS-*
specifications2 propose solutions for single properties of services but these is still
a lack of an integrated language. So, a research issue is an integration of DSLs
for different service properties in a consistent comprehensive specification.

One more research challenge of OTF Computing is the fact that service
providers use different DSLs to describe the same service properties. Since it is
infeasible to enforce the usage of only one language for all service providers and
requesters, the flexibility to use their own DSLs must be preserved. However,
these heterogeneous service descriptions still have to be matched. Therefore,
different mutual exclusive DSLs used for the same service property have to be
integrated as well. This kind of integration is often solved in the literature by
creating a syntactical mapping between two DSLs that results in merely syntac-
tical matching. So, a research issue is a semantical integration of DSLs that will
also yield a matching mechanism considering semantics.

3 Preliminary Results and Contributions

In this section, we introduce a framework for the integration of modeling lan-
guages that addresses the research issues introduced in Section 2. An overview
of the framework is shown in Fig. 1. The framework consists of an abstract
core language that serves as a common basis for the integration of DSLs for a
comprehensive specification and for matching. The core language accumulates
different service properties necessary for the automatic configuration and quality
analysis. It is represented by a metamodel, which in turn comprises further meta-
models each modeling a certain service property. Furthermore, the core language
is parameterized, i.e., its parts can be substituted by concrete DSLs.

2 For more information refer to http://www.w3.org/2002/ws/

24

Core Metamodel (Parameterized)

Types Signatures Protocols

Contracts Performance Trust

Security ...

Requirements

UMLsec UML
Statecharts

Petri Nets

Parameterization

Instantiation Metamodel (Parameters Instantiated)

UML
Statecharts

Visual
Contracts

Web Service Description
Language (WSDL)

Request

Software
Hardware

Fig. 1. Framework for the Integration of Modeling Languages

Core Language The core language contains abstract DSL-independent key con-
cepts for each modeled service property. To determine them, requirements from
the content of requests and service specifications have to be investigated. Based
on DSLs used by domain experts, appropriate language constructs to represent
these key concepts have to be identified. Depending on the separation of con-
cerns, these language constructs have to be grouped into packages with explicit
relations defined in the form of a metamodel algebra. These relations have to
be checked for consistency throughout the core language that shall enable the
correct integration of concepts from different part of the core metamodel.

Parameterization The parameterization is a possibility to substitute abstract
parts of the core language with concrete syntaxes of DSLs. In Fig. 1, it is illus-
trated that either UML Statecharts [Obj10] or Petri Nets can be used for the
specification of interaction protocols. The parameterization is enabled by defin-
ing a mapping between the core and a DSL that shall consider not only their
syntax but also their semantics. So, a challenge of this work is to define the for-
mal semantics of the core and develop a systematic approach to create semantical
mappings from DSLs onto the core. This research will be based on the prelim-
inary work on the formal definition of behavioral semantics by Soltenborn [SE]
and a semantics-preserving mapping of DSLs by Semenyak [EKR+].

Example The process of binding concrete DSLs onto the core is called instantia-
tion. One instance of the core language that can be used for the comprehensive
service specification is shown in the right box in Fig. 1. This is a language for
rich service descriptions described by Huma in [HGEJ] that allows for service
descriptions based on types, signatures, protocols, and contracts.

25

4 Conclusions and Further Steps

In this paper, a framework for the integration of modeling languages in the con-
text of service-oriented computing is proposed. The framework represents key
concepts of service aspects in the form of an abstract parameterized core lan-
guage that enables to bind concrete DSLs onto it. The main advantages of the
framework is the possibility to consistently use different DSLs in one compre-
hensive service specification and to match comprehensive service specifications
written in different languages, both with the consideration of their syntax and
semantics. This serves as a basis for the automatic discovery and composition of
services in OTF Computing.

My work plan for the PhD is the following:

1. Develop the syntax of the core language that would fit the best for the
binding of DSLs and matching of specifications.

2. Develop a formal semantics definition for the core language.
3. Identify packages of the core language and develop a metamodel algebra for

relations between them. Check them for consistency.
4. Develop a systematic approach to map concrete DSLs on to the core syn-

tactically and semantically. On the side of semantics, consider mathematical
formalisms as well as some pragmatic approaches.

5. Evaluate the results.

The framework will be evaluated during the development of a service speci-
fication language in the context of the CRC 901 and by a student group who
will build a framework for the composition of mobile applications.

References

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vice Definition Language (WSDL). Technical report, March 2001.

[EKR+] G. Engels, A. Kleppe, A. Rensink, M. Semenyak, C. Soltenborn, and
H. Wehrheim. From UML Activities to TAAL - Towards Behaviour-
Preserving Model Transformations. In Proceedings of the 4th European
Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA 2008), volume 5095 of LNCS, pages 95–109. Springer.

[HGEJ] Z. Huma, C. Gerth, G. Engels, and O. Juwig. A UML-based Rich Service
Description for Automatic Service Discovery. In Proceedings of the Forum
at the CAiSE’12 Conference on Advanced Information Systems Engineer-
ing, CEUR Workshop Proceedings, pages 90–97. CEUR-WS.org.

[Obj10] Object Management Group, Inc. (OMG). OMG Unified Modeling Lan-
guage (OMG UML), Superstructure, Version 2.3. Technical report, May
2010.

[SE] C. Soltenborn and G. Engels. Towards Test-Driven Semantics Specification.
In Proceedings of the 12th International Conference on Model Driven En-
gineering Languages and Systems (MODELS 2009), volume 5795 of LNCS,
pages 378–392. Springer.

26

Automatized Generating of GUIs for
Domain-Specific Languages

Michaela Bač́ıková, Dominik Lakatoš, and Milan Nosá̌l

Technical University of Košice, Letná 9, 04200 Košice, Slovakia,
(michaela.bacikova, dominik.lakatos, milan.nosal)@tuke.sk,

Abstract. Domain-specific languages (DSLs) promise many advantages
over general purpose languages (GPLs) and their usage is on the rise.
That is one of the reasons for us at our university to teach the subject
called Modelling and Generating of Software Architectures (MaGSA),
where the students learn how to work with DSLs and their parsers. Our
students often have problems understanding a new DSL, even if it is very
simple, because they never have worked with a DSL before. Therefore we
decided to find a way to help them with the learning process by providing
a DSL-specific editor. This editor will be automatically generated based
on a language specification and the generator will be integrated into the
existing infrastructure of the MaGSA project, which the students use on
the subject. In this paper we present various techniques to reach the goal
of generating graphical editors for DSLs and we introduce a prototype
which is able to automatically generate a user interface for an external
DSL.

Keywords: domain-specific languages, graphical user interface, gener-
ative programming, metamodelling

1 Introduction

DSLs [1] promise advantages over GPLs. As mentioned by Brooks [2], program-
mers tend to produce statements at the same rate whatever language they use,
so high-level languages are more productive. Still, only a few programmers go
to the trouble of creating a new language as it comes with a plenty of problems
lengthening the development process. It is hard to get it right at the first time
without the proper knowledge: it is a new syntax to learn and maintenance can
be expensive [3]. This usually leads to systems written in GPLs which, however,
do not support domain-specific abstractions very well. A programmer ordinarily
ends up with a code containing a lot of computer-specific programming noise and
a lot less of the written code is really useful for solutions of domain problems.

At our university we teach a subject called Modelling and Generating of
Software Architectures (MaGSA) which tries to show our students how to use
model-based [4, 5] and generative programming [6, 7] for creating software sys-
tems. On this subjects’ exercises the students use a pre-prepared project and
tutorials, all constructed in a way enabling them to understand both the com-
plexity of developing a rather simple language parser with several application

27

generators and the simplicity of using a DSL to configure the desired application.
It shows the possibilities of such an application generator tool to create different
software applications by just changing the input file and running the imple-
mented parsers and generators. We call the DSL used on the exercises the entity
language. Metamodel of this DSL is defined by Java classes and its grammar is
defined by an internal DSL (i.e. annotations) in the project and the YAJCo (Yet
Another Java Compiler Compiler) parser generator generates a language pro-
cessor for this DSL. YAJCo tool and it’s advantages were completely described
by Porubän [8, 9].

In our exercises we deal with problems related to incorrect understanding
of the subjects’ curriculum by our students. The primary problem is that the
students do not get the picture of the syntax and the semantics of the entity
language defined in our project i.e. they use it incorrectly and it takes some time
for them to fully understand it and learn to work with it. Since no specific editor
for the entity language was created yet, the students work with free text editors
such as Notepad or Notepad++ which do not provide any syntax highlighting
for our DSL and it has no code completion. So they do not give the students
any hint for writing the code in the entity language. Therefore an idea arises to
create a specific editor for the entity language, to be able to help the students
learning a new language and to write code in it easily.

There is however still one important feature, namely the possibility of chang-
ing the DSL specification by changing the classes and annotations in the project
- if it is because of changes in the subject curriculum or simply because of lan-
guage evolution [10]. If the generator should be generally usable we can not give
the students a one-off tool for a single DSL, which can not be changed. Moreover,
the entity language specification really changes during the development process
on the exercises. Therefore we decided to perform an experiment of generating a
specific editor for the entity language. The main idea of the solution is similar to
the idea of language workbenches described by Fowler [1, 11]. However the main
difference in our approach is that the desired output is not a classical editor
allowing the common integrated development environments like automatic code
completion or syntax highlighting. It is rather a graphical interface with a sup-
port for creating new language constructions similar to CRUD (Create Retrieve
Update Delete) interfaces.

There are many existing language workbenches that could help with graph-
ical environment, code completion, syntax highlighting or refactoring features,
for instance Eclipse Modeling Framework [14] and Eclipse Graphical Modeling
Project [15], Spoofax [13], MetaEdit+ [16] or the Generic Modeling Environment
[17]. The main reason for us to decide not to use them and go for the way of
generating our own editor with a CRUD interface is simplicity and understand-
ability. The students would learn to create new sentences in the language and
they also would learn the relations that the user interface represents. The sec-
ond reason is that these workbenches have integrated generators and language
parsers, which are not compatible with the project used on our exercises and
we want our students to create their own application generators which is the

28

goal of the subject. The advantage is that once the editor generator is included
in the MaGSA project, the students will have a chance to take a look into the
techniques of generating simple editors for DSLs which they can further use in
the subject. We present this paper as another solution to an existing problem
of DSL learnability and we think that graphical user interfaces (GUIs) for DSLs
represent a good first step for motivating students to use DSLs.

1.1 Tasks and goals

In this paper we try to introduce a first step on a way to the solution of auto-
matic generating of GUIs for external DSLs. The possibility of derivating the
user interface specific for a DSL based on its specification was already proved.
We, however, try to present a different way of solving this problem which would
shorten learning time of DSLs in the first phases of learning. Our general goal is
to implement a prototype which will be able to generate graphical user interface
based on a language specification. Based on different types of statements in the
language specification it will be able to generate different basic graphical com-
ponents. We will introduce various partial techniques to creating this solution
and also different techniques to reach the general goal. The partial techniques
will be illustrated by examples.

The goal of this paper is to design a method and to implement a prototype
enabling automatic generating of a user interface for DSL based on language
metamodel. The main goal is a definition of a solution, that will guide solvers to
the right direction to the realization of a project. The most important property
of our solution is simplicity and learnability.

2 The MaGSA Project

The prototype is based on an existing project, which is currently in the teaching
process of the MaGSA subject on the Technical University of Koice, Faculty of
Electrotechnical Engineering and Informatics for teaching metamodelling, DSLs
and generative approach to software development. For the purpose of simplifi-
cation, in the rest of the paper we will refer to this project as to the ’MaGSA
project’. The MaGSA project used by our students is a pre-prepared project
implemented in the Java language and it uses the standard MDA architecture.
The exercises are realized in a form of a tutorial, which provide the description
of the project and introductory source codes, with which the students work. We
kindly ask the readers to check the official website in English [12] for further
information about the MaGSA project and the tutorials.

Two basic entities are defined in the model of MaGSA project: Employee and
Department. The model of the MaGSA project is written in the entity language
and its metamodel can be described by a grammar as follows:

Model ::= ((Entity (Entity)*) (Reference)*)

Reference ::= (<reference> <NAME> <NAME>)

29

Entity ::= (<entity> <NAME> (<{> (Property (Property)*) <}>))

Property ::= (<NAME> (<:> Type) ((Constraint ((<,> Constraint))*))?)

Type ::= (<INTEGER> | <REAL> | <STRING>)

Constraint ::= (Regex | Required | Range | Length | Contains)

Regex ::= (<regex> <STRING_VALUE>)

Required ::= <required>

Range ::= (<range> <INT_VALUE> <INT_VALUE>)

Length ::= (<length> <INT_VALUE> <INT_VALUE>)

Contains ::= (<contains> <STRING_VALUE>)

Terminals are noted in brackets 〈 〉.
The basic entities of the metamodel and the relations between them are

defined by the class implementation. The concrete syntax is defined by means
of annotations in the individual classes. Based on these classes and annotations
the YAJCo tool generates the grammar along with the language processor for
the DSL.

2.1 Entity Language

As we mentioned earlier, the model of the generated application, is defined by
an external DSL called the entity language, usage of which can be seen on an
example file written in the entity language below.

Department

entity Department {

name : string required, length 5 30

code : string required, length 1 4

level : real

}

Employee

entity Employee {

name : string required, length 2 30

surname : string required, length 2 30

age : integer

}

reference Employee Department

On the MaGSA subject the students work with these two entities, but it
is possible to define any number of entities and references between them and
we encourage students to do so. As we mentioned earlier, they have problems
grasping the basic idea, therefore only a very small amount of students do so
without any help.

In the current state of the MaGSA project, the input file written in the entity
language is processed by the generated language processor and based on the

30

information processed the resulting application is generated, which provides a
console interface to be able to work with the concrete departments and employees
saved in the database. The task of the students is to create generators which
generate the console application.

The students work with the entity language only manually which, when work-
ing with a big number of entities, could be tedious and exhausting. The problem
can arise also when the metamodel is changed. In that case manual correction of
each entity in the entity language file is needed. Therefore tool enabling working
with the entity language would be helpful. The tool should enable adding new
entities, their editing and removing. This tool would be generated based on the
metamodels’ grammar specifically for any defined DSL.

3 Problem Analysis

The challenge of our goal is the creation of a new generator of a DSL-specific
GUI which would reflect the relations between the language concepts and thus
support the domain-specific abstractions. The basic idea is best to explain on
the grammar shown in the chapter 2.

The left sides of the rules define the points, which can be expressed by forms
of the user interface. The right sides of the rules define the content of the forms.

In the EBNF we know these tree basic operators:

• sequence,
• alternative,
• repetition 0-* or 1-*,

and two basic types of symbols:

• terminal,
• non-terminal.

A sequence of symbols transforms into a GUI as a list of elements in a
particular form. If the sequence contains terminal symbols, then these symbols
have their type. Based on this type the corresponding component can be derived
as illustrated in Tab. 1.

Table 1. Types of grammar symbols and components derived based on these types

Value type Derived component

<STRING VALUE> text field
<INTEGER VALUE> jspinner or a number field (a text field with a number input)
<NAME> selection with existing named entities

If a given symbol is a nonterminal then after clicking on a particular GUI
element or an item a new dialog for editing this element or item opens.

31

A reduction of the number of dialogs can be made. If a rule contains only
alternatives and no other elements or operators then it is possible to generate a
dialog with a combo-box on the top and the remaining content will change dy-
namically based on what was selected in the combo-box. The content represents
the particular alternative.

The following example shows two production rules for Property and Con-
straint.

Property ::= (<NAME> (<:> Type) ((Constraint ((<,> Constraint))*))?)

Constraint ::= (Regex | Required | Range | Length | Contains)

Fig. 1 illustrates a GUI for the Constraint and Property rules of our gram-
mar. In the Property dialog new constraints can be added by clicking the ’+’
button. Consequently the dialog with one of the constraint types defined for
the property can be chosen an its content automatically changes based on the
particular alternative representation.

Fig. 1. Illustration of a GUI generated from the Property grammar rule

Based on each type of EBNF operator it is possible to derive different types
of components. Tab. 2 lists the components that can be derived based on a
particular EBNF operator.

We list different types of components for each operator that can be used for
the implementation, because they meet the same purpose. Each of them can be
chosen for the implementation, the only deciding factor is usability.

As can be seen on these examples, the components reflect the relations be-
tween the language concepts. It can be seen instantly that the Property has a
name, a type and a list of constraints. We assume this can help grasping the
idea of DSLs.

32

Table 2. The types of operators in the grammar and components derived based on
these types

Operator Derived component

Alternatives (the — operator) Combo-box
+ (repeat 1-*) A combo-box or a radio button (with single selection)

+ 3x CRUD button
* (repeat 0-*) A list or check-box buttons (with multiple selection)

4 Prototype Implementation

A prototype was implemented in the Java language into the existing infras-
tructure of the MaGSA project. A new generator was created by extending the
abstract generator provided by the project. The metamodel is defined by the
metamodel classes and annotations for the YAJCo parser generator and a user
interface is generated to enable the model defined by the entity language. It is
possible to add new entities, edit existing entities and to remove entities. Also,
in each entity a further change of all properties defined by the model is possible.
It is possible to add references from one entity to other. The initial screen of
the application is in Fig. 2. It contains a list of all defined entities and a list of
references. It is possible to create new files in the entity language with the *.el
extension, or open existing files.

Fig. 2. Illustration of GUI generated from the grammar

We realize that this prototype is implemented in the specific environment of
our MaGSA project, but the idea is usable also in other areas. We believe it will
help beginners to learn the basic principles behind DSLs.

33

5 Conclusion

In this paper we introduced a first step on a way to the solution of automatic
generating of GUIs for external DSLs. We showed a simple way of deriving a
GUI for a DSL specification and of using the GUI to create new files written in
this DSL. The DSL-specific interface is simple to use even for a student and it is
more understandable than a classic textual editor. Reflecting relations between
the domain-specific entities ensures the support of domain-specific abstractions.
We introduced various partial techniques to creating this solution, illustrated
by examples and also different techniques to reach the general goal. We created
a prototype integrated into the existing infrastructure of the MaGSA project
which is able to generate basic graphical elements based on the DSL specification.
This way students will be guided to the right direction to the realization of the
MaGSA project. In the future we plan to perform usability experiments with our
students prototype to be able to improve the prototype further. The tool will
be used by one group of students and another group will work without the tool.
We will measure the learning time, completion time and failure rate. In the end
we will evaluate subjective usability using questionnaires. We will compare the
results between the two groups to determine whether the tool is really helpful.

6 Acknowledgement

This work was supported by VEGA Grant No. 1/0305/11 - Co-evolution of the
artifacts written in DSLs driven by language evolution.

References

[1] Fowler, Martin: Domain-Specific Languages (Addison-Wesley Signature Series).
Addison-Wesley Professional (2010)

[2] Brooks, F.P.: The Mythical Man Month: Essays on Software Engineering. Addison
Wesley Professional Longman Aniversary Ed. (1995).

[3] Freeman, S., Pryce, N.: Evolving an Embedded Domain-Specific Language in Java.
OOBSLA’06 October 22-26, Portland, Oregon, USA (2006).

[4] T. Stahl, M. Voelter: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley (2006).

[5] J. Greenfield, K. Short, S. Cook, S. Kent: Software Factories: Assembling Applica-
tions with Patterns, Models, Frameworks, and Tools. Wiley (2004).

[6] Czarnecki, K. Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley Professional (2000).

[7] Chen, J.: Generators. Presentation. USA, University of Colorado, march http :
//wiki.lassy.uni.lu/se2c − bibdownload.php?id = 1117 (accessible 27.5.2009)
(2003).

[8] J. Porubän, M. Sabo, J. Kollár and M. Mernik: Abstract syntax driven language
development: defining language semantics through aspects, in Proceedings of the
International Workshop on Formalization of Modelling Languages, New York, NY,
USA, (2010).

34

[9] J. Porubän, M. Forgáč, M. Sabo and M. Běhálek: Annotation Based Parser Gener-
ator. Computer Science and Information Systems, vol. 7, no. 2, pp. 291-307, (2010).

[10] Bell, P.: DSL Evolution. Article. December http://www.infoq.com/articles/dsl-
evolution (accessible 20.4.2011) (2009).

[11] Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Lan-
guages? http://www.martinfowler.com/articles/languageWorkbench.html, (acces-
sible 27.5.2009)(2005).

[12] Modelling and Generating of Software Architectures. Student tutorial,
English version. Technical University of Koice, Faculty of Electrical En-
gineering and Informatics, Department of Computers and Informatics
http://hornad.fei.tuke.sk/ bacikova/MaGSA (2010)

[13] The Spoofax Language Workbench http://strategoxt.org/Spoofax (accessible
05.08.2012)(last update 2012)

[14] Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/ (accessible
05.08.2012) (projets’ last update 2009)

[15] Graphical Modeling Project http://www.eclipse.org/modeling/gmp/ (accessible
05.08.2012) (projets’ last update 2010)

[16] Domain-specific Modeling with MetaEdit+ http://www.metacase.com/ (accessi-
ble 05.08.2012) (projets’ last update 2012)

[17] Generic Modeling Environment http://www.isis.vanderbilt.edu/Projects/gme/
(accessible 05.08.2012) (projets’ last update 2008)

35

A Model-driven Approach for the Analysis of
Multimedia Documents

Joel dos Santos1, Christiano Braga2, and Débora Muchaluat-Saade1

1 Laboratório Mı́diaCom
{joel,debora}@midiacom.uff.br

2 Language-oriented software engineering research group
cbraga@ic.uff.br

Computer Science Department
Universidade Federal Fluminense

Abstract. This paper proposes a model-driven approach for the anal-
ysis of multimedia documents. Structural and behavioral properties of a
multimedia document are verified thus guaranteeing its well-formedness
and conformance before deployment. Multimedia documents are inter-
preted as object model instances of a multimedia document metamodel.
Structural properties are verified using consistency reasoning over an
ontology representation of the given object model together with OCL
invariant validation (i.e., the application of OCL invariants to the given
object model). Behavioral properties are verified through model checking
on the transition system associated to the given multimedia document.
Both metamodel and user-defined behavioral properties are verified.

1 Introduction

Multimedia documents describe applications as a set of components, which rep-
resent media objects, and relationships among them, which define temporal and
real-time constraints over components. Declarative authoring languages may
simplify the definition of multimedia documents since they emphasize the de-
scription of a document rather than the implementation of its presentation.

Large multimedia documents, with many components, organized within quite
rich and complex structures, may be ill-formed and fall victim of conflicting re-
lationships, leading to an application whose presentation is not what the author
desires. An example of an ill-formed document includes cycles in composition
nesting, where a composition is a group of components and relationships. Ex-
amples of undesired behavior (e.g. [7, 12, 13]) are the non-termination and/or
unreachability of parts of a given document and the concurrent use of system
resources, like an audio channel or a space at the screen. Usually, authors test
their documents by executing them in an attempt to identify undesired behav-
iors, an approach which is not complete since not all possible behaviors may be
explored on potentially ill-formed models.

Model-driven development (MDD) is a software development approach where
models are the main artifacts of the development process. Models are represented

37

as instances of metamodels, which describe the syntax of a modeling language,
and may be used to derive different software artifacts, such as code in a program-
ming language or even other models in different abstraction levels. This deriva-
tion process is called model transformation, which relates modeling languages
through metamodels. Under that perspective, MDD is seen as a transformation
between modeling languages applied to particular models, as shown in Figure 1,

m ∈M parsing−−−−→ m̂ ∈M τ−→ n̂ ∈ N pretty-printing−−−−−−−−−→ n ∈ N

Fig. 1. The application of a model transformation τ :M→N

where M represents the concrete and M the abstract syntax of a source modeling
language, N represents the concrete and N the abstract syntax of a target
modeling language and τ the transformation between M and N . The operation
parsing represents a mapping where a model m produces an instance m̂ of M
and pretty-printing represents the inverse mapping. The notationm ∈M denotes
that model m is (syntactically) well-formed with respect to metamodel M .

The objective of MDD is to increase the abstraction level of the development
process, so that authors may focus on modeling rather than implementation. In
the context of multimedia documents, this is precisely the objective of NCL [9]
and other multimedia authoring languages such as SMIL [15] and HTML5 [16].
Being language-driven, as shown in Figure 1, MDD fits very nicely with the
development of multimedia applications in general and in particular with the
validation of multimedia documents.

As previously mentioned, the verification of behavioral properties, like the
ones presented before, is an important task in the development of multimedia
applications, since it guarantees important properties of multimedia documents.
Automaton based techniques fit well in this type of verification through model-
checking [5] which essentially defines a decision procedure for temporal formulae.
The application of model checking to multimedia documents thus requires a
formalization of its behavior as a labeled transition system (LTS) and a proper
encoding of the desired behavioral properties as temporal formulae.

A question that arises then is: how to guarantee that the model being verified
correctly represents the multimedia document?

Figure 2 shows MDD with the so-called transformation contracts [2–4]. A
transformation contract is a specification of a model transformation defined as
a model that relates the metamodels of two modeling languages. Formally, a
transformation contract K for a model transformation τ : M → N is the disjoint
union M onA N of the metamodels of the modeling languages together with
associations in A between the model elements of M and N . The associations
in A may be constrained by different kinds of properties, either structural or
behavioral. The idea is that, following a design by contract style, every time
a model transformation τ : M → N is applied to a model m̂ ∈ M, first the
properties PM of the source metamodel are verified in m̂, then properties PN
of the target metamodel are verified in the generated model n̂ = τ(m̂), together

38

with the properties PK attached to the relations specified by A, which must hold
on the joined model k = m̂ onl n̂ with l ∈ A. The notation m |= PM means that
the properties PM hold in model m, that is, m is in conformance with M.

m ∈M parsing−−−−→ m̂ ∈M,
m̂ |= PM

τ−−→
n̂ ∈ N ,
n̂ |= PN ,
k |= PK

pretty-printing−−−−−−−−−→ n ∈ N

Fig. 2. MDD with transformation contracts

An MDD process for the analysis of multimedia documents would refine the
process of Figure 2 by understanding M as the metamodel of a multimedia
authoring language, such as NCL, and N as the metamodel of the specification
language of a formal verification framework such as the specification language
of a model checker.

This work proposes a transformation contract approach for the analysis of
multimedia documents. Different verification techniques shall be used to analyze
multimedia documents: (i) Consistency reasoning with description logic [1] will
be used for verifying document consistency together with Object Constraint Lan-
guage (OCL) invariant execution; and (ii) Linear Temporal Logic model checking
appears to be the appropriate reasoning technique for behavioral properties of
multimedia documents.

This work contributes with a general framework, with tool support, capable
of analyzing different types of multimedia documents using different analysis
(that is, verification and validation) techniques. Our proposal uses a language-
driven approach where the authoring language semantics is represented by a
general model (called SHM - Simple Hypermedia Model) where structural and
behavioral properties are verified. In this paper we outline our approach and
discuss preliminary results achieved with a prototype of the tool.

The remainder of this paper is organized as follows. Section 2 presents the
state-of-the-art on multimedia document analysis. Section 3 discusses the pro-
posed solution for multimedia document analysis. Section 4 discusses the current
state of the multimedia document analysis project illustrating preliminary re-
sults. Section 5 finishes this paper presenting the next steps of this work.

2 State-of-the-art on multimedia document analysis

Santos et al. [13] presented an approach for the analysis of multimedia documents
by translating it into a formal specification, in that case, into RT-LOTOS pro-
cesses, using general mapping rules. The modularity and hierarchy of RT-LOTOS
allows the combination of processes specifying the document presentation with
other processes modeling the available platform.

The verification consists in the interpretation of the minimum reachability
graph built from the formal specification, in order to prove if the action cor-
responding to the presentation end can be reached from the initial state. Each

39

node in the graph represents a reachable state and each edge, the occurrence of
an action or temporal progression. When a possible undesired behavior is found,
the tool returns an error message to the author, so he can repair it. The tool
in [13] could analyze NCM [14] and SMIL [15] documents.

Na and Furuta, in [12], presented caT (context aware Trellis), an authoring
tool based on Petri nets. caT supports the analysis of multimedia documents by
building the reachability tree of the analyzed document. The author defines limit
values for the occurrence of dead links (transitions that may not be triggered),
places with token excess, besides other options, as the analysis maximum time.
The tool investigates the existence of a terminal state, i.e., whether there is
a state where no transitions are triggered. It also investigates the limitation
property, i.e., if no place in the net has an unlimited number of tokens and
the safeness property, i.e., if each place in the net has a token. The limitation
analysis is important since tokens may represent scarce system resources.

Oliveira et al., in [7], presented HMBS (Hypermedia Model Based on Stat-
echarts). An HMBS multimedia application is described by a statechart that
represents its structural hierarchy, regarding nodes and links, and its human-
consumable components. Those components are expressed as information units,
called pages and anchors. The statechart execution semantics provide the appli-
cation navigation model. A statechart state is mapped into pages and transac-
tions and events represent a set of possible link activations.

The statechart reachability tree for a specific configuration may be used to
verify if any page is unreachable, by verifying the occurrence of a state s in one
of the generated configurations, which indicate that the page is visible when the
application navigation starts in the initial state considered. In a similar manner,
it is possible to determine if a certain group of pages may be seen simultaneously
searching state configurations containing the states associated to those pages.
The reachability tree also allows the detection of configurations from which no
other page may be reached or that present cyclical paths.

Júnior et al., in [10], also present the verification of NCL documents through a
model-driven approach. The verification is also achieved by transforming an NCL
document into a Petri Net. This transformation is done in two steps. The first
step transforms the NCL document into a language called FIACRE, representing
the document as a set of components and processes. Components represent media
objects and compositions and processes represent the behavior associated to
components. The second step transforms the FIACRE representation into a Petri
Net. The verification uses a model-checking tool and temporal logic formulae to
represent the behavior the author wants to verify. Once this work is very recent,
the automation of that approach is a future work.

Our work contributes to the state-of-the-art with a general approach that
can be used with different multimedia authoring languages.

40

3 A model-driven approach to multimedia document
analysis

We propose the use of the transformation contracts approach to analyze mul-
timedia documents. Figure 3 refines Figure 2 and illustrates our approach pic-
torially with NCL as the multimedia authoring language and Maude [6] as the
specification language for formalizing multimedia documents. Informally, Maude
modules are produced from NCL documents and the behavioral properties are
represented as LTL formulae which are verified using the Maude model checker.

An important element of our approach is the so-called modeling language
for the Simple Hypermedia Model (SHM) [8]. SHM models are important for
two reasons: (i) they give formal meaning to NCM models, and (ii) should be a
general formal representation for multimedia documents. SHM models are essen-
tially transition systems that have basic elements to represent multimedia docu-
ments such as anchors as states, events as actions and links as transitions.From
SHM models we could produce representations in different formalisms such as
Maude or SMV [11]. Behavioral properties of well-formed models that hold the
structural properties of a given authoring language are then checked at the con-
crete level such as Maude or SMV.

Let us go through each step of Figure 3. First, an NCL document is parsed
into an NCM [14] model. (NCM is the conceptual model that NCL documents
are based on and may be understood as its abstract syntax.) Thus, given an NCL

document d, if (d̂ = parse(d)) |= PNCM, that is, if the structural properties of

NCM hold in d̂ (such as non-circular nested compositions) then a model trans-

formation τNCM is applied on d̂. Given that a proper SHM model ŝ is produced
by the application of the transformation contract from NCM to SHM, that is,
essentially, its states are built properly from anchors, actions properly built from
events and transitions properly built from links, a concrete representation of ŝ
may be produced in the specification language of the model checker, such as
Maude.

d ∈ NCL
parsing−−−−→ d̂ ∈ NCM,

d̂ |= PNCM

τNCM−−−−→
ŝ ∈ SHM,
ŝ |= PSHM,
k |= PK

pretty-printing−−−−−−−−−→ md ∈ Maude

Fig. 3. A transformation contract approach to Maude theories from NCL documents

Given md, which is well-formed and in conformance with K = NCM onA
SHM, one can now verify with a model-checker the temporal formulae that
represent the behavioral properties exemplified at the beginning of Section 1
(such as unreachability of document parts) and document specific properties, de-
fined by the document author and transformed into temporal formulae. Counter-
examples produced by the model-checker, which are essentially traces that do
not have the desired temporal formulae, may be presented back to the docu-

41

ment author as sequences of links representing SHM transitions that correspond
to transitions (or rewrites, in the case of Maude) of the faulty path encountered
by the model checker. This process is illustrated pictorially in Figure 4, where

NCL author

d∈NCL−−−−→
l∈(NCLLinks)

∗
←−−−−−−−−−

NCL Analyzer = τ(parse(d)) ` modelCheck(s0, φ)

Fig. 4. NCL Analyzer

NCL Analyzer is the tool that essentially invokes the Maude model checker,
represented in Figure 4 by the command modelCheck, which checks for the prop-
erty φ (a conjunction of the behavioral properties together with author-defined
properties) using the specification (actually, rewrite theory) given by τ(parse(d))
using s0 as initial state (specified by the initial conditions of document d).

As mentioned before, SHM is intended to be a general multimedia model.
The verification of multimedia documents specified with languages different from
NCL, such as SMIL and HTML5, would require transformations from the ab-
stract syntax of those languages to SHM together with a proper mapping from
counter-examples of the chosen model-checker to the authoring language. The
remaining of the analysis process is reused among those different languages.

We have a first attempt at SHM and a prototype tool that transforms NCL
to Maude modules. Section 4 briefly discusses preliminary results.

4 Preliminary results

Part of the proposed solution is prototyped in a tool presented in [8], where
the first author, under the supervision of the remaining authors, proposed an
implementation of a transformer from NCL documents to Maude modules. With
that prototype it was possible to analyze structural and behavioral properties of
NCL documents. Besides, the prototype gives us the intuition that the proposed
solution seems to be appropriate.

The prototype was used in several small experiments with simple documents.
Besides it was used with two non-trivial documents created by the Brazilian
Digital TV community. A description of the two documents (“First João” and
“Live More”) and their results are presented here.

“First João” is an interactive TV application that presents an animation
inspired in a chronicle about a famous Brazilian soccer player named Garrin-
cha. It plays an animation, an audio and a background image. At the moment
Garrincha dribbles the opponent, a video of kids performing the same dribble
is presented and when his opponent falls on the ground, a photo of a kid in the
same position is presented. The user may interact with the application pressing
the red key at the moment a soccer shoes icon appears. The animation is resized
and a video of a kid thinking about shoes starts playing.

This document was deployed by the authors of the NCL language as a sample
document. As expected, the document is consistent with respect to the structural

42

properties (PNCM), defined taking into account the NCM grammar, and the
behavioral properties (PSHM), from the set of parameterized properties. It was
possible to verify that every anchor is reachable and has an end. Besides, the
document as a whole ends.

“Live More” is an application that presents a TV show discussing health and
welfare. Once the TV show starts playing, an interaction icon appears. If the user
presses the red key of the remote control, four different food options appear. The
user can choose a dish by pressing one of the colored keys of the remote control.
When a dish is chosen, the TV user is informed about the quality of his choice,
telling whether there are missing nutrients or nutrients in excess.

This document is consistent with respect to the structural properties (PNCM).
However, the document is not consistent with respect to the behavioral prop-
erties (PSHM). It was possible to verify that once a dish is chosen, the anchor
representing the chosen dish and its result do not end, and consequently the
document as a whole.

The proposed prototype allows NCL document authors to verify if their doc-
ument fails in one of the common undesired properties, besides validating the
document structure. From the tests done with NCL documents it was possible
to identify refinements in our Maude specification of SHM. Such refinements
and open issues are addressed in the next section.

5 Conclusion

In this paper we presented an approach for the analysis of multimedia documents
and a prototype tool that partially implements it. This section discusses future
directions to our research project.

We are currently working on a refinement of the specification for SHM in [8],
its Maude representation (to improve the efficiency of model checking it) and on
a formal proof for the transformation τNCM.

An important future work it to evaluate the generality of our approach,
exploring mappings from different authoring languages to SHM, as indicated
in the end of Section 3.

Our preliminary results consider predefined properties representing patterns
of behavior of multimedia documents (see Section 3.) We plan to incorporate
user-defined behavioral properties, by allowing the author to define such prop-
erties in a structured natural language (English, for example) that could be
translated to LTL formulae.

We also consider evaluating the usability of the tool resulting from this
project using human-computer interaction techniques.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2003.

43

2. C. Braga. A transformation contract to generate aspects from access control poli-
cies. Journal of Software and Systems Modeling, 10(3):395–409, 2010.

3. C. Braga, R. Menezes, T. Comicio, C. Santos, and E. Landim. On the specifica-
tion verification and implementation of model transformations with transformation
contracts. In 14th Brazilian Symposium on Formal Methods, volume 7021, pages
108–123, 2011.

4. C. Braga, R. Menezes, T. Comicio, C. Santos, and E. Landim. Transformation
contracts in practice. IET Software, 6(1):16–32, 2012.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

6. M. Clavel, S. Eker, F. Durán, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. All
about Maude - A High-performance Logical Framework: how to Specify, Program,
and Verify Systems in Rewriting Logic. Springer-Verlag, 2007.

7. M.C.F. de Oliveira, M.A.S. Turine, and P.C. Masiero. A statechart-based model
for hypermedia applications. ACM Transactions on Information Systems, 19(1):52,
2001.

8. J. A. F. dos Santos. Multimedia and hypermedia document validation and ver-
ification using a model-driven approach. Master’s thesis, Universidade Federal
Fluminense, 2012.

9. ITU. Nested Context Language (NCL) and Ginga-NCL for IPTV services.
http://www.itu.int/rec/T-REC-H.761-200904-S, 2009.

10. D. P. Júnior, J. Farines, and C. A. S. Santos. Uma abordagem MDE para Mod-
elagem e Verificação de Documentos Multimı́dia Interativos. In WebMedia, 2011.
in Portuguese.

11. K.L. McMillan. Symbolic model checking: an approach to the state explosion prob-
lem. Kluwer Academic Publishers, 1993.

12. J.C. Na and R. Furuta. Dynamic documents: authoring, browsing, and analysis
using a high-level petri net-based hypermedia system. In ACM Symposium on
Document engineering, pages 38–47. ACM, 2001.

13. C.A.S. Santos, L.F.G. Soares, G.L. de Souza, and J.P. Courtiat. Design method-
ology and formal validation of hypermedia documents. In ACM International
Conference on Multimedia, pages 39–48. ACM, 1998.

14. L. F. G. Soares, R. F. Rodrigues, and D. C. Muchaluat-Saade. Modeling, author-
ing and formatting hypermedia documents in the HyperProp system. Multimedia
Systems, 2000.

15. W3C. Synchronized Multimedia Integration Language - SMIL 3.0 Specification.
http://www.w3c.org/TR/SMIL3, 2008.

16. W3C. HTML5: A vocabulary and associated APIs for HTML and XHTML.
http://www.w3.org/TR/html5/, 2011.

44

SMADL: The Social Machines Architecture
Description Language

Leandro Marques do Nascimento1,2, Vinicius Cardoso Garcia1,
Silvio R. L. Meira1

1 Informatics Center - Federal University of Pernambuco (UFPE) ,
2 Department of Informatics - Federal Rural University of Pernambuco (UFRPE)

{lmn2, vcg, srml}@cin.ufpe.br

Abstract. We are experiencing a high growth in the number of web
applications being developed. This is happening mainly because the web
is going into a new phase, called programmable web, where several web-
based systems make their APIs publicly available. In order to deal with
the complexity of this emerging web, we define a notion of social ma-
chine and envisage a language that can describe networks of such. To
start with, social machines are defined as tuples of input, output, pro-
cesses, constraints, states, requests and responses; apart from defining
the machines themselves, the language defines a set of connectors and
conditionals that can be used to describe the interactions between any
number of machines in a multitude of ways, as a means to represent
real machines interacting in the real web. This work presents a prelim-
inary version of the Social Machine Architecture Description Language
(SMADL).

1 Introduction

Software systems are built upon programming languages. A programming lan-
guage is a notation for expressing computations (algorithms) in both machine
and human readable form. Appropriate languages and tools may drastically re-
duce the cost of building new applications as well as maintaining existing ones
[1].

In the context of programming languages, a Domain-Specific Language (DSL)
is a language that provides constructs and notations tailored toward a particular
application domain [2]. Usually, DSLs are small, more declarative than imper-
ative, and more attractive than General-Purpose Languages (GPL) for their
particular application domain.

However, in software engineering several different artifacts are developed be-
sides code and one of the most important is the software architecture. Most de-
velopers agree that architecture is needed in some way, shape, or form, but, they
can’t agree on a definition, don’t know how to manage it efficiently in nontrivial
projects, and usually can’t express a system’s architectural abstractions precisely
and concisely [3]. When asking a developer to describe a system’s architecture
Voelter [3] says “I get responses that include specific technologies, buzzwords

45

such as AJAX (asynchronous JavaScript and XML) or SOA (service-oriented
architecture), or vague notions of “components” (such as publishing, catalog, or
payment). Some have wallpaper-sized UML diagrams in which the meanings of
the boxes and lines aren’t clear.”

These answers mention aspects that are actually related to a system’s ar-
chitecture, but none of them represent an unambiguous and/or “formal” de-
scription of a system’s core abstractions. Indeed, it is not surprising because,
although there are languages that directly express software architectures, they
are not quite common among software developers.

In order to better define software architectures, it is worthy using DSLs and
taking advantage of their expressiveness in a limited domain. Our proposal relies
on top of an Architecture Description Language (ADL) for describing web based
software systems in terms of Social Machines, a new concept developed by our
research group which tries to increase the abstraction level for comprehending
the web. Next, we present the context and the details about Social Machines.

2 An Emerging Web of Social Machines

The traditional concept of software has been changing during the last decades.
Since the first definition of a computing machine described by Turing in [4],
software started to become part of our lives and has been turned pervasive and
ubiquitous with the introduction of personal computers, the internet, smart-
phones and recently the internet of things. In fact, one can say that software
and the internet changed the way we communicate, the way business is done
and the way software is developed, deployed and used. Nowadays, computing
means connecting [5] and sometimes it is said that developing software is the
same as connecting services [6], since there are several up and running software
services available.

Recently, we all can clearly see that a new phase is emerging, the web “3.0”,
the web as a programming platform, the network as an infrastructure for in-
novation, on top of which all and sundry can start developing, deploying and
providing information services using the computing, communication and control
infrastructures in a way fairly similar to utilities such as electricity.

An overview of this Web 3.0 scenario can be seen in the ProgrammableWeb
website1. It gathers around 6500 publicly available APIs and more than 6700
mashups using them (last visit in July 2012). Although there have been many
studies about the future of the internet and concepts such as web 3.0, pro-
grammable web [7, 8], linked data [9] and semantic web [10, 11], the segmenta-
tion of data and the issues regarding the communication among systems obfus-
cates the interpretation of this future. Unstructured data, unreliable parts and
non-scalable protocols are all native characteristics of the internet that needs a
unifying view and explanations in order to be developed, deployed and used in
a more efficient and effective way.

1 www.programmableweb.com

46

Furthermore, the Web concepts, as we know, are recent enough to represent
many serious difficulties while understanding their basic elements and how they
can be efficiently combined to develop real, practical systems in either personal,
social or enterprise contexts. Therefore, we developed a new concept called Social
Machine (SM), in order to provide a common and coherent conceptual basis
for understanding this still immature, upcoming and possibly highly innovative
phase of software development. SM concept was firstly conceived in [12] and later
demonstrated with a case study in [13].

So, we define a SM as a tuple, as following:

SM = <Rel, WI, Req, Resp, S, Const, I, P, O>

In general, a SM represents a connectable and programmable entity contain-
ing an internal processing unit (P) and a wrapper interface (WI) that waits for
requests (Req) from and replies [with responses (Resp)] to other social ma-
chines. Its processing unit receives inputs (I), produces outputs (O) and has
states (S); and its connections define intermittent or permanent relationships
(Rel) with other SMs. These relationships are connections established under
specific sets of constraints (Const). Our goal with this concept of a Social Ma-
chine is not to formally describe software services as can be seen in [14], but
instead we want to describe the programmable web in a higher level of abstrac-
tion, thus increasing the power of new programming structures or paradigms
dedicated to this context. Figure 1 illustrates a basic representation of a Social
Machine.

Fig. 1. A graphical representation of a Social Machine.

The idea behind Social Machines is to take advantage of the networked en-
vironment they are in to make it easier to combine and reuse exiting services
from different SMs and use them to implement new ones. Hence, we can high-
light some of its main characteristics, as following: Sociability, Compositionality,

47

Platform and Implementation independency, Self-awareness, Discoverability and
last, but not least, Programmability.

There may be different types of social machines, but one way to classify
them is through the simple taxonomy shown in Figure 2, based on the types of
interactions they have with each other, as follows:

– Isolated - Social Machines that have no interaction with other Social Ma-
chines;

– Provider - Social Machines that provide services for other Social Machines
to consume;

– Consumer - Social Machines that consume services that other Social Ma-
chines provide;

– Prosumer - Social Machines that both provide and consume services.

Fig. 2. Social Machines as a partial order diagram.

In this work, we envisage an Architecture Description Language that can
describe networks of SMs. Apart from defining the machines themselves, the
ADL defines a set of connectors and conditionals that can be used to describe the
interactions between any number of machines in a multitude of ways, as a means
to represent real machines interacting in the real web. Details are presented next.

3 The Social Machines Architecture Description
Language - SMADL

This work is an attempt to answer the following research questions: “Is it possible
to integrate diverse web applications using a standard architecture description
language?”. In order to answer it, this work purposes a new ADL for defining
social machines: SMADL.

Social Machines can be connected (or establish a relationship) in basically
two phases: in the first phase, the SMs must find each other, and a there must
be a SM registry service much likely Internet DNS; in the second phase the SMs
actually connect to each other and exchange information for a limited period

48

of time. The SM registry service is out of the scope of this proposal. We are
assuming SMs can find each other without much effort.

In order to comprise these two phases, SMADL is composed by two mini-
languages:

– VCL (Visitor Card Language): presents the externally visible properties
of a SM, i.e., which requests and responses it accepts, which types of in-
puts/outputs it handles, if an internal state is maintained and/or how many
requests it can handle per amount of time. A vCard is provided by the SM
registry to the consumer SM, so it can decide if the relationship is interest-
ing or not. Business issues are also present in a SM vCard, such as, billing
information and service level agreements. Nowadays, popular web APIs do
not make available such business information in a programmatic way. Usu-
ally, there are only few lines in reduced font size contracts mentioning that
important information.

– WIL (Wrapper Interface Language): we are assuming every SM has a vCard
with which the wrapper interface is fully complaint. This language is respon-
sible for actually connecting SMs, establishing pre and post conditions, ap-
plying different connectors in a SM composition, and implementing business
rules associated with a given set of SMs. Our proposal is to use WIL not as
substitute for the currently available technologies. Instead it increases the
level of abstraction of these technologies, freeing the programmer to concen-
trate on business issues of the SM relationships.

To understand better how these mini-languages are used, Figure 3 shows the
steps for establishing a relationship between two SMs, as following:

1. Initially, the requester SM, in this case represented by Evernote (upper left
icon), searches for some SM registered as a micro blog, in our case Twit-
ter (upper right icon). Note that Evernote presents its vCard to DNS while
searching for a service, once the responder may or may not accept connec-
tions with that specific SM.

2. The SM DNS finds Twitter and requests its vCard.
3. Twitter responds with its vCard, accepting the relationship.
4. The SM DNS replies back to Evernote with the Twitter vCard, which in-

cludes its address.
5. Using Twitter vCard and knowing its wrapper interface, Evernote establishes

a relationship with Twitter, following all conditions imposed.

There are several popular technologies for integrating web based or service
oriented systems, such, REST [15] and OSGi [16]. The current version of SMADL
generates code for REST based apps, as it is becoming the most popular on
the web, adopted by big players such as Facebook and Google. According to
ProgrammableWeb site 4300 out of approximately 6500 APIs uses REST as
base technology.

SMADL is being developed on Xtext language workbench [17]. As this is a
work in progress, we are preliminarily evaluating alpha versions of the language
and planning an experiment using the approach proposed by [18].

49

Fig. 3. Steps for establishing a relationship between two example Social Machines.

4 Related Work

We performed a systematic mapping study [19] for better understanding the
DSL/ADL research field as shown in [20]. Initially, 4450 studies were identified,
and, after filtering, 1440 primary studies were selected and categorized. Among
all those primary studies, different methods/techniques for handling DSLs (cre-
ating, evolving, maintaining, testing) could be listed and several DSLs applied
to several different domains could be identified. The domain where DSLs are
most frequently applied is the Web domain. Other domains such as embedded
systems, data intensive apps, and control systems where quite common too.

In our study we could enumerate 30 publications directly related to ADL.
Amongst them, only two of them mention the Web domain, both from 2010. In
the first one [21], the authors propose to formalize the architectural model using
domain-specific language, an ADL which supports the description of dynamic,
adaptive and evolvable architectures, such as SOA itself. Their ADL allows the
definition of executable ver-sions of the architecture. The second one is [?] which
presents a framework for the implementation of best practices concerning the
design of the software architecture. The authors present an implementation of the
framework in the Eclipse platform and an ADL dedicated to Web applications.

In addition, practical examples, such as Yahoo! Pipes2 and IfThisThenThat3

can be seen as related work. The former uses a graphical tool for customizing
data flows from different sources. The latter allows end users to program the web
based on pre-defined events fired by a set of channels, for example, if someone
tags you on a given social network (channel 1), then save this photo in the
person’s virtual drive (channel 2). The user can choose among different events
from different channels, which are, in practice, websites that make available
their APIs. Our work is an attempt to be a completely different way to program

2 http://pipes.yahoo.com
3 http://ifttt.com/

50

the Web, not based on pre-defined parameters. The idea behind SMADL is to
actually define every public API in the Web and the relationships among them.
This way, composition possibilities for several SMs can be infinite.

As can be seen, this is a relatively new research field and we believe we can
make a considerable contribution by establishing the concept of a Social Machine
and developing an ADL for supporting it.

5 Concluding Remarks and Future Work

This work presents SMADL “The Social Machines Architecture Description Lan-
guage” as a possible solution for modeling web-based software systems.

In general, a Social Machine (SM) represents a connectable and programmable
entity containing an internal processing unit (P) and a wrapper interface (WI)
that waits for requests (Req) from and replies [with responses (Resp)] to other
social machines. Its processing unit receives inputs (I), produces outputs (O)
and has states (S); and its connections define intermittent or permanent rela-
tionships (Rel) with other SMs. These relationships are connections established
under specific sets of constraints (Const).

Our main goal is to use SMADL to describe SM relationships and then we
can have one unique way to program the web, independently of what technol-
ogy/platform is being used. The current version (alpha) of SMADL generates
code for REST based apps, as it is becoming the most popular on the web,
adopted by big players such as Facebook and Google. Nowadays, we are work-
ing on several sample apps which have their architecture written in SMADL.
These apps are basically consumer SMs, it means they do not make available
public features, but only consumes other public APIs. These apps are going to
be distributed as open source.

Our next steps include writing fully prosumer social machines, i.e. applica-
tions that connects to others, process their data, and someway make this data
available for others to consume. At this phase, we are planning to perform an
experiment, following the methodology described in [18].

Acknowledgments. This work was partially supported by the National In-
stitute of Science and Technology for Software Engineering (INES), funded
by CNPq and FACEPE, grants 573964/2008-4, APQ-1037-1.03/08 and APQ-
1044-1.03/10 and Brazilian Agency (CNPq processes number 475743/2007-5 and
140060/2008-1).

References

1. Pressman, R.S.: Software engineering: a practitioner’s approach (2nd ed.).
McGraw-Hill, Inc., New York, NY, USA (1986)

2. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (December 2005) 316–344

51

3. Völter, M.: Architecture as language. IEEE Software 27(2) (2010) 56–64
4. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society 42 (1936) 230–
265

5. Roush, W.: Social Machines. Technology Review (2006) 1–18
6. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer

36(10) (October 2003) 38–44
7. Yu, S., Woodard, C.J.: Service-oriented computing — icsoc 2008 workshops.

Springer-Verlag, Berlin, Heidelberg (2009) 136–147
8. Hwang, J., Altmann, J., Kim, K.: The structural evolution of the web 2.0 service

network. Online Information Review 33(6) (2009) 1040–1057
9. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.

Semantic Web Inf. Syst. 5(3) (2009) 1–22
10. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American

284(5) (2001) 34–43
11. Hitzler, P., Krtzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.

1st edn. Chapman & Hall/CRC (2009)
12. Meira, S.R.L., Burégio, V.A., Nascimento, L.M., de Figueiredo, E.G.M., Neto, M.,

Encarnação, B.P., Garcia, V.C.: The Emerging Web of Social Machines. CoRR
abs/1010.3 (2010)

13. Meira, S.R.L., Buregio, V.A.A., Nascimento, L.M., Figueiredo, E., Neto, M., En-
carnacao, B., Garcia, V.C.: The Emerging Web of Social Machines. In: 2011 IEEE
35th Annual Computer Software and Applications Conference, IEEE (July 2011)
26–27

14. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services. ACM Trans.
Softw. Eng. Methodol. 16(1) (February 2007)

15. Richardson, L., Ruby, S.: Restful web services. First edn. O’Reilly (2007)
16. Hall, R.S., Pauls, K., McCulloch, S., Savage, D.: OSGi in Action: Creating Modular

Applications in Java. Volume 188. Manning (2010)
17. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick

and dirty way. In: Proceedings of the ACM international conference companion
on Object oriented programming systems languages and applications companion.
SPLASH ’10, New York, NY, USA, ACM (2010) 307–309

18. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Springer
(2001)

19. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies
in software engineering. In: Proceedings of the 12th international conference on
Evaluation and Assessment in Software Engineering. EASE’08, Swinton, UK, UK,
British Computer Society (2008) 68–77

20. Nascimento, L.M., Viana, D.L., da Mota Silveira Neto, P.A., Souto, S.F., Martins,
D.A.O., Garcia, V.C., Meira, S.R.L.M.: Domain-Specific Languages - A Systematic
Mapping Study. In: Proceeedings of 7th International Conference on Software
Engineering Advances (ICSEA). (2012)

21. López-Sanz, M., Cuesta, C.E., Marcos, E.: Formalizing high-level service-oriented
architectural models using a dynamic adl. In: Proceedings of the 2010 international
conference on On the move to meaningful internet systems. OTM’10, Berlin, Hei-
delberg, Springer-Verlag (2010) 57–66

52

Verifiable composition of language extensions

Ted Kaminski

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, USA

tedinski@cs.umn.edu

Abstract. Domain-specific languages offer a variety of advantages, but
their implementation techniques have disadvantages that sometimes pre-
vent their use in practice. Language extension offers a potential solution
to some of these problems, but remains essentially unused in practice. It
is our contention that the main obstacle to adoption is the lack of any
assurance that the compiler composed of multiple independent language
extensions will work without the need for additional modifications, or at
all. We propose to solve this problem by requiring extensions to indepen-
dently pass a composition test that will ensure that any such extensions
can be safely composed without “glue code,” and we propose to demon-
strate that interesting extensions are still possible that satisfy such a
test.

1 Introduction

Domain-specific languages (DSLs) come with a variety of reasonably well-known
advantages and disadvantages [3]. Some of these disadvantages do not seem to
be inherent to DSLs in general, but are a consequence of the way they are imple-
mented. In particular, many implementation techniques lack or poorly support
composition, meaning multiple DSLs cannot easily be used together to solve a
problem.

To be more precise about what we mean by language composition, we will
use some of the classification and notation of Erdweg, Giarrusso, and Rendel [5].
The notation H / E represents a host language H composed with a language
extension E, specifically crafted for H. Another composition operator L1]g L2

denotes the composition of two distinct languages with “glue code” g. To permit
only the / form of language composition (“language extension”) is not sufficient.
With H, H /E1, and H /E2, we are left with no option for composing all three,
without modifying one of the extensions to have the form (H /E1) /E2 (or vice
versa.) However, the]g form of language composition (“language unification”)
is also insufficient for our purposes. The problem with this form of composition
is that the “glue code” g necessary to perform this composition is essentially an
admission that the composition is broken and must be repaired. (Though it is
still interesting that the composition can be repaired.)

What we seek is a composition method L1]∅L2, that is, language unification
without needing any glue code (g = ∅.) This may seem impossible in general,

53

but there is hope in special cases, such as when both languages are extensions
to a common host: (H /E1)]∅ (H /E2). Here we are tasked with resolving only
conflicts between E1 and E2, while the host language H is shared. We will say
that a DSL implementation technique supports composable language extension
if it is capable of composition of the form H/(E1]∅E2). We further require that
the technique provides some assurance that the resulting composed language will
work as intended, and is not simply broken.

The goal of this work is to build a DSL implementation tool and demonstrate
that it satisfies the following criteria:

– Supports composable language extension, as defined above.
– Permits introduction of new syntax.
– Permits introduction of new static analysis on existing syntax.
– Capable of generating good, domain-specific error messages.
– Capable of complex translation, such as domain-specific optimizations.

In Section 2 we provide some background on the tools we will be making
use of in pursuit of this goal. In Section 2.1 we survey some of the other tools
for implementing domain-specific languages. In Section 3 we propose the work
we plan for this thesis. In Section 3.1 we outline work beyond the scope of this
thesis.

2 Background

The first major obstacle to supporting composable language extension is to al-
low composition of syntax extensions. Although context-free grammars are easily
composed, the resulting composition may no longer be deterministic, or other-
wise amenable to parser generation. Copper [15, 20] is an LR(1) parser generator
that supports syntax composition of the form H / (E1]∅ E2) so long as each
H / E individually satisfy some conditions of its modular determinism analy-
sis. Assuming we require extensions to satisfy this analysis, Copper offers one
solution to the syntax side of the problem of supporting composable language
extension.

Attribute grammars [13] are a formalism for describing computations over
trees. Trees formed from an underlying context-free grammar are attributed with
synthesized and inherited attributes, allowing information to flow, respectively,
up and down the tree. Each production in the grammar specifies equations that
define the synthesized attributes on its corresponding nodes in the tree, as well as
the inherited attributes on the children of those nodes. These equations defining
the value of an attribute on a node may depend on the values of other attributes
on itself and its children. Attribute grammars trivially support both the “lan-
guage extension” and “language unification” modes of language composition, by
simply aggregating declarations of nonterminals, productions, attributes, and
semantic equations.

There is a natural conflict between introducing new syntax and static analy-
sis, referred to as the “expression problem1.” Although normally formulated in

1 http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

54

terms of data types, it applies equally well to abstract syntax trees, and thus
has consequences for language extension. If one language extension introduces
new syntax, and another a new analysis, the combination of the two extensions
would be missing the implementation of this analysis for this syntax. Either the
composition is then broken, glue code must be written to bridge this conflict,
or there must be some mechanism to accurately and automatically generate this
glue code.

Attribute grammars are capable of solving the expression problem by man-
ually providing “glue code” that provides for evaluating new attributes on new
productions. However, the expression problem can also be automatically resolved
without glue code for attribute grammars that include forwarding [19]. An ex-
tension production that forwards to a “semantically equivalent” tree in the host
language can evaluate new attributes introduced in other extensions via that
host language tree, where the attribute will have defining semantic equations.

Although forwarding removes the need for the “glue code” necessary to
resolve the expression problem, there are other ways in which a composition
of attribute grammars may cause conflicts. Attribute grammars have a “well-
definedness” property that, roughly speaking, ensures each attribute can actu-
ally be evaluated. However, although H, H /E1 and H /E2 may be well-defined,
there is no guarantee that H/(E1]∅E2) will also be well-defined. As part of this
thesis, we have developed a modular well-definedness analysis [11] that provides
this guarantee. This analysis checks each H / E individually, and ensures that
the composition H / (E1]∅ E2) will be well-defined.

2.1 Related work

Domain-specific languages are traditionally implemented as an “external” DSL,
and therefore incapable of composition with each other. Internal (or Embedded
DSLs) are those implemented as a “mere” library in a suitable host language [9].
Internal DSLs are interesting in part because they permit the kind of composition
we are interested in. However, they come with many drawbacks. For one, not
all languages are practical choices for internal DSLs, including many that are in
popular use, because the range of possible syntax is seriously limited by the host
language. Further, in their simplest form, internal DSLs cannot easily perform
domain-specific analysis, or complex translation.

One way of making internal DSLs capable of domain-specific analysis is to
take advantage of complex embeddings into the host language’s type system.
AspectAG [21] and Ur/Web [2] are internal DSLs that take this approach to
enforcing certain properties. The drawback to these approaches is the error mes-
sages: they are reported as type errors in the host language’s interpretation of
the types. In the worst case, understanding these error messages requires not
just a deep understanding of the property being checked, but also the particular
implementation and embedding of that property into the host language’s type
system.

One way to improve the ability of internal DSLs to generate code is to take
advantage of meta-programming facilities in the language, like LISP macros, or

55

C++ templates. Racket [17] offers sophisticated forms of macros to enable this
kind of translation. However, the static analysis capabilities of these macros are
quite limited, though they are able to generate surprisingly good error messages
for a macro system. (Especially surprising for those used to C++ template error
messages.)

There are several systems for specifying languages that enable language ex-
tension and unification, as described in the introduction. JastAdd [7, 4], Kiama [16],
and UUAG [1] are such systems based upon attribute grammars. SugarJ [6] is
a recent system built upon SDF [8] and Stratego [22]. Rascal [12] is a meta-
programming language with numerous high-level constructs for analyzing and
manipulating programs. Helvetia [14] is a dynamic language based upon Smalltalk
with language extension capabilities. However each of these systems requires that
the composition of multiple language extensions may need to be repaired with
glue code, and they otherwise provide little guarantee the composition will work.
As a result, they do not support composable language extension, in our sense.

MPS [23] is a meta-programming environment that leans heavily on an
object-oriented view of abstract syntax, and consequently struggles with expres-
sion problem in its support for composition. Consequently, the host language
limits the possible analyses over syntax that are possible. Many useful language
extensions do not necessarily need new analysis over the host language, however,
as macro systems for dynamic languages already demonstrate.

3 Proposal

One component of this thesis has already been mentioned: our modular well-
definedness analysis for attribute grammars [11]. This work is fully described
elsewhere, but we will summarize it here. We say that an attribute grammar is
effectively complete if, during attribute evaluation, no attribute is ever demanded
that lacks a defining semantic equation. This analysis operates on each H / E
individually, and provides an assurances that the resulting H/(E1]∅E2) will also
have this property, without the need to explicitly check this composed language.
To do this, the analysis is necessarily conservative about what extensions pass.
Roughly speaking, extensions must satisfy the following requirements:

– Extensions must not alter the flow types of host language synthesized at-
tributes. That is, they cannot require new (extension) inherited attributes be
supplied in order to evaluate existing (host language) synthesized attributes.

– New productions introduced in extensions must forward.
– The flow types for new attributes introduced by an extension must account

for the potential need to evaluate forward equations before they can be
evaluated.

This modular well-definedness analysis, together with Copper’s modular de-
terminism analysis, offers a potential path towards composable language exten-
sion. Silver [18, 10] is an attribute grammar-based language with support for
Copper, for which we have implemented our modular well-definedness analysis.

56

As the remainder of this thesis, we propose to evaluate whether this tool is truly
capable of composable language extension. This is not a given, because the range
of potential language extensions has been restricted:

– Forwarding requires all extensions’ dynamic semantics be expressible in terms
of the host language. We do not anticipate this restriction being a burden, as
the host languages we’re interested in extending are Turing-complete with
rich IO semantics.

– Copper’s analysis places restrictions on the syntax that can be introduced by
extensions, relative to their host language. Again, since the host languages
we are interested in extending often have highly complex concrete syntax
already, we expect these restrictions will be a light burden.

– Silver’s analysis places restrictions on how information can flow around ab-
stract syntax trees. Again, however, this is relative to the host language
implementation, which we expect to offer support for rich kinds of informa-
tion flow already.

In light of these potential restrictions on the kinds of extensions that can be
specified in Silver, we wish to validate each of our goals:

– The analyses themselves accomplish the goal of supporting composable lan-
guage extension.

– We will need to implement at least two new extensions to the syntax.
– We will need to implement at least one new extension to static analysis.
– That static analysis extension should demonstrate the ability to generate

good, domain-specific error messages.
– One of the extensions should involve either complex translation, require

domain-specific optimizations, or have at least stringent efficiency require-
ments, to demonstrate the approach has little to no runtime overhead.

We propose to build a host language specification for C in Silver. C is an
ambitious choice, but choosing a rich, practical language of independent design
is necessary to evaluate whether the analyses’ restrictions are practical, as they
depend on the host language. To this specification of C, we propose to build
language extensions that will meet the above requirements. These should ideally
be language extensions that already exist in the literature, so that the changes to
their design or syntax that are necessary to satisfy the analyses can be evaluated.

From this we hope to learn:

– How to better design extensible host language implementations, to support
the development of interesting extensions. Many of the limitations imposed
by the analyses depend upon the host language implementation more so than
on the host language itself.

– Ways in which Silver itself may need to be extended to help specify the host
language and extensions. For example, proper aggregation of error messages
in the extensions could be ensured with language features specific to error
message aggregation.

57

– Whether the restrictions still permit interesting and practical language ex-
tensions.

– Informally, whether the resulting extended languages are useful. We intend
for our colleagues to make use of these extended languages, providing some
feedback in this area, though we do not intend to perform an empirical
investigation.

3.1 Future work

Beyond the scope of this thesis, there lie many more problems that must be
solved to bring language extension to practicality.

First, host languages must be developed in Silver before they can be ex-
tended, and extensions can only be composed for a common host language, so
fragmentation must be kept to a minimum to avoid splitting apart the ecosys-
tem. High enough quality implementations of host languages for production use
remains future work.

Second, numerous less daunting engineering issues would also need resolving.
No obstacles to composing language extensions at runtime exist for Silver and
Copper, but the feature has yet to be fully implemented. Further, the build
process for making use of an extended compiler in large software projects must
be worked out.

Third, a variety of other tooling must also be composable. Languages exten-
sions must result not only in composed compilers, but also composed debuggers
and integrated development environments. Abandoning these tools is not an op-
tion for practical use. We do not intend to directly address this problem in this
thesis, though concurrent work for such tools in Silver is ongoing.

Finally, although these analyses ensure conflicts do not arise from the parser
or attribute evaluator, it is possible that conflicts could arise in some other
fashion. Certainly we can imagine blatantly wrong code, like suppressing all
error messages from subtrees. But the formulation of composable proofs of the
compiler’s correctness would complete our understanding the problem posed by
composable language extension.

4 Conclusion

We believe that no existing DSL implementation tool satisfies all five goals listed
in the introduction: support composable language extension, allow extension
to both and static analysis, provide good domain-specific error messages, and
allow complex translation requirements. These goals are motivated by the desire
to ensure that the users of language extensions can be certain they can draw
on whatever high-quality extensions they need, without fear of breaking their
compiler.

We have developed an analysis that ensures Silver meets the goal of support-
ing composable language extension, and we have implemented this analysis. We
intend to develop an extensible specification of a popular and practical language,

58

C, and we intended to demonstrate that practical language extensions to it are
possible that satisfy this analysis. We believe this will demonstrate that Silver
satisfies all five goals listed in the introduction for an ideal DSL implementation
technique.

References

1. Baars, A., Swierstra, D., Loh, A.: Utrecht University AG system manual,
http://www.cs.uu.nl/wiki/Center/AttributeGrammarSystem.

2. Chlipala, A.: Ur: statically-typed metaprogramming with type-level record com-
putation. In: PLDI, 2010. pp. 122–133. ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1806596.1806612

3. Deursen, A.v., Klint, P., Visser, J.: Domain-specific languages: An annotated bib-
liography. ACM SIGPLAN Notices 35(6), 26–36 (Jun 2000)

4. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Proc. of
ECOOP ’04 Conf. pp. 144–169 (2004)

5. Erdweg, S., Giarrusso, P., Rendel, T.: Language composition untangled. In: LDTA,
2012 (2012)

6. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Sugarj: library-based syntactic
language extensibility. In: OOPSLA 2011. pp. 391–406. ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/2048066.2048099

7. Hedin, G., Magnusson, E.: JastAdd - an aspect oriented compiler construction
system. Science of Computer Programming 47(1), 37–58 (2003)

8. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formal-
ism sdf. SIGPLAN Not. 24(11), 43–75 (Nov 1989), http://doi.acm.org/10.1145/
71605.71607

9. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28(4es) (1996)

10. Kaminski, T., Van Wyk, E.: Integrating attribute grammar and functional pro-
gramming language features. In: Proceedings of 4th the International Conference
on Software Language Engineering (SLE 2011). LNCS, vol. 6940, pp. 263–282.
Springer (July 2011)

11. Kaminski, T., Van Wyk, E.: Modular well-definedness analysis for attribute gram-
mars (2012), accepted SLE 2012

12. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Proc. of Source Code Analysis and
Manipulation (SCAM 2009) (2009)

13. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2), 127–145 (1968), corrections in 5(1971) pp. 95–96

14. Renggli, L., Gı̂rba, T., Nierstrasz, O.: Embedding languages without breaking
tools. In: ECOOP 2010. pp. 380–404. Springer (2010)

15. Schwerdfeger, A., Van Wyk, E.: Verifiable composition of deterministic grammars.
In: Proc. of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM Press (June 2009)

16. Sloane, A.M.: Lightweight language processing in kiama. In: Proc. of the 3rd sum-
mer school on Generative and transformational techniques in software engineering
III (GTTSE 09). pp. 408–425. Springer (2011)

17. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-
guages as libraries. In: PLDI 2011. pp. 132–141. ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1993498.1993514

59

18. Van Wyk, E., Bodin, D., Krishnan, L., Gao, J.: Silver: an extensible attribute
grammar system. Scinece of Computer Programming (2009), accpeted, In Press

19. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Proc. 11th Intl. Conf. on Com-
piler Construction. LNCS, vol. 2304, pp. 128–142 (2002)

20. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible lan-
guages. In: Intl. Conf. on Generative Programming and Component Engineering,
(GPCE). ACM Press (October 2007)

21. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: How
to do aspect oriented programming in haskell. In: Proc. of 2009 International Con-
ference on Functional Programming (ICFP’09) (2009)

22. Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In: Rewriting Techniques and Ap-
plications (RTA’01). LNCS, vol. 2051, pp. 357–361. Springer-Verlag (2001)

23. Voelter, M.: Language and ide modularization, extension and composition with
mps. In: GTTSE 2011 (2011)

60

